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SUMMARY 

January l.977 

The concept of binary balanced incomplete block designs whose incidence 

matrix n takes only two values 0 or 1, is extended to general binary balanced 

block designs whose incidence matrix n* takes two values m0 and m1 , where 

0 ~ mo < m1 . Parameters and necessary conditions for n* are evaluated. Given 

a fixed number of units N* {say) and a fixed number of treatments v (say), 
.. , 

more than one general binary balanced block designs for different values of m0 

and m1 are possible. A criterion to pick an optimal design from its class is 

derived. 

~ & ~: Basic bina~ balanced block d~sign (BBBIBD).. General binary 

balanced block design (GBBBD). Incidence matrix, orthogonal, variance optimality. 

l. INTRODUCTION 

Given a set V = {(a1 )~, i=l,2,· · · ,v} of v elements, a collection 

13 =((B.); /B.!= k. e wr, j=l,2, .. ·,b} is called a block design if: 
J J J 

(a) kj elements (distinct or otherwise) of the set V are assigned to Bj and 

(b) a. is assigned to r. elements of the collection 0 such that 
1 1 

v b 
~- 1 a. = ~. 1 k. = N. 

1= 1 J= J 
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The elements Qf V and t:J are called treatments and .blocks respectively; I(" 

is the set of block sizes k. . 'I'he combinatorial properti-es of the above set
J 

ting are invariant to any ordering of the blocks or of the treatments within 

blocks; hence, when the treatments and blocks are randomly permuted in an 

experiment, the combinatorial properties are p~eserved .. ~ block design may be 

presented by a v x b matrix, the incidence matrix and denoted by n = (n .. ). The 
. - 1J 

(i, j )t h entry of ~ rep:rese_nts the frequency nij of the it h treatment in the jth 

block. A block design is said to be general binary if for some non-negative 

integers, .mo and m11 ni{ m0 or m1, where 0 ::;; m0 < m1 for aE i and j. If 

nij = 0 or 1, the design is said to be basic binary or more simply binary. 

Writers of statistical and mathematical papers have confined their atten-

tion predominantly to the case where n .. = 0 or 1, that is, the basic binary. 
l.J 

Consequently, experimenters are left with the impression that no other design 

exists. In several situations, the block sizes kj may be larger than.the nUD:lber 

of treatments v. For example, the litter sizes or the family sizes may be 

greater than the number of nutritional treatments under consideration. One 

procedure in current usage is to discard material randomly until the number of 

treatments equals the block size. Di-scarding· experimental material to· achieve 
-' 

equality of treatment numbers and block sizes is an unjustifiable procedure in 

terms of cost of experimental material. If one would consider generalized 

block designs, all the experimental material could be utilized. 

Another situation wherein n .. = 0 or 1, k. < v, and a binary block design 
l.J J 

may not be appropriate, is when an estimate of the variance for individual 

treatments or for pooled variance within blocks is desired to test for block 

by treatment interaction. Here one could·use an incomplete block design with 

k. ~ v and use n .. = 0 or m > l, or one could use a binary block design with 
J l.J 
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nij = m0 or m1 for m1 > m0 > 0, for example. Of course, there is no reason 

to confine ones self to binary designs. 

Since balanced incomplete block designs have equal variance (variance 

balance) for all differences among treatment effects (under homoscedasticity 

assumptions), such designs may be preferred if they exist. If not, one may use 

a partially balanced block design which is as near variance balance as possible. 

It should be noted, however, that variance balanced block designs may not always 

be variance optimal designs. For example, consider the following two binary 

block designs: 

Design (i) Design (ii) 

Balanced block design Partially balanced block design 

mo = 1, ml = 3 

v = b = 4, k = r = 6, A. ; 8 

Blocks 

l 2 3 4 

A A A A 

B B B B 

c c c c 
D D D D 

A B c D 

A B c D 

average intrablock variance = . 4ocr2 

mo = 1, ml = 2 

v = b = 4, k = r = 6, \ = 8, 

Blocks 

1 2 3 4 

A A A A 

B B B B 

c c c c 
D D D D 

A c A B 

B D c D 

avera~~ intrablock variance 

= [4(23) + 2(24)]/6(66) 
= -35~ 

Likewise, if one extends the class of designs to all n-ary designs (Tocher, 

1952), then it is possible to have some partially balanced incomplete block 

A.2 = 9 
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designs which have smaller average variance than a balanced block design. The 

following examples will illustrate this. 

