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SUMMARY

The concept of binary balanced incomplete block designs whose incidence
matrix n takes only two values O or 1, is extended to general binary balanced
block designs whose incidence matrix g* takes two values o and my, where
0 =mg <my . Parameters andhﬁecessary conditionsAfor g* are evaluated. Given
a fixed number of units N* (say) and a fixed number of treatments v (say),
more than one general binary"galanced block designs for different values of m,
and my are possible. A criterion to pick an optimal design from its class is

derived.

Some key words: Basic binary balanced block design (BBBIBD).. General binary
balanced block design (GBBBD). Incidence matrix, orthogonal, variance optimality.

1. INTRODUCTION

Given a set V = {(ai), i=1,2,--+,v} of v elements, a collection

g = {(Bj); !Bj{ = kj e N*, j=1,2,---,b} is called a block design if:
(a) kj elements (distinct or otherwise) of the set V are assigned to Bj and

(v) a, is assigned to ro elements of the collection & such that

v b
Zi=l ai = zj:l kj = N.
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The elements of V and & are called treatments and blocks respectively; N*

is the set of block sizes kj . The combinatorial propertiés of the above .set— ‘
ting are invaéiant to any ordering of the blocks or of the treatments within

blocks; hence, when the treatments and blocks are randomly permuted in an

experiment, the combinatorial properties are preserved. A block design may be

presented by a v X b matrix, the incidence matrix and denoted by n = (nij)' The

(i,J)*" entry of n represents the freguency n,, of the it" treatment in the jtr

J

block. A block design is said to be general binary if for some non-negative

integers{JmQ and m, n§j= my or ml’Wh??g 0 smy<m for all i and j. If

nij = 0 or 1, the design is said to be basic binary or more simply binary.

Writers of statistical and mathematical papers have confined their atten-
tion predominantly to the case where nij = O or 1, that is, the basic binary.
Consequently, experimenters are left with the impression that no other design

exists. In several situations, the block sized k, may be larger than.the number o

J
of treatments Q.: For example, fhé litter sizes or the famiiy sizes may be
greater than the number of nutritional treatments under consideration. One
procedure in current usage is to discarﬁﬂggﬁérial randomly until the number of
treatments equals the block size. Discardihg experimental material to achieve
equality of treatment numbers and block sizes is an'hnjustifiable pigcedure in

terms of cost of experimental material. . If one would consider generalized

block designs, all the experimental material could be utilized.

Another situation wherein nij =Cor 1, kj < ﬁ, and a binary block design
may not be appropriate, is when an estimate of the variance for individual
treatments or for pooled variance within blocks is desired to test for block
by treatment interaction. - llere one could-use an incomplete block deégéé with ~*

kj < v and use nij = Q0 orm > 1, or one could use a binary block design with ‘
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o A e . . . o
nlJ m, or my for my > my 0, for example. Of course, there is no reason

to confine ones self to binary designs.

Since balanced incomplete blo;k designs have equal variance (variance
balance) for all differences among treatment effects (under homoscedésticity
assumptions), such designs may be preferred if they exist. If not, one may use
a partially balancea block design which is as near variance balance as possible.
It should be noted,.however, that variance balanced block designs may not a;ways
be variance optimal designs. For example, consider the foliowingAtwo binaf}

block designs:

Design (i) . Design (ii)
Balanced block design Partially balanced block design
my = 1, m = 3 My = 1, m, = 2
v=b=4 k=r=6, =8 v=b=1+,k=r=6,)\l=8,)\2=
Blocks Blocks
1 2 3 o 1 2 3 i
A A A A A A A A
B B B B B B "B B
C C C C C C ) C
D D D D D D D D
A B C D A C A B
A'°B C D B D C D
average intrablock variance = Log? averagg»intrablock variance
= [4(23) + 2(24)]/6(66)
= .350%

Likewise, if one extends the class of designs to all n—afj’désigns (Tocher,

1952), then it is possible to have some partially béianced incomplete block
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designs which have smaller average variancé than a balanced block design. The

following examples will illustrate this.

