
Walnut: using NUTSS to harden services against DDOS attacks

Ari Rabkin

March 7, 2007

Abstract

Protecting the bottleneck link of an internet services against denial of service attacks is a difficult
problem. The NUTSS architecture can be used to protect the bottleneck link for private services whose
authentication can be replicated, provided that a NAT can be installed at the upstream end of this link.
This paper analyzes the proposed defense and argues that it has a low run-time cost and offers substantial
security benefits.

1 Introduction

1.1 The Problem

Distributed Denial of Service (DDOS) attacks are a
serious problem on the internet today. In a DDOS
attack, large numbers of compromised nodes make
malicious connections to a service in order to con-
sume some resource, and exclude legitimate users.
DDOS attacks can either seek to consume network
bandwidth, server computational resources, or OS re-
sources (such as sockets) on the server. Distributed
denial-of-service attacks that seek to overload the
bottleneck link to a server are particularly difficult to
stop, since the damage has already been done before
the malicious traffic even arrives at the target server.
Whereas OS limitations can often be avoided by clev-
erer systems programming, and while cryptographic
primitives allow a server to impose an arbitrary com-
putational burden on clients, network limitations are
not easy to fix at the end host. Therefore, to resist
such an attack, malicious traffic needs to be stopped
before it reaches the bottleneck link, and thus some
distance away from the target server.

This means that in order to protect the bottleneck
link, there must be some sort of filter that can dis-
tinguish legitimate connections from malicious ones,
and it must be possible to implement this filter on
the ”internet” side of the bottleneck link: typically

this means that unwanted packets must be filtered at
the ISP end of the connection. This is not possible
in today’s internet: The internet’s guiding philoso-
phy is that services should be end-to-end [14], but
stopping a network flow before the bottleneck link
by definition requires that the interception be done
by a service inside the network, a service that doesn’t
fit in an end-to-end framework.

Other network architectures might, however, be
more accommodating, and in recent years, there has
been growing enthusiasm for non end-to-end archi-
tectures [16]. This paper presents a technique for
handling DDOS attacks in the NUTSS framework, a
novel service architecture developed at Cornell over
the last several years [9], and described later in the
paper. This paper will first discuss NUTSS, will
then discuss related work and will then explain how
NUTSS allows superior defense against some forms
of denial of service attacks. The defense will be eval-
uated in terms of its scope of applicability, effective-
ness, and cost.

1.2 NUTSS, NAT, and All That

Network Address Translation is now a ubiquitous in-
ternet technology. NAT extends the internet’s ad-
dress space, by allowing so-called NAT boxes or NATs
to multiplex traffic from many hosts with distinct pri-
vate IP addresses through a single public address.

1

When a connection is made outward through the
NAT, the NAT box is able to maintain enough state
to match incoming packets with the original out-
bound connection, and so the NAT can forward the
response to the appropriate internal address. How-
ever, since the internal addresses are private, it is not
possible for internet hosts to transparently route to
the hidden host.

It is possible for two hosts behind separate NATs
to communicate, via what is called NAT traversal.
NAT traversal requires both endpoints to send a se-
quence of packets carefully orchestrated to put both
NATs into a suitable state, at which point traffic will
flow transparently. There are a number of traversal
techniques, and on well-behaved NAT hardware, they
work efficiently and reliably [7] [4]. Doing the traver-
sal, of course, requires that the hosts that wish to
connect have some sort of signaling channel to coor-
dinate the traversal. This channel need only be used
to set up the connection, at which point data can
flow directly. As a result, using a relay or rendezvous
server is appropriate.

NUTSS is not a particular technology, rather, it is
as an architecture for constructing services [9]. The
acronym NUTSS stands for “Network Address Trans-
lation”, “URIs”, “Tunnels”, “SIP”, and “STUN[T]”.
NAT is used to shield end hosts from unwanted con-
nections. URIs are used to label endpoints, since in
the presence of NAT, IP addresses are not unique.
Tunnels are needed to allow protocols like TCP and
IPSec to pass through NATs that might otherwise
disrupt them. SIP (the Session Initiation Protocol)
is a general-purpose signaling protocol, first designed
for IP telephony, but now being used for many other
purposes [12]. Using SIP for signaling allows de-
ployed infrastructure, and a large body of research
and engineering, to be reused. STUNT is a tech-
nique for TCP NAT traversal; STUN is the UDP
equivalent [7] [13]. NUTSS is the architecture that
combines these components to build services able to
cope with a hostile network.

NAT has often been thought of as an inconve-
nience, since hosts behind NAT do not have pub-
licly routable addresses, and thus traditional services
can not be hosted behind a NAT box. The NUTSS
project, however, aims to turn NAT into a good

thing, by using it to build services with stronger se-
curity guarantees than have been previously possi-
ble. In NUTSS, services are actually hosted behind a
NAT; when clients wish to connect, they signal this
to the server via SIP. If the service’s policy allows the
connection to go forward, an affirmative response is
sent via SIP, and the two hosts build a TCP (or UDP)
connection through the NAT. A service that was in-
tentionally built for NUTSS will of course choose a
NAT that can be easily traversed, and so we expect
that traversal would succeed essentially always. Since
NAT traversal is fundamentally cooperative, no pack-
ets can be received by the service unless it explicitly
approved a connection to the origin IP address.

