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In order to create a simple algorithm that is easy to implement and to under-

stand one must have a deeper understanding of the problem being solved. In

spite of that, when studying algorithms, simplicity, implementability, and other

“real world” considerations are aspects often shadowed by asymptotic runtime

and complexity results.

We study three different scenarios where we match or beat the asymptotic

runtime of the best known algorithms for several problems, and have solutions

that run faster in practice than any previously known solution, sometimes by

several orders of magnitude.

The first problem presented deals with extending an important subclass of

Dynamic Programming solutions; when the underlying DAG is a Grid DAG. It

is a general framework that allows us to solve windowed and cyclic versions

of the original problem with little of no increase of runtime. The framework is

particularly useful in computational biology where cyclic strings are common,

but it can also be applied outside this realm.

The second problem is the graph bisection problem which can be loosely de-

fined as finding a cut of minimum cost in a graph, such that both sides of the

cut have roughly the same number of vertices, and it is strongly NP-Hard.

This problem has several applications ranging from compiler optimization to

VLSI circuit design. By understanding characteristics of instances that arise in



practice we created a branch-and-bound solution that solves incredibly large

instances in a reasonable amount of time.

The last problem is the so called a priori TSP where we must decide on a

master tour before knowing the actual subset of cities that should be visited.

We focus on solving the problem when a subset of all cities is chosen according

to a probability P given explicitly. We show how to extend any approximation

algorithm or heuristics for the metric TSP to a solution to the a priori TSP, while

giving approximation guarantees. The solution proposed is useful when the

support of P is small.
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dade Católica, in Rio de Janeiro, RJ, where he graduated first-in-class. He con-

tinued his graduate work in Operations Research and Information Engineering

at Cornell University, in Ithaca, NY, where he earned a Ph.D. degree in August

2016. He spent the summers of 2012 and 2014 at Microsoft Research in Mountain

View, CA and the summer of 2015 at Amazon in Seattle, WA.

Daniel advanced to the world finals of the Association for Computing Ma-

chinery International Collegiate Programming Contest in 2006 and 2007 as a

contestant, and to the 2010, 2015, and 2016 world finals as coach, the latter two

instances leading the Cornell team.

iii



To my grandmother Frida.

iv



ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor David Shmoys for his guid-

ance during my time at Cornell. His passion for the field is apparent to anyone,

and the amount of effort he puts in everything he does is remarkable – quoting

Bob Bland, “David sleeps negative four hours a day and works for the remain-

ing twenty eight hours”. Observing the way he approaches problems taught me

a lot, and certainly will shape my future research career.

I extend my gratitude to all the professors in the ORIE department for their

passion and their friendship. Thank you Krish Iyer for liking Mathematical

puzzles as much as I do, and for providing me with numerous variations of

the “prisoners and hats” puzzle. I was fortunate to have Mike Todd and David

Williamson in my committee. The conversations I had with them throughout

these years, and the opportunity to TA for them were invaluable experiences. I

became a better teacher and researcher by observing them closely.

I am also grateful to my many friends at Cornell. This includes my good

friends inside the ORIE department, like Chaoxu Tong, Kenneth Chong, and

James Davis, and outside, like my cousin, roommate, cachaça-buddy and much

more Ilan Shomorony, and the co-host of so many “Great Parties” Leo Caroli.

I would like to also thank all my students and mentees for their excitement

about learning something new, for asking questions that went far beyond the

scope of what being taught. In particular I would like to thank Saketh Are, Vic-

tor Reis, Eduardo Ferreira, Jake Silverman, and Rafael Marinheiro for the effort

put in the training provided and for representing Cornell so well in the ACM-

ICPC World Finals twice. The memories from these two trips will certainly last

forever.

Last but definitely not least I would like to thank my family for all the

v



support. My parents and brother provided emotional support whenever I

needed. Them together with my grandparents, aunts, uncles, cousins, sister-

in-law, nieces and nephews form what is perhaps the best family ever to exist.

On the other side of the Americas, closer to Ithaca, my girlfriend Melanie Sand

and her family gave me an introduction to the American culture, receiving me

at their home for Thanksgiving and Christmas. I am grateful even for the many

times they made fun of me for mispronouncing a word.

This work was supported by the National Science Foundation, grants

CMMI-1537394, CCF-1526067, CCF-1017688, and CCF-0832782.

vi



TABLE OF CONTENTS

1 Introduction 1

2 A Simple Framework for Windowed Problems 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 DP Solutions as Longest Paths in DAGs . . . . . . . . . . . . . . . 5
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Properties of S a and Pa . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Faster algorithm when L = 1 . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 An Exact Combinatorial Algorithm for Minimum Graph Bisection 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Packing Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Bound Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Generating Trees . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Weight Allocation . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Forced Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Flow-based Assignments . . . . . . . . . . . . . . . . . . . 41
3.5.2 Extended Flow-based Assignments . . . . . . . . . . . . . 41
3.5.3 Subdivision-based Assignments . . . . . . . . . . . . . . . 46
3.5.4 Recomputing Bounds . . . . . . . . . . . . . . . . . . . . . 46

3.6 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 Finding a Decomposition . . . . . . . . . . . . . . . . . . . 50

3.7 The Algorithm in Full . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.3 Flow Computation . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.4 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.5 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Edge Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 Very Large Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9.1 Computing Gflow and Gtree . . . . . . . . . . . . . . . . . 70
3.9.2 Computing Bounds Based on Gflow and Gtree . . . . . . . 73

3.10 Graphs With Big Unreachable Areas After Removing Flow Edges 74
3.11 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.11.1 Exact Benchmark Instances . . . . . . . . . . . . . . . . . . 76
3.11.2 Larger Benchmark Instances . . . . . . . . . . . . . . . . . 83

vii



3.11.3 Very Big Graphs . . . . . . . . . . . . . . . . . . . . . . . . 90
3.11.4 Fractional Flows . . . . . . . . . . . . . . . . . . . . . . . . 91
3.11.5 Parameter Evaluation . . . . . . . . . . . . . . . . . . . . . 91

3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 A Method for Extending TSP Approximation Algorithms to Solve A
Priori Instances 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 Solving the A Priori TSP With Explicitly Known P . . . . . . . . . 101

A Proof of Theorem 1 109

B Algorithm Examples for Bisection 111
B.1 Packing Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Forced Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C Figures for Chapter 3 114
C.1 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 120

viii



LIST OF TABLES

2.1 Dependency on the size of the graph with fixed L . . . . . . . . . 20
2.2 Effect of L in the runtime. . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Computational Results for the generic algorithm and the special-

ized algorithm for L = 1. Times marked with a single dash mean
the machine did not have enough memory to finish. . . . . . . . 22

3.1 Performance on standard benchmark instances. Columns indicate
number of vertices (n) and edges (m), optimum bisection value (opt),
number of branch-and-bound nodes (BB) for our algorithm, and run-
ning times in seconds for our method (TIME) and others (CQB, BiqMac,
KRC, SEN); “—” means “not tested” and DNF means “not finished in
2.5 hours”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 Performance on standard benchmark instances. Columns indicate
number of vertices (n) and edges (m), optimum bisection value (opt),
number of branch-and-bound nodes (BB) for our algorithm, and run-
ning times in seconds for our method (TIME) and others (CQB, BiqMac,
KRC, SEN); “—” means “not tested” and DNF means “not finished in
2.5 hours”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Performance of our algorithm compared with the best times obtained
by Armbruster [5] and Hager et al. [52]. Columns indicate number of
nodes (n), number of edges (m), allowed imbalance (ε), optimum bisec-
tion value (opt), number of branch-and-bound nodes (BB), and running
times in seconds for our method (TIME) and others ([Arm07], CQB);
“—” means “not tested” and DNF means “not finished in 2.5 hours”. . 81

3.4 Performance of our algorithm on DIMACS Challenge instances start-
ing from U = opt + 1; BB is the number of branch-and-bound nodes,
and TIME is the total CPU time in seconds. We use ε = 0 for all classes
but redistrict, which uses ε = 0.03. . . . . . . . . . . . . . . . . . . . . 84

3.5 Performance of our algorithm on DIMACS Challenge instances start-
ing from U = opt + 1; BB is the number of branch-and-bound nodes,
and TIME is the total CPU time in seconds. We use ε = 0 for all classes
but redistrict, which uses ε = 0.03. . . . . . . . . . . . . . . . . . . . . 85

3.6 Performance on additional large instances with ε = 0, starting from
U = opt + 1; BB is the number of branch-and-bound nodes, and TIME is
the total CPU time in seconds. . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Performance on harder instances with ε = 0 (except for taq1021.5480),
starting from U = opt+1; BB is the number of branch-and-bound nodes,
and TIME is the total CPU time in seconds. The setup varies depending
on the instance; see text for details. . . . . . . . . . . . . . . . . . . . 89

ix



3.8 Performance on large road network instances with ε = 0, starting from
U = best previously known bound + 1; TIME is the total CPU time, and
PREPROCESS is the time to build Gflow and Gtree. Europe was not
proven optimal, but we have the best known solution. . . . . . . . . . 90

3.9 Performance on instances with small average degree, ε = 0, starting
from U = best previously known bound + 1, and using k = 2 parallel
edges for each original edge; BB is the number of branch-and-bound
nodes, and TIME is the total CPU time. . . . . . . . . . . . . . . . . . 91

3.10 Total running times (in seconds) of our algorithm on assorted instances
with different decomposition strategies: no decomposition, random
partition of the edges, using BFS-based clumps, and using both flow-
based and BFS-based clumps. . . . . . . . . . . . . . . . . . . . . . . 92

3.11 Total running times (in seconds) on assorted instances using differ-
ent combinations of forced-assignment techniques (based on flows, ex-
tended flows, and subdivisions). . . . . . . . . . . . . . . . . . . . . . 93

3.12 Total running times (in seconds) on assorted instances using different
branching techniques. All columns use degree as a branching crite-
rion, by itself (column DEGREE) or in combination with one additional
criterion (columns TREE, SIDE, DISTANCE, CONNECTED). The last col-
umn refers to our default branching criterion, which combines all five
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



LIST OF FIGURES

2.1 Example of the DAG formed from the sequence [4,−3, 5,−7, 2] . . 7
2.2 Example of the DAG formed by an LCS instance with A =

ANANAS and B = BANANA . . . . . . . . . . . . . . . . . . . . . 9
2.3 Solution for two windows of size 6; (0, 6) and (2, 8) correspond-

ing to cyclic permutations “ANANAS” and “ANASAN” respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Example of P0 for all nodes (i, j) . . . . . . . . . . . . . . . . . . . 12
2.5 Longest path trees Pa and Pa+1 and regions R0, R1, R2, and R3 . . . 15

3.1 Minimum bisection of rgg15, a random geometric graph with
32768 vertices and 160240 edges. Each cell (with a different color)
has exactly 16384 vertices, and there are 181 cut edges. . . . . . . 27

3.2 Example of a branch-and-bound tree showing frontier. Note that
only the branches close to where the solution is (bottom right)
are deep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Tree Packing on instance t60k with big amount of deadweight . . 74
3.4 Fractional flow transformation with k = 3 . . . . . . . . . . . . . . 75

4.1 Example of graph H . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.1 Example for lower bounds. Red boxes and blue circles are al-
ready assigned to A and B, respectively. The figures show (a)
the maximum A-B flow; (b) a set of maximal edge-disjoint trees
rooted at A; (c) an integral vertex allocation; and (d) a fractional
allocation where vertices with two labels have their weights
equally split among the corresponding trees. . . . . . . . . . . . . 112

B.2 Examples of forced assignments. Figure (a) shows the additional
flow that would be created if vertex (2, 2) were assigned to B
(blue circles); solid edges correspond to the standard flow-based
forced assignment and dashed edges to the extended version.
Figure (b) shows (with primed labels) new trees that would be
created if vertex (4, 2) were assigned to A (red squares). . . . . . . 113

C.1 Trees are represented in different colors. Note that trees intersect
other trees in several places, making it easier to balance their
weights with vertex fractional allocation, as well as doing forced
assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.2 Example of decomposition . . . . . . . . . . . . . . . . . . . . . . 115
C.3 Example of flow bound without and with decomposition. . . . . 115
C.4 Optimal bisection of lks which is a road map of the Great Lakes

region of the USA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.5 VLSI instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
C.6 Mesh Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xi



C.7 Road Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.8 Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.9 Europe (not proven optimal) . . . . . . . . . . . . . . . . . . . . . 119
C.10 USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xii



CHAPTER 1

INTRODUCTION

Some of the most important algorithms were created by a combination of

theoretical achievements and implementation considerations. Take Ford-

Fulkerson’s algorithm for maximum flow [44], for instance. It is simple to un-

derstand and to implement, but it is based on a solid scaffold of theorems culmi-

nating on the famous max flow-min cut theorem. Other algorithms that could

be used as example are Dijkstra’s [35], Floyd-Warshall [43, 104], Kruskal’s [71],

Knuth-Morris-Pratt [69], the Miller-Rabin primality test [87], etc.

Perhaps a more interesting example has to do with Highway Dimension [2]

where the authors were solving the shortest path problem in continental sized

graphs. Their algorithm was correct for all graphs [49] but worked particularly

well on road networks. While trying to understand why road networks were

particularly nice for their algorithm they formally defined what aspects of a

graph make it look like a road network; they defined a metric called highway

dimension that measures how similar to a road network a given graph is (smaller

numbers mean more similar) [2]. They then proved that their algorithm indeed

perform well in graphs with low highway dimension. Finally, by using the

concept of highway dimension they came up with a better algorithm [1].

We are interested in studying this interchange between theory and practice,

and how it leads to algorithms that are simple and implementable. Simplicity

is usually overlooked, but we argue that it should be a central component of

algorithm design. A simple algorithm requires more intuition about the prob-

lem being solved, and usually provides bigger insights on why the algorithm

works.
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We will discuss mainly three algorithms for three completely different prob-

lems to show several techniques for when designing algorithms. All these algo-

rithms have a unifying characteristic to them; they were designed while taking

implementability into account. By taking input from practical aspects we devel-

oped intuition on the problem, which in turn made it possible for us to create

solutions that match or outperform the best known asymptotic runtime, but are

faster and simpler in practice.

The first problem (in Chapter 2) is the problem of how to find several longest

path trees (for different sources) in a DAG with special structure. This algorithm

can then be used in a myriad of applications [14, 21, 28, 85]; it is particularly

useful in computational biology where cyclic DNA strings are common (either

because we are considering bacteria, whose DNA is circular [105] or because

the sequencing method used cannot differentiate between cyclic permutations

of the same DNA [101]).

We present a clean and easy algorithm to solve it that requires nothing but

elementary understanding of Mathematics. By doing so we have solutions to

several problems that at least match the asymptotic runtime of the best known

ad-hoc algorithms. Our method achieves better results in practice, and is con-

siderably simpler than previous approaches.

The main technique of Chapter 2 is the extensive use of data structures. We

make the point that by storing data in different ways (usually implicitly) one

can achieve better results.

The problem solved in Chapter 3 is finding the minimum ε-balanced bisection

of an input graph G (or simply a minimum bisection); the problem is strongly

2



NP-Complete [46]. This problem has several applications including computer

vision [72], load balancing [55], and Jostle [103]. The minimum bisection has

been studied by several people and numerous heuristics were written to give

solutions for some classes of instances; it was not expected that anyone would

solve to optimality large instances in a reasonable amount of time.

Our algorithm is presented in details in Chapter 3. The solution is based on

theoretical results, and also a lot of careful implementation. Most of the intuition

necessary to develop the algorithm came from looking at graphical representa-

tion of instances and understanding what make them treatable or untreatable.

The lesson from Chapter 3 is that you can gain a lot of intuition by looking

at instances, formulate hypotheses and test them. Sometimes we should put

science back in Computer Science.

Finally, in Chapter 4 we approach an extension of the classic Traveling Sales-

man Problem (TSP) where we do not know a priori which subset of cities will

have to be served; it is called a priori TSP. The problem asks for a tour over all

cities that will be then shortcut to a random subset of vertices, and we are in-

terested in minimizing the expected length of such shortcut tour. We present a

simple algorithm to solve the a priori TSP when the probability distribution on

which a subset of the nodes will be selected is given explicitly. Other models

also exist, and solutions for them will be discussed in Section 4.3.

Our algorithm uses an approximation algorithm or a heuristic to TSP as a

black box, and in the case the black box have approximation guarantees, our

algorithm will also have.
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CHAPTER 2

A SIMPLE FRAMEWORK FOR WINDOWED PROBLEMS

2.1 Introduction

Many dynamic programming (DP) solutions for optimization problems can be

described as finding a longest path in a directed acyclic graph (DAG) [29]. An

important collection of such DAGs can be laid in a 2-dimensional grid of hor-

izontal and vertical arcs and additional diagonal arcs. Rows are indexed from

0 to N and columns from 0 to M, and we want the longest path from [0, 0] to

[N,M].

Define a window as a set of indices 0 ≤ a ≤ b ≤ N and set its value to be the

length of the longest path from [a, 0] to [b,M]. In this chapter we will show how

to proceed to find the value of all windows with no increase on runtime when

compared to finding a single longest path tree from [0, 0].

This can be used to solve several problems from computational biology.

Problems like Episode Matching [28], Longest Common Cyclic Subsequence

[14, 21, 85], Episode Quasi-Matching, and others can be put into this frame-

work. In most of these problems the runtime complexity of our algorithm at

least matches the best available, and in a few cases we beat the state-of-the-art.

Furthermore our method is a unifying framework that is faster in practice, and

simpler to understand and to implement than most ad-hoc solutions to these

problems.

Throughout this chapter we will use the Longest Common Cyclic Subsequence

(LCCS) in most of the images and examples. We will use only unit diagonal arcs

4



in most examples not to clutter the figures.

The remainder of this chapter is organized as follows. In Section 2.2 we

show how to view DP solutions as the longest path in a DAG. In Section 2.3

we give the formal definition of Grid DAGs and the problem we will solve.

In Section 2.4 we show the outline of the method to solve it. In Section 2.5

we study the structure of the longest path trees. In Section 2.6 we present the

main algorithm. In Section 2.7 we show how to modify the main algorithm for

the case where all diagonal arcs have unit length. In Section 2.8 we present

computational results. In Section 2.9 we make some final remarks.

2.2 DP Solutions as Longest Paths in DAGs

Dynamic Programming is a very broad technique that can be used to solve op-

timization problems, counting problems, decision problems, and others. In all

its generality it can be characterized by a method to compute a function f over

a finite set S of states. Every state x ∈ S depends on a set of states Dx, i.e. f (x) is

defined recursively as a function of f (y) for all y ∈ Dx, or f (x) = Rx( f |Dx) where

f |A is f restricted to A.

Define the directed graph G = (S , A) where (i, j) ∈ A if i ∈ D j. To be a properly

defined DP, the graph G must be a Directed Acyclic Graph (DAG), and we can

compute f (x) for all x ∈ S using Algorithm 1. There is an implicit requirement

that the functions Rx should be “computationally simple”.

5



Algorithm 1 Dynamic Programming

1: function DP(S ,D,R)
2: G ← DAG(D)
3: S ′ ← topological order of S in G
4: for x ∈ S ′ do
5: f (x)← Rx( f |Dx) . f (y) already computed ∀y ∈ Dx

6: return f

Example 1 (Maximum Contiguous Sum). Consider the following problem:

Input A sequence of integers A = [a1, a2, . . . , aN].

Output Two indices i ≤ j such that ai + ai+1 + . . . + a j is maximized.

We can solve this problem with Dynamic Programming by having a set S =

{1, 2, . . . ,N} and defining f (x) to be the maximum possible value with indices (i, j = x)

for some i.

It is easy to check that f (1) = a1 and f (x) = max( f (x − 1) + ax, ax) where the two

arguments of the maximum are the maximum possible sum having i < j and i = j

respectively.

Once we have evaluated f at all points of S using Algorithm 1 we can get the answer

by setting j = arg maxx f (x) and finding i naively for a O(n) algorithm in total.

