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Numerical evolutions of binary black holes with moderate spins and mass ratios are becoming

more routine. However, dealing with high spins or mass ratios has provided significant

challenges. This work presents enhancements to the Spectral Einstein Code that enable such

evolutions. The key improvements ensure that the computational coordinates conform to

the shape of the black hole horizon and that information does not enter the computational

domain through this surface. With these enhancements in place, a set of high spin binary

black hole coalescences are simulated. The merger remnant properties are used to improve

existing fitting formulae for final spin and energy radiated in gravitational waves. Such fitting

formulae can be used to improve phenomenological template waveforms for Advanced LIGO

gravitational wave searches.
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and Will Throwe.
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Chapter 1

Introduction

Contents

1.1 Gravitational-wave astronomy . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Gravitational-wave astronomy

I Historical perspective

In 1916, Albert Einstein published his general theory of relativity, which describes gravity

as a geometric property of spacetime. In this theory, matter and radiation influence the

curvature of spacetime, and the curvature of spacetime in turn influences the dynamics of

the matter and radiation. In the same year, Karl Schwarzschild discovered a solution to

Einstein’s equations that later was found to imply the existence of black holes.

For almost all terrestrial applications, Newton’s law of universal gravitation from the

1600’s produces the same equations of motion as general relativity. Deviations between the

two theories become dramatic for large masses moving at significant fractions of the speed

of light. General relativity has great astrophysical relevance because one will not find such

extreme systems on Earth; instead we must search the rest of the universe, which is rich with

exploding stars, black holes, and colliding galaxies.
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An immediate success of general relativity was its ability to explain the anomalous

perihelion precession of Mercury. Even taking into account subtle effects, such as the

gravitational tugs on Mercury from the other planets, Mercury’s observed perihelion precession

disagreed with Newton’s theory by 43 arcseconds per century, or about 7% (according to an

1895 calculation). General relativity predicted a correction of exactly this amount.

Another deviation from Newton’s law of gravitation was observed during the 1919 solar

eclipse, when Arthur Eddington confirmed Einstein’s prediction for the amount of light

bending caused by the sun. It was this success that made Einstein a household name.

These early tests of general relativity probed the weak-field limit, where gravitational

fields are weak and Einstein’s equations can be linearized. Observing nonlinear effects in the

strong-field regime is the next great test of Einstein’s theory.

The first moderately strong-field test of general relativity was the indirect detection of

gravitational waves from the Hulse-Taylor binary neutron star system in 1974. The prediction

for orbital decay due to the emission of gravitational waves [1] was confirmed by using pulsar

timing to monitor the orbital period of this binary [2]. It is an indirect detection because the

gravitational waves are only inferred from electromagnetic observations.

Almost 40 years later, gravitational waves have still not been directly detected [3], but

considerable progress has been made toward this goal. Since 1992, several facilities have

been built around the world to detect gravitational waves, such as LIGO, Virgo, and GEO.

These facilities use laser interferometry to measure the change in separation between a set of

test masses as gravitational waves pass by. Additional strategies, such as resonant bar mass

detectors and pulsar timing arrays, have also been employed.

Advanced LIGO, an upgrade to the LIGO facilities taking place right now and scheduled

for completion in 2014, is expected to increase the theoretical detection rates by orders of

magnitude [4]. It is likely that gravitational waves from black hole and neutron star events

will be detected, allowing Einstein’s theory to be tested for the first time in the fully nonlinear,
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strong-field regime. With possibly daily detections, we may only be a couple years away

from an era of multi-messenger astronomy, where gravitational and electromagnetic radiation

observations are used in conjunction to probe the current and future mysteries of the cosmos.

II Detection techniques

Different gravitational wave detectors are sensitive to different sources of gravitational waves.

Pulsar timing arrays observe in the nHz frequency band, which corresponds to the stochastic

background arising from the inspiral of supermassive black hole binaries at the centers of

galaxies. LIGO observes in the 10–104 Hz band, which corresponds to the inspiral and merger

of binary systems containing neutron stars and stellar-mass black holes, as well as other burst

and continuous sources. A space-based mission, such as LISA, would observe in the frequency

range between pulsar timing arrays and LIGO, which targets supermassive black hole merger

events, extreme mass-ratio inspirals, and white dwarf binaries.

The most likely sources detectable by LIGO are binary compact object coalescences.

The expected signal at the detector from such a source is very small, and for this reason

special techniques are necessary to extract the signal from the noise. Because these are

modeled sources, a technique called optimal matched filtering can be used [5, 6]. This method

employs an algorithmically chosen template waveform bank (chosen to minimize the number

of templates while preserving SNR1 to within 3%). The signal is cross-correlated with the

template bank, and if the SNR reaches a certain threshold, it is flagged as a potential detection

candidate [7].

The construction of every template waveform ultimately relies on numerical simulations.

This is because the merger phase of the inspiral-merger-ringdown characterization is fully

nonlinear and is not calculable analytically. The inspiral can be modeled with post-Newtonian

1 SNR = signal-to-noise ratio. The threshold of 3% means that no more than 10% of
events should be missed because of gaps between the waveform templates.
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expansions [8], and the ringdown to a quasi-equilibrium black hole can be modeled as a

perturbation to the Kerr metric [9], but the behavior during the merger can currently only

be computed with numerical techniques.

Numerical simulations are very computationally expensive. A highly accurate binary black

hole simulation at best costs about 103–104 CPU hours per orbit (depending on mass ratio

and spin) using 10 GFLOP processors. This will certainly improve as numerical codes become

more sophisticated and as the performance of the computing environments increases, but

it is still a prohibitive expense when compared to the requirements in accuracy, number of

orbits, and parameter space coverage for LIGO template banks [10, 11].

Since post-Newtonian approximations are accurate very early in the inspiral, numerical

waveforms can be extended by prepending a post-Newtonian waveform in a process called

hybridization. This procedure is successful if the overlap between hybridized waveforms

matched over different regions is very high [12]. To interpolate to points in the mass-spin

parameter space that have not been simulated numerically, phenomenological waveform

models are used. These models are calibrated using numerical relativity results and are

compared with hybridized waveforms to assess their quality [12, 13]. Because of the limited

number of numerical relativity waveforms, these phenomenological waveforms comprise the

majority of template banks.

Once a detection is made, detailed waveform models are necessary for parameter estima-

tion [14] (i.e. determining the masses, spins, sky location, and distance of a gravitational

wave source). In addition to providing the most stringent tests of general relativity in the

strong-field regime, here is where the most interesting astrophysical questions will be answered.

Mass measurements will help infer mass limits and distributions of black holes and neutron

stars, spin measurements will provide insight into black hole formation models and supernova

processes, and localization of sources on the sky will enable coincident electromagnetic

observations. Unsurprisingly, the template waveform length and accuracy requirements are
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much greater for parameter estimation than for detection.

1.2 Overview

Numerical simulations used in this work were generated with the Spectral Einstein Code

(SpEC) [15], which is a pseudo-spectral PDE solver embedded into an infrastructure suited

for solving Einstein’s equations in isolated or binary compact object spacetimes. Spectral

methods benefit from exponential convergence, meaning that a linear increase in resolution

decreases errors exponentially, so long as the solution is smooth. Discontinuities in the fields

or their derivatives will degrade the rate of convergence.

I Control systems for choosing computational coordinates

A dominant numerical challenge in evolving black hole spacetimes is the treatment of the

physical singularity at the center of the black hole. One solution (“moving puncture”) is to

choose coordinates that effectively push the singularity off the computational domain [16],

which can be achieved with the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) formulation

of Einstein’s equations [17]. This is the most popular solution for finite difference codes [18],

but there are technical problems in using spectral methods with the BSSN formulation [19].

Another solution is to excise the singularity from the computational domain. To remain

well-posed, the equations must take a (symmetric) hyperbolic form (e.g. the Generalized

Harmonic formulation employed by SpEC) [20]. Then, provided the excision boundary is

inside the event horizon, no boundary conditions are needed because all information is flowing

into the black hole along characteristics. However, excision in spectral methods is more

complicated than in finite difference methods.

In finite difference excision techniques, grid points in the differencing stencil can be

deactivated to avoid computations that occur near the singularity. In spectral methods,
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one cannot simply deactivate a collocation point because all collocation points are required

to compute derivatives. To avoid computationally prohibitive alternatives, SpEC uses a

reference frame where the black holes are static and stationary (called the grid frame) to keep

the collocation points fixed from timestep to timestep. A time-dependent mapping connects

this frame to the asymptotically inertial frame, and a control system monitors criteria for

each component of the map to ensure that the mapping remains stable and that the grid

frame remains stationary. This is called the dual-frames method.

The original dual-frames method [21] tracked only the black hole centers, and was sufficient

for the evolution of equal mass, non-spinning binaries during the inspiral. Near merger,

characteristic speeds at the excision surfaces would quickly become negative, causing the

evolution equations to become ill-posed because we do not have a boundary condition to

impose there. If a common horizon around the two black holes could be found sufficiently

early, this problem was avoided by excising the region between the common horizon and the

individual excision surfaces. The inclusion of black hole spin or unequal mass ratios caused

characteristic speeds to become negative much earlier than the formation of the common

horizon because the horizons were more distorted. For these configurations, relying on early

common horizon excision was no longer viable.

In Chapter 2, I describe the implementation of feedback control systems in SpEC and

related enhancements to our excision techniques in the dual-frames method that enabled the

successful evolution of high mass ratio and nearly extremal binary systems. By controlling the

shape and characteristic speeds of the horizons in addition to their centers, the excision surfaces

can be made to remain pure outflow boundaries. However, this causes the computational grid

to become highly distorted. To avoid the computational expense of resolving large Jacobians,

additional maps and associated control systems are implemented to make the grid more

flexible and conform to the shape of the excision surfaces as they conform to the shape of the

horizons (we call these the “Skew” and “CutX” maps).
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Enhancements to the original dual-frames method also include control systems with better

stability properties. The feedback signal is a function of the difference between some quantity

and its target value. This function can include derivatives, which introduce noise into the

feedback loop. By using fewer numerical derivatives and including an integral term (and

smoothing the feedback signal when necessary), we prevent rapid, destabilizing oscillations in

the control systems.

II High-spin binary black hole evolutions

In Chapter 3, I report on a set of equal-mass binary black hole simulations with equal spin

aligned (or anti-aligned) with the orbital angular momentum. Apparent horizon properties

(Christodoulou mass and quasi-local spin) are used to improve phenomenological fitting

formulae that predict the final mass and spin of the merger remnant as a function of initial

spin. The improvements can be attributed primarily to two factors. First, spectral convergence

of the code facilitates longer and more accurate evolutions for the same computational cost

as finite difference codes. Second, the ability to create and evolve initial data above the

“Bowen-York limit” makes high-spin data points uniquely available.

The practical impact of these improved fitting formulae is their use in approximate analytic

waveform models. In particular, the quasi-normal modes in the ringdown expression will

depend on the final mass and spin predictions, and even small differences in these quantities

can produce considerable phase errors between the analytic and numerical waveforms [13].

There are two natural directions to expand this work: analysis of additional data from

these simulations, and expansion of the parameter space. For the former, one may look at

the gravitational waveforms, comparing them to post-Newtonian approximants to assess the

accuracy of hybridized waveforms. For the latter, evolutions with even higher spin are being

performed and will provide useful tests of the fitting formulae and conclusions for the equal

mass, equal aligned spin subspace. Additionally, a catalog of simulations with more generic
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parameters has just been constructed [22], and the methods used here could be extended to

generate more generic fitting formulae.
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Simulations of binary black hole systems using the Spectral Einstein Code (SpEC) are done

on a computational domain that excises the regions inside the black holes. It is imperative

that the excision boundaries are outflow boundaries with respect to the hyperbolic evolution

equations used in the simulation. We employ a time-dependent mapping between the fixed

computational frame and the inertial frame through which the black holes move. The time-

dependent parameters of the mapping are adjusted throughout the simulation by a feedback

control system in order to follow the motion of the black holes, to adjust the shape and size of
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the excision surfaces so that they remain outflow boundaries, and to prevent large distortions

of the grid. We describe in detail the mappings and control systems that we use. We show

how these techniques have been essential in the evolution of binary black hole systems with

extreme configurations, such as large spin magnitudes and high mass ratios, especially during

the merger, when apparent horizons are highly distorted and the computational domain

becomes compressed. The techniques introduced here may be useful in other applications of

partial differential equations that involve time-dependent mappings.

2.1 Introduction

Feedback control systems are ubiquitous in technological applications. They are found, for

example, in thermostats, autopilots, chemical plants, and cruise control in automobiles. The

purpose of a control system is to keep some measured output (such as the temperature in a

room) at some desired value by adjusting some input (such as the power to a furnace).

In the last few years, feedback control systems have also found applications in the field

of numerical relativity, particularly in simulations of binary black hole systems that employ

spectral methods and excision techniques [1, 2, 3, 4, 5].

Black hole excision is a means of avoiding the physical singularities that lurk inside black

holes. The idea is to solve Einstein’s equations only in the region outside apparent horizons,

cutting out the region inside the horizons. The boundaries of the excised regions are called

excision boundaries. Causality ensures that the excision boundaries and the excised interiors

cannot affect the physics of the exterior solution, and an appropriate hyperbolic formulation

of Einstein’s equations [6, 7] can ensure that gauge and constraint-violating degrees of freedom

also do not propagate out of the excised region.

Excision is straightforward for black holes that remain stationary in the coordinates that

are used in the simulation, but excision becomes more complicated when the black holes
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move or change shape. For numerical methods based on finite differencing, the excision

boundaries can be changed at every time step by activating or deactivating appropriate grid

points and adjusting differencing stencils [8, 9, 10, 11, 12, 13, 14, 15]. However, for spectral

numerical methods, there is no equivalent of deactivating individual grid points; instead,

spectral methods are defined in finite extended spatial regions with smooth boundaries.

The nearest equivalent to the finite-difference excision approach would be interpolating all

variables to a new slightly offset grid at every time step, which would be computationally

expensive. Therefore, spectral numerical methods need a different approach to reconcile the

need for moving black holes with the need for a fixed excision boundary inside of each black

hole.

The solution [1] to this problem adopted by our group makes use of multiple coordinate

systems. We call “inertial coordinates” those coordinates that asymptotically correspond

to an inertial observer; in these coordinates the black holes orbit each other, have distorted

shapes, and approach each other as energy is lost to gravitational radiation. Spectral methods

are applied in another coordinate system, “grid coordinates”, in which the excision boundaries

are spherical and stationary. We connect grid coordinates with inertial coordinates by means

of an analytic mapping function M that depends on some set of time-dependent parameters

λ(t). These parameters must be continually adjusted so that each spherical, stationary

grid-frame excision boundary is mapped to a surface in the inertial frame that follows the

motion and the shape of the corresponding black hole as the system evolves. It is this

adjustment of each parameter λ(t) that is accomplished by means of feedback control systems,

one control system per parameter.

In this paper, we describe in detail the mapping functions and the corresponding feedback

control systems that we use to handle black hole excision with spectral methods. Some earlier

implementations have been described previously [5, 1, 2, 4, 16], but there have been many

improvements that now allow spectral excision methods to produce robust simulations of

binary black hole systems, including those with unequal masses, high spins, and precession.
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We describe these improvements here. In Sec. 2.2 we review control theory and present simple

examples of control systems. In Sec. 2.3 we discuss the implementation of control systems in

the SpEC [17] code. Sections 2.4 and 2.5 detail the coordinate mappings used in SpEC and

the feedback control systems used to control them. In Sec. 2.6 we describe the transition to

the post-merger domain with a single excision boundary. In Sec. 2.7 we describe applications

of control systems in SpEC besides the ones used to adjust map parameters. We summarize

in Sec. 2.8.

2.2 Control Theory

To motivate control theory, we begin with a simple example: cruise control in an automobile.

Suppose we wish to control the speed v of a car that is driving up an incline of angle θ. The

equation of motion for this system is

dv

dt
= − η

m
v +

F

m
− g sin θ, (2.2.1)

where m is the mass of the car, g is the gravitational acceleration, η is a drag coefficient, and

F is a force supplied by the car’s engine. We wish to determine F so as to cause the car to

maintain a speed of v = v0, even if the angle θ changes as the car climbs the incline. To do

this, we choose the force at time t to be:

F (t)

m
= KPQ(t) +KI

∫ t

0

Q(τ) dτ, (2.2.2)

where the control system is turned on at time t = 0, where KI and KP are constants, and

where Q(t) = v0 − v(t) is the quantity that we wish to drive to zero. We call Q the control

error. Substituting Eq. (2.2.2) into Eq. (2.2.1) and differentiating with respect to time yields

d2Q

dt2
+
(
KP +

η

m

) dQ
dt

+KIQ = g cos θ
dθ

dt
, (2.2.3)

which is the equation for a damped, forced harmonic oscillator. By choosing KP to produce

critical damping, and choosing KI to set a timescale, this choice will drive v toward v0 as

desired.
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The basic structure of a control system is easily understood as a feedback loop (see Fig. 1).

The simulation (e.g., a binary black hole simulation, or a car driving up an incline) produces

some measure of error, Q(t), that defines the deviation from some desired target value. This

error acts as the input for the control system, which then computes a control signal U(t)

(e.g., the derivative of a map parameter, or the force supplied by a car’s engine) that will

minimize the error Q(t) when fed back into the simulation.

simulation

control
system

U(t)

Q(t)

Figure 1: A generic control circuit. The simulation outputs a measure of error, Q, which is
used by the control system. The control system then outputs a signal, U , which
changes the behavior of the simulation.

A simple and effective way to compute U(t) is to make it a linear combination of the error,

Q(t), and integrals and/or derivatives of the error. The term proportional to the error acts to

reduce the deviation from the desired value, the terms proportional to derivatives of the error

act to oppose rapid deviations, and the terms proportional to the integrals act to reduce any

persistent deviation or offset that accumulates over time. In the cruise control example, we

used a proportional and an integral term only in Eq. (2.2.2).

We now turn to another example of a control system that is more closely related to the way

we use control systems in binary black hole simulations. Consider two coordinate systems,

(x, t) and (x̄, t̄), that are related by the map

x = x̄− V (t) t̄, (2.2.4)

t = t̄. (2.2.5)

We wish to control the parameter V (t) so that a wave f(x̄, t̄) = f(x̄− ct̄) that propagates at

speed v̄ = c in the (x̄, t̄) coordinates will propagate at some arbitrary desired speed vd in the

(x, t) coordinates. According to Eq. (2.2.4), the speed of the wave in the (x, t) coordinates is
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v = c− V (t). Therefore we define a control error Q to be

Q = c− V (t)− vd, (2.2.6)

and we construct a control system that drives this control error to zero. If we choose the

control signal U(t) to be d2V/dt2, then the simplest feedback loop that can be constructed

uses only a term proportional to the error and amplified by a “gain” KP . Then the evolution

of V (t) is given by

d2V

dt2
= KPQ = KP [c− V (t)− vd] . (2.2.7)

The solution to this equation is of the form

V (t) = c− vd + A1 sin(αt) + A2 cos(αt), (2.2.8)

where α :=
√
KP , which is oscillatory for KP > 0 and divergent for KP < 0. Thus we see

that adding only a proportional term to the control signal U(t) is insufficient, since it does

not reduce the control error Q.