Perhaps surprisingly, NUTSS works for legacy ser-
vices and applications. The socket calls made by an
application can be intercepted by a userspace library,
and redirected into NUTSS operations in much the
same way that a SOCKS proxy such as Dante [10]
intercepts connections. A modified version of Dante
with support for NUTSS socket interception is in de-
velopment. The whole process can be made almost
entirely transparent to end users and user applica-
tions; the application does its network operations
normally, and they are silently translated into the rel-
evant authentication and session creation operations.
The interception can be specified by a single config-
uration file. As a result, an organization can switch
to the NUTSS model without having to do exten-
sive rewrites. This makes NUTSS useful for protect-
ing legacy services such as corporate email or inter-
nal websites: administrators can allow clients on the
broad internet to connect, but can require authenti-
cation before ever allowing packets from the outside
internet to ever reach these services.

The expense of NUTSS is fairly small, since only a
handful of signaling messages need to be exchanged
before a direct channel can be constructed through
the NAT or NATs between client and server. After
the direct connection is established, the flow of traffic
is identical to that for a traditional publicly routable
service.

NUTSS strengthens system security in a number
of ways, since it allows fine-grained policies to be en-
forced both by the service, and by the SIP server [8].
It can be thought of as a form of security through

2

naming, where untrusted hosts cannot address pack-
ets to the private address of the service. Further,
NUTSS allows many different services to share the
same SIP front end. Since SIP is a widely used
and fairly simple protocol, the problem of building
a secure SIP server is likely much more approachable
than building a separate secure front end to many dif-
ferent services. Lastly, SIP can resolve URIs directly
to IP addresses, without the need for a separate DNS
lookup. This means that NUTSS services avoid cer-
tain DNS-related problems that traditional services
suffer from; for instance, the services can change their
[public] IP addresses at will, while the SIP servers can
use long-lasting name records.

NUTSS, then, helps improve the security guaran-
tees of services, and allows more flexibility in their
placement. The extent to which NUTSS helps pro-
tect against network saturation attacks, and the
proper way of deploying NUTSS in order to prevent
such attacks, however, have not yet been carefully
analyzed. It is the purpose of this paper to perform
such an analysis.

1.3 Related work

NUTSS is not the only effort to fundamentally re-
shape services on the internet. A number of re-
searchers have proposed supplanting end-to-end ar-
chitecture with what they term “delegation oriented
architecture” [16]. In Delegation Oriented Architec-
ture, nodes resolve service identifiers not directly to
the IP address of the service in question, but to
the address of the delegate. NUTSS and delega-
tion oriented architecture both seek to allow inter-
net hosts to have control over the path that data
takes to reach them. Delegation Oriented Architec-
ture per se is implemented above the network level,
and so an attacker able to discover the actual IP ad-
dress of a protected service would be able to overload
it; the authors propose a lightweight packet tagging
and filtering scheme to address this. With this ad-
dition, DOA looks fairly similar to NUTSS, except
that NUTSS does the negotiation via SIP, interac-
tively, rather than using a static lookup service, and
that NUTSS uses NAT boxes to filter traffic, rather
than specialized routers.

There are a number of known techniques for hard-
ening services against DOS attacks that seek to ex-
haust computational resources. The most familiar of
these is the use of cryptographic puzzles, which force
an attacker to do exponentially more work than the
service requesting the puzzle [17]. Efforts to use such
puzzles to protect network resources, by, e.g., includ-
ing per-packet puzzles have largely failed; such efforts
typically require the network infrastructure to ver-
ify puzzle solutions which poses serious deployment
problems.

There have been attempts to track denial of service
attacks backwards, and configure routers as close to
the attacker as possible to drop the offending traffic
[1]. It has been suggested to have routers drop pack-
ets by default, rather than forwarding them [3]. How-
ever, authenticating incoming connections, in order
to know which connections ought to be forwarded, is
an open problem. This paper discusses the authenti-
cation architecture necessary to support this “default
off” model.

Badishi et al have observed that network-level fil-
tering (using filters that operate on packet headers)
is very efficient, and that if applications can con-
trol these low-level mechanisms, this allows for effi-
cient enforcement of policy [2]. More concretely, they
propose building a secure two-party channel by hav-
ing endpoints shift which port numbers to read from
unpredictably, according to a secret pseudorandom
function. Only the correct endpoint has access to the
pseudorandom function, and is able to route traffic
to the open port. The system works analogously to
frequency-hopping radios.

Of course, the most standard approach is to repli-
cate the service, or at least critical front-end parts
of it. One way to do this replication is with IP any-
cast [11]. Another is to have the DNS server load-
balance by dispatching requests to various servers [6].
This DNS-based approach has the drawback that ma-
licious clients can submit requests to machines via
their numerical IP address, thus circumventing the
load balance.

3

1.4 Restricting the problem

Any sort of replication, of course, only makes sense
if the service can be conveniently replicated. Many
services require substantial resources to replicate, or
require some sort of consistency semantics, and so
replicating the entire service is impractical.