This DP is formally defined by S = {1, 2, . . . ,N}, D1 = ∅ and Dx = {x− 1} for x > 1,

and R1() = a1 and Rx( f (x − 1)) = max( f (x − 1) + ax, ax).

Several DPs have a special form where Db = ∅ for exactly one b, f (b) = 0, and

Rx( f |Dx) = maxy∈Dx f (y) + d[y, x] for all x , b where d[y, x] is independent of f . In

these cases f (x) is the length of the longest path from b to x in the DAG defined

by D with d[a, b] as lengths of the corresponding arcs. See Example 2.
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Example 2 (Maximum Contiguous Sum as a longest path). We will revisit the

problem in Example 1, and give a slightly different DP formulation to it.

Let S = {0, 1, 2, . . . ,N} and define f (0) = 0 and f (x) the same way as before. Now it

is easy to see that f (x) = max( f (x−1)+ax, f (0)+ax) for x ≥ 1, therefore Dx = {0, x−1}.

This second formulation has the form we want.

0

321 4 5

4 −3
5
−7 2

−3 5 −7 2

Figure 2.1: Example of the DAG formed from the sequence [4,−3, 5,−7, 2]

2.3 Preliminaries

We will consider DPs that has the form as in Example 2, where the problem can

be reduced to finding the longest path from a unique vertex b to all other nodes.

Furthermore, we will restrict ourselves to an important family of DAGs, namely

Grid DAGs.

Definition 1. A DAG G = (W, A) is a Grid DAG if W = {[i, j] : i ∈ [N], j ∈ [M]}

([N] = {0, 1, . . . ,N}) and A = V ∪ H ∪ D where:

• V = {[i, j]→ [i + 1, j] : ∀i, j} is the set of “vertical arcs”.

• H = {[i, j]→ [i, j + 1] : ∀i, j} is the set of “horizontal arcs”.

• D ⊆ {[i, j]→ [i + 1, j + 1] : ∀i, j} is the set of “diagonal arcs”.

7



Arcs in V and H have length 0 and arcs in D have integer length between 1 and L for a

fixed L > 0.

Several dynamic programming solutions with a quadratic state space can be

represented in this form. E.g. Longest Common Subsequence, Longest Increas-

ing Subsequence [24, 68], and Episode Matching [28].

Example 3 (Longest Common Subsequence). Consider the Longest Common Sub-

sequence (LCS) problem:

Input Sequences A = [a1, . . . , aN] and B = [b1, . . . , bM].

Output Sequence C which is a subsequence of both A and B with maximal length.

This problem can be solved by finding a longest path tree in a Grid DAG by taking

D = {[i − 1, j − 1] → [i, j] : ai = b j} and assigning length 1 to all diagonal arcs (See

Figure B.1.) The application of Algorithm 1 to this DAG is taught as one of the classic

examples of DP [24, 68].

Note also that C can be recovered by following the longest path from [0, 0] to [N,M]

and inserting one character in C for each diagonal arc traversed.

Fix a Grid DAG G = (W, A) and let 0 ≤ a ≤ b ≤ N. We are interested in finding

the longest path from [a, 0] and [b,M] for some (or all) pairs (a, b). We call such

a pair of indices a window of size b − a of G whose value lG(a, b) is equal to the

length of the corresponding longest path.

Example 4. Consider the Longest Common Cyclic Subsequence, an important problem

in Computational Biology [21, 59, 78, 80, 84].
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B A N A N A

• • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

S • • • • • • •

Figure 2.2: Example of the DAG formed by an LCS instance with A = ANANAS and B =
BANANA

Input Sequences A = [a1, . . . , aN] and B = [b1, . . . , bM].

Output A sequence C which is a subsequence of a cyclic permutation of A and a cyclic

permutation of B with maximal length.

A cyclic permutation A is defined as the concatenation A1A2 where A1 is a suffix of

A, A2 is a prefix of A and |A| = |A1| + |A2|.

Let C be an optimal solution for a particular input. Then a cyclic permutation of C

will be a subsequence of B and of a cyclic permutation of A. So without loss of generality

we only consider the trivial cyclic permutation of B. Namely B itself.

We will show how to solve this problem by finding the value of N windows of size N

in a Grid DAG G.

Let G be the DAG that would be used to solve the LCS problem with input A′ =

[a1, . . . , aN , a1, a2, . . . , aN−1] and B (Note that |A′| = 2|A| − 1, and G has 2N(M + 1)

nodes).
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The value of the windows (i, i + N) of G for 0 ≤ i ≤ N − 1 consider all cyclic

permutations of A. See Figure 2.3 for an example.

B A N A N A

• • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

S • • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

Figure 2.3: Solution for two windows of size 6; (0, 6) and (2, 8) corresponding to cyclic
permutations “ANANAS” and “ANASAN” respectively.

We note that it is easy to compute the value of one particular window (a, b)

in O(NM) by following Algorithm 1. A topological order is readily given by

([0, 0], [0, 1], . . . , [0,M], [1, 0], . . . , [1,M], . . . , [N, 0], . . . , [N,M]).

In fact if a is fixed we can compute the value of windows (a, b) for all b

by following Algorithm 1 in O(NM). This gives a trivial O(N2M) algorithm to

compute the value of all windows of a Grid DAG.
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In the following few sections we will show how to improve this runtime in

a simple way.

2.4 Outline

Suppose you are given a Grid DAG and the longest path tree P from [a, 0]. With

these in hand the values of all windows of the form (a, b) are readily available.

We will show how to compute the longest path tree from [a + 1, 0] in sublinear

time (i.e. in o(NM)) if N,M = ω(1) and L is fixed.

Let S a(i, j) be the length of the longest path between [a, 0] and [i, j].

Lemma 1. Let G be a Grid DAG and let a ∈ [N]. Then S a(i, j) is nondecreasing in

both i and j.

Proof. Since there exists an arc [i, j] → [i + 1, j] of length 0 we have S a(i + 1, j) ≥

S a(i, j).

A similar conclusion is reached by using vertical arcs instead of horizontal. ut

For i ≥ a and [i, j] , [a, 0] let Pa(i, j) ∈ H ∪V ∪D be the arc that “explains” the

value of S a(i, j), i.e., Pa describes the longest path tree starting from [a, 0]. See

Figure 2.4.

We will abuse notation and say that Pa(i, j) = H if Pa(i, j) is the unique arc in

H whose head is in [i, j]. In the same way we can say Pa(i, j) = V or Pa(i, j) = D.

Abusing notation even more we can say that Pa(i, j) = [i′, j′] if Pa(i, j) = [i′, j′]→

[i, j].
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If there are multiple longest path trees we choose one by preferring H over D

over V as a tie breaking rule. The reason for this choice will become clear soon.

B A N A N A

• • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

N • • • • • • •

A • • • • • • •

S • • • • • • •

Figure 2.4: Example of P0 for all nodes (i, j)

Note that P0 and S 0 can be computed in O(NM) by following Algorithm 1.

2.5 Properties of S a and Pa

In this section we will study the relationship between the pair (S a, Pa) and the

pair (S a+1, Pa+1). The key observations made here will make a fast update from

a to a + 1 possible.

Note that we can compute Pa(i, j) from S a by trying the (at most) three alter-

natives and seeing which ones give the correct value for S a(i, j).

Let ∆a(i, j) = S a(i, j) − S a+1(i, j). In other words, ∆a(i, j) is by how much the

value of S a(i, j) decreases. It is easy to see that 0 ≤ ∆a(i, j) ≤ L since we at most

take one diagonal arc from the longest path.
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Theorem 1. ∆a(i, j) is nondecreasing on j and nonincreasing on i. In other words

∆a(i, j) ≤ ∆a(i, j + 1) and ∆a(i, j) ≤ ∆a(i − 1, j).

Theorem 1 is central to our results, but its proof is long and was therefore

moved to Appendix A.

Define Ba = {[i, j] : ∆a(i, j) > ∆a(i, j − 1)} to be the set of border vertices. The

next theorem is the main theorem of this section.

Theorem 2. Let [i, j] < Ba . Then Pa(i, j) = Pa+1(i, j).

Note that Theorem 2 does not imply that Pa+1(i, j) changes for [i, j] ∈ Ba .

Proof. Let [i, j] < Ba and let ∆a = ∆a(i, j) = ∆a(i, j − 1). Let also l be the length of the

diagonal arc [i − 1, j − 1] → [i, j] if such an arc exists. Note that if Pa(i, j) = P then

∆a(i, j) ≤ ∆a(P) (equality can be achieved by doing Pa+1(i, j) = P.) We will consider

each possible value of Pa(i, j).

We have Pa(i, j) = H if and only if S a(i, j) = S a(i, j − 1) if and only if S a+1(i, j) =

S a(i, j) − ∆a = S a(i, j − 1) − ∆a = S a+1(i, j − 1) if and only if Pa+1(i, j) = H. We use our

preference of H over V and D for the first and last steps.

Let now Pa(i, j) = D. If ∆a(i − 1, j − 1) = ∆a we trivially have Pa+1(i, j) = D by

following an argument similar to the one above, so assume not. By Theorem 1 we have

∆a < ∆a(i − 1, j − 1) ≤ ∆a(i − 1, j), and
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S a+1(i, j) = S a(i, j) − ∆a

≥ S a(i − 1, j) − ∆a

> S a(i − 1, j) − ∆a(i − 1, j)

= S a+1(i − 1, j)

, so Pa+1(i, j) , V .

Finally let Pa(i, j) = V . Note that ∆a(i − 1, j − 1) ≥ ∆a(i, j − 1) = ∆a by Theorem 1.

Therefore:

S a+1(i, j) = S a(i, j) − ∆a

> S a(i − 1, j − 1) + l − ∆a Since we prefer D over V

≥ S a(i − 1, j − 1) + l − ∆a(i − 1, j − 1)

= S a+1(i − 1, j − 1) + l

, so Pa+1(i, j) , D. ut

Theorem 1 and the trivial fact that 0 ≤ ∆a(i, j) ≤ L imply that at most L

elements of each row are in Ba . By Theorem 2 only those elements of Pa may

change. Let Rd = {[i, j] : ∆a(i, j) = d} be the region with ∆a = d.

Note that the regions Rd do not need to be connected, and do not have to

start on the top row.
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0 0 0 0 0

0 0 2 2 3

0 0 2 2 3

0 0 2 3 3

2 3

1

1

0 0 0 0 0

0 0 0 0 0

0 0 1 1 1

0 0 1 2 2

2 3

1

1

Figure 2.5: Longest path trees Pa and Pa+1 and regions R0, R1, R2, and R3

2.6 The Algorithm

The algorithm proceeds row by row maintaining an array of integers xd for 0 ≤

d ≤ L with the meaning that region Rd on the current row i goes from xd to

xd+1 − 1. We implicitly maintain x0 = 0 and xL+1 = M + 1. Note that if Rd does not

intersect the current row then xd = xd+1.

Treat the function QUERY of Algorithm 2 as a black box that returns the most

updated value of S a+1 and the function UPDATESTRUCTURE as a black box that

updates all data structures to reflect the fact that we found a new value of xd.

We will show how to implement these functions later. For ease of notation we

will let li, j be the length of the diagonal arc with its head on [i, j] or −∞ if such

arc does not exist. The value −∞ can be thought as “impossible” since we are

solving a maximization problem.

The correctness of Algorithm 2 is a trivial consequence of Theorem 1, that

shows that xd does not decrease as we advance from row i to row i + 1. So we

will only analyze the runtime of the algorithm. Let the function QUERY run in

time O(Q) and the function UPDATESTRUCTURE runs in O(U).
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Algorithm 2 Update Pa to Pa+1 with diagonal lengths bounded by L

1: function COMPUTEDELTA(i, j, d)
2: S a(i, j)← QUERY(i, j) + (d − 1) . already updated row i d − 1 times
3: S a+1(i − 1, j)← QUERY(i − 1, j)
4: S a+1(i, j − 1)← QUERY(i, j − 1)
5: S a+1(i − 1, j − 1)← QUERY(i − 1, j − 1)
6: S a+1(i, j)← max(S a+1(i − 1, j), S a+1(i, j − 1), li, j + S a+1(i − 1, j − 1))
7: return S a(i, j) − S a+1(i, j)
8: procedure UPDATE . updates the value of a to a + 1
9: xd ← 1 for 1 ≤ d ≤ L

10: x0 ← 0
11: a← a + 1
12: for i = a + 1, . . . ,N do
13: for d = 1, . . . , L do
14: xd ← max(xd, xd−1) . By Theorem 1
15: while xd ≤ M and d > COMPUTEDELTA(i, xd, d) do
16: xd ← xd + 1
17: if xd ≤ M then
18: UPDATESTRUCTURE(i, xd)

Lemma 2. Algorithm 2 runs in O(L(NU + (M + N)Q)).

Proof. The runtime of COMPUTEDELTA is clearly O(Q). So let us focus on function

UPDATE.

Note that the total number of times the condition on line 15 evaluates to true is

bounded by ML throughout the algorithm, since at every time it does one of the variables

xd is incremented. The number of times it evaluates to false is exactly (N − a − 1)L =

O(NL). Therefore the helper function UPDATESTRUCTURE is called O(NL) times. The

total runtime is, as wanted, O(MLQ + NLQ + NLU) = O(L(NU + (M + N)Q)). ut

Now we present a way to implement QUERY and UPDATESTRUCTURE. We

will use a data structure that implicitly maintains an array V of integers initial-

ized to 0 and implements the following operations.

• INCREMENT( j) - Performs V[ j]← V[ j] + 1.
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• QUERY( j) - Returns V[1] + . . . + V[ j].

If such a structure is provided to us we can maintain one Vi for each row

i. Whenever [i, j] ∈ Ba and q = ∆a(i, j) − ∆a(i, j − 1) we increment Vi[ j] q times.

Now Vi.QUERY( j) returns
∑

a ∆a(i, j) over all calls to Algorithm 2 so far. Therefore

S a(i, j) = S 0(i, j) − Vi.QUERY( j) where a is the number of times UPDATE was

called.

See Algorithm 3 for an implementation of functions QUERY and

UPDATESTRUCTURE used in Algorithm 2.

Algorithm 3 Auxiliary functions for Algorithm 2

1: function QUERY(i, j)
2: if i ≤ a then
3: return 0
4: return S 0(i, j) − Vi.QUERY( j)

5: function UPDATESTRUCTURE(i, j)
6: Vi.INCREMENT( j)
7: S a+1(i, j)← QUERY(i, j) . By Theorem 2 only these entries of P can

change
8: S a+1(i − 1, j)← QUERY(i − 1, j)
9: S a+1(i − 1, j − 1)← QUERY(i − 1, j − 1)

10: S a+1(i, j − 1)← QUERY(i, j − 1)
11: if S a+1(i, j) = S a+1(i, j − 1) then
12: P(i, j)← H
13: else if S a+1(i, j) = S a+1(i − 1, j − 1) + li, j then
14: P(i, j)← D
15: else
16: P(i, j)← V

While there are several data structures that can implement increment and

query efficiently we advocate for Fenwick Trees [40]. These structures imple-

ment both operations in time O(log M) where M is the size of the implicit array.

It is very efficient in practice and its implementation is particularly simple (see

for instance [42]). This gives a runtime of O(L(N + M) log M) to Algorithm 2.
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We can therefore (if wanted) compute the values of all windows in total time

O(NM + LN(N + M) log M) = O(LN(N + M) log M). When L is small this shows a

substantial improvement over the trivial O(N2M) algorithm.

2.7 Faster algorithm when L = 1

When L = 1 we can modify Algorithm 2 to update P in O(N + M), for a total

runtime of O(N(N + M)) to compute all windows.

Let us start with a few simple observations. In this section we will always

assume that L = 1.

Lemma 3. The following properties about S a and Pa hold for all a.

1. S a(i, j) is equal to the sum of the lengths of diagonal arcs in the unique path from

[a, 0] to [i, j] in Pa.

2. S a(a + i, j) ≤ min(i, j).

3. S a(i, j) ≤ S a(i, j + 1) ≤ S a(i, j) + 1.

Proof. We now prove each of these properties.

1. This is a direct consequence of the length of the arcs in Grid DAGs.

2. The previous observation implies trivially that S a(a + i, j) ≤ min(i, j).

3. The arc [i, j]→ [i, j + 1] ∈ H ⊆ A has length 0, therefore S a(i, j) ≤ S a(i, j + 1).

We will now prove that S a(i, j + 1) ≤ S a(i, j) + 1 by induction on i. It is clearly

true at i = a, since S a(a, j) = 0 (there are no diagonal arcs to cross).

Now assume it is true at i − 1 and consider the value of Pa(i, j + 1).
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Pa(i, j + 1) = H S a(i, j + 1) = S a(i, j).

Pa(i, j + 1) = V Then S a(i, j + 1) = S a(i − 1, j + 1) ≤ S a(i − 1, j) + L ≤ S a(i, j) +

L, where the first inequality comes from the inductive hypothesis, and the

second is implied by S a being nondecreasing in i.

Pa(i, j + 1) = D S a(i, j + 1) ≤ L + S a(i − 1, j) ≤ L + S a(i, j).

ut

Note also that since ∆a(i, j) ≤ 1 we have that if [i, j] ∈ Ba then ∆a(i, j) = 1. We

are ready to prove the main theorem of this section.

Theorem 3. If [i, j] ∈ Ba then Pa+1(i, j) = H.

Proof. Note that since [i, j] ∈ Ba we have ∆a(i, j) = 1 and ∆a(i, j − 1) = 0. Therefore:

S a+1(i, j) = S a(i, j) − 1

≤ S a(i, j − 1) By Lemma 3

= S a+1(i, j − 1)

Lemma 1 and the fact that we prefer H over V or D complete the proof. ut

Theorem 3 allows us to update P without needing to query the current value

of S , therefore becoming a logarithmic factor faster than Algorithm 2.

Note also that for i ≥ a + 1 we have ∆a(i, j) = 0 if and only if ∆a(Pa(i, j)) = 0,

which is easy to prove by induction. When i = a + 1 we have [i, j] ∈ Ba if and

only if Pa(i, j) = D, by Lemma 3. We will now present the algorithm for L = 1.

Algorithm 4 is clearly correct and clearly runs in O(N + M). This result

matches the best available runtime but is a lot simpler.
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Algorithm 4 Algorithm 2 specialized for L = 1

1: procedure UPDATE
2: x← 1 . x is equivalent to x1 from Algorithm 2
3: xp← 0 . Marks the final value of x on the previous row
4: a← a + 1
5: for i = a, . . . ,N do
6: while x ≤ M do
7: [i′, j′]← P(i, x) . Note that we use an abuse of notation here
8: if i′ = i − 1 and j′ ≥ xp then . [i, x] ∈ Ba

9: P(i, x)← H
10: S (i,M)← S (i,M) − 1 . We only care about the value of the last

column of S
11: break
12: x← x + 1
13: xp← x

2.8 Computational Results

All codes in this section were written in C++, compiled with gcc 5.1.0, and ran

on Amazon Web Services, on a single core of instances of type r3.8xlarge.

Table 2.1 shows the time dependency to compute all windows for a square

Grid DAG with increasing dimension. We generated instances randomly and

used L = 3.

Table 2.1: Dependency on the size of the graph with fixed L

Small Instances Large Instances
N = M L Time (s) N = M L Time (s)

100 3 <0.001 5000 3 4.22
300 3 0.008 7000 3 9.0
500 3 0.024 9000 3 15.616
700 3 0.052 10000 3 18.856
900 3 0.088 30000 3 283.5
1000 3 0.116 50000 3 968.948
3000 3 1.356 100000 3 4087.123
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The slightly super quadratic dependency on the size is clear in Table 2.1.

Next we analyze the effect of L in the runtime. The results appear on Ta-

ble 2.2.

Table 2.2: Effect of L in the runtime.

N = M L Time (s)
20000 5 152.672
20000 25 170.644
20000 45 193.168
20000 65 206.816
20000 85 222.916
20000 100 240.004
20000 300 316.86
20000 500 438.152
20000 700 544.124
20000 900 704.444

As it can be clearly seen on Table 2.2 while the worst case analysis gives a

linear dependency between runtime and L, in practice the dependency is way

more mild. This comes from line 14 of Algorithm 2, when we can increase the

value of a particular xd significantly “for free”.