Design l Design 2 

Balanced Incomplete. Block Partially Balanced Incomplete Block 

' ~·, Design n .. = o, l or 2 
1J 

Design n .. = 0 or 2 
1J 

Btocks Blocks 

1 2 3 4 5 6 1 2 3 4 5 6 

A A .A 'B B c A A A A A c 
A A A B B c B B B B A c 
B c D c D D D D D D B D 

B c D c D D D D D D B D 

average variance = cr2/2 average variance = 7cr2 / 18 

In this paper we confine our attention to general binanr balanced block 

design (GBBBD) as a ·selected subset of all n-ary designs, and to equal block 

size; and in the next section the parameters of a GBBBD are constructed and 

some definitions are presented. The relationship of the parameters to the 

binary balanced incomplete block design, as a special case, is demonstrated. 

Some results on existence of GBBBD and on their variance optimality are pre

sented in section three. Two examples, illustratin~ the results, whei'e a· most 

optimal GBBBD exists and where it doesn't exist, are given in the last section. 

2. PARAMETERS OF GBBBD AND SOME DEFINITIONS 

Let k. = k for all j, let r. = r for all i and let n be the incidence 
J 1 

matrix of a balanced incomplete block design with parameters (v, b ,r ,k, A.; 

n. . = 0,1); then we may define the incidence matrix of a general binary balanced 
1J 
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block design to be 

where J is v X b matrix whose elements are all one and where 0 ~ m0 < m1 

The parameters of the GBBBD are (v,b,r*,k*,~~; nrj = m0 or m1 ) where 

A.* = 
r*(k*-m -m ) + bm m l 0 1 0 

v - l 

where A.~~ : '<"'b .._ * f 11 ; J.. J.• I (1 2 ) ~j=l nijn i'j or a • r , ,··· ,v 

vr* = bk* = N~~ 

v ~ b 

(2. l) 

(2.2) 

(2. 3) 

(2. 4) 

(2. 5) 

(2. 6) 

In order to be precise, some formal definitions are needed. These are 

presented below. 

Definition 2.1. A GBBBD is said to be incomplete if m0 = 0; otherwise it 

is said to be complete. 

Design 1 given above is an incomplete block binary design and design 2 

is an incomplete ternary design. 

An example of a complete GBBBD is 

Blocks 

1 2 3 

A A A 

B B B 

c c c 
A B c 
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where v = b = 3, r = k = 1, r~ = k* = 4; A* = 5, m0 = 1, m1 = 2 . 

Definition 2.2. A complete GBBBD is said to be orthogonal if 

Otherwise it is said ··to be non-orthogonal. 

.. :o--!·;.j : 

A design may be complete and non-orthogonal; for example, the design given 

under definition 2.1 is of this type, since (rf.koi!")/N¥-· = 16/12 I nJ.~ 
~ J ij 

Consider 

the following designs: 

Blocks Blocks 

1 2 3 1 2 .3 

A A A A A A 

A A A B B B 

B B! ·B c c -"·c· 
c c c A B c 

Both designs are binary and complete. The first one is orthogonal but not 

balanced, whereas the second is balanced but not orthogonal. 

Definition 2.3. A complete GBBBD is variance balance if its coefficient 

mat.rix .~;. =. ct~ + c~·:! where ci and c2 are scalars and ci is the non-zero eigen

value of c* and c2 = cflv . I is the identity matrix and J is a matrix whose 

all elements are ones. 

~: . 

Note a design could be complete but not balanced, for example, the first 

two blocks of the design under definition 2.1. 

3. EXISTENCE AND VARIANCE OPTIMALITY 

Theorem ~· Existence of ~ balanced incomplete block design ~ para

meters (v,b,r,k,A; nij = O,l) implies~ existence of GBBBD ~parameters 

(v,b,r*,k*,A*; nrj = m0 or m1). 
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Proof: From the definition of a GBBBD note that n* = ~(m1-m0 ) + ~m0 . 