Protecting public services is difficult, because the
service’s policy by definition allows any host on the
internet to connect; there is no a priori notion of an
invalid client. Particularly if an attacker can spoof
the source address on packets (so the attacker can
use an unbounded number of identities), it becomes
difficult to distinguish malicious traffic from legiti-
mate use.

However, many services can do some sort of au-
thentication before processing connections. For in-
stance, private web servers, the central servers of
massively-multiplayer online games, and most email
servers have a strong notion of valid and invalid
clients. Therefore, for these services it makes sense to
isolate and replicate only the “authentication” com-
ponent that filters out malicious traffic, and forwards
legitimate traffic to the service. This paper only fo-
cuses on defenses for such access-controlled servers.

2 Using NUTSS to stop DDOS

To prevent the bottleneck link to the non-replicated
component of a service from being overloaded there
needs to be some sort of firewall or filter that keeps
out packets from attackers. Moreover, this filter itself
needs to be at least as hard to saturate as the under-
lying network. To give an analogy: If we consider
the internet as a “series of tubes”, [18] then a band-
width exhaustion attack is an attempt to fill up the
narrowest pipe with debris to block the flow of legit-
imate traffic. The goal of a defense is to put a filter
at the junction between this narrowest pipe and the
wider pipe beyond. Moreover, the filter must be im-
plemented in such a way that the filter itself cannot
be clogged.

In the NUTSS architecture, the filtering or autho-
rization mechanism is a NAT, and access through the
NAT is mediated by a SIP server and some sort of

authentication service. However this approach raises
a number of issues which the remainder of this paper
is devoted to exploring. Where appropriate, options
will be pointed out and analyzed. The most impor-
tant questions are: How well does NAT work for fil-
tering? How best to authenticate clients? Which of
the many possible SIP server configurations is opti-
mal? How secure is it all? How scalable?

NATs are very effective filters. They typically
maintain a small state machine for each ongoing con-
nection, and will reject all incoming packets not as-
sociated with an active connection. If the underlying
connection through the NAT is TCP, which is likely
to be the most common case, then it is very diffi-
cult for a third-party to insert packets into an on-
going stream. TCP packets have per-byte acknowl-
edgments, and so the only way an attacker can in-
sert a packet is for the attacker’s packet to show up
with the appropriate sequence number. These num-
bers change rapidly and unpredictably, and so for an
attacker to forge them, the attacker needs to have
very precise knowledge as to the state of the TCP
stream, and the ability to respond very quickly to
events. Thus only a very powerful attacker can forge
TCP packets. A NAT can detect invalid sequence
numbers, and so is able to detect spurious packets
with high probability. Thus, a NAT is able to effi-
ciently detect and filter bad TCP traffic. Preventing
UDP packets with forged sender addresses from being
routed through the NAT is harder, and is discussed
below.

For NUTSS to protect a network link from satura-
tion, that link needs to be behind the NAT or firewall
so that traffic can be filtered upstream. This typi-
cally means installing a NAT at the ISP end of a link,
rather than at the service end. While such NATs are
not widely deployed today, their deployment poses
no major organizational or technical problems, and
any organization that would make a good target for
a DDOS attack could afford the cost of the hardware.
Any ISP able to host substantial services would have
the technical capacity to host such a NAT.

In any NUTSS deployment, the SIP service used to
negotiate the traversal must be outside the NAT. De-
nial of service resistance adds an additional require-
ment: the SIP service must be able to deny invalid

4

connections without contacting the service being pro-
tected, or any other service at the far end of the bot-
tleneck link. Otherwise, an attacker could overload
the link by inducing the SIP service to send a large
number of bogus connection requests. Rate-limiting
is an imperfect defense, since an attacker able to ex-
ceed the rate-limiting threshold will cause legitimate
connections to time out or be dropped.

SIP is likely to be the practical bottleneck for most
NUTSS deployments, and so the performance evalua-
tions of this paper largely focus on SIP performance.
NATs can handle packets associated with an existing
route quickly, and can simply drop packets without
a valid translation; NAT can therefore handle large
volumes of inbound traffic. If the bottleneck is the
network “in front of” the NAT, then NUTSS is un-
helpful: there is always a network bottleneck some-
where.

2.1 Requirements

The requirements for deploying the DDOS defense
presented in this paper are believed to be reason-
able. The required placement of NAT boxes and SIP
servers beyond a service’s bottleneck link poses no
technical problems. In addition, the proposed de-
fense only relies on a subset of the features supplied
by NUTSS. No assumptions are made about the de-
tails of NAT, URIs, or STUNT; the key requirement
is actually that end hosts are behind some sort of
middle box that controls network flows, and that pas-
sage through the middle box is negotiated over SIP.
NAT is useful because it forces connections to ma-
chines with private addresses to pass through a NAT
box, but conventional firewall deployments can also
have this property. The analysis of this paper ap-
plies equally well to a service architecture using fire-
walls and IP addresses, instead of NATs and URIs
(“FITS”, as it were).

2.2 Scope and Security

NUTSS uses NATs to do authorization, meaning
that the authorization token in each packet is the IP
packet headers, plus (in the case of TCP) a sequence
number. An optional per-packet MAC might also be

employed. Packet headers can of course be forged if
the attacker knows the port on the NAT which was
opened for the session. This can be determined by
intercepting at least one legitimate packet.