Finally table 2.3 shows results of LCCS instances from several bacteria DNAs

[102], with L = 1. Bacterial DNA is circular [105] so it is a perfect candidate for

LCCS. We run both the general algorithm (Algorithm 2) and the specialized

algorithm for L = 1 (Algorithm 4).
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Table 2.3: Computational Results for the generic algorithm and the specialized algorithm for
L = 1. Times marked with a single dash mean the machine did not have enough memory to

finish.

Instance N M Algorithm 2 (s) Algorithm 4 (s)
007717x009926 3973 374162 15.76 8.14
007717x009929 3973 226681 11.56 5.6
007717x009930 3973 177163 8.78 4.4
007717x009937 3973 5369773 108.3 102.4
007717x013860 3973 261597 12.032 6.1
009929x009928 226681 273122 - 3523.7
013860x009928 261597 273122 - 2563.1
009926x009927 356088 374162 - 4170.6
009929x009927 226681 356088 - 2289.4
009937x013212 49962 5369773 - 3115.7
013093x013212 49962 8248145 - 6199.1

Note that on instance 007717x009937 the runtimes for Algo 1 and Algo 2

were very similar. This is due to the fact that the time to compute S 0 dominates

the total time. In Grid DAGs where N � M we usually observe a performance

that is better than the worst case analysis predicts. This is due to the fact that

the variables x1 and x (for each algorithms) do not reach large values.

2.9 Final Remarks

We provide an algorithm to compute all windows of a Grid DAG in time

O(LN(N + M) log M) or O(N(N + M)) when L = 1. This result improves on the

state-of-the-art [21, 59, 78, 80, 84] in runtime and in simplicity.

This algorithm is still too expensive to be used on computational biology,

where the use of heuristics is still, unfortunately, the only way to approach the
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problems.

One might be able to improve on the results presented here by using known

structure of typical Grid DAGs that arise in a particular application.

There are several other problems that fit this framework, and would be im-

plemented almost without any change in the implementation. To name a few:

• Episode Matching - Given two sequences A and B we are interested in

finding the smallest window of A that contains B as a subsequence.

• Episode Quasi-Matching - Given two sequences A and B, and an integer t,

find the smallest window of A that contains B′ as a subsequence where B′

differs to B in at most t positions.

• Forbidden subsequence - Given two sequences A and B find the largest

window of A that does not contain B as a subsequence.

• Longest Increasing Cyclic Subsequence - Given a sequence A of elements

of a totally ordered set find the largest increasing sequence C that is a sub-

sequence of some cyclic permutation of A. This is solved by realizing that

LIS(A) = LCS(A, SORTED(A)) where SORTED(A) is formed by the unique

elements of A sorted in increasing order.
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CHAPTER 3

AN EXACT COMBINATORIAL ALGORITHM FOR MINIMUM GRAPH

BISECTION

3.1 Introduction

We consider the minimum graph bisection problem. It takes as input an undi-

rected graph G = (V, E), and its goal is to partition V into two sets A and B of

roughly equal weight so as to minimize the total cost of all edges between A

and B. This fundamental combinatorial optimization problem is a special case

of graph partitioning [45], which may ask for more than two cells. It has numer-

ous applications, including image processing [97, 106], computer vision [72],

divide-and-conquer algorithms [77], VLSI circuit layout [15], distributed com-

puting [79], compiler optimization [62], load balancing [55], and route plan-

ning [13, 30, 32, 57, 58, 63, 75]. The minimum bisection problem is NP-hard [46]

for general graphs, with a best known approximation ratio of O(log n) [88]. Only

some restricted graph classes, such as grids without holes [38] and graphs with

bounded treewidth [60], have known polynomial-time solutions.

In practice, there are numerous general-purpose heuristics for graph parti-

tioning, including CHACO [56], METIS [67], SCOTCH [20, 86], Jostle [103], and

KaHiP [92, 93], among others [11, 19, 53, 74, 99]. Successful heuristics tailored

to particular graph classes, such as DibaP [82] (for meshes) and PUNCH [31]

(for road networks), are also available. These algorithms can be quite fast (often

running in near-linear time) and handle very large graphs, with tens of millions

of vertices. They cannot, however, prove optimality or provide approximation

guarantees. Moreover, with a few notable exceptions [93, 99], most of these al-
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gorithms only perform well if a certain degree of imbalance is allowed.

There is also a vast literature on practical exact algorithms for graph bisec-

tion (and partitioning), mostly using the branch-and-bound framework [73].

Most of these algorithms use sophisticated machinery to obtain lower bounds,

such as multicommodity flows [95, 96] or linear [7, 16, 41], semidefinite [5, 7, 66],

and quadratic programming [52]. Computing such bounds, however, can be

quite expensive in terms of time and space. As a result, even though the

branch-and-bound trees can be quite small for some graph classes, published

algorithms can only solve instances of moderate size (with hundreds or a few

thousand vertices) to optimality, even after a few hours of processing. (See Arm-

bruster [5] for a survey.) Combinatorial algorithms can offer a different trade-

off: weaker lower bounds that are much faster to compute. An algorithm by

Felner [39], for example, works reasonably well on random graphs with up to

100 vertices, but does not scale to larger instances.

This article introduces a new purely combinatorial exact algorithm for graph

bisection that is practical on a wide range of graph classes. It is based on two

theoretical insights: a packing bound and a decomposition strategy. The packing

bound is a novel combinatorial lower bound in which we take a collection of

edge-disjoint trees with certain properties and argue that any balanced bisec-

tion must cut a significant fraction of them. The decomposition strategy allows

us to contract entire regions of the graph without losing optimality guarantees;

we show that one can find the optimal solution to the input problem by inde-

pendently solving a small number of (usually much easier) subproblems.

Translating our theoretical findings into a practical algorithm is not trivial.

Both the packing bound and the decomposition technique make use of certain
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nontrivial combinatorial objects, such as collections of disjoint trees or edges.

Although building feasible versions of these objects is straightforward, the qual-

ity of the bounds depends strongly on the properties of these structures, as does

the size of the resulting branch-and-bound tree. This motivates another impor-

tant contribution of this article: efficient algorithms to generate structures that

are good enough to make our bounds effective in practice. While these algo-

rithms are heuristics (in the sense that they may not necessarily lead to the best

possible lower bound), the lower bounds they provide are provably valid. This

is all we need to ensure that the entire branch-and-bound routine is correct: it is

guaranteed to find the optimal solution when it finishes.

Finally, we present experimental evidence that combining our theoretical

contributions with the appropriate implementation does pay off. Our algorithm

works particularly well on instances with relatively small minimum bisections,

solving large real-world graphs (with tens of thousands to more than a million

vertices) to optimality. See Figure 3.1 for a simple example and Figure C.1 for

an example in a real instance. In fact, our algorithm outperforms previous tech-

niques on a wide range of inputs, often by orders of magnitude. We can solve

several benchmark instances that have been open for decades, sometimes in a

few minutes or even seconds. That said, our experiments also show that there

are classes of inputs (such as high-expansion graphs with large cuts) in which

our algorithm is asymptotically slower than existing approaches.

The remainder of this chapter is organized as follows. After establishing in

Section 3.2 the notation we use, we explain our new packing bound in detail in

Section 3.3. Section 3.4 then proposes sophisticated algorithms to build the com-

binatorial objects required by the packing bound computation. We then show,
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in Section 3.5, how we can fix some vertices to one of the cells without actually

branching on them; this may significantly reduce the size of the branch-and-

bound tree and is crucial in practice. Section 3.6 introduces our decomposition

technique and proposes practical implementations of the theoretical concept.

Section 3.7 explains how all ingredients are put together in our final branch-

and-bound routine and discusses missing details, such as branching rules and

Figure 3.1: Minimum bisection of rgg15, a random geometric graph with 32768 vertices and
160240 edges. Each cell (with a different color) has exactly 16384 vertices, and there are 181

cut edges.

27



upper bound computation. Section 3.8 then shows how our techniques can be

extended to handle large edge costs efficiently. Section 3.9 introduces techniques

to handle very large graphs where the cost of computing maximum flows is

prohibitive, and Section 3.10 shows how to handle graphs with small degree by

simulating fractional flow. Finally, Section 3.11 presents extensive experiments

showing that our approach outperforms previous algorithms on many (but by

no means all) graph classes, including some corresponding to real-world appli-

cations.

Most of the figures of this chapter are present in Appendix C to make this

chapter flow easier.

3.2 Preliminaries

Consider an undirected graph G = (V, E), with n = |V | vertices and m = |E| edges.

Each vertex v ∈ V has an integral nonnegative weight w(v), and each edge e ∈ E

has an associated positive integral cost c(e). By extension, for any set S ⊆ V ,

let w(S ) =
∑

v∈S w(v) and let W = w(V) denote the total weight of all vertices.

A partition of G is a partition of V , i.e., a set of subsets of V which are disjoint

and whose union is V . We say that each such subset is a cell, whose weight is

defined as the sum of the weights of its vertices. The cost of a partition is the sum

of the costs of all edges whose endpoints belong to different cells. A bisection is

a partition into two cells. For a given ε ≥ 0, we are interested in computing a

partition of V into exactly two sets (cells) such that (1) the weight of each cell

is at most W+ = b(1 + ε)dW/2ec (we say that such a partition is ε-balanced) and

(2) the total cost of all edges between cells (cut size) is minimized. Conversely,
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W− = W − W+ is the minimum allowed cell size. If ε = 0, we say the partition is

perfectly balanced (or just balanced). Formally we have the following problem.

Input Graph G = (V, E), weights w(v), costs c(e) and imbalance allowed ε ≥ 0

Output ε-balanced bisection (A, B) of V of minimal cost

To simplify exposition, we will describe our algorithms assuming that all

edges have unit costs. Small integral edge costs can be dealt with by creating

parallel unit edges; Section 3.8 shows how we can use a scaling technique to

handle arbitrary edge costs.

A standard technique for finding exact solutions to NP-hard problems is

branch-and-bound [47,73]. It performs an implicit enumeration of all possible so-

lutions by dividing the solution space of the original problem into two or more

“simpler” parts (subproblems,) solving them recursively, and picking the best

solution found. Each node of the branch-and-bound tree corresponds to a dis-

tinct subproblem. In a minimization context, the algorithm keeps a global upper

bound U on the solution of the original problem; this bound is updated when-

ever better solutions are found. To process a node in the tree, we first compute

a lower bound L on any solution to the corresponding subproblem. If L ≥ U,

we prune the node: it cannot lead to a better solution. Otherwise, we branch,

creating two or more simpler subproblems.

In the case of graph bisection, each node of the branch-and-bound tree cor-

responds to a partial assignment (A, B), where A, B ⊆ V and A ∩ B = ∅. We say the

vertices in A or B are assigned, and all others are free (or unassigned). This node

implicitly represents all valid bisections (A+, B+) that are extensions of (A, B), i.e.,

such that A ⊆ A+ and B ⊆ B+. In particular, the root node, which represents all
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valid bisections, has the form (A, B) = ({v}, ∅). Note that we can fix an arbitrary

vertex v to one cell to break symmetry.

To process an arbitrary node (A, B), we must compute a lower bound L(A, B)

on the value of any extension (A+, B+) of (A, B). The fastest exact algorithms [5,7,

16,41,52,66] usually apply mathematical programming techniques to find lower

bounds. In this article, we use only combinatorial bounds that can be computed

efficiently. In particular, our basic algorithm starts from the well-known [18, 31]

flow bound: the minimum A–B cut, taking the edge costs as capacities. This

is a valid lower bound because any extension (A+, B+) must separate A from B;

moreover, it can be computed rather quickly in practice [48]. If the minimum cut

happens to be balanced, we can prune (and update U, if applicable). Otherwise,

we choose a free vertex v and branch on it, generating subproblems (A ∪ {v}, B)

and (A, B ∪ {v}).

Note that the flow lower bound can only work well when A and B are large

enough. In particular, if either set is empty, the flow bound is zero. Even when

A and B have approximately the same size, the corresponding minimum cut

is often far from balanced, with one side containing many more vertices than

the other. This makes the flow bound rather weak by itself. To overcome these

issues, we introduce a new packing lower bound, which we describe next.

3.3 Packing Bound

The packing bound is a novel lower-bounding technique that takes into account

the fact that the optimal solution must be balanced. Consider a partial assign-

ment (A, B). Let f be the value of the maximum A–B flow, and G f be the graph
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obtained by removing all flow edges from G (recall that we assume all edges

have unit costs/capacities). Without loss of generality, assume that A is the main

side, i.e., that the set of vertices reachable from A in G f has higher total weight

than those reachable from B (these two sets are disjoint since we removed edges

from a A–B cut). We will compute our new bound on G f , since this allows us to

simply add it to f to obtain a unified lower bound. (A detailed example illus-

trating the concepts introduced in this section can be found in Appendix B.1.)

The following structure is central in our algorithm.

Definition 2. A tree packing T of G f where A is the main side is a collection of trees

such that: (1) the trees are edge-disjoint; (2) each tree contains exactly one edge incident

to A; and (3) no edge can be added to T without violating the previous properties. See

Figure B.1b (in Appendix C) for an example. Given a set S ⊆ V , let T (S ) be the subset

of T consisting of all trees that contain a vertex in S . Let T (v) = T ({v}).

For now, assume a tree packing T is given; Section 3.4 will show how one

can be built.

Lemma 4. If B+ is an extension of B, then f + |T (B+)| is a lower bound on the cost of

the corresponding bisection (V \ B+, B+).

Proof. By definition, a tree Ti ∈ T contains a path from each of its vertices to A; if a

vertex in B+ is in Ti, at least one edge from Ti must be cut in (A+, B+). Noting that

each tree Ti ∈ T (B+) contains an edge-disjoint path from A to B+ in G f completes the

proof. ut

Lemma 4 applies to a fixed extension B+ of B; we need a lower bound that

applies to all (exponentially many) possible extensions. We must therefore rea-

son about a worst-case extension B∗, i.e., an ε-balanced partition (V \ B∗, B∗) with

B∗ ⊇ B that minimizes the bound given by Lemma 4.
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First, note that w(B∗) ≥ W−, since (V \ B∗, B∗) must be a valid bisection.

Second, let D f ⊆ V be the set of all vertices that are unreachable from A in G f

(in particular, B ⊆ D f ). Without loss of generality, for the purposes of the lower

bound we can assume that B∗ contains D f . We can do so because in Lemma 4

any vertex v ∈ D f is deadweight: it contributes to the weight of B∗ (since v itself

has nonnegative weight) but does not increase the lower bound (there is no path

from v to A). Including D f in B∗ thus helps w(B∗) reach W− at no cost.

To reason about other vertices in B∗, we first establish a relationship between

T and vertex weights by predefining a vertex allocation, a mapping from vertices

to trees. We allocate each reachable free vertex v (i.e., v ∈ V \ (D f ∪ A)) to a tree

T (v) ∈ T (v), as shown in Figure B.1c, in the appendix. (Section 3.4 will discuss

how to compute such an allocation.) The weight w(Ti) of a tree Ti ∈ T is the sum

of the weights of all vertices allocated to Ti. Let T ′(S ) = {T (v) : v ∈ S } be the set

of trees such that at least one vertex of S is allocated to it. Since |T ′(S )| ≤ |T (S )|

we have that f + |T ′(B+)| is a valid lower bound for the cost of an extension

(A+, B+) of (A, B).

Note that if v ∈ B∗ we can add vertices w such that T (w) = T (v) without im-

proving the lower bound given by Lemma 4. Therefore we can assume without

loss of generality (for the purposes of the lower bound) that if B∗ contains a sin-

gle vertex allocated to a tree Ti it will contain all vertices allocated to Ti (if all

fit).

Moreover, to ensure that w(B∗) ≥ W−, B∗ must contain a feasible set of trees

T ′ ⊆ T , i.e., a set whose total weight w(T ′) (defined as
∑

Ti∈T ′
w(Ti)) is at least as

high as the target weight W f = W− − w(D f ). Since B∗ is the worst-case extension,
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it must correspond to a feasible set T ′ of minimum cardinality.

Definition 3. Given a partial assignment (A, B), a flow f , a tree packing T ,

and an associated vertex allocation, we define the packing bound as p(T ) =

minT ′⊆T ,w(T ′)≥W f |T
′|.

Note that the exact value of this bound can be computed by a greedy algo-

rithm: it suffices to pick trees in decreasing order of weight until their accumu-

lated weight is at least W f . The bound is the number of trees picked.

We can strengthen this bound further by allowing fractional allocations. In-

stead of allocating v’s weight to a single tree, we can distribute w(v) arbitrarily

among all trees in T (v). For v’s allocation to be valid, each tree must receive a

nonnegative fraction of v’s weight, and these fractions must add up to one. (Fig-

ure B.1d, in the appendix, has an example; Section 3.4 will discuss how such an

allocation can be found.) The weight of a tree T is defined in the natural way, as

the sum of all fractional weights allocated to T . By making trees more balanced,

fractional allocations can improve the packing bound and are particularly use-

ful when the average number of vertices per tree is small, or when some vertices

have high degree. The fact that the packing bound is valid with fractional allo-

cations is our first important theoretical result.

Theorem 4. Consider a partial assignment (A, B), a flow f , a tree packing T , and a

valid fractional allocation of weights. Then f + p(T ) is a lower bound on the cost of any

valid extension of (A, B).

Proof. Let (A∗, B∗) be a minimum-cost extension of (A, B). Let T ∗ = T (B∗) be the

set of trees in T that contain vertices in B∗. The cut size of (A∗, B∗) must be at

least f + |T ∗| by Lemma 4. To prove our result we show that p(T ) ≤ |T ∗|.
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It suffices to show that w(T ∗) ≥ W f as this ensures that T ∗ is one of the trees

considered by the packing bound. Let R∗ = B∗ \ D f be the set of vertices in B∗

that are reachable from A in G f . Clearly, w(R∗) = w(B∗ \ D f ) ≥ w(B∗) − w(D f ).

Moreover, w(T ∗) ≥ w(R∗) must hold because (1) every vertex v ∈ R∗ must

hit some tree in T ∗ (the trees are maximal); (2) although w(v) may be arbitrarily

split among several trees in T (v), all these must be in T ∗ (by definition); and

(3) vertices of T ∗ that are in A∗ (and therefore not in R∗) can only contribute

nonnegative weights to the trees. Finally, since B∗ is a valid bisection, we must

have w(B∗) ≥ W−. Putting everything together, we have w(T ∗) ≥ w(R∗) ≥ w(B∗) −

w(D f ) ≥ W− − w(D f ) = W f . This completes the proof. ut

3.4 Bound Computation

Theorem 4 applies to any valid tree packing T , but the quality of the bound

it provides varies; intuitively, more balanced packings lead to better bounds.

More precisely, we should pick T (and an associated weight allocation) so as

to avoid heavy trees, which improves p(T ) by increasing the number of trees

required to achieve the target weight W f . For a fixed graph G f , the number

|T | of trees is the same for any tree packing T , as is their total weight w(T );

therefore, in the ideal tree packing all trees would have the same weight.

Unfortunately, finding the best such tree packing is NP-hard. To prove this,

we define a decision version of this problem as follows. Given a graph G with

integral vertex weights and a partial assignment (A, B), decide whether there is

a valid tree packing T rooted at A (with weight allocations) such that all trees

have weight smaller than or equal an input parameter K. Tree Packing is NP-
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Hard even when all nodes have weight 1.

Theorem 5. Tree Packing is NP-Hard even when all nodes have weight 1.

Proof. We prove it by reduction from 3-PARTITION, defined as follows: given

S = {s1, s2, . . . , sp} of p positive integers where p = 3P decide whether it can

be partitioned into P triplets, each summing to the same number. This prob-

lem is NP-Hard even if we bound si by a polynomial in P, in other words, 3-

PARTITION is strongly NP-Hard [83].