However, if we add a derivative term to the feedback equation,

d2V

dt2
= KPQ+KD

dQ

dt
, (2.2.9)

then the solution is of the form

V (t) = c− vd + e−
1
2
KDt [B1 sin(βt) +B2 cos(βt)] , (2.2.10)

where β := 1
2

√
4KP −K2

D. This solution is stable with an exponentially damped envelope

when 4KP ≥ K2
D, which will cause v → vd as t→∞.

Notice that this control system allows us to choose a V (t) such that v is the opposite sign

of c and the wave is left-going in the (x, t) frame instead of right-going. This behavior can be

seen in the example in Fig. 2.

The overdamped solution (dotted line in Fig. 2) has a persistent offset that can be

ameliorated by adding an integral term to the feedback equation, as was done in the cruise
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Figure 2: The speed in (x, t) coordinates, v, is plotted for a family of gains KP with KD = 1
fixed. The wave velocity is c = −0.2 and the desired velocity is vd = 0.5 (dashed
line). The controller turns on at t = 2. For gains in the stable region, where
KP ≥ 0.25, v settles down to vd. One overdamped solution with KP = 0.01 is
plotted for comparison (dotted line).

control example. In principle we could continue to add more terms, but in practice, it is

usually sufficient to use a PID (proportional-integral-derivative) controller, which has terms

proportional to the control error, its integral, and its derivative. When the underlying system

is unknown, this is the best controller to use [18].

2.3 Control Systems in SpEC

Control systems are used in SpEC for several purposes. The most important is their role in

handling moving, excised black holes in a spectral evolution method. We use a dual-frame

method [1] in which the grid is fixed in some coordinates (t, xi) but the components of

dynamical fields are expressed in a different coordinate system (t̄, x̄i). We call (t, xi) the

grid coordinates and (t̄, x̄i) the inertial coordinates. Figure 3 shows an example domain

decomposition in both coordinate systems. The two coordinate systems are connected by

a map M that depends on time-dependent parameters λ(t). The excision boundaries are

exactly spherical and stationary in grid coordinates. In inertial coordinates, the apparent

horizons move and distort as determined by the solution of Einstein’s equations supplemented
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by our gauge conditions. The parameters λ(t) need to be controlled so that the excision

boundaries in the inertial frame follow the motion and shapes of the apparent horizons. We

use control systems to accomplish this.

Figure 3: a) Computational domain in grid coordinates; the black hole centers are at rest
and the excision boundaries are spherical. b) Same domain in inertial coordinates
near merger; the excision boundaries move and distort to track the apparent
horizons.

The particular maps that we use will be discussed in Sec. 2.4. In this section we will

describe how we construct the control system for a general parameter λ(t), including how

we define the relationship between the control error Q(t) and the control signal U(t), how

we smooth out noise in the control system, and how we dynamically adjust the feedback

parameters and timescales.

19



I Definition of control errors and control signals

We represent a general time-dependent map parameter λ(t) as a polynomial in time with a

piecewise constant Nth derivative:

λ(t) =
N∑
n=0

1

n!
(t− ti)nλni , for ti ≤ t < ti+1, (2.3.1)

where for each time interval ti ≤ t < ti+1 the quantities λni are constants.

At the beginning of each new time interval ti, we set the constants λni in Eq. (2.3.1) as

follows. First for n = N we set λNi = U(ti), where U(t) is the control signal defined in

detail below. For n < N we set λni = dnλ/dtn|t=ti , where the derivative is evaluated at the

end of the previous time interval. In this way all the derivatives of λ(t) except the Nth

derivative are continuous across intervals. The goal will be to compute the control signal

U(t) so as to drive the map parameter λ(t) to some desired behavior. Before we describe

how to compute the control signal U(t), we first discuss the control error Q, which will be

used in the computation of U(t).

To appropriately define the control error Q, one must answer the question of how a small

change in the map parameter corresponds to a change in the observed variables. If the control

error is defined to be too large, then the controller will consistently overshoot its target,

potentially leading to unstable behavior; conversely, if the control error is defined to be too

small, then the controller may never be able to reach its target value.

If there exists a target value of λ(t), call it λtarget, that does not depend on the map but

may depend on other observable quantities in the system (call them A, B,. . . ), then we define

Q = λtarget(A,B, . . .)− λ. (2.3.2)

The goal is to drive Q to zero and thereby drive λ to λtarget.

If instead, as often happens for nonlinear systems, the target value of λ depends on λ

itself, even indirectly, then we define Q differently using a generalization of Eq. (2.3.2): we
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require that λ attains its desired value when Q→ 0, and we require that

∂Q

∂λ
= −1 +O(Q). (2.3.3)

The primary motivation for this condition is its anticipated use in relating time derivatives of

Q to those of λ (see Eq. (2.3.8), below). Note that in either Eqs. (2.3.2) or (2.3.3), Q could

in principle be multiplied by an arbitrary factor; however, if this were done, that factor would

need to be taken into account in the computation of the control signal U(t) below. Without

loss of generality we assume no additional scaling.

In the case of several map parameters λa(t) with corresponding Qa, where a is an index

that labels the map parameters, the desired value of some λa may depend on a different map

parameter λb. In this case, we generalize Eq. (2.3.3) and require that each Qa satisfy

∂Qa

∂λb
= −δab +O(Q), (2.3.4)

where δab is a Kronecker delta. This criterion ensures that we can treat each λa independently

when all control errors are small. A way of understanding Eq. (2.3.4) is to consider a set of

Q′a that are obtained via Eq. (2.3.3) without regard to coupling between different λa. Then

a set of Qa satisfying Eq. (2.3.4) can be obtained by diagonalizing the matrix ∂Q′a/∂λb. In

the remainder of this section we assume that if there are multiple map parameters λa, the

corresponding control errors Qa satisfy Eq. (2.3.4). We therefore drop the a indices and write

equations for U(t) in terms of a single Q(t) satisfying Eq. (2.3.3) that represents the control

error for a single λ(t).

The control error Q(t) is a function of several observables. In the case of the mapping

functions that are designed to move and distort the excision boundaries to follow the motion

and shapes of the apparent horizons, Q(t) is some function of the current position or shape

of one or more apparent horizons. The precise definition of Q(t) is different for each map

parameter, and depends on the details of how each map parameter couples to the observables.

We will discuss the control error Q for each of the map parameters in Sec. 2.4. But it is not
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necessary to know the exact form of the control error in order to compute the control signal

U(t); it suffices to know only that U(ti) is equal to λNi in Eq. (2.3.1), and that the control

error Q obeys Eq. (2.3.3).

We now turn to the computation of the control signal U(t). There is some flexibility in

the control law determining U(t), so long as key feedback mechanisms are in place (as shown

in Sec. 2.2). In SpEC, we use either a standard PID controller,

U(t) = a0

∫
Q(t) dt+ a1Q(t) + a2

dQ

dt
, (2.3.5)

or a special PD (proportional-derivative) controller,

U(t) =
K∑
k=0

ak
dkQ

dtk
, (2.3.6)

where typically K = 2.

We set the constants ak so that the system damps Q to zero on some timescale τd that

we choose. We assume that τd is longer than the interval ti+1 − ti defined in Eq. (2.3.1), so

that we can approximate Q(t) and λ(t) as smooth functions rather than as functions with

piecewise constant Nth derivatives. Under this assumption, we write

U(t) = dNλ/dtN . (2.3.7)

We also write

dQ/dt = (∂Q/∂λ)(dλ/dt),

= −dλ/dt. (2.3.8)

In the first line we have neglected the time dependence of other parameters besides λ that

enter into Q under the assumption that the control system timescale is shorter than the

timescales of the quantities that we want to control. In the second line we have used Eq. (2.3.3)
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and we have assumed that Q is small. Similarly we write

d2Q/dt2 =
∂Q

∂λ

d2λ

dt2
+
∂2Q

∂λ2

(
dλ

dt

)2

,

=
∂Q

∂λ

d2λ

dt2
,

= −d
2λ

dt2
, (2.3.9)

where in the second line we have retained only terms of linear order in dQ/dt (and therefore in

dλ/dt). For higher derivatives we continue to retain only terms linear in Q and its derivatives,

so from Eq. (2.3.7) we obtain

U(t) = dNλ/dtN ,

= −dNQ/dtN . (2.3.10)

For the PID controller and N = 2, combining Eqs. (2.3.5) and (2.3.10) yields

− d2Q

dt2
= a0

∫
Q(t) dt+ a1Q(t) + a2

dQ

dt
. (2.3.11)

If we choose a0 = 1/τ 3
d , a1 = 3/τ 2

d , and a2 = 3/τd, then the solution to Eq. (2.3.11) will be

exponentially damped on the timescale τd,

Q ∝ e−t/τd . (2.3.12)

The same exponential damping holds for the PD controller, Eq. (2.3.6), for appropriate

choices of the parameters ak. For K = 2 and N = 3, the parameters ak are identical to those

in the PID case above.

II Averaging out noise

The PID controller, Eq. (2.3.5), is computed by measuring the control error Q, its time

integral, and its time derivative. The PD controller, Eq. (2.3.6), may require multiple

derivatives of Q(t) depending on the order K. Generally only Q, and not its derivatives or
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integrals, is available in the code at any given time step. The simplest way to compute the

derivatives of Q is by finite differencing in time, and the simplest way to compute the integral

is by a numerical quadrature.

We measure the control errorQ at time intervals of length τm, where we choose τm < ti+1−ti.

The measuring time interval τm is then used as the time step for finite difference stencils and

quadratures.

The measured Q is typically a function of apparent horizon locations or shapes, and this

measured Q includes noise caused by the finite resolution of the evolution, and the finite

residual and finite number of iterations of the apparent horizon finder. Taking a numerical

derivative of Q amplifies the noise, and then this noise is transferred to the control signal via

Eqs. (2.3.5) or (2.3.6), and then to the map. If the noise amplitude is too large, the control

system will become unstable. The PID controller generally handles noise better than the

PD controller for two reasons. First, each successive numerical derivative amplifies noise

even further, so using only one derivative instead of two (or more) results in a more accurate

control signal. Second, the inclusion of an integral term acts to further smooth the control

signal.

In some cases, however, the noise in Q can be problematic even for the PID controller.

In these cases we implement direct averaging of the control error in one of two ways: 1) we

perform a polynomial fit of order N to the previous M measurements of the control error,

where M > N , or 2) we perform an exponentially-weighted average, with timescale τavg, of

all previous control error measurements and their derivatives and integrals. The latter is our

preferred method, which we describe in detail in Appendix A1.

III Dynamic timescale adjustment

In the previous section we have identified four timescales relevant for each control system.

The first is the damping timescale τd; this describes how quickly the control error Q(t) falls
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to zero, and therefore how quickly the map parameter λ(t) approaches its desired value.

The second timescale is the control interval ∆ti := ti+1 − ti, which represents how often the

Nth derivative of the function λ(t) in Eq. (2.3.1) is updated. The third is the measurement

timescale τm, which indicates how often the control error Q is measured. The fourth is the

averaging timescale τavg, which is used to smooth the control error Q (and its derivatives

and integrals) for use in computing the control signal U(t). These timescales are not all

independent; for example we have assumed ∆ti < τd in deriving Eq. (2.3.11), and we have

assumed τm < ∆ti so that we can obtain smooth measurements of the derivatives of Q.

Because binary black hole evolutions are nonlinear dynamic systems, we adjust the damping

timescale, τd, throughout the simulation. We then set the three other timescales, ∆ti, τm,

and τavg, based on the current value of the damping timescale τd, as we now describe.

The timescale τd should be shorter than the timescale on which the physical system

changes; otherwise, the control system cannot adjust the map parameters quickly enough to

respond to changes in the system. But if the timescale τd is too small, then the measurement

timescale τm on which we compute the apparent horizon must also be small, meaning that

frequent apparent horizon computations are needed; this is undesirable because computing

apparent horizons is computationally expensive. We would like to adjust τd in an automatic

way so that it is relatively large during the binary black hole inspiral, decreases during

the plunge and merger, and increases again as the remnant black hole rings down. In the

canonical language of control theory, we would like to implement “gain scheduling” [19],

tuning the behavior of the control system for different operating regimes.

We do this as follows: For all map parameters (except the ` = 0 component of the

horizon shape map, which is treated differently; see Sec. 2.5.III), the damping timescale is a

generic function of Q and Q̇, i.e., the error in its associated map parameter and its derivative.

Whenever we adjust the control signal U(t) at interval ti, we also tune the timescale in the
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following way:

τ i+1
d = βτ id, (2.3.13)

where typically

β =


0.99, if Q̇/Q > −1/2τd and |Q| or |Q̇τd| > QMax

t

1.01, if |Q| < QMin
t and |Q̇τd| < QMin

t

1, otherwise.

(2.3.14)

Here QMin
t and QMax

t are thresholds for the control error Q. The idea is to keep |Q| < QMax
t

so that the map parameters are close to their desired values, but to also keep |Q| > QMin
t

because an unnecessarily small |Q| means unnecessarily small timescales and therefore a large

computational expense (because the apparent horizon must be found frequently). For binary

black hole simulations where the holes have masses MA and MB, we find that the following

choices work well:

QMax
t =

2× 10−3

MA/MB +MB/MA

(2.3.15)

QMin
t =

1

4
QMax
t . (2.3.16)

Once we have adjusted the timescale τd for every control system, we then use these

timescales to choose the times ti+1 in Eq. (2.3.1) at which we update the polynomial coefficients

λni in the map parameter expression λ(t),

∆ti := ti+1 − ti = αd min(τd), (2.3.17)

where typically αd = 0.3, and the minimum is taken over all map parameters (except for

the ` = 0 component of the horizon shape map). This ensures that the coefficients λni , are

updated faster than the physical system is changing, and faster than the control system is

damping. For αd too large, we find that the control system becomes unstable.

We also use the timescale τd to choose the interval τm at which we measure the control

error. For many map parameters, the associated control error is a function of apparent
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horizon quantities, which is why we desire τm to be as large as possible. But a certain number

of measurements are needed for each ∆ti so that the control signals, defined in Eqs. (2.3.5)

and (2.3.6), are sufficiently accurate and the control system is stable. We choose

τm = αm∆ti, (2.3.18)

where αm is typically between 0.25 and 0.3. In other words, we measure the control error

three or four times before we update the control signal. This also ensures that the averaging

timescale is greater than the measurement timescale, as we typically choose τavg ∼ 0.25τd.

2.4 Control Systems for Maps

In a SpEC evolution, we transform the grid coordinates, xi, into inertial coordinates, x̄i,

through a series of elementary maps as in [1, 2, 3, 4, 5]. Several maps have been added and

many improvements have been made since their original introduction. The full transformation

is x̄i =Mxi, where

M = MTranslation ◦MRotation ◦MScaling

◦MSkew ◦MCutX ◦MShape.
(2.4.1)

Below we will describe each of these maps and how we measure the error in their parameters.

Before we do this, however, we describe our domain decomposition and how we measure

apparent horizons, because information from the grid and the horizons is used to determine

the maps.

In the grid coordinates xi, the domain decomposition looks like Fig. 4. There are two

excision boundaries, A and B, which are spheres in grid coordinates. The grid-coordinate

centers of these excision boundaries we will call Ci
H , where H is either A or B. The excision

boundaries (and therefore Ci
H) remain fixed throughout the evolution. The purpose of many

of the maps is to move the mapped centers C̄i
H := M(Ci

H) along with the centers of the

apparent horizons.
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We measure the apparent horizons in an intermediate frame x̂i, which we call the distorted

frame. This frame is connected to the grid frame by the map

MDistortion =MCutX ◦MShape. (2.4.2)

We will discuss exactly whatMShape andMCutX are below, but for now we need only demand

that MDistortion has two properties: The first is that it leaves the centers of the excision

boundaries invariant, i.e.,

Ĉi
H :=MDistortion(Ci

H) = Ci
H . (2.4.3)

The second property is that at each excision boundary H, MDistortion leaves angles invariant.

That is, if we define grid-frame polar coordinates (rH , θH , φH) centered about excised region

H in the usual way,

x0 = C0
H + rH sin θH cosφH , (2.4.4)

x1 = C1
H + rH sin θH sinφH , (2.4.5)

x2 = C2
H + rH cos θH , (2.4.6)

and similarly for polar coordinates (r̂H , θ̂H , φ̂H) centered about Ĉi
H in the x̂i frame, then the

second property means that

θ̂H = θH ,

φ̂H = φH ,
(2.4.7)

on the excision boundary. Note that the index i on spatial coordinates ranges over (0, 1, 2) in

this paper.

We find the apparent horizons in the frame x̂i by a fast flow method [20]. Each horizon

is represented as a smooth surface in this frame, and is parameterized in terms of polar

coordinates centered around Ĉi
H : the radius of the horizon at each (θ̂H , φ̂H) is given by

r̂AH
H (θ̂H , φ̂H) =

∑
`m

ŜH`mY`m(θ̂H , φ̂H), (2.4.8)

28



where again the index H labels which excision boundary is enclosed by the apparent horizon.

Here Y`m(θ̂H , φ̂H) are spherical harmonics and ŜH`m are expansion coefficients that describe

the shape of the apparent horizon.

We search for apparent horizons in the distorted frame x̂i rather than in the grid frame

xi or the inertial frame x̄i because this simplifies the formulae for the control systems. In

particular, this choice decouples the control errors of the shape map Q`m (defined in Sec. 2.4.V,

Eq. (2.4.49)) for different values of (`,m), and it decouples the errors Q`m from the control

errors of the maps connecting the distorted and inertial frames.

For each surface H, we define the center of the apparent horizon

ξ̂iH =

∫
H
x̂i(r̂AH

H )2dΩ̂∫
H

(r̂AH
H )2dΩ̂

, (2.4.9)

where the integrals are over the surface. In the code, it suffices to use the following approxi-

mation of Eq. (2.4.9), which becomes exact as the surface becomes spherical:

ξ̂0
H = C0

H −
√

3/2π<(ŜH11), (2.4.10)

ξ̂1
H = C1

H +
√

3/2π=(ŜH11), (2.4.11)

ξ̂2
H = C2

H +
√

3/4π ŜH10. (2.4.12)

Here we have used the property Ĉi
H = Ci

H , Eq. (2.4.3). We distinguish the center Ci
H of the

excision boundary from the center ξ̂iH of the corresponding apparent horizon. The former

is fixed in time in the grid frame, but the latter will change as the metric quantities evolve.