Note that the security guarantees provided by TCP
are maintained the presence of a NAT, and inject-
ing packets into ongoing TCP connections requires
an adversary powerful enough to intercept legitimate
packets and send new packets with very precise tim-
ing constraints. This threat is considered unimpor-
tant for most internet services. For services needing
stronger guarantees or using UDP traffic, per-packet
MACs are appropriate; this option is discussed in a
subsequent section.

NUTSS is a feasible defense even when a limited
number of authorized hosts have been compromised.
Any particular host can only send a limited amount
of traffic, preventing that host from mounting an ef-
fective denial-of-service attack. Moreover, if an at-
tacker attempts to overload the service using the path
through the NAT arranged for the compromised host,
then the service can easily determine which machine
was compromised, and can then close that connec-
tion.

NUTSS trades the problem of building secure repli-
cated services for the problem of building secure repli-
cated SIP servers. At a high level of abstraction, it
is better to build one secure high performance signal-
ing solution than N secure services. Further, SIP is a
lightweight and common protocol and so the security
and performance problems are well understood and
easy to solve. As a result, there is a great deal of in-
dustry experience with SIP servers, and a great deal
of effort has gone into building secure servers. Due to
the simplicity of SIP, replication is straightforward,
with [5] an example of a workable approach. As a
result, this trade is advantageous.

3 Design Options

This bare-bones description leaves a number of open
design choices. This section will discuss options for
how to authenticate clients, for where to authenti-
cate clients, for what transport protocol to use for
the signaling plane, and for protecting the data plane

5

against tampering.

3.1 Authenticating Clients

Since authentication requests cannot be funneled
through the bottleneck link to the service, they must
be handled by some authentication service located
on the same side of the bottleneck link as the SIP
server. The message exchange required for authenti-
cation can be done cleanly within the standard SIP
protocol. SIP was originally designed for voice-over-
IP telephony, and VOIP providers needed strong au-
thentication in order to bill clients. As a result, the
SIP specification and commercial SIP software have
ample provision for authentication. The SIP specifi-
cation includes a simple challenge-response protocol,
and allows various other authentication techniques to
be used as well.

The simplest way to do authentication is to main-
tain some sort of user database that maps from user
ID to a secret shared between that user and the ser-
vice. To authenticate a connection, some crypto-
graphic operations must be performed to prove that
the client knows the relevant secret. Even with a mil-
lion users, the user database can be easily stored in
main memory.

Updates to the authentication database can be dis-
tributed reliably and efficiently, provided the rate of
change is not too large (not too many users added
and removed per unit time). Each authentication
server by assumption has ample bandwidth, and so
can receive incoming connections from the protected
service. These updates can be signed to prove their
authenticity. As a result, any standard reliable-
multicast protocol can be used to distribute these
updates. If a brief window of un-availablity is accept-
able, then only minimal synchronization is needed.
The protected service does, however, need to be able
to propagate updates to any servers that are perform-
ing authentication.

This approach has one important weakness, which
is that the protected service has offloaded the com-
plete user database to several authentication proxies,
making the service vulnerable to a compromise at
any of the proxies. It is tempting to seek a proto-
col where the authentication services do not actually

hold secrets, but merely have some sort of oracle ac-
cess to an authentication function. However, this is
not possible, since if an authentication server is com-
promised, the attacker will learn the authentication
tokens of a legitimate user when that user logs in.
The best that can be done is to rotate the SKc val-
ues; this can be done by having the clients and the
protected service arrange some sort of key rotation
scheme (so SKc is replaced by SKct = H(SKc|t);
the service can then distribute the rotated keys to
the authentication servers on a schedule. This way,
a compromised authentication server can only leak
short-term keys.

This authentication can be done inside SIP. The
SIP specification includes a “digest authentication”
mechanism very similar to that employed by HTTP
1.1 [?]. The protocol in essence is as follows. Let c
be the ID of the client, t be a nonce, and KS a sym-
metric encryption key known only to the replicated
SIP servers. SKc is a secret shared between the SIP
server and this particular client for authentication.
This can be either a password or the salted hash of
a password. H is a secure hash function, typically
MD5.

Client → Serv INVITE [c]
Serv → Client 407 Auth Required t
Client → Serv INVITE [c]

t, H(t, c, SKc)
The protocol can be made stateless; servers can

generate the nonce t from a timestamp, and all the
replicated servers can accept any timestamp that is
sufficiently recent. The protocol completes success-
fully provided that the client-supplied hash matches
the server’s expectation. So long as H is not invert-
ible, the scheme is secure. Only a user able to re-
ceive packets addressed to c and forge packets from
c will be authorized. (An attacker able to do so can
mount a man-in-the-middle attack by allowing the
legitimate user to authenticate and then taking over
the session).

An attacker able to intercept a single legitimate
third message is, however, able to replay it. This will
force the server to repeat the authorization step, and
then to pass the authorization on to the protected ser-
vice, thus perhaps overloading the protected service
or the bottleneck network link. One fix for this is to

6

have the SIP server keep track of recently used nonce
values, and allow only one request for the nonce. In
a replicated setting, each SIP server can track this
independently; this allows a small constant number
of replays equal to the number of servers.