Let S = {s1, . . . , sp} with p = 3P and si bounded by a polynomial in P be an

input to 3-PARTITION.

Let A be the maximum element in S and build S ′ = {s′1, s
′
2, . . . , s

′
p} where

s′i = (p + 1)(si + pA). Note that since we only applied an affine transformation

to each element of S , if a partition of S has the desired property (each part has

3 elements, and the sum is equal for all parts), the same partition of S ′ will

also have this property. Note also that each element s′i is still bounded by a

polynomial on P. More precisely,
∑

i∈I s′i = (p + 1)
[
|I|pA +

∑
i∈I si

]
.

Let S 1, . . . , S P be a partition of S ′ with all parts summing to the same number.

If S i and S j do not have the same number of elements their sums cannot be the

same since pA is an upper bound on the sum of all numbers. So even without

enforcing it directly we know that if a partition S 1, . . . , S P of S ′ exists such that

the sum of the elements in each part is the same, each part will have exactly

three elements, and will therefore be a solution to 3-PARTITION.

Let H = (V, E) where for each s′i ∈ S ′ there are vertices wi and v j
i for j =

1, . . . , s′i , and edges between v j
i to v j+1

i and between wi and v1
i . There are also P
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parallel edges between wi and wi+1. Finally, create an extra node u and connect

it with P parallel edges to w1.

Create an instance of Tree Packing with the graph H, A = {u}, B = ∅, and

K =
p+

∑
i s′i

P . (K is the sum of all weights divided by P.) Note that any feasible

solution to this instance will have P trees, and that the “P parallel paths” from u

to wk will be assigned to different trees. Also, if we assign a certain edge (wi, v1
i )

to tree T we should assign all edges (v j
i , v

j+1
i ) to T , and it will be the only tree

reaching nodes v j
i .

If there is a solution with all trees with equal size, each tree should get exactly

3 edges of the form (wi, v1
i ) as explained above. Each nodes of the form v j

i will

have exactly one tree containing it, so all its weight should go to this tree, adding

weight s′i to the tree that contains (wi, v1
i ). Note that all s′i are multiples of p+1 ≥ 4,

so the residue modulo 4 of the weight of a tree is exactly the amount of weight

it receives from nodes wi. Since all trees should have the same weight we have

that each one should receive total weight exactly 3 from the nodes wi. A solution

to 3-PARTITION follows trivially.

It is easy to see, using the same arguments, that if a solution to this Tree

Packing instance does not exist then the original 3-PARTITION instance is also

infeasible. ut

Given this result, in practice we resort to (fast) heuristics to find a valid tree

packing. Ideally, the trees and weight allocations should be computed simul-

taneously, to account for the interplay between them. Since it is unclear how

to do so efficiently, we use a two-stage approach instead: we first compute a

valid tree packing, then allocate vertex weights to these trees appropriately. We
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discuss each stage in turn.

3.4.1 Generating Trees

The goal of the first stage is to generate maximal edge-disjoint trees rooted at

A that are as balanced and intertwined as possible, since this typically enables

a more even distribution of vertex weights. We try to achieve this by growing

these trees simultaneously, balancing their sizes (number of edges).

More precisely, each tree starts with a single edge (the one adjacent to A)

and is marked active. In each step, we pick an active tree with minimum size

(number of edges) and try to expand it by one edge in DFS fashion. A tree that

cannot be expanded is marked as inactive. We stop when there are no active

trees left. We call this algorithm SDFS (for simultaneous depth-first search).

An efficient implementation of SDFS requires a careful choice of data struc-

tures. In particular, a standard DFS implementation associates information

(such as parent pointers and status within the search) with vertices, which are

the entities added to and removed from the DFS stack. In our setting, however,

the same vertex may be in several trees (and stacks) simultaneously, making an

efficient implementation more challenging. We get around this by associating

information with edges instead. Since each edge belongs to at most one tree, it

has at most one parent and is contained in at most one stack. The combined size

of all data structures we need is therefore O(m).

Given this representation, we now describe our SDFS algorithm in more de-

tail. We associate with each tree Ti a stack S i, initially containing the root edge of
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Ti. (Each non-flow edge with exactly one endpoint in A becomes the root edge

of some Ti; edges with both endpoints in A belong to no tree.) The basic step of

the SDFS algorithm is as follows. First, pick an active tree Ti of minimum size.

(This can be done efficiently by maintaining the current active trees in buckets

according to their current number of edges.) Let (u, v) be the edge on top of

S i (the stack associated with Ti), and assume v is farther from Ti’s root than u

is (i.e., u is v’s parent). Scan vertex v, looking for an expansion edge. This is an

edge (v,w) such that (1) (v,w) is free (not assigned to any tree yet) and (2) no

edge incident to w belongs to Ti. The first condition ensures that the final trees

are edge-disjoint, while the second makes sure they have no cycles. If no such

expansion edge exists, we backtrack by popping (u, v) from S i; if S i becomes

empty, Ti can no longer grow, so we mark it as inactive. If expansion edges do

exist, we pick one such edge (v,w), push it onto S i, and add it to Ti by setting

parent(v,w)← (u, v). The algorithm repeats the basic step until there are no more

active trees.

We must still define which expansion edge (v,w) to select when processing

(u, v). We prefer an edge (v,w) such that w has several free incident edges (to help

keep the tree growing) and is as far as possible from A (to minimize congestion

around the roots, which is also why we do DFS). We use a preprocessing step

to compute the distances from A to all vertices with a single breadth-first search

(BFS).

To bound the running time of SDFS, note that a vertex v of degree deg(v)

can be scanned O(deg(v)) times, since each scan either eliminates a free edge or

backtracks. When scanning v, we can process each outgoing edge (v,w) in O(1)

time using a hash table to determine whether w is already incident to v’s tree.
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The worst-case time is therefore
∑

v∈V(deg(v))2 = O(m∆), where ∆ is the maximum

degree.

3.4.2 Weight Allocation

Once a tree packing T is built, we must allocate the weight of each vertex v to

the trees T (v) it is incident to. Our final goal is to have the weights as evenly

distributed among the trees as possible. We work in two stages. First, an initial

allocation splits the weight of each vertex evenly among all trees it is incident

to. We then run a local search to rebalance the weight allocation among the trees.

We process one vertex at a time (in arbitrary order) by reallocating v’s weight

among the trees in T (v) in a locally optimal way. More precisely, v is processed

in two steps. First, we reset v’s existing allocation by removing v’s share from all

trees it is currently allocated to, thus reducing their weights. We then distribute

v’s weight among the trees in T (v) (from lightest to heaviest), evening out their

weights as much as possible. In other words, we add weight to the lightest tree

until it is as heavy as the second lightest, then add weight to the first two trees

(at the same rate) until each is as heavy as the third, and so on. We stop as soon

as v’s weight is fully allocated. The entire local search runs in O(m log ∆) time,

since it must sort (by weight) the adjacency lists of each vertex in the graph

once. In practice, we run the local search three times to further refine the weight

distribution; additional runs typically have little effect.

39



3.5 Forced Assignments

In this section we will show how to extract information from a tree packing

other than the tree bound to further reduce the size of the branch-and-bound

tree. Consider a partial assignment (A, B). The quality of the bounds we use

depends crucially on the sum of the degrees of all vertices already fixed to A

or B, since they bound both the flow value and the number of trees created. If

we could fix more vertices to A or B without explicitly branching on them, we

would boost the effectiveness of both bounds, reducing the size of the branch-

and-bound tree. This section explains how we can do this by exploiting some

properties of the tree packing itself. These forced assignments work particularly

well when the current lower bound for (A, B) is close enough to the upper bound

U. Since most nodes of the branch-and-bound tree have this property, this tech-

nique can reduce the total running time by orders of magnitude.

Our goal is to infer, without branching, that a certain free vertex v must be

assigned to A (or B). Intuitively, if we show that assigning v to one side would in-

crease the lower bound to at least match the upper bound, we can safely assign

v to the other side. Sections 3.5.1–3.5.3 propose specific versions of such forced

assignments. They all require computing the packing bound for a slightly dif-

ferent set of trees; Section 3.5.4 shows how this can be done quickly, without a

full recomputation. Without loss of generality, we once again assume that the

weight of the vertices reachable from A in G f is at least as high as the weight of

those reachable from B (i.e., that A is the main side). In what follows, let T be a

tree packing with weight allocations and f + p(T ) be the current lower bound.

All techniques we present are illustrated in Appendix B.2.
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3.5.1 Flow-based Assignments

We first consider flow-based forced assignments. Let v be a free vertex reachable

from A in G f , and consider what would happen if it were assigned to B. The

flow bound would immediately increase by |T (v)| units, since each tree in T (v)

contains a disjoin path from v to A. We cannot, however, simply increase the

overall lower bound to f + p(T ) + |T (v)|, since the packing bound may already

be “using” some trees in T (v). Instead, we must compute a new packing bound

p(T ′), where T ′ = T \ T (v) but the weights originally assigned to the trees T (v)

are treated as deadweight (unreachable). If the updated bound f + p(T ′) + |T (v)|

is U or higher, we have proven that no solution that extends (A, B ∪ {v}) can

improve the best known solution. Therefore, we can safely assign v to A.

We can make a symmetric argument for vertices w that are reachable from

B in G f , as long as we also compute an edge packing TB on B’s side. If we

assigned such a vertex w to A, the overall flow would increase by |TB(w)|. Since

the extra flow is on B’s side, the original packing bound p(T ) (which uses only

edges reachable from A) is still valid. We can obtain a slightly better bound

p′(T ), however, by using the fact that vertex w itself can no longer be considered

deadweight (i.e., assumed to be on B’s side), since we are explicitly assigning it

(tentatively) to A. If the new bound f + |TB(w)| + p′(T ) is U or higher, we can

safely assign w to B.

3.5.2 Extended Flow-based Assignments

As described, flow-based forced assignments are weaker than they could be.

When we take a vertex reachable from A in G f and tentatively assign it to B, we
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argue that each tree containing v results in a new unit of flow, since following

parent pointers within the tree leads to a vertex in A. This means that, even

though a tree may have several edges incident to v, we only “send” new flow

through the parent edge. This section shows how the bound can be strength-

ened by considering child edges as well. This is not trivial, however. Each child

edge is the root of a different subtree, but no such subtree contains a vertex in A

(by construction), so it cannot improve the flow bound by itself. To obtain new

paths to A, we must use other trees as well.

For a precise description of the algorithm, we need some additional notation.

For every edge e, let tree(e) be the tree (from T ) to which e is assigned. Each edge

e = (v, u) is either a parent or a child edge of v, depending on whether u is on the

path from v to the root of tree(e) or not. Define path(e) as the path (including

e itself) from e to the root of tree(e) following only parent edges. Moreover,

let sub(e) be the subtree of tree(e) rooted at e. (Note that tree(e), path(e), and

sub(e) are undefined if e belongs to no tree in T .) Let σ(e) be the set of all trees

t ∈ T \ {tree(e)} that intersect sub(e), i.e., that have at least one vertex in common

with sub(e).

Given a vertex v reachable from A and an incident edge e, we can define an

associated expansion tree xv(e), which is equal to tree(e) if e is a parent edge, and

equal to any tree in σ(e) if e is a child edge (if e belongs to no tree or if σ(e) = ∅,

xv(e) is undefined). The expansion set for v, denoted by X(v), is the union of xv(e)

over all edges e incident to v. Note that X(v) ⊆ T is a set of trees with the

following useful property.

Lemma 5. Assigning v to B would increase the flow bound by at least |X(v)| units.

Proof. We must show that, for each tree T ∈ X(v), we can create an independent
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path from v to A in G f . If T is the expansion tree for a parent edge e of v, we

simply take path(e). Otherwise, if T is the expansion tree for a child edge e of v,

we take the concatenation of two paths, one within sub(e) and another within T

itself. By construction (of X(v)), these paths are all disjoint. ut

Note that we used a similar argument in Section 3.5.1 to justify the stan-

dard flow-based assignment; the difference here is that we (implicitly) send flow

through potentially more trees. Accordingly, as long as we consider all affected

trees as deadweight, a valid (updated) packing bound for (A, B∪ {v}) is given by

f + |X(v)| + p(T \ X(v)). If this is at least U, we can safely assign v to A.

A similar argument can be made if v is initially reachable from B in G f . A

valid lower bound for (A∪{v}, B) is f + |X(v)|+ p′(T ), where p′(T ) is the standard

packing bound, but with v no longer considered as deadweight.

Practical Issues

Although extended flow-based forced assignments are conceptually simple,

they require access to several pieces of information associated with each edge.

We now explain how they can be computed efficiently.

We can compute σ(·) (as defined above) for all edges in a tree T by traversing

the tree in bottom-up fashion, as a “preprocessing” step before actually trying

the extended forced assignments. Let e = (v,w) ∈ T be the parent edge of some

vertex v. We can compute σ(e) as the union of the σ( f ) values for all child edges

f of e in T , together with all other trees incident to v itself. More precisely,

σ(e) = (∪ f =(u,v)∈(T\{e})σ( f ))∪ (T (v)\ {T }). Note, however, that each set σ(·) can have

Θ(|T |) = O(m) trees, so maintaining all such sets in memory during the algo-
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rithm would be impractical. In practice, for each edge e we keep only a subset

σ̃(e) ⊆ σ(e) (picked uniformly at random) of size at most κ, an input parameter;

κ = 3 works well in practice. To process an edge e during the forced assignment

routine, we pick a random unused element from σ̃(e) as the expansion tree xv(e)

of e. (We could maximize |X(v)| by computing xv(e) for all edges e incident to

v simultaneously using a maximum matching algorithm, but this is expensive.)

Although using σ̃(e) instead of σ(e) may make the algorithm slightly less effec-

tive (we may run out of unused elements in σ̃(e) even though some would be

available in σ(e)), it does not affect correctness.

We must be careful to compute the σ̃(e) sets in a space-efficient way: we

still need σ(e) in order to compute σ̃(e), which is a random subset. But σ(e)

is the union of up to O(m) distinct σ(e′) values, one for each child edge e′ =

(v, u) of v. Instead of first building all these child subsets and then computing

their union, we build σ(e) incrementally; as soon as each σ(e′) is computed, we

determine σ̃(e′), then merge σ(e′) into σ(e) (initially empty) and discard σ(e′).

Traversing the tree in DFS post-order ensures that, at any time, all edges with

nonempty σ(·) sets form a contiguous path in T . Moreover, if we make the DFS

visit the largest subtree first, this path will have length O(log n). To see why, note

that σ(e) is empty while we visit the first (largest) child subtree of e; after that,

each subtree is at most half as large as the subtree rooted at e itself. Since the

maximum subtree size is O(n), this situation cannot happen more than O(log n)

times, limiting the total space used by the temporary σ(·) sets to O(|T | log n) =

O(m log n). The worse-case time required by this precomputation step is also

reasonable.

Lemma 6. All σ̃(·) sets can be computed in O(m∆ log n) total time, where ∆ is the

maximum degree in the graph.
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Proof. First, note that each vertex v is scanned O(deg(v)) times (once for each tree

it belongs to), thus bounding the total scanning time to O(m∆). Maintaining the

σ(·) sets during the execution is slightly more expensive. To bound the total time

to process a single tree T , we note that each edge e < T that is adjacent to T will

create an entry in some set σ(e), then “bubble up” the tree as sets are merged

with parent sets. Eventually, each such entry will either be discarded (if the

parent already has an entry corresponding to tree(e)) or will end up at the root.

The total time (over all trees) spent on such original insertions and on deletions

is O(m∆), since any edge may participate in at most 2(∆ − 1) original insertions

(once for each tree incident to its endpoints). We still have to bound the time

spent copying the elements of some (final) set σ(e) to another (temporary) set

σ(p), where p is the parent edge of e. First, note that we only need to insert

elements from a smaller set into a bigger one; otherwise, we just swap the entire

sets (in constant time by manipulating pointers). So consider the case in we

transfer elements from a set J into another set K (with |J| ≤ |K|) while processing

a tree T . Only elements in J′ = J \ K are actually inserted into K; the remaining

are deleted (and the corresponding cost has already been accounted for). If

|J′| ≤ |J|/2, we can charge each insertion to a corresponding deletion in J. If

|J′| > |J|/2, we have a heavy transfer. Note that |J∪K| = |J′|+|K| > |J|/2+|J| = 3|J|/2.

Since the target set (J ∪ K) is bigger than the original set (J) by a constant factor,

each entry (set element) can be involved in at most O(log |T |) heavy transfers.

Considering that there are O(m∆) entries overall (across all trees) and |T | = O(n)

for any tree T , the lemma follows. ut
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3.5.3 Subdivision-based Assignments

A third strategy we use is the subdivision-based forced assignment, which works by

implicitly subdividing heavy trees in T . Let v be a free vertex reachable from A

in G f . If v were assigned to A, we could obtain a new tree packing T ′ by splitting

each tree Ti ∈ T (v) into multiple trees, one for each edge of Ti that is incident to

v. If f + p(T ′) ≥ U, we can safely assign v to B.

Some care is required to implement this test efficiently. In particular, to re-

compute the packing bound we need to compute the total weight allocated to

each newly-created tree. To do so efficiently, we must precompute some infor-

mation about the original packing T . (This precomputation happens once for

each branch-and-bound node, after T is known.) We define size(e) as the weight

of the subtree of tree(e) rooted at e: this is the sum, over all vertices descending

from e in tree(e), of the (fractional) weights allocated to tree(e). (If e belongs to no

tree, size(e) is undefined.) The size(e) values can be computed with bottom-up

traversals of all trees, which takes O(m) total time.

These precomputed values are useful when the forced assignment routine

processes a vertex v. Consider an edge e incident to v. If e is a child edge for v, it

will generate a tree of size size(e). If e is a parent edge for v, the size of the new

tree will be size(r(e)) − size(e), where r(e) is the root edge of tree(e).

3.5.4 Recomputing Bounds

Note that all three forced-assignment techniques we consider need to compute

a new packing bound p(T ′) for each vertex v they process. Although they need
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only O(deg(v)) time to (implicitly) transform T into T ′, actually computing the

packing bound from scratch can be costly. Our implementation uses an incre-

mental algorithm instead. When determining the original p(T ) bound (with

the greedy algorithm described in Section 3.3), we remember the entire state

of the computation, including the sorted list of all original tree weights as well

as relevant partial sums. To compute p(T ′), we can start from this initial state,

discarding original trees that are no longer valid and considering new ones ap-

propriately.

3.6 Decomposition

Both lower bounds we consider depend crucially on the degrees of the vertices

already assigned. More precisely, let DA and DB be the sum of the degrees of all

vertices already assigned to A and B, respectively, with DA ≥ DB (without loss

of generality). It is easy to see that the flow bound cannot be larger than DB,

and the packing bound is usually bounded by roughly DA/2, half the number

of trees (unless a significant fraction of the vertices is already assigned).1 If

the maximum degree in the graph is a small constant (which is often the case

on meshes, VLSI instances, and road networks, for example), our branch-and-

bound algorithm cannot prune anything until deep in the tree. Arguably, the

dependency on degrees should not be so strong. The fact that increasing the

degrees of only a few vertices could make a large instance substantially easier

to solve is counter-intuitive.
1For an intuition on the DA/2 bound, recall that the packing bound must accumulate enough

trees to account for half the total weight reachable from A. Even if all DA trees have exactly the
same weight, roughly half of the trees will be enough for this. This is not a strict bound because
it the number of trees needed also depends on how many vertices are already assigned to A and
B.

47



A natural approach to deal with this weakness is branching on entire regions

(connected subgraphs) at once. We would like to pick a region and add all of its

vertices to A in one branch, and all to B in the other. Since the “degree” of the

region (i.e., the number of outgoing edges) is substantially larger, lower bounds

should increase much faster as we go down the branch-and-bound tree. The

obvious problem with this approach is that the optimal bisection may actually

split the region itself; assigning the entire region to A or to B does not exhaust

all possibilities.