The (i,j)th entry of n* is 

if n .. = 0 
~a-

= m if n .. = 1 
1 ~J 

To construct a GBBBD, start with a balanced inqomplete block design with 

incidence matrix~' replace the ones by m1 and the zero's bym0 to obtain the 

incidence matrix for a GBBBD with parameters (v, b, r*, k~, A.*; m0, m1) where 

r*, k~~ and A.'* satisf'y equations (2.2) to (2. 5). From this construction of ~~~, 

it is clear that m1 and m0 appear r and (b-r) times in each row and k and v - k 

times in each column respectively. Hence, row and column totals are 

r*·= rm + (b-r~m l .. ·· 0 

and 

k* = km1 +_ (v-k)m0 

or more formally, these can be obtained b;y post-multiplication of n* and n~' by 

!bxl and !vxl' column vectors of ones, respectively. Thus 

r*1 = n*~ = [~(ml-mO) + ~mo]!bxl -vXl - - Xl 

= ~;bxl(ml-mo' + :!~xlmO 

= r~vxl(ml-mO) + b~vxlmO 

= [rm1 + (b-r)mo]!vxl (3.1) 
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k*1 = n* '1 = [n_' (m1-m0 ) + J'm ]1 -bxl -vxl - 0 -vxl 

(3. 2) 

In any two rows of ~*, pairs ( =~ ) , ( :~ ), ( :~ ) and { :~ ) appear A, r - A., 

r - A. and (b-2r+A.) times respectively. The inner product of any two rows of ... 

~*, denoted by A*, is 

(.3. 3) 

since ~ is BIBD :. A. = r(k.:1)/ (v-1) 

= [ (r*-bm ) (k*-vm ) - (r*-bm ) (m -m ']/ ( v-1) 
0' 0 0 1 0 

hence 

A.~= [(r*-bm )[k*+vm -m -m) + vbm20 - Jm20]/(v-1) 
0 0 1 0. 

or 

A.~= [r*(k*-m -m) + bm m ]/(v-1' 1 0 1 0 J 
(3.4) 
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This result may be obtained· directly from n*n*' is 

if i I j 

. . 
When m0 = 0 and m1 = 1, equation (2.6) has been called Fisher's inequality. 

Note that in our formulation for arbitrary m0 and m1, such that m0 < m1, equation 

(2.6) represents a generalization of ·Fisher's inequality. This inequality has 

been proven by evaluating the value of the determinant of v X v matrix n*n~' . 

Thus 

1~-t~~*' I = [r*k* - (v-1):>-..~~ + (v-l)A.*][r*k* - (v.,.l)A.M - A.*]v-l . 

Also, 

' 

and 

Hence, 

(3. 6) 

as A. < r. Therefore in balanced designs, where m0 < m1, the value of ~~~~· l > 0 . 

Since n~ is a v x b matrix and ~~*'is v X v, therefore v ~ b . 

The form of the coefficient matrix c* is 

(3. 7) 

(def. 2. 3) 



- 10 -

This form is identical for BIBD if M- is dropped. The rank of c-~• is v-1 and the 

covariance matrix (intrablock) of treatment effects if ~~*cr2 ~ under the usual 

constraints that the sum of the estimated treatments effects t., (i-1,2,··· ,v) 
J. 

equals zero. 

Some particular members of the family of GBBBD are given below: 

i) Basic binary balanced block design. Parameters (v, b, r, k, A; 0, 1). 

Here n~ = n, r* = r, k~~ = k -
A*= A = r{k-1~ mo = o, ml v-1 J 

'A "' k 
c* = k(v~-~), Cov(~) = vA.cl2! 

Efficiency factor = r 
(l - ~) 

(l - !) 
v 

= l . 

ii) Eandomized block design. (Note this is not a binary design, but 

could be obtained from equation (2.1; by setting m0 = m1 = l.) Thus 

the parameters are (v = k, b = r = A., 1; 1). 