- Design 1 . .~ 3 ' Design 2
Balanced Incomplete Block * ‘Partially Balanced Incomplete Block
Design n,, = 0 or 2 . "+ Designn,, =0, 1 or 2

ij 1J
Blocks Blocks

1 2 3 L 5 6 1 2 3 i 5 6
A A A ‘B B C A A A A A C
A A A B B C B B B B A C
B C D C D D D D D A D B D
B C D c D D D D D D B D
average variance = 0%/2 average variance = 702/18

In this paper we confine our attention to general binary balanced block
design (GBBBD) as a selected subset of all n-ary designs, and to equal block
size; and in the next section the parameters of a GBBBD are constructed and
some definitions are presented. The relationship of the parameters td the
binary balanced incomplete block design, as a special case, is demonstrated.
Some results on existence of GBBBD and on their variance optimality are pre-
sented in section three. Two examples, illustratiné the results, whefe a most

optimal GBBBD exists and where it doesn't exist, are given in the last section.

2. PARAMETERS OF GBBBD AND SOME DEFINITIONS

Let kj = k for all j, let r,=r for all i and let n be the incidence
matrix of a balanced incomplete block design with parametérs (v,b,r,k,};

nij = 0,1); then we may define the incidence matrix of aAgéneral binary balanced




block design to be
n¥* = g(ml-mo) + Jmg , (2.1)
where g is v X b matrix whose elements are all one and where C = m,A < ml .

0

The parameters of the GBBBD are (v,b,r*,k*,\%, ngj =m,  or ml) where

0
r¥ = rm) + (b-r)mo, (2.2)
K* = km, + (v-k)mO (2.3)
- r*(k*-ml-mo) + bmym, 2.4)

v -1

b :
= * n* 3 s ! e
where A\ Zj=l Dy n®; g for all i # i (1,2, ,V)

vr¥ = bk* = N* (2.5)

v < b (2.6)

In order to be precise, some formal definitions are needed. These are
presented below.

Definition 2.1. A GBBBD is said to be incomplete if m

is said to be complete.

Design 1 given above is an incomplete block binary design and design 2
is an incomplete ternary design.

An example of a complete GBBBD is

Blocks

> a W x|
W O W x|
Q Q W >»lw

= 0; otherwise it
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where v=Db =3, r=k=1, r*=k¥=L4; M=5m =1, m =2 .

0 1
rik# 'l'

Definition 2.2. A complete GBBBD is said to be orthogonal if ny, = —ﬁgi

Otherwise it is said to be non-orthogonal.
S

A design may bé complete and non-orthogonal; for example, the design given
under definition 2.1 is of this type, since (r§k§)/N* = 16/12 # ngj . Consider

the following designs:

Blocks Blocks
1 2 3 12 3
A A A A A A
A A A B B B
B B° ‘B~ C c  =C
C C C A B C
Both designs are binary and complete. The first one is orthogonal but not ‘

balanced, whereas the second is balanced but not orthogonal.

Definition 2.3. A complete GBBBD is variance balance 1if its coefficient

matrix c¥# ='ch + cgJ where cf and cg are scalars and cf is the non-zero eigen-

value of c* and cg = cf/v . I is the identity matrix and J is a matrix whose

all elements are ones.

Note a design could be complete but not balanced, for example, the first

two blocks of the design under definition 2.1.

3. EXISTENCE AND VARIANCE OPTIMALITY

Theorem 3.1. Existence of a balanced incomplete block design with para-

meters (v,b,r,k,); n;s; = 0,1) implies the existence of GBBBD with parameters

1)
or ml) . .

(v,b,r¥ k¥ A%, n?j =m

0]
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+ Jm

Proof: From the definition of a GBBBD note that 9*V= g(ml-mo) Jmy -

The (i,j)'" entry of n* is

* = - = i =
nf, nij(ml mo) *my = my if ng 0

To construct a GBBBD, start with a balanced incomplete block design with

incidence matrix n, replace tﬁe ones by m, and the zero's byﬂmo to obtain the

1
incidence matrix for a GBBBD with parameters (v, b, r*, k#, A%, mo, ml) where
r¥, k* and M satisfy equations (2.2) to (2.5). From this construction of n*,
it is clear that my and m, appear r and (b-r) times in each row and k and v - k

times in each column respectively. Hence, row and column totals are

rm

[}

r#. + (b-r)m

1 0

‘l’ and

k* = km +4(v—k)mo

1

or more formally, these can be obtained by post-multiplication of n* and g*' by

;le and lvxl’ column vectors of ones, respectively. Thus
-"' = * = -
Ty = By = Loleyomg) + o bel
= 0l (myomy + T4
= v (m-mg) + DL m,
= )
[rml + (b~ r)m vxl (3.1)