One could overcome this by making the algorithm probabilistic: if we con-

tract a small number of random edges (merging both endpoints of each edge

into a single, heavier vertex), with reasonable probability none of them will ac-

tually be cut in the minimum bisection. If this is the case, the optimum solution

to the contracted problem is also the optimum solution to the original graph. We

can boost the probability of success by repeating this procedure multiple times

(with multiple randomly selected contracted sets) and picking the best result

found. Such probabilistic contraction is a natural approach for cut problems,

having been used in Karger and Stein’s randomized global minimum-cut algo-

rithm [65], as well as in a graph-bisection algorithm by Bui et al. [18] that runs

in expected polynomial time on a certain class of d-regular graphs with small

enough bisections.

Since our goal is to find provably optimum bisections, however, probabilistic

solutions are inadequate. Instead, we propose a contraction-based decomposition

algorithm, which is guaranteed to output the optimum solution for any input. It is

(of course) still exponential in the worst case, but for many inputs it has much

better performance than our standard branch-and-bound algorithm.
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The algorithm works as follows. Let U be a known upper bound on the

optimum bisection. First, we partition the set E of edges into U + 1 disjoint sets

(E0, E1, . . . , EU). For each subset Ei, we create a corresponding (weighted) graph

Gi by first taking all the edges of the input graph G, then contracting those in

Ei. (We contract an edge (u, v) by combining u and v into a single vertex with

weight w(u) + w(v), redirecting edges incident to u or v to the new vertex, and

discarding self-loops.) Note that no edge of Ei actually belongs to Gi. Then, we

use our standard algorithm to find the optimum bisection Ui of each graph Gi

independently, and return the best (lowest-value) such solution.

Theorem 6. The decomposition algorithm finds the minimum bisection of G.

Proof. Let U∗ ≤ U be the cost of the minimum bisection. We have to prove that

min0≤i≤U(Ui) = U∗. First, note that Ui ≥ U∗ for every i, since any bisection of

Gi can be trivially converted into a valid bisection of G with the same value.

Moreover, we argue that the solution of at least one Gi must correspond to the

optimum solution of G itself. Let E∗ be the set of cut edges in an optimum bi-

section of G. (If there is more than one optimum bisection, take one arbitrarily.)

Because |E∗| = U∗ and the Ei sets are disjoint, E∗∩Ei can only be nonempty for at

most U∗ sets Ei. Therefore, there is at least one j such that E∗ ∩ E j = ∅. Contract-

ing the edges in E j preserves the optimum bisection, proving our claim. ut

The decomposition algorithm solves U +1 subproblems, but the high-degree

vertices introduced by the contraction routine should make each subproblem

much easier for our branch-and-bound routine. Besides, the subproblems are

not completely independent: they can all share the same best upper bound. In

fact, we can think of the algorithm as traversing a single branch-and-bound tree

whose root node has U + 1 children, each responsible for a distinct contraction
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pattern. The subproblems are not necessarily disjoint (the same partial assign-

ment may be reached in different branches), but this does not affect correctness.

Finally, we note that solving U + 1 subproblems is necessary if we actually

want to find a solution of value U if one exists. If we already know a solution

with U edges and just want to prove it is optimal, it suffices to solve U subprob-

lems: at least one of them will preserve a solution with fewer than U edges, if it

exists. In particular, if we start running the algorithm with upper bound U and

find an improving solution U′ < U, we can stop after the first U′ subproblems

are solved. (To see why U′ is the optimum bisection value in this case, apply

Theorem 6 with U′ sets of edges; even though these sets are not a partition of

E, they are disjoint, which is all the theorem requires.) For the remainder of this

section, we assume that only U initial subproblems are generated.

3.6.1 Finding a Decomposition

Our decomposition algorithm is correct regardless of how edges are partitioned

among subproblems, but its performance may vary significantly. To make all

subproblems have comparable degree distribution of difficulty, a natural ap-

proach is to allocate roughly the same number of edges to each subproblem.

Moreover, the choice of which edges to allocate to each subproblem Gi also mat-

ters. The effect on the branch-and-bound algorithm is more pronounced if we

can create vertices with much higher degree than in the original graph. We can

achieve this by making sure the edges assigned to Ei induce relatively large con-

nected components (or clumps) in G. (In contrast, if all edges in Ei are far apart,

the degrees of the contracted vertices in Gi will not be much higher that those
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of other vertices.) Finally, the shape of each clump matters: among clumps of

the same size, we would like the expansion (number of incident edges) of each

clump to be as large as possible.

To achieve these goals, we perform the decomposition in two stages: clump

generation partitions all the edges in the graph into clumps, while allocation as-

signs the clumps to subproblems so as to balance the effort required to solve

each subproblem. We discuss each stage separately.

See Figure C.2 for an example of decomposition and Figure C.3 for an exam-

ple of its effect in bounds.

Clump Generation

Our clump generation routine must build a set F of clumps (initially empty)

that partition all the edges in the graph. We combine two approaches to accom-

plish this. The basic clump generation routine is based on extracting paths from

random BFS trees within the graph. This approach works reasonably well, and

can be used to find a complete set of clumps, i.e., one that covers all edges in

the graph. Our second approach, flow-based clump generation, is more focused:

its aim is to find a small number (comparable to U) of good-quality clumps. We

discuss each approach in turn, then explain how they can be combined into a

robust clump-generation scheme.

Basic clump generation. Our basic clump generation routine maintains a set

C of candidate clumps, consisting of high-expansion paths that are not neces-

sarily disjoint and may not include all edges in the graph. The algorithm adds
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new clumps to C until there are enough candidates, then transfers some of the

clumps from C to F. This process is repeated until F is complete (its clumps

contain all edges in the graph).

More precisely, our algorithm works in iterations, each consisting of two

phases: generation and selection. Consider iteration i, with a certain expansion

threshold τi (which decreases as the algorithm progresses).

The generation phase creates new clumps to be added to the candidate set C.

Our clumps are paths obtained by following parent pointers in BFS trees, which

tend to have relatively high expansion because the subgraph of G induced by

such a path is itself a path. (Note that this is not true for arbitrary non-BFS

paths.) More precisely, we pick 5 vertices at random and grow BFS trees from

them, breaking ties in favor of parents that lead to paths with higher expansion.

From each tree T , we greedily extract a set of edge-disjoint paths to add to C (in

decreasing order of expansion). When doing so, we restrict ourselves to paths

that (1) have at most dm/(4U)e edges (ensuring each subproblem has at least four

clumps), (2) contain no edge that is already in F, and (3) have expansion at least

τi/4 (avoiding very small clumps to save edges for future iterations).

The selection phase extracts from C all clumps with expansion at least τi in

decreasing order of expansion. A clump c is added to F if no edge in c is already

in F; otherwise, it is simply discarded. To save space, we also discard from C

clumps that have at least one edge that either (1) belongs to F or (2) appears in

at least five other clumps with higher expansion.

For the next iteration, we set τi+1 = b0.9τic. We stop when the threshold

reaches 0, at which point we simply add all remaining unused edges to F as
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separate clumps. For speed, we grow smaller trees as the algorithm progresses,

and only pick as roots vertices adjacent to at least one unused edge.

Flow-based clumps. We now consider an alternative clump generation

scheme aimed at finding a small number of good-quality clumps. It is based on

the observation that clumps containing a cut edge from the optimum bisection

tend to lead to large packing bounds. To understand why, consider the alterna-

tive: if a clump is entirely contained within one side of the optimum bisection,

the associated packing bound cannot be higher than opt (the optimum bisection

value), since at most opt disjoint trees will reach the other side. This indicates

that to obtain large packing bounds we should prefer clumps that actually cross

the optimum bisection. Although the basic scheme described above can create

such clumps, it does not actively look for them. We now describe an alternative

that does; we call it the flow-based clump generation scheme.

It works in three stages. First, we quickly find an approximate minimum

bisection, i.e., a small cut that roughly divides the graph in half. (The actual

optimal solution would be ideal.) Second, we define two regions that are far

from this cut, one on each side. Finally, we compute the maximum flow between

these two regions, and use the paths in the corresponding flow decomposition

as clumps. The remainder of this section describes how we implement each of

these steps; other implementations are possible.

To find a quick approximate bisection, we first compute the Voronoi diagram

with respect to two random vertices v0 and v1. In other words, we split V into

two sets, R0 and R1, such that each element in Ri is closer to vi than to v1−i; this

can be done with a single BFS [81]. Our tentative cut is given by the set S of
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boundary vertices in the Voronoi diagram, i.e., those with a neighbor in another

region. Although this approach is very fast, we may be unlucky in our choice of

v0 and v1 and end up with a very unbalanced cut, with w(R0) � w(R1). (Without

loss of generality, assume that w(R0) ≤ w(R1).) To avoid this we try U random

pairs (v0, v1), where U is the upper bound on the solution value. We then pick

the cut with the highest score s = r2/b, where r = w(R0)/w(R1) and b is the number

of boundary edges in the Voronoi diagram. Intuitively, the score measures how

close we are to the optimal bisection: we want both regions to have roughly the

same size and, among those, prefer smaller cuts.

After picking the highest-scored pair (R0,R1), we define subsets Q0 ⊆ R0 and

Q1 ⊆ R1 to act as source and sink during our flow computation. We do so in a

natural way. For a given parameter 0 < α < 1 and for each i ∈ {0, 1}, we run a

BFS restricted to Ri starting from S ∩Ri and stopping after the total weight of all

scanned vertices is about to exceed α · w(Ri); we take the vertices that remained

in the BFS queue as Qi.

Initially, we pick α such that the distance from Q0 to Q1 is closest to dm/(4U)e,

the target clump size. (To avoid pathological cases, we also enforce that α ≤ 0.8.)

Once the initial flow is computed, we remove the edges in the corresponding

flow from the graph and repeat the computation using the same Q0 and Q1, but

with α′ ← 0.8α. We stop this process when α falls below 0.2. This choice of

parameters is somewhat arbitrary; the algorithm is not very sensitive to them.

Final approach. As already observed, when the sets Q0 and Q1 happen to be in

opposite sides of the minimum bisection, the flow-based approach cannot create

more than U clumps. In practice, the actual number of clumps is indeed close
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to U. We take these as the initial clumps in our set F, then apply the BFS-based

clump generation scheme to obtain the remaining clumps. The initial thresh-

old τ0 for the basic clump generation scheme is set to the maximum expansion

among all initial flow-based clumps.

Clump Allocation

Once clumps are generated, we run an allocation phase to distribute them among

the U subproblems (E0, E1, . . . , EU−1), which are initially empty. We allocate

clumps one at a time, in decreasing order of expansion (high-expansion clumps

are allocated first). In each step, a clump c is assigned to the set Ei whose dis-

tance to c is maximum (with random perturbations to handle approximate ties).

The distance from Ei to c is defined as the distance between their vertex sets, or

infinity if Ei is empty. For efficiency, we keep the Voronoi diagram associated

with each Ei explicitly and update it whenever a new clump is added.

This unbiased distribution tends to allocate comparable number of edges to

each subproblem. In some cases, however, this is not desirable: if a subproblem

Ei already has much better clumps than E j, it pays to add more clumps to E j.

To accomplish this, we propose a biased distribution. It works as before, but we

associate with each subproblem an extra bias parameter, to be multiplied by

the standard distance parameter. The bias depends on the quality of the first

clump added to each subproblem; we refer to it as the anchor clump. The bias

makes subproblems with worse anchor clumps more likely to receive additional

clumps.

To maximize the effectiveness of this approach, we take special care when
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selecting the set of anchor clumps. We first compute the packing bound as-

sociated with the d4U/3e clumps in F with highest expansion, then pick the U

clumps with highest (packing) value as the anchors of the U subproblems. We

define the gap associated with subproblem i as g(i) = U − φ(i), where φ(i) is the

packing bound associated with i’s anchor clump, computed by assigning the

clump to A and making B empty in the partial assignment. Note that smaller

gaps indicate better anchor clumps, and therefore should result in smaller bi-

ases. Simply making the bias proportional to the gap is too aggressive for some

instances, resulting in very uneven distributions. Instead, we define bias(i) as

zero if g(i) ≤ 0 (the anchor clump by itself is enough to prune the branch-and-

bound tree at the root), and as bias(i) = 1+ log2(U−φ(i)) otherwise. The log factor

makes the distribution smoother, and the additive term ensures the expression

is strictly positive.

3.7 The Algorithm in Full

Having described the main ingredients of our approach, we are now ready to

explain how they fit together within our branch-and-bound routine. We first

present an overview of the entire algorithm, then proceed to explain the missing

details.

3.7.1 Overview

We take as input the graph G to be bisected, the maximum imbalance ε allowed,

and an upper bound U on the solution value. The algorithm returns the optimal
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solution if its value is less than U; otherwise, it proves that U is a valid lower

bound. (Section 3.7.4 explains how one can pick U if no good upper bound is

known.)

We start by running a simple heuristic (detailed in Section 3.7.2) to decide

whether to use the decomposition technique or not. If not, we simply call our

core branch-and-bound routine (detailed below). Otherwise, we create a series

of U subproblems (as described in Section 3.6.1), call the core branch-and-bound

routine on each subproblem separately, and return the best solution found. As

an optimization, if we find an improving solution U′ for a subproblem, we use

it as an upper bound for subsequent subproblems.

Our core branch-and-bound routine starts with an assignment (A, B) = ({v}, ∅)

at the root (Section 3.7.5 explains how the initial assigned vertex v is picked). It

then traverses the branch-and-bound tree in DFS order (to keep space usage

low). Each node (A, B) of the tree is processed in four steps.

Step 1 computes the flow bound f ; the exact algorithm is explained in Sec-

tion 3.7.3. If f ≥ U, we prune (discard the node) and backtrack. If f < U and

the corresponding minimum cut (A′, B′) is balanced enough (i.e., if w(A′) ≥ W−

and w(B′) ≥ W−), we have found a better feasible solution; we thus update the

best known upper bound (U ← f ), remember the corresponding bisection, and

prune (since the flow bound f matches the new upper bound U). Otherwise (if

f < U but the cut is not balanced), we remove the flow edges from G (creating

G f ), and proceed to the second step.

Step 2 computes a tree packing T in G f and the corresponding packing

bound p(T ), as described in Section 3.4. If f + p(T ) ≥ U, we prune. Otherwise,
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we proceed to the third step.

Step 3 applies the forced assignment rules introduced in Section 3.5, which

may result in some vertices being added to A or B. If an inconsistency is detected

(if assigning the same vertex to either A or B would push the lower bound above

U, or if either side becomes too heavy), we prune. Otherwise, we proceed to the

fourth step.

Step 4 picks a vertex v ∈ V \ {A, B} to branch on (using rules explained in

Section 3.7.5) and creates two subproblems, (A∪{v}, B) and (A, B∪{v}), which are

added to the branch-and-bound tree.

Steps 2 and 3 have already been discussed in detail. The remainder of this

section focuses on the other aspects of the algorithm: criteria for using decom-

position, flow computation, upper bound updates, and branching rules.

3.7.2 Decomposition

The first step of our algorithm is to decide whether to use decomposition or

not. Intuitively, one should use decomposition when the upper bound U on the

solution value is significantly higher than the degrees of the first few vertices

we branch on, since they would lead to a very deep branch-and-bound tree.

We implement this idea by first computing a best-case estimate of the depth

of the branch-and-bound tree without decomposition. We use the assumption

that branching on a vertex of degree d increases the overall packing bound by

d/2 (the intuition for this was explained in Section 3.6: in good cases, roughly

half of the d new trees will be selected by the greedy algorithm). We sort all ver-
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tices in the graph in decreasing order of degree and count how many vertices x

would be required for the accumulated degree to reach 2U. If x ≤ max{5, log2 U},

we do not use decomposition, since there are potentially enough high-degree

vertices to ensure we have a small branch-and-bound tree. Intuitively, decom-

position would require at least one node in each of the U branch-and-bound

trees, which is roughly equivalent to a single tree of height log2 U. Otherwise

(if x > max{5, log2 U}), we compute a rough estimate cdeg of the degree of all

clumps that would be assigned to each subproblem, given by the average num-

ber of edges per subproblem (m/U) multiplied by the average degree of each

vertex in the graph (2m/n). We only use decomposition if cdeg ≥ 2U.

We stress that this is (once again) just a heuristic, and it is not hard to come

up with instances for which it would make the wrong decision. That said, this

heuristic is easy to compute and it works well enough for the large (and diverse)

set of instances considered in our experiments, allowing us to use the same

settings for all inputs we test, with no manual tuning. In applications in which

a more robust approach is needed, one could simply run both versions of the

algorithm (with and without decomposition) in parallel and stop after one of

them finishes. This method is guaranteed to be within a factor of two of the best

choice in the worst case. Also note that, in general, using decomposition is a

safer choice: although it can slow down the entire algorithm by a factor of at

most U (even when it is not effective), it can lead to exponential speedups for

some instances.
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3.7.3 Flow Computation

Although the flow-based lower bound is valid regardless of the actual edges

in the flow, the packing bound is better if it has more edges to work with,

since fewer vertices tend to be unreachable and trees are more intertwined. We

therefore prefer maximum flows that use relatively few edges: instead of using

the standard push-relabel approach [48], we prefer an augmenting-path algo-

rithm that greedily sends flows along shortest paths. Specifically, we use the

IBFS (incremental breadth first search) algorithm [50], which is sometimes slower

than push-relabel by a small constant factor on the instances we test, but still

faster than computing the packing bound. Note that we could minimize the to-

tal number of edges using a minimum-cost maximum flow algorithm, but this

would be considerably slower.

3.7.4 Upper Bound

As already mentioned, we only update the best upper bound U when the min-

imum A–B cut happens to be balanced; we use no additional heuristics to find

improved valid solutions. This approach works well enough in practice, at least

if the initial upper bound U is relatively close to the actual solution. If the ini-

tial value is significantly higher, our pruning techniques are ineffective, and the

DFS traversal of the branch-and-bound tree can go extremely deep. For robust-

ness, we thus avoid using the upper bound provided by a pure heuristic, such

as CHACO [56], METIS [67], or SCOTCH [20, 86]. Although they work well in

general, they can be off by a large margin for some instances, severely compro-

mising the performance of our algorithm.
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When no good initial upper bound is known, we therefore simply call the

branch-and-bound algorithm repeatedly with increasing values of U, and stop

when the bound we prove is actually lower than the input bound. We use U1 = 1

for the first call and Ui = d1.05 Ui−1e for call i > 1. Since the algorithm has

exponential dependence on U, solving the last problem (the only one where Ui

is greater than the optimum) takes a significant fraction of the total time. The

overhead of previous calls is a relatively modest constant factor.

That said, we use a couple of simple strategies that sometimes allow us to

increase Ui faster between iterations, thus saving us a small factor. Consider a

run of our branch-and-bound routine with upper bound Ui. If we run it without

decomposition and compute a lower bound Li > Ui on the root of the branch-

and-bound tree, we set Ui+1 = max{d1.05 Uie, Li + 1}. If we run the algorithm with

decomposition, recall from Section 3.6.1 that we calculate packing bounds for

4Ui/3 subproblems to guide the distribution process. Let h be the largest integer

such that at least h such subproblems have a lower bound of h or higher. From

the proof of Theorem 4, it follows that h is a lower bound on the solution of the

original problem. We can then set Ui+1 = max{d1.05 Uie, h + 1}.

3.7.5 Branching

If the lower bound for a given subproblem (A, B) is not high enough to prune

it, we must branch on an unassigned vertex v, creating subproblems (A ∪ {v}, B)

and (A, B∪ {v}). Our experiments show that the choice of branching vertices has

a significant impact on the size of the branch-and-bound tree and on the total

running time. Intuitively, we should branch on vertices that lead to higher lower
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bounds on the child subproblems. Given our lower-bounding algorithms, we

can infer some properties the branching vertex v should have. Based on these

properties, we compute a score for each vertex v, then branch on the vertex with

the highest score. We discuss each property in turn (in roughly decreasing order

of importance), then explain how they are combined into an overall score.

The first criterion we use is the degree deg(v) of each vertex v. Branching

on high-degree vertices helps both the flow bound (by increasing the capacity

out of the source or into the sink) and the packing bound (more trees can be

created).