Here n# = ~' r* = r = "-*, k* = v 

= m = l l 

r 
c"" = -(vi-J) 
- v - -

Efficiency factor = r 

C12 
=-I . r-

iii) m0 = m, m1 = m. 'I'hen'ltbe parameters are Cv, b, rm, km, Am2; n, m). 

n* = ~' r~ = rm, k* = km 

A.* = r(k-1) m2 m = v-1 0 

A. "' col!· = -(vi-J)m 
' Cov(~) k - -

(l 
Efficiency factor = 

o, 

= 

m = l 

kcr2 
-I 
VAm-

!) 
k 

m, 

J 
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In the class of.. all equireplica.ted a.I¥i equisi:Zed block d.esigns which are 

GBBBD, the question.arises as to .which of these b9.lanced block designs has the 

smallest variance. As may be noted from the definition of a GBBBD, there are 

many possible values of m0 and ·mi··a-rid BBBlBD (v, bd, rd, kd.' lid; 0, 1) leading 

t GBBBD I h . f t · 1 d · t th t · · · A.*v "11 o . n searc 1ng or an op 1ma es~gn, we no e a max~m~z~ng k* w1 

minimize the variance. Since v i~ the same, we need confine our attention only 

The following theorem is in this spirit. 

Theroem 3.2. Among all equireplicated·~ equiblock sized GBBBD with 

parameters (v, bd' r~~, ka> "-~; mOd' m1d' ~ design(s) having the minimal ~ 

3f rd(bd-rd)(m1d-mOd)2 is(are) optimal in the sense of A-, D-, E-optimality. 

Proof. 'l"he three criteria of optimality, A-, D-, E-optimali ty involve 

functions of non-zero eigen-values of the coefficient matrix c*. 

i=l,2 1 "' 1 v-l) be the set of non-zero eigen-values of~~; then, 

i) A-opt~ality: f' (c•~) 
A - = 

ii) D-optimality: f'D(~*) = 

iii) E-optimality: 

v:-1 
\ -1 
i.. yi 

i=l 

v-1 
TT -1 Y. 

~ 

i=l 

-1 max V. 
l$;i:S:v-l 1 

Let (Y., 
~ 

(For a discussion of these criteria, see Kiefer [l958],[1959J.) Since, in our 

th 1 · . 1 · · ·· ·f ... 11 1 t vA.g f h d case, e v- non-zero e1gen-va ues o ~~ are a equa o k* = y or eac ; 
~ d 

by minimizing ( k~ )-1, we shall achieve all the three optimality criteria. Thus, 
d 
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-= m;n r:: r*(mld+mOdk*) - b mldmOd] 
~ as r* is constant, 
d t- d 

Corollary 3.1. In~ subclass of GBBBD with parameters (v, bd' r*, kd' Ad; 

mOd' m1d;' constructed~ the BIBD (v, bd' rd, kd' Ad; 0, 1) and for which 

the difference (m1d-mOd) > 0 is constant, ~ design(s) having minimal value of 

rd(bd-rd) is(are) optimal. 

The proof follows from Theorem (3.2). 

Corollary 3.2. In ~ subclass of GBBBD with parameters (v, bd' r* 
' 

mOd' m1d) constructed from the BIBD (v, bd, rd, kd' Ad; 0, l) for which the 

value r 4(bd-rd) is constant, the design(s) having minimal~ of (m1d-mOd) 

is (are) optimal. 

The proof follows from Theorem (3. 2). 
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Corollary hl· In ! subclass of GBBBD (v 1 b d' r*, kd' >..d; mOd' mld' 

constructed from EIBD (v, bd, ~ ,_ kd, _>..;, 0, l), which ~ either symmetrical 

£!:_ bd = b for all d, the design(s) having the minimal~ of kd(v-kd)(m1d-mOd)2 

is(are) optimal. 

In a symmetrical BIBD, v = bd' rd = kd the result then follows by sub

stituting these values in Theorem (3.2). In designs where bd = b for all d, 

as b and v are fixed. This result follows from Theorem 3.2. 