-8 -

» = et - ' _ ' ;
Ko = B g = let(mpmmg) + Imglt o

1'1
9 v ><l(m mo) *d -‘-vxlmo

= ki (m -, ) + bl

-bx1l “px1™o

[t}

[km + (v- k)m (3.2)

bxl

e () (20 (2 ) ()
In any two rows of n¥, pairs ( m /> ( mg ), m and me, appear A, r - A,
r - A and (b-2r+\) times respectively. The inner product of any two rows of

n*, denoted by A*, is

A¥

It

2 2
le + 2<r-X)mlmo + (b-2r+7\)mO

K(ml-m0)2+ 2r(ml-mo)mo +‘bmg o .o (3.3)

since n is BIBD .\ X = r(k-1)/(v-1)

May-n)? = [rk(m-mg)2- r(m,-m0)2)/ (v-1)

((r*-bm )} (k¥-vm ) - (r*-bm ) (m -m "1/ (v-1)

{(r*-bmo)(k*-vm -m +mo)]/(v-l)‘

0

- *.
2r(ml mo)mo 2(r bmo)m

O )
hence
A = L(r*-bmo){k“+vmo = } + vbmo - om ]/ v-1)
or
A% = [p*(k#*-m -mo) + bmlmoj/(v-l) (3.4)

1
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This result may be 6btained‘directly from n*n*' is

r¥k* o (v-l)N* if i o=

L1}

'(gfg*t)ij = r*(ml+m0) - bm. m

10
= A\® if if£ 3
When my = 0 and mi = 1, equation (2.6) has been called Fisher's inequality.
Note that in our formulation for arbitrary m. end m., such that m_ < m,, equation

0 1 0 1

(2.6) represents a generalization of Fisher's iheduality. This inequality has

been proven by evaluating the value of the determinant of v X v matrix n¥n®*' .

Thus
In#n®t| = [rdc* - (v-1)h + (v-1)A*][r#c* - (v-1)h - ax]V7E
Also,
W - 2 - 2
reg# = rk(ml go) +2bk(ml mo)mO + bvmy
- V2 4 Shk (m 2
¥y = )\v(ml mo) + 2bk(ml mo)mo +bvmg
and
W _ = - m )2 = (e -m_ )2
r¥g#* - A¥v = (rk )\v)(ml mo) (r )\)(ml mo)
Hence,
o] = 8 (2-0) (m, )21 072) (3.6)

as A < r. Therefore in balanced designs, where m_ < m. , the value of |n*n*']| >0 .

0

Since n% is a v X b matrix and n*n*'is v X v, therefore v <b .

The form of the coefficient matrix g* is

p¥nt A (vI-J)

9% = r*; - W = K . (3.7)
VA A
= %% I- T J = c"l*; + ng (def. 2.3)
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This form is identical for BIBD if * is dropped. The rank of c¥ is v-1 and the
”

covariance matrix (intrablock) of treatment effects if %chzg under the usual

constraints that the sum of the estimated treatments effects %i’ (i-1,2,-++,v)

equals zero.

Some particular members of the family of GBBBD are given below:

i) Basic binary balanced block design. Parameters (v, b, r, k, A\; 0, 1).