Second, we prefer to branch on vertices that are incident to heavier trees,

since this would allow these trees to be split when a new packing bound is

computed. To measure this, we define a branching parameter tweight(v). If v is

reachable from either A or B in G f , we set tweight(v) to the average weight of

the trees adjacent to v (the average is weighted by v’s own allocation). If v is

unreachable from neither A nor B, tweight(v) is set to the average weight of all

trees in the packing (rooted at either A or B).

Third, we avoid branching on vertices reachable from B (the smaller side)

in G f , since splitting trees on this side will not (immediately) help improve the

packing bound. We do so by associating a side penalty sp(v) to each vertex v, set

to 1 if v is reachable from B, and 10 otherwise.

Fourth, we branch on vertices that are far from both A and B, since having

assigned vertices spread around the graph helps maintain the trees balanced in

the packing bound. Accordingly, we define dist(v) as the distance in G from v to

the closest vertex in A∪ B. A single BFS is enough to find the distances between
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A∪B and all vertices. If vertex v is not reachable from A∪B we set dist(v) = M+1,

where M is the maximum finite distance from A ∪ B.

Finally, it pays to treat disconnected graphs in a special way. Intuitively, it

makes sense to branch on larger components first, since they tend to have more

impact on the packing bound. We thus associate with each vertex v a value

comp(v), defined as the total vertex weight of the component that contains v.

Putting it all together. The relative importance of these five criteria varies

widely across instances. For most instances, using just the degree is enough.

The remaining four criteria are useful for robustness: they never hurt much,

and can be very helpful for some specific instances. The comp(v) parameter is

crucial for disconnected instances, for example.

We combine all parameters in the most natural way, essentially by taking

their product. More precisely, we branch on the vertex v that maximizes q(v) =

(deg(v) + 1)2 · (tweight(v) + 1) · (dist(v) + 1) · sp(v) · comp(v). The “+1” terms ensure

all factors are strictly positive; a single zero in the expression would render all

other factors irrelevant. We take the square of deg(v) term to reflect the fact

that degrees are the most relevant criterion. We emphasize that there is nothing

special about this particular expression; other approaches could be used as well,

but this one showed good results in practice.
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3.8 Edge Costs

Our description so far has assumed that all edges in the input graph have unit

cost, but our actual implementation supports arbitrary integral costs. This sec-

tion shows how we accomplish this.

First, we note that all algorithms we described can handle parallel edges.

Therefore, if the original edges have small costs, we can simply replace them by

parallel (unit) edges. In fact, this is how we deal with potential high-cost edges

after contraction. To handle arbitrarily large integral costs efficiently, however,

we need something more elaborate.

Extending the flow bound is straightforward: we still perform a standard

maximum-flow computation between A and B, using edge costs as capacities.

The only difference is when we “remove” the flow to create G f and compute the

packing bound. If the flow through an edge e of capacity c(e) is f (e), removing

the flow still leaves an edge of (residual) capacity r(e) = c(e)− f (e). If c(e) = f (e),

we just remove the edge, as before.

Tree packing. Extending the packing bound is less straightforward. We gen-

eralize tree packings as follows. First, we associate to each tree in the packing

an integral thickness. Each edge e may belong to more than one tree, but the sum

of the thicknesses of these trees must not exceed r(e), the residual capacity of

e. Intuitively, each edge allocates portions of its cost to different trees, with the

portion allocated to tree t equal to t’s thickness. In practice, we split each edge

into multiple edges with smaller (potentially different) costs; we then build trees

as before, but ensure that every edge within the same tree has exactly the same
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cost (corresponding to the thickness of the tree).

More precisely, we handle large costs by splitting each edge into a collec-

tion of parallel subedges, each with a cost taken from a discrete set of val-

ues. The exact parameters of this split depend on the average edge cost

γ = [
∑

e∈E cost(e)]/|E|. If γ ≤ 10, we simply split each original edge into unit-cost

edges. If γ > 10, we use a scaling approach to compute disjoint sets of trees in

decreasing order of thickness. For each threshold θi (with θ0 > θ1 > . . . > θk = 1),

we create a partial graph Gi in which every edge has cost θi. For each edge e in

the original graph G, we create bcost(e)/θic parallel edges in Gi. We then use our

standard algorithm to compute a tree packing Ti in Gi. For each edge in Ti, we

subtract τe from the current cost of the corresponding edge e in G. Note that

every tree in Ti has thickness exactly θi. To create our final tree packing T , we

simply take the union of the trees in all Ti packings, with their original thick-

nesses. We set the initial threshold to θ0 = bγ/
√

10c, then set θi = ηbθi−1c between

iterations. The step η < 1 is chosen so as to make the total number of steps

approximately equal to log10 γ.

After the trees themselves are created, we use the algorithm described in

Section 3.4.2 to allocate vertex weights to the trees, but taking thicknesses into

account. Our goal is to have the ratio between the weight and the thickness to

be roughly the same across all trees, the reason will become clear soon. Both

phases described in Section 3.4.2 (initial allocation and local search) can be triv-

ially generalized to accomplish this, with no penalty in asymptotic performance.

Once again, it suffices to interpret a thick tree as a collection of identical trees

with unit thickness.
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Calculating the Packing Bound. We now consider how to compute the pack-

ing bound associated with a tree packing T that is heterogeneous, i.e., contains

trees with different thicknesses. First, note that correctness is not an issue: we

could simply create a homogeneous packing T ′ from T (by replacing each tree

of thickness of k by a collection of k trees of unit thickness); the bound given

by Theorem 4 ( f + p(T ′)) is still valid. Since T ′ may be quite large, however,

computing such bound explicitly would be expensive.

We therefore generalize the greedy algorithm to deal with heterogeneous

tree packings directly. Note that this is essentially the fractional knapsack prob-

lem, so instead of picking trees in decreasing order of weight, we process them

in decreasing order of profit, defined as the ratio between weight and thickness.

We take the trees in this order their cumulative weight is about to exceed the

target weight W f ; the packing bound is the sum of their thicknesses, together

with the fractional weight (rounded up) of the tree at the threshold.

Forced Assignments. The forced assignment routines described in Section 3.5

enable us, in some situations, to assign a vertex v to one side of the bisection

without the need for an explicitly branch. These routines can be generalized to

handle heterogeneous tree packings.

For the plain flow-based assignments, we must add up the thicknesses of the

parent edges of v. In the extended flow-based assignment, when considering a

path through a child edge e, the increase in flow is equal to minimum between

the thicknesses of tree(e) (the tree containing e) and xv(e) (the expansion tree). Fi-

nally, the subdivision-based assignment remains essentially unchanged, except

for the fact that newly-created trees may have thickness greater than one.
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Decomposition. Our decomposition technique can be generalized as in the

packing bound. First one splits each high-cost original edge into a small num-

ber of cheaper edges. For each such cost, one partitions the corresponding edges

into clumps, which are then distributed to different subproblems, as before. One

then solves each such subproblem independently (contracting the clump edges

as usual), and return the best solution found. We require all clumps assigned to

a given subproblem to have the same thickness k, therefore solving this subprob-

lem is equivalent to solving k independent subproblems with thickness one. For

correctness, therefore, it suffices to have the sum of the thicknesses of all sub-

problems be at least U, the upper bound on the solution value.

Branching. When branching, we define the degree deg(v) of a vertex v as the

sum of the costs of its incident edges.

3.9 Very Large Graphs

Our experiments showed that our algorithm produces a relatively small branch-

and-bound tree when the size of the optimal bisection is small when compared

to the number of vertices in the graph. We are still unable to solve to optimality

instances in this case when the graph is very large, because of the time required

to compute lower bounds and forced assignments in each node of the branch-

and-bound tree.

As an example, consider the instance USA, which consists of a complete road

map of the USA, with almost 24 million vertices and 29 million edges, whose

optimal solution is only 87 where each node takes roughly 20 minutes to be

67



solved (initialization, maximum flow, packing bound, forced assignment, and

branch node selection). This can also be observed in other similar graphs.

One observation to be made is that usually the branch-and-bound tree is

very unbalanced, with most branches being pruned in a very low height, and

the branch in the neighborhood of the optimal solution going deeper (see Fig-

ure 3.2). This suggests an approach that makes all shallow nodes cheaper with

possibly weaker bounds, and concentrate effort on the (few) deep nodes.

Figure 3.2: Example of a branch-and-bound tree showing frontier. Note that only the branches
close to where the solution is (bottom right) are deep.

Another observation is that a relatively small number of edges is used to

compute the flow bound in graphs of this nature, and that several small sub-

graphs will always be given to the same tree if none of its nodes are fixed (for

instance, a cul-de-sac in a road network).

To exploit those observations we will create a graph Gflow with pre-assembled

flow paths and a graph Gtree with pre-assembled trees that will be small compared
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to G. Let V ′ ⊆ V be a set of important vertices of G (we will show how to compute

them in Subsection 3.9.1.) In this section we restrict ourselves again to unit edge

costs/capacities for ease of exposition.

Graph Gflow = (V ′, E f ) has edges corresponding to edge-disjoint paths in

G. If (u, v) ∈ E f then there is a path P(u, v) in G from u to v, where P(x, y) for all

(x, y) ∈ E f are disjoint.

Graph Gtree = (Vt, Et) is a little more complex. Vertices t ∈ T correspond to

edge-disjoint trees of G each touching exactly one node of t(V ′) ∈ V ′. There is an

edge (t1, t2) if the edge-disjoint trees t1 and t2 share a vertex different from t1(V ′).

Suppose we restrict ourselves to only branch on nodes in V ′. A max A–B-

flow in Gflow with value f ′ is clearly a lower bound to a max A–B-flow in G.

Let Ē be the set of edges of G used by such a maximum flow F in Gflow. In

other words, Ē =
⋃

(u,v):F(u,v)=1 P(u, v).

Definition 4. An edge-disjoint connected subgraph packing of a graph G = (V, E)

and subset A ⊆ V is a collection of connected subgraphs of G such that (1) each edge

belongs to at most one subgraph, (2) each subgraph contains exactly one edge connecting

a vertex in A to a vertex not in A, and (3) we cannot add an edge to any subgraph while

maintaining the previous two conditions.

Note that an edge-disjoint connected subgraph packing where all subsets are

acyclic is an edge-disjoint tree packing. Note also that the proof of Theorem 4

does not use the fact that the subsets are acyclic, only that they are connected.

Therefore the lower bound is valid for edge-disjoint connected subgraph pack-

ings also. We cannot perform subdivision and extended flow assignments in

an efficient way anymore, since there is no notion of “weight of a subtree” in
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connected graphs with cycles.

Let V̄t be formed by pre-assembled trees parts t that do not contain any edge

of Ē. As before assume that A is the main side, and let T′ ⊆ T be the set of

pre-assembled trees that touch A, in other words T′ = {t : t(V ′) ∈ A}. Then

a vertex-disjoint tree packing with roots on T′ on the subgraph induced by V̄t

corresponds to an edge-disjoint connected subgraph packing on G, say, with

value p. Therefore f ′ + p is a valid lower bound for the current branch-and-

bound node by Theorem 4. We will show how to compute such vertex-disjoint

tree packing in Subsection 3.9.2. Another way of thinking of the vertex-disjoint

tree packing on Gtree is by considering assembling subgraphs by using several

pre-assembled trees.

Note that while the lower bound might be smaller we deal with each branch-

and-bound node considerably faster since we run our algorithms in graphs

smaller by orders of magnitude.

We proceed by using Gflow and Gtree if the depth of the current node in

the branch-and-bound tree is not greater than a threshold γ. When the depth is

larger than γ we use the algorithm described in Section 3.7. This clearly leads

to a correct algorithm, regardless of V ′, Gflow and Gtree. Experiments showed

that γ = 10 gives good results for graphs with a few tens of millions of vertices.

3.9.1 Computing Gflow and Gtree

We need to select the subset V ′ ⊆ V of special nodes. We want V ′ to be small,

but to represent V well. Intuitively we want to have at least one vertex v ∈ V ′ in
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each highly connected component of V .

Selecting V ′ We do it by selecting random pairs of vertices with probability

proportional to the square of their degrees and computing the maximum flow

between them. If it is smaller than the known upper bound U we select such

a node pair as a candidate pair, and record the maximum flow between them.

They are not highly connected.

After such a selection of candidates is done we sort the pairs in increasing

order of flow between them, and consider including both vertices in V ′. We in-

clude both if (1) it is the first candidate pair considered, (2) one of the vertices is

already in V ′, or (3) the average maximum flow from the pair to vertices already

in V ′ is smaller than a threshold. We test condition 3 by selecting a random

subset of V ′.

We aim for a V ′ whose size is close to 0.5% if the size of V . To give concrete

numbers, in the road map of Italy, for instance (a graph with 6.6M vertices and

7M edges) we create V ′ with 41K vertices, 66K flow paths and 160K trees. Gflow

is roughly 0.1%, and Gtree is roughly 2.5% the size of the original graph.

After computing Gflow and Gtree we store the following data structures.

For each vertex v ∈ V ′ we store which vertex v(V) ∈ V it corresponds to. For each

edge (u, v) ∈ E f we store the list of edges of P(u, v) in an array. For each edge of

G we store in what pre-assembled tree ti that edge belongs to (if any).

Computing Gflow After we have V ′ we compute Gflow by finding maximum

flows between random pairs of vertices u, v ∈ V ′ with probability of choosing u

proportional to the maximum flow associated with the candidate pair u came
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from. We then decompose the flow in paths, and create an edge of Gflow that

represents such path (recording the edges of G that are being represented by the

new edge). We remove the edges with flow, and repeat for a fixed number of

iterations (10 log2 N works well in practice).

After all iterations we should add a few more edges to Gflow as to guar-

antee that the selected paths correctly cuts all pairs of nodes u, v ∈ V ′. Let

V ′ = {v0, v1, . . . , v|V′ |−1}, and think of the index i of vi written in binary. Let L

be the number of bits necessary to write |V ′| − 1. We compute maximum flows

between V ′0j and V ′1j for j = 0, . . . , L − 1 where V ′kj is the set of nodes of V ′ where

the j-th bit is k, removing the flow edges after each maximum flow computa-

tion. Since each pair of vertices of V ′ will be in different sides of the partition at

least once, the selected paths will correctly cut all pairs of vertices.

Computing Gtree We compute the vertices of Gtree (pre-assembled trees of

G) simply by calling our tree packing procedure on V ′. The weight of a vertex

of Gtree is the total weight allocated to it by its vertices in the algorithm. To

compute the edges of Gtree we have to find, for each tree, the set of subtrees it

touches. Suppose the vertices of Gtree (trees of G) are ordered as t1, . . . , tr. We

process them in order from t1 to tr. We also maintain a timestamp for each tree t j

that tells to which trees list tree j was last added.

While processing tree ti we maintain a go to each of its vertices in BFS or-

der (the order is not important for correctness but BFS is the most efficient tree

traversal method) and scan all its edges for trees. If an edge belong to tree t j

with i , j and the timestamp of t j is strictly smaller than i we update the times-

tamp of t j to i and add edge (ti, t j) to Gtree if i > j (to avoid two edges to be
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added). The whole traversal runs in O(
∑

v∈V deg(v)) = O(m∆), since each node v

is scanned O(deg(v)) times.

3.9.2 Computing Bounds Based on Gflow and Gtree

As before, suppose we have a partial assignment (A, B) of V , and suppose fur-

thermore that A, B ⊆ V ′, the set of important vertices, and let A be the main

side.

Flow Bound Start by finding a maximum A–B-flow on Gflow with value f

using IBFS [50]. Then, for each edge (u, v) of Gflow with positive flow, go

through the list of edges of P(u, v) in G, and for each edge, if it is present in

a pre-assembled tree (vertex of Gtree) ti, mark ti as “invalid”.

Packing Bound We then compute a vertex-disjoint tree packing of Gtree with-

out using any invalid vertices ti. Note that since the pre-assembled trees are

edge-disjoint (in G), we have that a vertex-disjoint tree packing will correspond

to a packing of G that is clearly (1) edge-disjoint and (2) connected (by the way

we define edges of Gtree). In other words, it will be an edge-disjoint connected

subgraph packing of G. To compute it we follow an adaptation of the simul-

taneous depth-first search from Subsection 3.4.1, where when looking for an

expanding edge (u,w) all we require is that w is free, i.e. it does not belong to

any tree already. Since the trees are vertex-disjoint the vertex allocation is trivial,

our only option is give the entire weight of a vertex to the unique tree containing

it, if such tree exists.
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After that a similar greedy algorithm gives the packing bound.

3.10 Graphs With Big Unreachable Areas After Removing Flow

Edges

When the graph has several vertices of small degree the flow edges can create a

“barrier” for the tree packing. In an extreme example, suppose we are dealing

with a 3-regular graph. Every free node touched by flow edges will have two

of its edges not present in G f . This essentially disconnects it to “one side of the

graph”, and creates a big amount of deadweight, which renders the packing

bound useless. See Figure 3.3.

(a) Full Instance (b) Details of one of the “bad” areas

Figure 3.3: Tree Packing on instance t60k with big amount of deadweight

In Figure 3.3 bold edges have flow in them, while colors different from gray

represent trees of the tree packing. In Figure 3.3a we can see some big regions

of uncolored vertices (deadweight) on the left of “central hole”. In Figure 3.3b

we can see details of one such big region. As seen trees cannot break through

the barrier created by the flow edges.
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Note that this is an issue present in several important classes of graphs, like

road networks and meshes.

Our solution to this problem is essentially to allow “fractional flows” where

we only use “part of an edge”. Instead of modifying IBFS to allow fractional

flows we expanded the graph by replacing each edge (u, v) with k parallel paths

between u and v, and give cost/capacity of 1/k to each one of them. We also

introduce new artificial vertices so that the k parallel paths between u and v

have length 1, 2, . . . , k (see Figure 3.4).

Figure 3.4: Fractional flow transformation with k = 3

3.11 Experiments

We now evaluate the performance of our branch-and-bound algorithm on sev-

eral benchmark instances from the literature. Subsection 3.11.1 starts our ex-

perimental analysis by comparing our method with state-of-the-art exact ap-

proaches. We show that, although our algorithm is outperformed on some

graphs (notably those with high expansion), it is much faster than existing ap-

proaches on a wide variety of realistic graph classes, such as sparse graphs with

relatively small bisections. This motivates our second set of experiments, re-

ported in Subsection 3.11.2, which shows that our approach can solve, for the

first time, large instances (with tens of thousands of vertices) to optimality. In

Subsection 3.11.3 we present results from very large graphs by using the algo-
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rithm of Section 3.9. In Subsection 3.11.4 we present the improvements achieved

by the fractional flow technique developed on Section 3.10. Subsection 3.11.5

studies the relative importance of each of the many elements of our algorithm,

such as forced assignments and decomposition strategies.

We implemented our algorithm in C++ and compiled it with full opti-

mization on Visual Studio 2010. All experiments were run on a single core

of an Intel Core 2 Duo E8500 with 4 GB of RAM running Windows 7 Enter-

prise at 3.16 GHz. All instances tested, as well as the solutions found by our

algorithm, are available at http://www.cs.princeton.edu/˜rwerneck/

bisection/ or upon request.

3.11.1 Exact Benchmark Instances

Our first experiment compares our algorithm with the results reported by Hager

et al. [52]. They use standard benchmark instances (originally considered by

Brunetta et al. [16]) to compare their own quadratic-programming-based algo-

rithm (CQB) with other state-of-the-art methods from the literature: BiqMac [90]

(semidefinite programming), KRC [66] (also semidefinite programming), and

SEN [96] (multicommodity flows).

Table 3.1 and Table 3.2 compare the performance of our algorithm against

the results reported by Hager et al. [52]. For each instance, we show the number

of vertices (n) and edges (m), the value of the optimum bisection (using ε = 0),

followed by the number of branch-and-bound nodes (BB) and the running time

of our algorithm (TIME). In this and other experiments we run our algorithm a

single time. While the algorithm is random preliminary experiments indicated

76



Table 3.1: Performance on standard benchmark instances. Columns indicate number of
vertices (n) and edges (m), optimum bisection value (opt), number of branch-and-bound nodes
(BB) for our algorithm, and running times in seconds for our method (TIME) and others (CQB,

BiqMac, KRC, SEN); “—” means “not tested” and DNF means “not finished in 2.5 hours”.