The purpose of several of the maps (namely MScaling, MRotation, and MTranslation described

below) is to ensure that ξ̂iH − Ci
H is driven toward zero; i.e., to ensure that the centers of the

excision boundaries track the centers of the apparent horizons.

We now describe each of the maps comprising M and how we measure the error in their

parameters. The order in which we discuss the maps is not the same as the order in which

the maps are composed so that we can discuss the simplest maps first. To produce less

cluttered equations in the following descriptions of the maps, we omit accents on variables
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that represent specific frames (i.e. we just write x instead of x̂ or x̄) whenever the input or

output frame of the map is unambiguous or explicitly stated.

I Scaling

The scaling map, MScaling, causes the grid to shrink or expand (and the excision boundaries

to move respectively closer together or farther apart) in the inertial frame, thereby allowing

the grid to follow the two black holes as their separation changes.

This map transforms the radial coordinate with respect to the origin (i.e., the center of

the outermost sphere in Fig. 4), such that the region near the black holes is scaled uniformly

by a factor a and the outer boundary is scaled by a factor b,

R 7→ aR + (b− a)R3/R2
OB. (2.4.13)

Here R is the radial coordinate, ROB is the radius at the outer boundary, a is a parameter that

will be determined by a control system, and b is another parameter that will be determined

empirically.

In [1], the scaling map was simply xi 7→ a(t)xi, which is recovered by Eq. (2.4.13) if b = a.

In that case, as the black holes inspiral together and a decreases, the outer boundary of the

grid decreases as well. For long evolutions, the outer boundary decreases so much that we

can no longer extract gravitational radiation far from the hole. The addition of b to the map

alleviates this difficulty, allowing the motion of the outer boundary to be decoupled from the

motion of the holes. We choose b by an explicit functional form

b(t) = 1− 10−6t3/(2500 + t2), (2.4.14)

which is designed to keep the outer boundary from shrinking rapidly, but to allow the

boundary to move inward at a small speed, so that zero-speed modes are advected off the

grid (and thus need no boundary condition imposed on them). We choose a cubic function of
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time in Eq. (2.4.14) because we have found that at least the first two time derivatives of b(t)

must vanish initially, or else a significant ingoing pulse of constraint violations is produced at

the outer boundary.

We control the scale factor a of this map using the error function

Qa = a(dx0 − 1), (2.4.15)

where

dxi =
ξ̂iA − ξ̂iB
C0
A − C0

B

. (2.4.16)

We assume that the separation vector Ci
A − Ci

B in the grid frame is parallel to the x-axis.

The idea is that the distorted-frame separation of the horizon centers along the x-axis is

driven to be the same as the separation of the excision boundary centers.

To show that the control system for a obeys Eq. (2.3.3), we consider the change in Qa

under variations of a with all other maps held fixed, and with the inertial-coordinate centers

ξ̄iH of the horizons held fixed.1 This means that the distorted-frame centers of the horizons

ξ̂iH appearing in Eq. (2.4.16) change with variations of a. The second term in Eq. (2.4.13) is

small when evaluated near the horizon where (R/ROB)2 � 1, so we can write the action of

the scaling map as

ξ̄iH = aξ̂iH , (2.4.17)

and therefore under variations δa,

0 = δξ̄iH = ξ̂iH δa+ a δξ̂iH . (2.4.18)

Taking variations of Eq. (2.4.15), using Eq. (2.4.18) to substitute for δξ̂iH , and noting that

the excision-boundary centers Ci
H are constants and do not vary with a, we obtain

δQa = −δa, (2.4.19)

1 We consider inertial-frame quantities to be fundamental and determined by the solution
of Einstein’s equations plus gauge conditions, and therefore independent (modulo numerical
truncation error) of the numerical grid and of the maps that we use to construct, move, and
distort that grid.
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so that Eq. (2.3.3) is satisfied.

To verify that the more general decoupling equation, Eq. (2.3.4), is satisfied for the scaling

map, we must show, in addition to Eq. (2.4.19), that the quantity dx0 defined in Eq. (2.4.16)

is invariant under the action of the other maps, at least in the limit that all the control

errors Q are small. We consider each map in turn. The translation map moves both apparent

horizons together, so it leaves dx0 invariant. Changes in the rotation map parameters will

change dx0 only by an amount proportional to the control errors of the rotation map (see

Eqs. (2.4.25) and (2.4.26) below). The skew map (below) leaves the centers of the excision

boundaries invariant. Because the intent of the rotation, translation, and scaling maps is to

drive the centers of the apparent horizons toward the centers of the excision boundaries, this

means that the skew map changes dx0 by an amount proportional to the control errors of

the rotation, translation, and scaling maps. Finally, the shape and CutX maps connect the

distorted and grid frames, so they cannot affect dx0.

II Rotation

The rotation map, MRotation, is a rigid 3D rotation about the origin that tracks the orbital

phase and precession of the system,

xi 7→ Ri
jx
j, where R =


cosϑ cosϕ − sinϑ cosϑ sinϕ

sinϑ cosϕ cosϑ sinϑ sinϕ

− sinϕ 0 cosϕ

 . (2.4.20)

The pitch and yaw map parameters (ϕ, ϑ) are controlled so as to align the line segment

connecting the apparent horizon centers with the distorted-frame x-axis. Note that the map

parameters (ϕ, ϑ) are functions of time, and are not to be confused with the polar coordinates
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(φH , θH) centered about each excision boundary. Then the control error is given by

Qϕ = − ξ̂
2
A − ξ̂2

B

ξ̂0
A − ξ̂0

B

(2.4.21)

Qϑ =
ξ̂1
A − ξ̂1

B

(ξ̂0
A − ξ̂0

B) cosϕ
. (2.4.22)

In the case of extreme precession where ϕ→ π/2, these equations are insufficient because

Qϑ diverges. Our solution is to use quaternions, which avoid this singularity (for a complete

discussion, see [21]).

The control errors Qϑ and Qϕ obey Eq. (2.3.4). To show this, consider variations of ϑ and

ϕ with other maps held fixed, and with the inertial-coordinate centers ξ̄iH of the horizons

held fixed. The rotation map, Eq. (2.4.20), implies that under these variations,

δξ̄iH = 0 = Ri
jδξ̂

j
H + (δR)ij ξ̂

j
H . (2.4.23)

Multiplying this equation by R−1 we obtain

δξ̂iH = −(R−1δR)ij ξ̂
j
H , (2.4.24)

which yields

∂ξ̂iH
∂ϕ

= Aij ξ̂
j
H , where A := −R−1∂R

∂ϕ
=


0 0 −1

0 0 0

1 0 0

 (2.4.25)

∂ξ̂iH
∂ϑ

= Bij ξ̂
j
H , where B := −R−1∂R

∂ϑ
=


0 cosϕ 0

− cosϕ 0 − sinϕ

0 sinϕ 0

 . (2.4.26)

We can now verify Eq. (2.3.4) for the special case where the indices a and b in Eq. (2.3.4) are

either ϑ and ϕ. This result is obtained in a straightforward way by differentiating Eqs. (2.4.21)

or (2.4.22) with respect to ϑ or ϕ, and substituting Eqs. (2.4.25) or (2.4.26).

In addition, the control errors Qϕ and Qϑ are independent (to leading order in the control

errors) of changes in the parameters of the other maps that make up M: Variations of
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Eqs. (2.4.21) and (2.4.22) with respect to the scaling map parameter a are zero, because both

the numerator and denominator of Qϕ and Qϑ scale in the same way with a. Similarly, Qϕ and

Qϑ are independent of the translation map, since both apparent horizons are translated by

the same amount. The skew map can change Qϕ and Qϑ, but only by an amount proportional

to control errors, because the skew map leaves Ci
H invariant and other maps ensure that ξ̂iH

are close (within a control error) to Ci
H . The shape and CutX maps cannot affect Qϕ and

Qϑ because those maps connect the grid and distorted frames (and therefore they cannot

change the distorted-frame horizon centers ξ̂iH).

III Translation

The translation map, MTranslation, transforms the Cartesian coordinates, xi, according to

xi 7→ xi + f(R)T i, (2.4.27)

where f(R) is a Gaussian centered on the origin with a width set such that f(R) falls off to

machine precision at the outer boundary radius, and T i(t) are translation parameters that

are adjusted by a control system.

The translation map moves the grid to account for any drift of the “center of mass” of

the system (as computed assuming point masses at the apparent horizon centers) in the

inertial frame. This drift can be caused by momentum exchange between the black holes and

the surrounding gravitational field [22, 23], by anisotropic radiation of linear momentum to

infinity, or by linear momentum in the initial data. This is the third map (the other two are

rotation and scaling) that drives the centers of the apparent horizons toward the centers of

the excision boundaries. The apparent horizon centers ξ̂iA and ξ̂iB represent six degrees of

freedom: one is fixed by the scaling map, two by rotation, and three by translation.

The control errors will be more complicated than for the other control systems because

translation and rotation do not commute. We define the control errors Qi
T for each of the
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translation directions i = 0, 1, 2 as

Qi
T = aRi

j

[
ξ̂jB + Pjk(ξ̂

k
A − ξ̂kB)

]
, (2.4.28)

where R is the rotation matrix in Eq. (2.4.20), and P is some matrix yet to be determined,

which may depend on the rotation parameters (ϕ, ϑ) and on the constants Ci
H , but which

may not depend on the translation parameters T i. This control error must have the property

that Qi
T = 0 when ξ̂iH = Ci

H , so our first restriction on P is that it satisfies

0 = Ci
B + P ij(C

j
A − C

j
B). (2.4.29)

To check Eq. (2.3.4), we note that near the black holes we can neglect the last term in

Eq. (2.4.13) and we can use f(R) ∼ 1 in Eq. (2.4.27), so that the apparent horizon centers in

the inertial and distorted frames are related by

aRi
j ξ̂
j
H = ξ̄iH − T i. (2.4.30)

Inserting Eq. (2.4.30) into Eq. (2.4.28), we obtain

Qi
T = ξ̄iB − T i − (RPR−1)ij(ξ̄

j
A − ξ̄

j
B). (2.4.31)

The second term in Eq. (2.4.31) is the only term that depends on the translation parameter

T i, so we have

∂Qi
T

∂T j
= −δij (2.4.32)

When varying map parameters, the inertial-frame horizon centers remain fixed, so the only

other term in Eq. (2.4.31) that depends on map parameters is the last term, which depends

on (ϑ, ϕ) because of the rotation matrices and because of the (ϑ, ϕ) dependence in P. We

can therefore write the variation of Qi
T with respect to (ϑ, ϕ) as

∂Qi
T

∂W
= − ∂

∂W
(RPR−1)ij(ξ̄

j
A − ξ̄

j
B), (2.4.33)

= − ∂

∂W
(RPR−1)ijaR

j
k(ξ̂

k
A − ξ̂kB), (2.4.34)
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where W stands for either ϑ or ϕ, and where in the last line we have used Eq. (2.4.30). To

obey Eq. (2.3.4), ∂Qi
T/∂W must either be zero, or on the order of a control error Q. For

i = 1, 2, the quantity (ξ̂iA − ξ̂iB) is proportional to the control error of the rotation map,

Eqs. (2.4.21) and (2.4.22), so these terms can be neglected in Eq. (2.4.34). However, for i = 0,

(ξ̂iA− ξ̂iB) is not proportional to a control error; instead (ξ̂0
A− ξ̂0

B) is driven to a constant finite

value of C0
A − C0

B by the scaling control system. Therefore, in order to satisfy Eq. (2.3.4), we

require

− ∂

∂W
(RPR−1)R


1

0

0

 = 0. (2.4.35)

We find that we can satisfy both Eqs. (2.4.29) and (2.4.35) by choosing

P =
1

C0
B − C0

A


C0
B −C1

B −C2
B

C1
B C0

B + C2
B tanϕ 0

C2
B −C1

B tanϕ C0
B

 . (2.4.36)

Here we have again assumed that the separation between the centers of the excision boundaries

is parallel to the x-axis, i.e., C1
A = C1

B and C2
A = C2

B.

IV Skew

In Fig. 4, a prominent feature of the domain decomposition is a plane (a vertical line in the

two-dimensional figure) that is perpendicular to the grid-frame x-axis and lies between the

two excision boundaries A and B. We call this plane the “cutting plane”.

The skew map,MSkew, acts on the distorted-frame coordinates, in which the cutting plane

is still perpendicular to the x-axis. The skew map leaves the coordinates y, z unchanged, but

changes the x-coordinate in order to give a skewed shape to the cutting plane, as shown in

Fig. 5. Let xiC be the intersection point of the line segment connecting the excision boundary
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A
B

Figure 4: Two-dimensional projection of the domain decomposition near the two black
holes A and B. Shown are boundaries between subdomains. Each subdomain
takes the shape of a spherical shell, a distorted cylindrical shell, or a distorted
cylinder. Additional spherical-shell subdomains (not shown) surround the outer
boundary of the figure and extend to large radius. This domain decomposition is
explained in detail in the Appendix of [5]. The red, magenta, and blue surfaces are
those for which the function fA(rA, θA, φA) from Eq. (2.4.44) has a discontinuous
gradient, as described in Sec. 2.4.V.
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centers and the cutting plane. The action of the skew map is defined as

x0 7→ x0 +W
∑
j=1,2

tan
[
Θj(t)

]
· (xj − xjC), (2.4.37)

xj 7→ xj, for j = 1, 2 (2.4.38)

where W is a radial Gaussian function centered around xiC , and the angles Θj(t) are the

time-dependent map parameters. For j = 1, 2 the parameter Θj(t) is the angle between the

mapped and unmapped xj-axis when projected into the x3−j = x3−j
C plane. Note that the

line intersecting xiC and parallel to the x-axis is left invariant by the skew map2. The width

of the Gaussian W is set such that W is below machine precision at the innermost wave

extraction sphere. This implies that the spherical-shell subdomains used to evolve the metric

in the wave zone will not be affected by the skew map.

The purpose of the skew map is to (as much as possible) align the cutting plane with the

surfaces of the apparent horizons in the region where the surfaces are closest to the cutting

plane. We derive the control system in charge of setting the parameters Θj by the following

condition: We demand that the angle between the mapped cutting plane and the x-axis at

xiC be driven to the (weighted) average of the angles at which the mapped apparent horizons

intersect the same x-axis.

The input coordinates to the skew map are the coordinates in the distorted frame. For

each horizon, we therefore measure an angle in the distorted frame as follows: Let xInt
H be

the distorted-frame x-coordinate at which apparent horizon H intersects the line segment

connecting the centers of the excision boundaries. For j = 1, 2, we calculate the normal to

the surface at this intersection point. This normal is projected into the x3−j = x3−j
C plane.

We define Θj
H as the angle between the projected normal and the x-axis. Thus, projecting

the normal into the y = const. plane gives Θz
H and vice versa (see Fig. 6). We then compute

2 The horizon centers ξ̂iH are not invariant under the skew map because they do not
necessarily lie on this line. This deviation, which is quantified in Eqs. (2.4.10)–(2.4.12), leads
to a coupling of O(Q) with the translation, rotation, and scaling maps.
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Figure 5: Snapshot of the grid, viewed in the mapped frame, from a binary black hole
evolution with MA = 8MB shortly before the common horizon forms. Left:
without MSkew. Right: with MSkew. The gray areas are excised regions. In the
left panel, the grid is compressed as the excision boundaries track increasingly
skewed apparent horizons, and the evolution is terminated because of excessively
large constraint violation in the compressed region. This problem is resolved by
the inclusion of MSkew.
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ΘB

Θ ΘA

x C

Figure 6: A diagram of the skew map in the mapped frame. The horizon surfaces are drawn
in black and the excision surfaces are drawn in red. The dotted red line represents
the line segment connecting the excision surface centers, which is parallel to the
x-axis. The normal to either horizon at the intersection point with this segment
is represented by the straight black lines. The cutting plane is represented by the
(skewed) blue curve, and the normal to this plane at xiC is represented by the
central green line. The green lines near the two excision surfaces are constructed
parallel to the central green line, where parallelism is defined assuming a Euclidean
background. There are three angles involved in the skew control system – the
angle between the normal to the skewed cutting plane and the x-axis, Θj, and
the angle between the normal to either horizon and the normal to the skewed
cutting plane, Θj

H . Skew control acts to minimize Θj
H . We measure Θj

H in the
unmapped (distorted) frame, but Θj

H is invariant under the skew map for W ≈ 1.

a weighted average of the Θj
H such that the horizon closer to the cutting plane has a larger

effect on the skew angles,

Θj
Avg =

wAΘj
A + wBΘj

B

wAW (CA) + wBW (CB)
, (2.4.39)

where wA, wB are averaging weights,

wH = exp

[
−x

0
C − xInt

H

x0
C − C0

H

]
. (2.4.40)

Here Ci
H is the center of the excision boundary H.

We measure Θj
Avg in the distorted frame, and in this frame the cutting plane is always

normal to the x-axis. Therefore, thinking about the desired result in the distorted frame,

we see that the control system for the skew map should drive Θj
Avg to zero. This leads us

to consider the following control error for the skew angles: Qj
Θ = Θj

Avg. Assuming that the
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function W is unity near the apparent horizons, we find that

∂Θj
Avg

∂Θj
= −1 +O(Q), (2.4.41)

in agreement with Eq. (2.3.3). In deriving Eq. (2.4.41), it is helpful to observe that the partial

derivative in Eq. (2.4.41) is taken with the inertial-frame apparent horizon held fixed. For a

fixed inertial-frame horizon, the only map that can change the shape (as opposed to merely

the center) of the distorted-frame horizon (and thus Θj
Avg) is the skew map.

We do not use Qj
Θ = Θj

Avg for the entire evolution, however, because at early times, when

the coordinate distance between the apparent horizons is larger than their combined radii,

the skew map is not needed. Furthermore, the skew map can cause difficulties early during

the run, especially during the “junk radiation” phase when the horizons are oscillating in

shape. For this reason, we gradually turn on the skew map as the black holes approach each

other. This is done by defining a roll-on function g that is zero when the horizons are far

apart, and one when they are close together. This roll-on function is defined as

g =
1

2

[
1− tanh

(
10
xInt
A − xInt

B

C0
A − C0

B

− 5

)]
. (2.4.42)

For values g < 10−3 the skew map is turned off completely; this is not strictly necessary, but

it saves some computation. Given the function g, we define the control error as

Qj
Θ = gΘj

Avg − (1− g)Θj. (2.4.43)

This control error drives the skew angles to zero when the black holes are far apart and drives

Θj
Avg to zero as they approach each other.