Here n*=n, r*=r, k*=k
*Az ‘=ﬁ£ﬂ—]-'-l = =
A A w1 5o O,‘ml 1.
c¥ = L(VI-J) Cov(%) - Xo2r
= k -~ =72 - V)\ -
1
(1 - E)
Efficiency factor = r 1
(1-3)

ii) Randomized block design. (Note this is not a binary design, but

could be obtained from equation (2.1 by setting my = m = 1.) Thus
the parameters are (v=%k, b =r = A, 1; 1).
Here n* = J, r*=r = M, k* = v
mo = ml =1
c* = L(vI-J) Cov(%) -
- —v - - ‘- —‘r..
Efficiency factor = r
iii) my = m, m, =m . Then the parameters are (v, b, rm, km, A®; ¢, m).

n¥ = nm, r¥=orm, k% =km,

A = r(k"l) m2

= vl » My =0, m =,
A 2 ko2
*’ = e - = e———
c k(v-:-[ «_T)m ) COV(E) v}\m; s
. 1
(T -3%)

Efficiency factor = r———-—lg—-

(1 - 3m
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. In the class of all equireplicated and equisized block designs which are
GBBBD, the question arlses a's' to .wh;ich of -‘these‘balanced block .designs has the
smallest variance. As may be noted from the definition of a GBBBD, there are
many possible values of mb and ‘'my “&hd BBBIBD (v, by, T, Ky Ay> 0, 1) leading
to GBBBD. In searching for an optimai design, we note that maximizing -}\% will
minimize the variance. Since v is the same, we need confine our attention only

A# ‘

to e The following theorem is in this spirit.

Theroem 3.2. Among all equireplicated ‘and equiblock sized GBBBD with

a . ¥, \ i ing ini
parameters (v, bd’ r¥, kd’ }\d’ Mage Tig the design(s) having the minimal value

é . . . . .
of rd(bd rd)(mld-mOd)“ is(are) optimal in the sense of A-, D-, E-optimality.

Proof. The three criteria of optimality, A-, D-, E-optimality involve

functions of non-zero eigen-values of the coefficient matrix g*". Let ('Yi,

‘ i=1,2,°*",v-1) be the set of non-zero eigen-values of c#®; then,
v-1
AR
. _ . R ) =
i) A-optimality: fA(g ) oYy
i=1
o v-1
ii) D-optimality: fD(g*) = Y;l
i=1
s . . NS S
iii) E-optimality: fE(g*) = max Y,

1sisv-1

(For a discussion of these criteria, see Kiefer [1958],[1959].) Since, in our

. vA¥
case, the v-1 non-zero eigen-values of c* are all equal to S Y for each g,
M a
by minimizing (Eg ) , we shall achieve all the three optimality criteria. Thus,
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3¢ -
r r#(m) g*tmag) - b

) max . r¥* - e
a = kg

i}

axasy

a"1a"%0a ]

max (k

a -
r r (mld+m0d) bm

14 Odv] as r* is constant,

= min ; 0

d = kd
= mén r r (m Od)b d m) 4804 ]
= min| ¥ - (r*b.m_ _)(r*-b.m_.)

= mj @2 -
m;n[r trgbgmry (my,- oa)J

1

m;n!,: a(gry (my 4= Od)2]

Corollary 3.1. In a subclass of GBBBD with parameters (v, bgs 1%, k¥, A%

1q s constructed from the BIBD (v,"‘d, ry kg Ag5 O, 1) and for which

Mog? ™

the difference (m

) > 0 is constant, the design(s) having minimal value of

14 ™04
rd(bd-rd) is(are) optimal.

The proof follows from Theorem (3.2).

Corollary 3.2. In a subclass of GBBBD with parameters (v, bd’ r¥, kg, kg;

mog? mld) constructed from the BIBD (v, boy Ty Kgs A5 O, 1) for which the
value rd(bderd) is copstant, the design(s) having minimal value of (mld-mOd)

is(are) optimal.

The proof follows from Theorem (3.2).
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. Coroliary 3.3. In a subclass of GBBBD (v, by, T K4, Myomo., mo,

constructed from EIBD (v, by T, kg MO, 1), which are either symmetrical

a’
= b for all 4, the design(s) having the minimal value of kd(v—kd)(m

or b )

d 14 "od

is(are) optimal.

In a symmetrical BIBD, v =b = k. the result then follows by sub-

@ Ta T "a
stituting these values in Theorem (3.2). In designs where bd = b for all d,

I
o
|5
—~~
]
’o‘
=
~—r

rd(bd-rd) =

(%)
T kd (V"k.d) )
as b and v are fixed. This result follows from Theorem 3.2.