CLASS NAME n m opt BB TIME CQB BiqMac KRC SEN
grid 2x16 32 46 8 29 0.01 0.05 0.06 0.10 —

18x2 36 52 6 32 0.01 0.06 0.04 0.05 —
2x19 38 55 6 60 0.02 0.09 2.91 1.44 —
5x8 40 67 18 36 0.02 0.08 0.06 0.05 —
3x14 42 67 10 47 0.02 0.10 0.56 0.47 —
5x10 50 85 22 47 0.03 0.22 0.25 0.24 —
6x10 60 104 28 63 0.03 0.26 3.59 8.38 —
7x10 70 123 23 83 0.05 0.41 17.05 14.63 —

fem m4.i 32 50 6 31 0.01 0.03 0.03 0.02 0.11
ma.i 54 72 2 17 0.01 0.13 0.04 0.08 0.22
me.i 60 96 3 12 0.01 0.16 0.11 0.10 0.22
m6.i 70 120 7 30 0.01 0.35 0.54 0.97 1.13
mb.i 74 120 4 39 0.01 0.29 0.49 0.77 0.90
mc.i 74 125 6 41 0.01 0.32 0.39 1.21 1.13
md.i 80 129 4 38 0.01 0.42 0.69 0.76 1.01
mf.i 90 146 4 36 0.01 0.53 1.12 0.63 1.46
m1.i 100 155 4 57 0.02 0.78 14.77 28.76 2.36
m8.i 148 265 7 46 0.02 3.43 2.41 8.43 3.26

mixed 2x17m 34 561 316 32971 22.07 1.21 0.91 0.76 —
10x4m 40 780 436 180068 158.64 2.99 0.04 0.05 —
5x10m 50 1225 670 6792445 8006.36 223.14 0.11 0.05 —
13x4m 52 1326 721 DNF DNF 853.07 0.50 0.89 —
4x13m 52 1326 721 DNF DNF 571.58 0.52 0.89 —
9x6m 54 1431 792 DNF DNF 2338.03 0.42 0.32 —
10x6m 60 1770 954 DNF DNF 2051.07 0.24 0.20 —
10x7m 70 2415 1288 DNF DNF 3975.26 0.31 0.36 —

that changing the seed of the random generator does not affect the results too

much. The final four columns show the running times reported by Hager et

al. [52] for all competing algorithms (when available). The times reported by

Hager et al. [52] are already scaled to reflect the approximate execution time on

their machine, a 2.66 GHz Xeon X5355. To make the resulting times consistent

with our (slightly faster) machine, we further multiply those results by 0.788.2

2The scaling factor was obtained from http://www.cpubenchmark.net/
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Table 3.2: Performance on standard benchmark instances. Columns indicate number of
vertices (n) and edges (m), optimum bisection value (opt), number of branch-and-bound nodes
(BB) for our algorithm, and running times in seconds for our method (TIME) and others (CQB,

BiqMac, KRC, SEN); “—” means “not tested” and DNF means “not finished in 2.5 hours”.

CLASS NAME n m opt BB TIME CQB BiqMac KRC SEN
random q0.00 40 704 1606 DNF DNF 294.11 0.19 0.10 —

q0.10 40 647 1425 DNF DNF 159.23 2.83 1.07 —
q0.20 40 566 1238 4122814 5541.47 52.02 3.03 0.65 —
q0.30 40 506 1056 949311 1261.00 29.48 4.42 1.62 —
q0.80 40 145 199 1004 0.52 0.16 5.65 1.81 —
q0.90 40 78 63 175 0.06 0.09 0.23 0.10 —
c0.00 50 1108 2520 DNF DNF 1892.41 10.98 3.68 —
c0.10 50 1003 2226 DNF DNF 1406.71 12.21 4.18 —
c0.30 50 802 1658 DNF DNF 1743.65 18.45 4.30 —
c0.70 50 350 603 105712 107.94 12.49 13.31 6.35 —
c0.80 50 235 368 11056 8.61 1.46 9.91 4.83 —
c0.90 50 130 122 388 0.22 0.18 0.28 0.26 —
c2.90 52 137 123 354 0.21 0.20 0.36 0.32 —
c4.90 54 149 160 993 0.53 0.32 0.52 2.60 —
c6.90 56 166 177 1340 0.79 0.52 0.30 0.79 —
c8.90 58 179 226 4993 2.94 1.56 22.42 13.81 —
s0.90 60 195 238 2630 1.76 1.16 4.38 7.80 —

tori 8x5 40 80 33 108 0.03 0.09 0.13 0.16 —
21x2 42 63 9 24 0.01 0.02 0.17 0.13 —
23x2 46 69 9 78 0.02 0.13 8.63 3.28 —
4x12 48 96 24 39 0.02 0.16 0.23 0.44 —
5x10 50 100 33 80 0.03 0.17 0.30 0.16 —
6x10 60 120 35 77 0.05 0.34 4.75 9.19 —
7x10 70 140 45 140 0.08 0.57 0.64 15.02 —
10x8t 80 160 43 93 0.05 0.64 3.75 24.79 —

debruijn debr5 32 61 10 145 0.02 0.06 0.06 0.16 0.00
debr6 64 125 18 2583 0.60 0.38 0.66 12.32 0.79
debr7 128 253 30 109039 19.67 2436.76 371.89 2204.00 8.10

Note that we do not give any upper bound U to our algorithm; it simply tries

increasing values of U as needed, as described in Section 3.7.4. The statistics we

report aggregate over all such runs. For each value of U, we use the automated

approach described in Section 3.7.2 to decide whether to use decomposition or

not.

singleThread.html.
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The instances in this experiment are divided in classes according to their

properties. Class grid corresponds to h × k rectangular grids with integral edge

costs picked uniformly at random from the range [1, 10]. Class tori is similar,

but with extra edges to make the grids toroidal. Each instance in class mixed

consists of an h × k grid (with random edge costs in the range [1, 100]) to which

extra edges (with random costs in the range [1, 10]) are added in order to create

a complete graph. Class random contains random graphs of various densities

and edge costs in the range [1, 10]. Class fem contains finite element meshes. Fi-

nally, debruijn contains de Bruijn graphs, which are useful in parallel computer

architecture applications.

Table 3.1 shows that our method can solve all grid, fem, and tori instance in

a few hundredths of a second; the difference to other approaches increases sig-

nificantly with the size of the instances, indicating that our algorithm is asymp-

totically faster. Our algorithm also does well on debruijn instances, on which it

is never far from the best algorithm.

For mixed and denser random instances, however, our method is clearly out-

performed, notably by the methods based on semidefinite programming (Biq-

Mac and KRC). For these instances, the ratio between the solution value and

the average degree is quite large, so we can only start pruning very deep in the

tree. Decomposition would not help, since it would contract very few edges per

subproblem.

Intuitively, our method does well when the number of edges in the bisection

is a small fraction of the total edge cost, which is not the case for mixed and

random, but is definitely the case for grid-like graphs.
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Our second experiment considers benchmark problems compiled by Arm-

bruster [6] from previous studies. They include instances used in VLSI design

(alue, alut, diw, dmxa, gap, taq) [41, 64], finite element meshes (mesh) [41], ran-

dom graphs (G) [61], random geometric graphs (U) [61], as well as graphs de-

rived from sparse symmetric linear systems (KKT) [54] and compiler design

(cb) [62]. In each case, we use the same value of ε tested by Armbruster, which

is either 0 or 0.05.

Table 3.3 reports the results obtained by our algorithm. For comparison, we

also show the best running times obtained by Armbruster et al. [5, 7, 8] (using

linear or semidefinite programming, depending on the instance) and by Hager

et al. [52] (using CQB). As before, we multiply the times reported by Hager et

al. by 0.788; similarly, we multiply the times reported by Armbruster [5] (on a

3.2 GHz Pentium 4 540) by 0.532 for consistency with our machine. Results for

other algorithms (such as KRC and BiqMac) are only available for a tiny fraction

of the instances in this table, and are thus discussed in the text only whenever

appropriate.

The table includes all instances that can be solved by at least one method

in less than 150 minutes in our machine (roughly corresponding to the 5-hour

time limit set by Armbruster [5]), except those that can be solved in less than 5

seconds by both our method and Armbruster’s. Note that we can solve every

instance in the table to optimality. Although our method can be slightly slower

than Armbruster’s (notably on alue6112.16896), it is usually much faster, often

by orders of magnitude. We can solve in minutes (or even seconds) several

instances no other method can handle in hours.

Our approach is significantly faster than Hager et al.’s for mesh, KKT, and
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Table 3.3: Performance of our algorithm compared with the best times obtained by
Armbruster [5] and Hager et al. [52]. Columns indicate number of nodes (n), number of edges
(m), allowed imbalance (ε), optimum bisection value (opt), number of branch-and-bound nodes
(BB), and running times in seconds for our method (TIME) and others ([Arm07], CQB); “—”

means “not tested” and DNF means “not finished in 2.5 hours”.

NAME n m ε opt BB TIME [Arm07] CQB
G124.02 124 149 0.00 13 376 0.06 7.40 3.32
G124.04 124 318 0.00 63 166799 35.11 2334.24 751.46
G250.01 250 331 0.00 29 42421 10.86 974.76 7963.64
KKT capt09 2063 10936 0.05 6 30 0.15 619.72 3670.97
KKT skwz02 2117 14001 0.05 567 902 10.97 DNF —
KKT plnt01 2817 24999 0.05 46 1564 22.32 DNF —
KKT heat02 5150 19906 0.05 150 4346 83.63 DNF —
U1000.05 1000 2394 0.00 1 45 0.03 28.53 —
U1000.10 1000 4696 0.00 39 315 1.09 883.46 —
U1000.20 1000 9339 0.00 222 16502 149.40 DNF —
U500.05 500 1282 0.00 2 34 0.02 10.54 —
U500.10 500 2355 0.00 26 95 0.16 263.82 —
U500.20 500 4549 0.00 178 27826 104.34 DNF —
U500.40 500 8793 0.00 412 232593 2159.34 DNF —
alut2292.6329 2292 6329 0.05 154 17918 201.44 208.42 —
alue6112.16896 6112 16896 0.05 272 239815 7778.05 2539.85 —
cb.47.99 47 99 0.00 765 141 0.08 2.81 0.23
cb.61.187 61 186 0.00 2826 193 0.63 43.28 0.63
diw681.1494 681 1494 0.05 142 3975 8.25 DNF —
diw681.3103 681 3103 0.05 1011 5659 129.82 DNF —
diw681.6402 681 6402 0.05 330 1234 8.26 2436.09 —
dmxa1755.10867 1755 10867 0.05 150 2417 31.98 DNF —
dmxa1755.3686 1755 3686 0.05 94 8233 45.93 1049.22 —
gap2669.24859 2669 24859 0.05 55 11 0.24 185.64 —
gap2669.6182 2669 6182 0.05 74 2424 24.93 346.35 —
mesh.138.232 138 232 0.00 8 87 0.02 5.44 5.45
mesh.274.469 274 469 0.00 7 57 0.03 4.53 19.40
taq170.424 170 424 0.05 55 246 0.51 15.26 —
taq334.3763 334 3763 0.05 341 2816 5.07 DNF —
taq1021.2253 1021 2253 0.05 118 3009 9.88 90.25 —

sufficiently sparse random graphs (G). For the cb class, the algorithms have sim-

ilar performance (KRC—not shown in the table—has comparable running times

as well). These instances are small but its edges are costly, which means our al-

gorithm is only effective because of the scaling strategy described in Section 3.8.
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Without scaling, it would be two orders of magnitude slower.

With longer runs, Armbruster [5], Hager et al. [52], and BiqMac [90] can

solve denser random graphs G124.08 and G124.16 in a day or less (not shown

in the table). We would take about 3 days on G124.08, and a month or more for

G124.16. Once again, this shows that there are classes of instances in which our

method is clearly outperformed.

The solutions we report were in most cases known; we just proved their op-

timality. We did find better solutions than those reported by Armbruster [5]

in three cases: KKT plnt01, diw681.6402, and taq334.3763. For the last two,

however, Armbruster claims matching lower bounds for his solutions. This

discrepancy could in principle be due to slightly different definitions of W+,

the maximum allowed cell size. We define it as in the 10th DIMACS Imple-

mentation challenge [10] (W+ ≤ b(1 + ε)dW/2ec) whereas Armbruster [5] uses

W+ ≤ d(1 + ε)W/2e; these values can differ very slightly for some combinations

of W and ε. The solutions we found, however, obey both definitions. For KKT -

plnt01, we found a solution with cut size 46, w(A) = 1479, w(B) = 1338, and

an imbalance (defined as max{w(A),w(B)}/dW/2e) of 4.968%. For diw681.6402,

we computed a solution of 330 with w(A) = 1350 and w(B) = 1221 (imbal-

ance 4.977%), while for taq334.3763 our solution of 341 has w(A) = 556 and

w(B) = 503 (imbalance 4.906%). We conjecture that Armbruster’s code actually

uses W+ ≤ (1 + ε)W/2 (without the ceiling). Indeed, with ε = 0.049 our code finds

the same solutions as Armbruster does (49, 331, and 342, respectively). Our

running times are essentially the same with either value of ε.

82



3.11.2 Larger Benchmark Instances

We now show that we can actually solve real-world instances that are much

larger than those shown in Table 3.3. In particular, we consider instances from

the 10th DIMACS Implementation Challenge [10], on Graph Partitioning and

Graph Clustering. They consist of social and communication networks (class

clustering), road networks (streets), Delaunay triangulations (delaunay), ran-

dom geometric graphs (rgg), planar maps representing adjacencies among cen-

sus blocks in US states (redistrict), and assorted graphs (walshaw) from the Wal-

shaw benchmark [100] (mostly finite-element meshes). We stress that these

testbeds were created to evaluate heuristics and were believed to be beyond

the reach of exact algorithms. To the best of our knowledge, no exact algorithm

has been successfully applied to these instances.

Table 3.4 and Table 3.5 report the detailed performance of our algorithm.

For each case, we show the number of vertices (n) and edges (m), the optimum

bisection value (opt), the total number of nodes in the branch-and-bound tree

(BB), and the total running time of our algorithm in seconds. We use ε = 0

for all classes but one: since vertices in redistrict instances are weighted (by

population), we allow a small amount of imbalance (ε = 0.03). We only report

instances that our algorithm can solve within a few hours. Since we deal with

very large instances in this experiment, we save time by running our algorithm

with U = opt+1. (The opt values were gathered over time from preliminary runs

of our own algorithm.) Running times would increase by a small constant factor

if we ran the algorithm repeatedly with increasing values of U. As usual, we use

the heuristic described in Section 3.7.2 to decide whether to use decomposition

in each case.
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Table 3.4: Performance of our algorithm on DIMACS Challenge instances starting from
U = opt + 1; BB is the number of branch-and-bound nodes, and TIME is the total CPU time in

seconds. We use ε = 0 for all classes but redistrict, which uses ε = 0.03.

CLASS NAME n m opt BB TIME

clustering karate 34 78 10 4 0.02
chesapeake 39 170 46 26 0.03
dolphins 62 159 15 32 0.02
lesmis 77 254 61 17 0.03
polbooks 105 441 19 7 0.02
adjnoun 112 425 110 12 488 4.13
football 115 613 61 2 046 1.17
jazz 198 2 742 434 70 787 160.37
celegansneural 297 2 148 982 83 0.78
celegans metabolic 453 2 025 365 359 0.66
polblogs 1 490 16 715 1 213 327 740 7 748.64
netscience 1 589 2 742 0 363 0.20
power 4 941 6 594 12 71 0.32
PGPgiantcompo 10 680 24 316 344 49 381 1 100.62
as-22july06 22 963 48 436 3 515 4 442 279.31

delaunay delaunay n10 1 024 3 056 63 1 422 3.76
delaunay n11 2 048 6 127 86 3 698 17.46
delaunay n12 4 096 12 264 118 9 322 100.49
delaunay n13 8 192 24 547 156 18 245 442.18
delaunay n14 16 384 49 122 225 599 012 31 281.53

redistrict de2010 24 115 58 028 36 43 3.08
hi2010 25 016 62 063 44 887 42.10
ri2010 25 181 62 875 107 921 73.33
vt2010 32 580 77 799 112 1 398 137.09
ak2010 45 292 108 549 48 61 6.62
nh2010 48 837 117 275 146 12 997 2 125.96
ct2010 67 578 168 176 150 11 081 2 988.57
me2010 69 518 167 738 140 12 855 3 215.64
nv2010 84 538 208 499 126 883 259.03
wy2010 86 204 213 793 190 6 113 2 098.37
ut2010 115 406 286 033 198 12 112 5 639.60
mt2010 132 288 319 334 209 3 728 2 129.32
wv2010 135 218 331 461 222 76 644 48 675.42
id2010 149 842 364 132 181 3 822 2 493.53
nj2010 169 588 414 956 150 26 454 21 455.21
la2010 204 447 490 317 125 5 116 4 299.09
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Table 3.5: Performance of our algorithm on DIMACS Challenge instances starting from
U = opt + 1; BB is the number of branch-and-bound nodes, and TIME is the total CPU time in

seconds. We use ε = 0 for all classes but redistrict, which uses ε = 0.03.

CLASS NAME n m opt BB TIME

rgg rgg15 32 768 160 240 181 3 072 615.04
rgg16 65 536 342 127 314 28 301 14 064.83

streets luxembourg 114 599 119 666 17 318 38.22
walshaw data 2 851 15 093 189 26 098 304.59

3elt 4 720 13 722 90 860 10.45
uk 4 824 6 837 19 1 429 6.25
add32 4 960 9 462 11 22 0.15
whitaker3 9 800 28 989 127 992 25.66
crack 10 240 30 380 184 15 271 481.37
fe 4elt2 11 143 32 818 130 1 189 37.40
4elt 15 606 45 878 139 1 903 89.83
fe pwt 36 519 144 794 340 2 569 458.34
fe body 45 087 163 734 262 42 373 6 176.41
brack2 62 631 366 559 731 34 308 20 327.60
finan512 74 752 261 120 162 219 37.85

The table shows that our method can solve surprisingly large instances, with

up to hundreds of thousands of vertices and edges. In particular, we can eas-

ily handle luxembourg, a road network with more than 100 thousand vertices;

the fact that the bisection value is relatively small certainly helps in this case.

Instances of comparable size from the redistrict class are harder, but can still be

solved in a few minutes. We can also find the minimum bisections of rather

large walshaw instances [100], which are mostly finite element meshes. For ev-

ery such instance reported in the table, we show (for the first time, to the best of

our knowledge) that the best previously known bisections, which were found

by heuristics [11, 19, 53, 56, 74, 99] with no time limit, are indeed optimal.

Our algorithm can also deal with fairly large Delaunay triangulations

(delaunay) and random geometric graphs (rgg). The sets of vertices in both

classes correspond to points picked uniformly at random within a square, and
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differ only in how edges are added. Although random geometric graphs are

somewhat denser than the triangulations, the actual cut sizes (bisections) are

not much bigger. Our algorithm can then allocate more edges to each subprob-

lem (during decomposition), which explains why it works better on rgg graphs.

Our algorithm can also find exact solutions for some clustering graphs, even

though the minimum bisection value is much larger relative to the graph size.

The rule described in Section 3.7.2 causes our algorithm to use decomposi-

tion for all instances in Table 3.4, except those from classes clustering (which

can have very high-degree vertices) and redistrict (which are sparse but have a

few high-degree vertices). For a small fraction of the redistrict instances, how-

ever, using decomposition would be slightly faster: solving nj2010, for example,

would be four times quicker with decomposition. As anticipated, the rule is not

perfect, but works well enough for most instances.