V Shape control

We define the shape map MShape as:

xi 7→ xi

(
1−

∑
H

fH(rH , θH , φH)

rH

∑
`m

Y`m(θH , φH)λH`m(t)

)
. (2.4.44)

41



The index H goes over each of the two excised regions A and B, and the map is applied to

the grid-frame coordinates. The polar coordinates (rH , θH , φH) centered about excised region

H are defined by Eqs. (2.4.4)–(2.4.6), the quantities Y`m(θH , φH) are spherical harmonics,

and λH`m(t) are expansion coefficients that parameterize the map near excision region H.

The function fH(rH , θH , φH) is chosen to be unity near excision region H and zero near the

other excision region, so that the distortion maps for the two black holes are decoupled.

Specifically, fH(rH , θH , φH) is determined as illustrated in Fig. 4. For excision region A in

the figure, fA(rA, θA, φA) = 1 between the excision boundary and the magenta surface, it

falls linearly to zero between the magenta and red surfaces, and it is zero everywhere outside

the red surface. This means that the gradient of fA(rA, θA, φA) is discontinuous on the red

surface, the magenta surface, and the blue surfaces in the figure. Because we ensure that

these discontinuities occur on subdomain boundaries, they cause no difficulty with using

spectral methods. Around excision region B, fB(rB, θB, φB) is chosen similarly.

In previous implementations of the shape map [3], the functions fH(rH , θH , φH) were

chosen to be smooth Gaussians centered around each excision boundary rather than to be

piecewise linear functions. We find smooth Gaussians to be inferior for two reasons. The first

is that piecewise linear functions are easier and faster to invert (the inverse map is required

for interpolation to trial solutions during apparent horizon finding). The second is that for

smooth Gaussians, it is necessary to choose the widths of the Gaussians sufficiently narrow

so that the Gaussian for excision region A does not overlap the Gaussian for excision region

B and vice versa, so that the maps and control systems for A and B remain decoupled.

However, decreasing the width of the Gaussians increases the Jacobians of the map, producing

coordinates that are stretched and squeezed nonuniformly. We found that this form of “grid-

stretching” significantly increased the computational resources required to resolve the solution

to a given level of accuracy. In other words, with smooth Gaussians we were forced to add

computational resources just to resolve the large Jacobians.

A map very similar to Eq. (2.4.44) is also described in [4]. The difference compared to
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this work is the choice of fH(rH , θH , φH), which corresponds to a different choice of domain

decomposition. The control system used to choose the map parameters λH`m(t) in [4] is also

different than what is described here.

We control the expansion coefficients λH`m(t) of the shape map, Eq. (2.4.44), so that each

excision boundary, as measured in the intermediate frame (t, x̂i), has the same shape as the

corresponding apparent horizon. In other words, we desire

r̂AH

〈r̂AH〉
=

r̂EB

〈r̂EB〉
, (2.4.45)

where for brevity we have dropped the index H that labels the excision boundary. Here the

angle brackets mean averaging over angles, r̂AH(θ̂, φ̂) is the radial coordinate of the apparent

horizon defined in Eq. (2.4.8), and r̂EB(θ, φ) is the radial coordinate of the excision boundary,

which from Eq. (2.4.44) can be written

r̂EB = rEB −
∑
`m

Y`m(θ̂, φ̂)λ`m(t). (2.4.46)

Here rEB is the radius of the (spherical) excision boundary in the grid frame. In deriving

Eq. (2.4.46) we have used the relations MCutX = 1, f(r, θ, φ) = 1, θ̂ = θ, and φ̂ = φ, which

hold on the excision boundary.

Combining Eqs. (2.4.8), (2.4.45), and (2.4.46) yields

rEB −
∑

`m Y`m(θ̂, φ̂)λ`m(t)

rEB − Y00λ00(t)
=

∑
`m Ŝ`mY`m(θ̂, φ̂)

Ŝ00Y00

, (2.4.47)

which we can satisfy by demanding that

λ`m(t) + Ŝ`m
rEB − Y00λ00(t)

Ŝ00Y00

= 0, ` > 0. (2.4.48)

Therefore, given an apparent horizon and given a value of λ00, a control system can be set up

for each (`,m) pair with ` > 0, and the corresponding control errors are

Q`m = −λ`m(t)− Ŝ`m
rEB − Y00λ00(t)

Ŝ00Y00

, ` > 0. (2.4.49)
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Driving these Q`m to zero produces an excision boundary that matches the shape of the

corresponding apparent horizon.

Equation (2.4.49) determines λ`m(t) only for ` > 0, and Eqs. (2.4.45)–(2.4.49) can be satis-

fied for arbitrary values of the remaining undetermined map coefficient λ00(t). Determination

of λ00(t) is complicated enough that it is described in its own section, Sec. 2.5.

Note that Eq. (2.4.49) does not satisfy Eq. (2.3.4) because ∂Q`m/∂λ00 = Ŝ`m/Ŝ00, which

does not vanish even if all the control errors are zero. For small distortions, this coupling

between λ00 and Q`m seems to cause little difficulty. However, at times when the shapes

and sizes of the horizons change rapidly (e.g., during the initial “junk radiation” phase,

after the transition to a single excised region when a common apparent horizon forms,

and after rapid gauge changes), simulations using Eq. (2.4.49) exhibit relatively large and

high-frequency oscillations in Q`m that usually damp away but occasionally destabilize the

evolution. Construction of a control system in which all Q`m are fully decoupled will be

addressed in a future work.

VI CutX

The map MCutX applies a translation along the grid-frame x-axis in the vicinity of the

black holes, but without moving the excision boundaries (or the surrounding spherical shells)

themselves. The action of the map is shown in Fig. 7.

The goal of this map is to allow for a slight motion of the cutting plane toward the smaller

excision boundary. This is important for binary black hole systems with mass ratio q & 8.

As such a binary gets closer to merger, the inertial-frame coordinate distance between each

excision boundary and the cutting plane decreases. Eventually, this distance falls to zero

for the larger excision boundary, producing a coordinate singularity in which the Jacobian

of one of the other maps (often the shape map) becomes infinite. By pushing the cutting

plane toward the smaller excision boundary, the mapMCutX avoids this singularity. Even for
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AB

Figure 7: Two-dimensional projection of the domain decomposition near the two black
holes A and B. The function ρ in MCutX is zero on the magenta boundaries, one
on the red boundaries, and goes linearly between zero and one in the “radial”
direction between these boundaries. The gradient of ρ is discontinuous across
the solid magenta, red, and blue boundaries. Dotted lines show the subdomain
boundaries under the action of MCutX.

evolutions in which the inertial-coordinate distance between the larger excision boundary and

the cutting plane remains finite but becomes small, the mapMCutX prevents large Jacobians

from developing and thus increases numerical accuracy (because it is no longer necessary to

add computational resources to resolve the large Jacobians).

Figure 8 shows the domain decomposition in the inertial frame for a binary black hole

simulation with q = 8. The top panel shows the case without MCutX, and the compressed

grid near the larger excision boundary is evident. The lower panel shows the case withMCutX,

which removes the extreme grid compression. Looking at the Jacobian of the mapping from

the inertial frame to the grid frame shortly before merger, we find that the infinity norm of

the determinant of the Jacobian is twice as large in the case without MCutX.
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Figure 8: Snapshot of the grid, viewed in the inertial frame, from a binary black hole
evolution with MA = 8MB shortly before the common horizon forms. Top:
without MCutX. Bottom: with MCutX. The gray areas are excised regions. In
the top panel, the grid is compressed as the larger excision boundary approaches
the cutting plane; this is especially evident in the long narrow subdomains
immediately adjacent to the larger excision boundary. Using MCutX relieves the
grid compression.
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The map MCutX is written as

x0 7→ x0 + ρ(xi)F (t), (2.4.50)

xj 7→ xj, j = 1, 2, (2.4.51)

where F (t) is adjusted by a control system.

We choose ρ(xi) to be zero within either of the spherical shell regions, i.e., inside the

magenta spheres around A and B in Fig. 7, and it is also zero outside the outer magenta

sphere in the same figure. We set ρ(xi) = 1 on the solid red boundaries in Fig. 7, and

everywhere between the two solid red boundaries that enclose excision boundary B. Every

other region on the grid is bounded by a smooth red boundary on one side and a smooth

magenta boundary on the other; in these regions ρ varies linearly between zero and one. The

solid blue boundaries are locations (in addition to the solid red and solid magenta boundaries)

in which the gradient of ρ is discontinuous. Full details for the calculation of ρ can be found

in Appendix A2.

As with the skew map, the map MCutX is inactive for most of the inspiral. Let xExc
H be

the distorted-frame x-coordinate of the intersection of the excision boundary H with the line

segment connecting the centers of the excision boundaries. This is similar to xInt
H defined

earlier; the difference is that xInt
H refers to a point on the apparent horizon and xExc

H refers to

a point on the excision boundary. The quantity xExc
H is time-dependent because it depends

on the shape map.

The map MCutX is turned off completely as long as

x0
C − xExc

H

xExc
H − C0

H

≥ 1

2
, (2.4.52)

where Ci
H are the excision boundary centers, and xiC are the coordinates of the intersection

of the cutting plane and the line segment connecting the centers of the excision boundaries,

as introduced in Sec. 2.4.IV.
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Let t0 be the coordinate time at which the map MCutX is activated.3 We designate the

target position x = xT of the cutting plane as

xT =
∆xA · xExc

A + ∆xB · xExc
B

∆xA + ∆xB

∣∣∣∣
t=t0

, (2.4.53)

where

∆xH =
∣∣xExc
H − C0

H

∣∣ , H = A,B. (2.4.54)

Recall that xExc
H is time-dependent (as it is measured in the distorted frame), so we save

the value of xT as calculated at the time when the map MCutX is activated, rather than

recalculating xT at every measurement time.

Now that we have a target xT , we could designate xT − x0
C as the target value to the

function F (t) by setting QF = −F + xT − x0
C and have the control system drive QF to zero,

thus driving the x-coordinate of the cutting plane to xT . However, because we turn on the

CutX control system suddenly at time t0, we must be more careful. Turning on any control

system suddenly will produce some transient oscillations, unless the control error and its

relevant derivatives and integrals are all initially zero. In the case of the CutX map, which is

turned on during a very dynamic part of the simulation when excision boundaries need to be

controlled very tightly, these oscillations can prematurely terminate the run by, for example,

pushing an excision boundary outside its accompanying apparent horizon.

To turn on MCutX gradually, we replace xT by a new time-dependent target function

T (t) that gradually approaches xT at late times but produces a control error QF with

QF = ∂QF/∂t = 0 at the activation time t = t0. We start by estimating the time tXC
H at

which xExc
H will reach the cutting plane, where H is either A or B. This is done by the method

3 BothMSkew andMCutX are turned on late in the run, but the condition triggering their
activation is different, given the different nature of the problems they address. MSkew is
needed for all runs where the horizons eventually intersect the line segment connecting their
excision centers at an angle sufficiently different from π/2. This will happen essentially for
all runs except the simplest head-on collisions. MCutX, on the other hand, is primarily for
unequal-mass runs where the larger excision surface encroaches upon the cutting plane near
merger.
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described in Appendix A3. We then let tXC be the minimum of tXC
A and tXC

B . The smooth

target function T (t) is then defined by

T (t; t0, xT , t
XC) = xT + exp

[
−
(

t− t0
0.3 · tXC

)2
]

×
[
x0
C − xT + F (t0) + (t− t0) · ∂F (t)

∂t

∣∣∣∣
t=t0

]
. (2.4.55)

Designating T − x0
C as the target for F (t)

QF = T − x0
C − F (2.4.56)

leads to

QF |t=t0 = 0,
∂QF

∂t

∣∣∣∣
t=t0

= 0, (2.4.57)

so at the activation time the control system does not produce transients. Furthermore, in the

limit of small QF ,

x0
C + F (t)|t=tXC ≈ xT , (2.4.58)

i.e., by the time the excision boundary would have touched the cutting plane (and formed a

grid singularity), the smooth target function T (t) has approached xT , and the cutting plane

will have reached its designated target location, xT . As the run proceeds, the behavior of the

cutting plane is determined by the map MCutX while the motion of the excision boundaries

is determined by gauge dynamics and the behavior of the other control systems. We continue

to monitor the distance between the cutting plane and the excision boundaries, and if it

is predicted to touch within a time less than τd/0.15, the MCutX control system is reset,

constructing a new target function T (t; t0, xT , t
XC), where t0 is the time of the reset, and

xT , t
XC are also recalculated based on the state of the grid at this reset time.

Each time a new target function T is constructed, the damping time τd of the MCutX

control system is set to be tXC/2.

The control systems responsible for MCutX and MShape are decoupled, as MCutX controls

the location of the cutting plane, leaving the excision boundary unchanged, while MShape
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controls the shape of the excision boundary, leaving the location of the cutting plane unchanged.

Recall that MCutX and MShape define the mapping from the grid frame to the distorted

frame. As the apparent horizons are found in the distorted frame, and the other maps only

depend upon measurements of the horizons,MCutX andMShape are decoupled from the other

maps.

2.5 Size control

In this section we discuss how we control the spherical part of the map given by Eq. (2.4.44),

namely, the coefficients λH00 for each excision boundary H. We apply the same method to

each excision boundary, so for clarity, in this section we again drop the index H from the

coefficients λH00 and SH`m, and from the coordinates (rH , θH , φH).

I Characteristic speed control

Controlling the size of the excision boundary is more complicated than simply keeping the

excision boundary inside the apparent horizon. This is because black hole excision requires

conditions on the characteristic speeds of the system, and if these conditions are not enforced

they are likely to be violated.

The minimum characteristic speed at each excision boundary is given by

v = −α− β̄in̄i − n̄i
∂x̄i

∂t
, (2.5.1)

where α is the lapse, β̄i is the shift, and n̄i is the normal to the excision boundary pointing

out of the computational domain, i.e., toward the center of the hole. Here (t̄, x̄i) are the

inertial frame coordinates. The first two terms in Eq. (2.5.1) describe the coordinate speed

of the ingoing (i.e., directed opposite to n̄i) light cone in the inertial frame, and the last term

accounts for the motion of the excision boundary (which is fixed in the grid frame) with
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respect to the inertial frame.

In our simulations, we impose no boundary condition whatsoever at each excision boundary.

Therefore, well-posedness requires that all of the characteristic speeds, and in particular the

minimum speed v, must be non-negative; in other words, characteristics must flow into the

hole. In practice, if v becomes negative, the simulation is terminated, because a boundary

condition is needed, but we do not have one to impose. This can occur even when the

excision boundary is inside the horizon. In this case, one might argue that if the simulation

is able to continue without crashing (e.g. by becoming unstable inside the horizon), that

the solution outside the horizon would not be contaminated. We have not explored this

possibility. Instead, we choose to avoid this situation by terminating the code if negative

speeds are detected.

Therefore, we would like to control λ00 in such a way that v remains positive. We start by

writing v in a way that separates terms that explicitly depend on λ̇00 from terms that do not.

To do this we expand the derivative in the last term of Eq. (2.5.1) as

∂x̄i

∂t
=
∂x̄i

∂x̂a
∂x̂a

∂t

=
∂x̄i

∂t̂

∂t̂

∂t
+
∂x̄i

∂x̂j
∂x̂j

∂t

=
∂x̄i

∂t̂
+
∂x̄i

∂x̂j
∂x̂j

∂t
, (2.5.2)

where a in the first line of Eq. (2.5.2) is a four-dimensional spacetime index, and the last line

of Eq. (2.5.2) follows from ∂t̂/∂t = 1. Inserting this into Eq. (2.5.1) yields

v = −α− β̄in̄i − n̄i
∂x̄i

∂t̂
− n̂i

∂x̂i

∂t
, (2.5.3)

where x̂i is the frame that is obtained from the grid frame by applying the distortion map;

see Eq. (2.4.2).
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We then use Eq. (2.4.44) to rewrite this as

v = −α− β̄in̄i − n̄i
∂x̄i

∂t̂

+ n̂i
xi

r

∑
`m

Y`m(θ, φ)λ̇`m(t), (2.5.4)

where we have used the relations f(r, θ, φ) = 1 andMCutX = 1 when evaluating the distortion

map MDistortion on the excision boundary.

By combining all the terms that do not explicitly depend on λ̇00 into a quantity v0, we

obtain

v = v0 + n̂i
xi

r
Y00λ̇00. (2.5.5)

Thus, the characteristic speed v can be thought of as consisting of two parts: one part, v0,

that depends on the position and shape of the excision boundary and the values of the metric

quantities there, and another part that depends on the average speed of the excision boundary

in the direction of the boundary normal.

We now construct a control system that drives the characteristic speed v to some target

speed vT . This is a control system that controls the derivative quantity λ̇00, as opposed to

directly controlling the map quantity λ00. We choose

Q = (min(v)− vT )/〈−Ξ〉, (2.5.6)

where

Ξ = n̂i
xi

r
Y00, (2.5.7)

the minimum is over the excision boundary, and the angle brackets in Eq. (2.5.6) refer to an

average over the excision boundary. Note that Ξ < 0 because n̂i points radially inward and

xi/r points radially outward; this means that Q̇ = −λ̈00, in accordance with our normalization

choice for a control system on λ̇00.

As in our other controlled map parameters, we demand that λ̇00 is a function with a

piecewise-constant second derivative. It is then easy to construct λ00 as a function with a

piecewise-constant third derivative.
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The control system given by Eq. (2.5.6) with a hand-chosen value of vT has been used

successfully [24, 25] in simulations of high-spin binaries. Figure 9 illustrates why characteristic

speed control is crucial for the success of these simulations.

Time

Minimum characteristic speeds

uncontrolled
controlled

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

6240 6250 6260 6270 6280 6290

Figure 9: Minimum characteristic speed on one of the excision surfaces of an equal mass
binary with equal aligned spins of χ = 0.97, shown just before merger [25].
Two cases are shown: one without characteristic speed control (solid) and one
that is restarted from the uncontrolled run at t = 6255M with characteristic
speed control turned on and vT = 5 × 10−5 (dashed). The uncontrolled run is
terminated because of negative characteristic speeds shortly after t = 6290M , but
the controlled run continues through merger and ringdown.

II Apparent horizon tracking

The characteristic speed control described above has the disadvantage that it requires a

user-specified target value vT . If vT is chosen to be too small, then small fluctuations (due

to shape control, the horizon finder, or simply numerical truncation error) can cause the

characteristic speed to become negative and spoil the simulation.