‘l’ | L. EXAMPLES

Two examples are presented below to illustrate some consequences of the
theorems in corollaries given in the previous section. 1In the first example,
members of a class of balanced block designs are presented to illustrate the
need to consider more than one member of the class in searchiag for a variance-

optimal design and to indicate that a most optimal design may not exist in a

given class. A most opﬁimal'dééign.with respeét to A-, D-, and E-optimality

is defined here to be one which has mld"mod:=1 and has r ) a minimum.

a (®g-rq

Examples 4.1, The following BBBIBD's are used to construct GBBBD with

v = 4 and r* = 12;
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blocks
treatments |1 2 3 L
A 1 1 1 o
- BBBIBD - 1 B 1 1 0 1
[0 1 0 1 1
D O 1 1 1
blocks ]
treatments| 1 2 3 L
A 1 0 0
BBBIBD -~ 2 B 0O 1 0 O
c 0O 0 1 ©
D O 0 0 1
blocks
treatments| 1 2 3 L4 5 6
A 1 1 1 o 0 O
BEBIBD - 3 B 1 0 0O 1 1 o0
C O 1 0 1 o0 1
D O o 1 o0 1 1
Table 4.1.
BBBIAD Parameters of BBBIBD | Parameters of GBBBD Optimality Criteria
3* 3* - 3
d bg rq ka N kd Ad mna  Uig m) 4By Id IIg
1 1 i 3 3 2 12 36 3 3 0 3 0
1 2 L3 3 2 12 32 0 L L 3 0k
2 3. i 1 1 0 12 36 3 3 0 3 0
2 L L 1 1 o 12 32 2 6 L 3 4
2 5 L 1 1 0 12 20 1 9 8 3 16
2 6 Y 1 1 o 2 o0 0 12 12 3 36
3 7 6 3 1 8 2k 2 2 o) 9
& 6 3 1 & 22 1 2 9 3
6 3 1 & 16 0 L L 9 12

% - " = - - 2/
I} rd(bd rd) 1T} rd(bd rd)(mld mOd) /r
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In designs 1, 3, and 7, mo = my and are orthogonal. A most optimal design,
whese Mg = Moy = 1 and rd(bd-rd) is minimal, does not exist here. Of the other
designs, design 8 is the best one-in the sense of our optimality criterion.
Design 1 to 6 fall in the subclass of designs in which Ig is constant and is

equal to 3. Therefore, the difference (m ) serves as an optimality criterion

for this class. Similari}, désigns T to 9 also belong to the class, as rd(bd—rd
is constant and is equal to 9. Difference criterion (mld-mOd) does not serve

as an optimality criterion to make comparisons between members of these two
classes. In a class of designs having the same value of the difference my 47Mog7
there is(are) design(s) which . is(are) optimal. Designs 2, L, and 9 belong to

this class. Of the three designs, designs 2 and 4 have smaller values of rd(bd-rd),

hence are optimal in this class.

Example 4.2, Example 1 deals with a class of designs in which most optimal
designs do not exist. This example deals with a class of designs in which a
most optimal design exists. BBBIBD's 1 to 3 are used to construct GBBBD with

v = 4 and r¥* = 15,

Table 4.2.
BBBIBD | - Parameters of BBBIBD { Parameters of GBRBD | Optimality Criteria
d by Ty kg Ny K M omgy myg | myyemey I3 1
1 1 N 3 3 2 15 56 3 L 1 3 .2
1 2 i 3 3 2 15 5 0 5 3 5.0
2 3 i 1 1 0 15 54 3 3 3 1.8
) N L 1 1 0 15 Lk 2 9 7 3 9.8
2 5 L 1 1 0 15 26 1 12 11 3 24,2
2 6 i 1 1 0 15 0 o) 15 15 3 ks, 0
7 6 3 1 10 37 2 3 1 9 .6
8 6 3 10 33 1 4 3 9 5.4
3 9 6 1 10 25 0 5 5 9 15.0
;; = rd(bd-rd) , Ilg = rd(bd-rd)(mld-mOd)a/r*

Design 1 and 7 both have m Mg = 1, but design 1 is most optimal since I¥ <« I* .

1d -0 1 7
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