This protocol has an additional benefit:
KS{t, cIP}||SKc is a shared secret held by the
authentication service and the user that will never
be reused. It can thus be used as a seed for further
cryptographic protocols, such as requiring a MAC on
every packet. This approach can be useful in some
circumstances, as will be discussed in a later section
of this paper.

Alternatively, users might be issued with public-
private key pairs and certificates signed by the server.
In this case, the storage burden is lessened since the
server need not hold secrets, but the computational
cost of authentication rises significantly since authen-
tication requires comparatively expensive public-key
operations. This avoids the cost of a database of pass-
words, but has a higher cost per-authentication, since
public-key cryptographic operations are substantially
more expensive than hash functions. In addition, it
requires users to maintain secret keys, rather than re-
member human-intelligible passwords. On the other
hand, using public-key methods avoids the security
risks in maintaining a replicated database of per-user
secrets, making it attractive if the SIP servers are
untrusted.

3.2 Placement of the Authentication
Service

The use of SIP, and the choice of a cryptographic
protocol to use over SIP, do not constrain the ac-
tual placement of the authentication database or ser-
vice. Handling requests locally is somewhat more ef-
ficient than network communication. However, if SIP
servers are administered separately from the under-
lying service, the SIP administrators might not wish
to have fairly expensive processes running on their
servers on behalf of other organizations, and might
prefer to forward authentication requests to a sepa-
rate service. This separate service would then need
to be replicated; database replication is straightfor-
ward when the frequency of writes is small and so

this poses no technical problems. The cost difference
between a local and a remote procedure call is small,
however, and so ultimately, the optimal placement
of the authentication service likely depends more on
administrative concerns than technical ones.

3.3 Transporting the Signaling Plane

SIP is a highly configurable protocol, and among
other things, allows a choice of TCP or UDP as
the transport protocol. UDP is more common, since
most SIP messages fit comfortably in a single packet,
and since the SIP protocol is fundamentally message,
rather than stream, oriented TCP provides no secu-
rity benefit over digest authentication; both make it
impossible for an adversary to insert packets into an
ongoing connection.

What is worse, there are significant performance
costs to using TCP. First, the TCP handshake
requires additional message exchanges, increasing
bandwidth consumption and session initiation time.
Second, TCP results in much less graceful handling
of overload conditions. While the SIP server can drop
UDP packets if it is overloaded, the operating system
manages sockets, and so an overloaded SIP server
can consume all available sockets, and will then stop
accepting connections entirely. This means in par-
ticular that an attacker mounting a denial-of-service
attack could attempt to consume all available sock-
ets on the server. Since the sockets are created before
the client is authenticated, the server will be forced to
deny incoming connections at random until the load
subsides; this denies service to legitimate users. In
contrast, with UDP, much less work happens before
the authentication step and no OS resources need be
allocated.

It is also possible to use TLS over TCP, provid-
ing a very high measure of security, at the cost of
a significant added computational burden. This has
the advantage of making the entire SIP transaction
opaque, and in particular, of concealing the “To”
header of the INVITE request that initiates the ses-
sion. However, the actual privacy gain is minimal. A
passive adversary can learn the endpoints of a con-
nection by examining the data plane connection in-
stead of by intercepting the signaling messages. TLS

7

has a substantial cost however, since it requires sev-
eral more message exchanges before the connection
is initiated. Moreover, TLS seems to be poorly sup-
ported by current SIP software; we discovered that
OpenSER, the widely-deployed SIP server that we
used for performance evaluation, crashes frequently
when using TLS.

Thus, it seems as though the signaling plane by
which NUTSS hosts communicate ought to be carried
over UDP if possible, since it has much better per-
formance characteristics for equal security. The only
circumstance in which it makes sense to use TCP is
if UDP is not an option, for instance if the client is
behind a firewall that will not forward UDP data.

3.4 Packet tagging

For UDP streams a low-cost packet tagging approach
is needed to prevent an unauthorized adversary able
to intercept at least one legitimate packet from send-
ing data to the protected service. In such a scheme,
each packet carries a message authentication code (a
MAC) generated by a secret key shared between the
NAT and the client. The NAT would drop packets
without the appropriate MAC. Without such MACs,
an attacker who can read the headers on a legiti-
mate packet can forge source and destination IPs and
ports in order to send packets to a host behind the
NAT, possibly congesting the bottleneck link. Note
that this technique requires a customized NAT box,
rather than one that is available “off-the-shelf” to-
day. Despite this cost, using per-packet MACs is an
attractive and well-understood technique; it has been
proposed in a very similar context by [16] and [2].
The cost of generating and evaluating the MAC can
be a single hash function evaluation; this cost is fairly
small for modern systems at reasonable load levels.

it is difficult for any plausible passive observer
to inject traffic into a legitimate TCP connection
through a NAT, because successfully forging TCP se-
quence numbers requires the attacker to know what
the state of the channel at the instant the forged
packet arrives. Moreover, adding MACs to TCP
packets is difficult; most operating systems do not
expose the boundaries between packets to applica-
tions, making it difficult to place or require a MAC

on each packet. Preventing an adversary able to ef-
fectively forge TCP headers from routing TCP traffic
to a protected service is an unresolved problem. TLS
or other encryption prevents such traffic from being
delivered to the end-application; however it is filtered
out at the end-host, and thus if the threat is band-
width exhaustion, TLS is no help.