If vT is chosen to be too large, the simulation can also fail. To understand why, recall that

characteristic speed control achieves the target characteristic speed by moving the excision

boundary and thus changing the velocity term in Eq. (2.5.1). So if v > vT the control system

moves the excision boundary radially inward, and if v < vT the control system moves the

excision boundary radially outward. If vT is too large, the control system can push the

excision boundary outward until it crosses the apparent horizon. This halts the evolution

53



because the apparent horizon can no longer be found.

One way to prevent the excision boundary from crossing the horizon is to drive the excision

boundary to some constant fraction of the horizon radius, or in other words, drive the quantity

d/dt(∆r) to zero, where

∆r = 1− 〈r̂EB〉
〈r̂AH〉

(2.5.8)

is the relative difference between the average radius of the apparent horizon (in the intermedi-

ate frame) and the average radius of the excision boundary. Using Eqs. (2.4.46) and (2.4.8),

we can write

d

dt
∆r =

λ̇00

Ŝ00

+
˙̂
S00

Ŝ00

(1−∆r) , (2.5.9)

and therefore a control system that adjusts λ̇00 to achieve d/dt(∆r) = 0 can be obtained by

defining

Q =
˙̂
S00(∆r − 1)− λ̇00. (2.5.10)

A slight generalization of this control system can be obtained by demanding that

d/dt(∆r) = ṙdrift, where ṙdrift is some chosen constant,

Q =
˙̂
S00(∆r − 1)− λ̇00 + Ŝ00ṙdrift. (2.5.11)

We have not found the control systems defined by Eqs. (2.5.10) and (2.5.11) to be especially

useful on their own. One drawback of these systems is that they do not prevent the minimum

characteristic speed v from becoming negative. Instead, we use the horizon tracking control

systems described here as part of a more sophisticated control system discussed in the next

section.

III Adaptive switching of size control

Here we introduce a means of controlling λ00 that combines the best features of characteristic

speed control and horizon tracking. The idea is to continuously monitor the state of the

system and switch between different control systems as the evolution proceeds.
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At fixed intervals during the simulation that we call “measurement times,” we monitor

the minimum characteristic speed v and the relative distance between the horizon and the

excision boundary ∆r. The goal of the control system is to ensure that both of these values

remain positive.

Consider first the characteristic speed v. Using the method described in Appendix A3,

we determine whether v is in danger of becoming negative in the near future, and if so, we

estimate the timescale τv on which this will occur. Similarly, we also determine whether

∆r will soon become negative, and if so we estimate a corresponding timescale τ∆r. Having

estimated both τv and τ∆r, we use these quantities to determine how to control λ̇00. In

particular, we switch between horizon tracking, Eq. (2.5.10), and characteristic speed control,

Eq. (2.5.6), based on τv and τ∆r.

We do this by the following algorithm, which favors horizon tracking over characteristic

speed control unless the latter is essential. Assume that the control system for λ̇00 is currently

tracking the horizon, Eq. (2.5.10), and that the current damping timescale is some value

τd. If v is in danger of crossing zero according to the above estimate, and if τv < τd and

τv < τ∆r, we then switch to characteristic speed control, Eq. (2.5.6), we set vT = 1.01v where

v is the current value of the characteristic speed (the factor 1.01 prevents the algorithm

from switching back from characteristic speed control to horizon tracking on the very next

time step), and we reset the damping time τd equal to τv. Otherwise we continue to use

Eq. (2.5.10), resetting τd = τ∆r if τ∆r < τd.

Now assume that the control system for λ̇00 is controlling the characteristic speed,

Eq. (2.5.6). If v is not in danger of crossing zero, so that we no longer need active control of

the characteristic speed, then we switch to horizon tracking, Eq. (2.5.10), without changing

the damping time τd. If v is in danger of crossing zero, and if ∆r is either in no danger of

crossing zero or if it will cross zero sufficiently far in the future such that τ∆r ≥ σ1τd, then

we continue to use Eq. (2.5.6) with τd reset to min(τd, τv) so as to maintain control of the
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characteristic speed. Here σ1 is a constant that we typically choose to be about 20.

The more complicated case occurs when both v and ∆r are in danger of crossing zero and

τ∆r < σ1τd. In this case, we have two possible methods by which we attempt to prevent ∆r

from becoming negative. We choose between these two methods based on the values of τ∆r

and τd, and also by the value of a quantity that we call the comoving characteristic speed :

vc = −α− β̄in̄i − n̄i
∂x̄i

∂t̂

+ n̂i
xi

r

[
Y00

˙̂
S00(∆r − 1) +

∑
`>0

Y`m(θ, φ)λ̇`m(t)

]
. (2.5.12)

This quantity is the value that the characteristic speed v would have if horizon tracking

(Eq. (2.5.10)) were in effect and working perfectly. Equation (2.5.12) is derived by assuming

Q = 0 in Eq. (2.5.10), solving for λ̇00, and substituting this value into Eq. (2.5.4). The reason

to consider vc is that for min(vc) < 0 (which can happen temporarily during a simulation),

horizon tracking is to be avoided, because horizon tracking will drive min(v) toward a negative

value, namely min(vc).

The first method of preventing ∆r from becoming negative is to switch to horizon tracking,

Eq. (2.5.10); we do this if min(vc) > 0 and if τ∆r < σ2τd, where σ2 is a constant that we

typically choose to be 5. The second method, which we employ if σ2τd < τ∆r < σ1τd or if

min(vc) < 0, is to continue to use characteristic speed control, Eq. (2.5.6), but to reduce the

target characteristic speed vT by multiplying its current value by some fraction η (typically

0.25). By reducing the target speed vT , we reduce the outward speed of the excision boundary,

and this increases τ∆r. The reason we use the latter method for min(vc) < 0 is that the

former method, horizon tracking, will drive v toward vc and we wish to keep v positive. The

reason we use the latter method for σ2τd < τ∆r < σ1τd is that in this range of timescales

the control system is already working hard to keep v positive, therefore a switch to horizon

tracking is usually followed by a switch back to characteristic speed control in only a few time

steps, and rapid switches between different types of control make it more difficult for the

control system to remain locked. The constants η, σ1, and σ2 are adjustable, and although
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the details of the algorithm (i.e., which particular quantity is controlled at which particular

time) are sensitive to the choices of these constants, the overall behavior of the algorithm is

not, provided 1 < σ2 < σ1.

The overall behavior of this algorithm is to cause λ̇00 to settle to a state in which both

v > 0 and ∆r > 0 for a long stretch of the simulation. Occasionally, when either v or ∆r

threatens to cross zero as a result of evolution of the metric or gauge, the algorithm switches

between characteristic speed control and horizon tracking several times and then settles into

a new near-equilibrium state in which both v > 0 and ∆r > 0.

The actual value of ∆r and of v in the near-equilibrium state is unknown a priori, and in

particular this algorithm can in principle settle to values of ∆r that are either small enough

that control system timescales must be very short in order to prevent ∆r from becoming

negative, or large enough that excessive computational resources are needed to resolve the

metric quantities deep inside the horizon. To prevent either of these cases from occurring,

we introduce a constant correction velocity ṙcorr, a nominal target value ∆rtarget, and a

nominal target characteristic speed vtarget. We currently choose these to be ṙcorr = 0.005,

∆rtarget = 0.08, and vtarget = 0.08. These quantities are used only to decide whether to replace

Eq. (2.5.10) by Eq. (2.5.11) when the algorithm chooses horizon tracking, as described below;

these quantities are not used when the algorithm chooses characteristic speed control.

First we consider the case where ∆r is too large during horizon tracking. If ∆r > 1.1∆rtarget,

then we replace Eq. (2.5.10) with Eq. (2.5.11), and we use ṙdrift = −ṙcorr. We continue to use

ṙdrift = −ṙcorr until ∆r < ∆rtarget, at which point we set ṙdrift = 0.

The case where ∆r is too small during horizon tracking is more complicated because we

want to be careful so as to not make the characteristic speeds decrease, since it is more

difficult to recover from decreasing characteristic speeds when ∆r is small. In this case,

if ∆r < 0.9∆rtarget, v < 0.9vtarget, and 〈nk∂kvc〉 > 0, then we replace Eq. (2.5.10) with

Eq. (2.5.11), and we use ṙdrift = vcorr. Here vc is the comoving characteristic speed defined
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in Eq. (2.5.12) and the angle brackets refer to an average over the excision boundary. The

condition on the gradient of vc ensures that vc will increase if ∆r is increased; otherwise a

positive ṙdrift will threaten the positivity of the characteristic speeds. We continue to use

ṙdrift = vcorr until either v > 0.9vtarget, ∆r > 0.9∆rtarget, 〈nk∂kvc〉 < 0, or if v will cross vtarget

or ∆r will cross ∆rtarget within a time less than the current damping time τd (where crossing

times are determined by the procedure of Appendix A3). When any of these conditions

occur, we switch to ṙdrift = 0, and we prohibit switching back to a positive ṙdrift until either

v > 0.99vtarget or ∆r > 0.99∆rtarget, or until both v and ∆r stop increasing in time. These

last conditions prevent the algorithm from oscillating rapidly between positive and zero values

of ṙdrift.

2.6 Merger and ringdown

The maps and control systems in Sec. 2.4 were discussed in the context of a domain decom-

position with two excision boundaries, one inside each apparent horizon. The skew and CutX

maps were introduced specifically to handle difficulties that occur when two distorted excision

boundaries approach each other. At some point in the evolution as the two black holes

become sufficiently close, a common apparent horizon forms around them. After this occurs,

the simulation can be simplified considerably by constructing a new domain decomposition

with a single excision boundary placed just inside the common horizon. The evolved variables

are interpolated from the old to the new domain decomposition, and the simulation then

proceeds on the new one.

The algorithm for transitioning to a new grid with a single excision boundary is funda-

mentally the same as that described in [3, 4], but there have been improvements in the maps

and the control systems, so for completeness we describe the procedure here.

At some time t = tm shortly after a common horizon forms, we define a new, post-merger
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set of grid coordinates x̆i and a corresponding new domain decomposition composed only

of spherical shells. In x̆i coordinates, the new excision boundary is a sphere centered at the

origin. We also define a post-merger map x̄i =MRingdownx̆
i, where

MRingdown = MTranslationRD ◦MRotation ◦MScalingRD ◦MShapeRD. (2.6.1)

Note that the post-merger grid coordinates differ from the pre-merger grid coordinates, but

there is only one set of inertial coordinates x̄i. Recall that in the dual-frame picture [1], the

inertial-frame components of tensors are stored and evolved, so the evolved variables are

continuous at t = tm even though the grid coordinates are not.

The post-merger translation map MTranslationRD and its control system are the same as

discussed in Sec. 2.4.III, except that MTranslationRD translates with respect to the origin of

the x̆i coordinate system, which is different from the origin of the xi coordinate system.

The post-merger translation control system keeps the common apparent horizon centered

at the origin in the post-merger grid frame. Note that the center of the common apparent

horizon does not necessarily lie on the same line as the centers of the individual apparent

horizons (see [23] for an example). This means thatMTranslationRD is not continuous with the

pre-merger translation map MTranslation, except near the outer boundary where both maps

are the identity.

To evolve a distorted single black hole we do not need a rotation map. However, if rotation

is turned off suddenly at t = tm, then the outer boundary condition (which is imposed

in inertial coordinates) is not smooth in time, and we see a pulse of gauge and constraint

violating modes propagate inward from the outer boundary because of this sharp change in

the boundary condition. Therefore, we use the same rotation map MRotation before and after

merger, and we slow down the rotation gradually. To accomplish this, instead of adjusting

the map parameters (ϑ, ϕ) by a control system, for t ≥ tm we set these parameters equal to

prescribed functions that approach a constant at late times. We set

ϑ(t) = A+ [B + C(t− tm)] e−(t−tm)/τroll , (2.6.2)
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where the constants A, B, and C are determined by demanding that ϑ(t) and its first two

time derivatives are continuous at t = tm. The parameter ϕ obeys an equation of the same

form. We choose τroll = 20M .

The post-merger scaling map MScalingRD is written

R̆ 7→

[
1 +

b(t)− b(tm)

b(tm)
sin2

(
πR̆

2R̆OB

)]
R̆, (2.6.3)

where R̆ is the post-merger grid-coordinate radius, and R̆OB is the outer boundary radius in

the post-merger grid coordinates. The function b(t) is given by Eq. (2.4.14) before and after

merger. We set R̆OB = b(tm)ROB so that at t = tm, MScalingRD matchesMScaling at the outer

boundary. Note that the post-merger scaling map is the identity near the merged black hole;

the only purpose of this map is to keep the inertial-coordinate location of the outer boundary

smooth in time at t = tm.

The post-merger shape mapMShapeRD and its control system are the same as discussed in

Secs. 2.4.V and 2.5, except the map is centered about the origin of the x̆i coordinate system,

the sum over excised regions in Eq. (2.4.44) runs over only one region (which we call excision

region C), and the function fC(rC , θC , φC) appearing in Eq. (2.4.44) is

fC(rC , θC , φC) =

 (rC − rmax)/(rEB − rmax), rEB ≤ rC < rmax

0, rC ≥ rmax

(2.6.4)

where rmax is the radius of a (spherical) subdomain boundary that is well inside the wave

zone. We typically choose rmax = 32rEB.

Once the post-merger map parameters are initialized, as discussed below, we interpolate

all variables from the pre-merger grid to the post-merger grid. The inertial coordinates x̄i are

the same before and after merger, so this interpolation is easily accomplished using both the

pre-merger and post-merger maps, e.g. F (xi) = F (M−1MRingdownx̆
i) for some function F .

After interpolating all variables onto the post-merger grid, we continue the evolution. This

entire process — from detecting a common apparent horizon to continuing the evolution on

the new domain — is done automatically.
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I Initialization

All that remains for a full specification of MRingdown is to describe how parameters of the

two discontinuous maps MShapeRD and MTranslationRD are initialized at t = tm. To do this,

we first construct a temporary distorted frame with coordinates x̀i, defined by

x̄i =MTranslation ◦MRotation ◦MScalingRDx̀
i. (2.6.5)

The coordinates x̀i are the same as the post-merger distorted coordinates except that the

pre-merger translation mapMTranslation is used in Eq. (2.6.5). We then represent the common

apparent horizon (which is already known in x̄i coordinates) in x̀i coordinates:

x̀iAH(θ̀C , φ̀C , t) = x̀iAH0(t) + ǹi
∑
`m

S̀C`m(t)Y`m(θ̀C , φ̀C). (2.6.6)

The expansion coefficients S̀C`m(t) and the horizon expansion center x̀iAH0(t) are computed

using the (inertial frame) common horizon surface plus the (time-dependent) map defined

in Eq. (2.6.5). Here (θ̀C , φ̀C) are polar coordinates centered about x̀iAH0, and ǹi is a unit

vector corresponding to the direction (θ̀C , φ̀C). Equation (2.6.6) is the same expansion as

Eq. (2.4.8), except here we write the expansion to explicitly include the center x̀iAH0(t). In

Eq. (2.6.6) we write S̀C`m(t) and x̀iAH0(t) as functions of time because we compute them at

several discrete times surrounding the matching time tm. By finite-differencing in time, we

then compute first and second time derivatives of S̀C`m and x̀iAH0 at t = tm.

Once we have S̀C`m and its time derivatives, we initialize λC`m(tm) = −S̀C`m(tm), where

λC`m(t) are the map parameters appearing in Eq. (2.4.44), and the minus sign accounts for

the sign difference between the definitions of Eqs. (2.4.44) and (2.6.6). We do this for all

(`,m) except for ` = m = 0: we set λC00(tm) = 0, thus defining the radius of the common

apparent horizon in the post-merger grid frame. For all (`,m) including ` = m = 0 we set

dλC`m/dt | t=tm = −dS̀C`m/dt | t=tm , and similarly for the second derivatives.

Note that the temporary distorted coordinates x̀i are incompatible with the assumptions of

our control system, because the center of the excision boundary x̀iAH0(t) in these coordinates
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is time-dependent. We therefore define new post-merger distorted coordinates x̂i by

x̄i =MTranslationRD ◦MRotation ◦MScalingRDx̂
i, (2.6.7)

where

x̂i = x̀i − x̀iAH0(t). (2.6.8)

If we denote the map parameters in MTranslation by T i0, the map parameters in MTranslationRD

by T i, and if we denoteMRotation ◦MScalingRD by the matrix M i
j , then Eqs. (2.6.7) and (2.6.8)

require

T i(t) = T i0(t) +M i
j(t)x̀

j
AH0(t). (2.6.9)

Here we have assumed that f(R) appearing in Eq. (2.4.27) is unity in the vicinity of the

horizon, so we can treat the translation map as a rigid translation near the horizon. We

initialize T i and its first two time derivatives at t = tm according to Eq. (2.6.9). Note that

the distorted-frame horizon expansion coefficients S̀C`m and hence the initialization of λC`m(t)

are unchanged by the change in translation map because x̂i and x̀i differ only by an overall

translation, Eq. (2.6.8), which leaves angles invariant.

2.7 Control systems for efficiency

Although the most important use of control systems in SpEC is to adjust parameters of

the mapping between the inertial and grid coordinates, another situation for which control

systems are helpful is the approximation of functions that vary slowly in time, are needed

frequently during the simulation, but are expensive to compute.

For example, the average radius of the apparent horizon, rAH, is used in the control system

for λ̇00, which is evaluated at every time step. Evaluation at each time step is necessary to

allow the control system for λ̇00 to respond rapidly to sudden changes in the characteristic

speed or the size of the excision boundary, as may occur after regridding, after mesh refinement

changes, or when other control systems (such as size control) are temporarily out of lock.
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However, computing the apparent horizon (and thus its average radius rAH) at every time

step is prohibitively expensive. To significantly reduce the expense, we define a function with

piecewise-constant second derivative, rappx
AH (t), we define a control error

Q = rAH − rappx
AH , (2.7.1)

and we define a control system that drives Q to zero. We then pass rappx
AH (t) instead of rAH

to those functions that require the average apparent horizon radius at each time step. The

control error Q, and thus the expensive computation of the apparent horizon, needs to be

evaluated only infrequently, i.e., on the timescale on which the average horizon radius is

changing, which may be tens or hundreds of time steps.

2.8 Summary

In simulations of binary black holes, we use a set of time-dependent coordinate mappings

to connect the asymptotically inertial frame (in which the black holes inspiral about one

another, merge, and finally ringdown) to the grid frame in which the excision surfaces are

stationary and spherical. The maps are described by parameters that are adjusted by a

control system to follow the motion of the black holes, to keep the excision surface just inside

the apparent horizons of the holes, and also to prevent grid compression. We take care to

decouple the control systems and choose stable control timescales.