4. EXAMPlES 

Two examples are presented below to illustrate some consequences of the 

theorems in corollaries given in the previous section. In the first example, 

members of a class of balanced block designs are presented to illustrate the 

need to consider more than one member of the class in searchi~g for a variance~ 

optimal design and to indicate--that a most optimal design may not exist in a 

given class. A most optimal design with respect to A-, D-, and E-optimality 

is defined here to be one which has m1d- m0d = 1 and has r d (b d-r d) a minimum: 

Examples 4.1. The following BBBIBD's are used to construct GBBBD with 

v = 4 and r* = 12: 



- 14 -

blocks 

.treatments l 2 3 4 

A l l l 0 

.··. BBBIBD - l B l 1 0 1 

c l 0 "l -· 
1 

D 0 l l 1 

blocks 

treatments 1 2 3 4 

A 1 0 0 0 

BBBIBD - 2 B 0 1 0 0 

c 0 0 1 0 

D 0 0 0 1 

blocks 

treatments 1 2 ''"j' 4 5 6 

A l 1 1 0 0 0 

BBBIBD - 3 B 1 0 0 1 1 0 

c 0 1 0 l 0 1 

D 0 0 l 0 1 1 

Table 4.1. 

BBBIBD Parameters ~f BBBIBD Parameters of GBBBD Optimality Criteria 

d bd rd kd \i k* d 
).* 
d mod mld mld-mOd r:tt 

d 
II* d 

1 1 4 3 3 2 12 36 3 3 0 3 0 

l 2 4 3 3 2 12 32 0 4 4 3 4 

2 3. 4 1 1 0 12 36 3 3 0 3 0 

2 4 4 1 1 0 12 32 2 6 4 3 4 

2 5 4 1 1 0 12 20 1 9 8 3 16 

2 6 4 l 1 0 12 0 0 12 12 3 36 

3 7 6 3 2 1 8 24 2 2 0 9 0 

3 8 6 3 2 1 8 22 1 3 2 9 3 

3 9 6 3 2 1 8 16 0 4 4 9 12 
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In dasigns 11 3, and 7, m0 = m1 and are orthogonal. A most optimal design, 

whe::ce ~d - m0d = 1 and r d (b d- r d) i E/minimal, does not exist here. Of the other 

designs, design 8 is the best. one·Jn the sense of <?Ur qptimality criterion. 

Design 1 to ·6 fall in the subclass of designs in which I~ is constant and is 

equal to 3. Therefore, the difference (m1 -m0. ) serves as an optimality criterion 
- c1 a 

for this class. Similarly, designs 7 to 9 also belong to the class, as rd(bd-rd) 

is constant and is equal"to 9.' Difference criterion (m1d-m0d) does not serve 

as an optimality criterion to make comparisons between membera of these two 

classes. In a class of designs having the same value of the difference m1d-mOd' 

there is(are) design(s) which.is(are) optimal. Designs 2, 4, and 9 belong to 

this class. Of the three designs, designs 2 and 4 have smaller values of rd(bd-rd), 

hence are optimal in this class. 

Example 4.2. Example l deals with a class of designs in which most optimal 

designs do not exist. This example deals with a class of designs in which a 

most optimal design exists. BBBIBD's l to 3 are used to construct GBBBD with 

v ~ 4 and r* = 15. 

Table 4.2. 

BBBIBD Parameters of BBBIBD Parameters of GBEBD Optimality Criteria 

d bd rd kd A.d k.r,. 
d 

A.-1'· 
d mOd mld mld-mOd 141-

d 
II¥ 

d 

1 l 4 3 3 2 15 56 3 4 l 3 .2 

l 2 4 3 3 2 15 50 0 5 5 3 5.0 

2 3 4 l l 0 15 54 3 6 3 3 1.8 

2 4 4 l l 0 15 44 2 9 7 3 9.8 

2 5 4 1 1 0 15 26 l 12 11 3 24.2 

2 6 4 l l 0 15 0 0 15 15 3 45.0 

3 7 6 3 2 l 10 37 2 3 1 9 .6 

3 8 6 3 2 1 10 33 l 4 3 9 5.4 

3 9 6 3 2 l 10 25 0 5 5 9 15.0 

Design l and 7 both have mld - mOd = 1, but design l is most ~ptimal since It ~ 17 . 
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