4 Performance Evaluation

As was discussed in previous sections of this paper,
SIP is a very flexible protocol. SIP is the public in-
terface to a NUTSS service, and so the scalability
and performance of a NUTSS service will likely be
driven by the behavior of the SIP server. One of the
key advantages of SIP is the opportunity to use exist-
ing hardware and software, and so we evaluated the
behavior of current industry-standard SIP software.
In particular, we attempted to quantify the perfor-
mance costs of different options by measuring the
performance of OpenSER [15], a popular open source
SIP server, and then comparing the baseline behav-
ior against a number of alternate request-handling
strategies.

4.1 Experimental Set-up

We tested SIP server performance with a simple
three-machine loop, comprising an initiator, a re-
spondent, and a SIP server. We used SIPP, a SIP
analyzer and load generator, on the initiator and re-
spondent. The sample workload we used for evalua-
tion was to have the initiator create a call (the basic
transaction in SIP) to the respondent, and then ter-
minate the call as soon as the respondent returned
success. This represents the typical workflow when
SIP is used to coordinate NAT traversal.

All our measurements were repeated on two differ-
ent machines, one fast, one slow. The “slow” machine
was a 2001 Dell, with a 1.7 GHz P4 processor and
512 MB of Ram. The network link was a shared 100
MBit ethernet. The “fast” machine (oslo) was a 2006
Alienware workstation, with an AMD Athlon 64 X2
(dual-core) running at 2.6 Ghz and provisioned with
2 GB of Ram. For all measurements, the initiator

8

Figure 1: Experimental Setup

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

ca
lls

 c
om

pl
et

ed
 p

er
 s

ec
on

d

calls initiated per second

baseline (slow)

Figure 2: Baseline OpenSER Performance (slow)

(erie) was another Alienware system, identical to the
“fast” server. The respondent (hathor) was a server
with two dual-core Opteron 275 chips, running at 2.2
GHz, and provisioned with 4 GB of RAM. All ma-
chines ran Fedora Core 5 Linux.

In order to add load to the fast SIP server without
saturating the endpoints, we measured performance
of the “fast server” with two senders and two receivers
operating in rough synchrony. Since our statistics
were taken from the middle of each burst of activity,
minor drift between clocks was not an issue. Final
results were calculated by averaging the two.

4.2 Baseline SIP performance

We started by measuring the performance of a base-
line SIP server on our fast and slow test platforms.
The slow machine saturated when receiving between
500 and 600 calls per second (cps); as the call rate

 400

 500

 600

 700

 800

 900

 1000

 1100

 400 600 800 1000 1200 1400 1600 1800

ca
lls

 c
om

pl
et

ed
 p

er
 s

ec
on

d

calls initiated per second

baseline (fast)

Figure 3: Baseline OpenSER Performance (fast)

increased beyond that point, performance started to
fall off. Examination of detailed statistics from the
experimental run showed that as the load increased
beyond that range, the server started to drop a large
fraction of packets; the resulting retransmission over-
head is one of the chief reasons for the decline in
performance beyond that point. Qualitatively simi-
lar behavior was observed when the server was run on
the fast machine, although in this case, the maximum
possible throughput was in the 1200 cps range.

4.3 Filtering costs

The quantity of malicious traffic that a SIP server
can absorb while still handling legitimate requests is
is irrelevant in a sense. Malicious requests need to
be filtered somewhere, and the computational cost
of filtering them is not substantially different if the
filtering is done by the end service rather than by a
SIP server some distance away in the network. Even
so, for practical purposes, the degree of SIP server
replication required to handle a certain level of ma-
licious traffic is worth knowing. The precise cost of
handling a malicious packet depends on the details of
the authentication mechanism in use. However, the
cost of receiving and parsing a SIP request gives a
minimum bound on the computational cost of deny-
ing a request.

We modified OpenSER to automatically reject re-
quests whose sender matched a particular seven-
character string; the check was performed after a par-

9

tial parse of the packet. (The first line and the Via
headers were parsed). We put a load of 300 valid
calls per second on our slow testbed. We then com-
pared the call completion rate with and without bad
traffic of 25000 calls per second. To put that number
in perspective, we observed that 30,000 SIP requests
per second saturated the fast ethernet network con-
necting the hosts in the experiment. Thus, this ex-
periment compares call completion rate under mod-
erate load, with call completion rate under close to
the maximum input rate the network could support.
The standard deviation in the table below indicates
the deviation between the call completion rate from
minute to minute.

Bad rate Goodput Std. Dev
0 266 4.69
25000 238 7.96

Our results indicate that even at close to the max-
imum network bandwidth, and even on a compara-
tively slow machine, receiving and parsing packets is
not the bottleneck limiting SIP server performance.
This suggests strongly that a modern computer has
the CPU capacity to filter requests even at close to
the maximum load tolerated by the network.

4.4 Digest Authentication

Digest authentication is the standard technique for
authenticating SIP connections. On both fast and
slow hardware, digest authentication turned out to
decrease throughput by no more than 10%. This
number is reasonable, since the number of messages
per call increases by approximately 10%, and the ad-
ditional computation is a single MD5 sum.