The scaling, rotation, and translation maps are used to track the overall motion of the

black holes in the inertial frame. These are the most important maps during the inspiral phase

of the evolution, as the shapes of the horizons remain fairly constant after the relaxation of

the initial data. As the binary approaches merger, the horizon shapes begin to distort, and

shape and size control start to become important. Shape and size control are especially crucial

for unequal-mass binaries and for black holes with near-extremal spins. In the latter case, the

excision surface (which must remain an outflow boundary with respect to the characteristics
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of the evolution system) needs to be quite close to the horizon.

In order to decouple the shape maps of the individual black holes, our grid is split by a

cutting plane at which the shape maps reduce to the identity map. As the black holes merge,

a skew map is introduced in order to align the cutting plane with the excision surfaces (see

Fig. 5) and to minimize grid compression between the two black holes.

Finally, the implementation of CutX control was necessary to complete the merger of high

mass-ratio configurations. In these systems, the excision boundaries approach the cutting

plane asymmetrically as the black holes merge, thus compressing the grid between the cutting

plane and the nearest excision boundary. CutX control translates the cutting plane to keep

it centered between the two excision boundaries, alleviating this grid compression.

We find that we need all of the maps described in this paper with a sufficiently tight

control system in order to robustly simulate a wide range of the parameter space of binary

black hole systems [4, 24, 5]. Many of these maps and control systems are also used in our

simulations of black hole – neutron star binaries [26, 27, 28].

A1 Implementation of exponentially-weighted averaging

Our exponentially-weighted averaging scheme uses an averaging timescale τavg to smooth

noisy quantities F that are measured at intervals τm := tk − tk−1, where F is the measured

value of the control error Q, its integral, or its derivatives. Recall from Sec. 2.3.III that we

typically choose τavg ∼ 0.25τd and τm ∼ 0.075 min(τd).

The averaging is implemented by solving the following system of ordinary differential
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equations (ODEs):

d

dt
W = 1− W

τavg

, (A1.1)

d

dt
(Wτ) = t− Wτ

τavg

, (A1.2)

d

dt
(WFavg) = F − WFavg

τavg

, (A1.3)

where the evolved variables are a weight factor W , the average value Favg, and the effective

time τ at which Favg is calculated. The ODEs are solved approximately using backward Euler

differencing, which results in the recursive equations

Wk =
1

D
(τm +Wk−1) , (A1.4)

τk =
1

DWk

(τmtk +Wk−1τk−1) , (A1.5)

F k
avg =

1

DWk

[
τmF (tk) +Wk−1F

k−1
avg

]
, (A1.6)

where D = 1 + τm/τavg. The recursion is initialized with W0 = 0, τ0 = t0, and F 0
avg = F (t0).

In the control law equations, Eqs. (2.3.5) and (2.3.6), we want to use the averaged value

at tk instead of τk. Therefore, to adjust for the offset induced by averaging, δtk = tk − τk, we

evaluate at tk an approximate Taylor series for F k
avg expanded about τk

Favg(tk) =
N−n∑
m=0

δtm

m!

(
dmF

dtm

)k
avg

, (A1.7)

where n is defined by F := dnQ/dtn (for convenience, F represents the integral of Q when

n = −1), and N is the same as in Eq. (2.3.1), where it is defined as the number of derivatives

used to represent the map parameter. Note that this approximation matches the true Taylor

series inasmuch as W is constant.

For the highest order derivative of Q, where n = N , we can no longer directly adjust for

the offset because Eq. (A1.7) reduces to

Favg(tk) = F k
avg. (A1.8)
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We would need to take additional derivatives of Q to provide a meaningful correction, but

this is exactly what we want to avoid because of the noisiness of derivatives. Therefore, to

circumvent taking higher order derivatives, we substitute Favg(tk) into the control law, e.g.

Eq. (2.3.11) for PID, and then solve for dNQ/dtN .

A2 Details on computing the CutX map weight function

As discussed in Sec. 2.4.VI, we use the map MCutX to control the location of the cutting

plane in the last phase of the merger, as the distance between the excision boundaries and the

cutting plane becomes small. The value of the weight function ρ(xi) in Eq. (2.4.50) is zero in

the spherical shells describing the wave zone and in the shells around the excision boundaries

(see Fig. 10). The weight function is unity on the cutting plane, and on the “cut-sphere”

surfaces around either excision boundary. For the smaller excision surface, we have two such

cut-sphere surfaces, and the value of the weight function is one within the region enclosed by

these two cut-spheres and the cutting plane. The weight function transitions linearly from

zero to one (from the magenta curves to the red curves in Fig. 10). In these transitional

regions the value of ρ(xi) is computed as described below.

Consider the region spanning the volume between the spherical shells around the excision

boundary H (with H = A,B) and the cutting plane x = x0
C , as shown in Fig. 11. (This is

referred to in the code as the M region.) In order to calculate the value of ρ(xi) in this

region, we shoot a ray from Ci
H in the direction of xi. This ray intersects both the outer

spherical boundary of the shells and the cutting plane. The x-coordinate of the intersection

with the shells will be

xM = C0
H +

(x0 − C0
H)RH∑

i (x
i − Ci

H)
2 , (A2.1)

where RH is the outer radius of the spherical region around Ci
H . Then, for a point xi in the
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Figure 10: Schematic diagram indicating the way the MCutX weight function is defined.
The value of the weight function ρ(xi) is one on the red curves and in the black
region enclosed by red curves, it vanishes in the white regions (inside the two
inner magenta curves and outside the outer magenta curve) and it changes
linearly from zero to one in the gray regions between the red and magenta
curves.

xM

x RH

CH
i

i

M E

Figure 11: Schematic diagram illustrating the algorithm used to compute theMCutX weight
function inside the cut-sphere. The point xi represents an arbitrary point in the
M region. RH is the radius of the magenta sphere, and xM is the x0-component
of the point on the magenta sphere that intersects the ray pointing from Ci

H

toward xi. The weight function ρ(xi) is zero at the intersection of the ray with
the magenta curve, it is unity at the intersection of the ray with the cutting
plane, and changes linearly in between. Similarly, for a point in the E region,
between the magenta sphere and the spherical part of the red cut-sphere, ρ(xi)
changes linearly from zero (at the intersection of the ray with the inner, magenta
sphere) to unity (at the intersection with the outer, red cut-sphere.)

M region ρ is given by

ρ(xi) =
x0 − xM
x0
C − xM

. (A2.2)
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All other transitional regions are delimited on both ends by spheres. Our computational

domain has two zones of this type; one is depicted in Fig. 11 (labeled as the E region), while

the other is seen in Fig. 12. Let xiP denote the “center of projection,” i.e., the point toward

which the unmapped radial grid lines of the given zone converge, and let xiS denote the center

of a sphere of radius R (noting that the inner and outer spheres may have different centers).

In Fig. 11 the center of projection coincides with Ci
H . In Fig. 12 we choose the center of

projection to be on the cutting plane, at its intersection with the line segment connecting the

centers of the two excision surfaces, xiC . To compute ρ(xi) in this type of region, we shoot a

xSxP

R

ii

xi

Figure 12: Schematic diagram illustrating the algorithm used to compute theMCutX weight
function in the region between the red cut-sphere and the outer, magenta sphere.

ray from xiP in the direction of xi. This ray intersects the two spheres that delimit the region.

We define r0 to be the distance between xiP and the point of intersection with the (magenta)

sphere, for which ρ = 0; similarly, we define r1 to be the distance between xiP and the point

of intersection with the (red) sphere, for which ρ = 1. Then, ρ(xi) is given by

ρ(xi) =
r − r0

r1 − r0

, (A2.3)

where r = |xi − xiP |. To compute r0 and r1, we must solve

∑
i

[
xiP + η(X i − xiP )− xiS

]2
= R2 (A2.4)

for the associated intersection point X i. The parameter η(xiP , x
i
S, X

i, R) is defined as the
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positive solution of the quadratic system,

η = B +
√
B2 − C, (A2.5)

where

B =

∑
i(X

i − xiP )(xiS − xiP )∑
i(X

i − xiP )2
, (A2.6)

C =

∑
i(x

i
S − xiP )2 −R2∑
i(X

i − xiP )2
. (A2.7)

The input coordinates to MCutX are the coordinates x̃i that are obtained from the grid

coordinates xi by the shape map, x̃i = MShape(x
i). As seen above, computation of the

weight function at any point requires knowledge of the region containing that point, which in

turn requires knowledge of its grid-frame coordinates xi. Therefore, to compute the weight

function one must first compute xi =M−1
Shape(x̃

i). When computing the forward CutX map,

this inverse is done only once. However, the situation is more complicated when computing

the inverse CutX map, because the grid-frame coordinates depend upon the inverse CutX

map itself, which depends on the weight function. This leads to an iterative algorithm where

we must call the inverse map function of MShape from each iteration of the inverse map

function of MCutX. This could easily become an efficiency bottleneck. We mitigate this by

keeping MCutX inactive for most of the run, only activating it when it becomes crucial in

order to avoid a singular map.

A3 Estimation of zero-crossing times

Several of the control systems described here are designed to ensure that some measured

quantity remains positive. For example, in Sec. 2.5.III, we demand that both the characteristic

speed v at the excision boundary and the difference ∆r between the horizon radius and the

excision boundary radius remain positive. Similarly, in Sec. 2.4.VI we demand that each

excision boundary does not cross the cutting plane.
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Part of the algorithm for ensuring that some quantity q remains positive is estimating

whether q is in danger of becoming negative in the near future, and if so, estimating the

timescale τ on which this will occur. In this Appendix we describe a method of obtaining

this estimate.

We assume the quantity q is measured at a set of (not necessarily equally-spaced) measure-

ment times, and we remember the values of q at several (typically 4) previous measurement

times. At each measurement time t0 we fit these remembered values to a line q(t) = a+b(t−t0).

The fit gives us not only the slope b and the intercept a, but also error bars for these two

quantities δa and δb. Assuming that the true q(t) lies within the error bars, the earli-

est time at which q will cross zero is t = t0 + (−a + δa)/(b − δb), and the latest time is

t = t0 + (−a− δa)/(b+ δb). If both of these times are finite and in the future, then we regard

q as being in danger of crossing zero, and we estimate the timescale on which this will happen

as τ = −a/b.
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Chapter 3

Final spin and radiated energy in

numerical simulations of binary

black holes with equal masses and

equal, aligned or anti-aligned spins
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The behavior of merging black holes (including the emitted gravitational waves and the

properties of the remnant) can currently be computed only by numerical simulations. This

paper introduces ten numerical relativity simulations of binary black holes with equal masses

and equal spins aligned or anti-aligned with the orbital angular momentum. The initial spin

magnitudes have |χi| . 0.95 and are more concentrated in the aligned direction because of

the greater astrophysical interest of this case. We combine these data with five previously

reported simulations of the same configuration, but with different spin magnitudes, including

the highest spin simulated to date, χi ≈ 0.97. This data set is sufficiently accurate to enable

us to offer improved analytic fitting formulae for the final spin and for the energy radiated by
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gravitational waves as a function of initial spin. The improved fitting formulae can help to

improve our understanding of the properties of binary black hole merger remnants and can

be used to enhance future approximate waveforms for gravitational wave searches, such as

Effective-One-Body waveforms.

3.1 Introduction

Binary black holes are an important source for gravitational-wave detectors such as the Laser

Interferometer Gravitational-Wave Observatory (LIGO), GEO, and Virgo [1, 2, 3]. Searches

for gravitational-wave signals have been able to constrain the event rate for binary black

hole mergers, but a direct detection of gravitational waves has not yet been made [4, 5].

These searches require predictions (“templates”) of the expected gravitational waves; so

far, only non-spinning templates have been included [5]. However, there is evidence that

spin is relevant in astrophysical black holes, from both theoretical predictions [6, 7, 8] and

observational data [9, 10, 11].

Therefore, LIGO and other gravitational-wave detectors need to include spin as a parameter

in their template waveforms; otherwise, the search space (and thus the detection rate) is

reduced because of an insensitivity to spinning sources [12, 13]. Accurate simulations of

spinning binary black hole mergers are also needed to infer the properties (e.g. masses and

spins) of binaries from the detected waveforms (“parameter estimation”) [14].

For both detection and parameter estimation, numerical simulations are too computation-

ally expensive to generate waveforms for the entire parameter space of binary black hole

mergers. Instead, numerical simulations are used to calibrate and validate the approximate,

analytic models that are actually used to generate template waveforms. For instance, the

Effective-One-Body (EOB) model, calibrated using numerical simulations that include merg-

ing black holes with spins aligned or anti-aligned with the orbital angular momentum [15],
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is used by the LIGO collaboration to estimate how sensitive their search is to waveforms

from spinning systems [5]. However, Ref. [15] has shown that the EOB model poorly predicts

configurations with large aligned spins, and that more numerical relativity simulations are

needed in this region of spin parameter space to improve the calibration of the model.

Binary black holes whose spins are aligned (or anti-aligned) with the orbital angular

momentum involve far fewer parameters than generic binaries with arbitrary spin directions,

but nevertheless they can be used to construct templates capable of detecting a sizeable

fraction of precessing binaries [12]. Furthermore, aligned-spin systems are astrophysically

motivated by studies including observations of the micro-quasar XTE J1550-564 [16], models

of gas-rich galaxy mergers [17], and population synthesis models [18].

In this paper, we introduce ten new simulations of binary black holes with equal masses

and equal spins aligned or anti-aligned with the orbital angular momentum. We use the

notation S±±|χ| to refer to specific cases, where the subscript is approximately the dimensionless

spin magnitude at t = 0, and the superscripts indicate whether each black hole has the

aligned (+) or anti-aligned (−) spin orientation. The new simulations are S++
0.95, S++

0.9 , S++
0.85,

S++
0.8 , S++

0.6 , S++
0.2 , S−−0.2 , S−−0.6 , S−−0.8 , and S−−0.9 .

To more fully cover the aligned-spin space, we include data previously reported for S++
0.97 [19],

S−−0.95 [20], S−−0.0 [21], S−−0.44 [22], and S++
0.44 [23] in our analysis. The S++

0.95 case joins the two

simulations from Refs. [20, 19] as the only simulations to date of merging black holes with

spin magnitudes above χ ≈ 0.93 (the “Bowen-York limit”) [24, 25, 26]. We use this combined

dataset to improve on prior phenomenological fitting formulae for the final spin of the merger

remnant [27, 28, 29] and the radiated energy from inspiral through ringdown [29, 30, 31].

These improved formulae can be used to reduce EOB waveform phase errors in the ringdown

(see Eq. (19) and surrounding text in Ref. [15]) and therefore provide more accurate templates

for gravitational-wave searches [31].

The remainder of this paper is organized as follows. In Sec. 3.2, we discuss the numerical
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methods that we employ in our simulations. In Sec. 3.3, we report on the values and

convergence of the constraint violations, masses, and spins. In Sec. 3.4, we use the horizon

data to improve the phenomenological fitting formulae for final spin and radiated energy as a

function of initial spin. Section 3.5 contains our conclusions, and Appendix A1 details our

method for constructing the fitting formulae.

3.2 Simulation methods

All simulations used in this paper were generated with the Spectral Einstein Code (SpEC) [32].

In this section, we describe the methods for the ten new simulations. For detailed methods of

the previously reported SpEC simulations, see Refs. [19, 20, 21, 22, 23] and references therein.

Throughout this paper, we use units where G = c = 1, and we report lengths and times in

units of M , the total Christodoulou mass in the initial data.

To produce initial data, we solve the extended conformal thin-sandwich equations with

quasi-equilibrium boundary conditions [33, 34, 35, 36, 37, 38]. We adopt free data based on

a weighted superposition of two Kerr-Schild black holes, which enables us to construct initial

data containing black holes with nearly extremal spins [39, 40]. The constraint equations

are solved using a spectral elliptic solver [41], and the free parameters are iterated until the

target masses and spins are achieved to within some tolerance.

We evolve the initial data on a “cut-spheres” domain [42] using spectral adaptive mesh

refinement, which will be detailed in a forthcoming paper. On a timescale of 50M , we

change smoothly from the initial data gauge to damped harmonic gauge [43, 44, 45], which

helps prevent coordinate singularities. We use a fifth-order Dormand-Prince dense adaptive

timestepper.

To reduce eccentricity, we first evolve each system for 2.5 orbits beyond the time when

the spurious “junk” radiation is sufficiently far from the black holes so as to have a negligible
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effect on the black hole trajectories. Then we fit the time derivative of the orbital frequency

Ω̇ to find improved initial angular and radial velocities (Ω0 and ḋ0/d0) [46]. We iterate this

procedure until an eccentricity below 10−3 is achieved.

We use the dual-frames technique to do spectral excision of the singularities [47]. As

described in other papers reporting high spin simulations using SpEC [19, 20], the most

important aspect of this excision technique is careful control of the excision boundary. This

must accomplish three tasks. First, it must distort the shape of the boundary so that it

matches the shape of the apparent horizon. Second, it must regulate the fractional separation

between the excision surface and the apparent horizon — if the separation is too small, then

the horizon falls out of the computational domain, but if the separation is too large, then

the excision surface falls far inside the horizon, where large gradients are computationally

expensive to resolve. Third, it must keep all characteristic speeds on the excision surface

positive; i.e., the excision surface must be a pure outflow boundary. This is because we do not

impose boundary conditions on the excision surface. Instead, we monitor the characteristic

speeds; if they ever become negative, then our evolution system becomes ill-posed, and we

terminate the simulation. These three tasks are challenging for high spin systems in part

because of the additional distortion of the horizons (see Fig. 13), and they are especially

challenging for large aligned spins because such systems spend more time in the dynamic

regime before merger.

Using the fast-flow method described in Ref. [48], we find the apparent horizons as an

expansion in spherical harmonics, truncated at a given maximum order `. As the system

evolves, we adaptively change ` to satisfy accuracy criteria for the resolution of the horizon.

After a common horizon is found during merger, the evolution continues on a new domain

with a single excision surface that subsumes the two individual excision regions [45].

We measure the quasi-local spin, S, on each horizon using the approximate Killing vector
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Figure 13: Effect of spin on horizon geometry. This image shows the intrinsic Ricci scalar
on the apparent horizons in simulation S++

0.85. The proper separation of the
horizons along the line connecting their centers is about 1.7M . Both spin effects
(gradients as a function of polar angle) and tidal bulges (dark red regions near
the intersection with the line connecting the horizon centers) can be seen.

method described in Ref. [39]. The dimensionless spin is then

χ =
S

M2
Ch

, (3.2.1)

where MCh is the Christodoulou mass,

M2
Ch = M2

irr +
S2

4M2
irr

, (3.2.2)

and Mirr is the irreducible mass, which is a function of the horizon area,

Mirr =

√
AAH

16π
. (3.2.3)

With these definitions, χ = 1 represents an extremal black hole [49].