Our tests were conducted with passwords stored
in an in-memory database in the SIP server process.
We believe that this is reasonable, since the memory
cost of a password table is small, and would be in-
significant for deployments of even tens of thousands
of users. If an SQL database were used, there would
be an additional overhead from the database lookup.
Estimating the cost of this lookup for a typical de-
ployment is outside the scope of this paper.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

ca
lls

 c
om

pl
et

ed
 p

er
 s

ec
on

d

calls initiated per second

with authentication
baseline

Figure 4: Digest Authentication: slow server

 400

 500

 600

 700

 800

 900

 1000

 1100

 400 600 800 1000 1200 1400 1600 1800

ca
lls

 c
om

pl
et

ed
 p

er
 s

ec
on

d

calls initiated per second

with authentication
baseline

Figure 5: Digest Authentication: fast server
!"##$%

&'(#)%

*+,-$

.// .//0/1

./2011 ./3034

...0. ../05

..5055 .1/0/1

.13046 .1304

.2/0/1 .2/0/1

*+,-$

%55051 %55054

12/0/1 12/

14/0/1 135044

1430%6 1430.

17/ 17/0.1

15/0/1 15/0/1

151024 151021

6/50/% 6/5

61.0%. 6.704

66/ 66/

62/ 62/

63/ 63/

899:,-$

899:,-$

.// .%/ ../ .1/ .6/ .2/ .3/

.//

./2

.%/

.%2

../

..2

.1/

.12

.6/

.62

.2/

.22

!*&)9+);<&)=>?9@)>#AB#AC

*+,-$)=D,>C

8
9
9
:
,
-
$)
=D
,
>
C

%2/ .// .2/ 1// 12/ 6// 62/ 2//

%42

.//

..2

.2/

.42

1//

1.2

12/

142

6//

6.2

62/

642

!*&)9+);<&)=E'>$)>#AB#AC

*+,-$)=D,>C

8
9
9
:
,
-
$)
=D
,
>
C

Figure 6: SIP over TCP: slow server

10

!"##$%

&'(#)%

*+,-$

.// .//0/1

./2011 ./3034

...0. ../05

..5055 .1/0/1

.13046 .1304

.2/0/1 .2/0/1

*+,-$

%55051 %55054

12/0/1 12/

14/0/1 135044

1430%6 1430.

17/ 17/0.1

15/0/1 15/0/1

151024 151021

6/50/% 6/5

61.0%. 6.704

66/ 66/

62/ 62/

63/ 63/

899:,-$

899:,-$

.// .%/ ../ .1/ .6/ .2/ .3/

.//

./2

.%/

.%2

../

..2

.1/

.12

.6/

.62

.2/

.22

!*&)9+);<&)=>?9@)>#AB#AC

*+,-$)=D,>C

8
9
9
:
,
-
$)
=D
,
>
C

%2/ .// .2/ 1// 12/ 6// 62/ 2//

%42

.//

..2

.2/

.42

1//

1.2

12/

142

6//

6.2

62/

642

!*&)9+);<&)=E'>$)>#AB#AC

*+,-$)=D,>C

8
9
9
:
,
-
$)
=D
,
>
C

Figure 7: SIP over TCP: fast server

4.5 SIP over TCP

We attempted to repeat our UDP baseline measure-
ments using TCP. TCP was used on both the link
from the initiator to the SIP server and the link from
the server to the respondent. While only one socket
was used for the latter link, a new socket was cre-
ated for each connection from the initiator to the
SIP server. This was so that we could measure pre-
cisely the number of sockets being created per unit
time by tracking them at the initiator, only. In ad-
dition, this accurately models the likely deployment
scenario, with a long-lived connection between the
SIP server and the private service, and clients con-
necting, and each client creating a socket for the con-
nection.

One of our significant results is that SIP over TCP
fails very differently from SIP over UDP. When SIP is
run over UDP, recall, requests that cannot be handled
are dropped at the application level, and so perfor-
mance degrades gradually as the load increases be-
yond what the server can handle. When using TCP
though, the server fails much more drastically.

Below the critical threshold, we discovered that
the server’s throughput is precisely equal to the load;
in other words TCP’s reliability properties are suffi-
cient to guarantee correct handling of every request.
However, once the load exceeds the server’s compu-
tational resources, open sockets start to accumulate.
Since the operating system has higher priority than

the application, the OS is able to establish the socket
correctly. However the SIP server is unable to finish
handling the call, and so the socket remains open.
As a result, the number of open sockets surges, un-
til a limit is hit, at which point errors start being
returned. The client sees these errors as connection-
refused packets, and the server application sees them
as failed calls to accept().

OpenSER and SIPP handle these conditions badly,
typically aborting entirely. This condition could be
handled more gracefully by better programming, but
the application will still be subject to the limitations
of the operating system’s TCP stack.

The critical threshold at which errors started ap-
pearing for the slow machine was around 260 connec-
tions per second, and on the fast machine, around
500 cps. These numbers vary significantly between
different experimental runs, and we suspect that this
threshold is very sensitive to the underlying hard-
ware, and so they should not be treated as anything
other than a very rough benchmark.

5 Conclusion

Placing a NAT at the upstream end of a bottleneck
connection, and using NUTSS to deploy services be-
hind the NAT, makes the services far more resilient
to bandwidth saturation attacks, by moving the bot-
tleneck from the service to the (better-provisioned)
ISP. Moreover, SIP signaling provides a flexible and
efficient platform for authenticating connections.

Every service will always have some bottleneck
that is vulnerable to saturation. However, all bottle-
necks are not alike. Computational resources can be
allocated on-demand, and thus shared between ser-
vices; network bandwidth is intrinsically less sharable
and cannot be expanded on demand. Hence, shifting
a service’s bottleneck from the network connection to
computational resources can be a significant gain.

This paper argues that authenticating connections
in the middle of the network, rather than at the end-
points, allows just such a gain. The SIP servers and
other authentication systems required can typically
be distributed widely and capacity can be shared in
an adaptive way between different services. One can

11

envision a very large pool of SIP servers, allocated be-
tween many different private services as needed. As
a result, the “front end” of a service can be made
highly resistant to DOS attack without having to
replicate the entire service. While NUTSS is not
yet suitable for wide-scale deployment, it is maturing
rapidly. We hope that it will be possible to deploy
NUTSS-hardened services within the year.

More work, of course, remains to be done. An ob-
vious next step is a comprehensive examination of the
performance implications of authentication. Another
step would be to repeat the performance experiments
for more network and server configurations to better
understand how current SIP implementations scale.
Perhaps most importantly, the defense proposed in
this paper does not apply in any straightforward way
to public services; protecting public services from
denial-of-service remains an unresolved problem.

6 Acknowledgments

We would like to thank Paul Francis for suggesting
this line of work. Saikat Guha supplied extensive and
invaluable advice, encouragement, and guidance. We
also appreciate the comments of the anonymous re-
viewers. Lastly, we appreciate the patience and un-
derstanding of the Cornell Systems Lab community,
who tolerated the network disruption from our test
runs.

References

[1] K. Argyraki and D. Cheriton. Active Internet
Traffic Filtering: Real-Time Response to Denial-
of-Service Attacks. USENIX 2005, 2005.

[2] G. Badishi, A. Herzberg, and I. Keidar. Keeping
Denial-of-Service Attackers in the Dark. LEC-
TURE NOTES IN COMPUTER SCIENCE,
3724:18, 2005.

[3] H. Ballani, Y. Chawathe, S. Ratnasamy,
T. Roscoe, and S. Shenker. Off by Default! In
Proceedings of HotNets ’05, College Park, MD,
November 2005.

[4] A. Biggadike, D. Ferullo, G. Wilson, and A. Per-
rig. NATBLASTER: Establishing TCP con-
nections between hosts behind NATs. In SIG-
COMM Asia Workshop, 2005.

[5] M. Bozinovski, T. Renier, HP Schwefel, and
R. Prasad. Transaction Consistency in Repli-
cated SIP Call Control Systems. 4th Interna-
tional Conference on Information, Communica-
tions & Signal Processing and Fourth Pacific-
Rim Conference on Multimedia (ICICS-PCM
2003), December, 2003.

[6] V. Cardellini, M. Colajanni, and PS Yu. Dy-
namic load balancing on Web-server systems. In-
ternet Computing, IEEE, 3(3):28–39, 1999.

[7] Saikat Guha and Paul Francis. Characteriza-
tion and measurement of TCP traversal through
NATs and firewalls. In IMC, 2005.

[8] Saikat Guha and Paul Francis. Towards a secure
internet architecture through signaling. Under
Submission, April 2005.

[9] Saikat Guha, Yutaka Takeda, and Paul Fran-
cis. NUTSS: a SIP-based approach to UDP and
TCP network connectivity. In FDNA ’04: Pro-
ceedings of the ACM SIGCOMM workshop on
Future directions in network architecture, pages
43–48, 2004.

[10] Inferno Nettverk. Dante: A Free Socks Imple-
mentation. http://www.inet.no/dante/.

[11] D. Katabi and J. Wroclawski. A framework for
scalable global IP-anycast (GIA). ACM SIG-
COMM Computer Communication Review, 31(2
supplement):186–219, 2001.

[12] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. RFC 3261: SIP: Session
Initiation Protocol. June 2002.

[13] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. RFC 3489: STUN - simple traver-
sal of UDP through network address translators
(NATs). March 2003.

12

[14] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-
To-End Arguments in System Design. ACM
Transactions on Computer Systems, 2(4):277–
288, 1984.

[15] The OpenSER Project. OpenSER SIP Server.
http://www.openser.org/.

[16] M. Walfish, J. Stribling, M. Krohn, H. Balakr-
ishnan, R. Morris, and S. Shenker. Middleboxes
No Longer Considered Harmful. In OSDI 04,
San Francisco, CA, December 2004.

[17] X. Wang and M. Reiter. Defending against
denial-of-service attacks with puzzle auctions.
Proceedings of IEEE Symposium on Security and
Privacy, 2003.

[18] Wikipedia. ”series of tubes”. Online.
http://en.wikipedia.org/wiki/Series of tubes,
2006.

13