We choose an integer k to characterize the resolution of each simulation. We call k the

resolution level (or “Lev”). It sets the resolution by defining the target maximum truncation

error for the adaptive mesh refinement and adaptive horizon finding as

εmax = 10−4e−k. (3.2.4)

Around the excision boundary, where the most resolution is required, we reduce the maximum

truncation error for adaptive mesh refinement by a factor of 10−2.
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χ0 Mḋ0/d0 × 104 MΩ0 Norbits

0.95 7.26420673 0.01395360 25.4
0.9 5.48222492 0.01419573 24.9
0.85 4.33347923 0.01437107 24.7
0.8 3.54332917 0.01450430 24.2
0.6 1.65215665 0.01487274 22.8
0.2 0.09507527 0.01525060 19.9
-0.2 -0.69081937 0.01538827 17.2
-0.6 -1.95883097 0.01527384 14.6
-0.8 -3.60252091 0.01501397 13.3
-0.9 -5.42657163 0.01474328 12.8

Table 1: Initial data parameters (radial velocity ḋ0 and angular velocity Ω0) at separation
d0 = 15.366M for the ten new simulations with target spin, χ0. Also included
is the approximate number of orbits until merger. Here M is the sum of the
Christodoulou masses at time t = 0.

3.3 Simulations

There are ten new simulations presented in this paper: S++
0.95, S

++
0.9 , S++

0.85, S
++
0.8 , S++

0.6 , S++
0.2 ,

S−−0.2 , S−−0.6 , S−−0.8 , and S−−0.9 . Initial data were generated with a target Christodoulou mass for

each hole M0 = 0.5, target spin for each hole χ0, and target ADM linear momentum pi0 = 0.

We fix the initial separation at d0 = 15.366M , and then we iterate as summarized in Sec. 3.2

to obtain the initial radial velocity ḋ0/d0 and angular velocity Ω0. The targets are met to

within an absolute error of O(10−8), and the resulting initial data parameters are reported in

Table 1. We construct our initial data with a target total Christodoulou mass of M = 1 so

that our evolution code units are essentially interchangeable with units of M .

At least three different resolutions were evolved for each case to check convergence.

Figure 14 shows convergence of the (normalized) volume-averaged L2-norm of the generalized

harmonic constraint energy [50] for a representative case. Each time the domain structure is

changed to alleviate grid compression, the constraints jump because of interpolation errors,

but then slowly decay back to their baseline levels.

Additional simulations are used in our analysis of masses and spins in Sec. 3.4: S++
0.97 [19],

81



0 1000 2000 3000 4000
Time

10-7

10-6

10-5

10-4

10-3

10-2

||C
||

Lev 2
Lev 3
Lev 4

Figure 14: Normalized constraint violations for S−−0.9 . For each resolution level, k, we plot
||C||, the volume-averaged L2-norm of the generalized harmonic constraint energy
divided by the volume-averaged L2-norm of the dynamical field gradients. This
measure is defined in Eq. (71) of Ref. [50]. As the resolution level increases, the
constraints decrease. Jumps in the constraints are attributed to changes in the
domain structure, and the spike around t ∼ 3500M corresponds to the merger.

S++
0.44 [23], S−−0.0 [21], S−−0.44 [22], and S−−0.95 [20]. Although these have been previously reported,

we include them below for completeness. It should be noted that S++
0.44 and S−−0.44 are older

simulations and therefore used different initial data and evolution machinery than described

in Sec. 3.2. Simulations S−−0.95, S−−0.0 , and S++
0.97 used the initial data methods of Sec. 3.2, but

earlier implementations of the evolution methods.

I Mass and spin

We define the initial spin, χi, to be the spin after the system has relaxed from the initial data

and the junk radiation at the apparent horizon has become negligible. The spin before this

time is not physically relevant to the rest of the evolution. There are subtle issues to consider

when choosing the time to measure χi. If we choose too early a time, then junk radiation

effects will still be present. If we are overly cautious and choose too late a time, then the

system will have emitted enough gravitational radiation to significantly change the spin.
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Figure 15: Plots of the apparent horizon quantities as a function of time for a representative
case, S++

0.9 . The top panels display the dimensionless spin and the bottom panels
display the Christodoulou mass. From left to right, the panels display the
inspiral, merger, and ringdown. We normalize the y-scales separately so that
the differences between each resolution can be clearly seen. The discontinuity in
the middle panel indicates where we begin to measure the mass and spin on the
common horizon. The dots in the early inspiral identify our choice of ti for each
resolution level.
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Case |χi| |χf |
S−−0.95 0.949053(-30) 0.37567(-18)
S−−0.9 0.899569(-11) 0.392748(-12)
S−−0.8 0.7997602(59) 0.4268932(30)
S−−0.6 0.59993163(71) 0.4942327(-31)
S−−0.44 0.437568970(-10) 0.547851(20)
S−−0.2 0.1999802(-40) 0.6242202(-61)
S−−0.0 64(-29)×10−8 0.686445(-52)
S++

0.2 0.200035(-19) 0.7464314(-96)
S++

0.44 0.4365505(95) 0.8140(10)
S++

0.6 0.5999635(14) 0.857808(15)
S++

0.8 0.7998737(-44) 0.907526(14)
S++

0.85 0.849826(15) 0.919088(30)
S++

0.9 0.8997371(-15) 0.930212(23)
S++

0.95 0.9495863(-25) 0.940852(29)
S++

0.97 0.969504(13) 0.944964(11)

Table 2: Dimensionless spins measurements. For each case, we provide the initial spin
magnitude of each hole and the final spin magnitude of the remnant at the highest
resolution. Adding the number in parentheses to the last two significant digits
gives the value at the next highest resolution.

We use a histogram method to determine χi. Let {χI} be the set of spin measurements

during the inspiral. The range of {χI} is split uniformly into N bins, where N is the size of

{χI}, and then each element of {χI} is put into the appropriate bin.1 We choose χi = χ(ti),

where ti is the latest time when the spin is in the bin containing the most measurements.

In the initial relaxation, the spin is oscillating, and during the inspiral, the spin changes

more rapidly as the holes approach each other. Under these conditions, this method selects

the spin just after the junk radiation, when the spin is nearly constant for a long interval.

Figure 15 shows the evolution of the mass and spin as a function of time for a representative

case, and identifies our choice of ti by the dots in the early inspiral.

We compute ti from χ because the behavior of the mass is not as simple during the inspiral.

The histogram method applied to mass will pick out the local maximum late in the inspiral

that is present in most of our cases (see Fig. 15). We define the initial mass to be Mi = M(ti),

1 If the time interval between spin measurements is not equally spaced, we weight each
measurement by the average of the two adjacent time intervals.
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Case Mi Mf Erad(%)
S−−0.95 0.999856(68) 0.968134(33) 3.1727(33)
S−−0.9 1.00016197(73) 0.967909(-27) 3.2248(28)
S−−0.8 1.0000859(-11) 0.9665941(-16) 3.348894(50)
S−−0.6 1.00002292(-78) 0.963769(-14) 3.6253(13)
S−−0.44 2.2470608(-22) 2.159561(-49) 3.8940(21)
S−−0.2 0.999956(26) 0.9564388(84) 4.3519(17)
S−−0.0 0.9999971(-43) 0.9516182(-74) 4.83791(33)
S++

0.2 0.999961(22) 0.945471(16) 5.44923(46)
S++

0.44 2.2451548(28) 2.10099(-44) 6.421(20)
S++

0.6 1.00001907(-96) 0.926868(-19) 7.3149(18)
S++

0.8 1.0000765(-22) 0.911275(-28) 8.8794(26)
S++

0.85 1.000108(-12) 0.906168(-73) 9.3931(62)
S++

0.9 1.0001513(-29) 0.900366(-48) 9.9770(46)
S++

0.95 1.00021743(77) 0.893703(-65) 10.6492(66)
S++

0.97 1.0002384(-94) 0.890691(-22) 10.9521(14)

Table 3: Christodoulou mass measurements. For each case, we provide the total initial mass
of the black holes, the final mass of the remnant, and the radiated energy computed
from Eq. (3.3.1) at the highest resolution. Adding the number in parentheses to
the last two significant digits gives the value at the next highest resolution.

the sum of the Christodoulou masses at time ti.

The final spin and Christodoulou mass, χf and Mf , are measured at the last observation

time, when the merger remnant is in quasi-equilibrium and approximates a Kerr black hole.

We report the initial and final spins in Table 2, and the initial and final Christodoulou masses

in Table 3.

From the initial and final Christodoulou masses, we can infer the fraction of the black

hole energy that is radiated in gravitational waves during the evolution:

Erad = 1− Mf

Mi

. (3.3.1)

We expect mass and spin measurements at higher resolutions to be more accurate. For

this reason, we weight the uncertainty of a particular measurement by a function of resolution

level k in our analysis in Sec. 3.4. However, as illustrated by the comparisons in Fig. 16,

these quantities are not strictly convergent in a number of cases. As described in Sec. 3.2, the
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Figure 16: Differences in the final masses and spins between resolution levels. For each case,
we compare χf and Mf of the highest resolution to the two lower resolutions.
Note that, except for the older S±±0.44 simulations, all differences are . 10−4.
Differences in the initial masses and spins behave similarly.

most stringent resolution requirements occur in the vicinity of the apparent horizons, but the

accuracy may be dominated by short, under-resolved segments of the evolution. The initial

masses and spins appear to be randomly perturbed by the junk radiation as the initial data

relaxes, and the final masses and spins appear to be affected by the details of the coalescence,

where we see a spike in constraint violations (Fig. 14). Apart from these under-resolved

segments, we do see convergence in the time derivatives of the masses and spins, but the

absolute values remain offset from one another.

We have investigated other potential sources of uncertainty, but found them to lie below

the resolution level uncertainty. For example, one source of uncertainty in the masses and

spins is the resolution of the surface of the horizon. In Fig. 17, we show a representative plot

of error in final spin as a function of ` of the horizon finder. Let ∆χk be the resolution level

error between the two highest resolutions, and let ∆χ` be the resolution error between the `
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Figure 17: Convergence of the final spin for S−−0.9 as a function of the ` of the horizon
finder. We plot the difference between χf (`) and χf (` = 20) for each resolution.
The adaptive horizon finder for this case chose ` = 8 at the final time of the
simulation.

chosen by the adaptive horizon finder and the ` for which the horizon is fully resolved. At

the final time of the simulation, we find that, in all cases, ∆χk > ∆χ` by several orders of

magnitude.

A source of uncertainty in the radiated energy is the energy that would have been radiated

by the binary as it proceeds from infinite separation to the separation d0 at which we start the

simulation. As discussed in Ref. [19], Alvi’s formula [51] estimates that the energy radiated

from d = ∞ to d = d0 is one part in 106. Since this is smaller than our resolution level

uncertainty, it is safe to ignore this difference and we can think of Erad as the total radiated

energy from infinite separation through ringdown.
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3.4 Results

Much effort has been put into constructing phenomenological formulae for the final spin [52,

27, 28, 29] and radiated energy [52, 29, 30, 31] as a function of initial spin. Because the SpEC

code has the capability to generate and evolve initial data of black holes with spins above

the “Bowen-York limit” of χ ≈ 0.93 [26], we are able to provide new data points to test and

improve these formulae.

We use a Bayesian nonlinear measurement error model (described in Appendix A1) to fit

and compare new parametric formulae. This approach (1) accounts for uncertainties in both

the initial spin data and the output data (i.e., final spin or radiated energy); (2) accounts

for the expected improvement in accuracy of results as the resolution level increases; and

(3) includes a simple systematic error component quantifying misfit between a chosen formula

and the curve the data are converging toward.2 The framework lets us predict an output

as a function of initial spin, with prediction uncertainties that account for the uncertainties

in the parameters of the chosen formula (including correlated uncertainties) and the typical

scale of the systematic error.

The new fitting formulae that we provide here are only applicable to equal mass binary

black hole configurations with equal spins aligned or anti-aligned with the orbital angular

momentum. More general formulae exist (see e.g. Refs. [53, 54, 28, 29]), but they are less

accurate at high spins because of the scarcity of simulations with both unequal masses and

high spins in random orientations.

2 To keep the calculations analytically tractable, the systematic error component accounts
only for the typical magnitude of misfit (essentially, the root-mean-square of the residuals),
and does not account for correlations or patterns in the residuals.
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I Final spin

Using the data from Table 2, we construct a new fitting formula for the final spin as a function

of initial spin. We fit to a fourth-order polynomial,

χ̃f = a0 + a1χi + a2χ
2
i + a3χ

3
i + a4χ

4
i . (3.4.1)

The best fit to our data has the parameters an and associated covariance Σa:

a =



a0

a1

a2

a3

a4


=



0.686402(60)

0.30660(14)

−0.02684(33)

−0.00980(19)

−0.00499(35)


(3.4.2)

Σa =



3.6 0.31 −14 −0.45 11

0.31 21 −4.8 −26 6.0

−14 −4.8 110 7.1 −110

−0.45 −26 7.1 36 −9.5

11 6.0 −110 −9.5 120


× 10−9 (3.4.3)

The uncertainty in an, given in parentheses in Eq. (3.4.2), is estimated by
√

Σnn
a . However,

the parameter estimates are highly correlated; therefore, the full covariance matrix is used

in the computation of the fit uncertainty σf in Eq. (A1.12). In Fig. 18, we show the fit and

residuals using Eq. (3.4.1) with the parameters from Eq. (3.4.2).

We fit to a fourth-order polynomial because the high accuracy of our dataset enables us

to identify significant third- and fourth-order trends in the residuals of a fit to a second-order

polynomial, which is the fitting function used in Refs. [27, 28, 29]. The difference between

the logarithm of the marginalized likelihood function (LML) for the best-fit fourth-order

and second-order polynomials is ∼40, indicating that the fourth-order polynomial provides a

significantly better fit. If the two additional degrees of freedom were fitting noise, rather than
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Figure 18: In the top panel, we plot our preferred fitting formula (solid line), the fourth-order
polynomial in Eq. (3.4.1), and a comparison with a second-order polynomial
(dashed line) for χf as a function of χi. Our data points are plotted as polygons,
where more sides indicates higher resolution level. In the bottom panel, we
plot the residuals of the fourth-order polynomial. We indicate our fit param-
eter (dotted line) and total prediction (dashed line) uncertainties (defined in
Appendix A1), which in this case are nearly identical. Note that the residuals
for the two lower resolution runs for S++

0.44 are too large to fit in this panel.
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some underlying structure in the data, then we would only expect a change in maximum

LML of O(1).3

The estimated systematic error magnitude σ̂∆ (defined in Appendix A1) for the fourth-

order polynomial formula is negligibly small, suggesting that the significant behavior is

captured as well as could be expected. However, the residuals, especially at large aligned

spins, display trends suggesting that there is additional structure not captured by the fourth-

order polynomial (such trends are ignored by our simple systematic error model). This

encouraged us to explore a fifth-order polynomial formula, but it did not reduce the residuals

enough to justify the additional degree of freedom. This does not rule out the possibility

that a different formula could capture the behavior even more accurately.

We compare our data to existing fitting formulae for final spin in Fig. 19. The χf data

corroborate the existing fitting formulae, but indicate deviations at large spins (especially in

the aligned direction). This is an expected consequence of the scarcity of high spin numerical

relativity data heretofore. In the figure, we provide a quantity for each fit, r, that measures

how much larger its systematic error is than that of our fourth-order polynomial. This is

essentially a ratio of the root-mean-square residuals (more precisely, r is the ratio of the σ̂∆

values). The previously reported formulae have roughly 100 to 250 times as much systematic

error as our fourth-order polynomial fit. While the formula in Tichy 2008 [29] performs best,

we note that it has a large uncertainty.

II Radiated energy

Following the procedure in Sec 3.4.I, we use the data from Table 3 to construct a new fitting

formula for the radiated energy fraction, Erad, as a function of initial spin. We fit to a

3 The leading-order term in the maximum LML is proportional to a chi-squared-like
quantity, so for nested models, such as the second- and fourth-order polynomials, the change
in the maximum LML should roughly mimic the asymptotic statistics of likelihood ratio tests,
as given by Wilks’s theorem [55]. Two models are said to be nested if the simpler one is a
special case of the more complicated one.
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Figure 19: Final spin as a function of initial spin. In the left panels we plot our data
(circles) along with the fitting formula (red line) with error estimates (dashed)
from several other studies. The top panel is from Ref. [29], the middle is
from Ref. [27], and the bottom is from Ref. [28]. In the right panels we plot
the difference between our data and the corresponding fitting formula on the
left. The value r quantifies the size of the systematic error compared to the
fourth-order polynomial.
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hyperbolic function,

Ẽrad = b0 +
b1

b2 + χi
. (3.4.4)

The best fit to our data has the parameters bn and associated covariance Σb:

b =


b0

b1

b2

 =


0.00258(29)

−0.07730(79)

−1.6939(59)

 (3.4.5)

Σb =


0.83 2.2 16

2.2 6.2 46

16 46 350

× 10−7 (3.4.6)

The uncertainty in bn, given in parentheses in Eq. (3.4.5), is estimated by
√

Σnn
b . In Fig. 20,

we show the fit and residuals using Eq. (3.4.4) with the parameters from Eq. (3.4.5).

We use a hyperbolic fitting function instead of a second-order polynomial (as in Refs. [29,

30]) or a constrained second-order polynomial, e.g. Ẽrad = c0 +c1χi+(c1/4)χ2
i (as in Ref. [31]).

Parabolic fits show visible offsets in various regions of the initial spin space, which can be seen

in plots of the residuals in [31] and in the comparison plot in the top panel of Fig. 20. The

difference between the maximum LML for the 3-parameter hyperbola and the second-order

polynomial is ∼36, indicating that the hyperbola is a dramatically better fit to the data.

In Fig. 21, we compare our data to existing fitting formulae for Erad. All previous formulae

suffer from the same systematic deficiencies as the best second-order polynomial fit to our

data shown in Fig. 20. The ratio of the systematic error magnitude in these formulae to

its magnitude in our 3-parameter hyperbolic fit, r, is shown in the figure and ranges from

roughly 40 to 130. Note that it is not meaningful to compare these r values to those shown

in Fig. 19, because we have not added any additional degrees of freedom in our Erad model

compared to a second-order polynomial (unlike in our final spin model, which adds two

degrees of freedom).
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Figure 20: In the top panel, we plot our preferred fitting formula (solid line), the hyperbolic
function in Eq. (3.4.4), and a comparison with a second-order polynomial (dashed
line) for Erad as a function of χi. Our data points are plotted as polygons, where
more sides indicates higher resolution level. In the bottom panel, we plot the
residuals of the hyperbolic function. We indicate our fit parameter (dotted line)
and total prediction (dashed line) uncertainties (defined in Appendix A1).
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Figure 21: Erad as a function of initial spin. In the left panels we plot our data (circles) along
with the fitting formula (red line) with error estimates (dashed) from several
other studies. The top panel is from Ref. [29], the middle is from Ref. [30], and
the bottom is from Ref. [31]. In the right panels we plot the difference between
our data and the corresponding fitting formula on the left. The value r quantifies
the size of the systematic error compared to the 3-parameter hyperbola.
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III Extremality

An important aspect of these fitting formulae is their ability to predict remnant properties for

nearly extremal initial spins. How much of the initial mass can be radiated as gravitational

waves, and how fast can the remnant hole spin? Our prediction for the radiated energy and

final spin for an extremal initial spin configuration, χi = 1, is

Ẽrad(1) = 0.11397(18), (3.4.7)

χ̃f (1) = 0.951383(85), (3.4.8)

where the uncertainty (in parentheses) is σtot, the total prediction uncertainty defined in

Eq. (A1.13), evaluated at χi = 1. The highest radiated energy predicted by any of the

formulae we compare against in this paper is Erad(1) = 0.0995(8).

Previous estimates of Erad underestimated the mass loss for large, aligned initial spins.

The most extreme data point in this paper, S++
0.97, was identified as a potential outlier [31]

and Erad was expected to be . 10% for an extremal, aligned configuration inspiraling from

infinity. Additional data presented here, most notably S++
0.95 and S++

0.9 , suggest that S++
0.97 is

not an outlier. Furthermore, these cases indicate that even a χi = 0.9 inspiral is capable of

radiating & 10% of its initial mass.

Simulations with χi > 0.93 are an important factor in our fitting formulae. This high-spin

regime is not accessible with the most popular initial data methods for binary black hole

evolutions, which assume conformal flatness (cf. Ref. [39] and references therein). To assess

the impact of the high spin simulations, we compare our best fits to fits of a subset of the

data, omitting cases S−−0.95, S++
0.95, and S++

0.97. We identify several key results.

For the χf formula, we find that ∆χ̃f(1) & 2.5σsub
tot (χf , 1). That is, the prediction of the

final spin with the full dataset differs from the prediction with the subset by more than 2.5

times the total prediction uncertainty in the fit to the subset. The parameter uncertainty

in the full dataset is smaller by a factor σf/σ
sub
f ≈ 0.6, which is much smaller than would
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be expected from adding 3 data points randomly distributed in initial spin (the expected

improvement based on the root-N rate would be
√

12/15 ≈ 0.9). In a random sampling

context, one would typically have to more than double the size of the dataset to get such a

reduction in parameter uncertainties. Of course, we have not chosen the subset randomly.

Note that because the systematic error magnitude is negligible, σ̂∆ ≈ 0, the total prediction

uncertainty of Eq. (A1.13) has the same behavior as the parameter uncertainty.

For the Erad formula, we find that ∆Ẽrad(1) & 3.5σsub
tot (Erad, 1); the lower spin subset

poorly predicts the extremal Erad. Parameter uncertainties decrease only slightly faster than

the expected root-N rate for adding 3 randomly placed data points, σf/σ
sub
f ≈ 0.85. However,

the total prediction uncertainty at χi = 1 increases, σtot/σ
sub
tot ≈ 1.15, because the additional

high spin data deviates most from the fitting formula that is based on lower spin data. That is,

Erad for χi > 0.93 is unanticipated by the fit to the lower spin subset, causing the systematic

error magnitude σ̂∆ to increase. While this highlights the importance of the high spin data

in assessing the predictive power of the fitting formula for near-extremal initial spins, it also

suggests that we are unlikely to capture the behavior of Erad much better with our simple

fitting formula. Furthermore, both manual and algorithmic searches [56] have not identified

any better formulae, which leads us to believe that for the best predictive results at high

spins, a non-parametric approach may be preferred. Such an approach could be implemented

using, for example, a correlated Gaussian process [57], which would provide a way to predict

final masses and spins without the use of a parametric fitting formula.

The analysis comparing the subset to the full dataset does not change in any appreciable

way if we use a near-extremal spin, e.g. χi = 0.97, instead of the most extreme case, χi = 1.
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3.5 Conclusions

In this paper, we present and analyze a family of numerical relativity simulations performed

using SpEC in order to construct improved fitting formulae for the final spin and radiated

energy as a function of initial spin. We consider a physically motivated, one-dimensional

subset of the binary black hole parameter space, in which the black holes have equal masses

and equal spins aligned or anti-aligned with the orbital angular momentum. The improvement

in these fitting formulae is most dramatic in the regime where the initial spin is above the

“Bowen-York limit,” since for the first time data from simulations above this limit have been

included in the fits.

For the final spin, we improve on the second-order polynomial fitting formula by using a

fourth-order polynomial to capture the statistically significant cubic and quartic features. For

the radiated energy, we find that a 3-parameter hyperbolic fitting formula is greatly preferred

to a second-order polynomial. The qualitatively different behavior at large, aligned spins in

the new fit to Erad implies that there is somewhat more power in gravitational waves from

nearly extremal sources than previously thought, perhaps because of higher-order effects that

become relevant at very high spins.

We have shown that performing more nearly extremal simulations is the most effective way

to reduce the uncertainty in the fitting formula parameters. However, we have also observed

that the systematic uncertainty in Erad may prohibit a simple fitting formula from providing

any further significant improvement to the prediction uncertainty of Erad for high, aligned

spins.

Analytic models, such as the aligned-spin EOB model, are needed to generate templates

for gravitational-wave detectors (e.g. LIGO), because of the prohibitive expense of generating

sufficient numerical relativity data to adequately cover the parameter space. The fitting

formulae we define in this paper can be used to better calibrate these models, and therefore
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improve future template waveforms.

A1 Method for constructing our fitting formulae

Our goal is to find a convenient but reasonably accurate function that predicts the final black

hole spin, χf , or the fractional radiated energy, Erad, as a function of the initial spin, χi.

We will specify one or more simple parametric candidate functions, find the best parameter

values, quantify uncertainties in the parameters and predictions, and compare rival candidate

functions. To treat both the χf and Erad problems in generic notation, we let ξ denote the

predictor (i.e., χi), and η denote the response we seek to predict (i.e., χf or Erad). We have

one or more parametric models for the relationship, η ≈ f(ξ; θ), with parameters θ (we

sometimes suppress the parameter dependence below to simplify notation).

The data for the analysis are from post-processing outputs from deterministic numerical

calculations of the binary black hole merger. A complex computation produces initial data

(ID) targeting a specified value of ξ, but the actual value of ξ that the generated ID corresponds

to necessarily differs from the target value. A processing algorithm estimates the actual

value to be x. Evolution of the ID produces high-dimensional outputs that are processed to

produce the computed response, y, that estimates the result, η, that would be obtained by

solving the PDEs exactly. A set of (x, y) pairs constitutes the basic data we must use to find

f(ξ; θ).

A variety of parameters govern the accuracy of the ID, evolution, and processing algorithms.

These are summarized via a resolution level k (defined in Sec. 3.2) assigned to each (x, y) pair,

with the x and y values likely to be closer to the ξ and η values when k is larger. For every

choice of ID, we have results for multiple values of k, comprising repeated measurements of

(ξ, η) of varying accuracy.
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We have developed a Bayesian nonlinear measurement error model for the analysis.4

Letting the index n label the choice of ID, the model specification is:

xnk = ξn + εnk, (A1.1)

ynk = ηn + δnk (A1.2)

= f(ξn; θ) + ∆n + δnk, (A1.3)

for N ID cases (n = 1 to N), and k ∈ Ln for ID case n, where Ln denotes a set of levels run

for case n (for most cases, Ln = {2, 3, 4}, but for runs targeting χi = ±0.44, Ln = {1, 2, 3}).

Here εnk and δnk denote level error terms reflecting the difference between numerical results

at finite resolution and the actual solution to the differential equations we are studying.

For Eq. (A1.3) we set ηn = f(ξn; θ) + ∆n, where ∆n is a discrepancy term representing the

difference between the true response and the prediction based on the fitting function.

To complete the model we must assign (prior) probability density functions (PDFs), i.e.

priors, to a number of random variables: the level errors, εnk and δnk; the latent predictor

variables, ξn; and the latent discrepancy variables, ∆n.

We assign independent, zero-mean normal distributions to the level error terms, εnk and

δnk, with standard deviations σx/αk and σy/αk (respectively). We assign αk scale factors

to capture the notion that we expect the errors to be smaller (on average) for higher levels.

For the calculations here, we took αk = (1/2)4−k, so the standard deviations for the highest-

resolution k = 4 results are σx and σy, and the error scales double for each decreasing level.

We did not explore this assignment except to verify that this choice has a much higher

likelihood than taking αk = 1, i.e., the data themselves show clear evidence for convergence

as k grows. Although in principle we could let the error scale be different for each ID

case, for simplicity we assign a common error scale across ID cases; the modest amount of

data we have do not indicate a strong variation of error scale with ID. We adopt normal

4 For introductions aimed at physicists, see Refs. [58, 59, 60] for Bayesian inference and
Ref. [61] for multilevel Bayesian modeling. Multilevel measurement error models inspiring
our approach here are covered in Refs. [62, 63].
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distributions, partly for convenience, but also because we are modeling relationships between

scalar quantities calculated from high-dimensional computational outputs with complicated

algorithms. Presuming the final errors result from numerous additive contributions whose

uncertainties have finite variance, the central limit theorem motivates the normal choice.

We assign informative but relatively broad priors for the ξn values, reflecting the ability

to produce ID corresponding to a ξn value close to a desired target value, µn. The priors

are normal with means µn (equal to the target value for ID case n) and common standard

deviation w = 0.002, reflecting the typical change in mass and spin as a result of the initial

relaxation (as seen in Fig. 15). These values do not strongly impact the results.

We also assign independent, zero-mean normal distribution PDFs to the discrepancy

terms, with common standard deviation σ∆. The quantity σ∆ represents the typical scale of

systematic error magnitude in the model. A more flexible and realistic choice would be to

assign a correlated Gaussian process prior over the space of discrepancy functions, ∆(ξn),

and to identify ∆n = ∆(ξn). This would resemble the practice in the literature on Bayesian

emulation of input/output response surfaces, the prevailing approach in the literature on the

statistical analysis of the results of deterministic numerical simulations (see, e.g., [64, 65]).

But the goal of that literature is not to find simple and tractable fitting functions; it instead

builds nonparametric emulators that, while simpler than the simulators being emulated, are

still computationally nontrivial. Moreover, the vast majority of existing work on emulation

addresses cases with precisely known inputs, which is not the case here; uncertainty in the

predictor significantly complicates implementation of Gaussian process regression [66, 67].

The independent normal PDF for ∆n will enable us to invoke a simple approximation leading

to analytical results.

Finally, we adopt flat priors for the fitting function model parameters, θ.

The conditional dependency structure of such a multilevel model can be represented by

a directed acyclic graph (DAG). A graphical model of this type can be readily coded in a
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Figure 22: Directed acyclic graph displaying the conditional dependence structure of the
Bayesian nonlinear measurement error model adopted for the fitting function
analysis. See text for a detailed description.

DAG-oriented statistical modeling language (e.g., WinBUGS or JAGS) to enable Bayesian

computation via Markov chain Monte Carlo (MCMC) posterior sampling. Here the focused

goal (finding a simple fitting function) and the small uncertainties in the level error terms

(well below 1% for nonzero spins) motivated an analytical approach based on linearization

of f(ξ). This lets us avoid the complexity of MCMC, producing a fast algorithm that is

relatively simple to use.

Figure 22 shows the DAG for our model. Circles denote random variables (RVs, uncertain

quantities with assigned or computed PDFs). Shaded circles are the data (x, y), and shaded

squares are fixed constants that help define the model. We marginalize over the error RVs

(εnk, δnk, and ∆n) and the uncertain input variables (ξn), and then we solve for the remaining

non-shaded variables simultaneously. The plates (enclosing boxes) denote parts of the graph

that are replicated as indicated by the quantity in the lower right corner of each plate.

Dashed circles indicate RVs that play the role of hyperparameters, i.e., parameters defining

prior PDFs for lower-level RVs. Formally, we could account for uncertainty in the hyperpa-

rameters by assigning them priors of their own and marginalizing over them (the hierarchical

Bayes approach). As a simpler approximation, we optimized these hyperparameters (the

empirical Bayes approach), using constant prior PDFs for them.
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Directed edges (arrows) in a Bayesian network DAG are used to indicate the dependency

structure. The top-level RVs have no dependencies (incoming arrows); their PDFs would be

specified a priori for a full hierarchical Bayesian analysis. The conditional PDFs of lower-level

RVs depend only on the values of their dependencies. The full joint PDF for all RVs is the

product of the prior and conditional PDFs. Therefore, Fig. 22 indicates that the joint PDF

for the RVs comprising our model may be written

p(θ, σx,σy, σ∆, ξ,∆, ε, δ, x, y) = p(θ)p(σx)p(σy)p(σ∆)

×
N∏
n=1

[
p(ξn|µn, w) p(∆n|σ∆)

×
∏
k∈Ln

p(εnk|σx)p(xnk|ξn, εnk)

× p(δnk|σy)p(ynk|θ, ξn,∆n, δnk)

]
, (A1.4)

where (ξ,∆, ε, δ, x, y) is shorthand notation for the indexed collections of those variables.

Since we are adopting a constant prior PDF for θ, and an empirical Bayes treatment of the

hyperparameters ψ = (σx, σy, σ∆), the quantity of interest is the conditional PDF for the

data, (x, y), and the latent parameters, (ξ,∆, ε, δ), given the fitting function parameters and

the hyperparameters,

p(ξ,∆,ε, δ, x, y|θ, ψ) =
N∏
n=1

[
p(ξn|µn, w) p(∆n|σ∆)

×
∏
k∈Ln

p(εnk|σx)p(xnk|ξn, εnk)

× p(δnk|σy)p(ynk|θ, ξn,∆n, δnk)

]
, (A1.5)

The model Eqs. (A1.1) and (A1.3) imply that the conditional PDFs for xnk and ynk in

these equations are δ-functions. This lets us trivially marginalize over ε and δ, giving a
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marginal PDF for the remaining variables,

p(ξ,∆,x, y|θ, ψ) =
N∏
n=1

[
p(ξn|µn, w) p(∆n|σ∆)

×
∏
k∈Ln

p(εnk = xnk − ξn|σx)

× p(δnk = ynk − f(ξn; θ)−∆n|σy)

]
. (A1.6)

Marginalizing over ξ and ∆ gives the marginal likelihood function (the probability for the

data, conditioned on parameter values) for the fitting parameters and hyperparameters,

LM(θ, ψ) =
N∏
n=1

∫
dξn

∫
d∆n

[
N (ξn|µn, w)N (∆n|σ∆)

×
∏
k∈Ln

N (xnk − ξn|0, σx)N (ynk − f(ξn; θ)−∆n|0, σy)

]
, (A1.7)

where N (z|µ, σ) denotes the normal distribution PDF for z with mean µ and standard

deviation σ,

N (z|µ, σ) =
1

σ
√

2π
e−(z−µ)2/2σ2

. (A1.8)

When f(ξ) is a nonlinear function of ξ, the ξ integral in Eq. (A1.7) is in general intractable.

However, the x and y errors are small, so we expect a local linear approximation of f(ξ) to

be very accurate over regions of ξn that have significant probability density. So we use

f(ξn; θ) ≈ f(ξ̃n; θ) + (ξn − ξ̃n)f ′(ξ̃n; θ) (A1.9)

in Eq. (A1.7), where f ′(ξ; θ) denotes the derivative of the fitting function with respect to ξ,

and ξ̃n is a fixed reference value of ξn based on the xnk values for a particular n (we use a

weighted mean of the xnk). With this linearization, the integrals in the marginal likelihood

function can be performed analytically.

We estimate the parameters for a candidate fitting function by maximizing the marginal

likelihood function over both θ and ψ:

(θ̂, ψ̂) = arg maxLM(θ, ψ). (A1.10)
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For the fitting functions studied here, the θ dependence of the marginal likelihood function

is approximately multivariate Gaussian. To quantify the θ uncertainties, we calculate the

observed Fisher information matrix (with ψ fixed at ψ̂),

Iαβ =
∂2

∂θα∂θβ
LM(θ, ψ)

∣∣∣
θ̂,ψ̂
, (A1.11)

where θα denotes the αth parameter of the fitting function. The posterior PDF for θ

(conditional on ψ̂) is then approximately a multivariate normal PDF with mean θ̂ and

covariance matrix Σ = I−1.

To predict the value of the response at a specified value of ξ, we calculate an approximate

predictive distribution (also conditioned on ψ̂) using the multivariate normal PDF and the

delta method (propagation of errors). The model assumes the response is given by the sum of

the fitting function and a discrepancy term with zero mean. The most probable value of the

response is simply f(ξ; θ̂). There are two components to the uncertainty in the prediction.

One comes from propagating the θ uncertainty (accounting for correlations between the

parameters, which can be large). The resulting standard deviation in the fitting function

evaluated at ξ is σf (ξ), satisfying

σ2
f (ξ) =

∑
αβ

∂f(ξ; θ)

∂θα
Σαβ

∂f(ξ; θ)

∂θα
. (A1.12)

The full uncertainty in the predicted response must also account for the uncertainty in the

discrepancy term, which is given by the hyperparameter σ∆ that we estimate from the data.

The full uncertainty in the prediction is

σtot(ξ) =
√
σ2
f (ξ) + σ̂2

∆. (A1.13)

This calculation ignores the uncertainty in the value of σ∆, but that uncertainty is relatively

small in our calculations.

To compare rival parametric fitting functions, a formal model comparison could be

implemented, e.g., using Bayes factors (which would require assigning normalized priors to θ

105



for each candidate fitting function, and integrating the product of the prior and the marginal

likelihood function over θ), or an information criterion such as the Bayesian information

criterion (BIC) or the Akaike information criterion (AIC). The BIC and AIC rank models

according to their maximum likelihoods, penalized by a term depending on the number of

parameters in each model (and the sample size in the case of the BIC). These criteria were

developed for comparing simple parametric models, not multilevel models with many latent

parameters. We adopt a less formal approach here. We simply calculate the logarithm of

ratios of the maximum marginal likelihood function. For the models we consider, the log-ratio

for the best model vs. the next-best competitor is large (well over 10), far larger than the

typical penalty terms in information criteria, so the choice of best model is unambiguous.
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