To further illustrate the usefulness of our approach, Table 3.6 considers ad-

ditional natural classes of large instances with relatively small (but nontrivial)

bisections. We test three classes of inputs: cgmesh (meshes representing vari-

ous objects [91], commonly used in computer graphics applications), road (road

networks from the 9th DIMACS Implementation Challenge [34]), and steinlib

(sparse benchmark instances for the Steiner problem in graphs [70], mostly con-

sisting of grid graphs with holes representing large-scale circuits). Once again,

we use ε = 0 and U = opt+1. Our algorithm uses decomposition for all instances

tested.

As the table shows, we can find the optimum bisection of some road net-

works with more than a million vertices in less than an hour while traversing

very few branch-and-bound nodes. Decomposition is particularly effective on
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these instances, since a very small fraction of the edges belong to the minimum

bisection. Since the graphs themselves are large, however, processing each node

of the branch-and-bound tree can take a few seconds even with our almost-

linear-time combinatorial algorithms. The main bottlenecks are finding the tree

packing and the flow, which take comparable time. All other elements are rela-

tively cheap: decomposition, allocating vertex weights to trees, the greedy com-

putation of the packing bound (given the trees), and forced assignments. This

relative breakdown holds for all instances tested, not just road networks.

The other two classes considered in Table 3.6 (steinlib and mesh) have larger

bisections and need substantially more branch-and-bound nodes. Even so, we

can handle instances with tens of thousands of vertices in a few minutes.

Finally, Table 3.7 shows the results of longer runs of our algorithm on some

large benchmark instances. For most instances we use ε = 0. The only exception

is taq1021.5480, which is usually tested with ε = 0.05 in the literature [5]; it

is also the only one in the table that does not use decomposition. All runs use

U = opt + 1.

We employ the standard parameter settings (used for all experiments so far)

for all instances but t60k, for which we set the target number of edges per sub-

problem to dm/(150U)e instead of the usual dm/(4U)e. This is a planar mesh in

which most vertices have degree three. This is challenging for our algorithm

because trees from the tree packing cannot “cross” the flow, which often causes

large fractions of the vertices to be unreachable from either A and B (the as-

signed vertices). With so much deadweight, the packing bound becomes much

less effective.
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Table 3.6: Performance on additional large instances with ε = 0, starting from U = opt + 1; BB
is the number of branch-and-bound nodes, and TIME is the total CPU time in seconds.

CLASS NAME n m opt BB TIME

cgmesh dolphin 284 846 26 101 0.16
mannequin 689 2 043 61 3 217 5.26
venus-711 711 2 127 43 182 0.43
beethoven 2 521 7 545 72 388 2.36
venus 2 838 8 508 83 443 3.35
cow 2 903 8 706 79 1 305 7.85
fandisk 5 051 14 976 137 5 254 68.10
blob 8 036 24 102 205 756 280 17 127.04
gargoyle 10 002 30 000 175 18 638 572.57
face 12 530 36 647 174 48 036 1 704.89
feline 20 629 61 893 148 13 758 443.24
dragon-043571 21 890 65 658 148 64 678 4 111.25
horse 48 485 145 449 355 71 616 12 552.44

road ny 264 346 365 050 18 976 380.98
bay 321 270 397 415 18 537 248.13
col 435 666 521 200 29 3 672 2 164.13
fla 1 070 376 1 343 951 25 901 1 640.38
nw 1 207 945 1 410 387 18 166 463.35
ne 1 524 453 1 934 010 24 206 751.48
cal 1 890 815 2 315 222 32 733 2 658.27

steinlib alue5067 3 524 5 560 30 574 2.33
gap3128 10 393 18 043 52 942 10.89
diw0779 11 821 22 516 49 150 3.14
fnl4461fst 17 127 27 352 24 402 8.08
es10000fst01 27 019 39 407 22 452 14.84
alut2610 33 901 62 816 93 802 43.74
alue7065 34 046 54 841 80 4 080 194.52
alue7080 34 479 55 494 80 4 065 200.88
alut2625 36 711 68 117 99 791 50.36
lin37 38 418 71 657 131 14 989 1 184.92

Note that two of the instances (delaunay n15 and t60k) took months of CPU

time. For them, we ran a distributed version of the code using the DryadOpt

framework [17]. DraydOpt is written in C# and calls our native C++ code to

solve individual nodes of the branch-and-bound tree. The distributed version

was run on a cluster where each machine has two 2.6 GHz dual-core AMD
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Table 3.7: Performance on harder instances with ε = 0 (except for taq1021.5480), starting
from U = opt + 1; BB is the number of branch-and-bound nodes, and TIME is the total CPU

time in seconds. The setup varies depending on the instance; see text for details.

CLASS NAME n m opt BB TIME

delaunay delaunay n15 32 768 98 274 320 126 053 466 45 358 801
exact taq1021.5480 1 021 5 480 1 650 3 102 902 105 973
ptv bel 463 514 591 882 80 34 280 27 049

nld 893 041 1 139 540 54 17 966 26 466
rgg rgg17 131 072 728 753 517 34 800 64 072

rgg18 262 144 1 547 283 823 192 966 671 626
streets belgium 1 441 295 1 549 970 72 59 562 192 064

netherlands 2 216 688 2 441 238 45 8 330 56 052
walshaw t60k 60 005 89 440 79 56 681 055 14 378 268

Opteron processors, 16 GB of RAM, and runs Windows Server 2003. We used

100 machines only, and report the total CPU time (the sum of the times spent

by our C++ code on all cores). Note that this excludes the communication over-

head, which is negligible. The remaining instances in the table were solved

sequentially.

To the best of our knowledge, none of these instances has been provably

solved to optimality before. Solutions matching the optimum were known for

t60k [103], taq1021.5480 [5], and rgg17 [93]. We are not aware of any published

solutions for belgium and netherlands. For the remaining three instances, we

improve the best previously known solutions, all found by the state-of-the-art

heuristic of Sanders and Schulz [93]: 867 for rgg18, 81 for bel, and 64 for nld.

(These are the best results for multiple executions of their algorithm; the aver-

age results are 1151, 104, and 120, respectively.) This shows that, in some cases,

our exact algorithm can be a viable alternative to heuristics. For nld, we im-

proved the best known result by more than 18%, probably because the heuris-

tics may have missed the fact that one of the cells in the optimum solution is

disconnected. As we have seen, for smaller or more regular instances, state-of-
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the-art heuristics can find solutions that are much closer to the optimum. Even

in such cases, our algorithm can still be useful to calibrate the precise quality of

the solutions provided.

3.11.3 Very Big Graphs

For a few graphs the reduction in processing time was great. We solved for the

first time gigantic road networks like Italy and USA, and found the best known

solution for Europe. Table 3.8 give a summary of the results.

Table 3.8: Performance on large road network instances with ε = 0, starting from
U = best previously known bound + 1; TIME is the total CPU time, and PREPROCESS is the
time to build Gflow and Gtree. Europe was not proven optimal, but we have the best known

solution.

NAME n m opt TIME PREPROCESS

Italy 6.6M 7M 38 8 hours 2 hours
USA 24M 29M 87 12 days 9 hours
East 3.6M 4.3M 65 13 hours 1 hour
Europe 18M 22M 150∗ 5 days 7 hours

The instances from Table 3.8 are very large and were not expected to be

solved by an exact method. Note that the value of the solution is highly cor-

related with how hard a problem is.

For Europe we found a decomposition with 170 subproblems (that was the

best known solution), and solved the first few branch-and-bound nodes of each

of them to find the most promising to have the optimal solution. We then pro-

ceeded to solve that subproblem to optimality. It is possible that a better solution

exists.
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3.11.4 Fractional Flows

By using fractional flows as in Section 3.10 we solved some low degree instances

for the first time, and greatly reduced the time to solve other instances. See

Table 3.9.

Table 3.9: Performance on instances with small average degree, ε = 0, starting from
U = best previously known bound + 1, and using k = 2 parallel edges for each original edge; BB

is the number of branch-and-bound nodes, and TIME is the total CPU time.

fractional flow integral flow
NAME n m opt BB TIME BB TIME

t60k 60K 90K 79 71K 12 hours 56M 5.5 months
lks 2.8M 3.4M 77 81K 14 days - DNF

A few things to note about Table 3.9. First is the huge improvement seen in

instance t60k when compared to our previous solution. Second, the best known

(heuristic) solution for lks was 188. Our solution has a value of about 40% of the

previously best known solution.

3.11.5 Parameter Evaluation

We now discuss the relative importance of some of the techniques introduced

in this article. One of our main contributions is the packing lower bound. Al-

though we also use the (known) flow bound, it is extremely weak by itself, par-

ticularly when most the nodes are assigned to the same side. As a result, almost

all instances we tested would not finish without the packing bound, even if we

allowed a few hours of computation. The only exceptions are tiny instances,

which can be solved but are orders of magnitude slower.

In the remainder of this section, we evaluate other important aspects of the
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algorithm: the decomposition technique, forced assignments, and the branching

criterion. In every case, we pick a small set of instances for illustration (chosen

to highlight the differences between the strategies), and always run the full al-

gorithm with U = opt + 1 and the same value of ε as in our main experiments

(usually 0). We set a time limit of 12 hours for the experiments in this section.

Table 3.10: Total running times (in seconds) of our algorithm on assorted instances with
different decomposition strategies: no decomposition, random partition of the edges, using

BFS-based clumps, and using both flow-based and BFS-based clumps.

CLASS NONE RANDOM BFS FLOW

G124.04 14.52 499.99 315.36 366.25
alue5067 441.22 225.46 3.12 2.61
cow 572.23 5537.97 12.41 8.53
delaunay n10 25.94 191.46 4.22 4.02
delaunay n11 658.88 4885.87 19.86 18.35
dragon-043571 DNF DNF 21744.69 4128.44
gargoyle DNF DNF 1248.64 578.62
mannequin 57.17 198.18 5.40 6.18

We first consider the decomposition technique. Table 3.10 compares the total

running time of our algorithm when different decomposition techniques (intro-

duced in Section 3.6) are used. We consider four different approaches: (1) no de-

composition; (2) random decomposition (each edge is independently assigned

to each of the U subproblems at random); (3) decomposition with BFS-based

clumps; and (4) decomposition with flow-based and BFS clumps. All remaining

aspects of the algorithm remain unchanged. Note that the standard version of

our algorithm (used in previous experiments) automatically picks either strat-

egy (1) or strategy (4). Strategies (2) and (3) are shown here for comparison

only.

As anticipated, decomposition is useful, but only for a subset of the in-

stances. Instances with relatively large bisections, such as G124.04 (a random

graph) become significantly slower if decomposition is used: it has to solve
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many subproblems, each about as hard as the original ones. In contrast, decom-

position is helpful for instances with smaller bisections, such as meshes (cow,

mannequin, dragon-043571, and gargoyle), grid graphs with holes (alue5067),

and Delaunay triangulations. The way we distribute edges to subproblems is

important, however. Random distribution is not enough to make the subprob-

lems much easier; creating clumps is essential. Flow-based clumps have only

minor effect in most cases, but never hurt much and are occasionally quite help-

ful (as in dragon-043571, which is a long and narrow mesh).

Table 3.11: Total running times (in seconds) on assorted instances using different
combinations of forced-assignment techniques (based on flows, extended flows, and

subdivisions).

CLASS NONE FLOW EXTENDED SUBDIV FLOW+SUBDIV FULL

G124.04 14.91 14.48 15.30 14.82 14.64 14.65
alue5067 10.63 3.10 2.65 17.44 3.09 2.62
cow 24.43 9.23 8.61 23.72 9.29 8.51
delaunay n10 4.82 3.62 3.93 4.91 3.48 3.53
luxembourg DNF 42.72 38.76 DNF 39.33 39.44

Table 3.12: Total running times (in seconds) on assorted instances using different branching
techniques. All columns use degree as a branching criterion, by itself (column DEGREE) or in
combination with one additional criterion (columns TREE, SIDE, DISTANCE, CONNECTED).

The last column refers to our default branching criterion, which combines all five methods.

CLASS DEGREE TREE SIDE DISTANCE CONNECTED ALL

G124.04 24.69 27.14 24.59 15.85 24.44 15.12
ak2010 560.65 24.04 458.03 2088.31 78.46 6.76
alue5067 5.34 2.71 4.89 2.93 5.37 2.51
cow 8.99 9.32 8.74 8.85 8.91 8.62
delaunay n10 4.10 4.05 4.06 4.01 4.13 4.07
hi2010 895.37 DNF 574.30 351.95 24.87 42.48

Another important contribution is the notion of forced assignments. We pro-

posed three strategies: flow-based (Section 3.5.1), extended flow-based (Sec-

tion 3.5.2), and subdivision-based (Section 3.5.3). Table 3.11 compares total run-

ning times on some instances using all possible combinations of these methods:

(1) no forced assignments; (2) flow-based only; (3) extended flow-based only; (4)
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subdivision-based only; (5) flow-based + subdivision-based; (6) extended flow-

based + subdivision-based (the default version used in our experiments). Note

that other combinations are redundant, since extended flow-based assignments

are strictly stronger than flow-based assignments.

The table shows that forced assignments are crucial to make our method ro-

bust. While it does not help much in some cases (such as random graphs), it in-

troduces very little overhead. For other instances, forgoing forced assignments

makes the overall algorithm orders of magnitude slower (this is the case for lux-

embourg, a road network). Forced assignments are especially helpful in guiding

the algorithm towards the optimum bisection (the actual balanced cut). Note

that most gains come from the simpler flow-based strategy; extended flows and

subdivisions are generally helpful, but not crucial.

Finally, we evaluate our branching criteria. Recall, from Section 3.7.5, that

we evaluate each potential branching vertex using a combination of five cri-

teria: the degree of the vertex, weight of the tree it belongs to, which side it is

reachable from in G f , its distance to the closest assigned vertex, and the total

weight of its connected component. Among those, the degree is absolutely cru-

cial: our algorithm becomes orders of magnitude slower without this criterion.

In Table 3.12 we consider the effect of each of the remaining methods (when

applied in conjunction with degree) on the total running time of our algorithm.

Although branching based only on degrees is often good enough (as in cow

and delaunay n10), additional criteria usually have a significant positive effect.

In particular, taking components into account is crucial for disconnected in-

stances (such as ak2010 and hi2010, redistricting instances representing Alaska

and Hawaii), and distance information can be helpful in instances with rela-
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tively flat degree distributions, such as G124.04 (a random graph). We stress,

however, that these are heuristics, and sometimes they actually hurt, as when

one uses only tree weights (in addition to degrees) on hi2010 or distances for

ak2010. On balance, however, the combination of all five criteria leads to a

fairly robust algorithm.

3.12 Conclusion

We have introduced new lower bounds for graph bisection that provide excel-

lent results in practice. They outperform previous methods on a wide variety

of instances, and find provably optimum bisections for several long-standing

open instances (such as U500.20 [61]). While most previous approaches keep

the branch-and-bound tree small by computing very good (but costly) bounds

at the root, our bounds are only useful if some vertices have already been as-

signed. This sometimes causes us to branch more, but we usually make up for

it with a faster lower bound computation. A large number of nodes is also ideal

for distributed computing since the branch-and-bound nodes are almost inde-

pendent (with the exception of the global upper bound).

A notable characteristic of our approach is that it relies strongly on heuristics

at various steps, such as generating clumps for decomposition, creating valid

tree packings, and picking branching vertices. A natural direction for future

research is to improve these heuristics so as to realize the full potential of the

main theoretical techniques we introduce (packing bound and decomposition).

For several classes of instances (such as Delaunay triangulations), it is likely

that better methods for generating trees and clumps will lead to much tighter
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bounds (and smaller branch-and-bound trees) in practice.

For some other graph classes (such as high-expansion graphs), however, the

tree packings generated by our heuristics are already perfectly balanced. For

those, improvements would have to come from additional theoretical insights.

Of course, it would be straightforward to create a hybrid algorithm that simply

applies another technique (based on semidefinite programming or multicom-

modity flows, for example) when confronted with such instances. A more inter-

esting question is whether bounds based on such techniques can be combined

in a nontrivial way with the ones we propose here. Our decomposition tech-

nique, in particular, could be used in conjunction with any exact algorithm for

graph bisection, though it is not very effective for such instances.

Another avenue for future research is proving nontrivial bounds for the run-

ning time of our algorithm (or a variant) for some graph classes. In particular,

Demaine et al. [33] show that one can partition the edges of a minor-free graph

into k classes (for any integer k) so that contracting all edges of any class leads to

a graph with treewidth O(k). This implies an exact algorithm for the minimum

bisection problem on minor-free graphs with running time O(2O(opt)nO(1)) [60].

(More recently, Cygan et al. [26] have shown that the problem can be solved in

O(2O(opt3)n3 log3 n) for general graphs.) Although far from practical, this theoret-

ical algorithm has some parallels with our approach, and may potentially shed

some light into the good empirical performance we observe.
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CHAPTER 4

A METHOD FOR EXTENDING TSP APPROXIMATION ALGORITHMS

TO SOLVE A PRIORI INSTANCES

4.1 Introduction

It is hard to overestimate the scientific community interest in the traveling sales-

man problem (TSP). For decades journals have been seeing a myriad of works

presenting exact solutions [3, 27], heuristics [25, 76], and approximation algo-

rithms [9, 22] for the TSP or for extensions or restrictions of it. The TSP is one

of the quintessential NP-Complete problems with many books devoted exclu-

sively to studying its structure and possible solutions [4, 23, 36, 89].

In this chapter we will study the a priori TSP, which is a two-stage stochastic

extension of the TSP. The first stage of the a priori TSP consists on computing

a tour π over all cities. In the second stage a particular subset A of the cities is

sampled according to a known distribution P and π is shortcut to cover only the

cities in A. The goal of the problem is to determine a tour π that minimizes the

expected length of the shortcut tour. The a priori TSP will be defined formally

in Section 4.2.

The a priori TSP was motivated by the “Meals On Wheels” program of Se-

nior Citizen Services Inc., which prepares lunches for elderly or ill people who

are unable to cook for themselves. The set of clients who should actually be

served at a particular day is very volatile as “[They] may die, or recover from

illness, or receive care elsewhere” [12].

This chapter presents a method that can use an λ-approximative algorithm
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A for the TSP and using it as a black box, provide a Kλ approximation to an a

priori TSP instance, where K is the size of the support of the distribution P, i.e.

the number of subsets A such that P(A) > 0.

The rest of this chapter proceeds as follows. In Section 4.2 we will formally

define the a priori metric TSP and will introduce some notation. In Section 4.3

we will discuss the state-of-the-art on the a priori TSP. In Section 4.4 we will

present our method and prove some of its properties.

4.2 Preliminaries

The metric Traveling Salesman Problem (TSP) is defined as follows:

Input A metric space (S , d) with size N = |S |.

Output A list π = [π0, . . . , πN−1] containing each element of S once that minimizes

d(π) =
∑

i=0...N−1 d(πi, πi+1) where the indices of π are taken modulo N.

Each element of S is usually called a “city”, this nomenclature coming from

the original motivation to the problem, where a traveling salesman has to visit

a list of cities and return to his home town in the shortest possible time [27].

A central operation in several approximation algorithms and heuristics for

the TSP is the notion of a shortcut, which allows us to reduce a list π of elements

in S , possibly with repetitions to a valid solution of the TSP with input (A, d)

where A ⊆ S by “ignoring useless elements of π”.

Definition 5. Fix a set A ⊆ S and let π = [π0, . . . , π|π|−1] be a list of elements of S
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that covers A, i.e. each element of A appears in π at least once. Note that π can contain

repetitions and that it may not cover S .

Let π′ = [π′0, . . . , π
′
|A|−1] be the elements of A in the order they first appear in π. We

call π′ the “restriction of π to A”, or “π shortcut to A” and denote it by π|A.

A list π that contains each element of S exactly once will be called a permuta-

tion of S . Note that π|A is a permutation of A. The following lemma shows why

π|A is useful in the design of algorithms for the TSP.

Lemma 7. Let π be a list of elements of S covering A ⊆ S . Then d(π|A) ≤ d(π).

Proof. Let π = [π0, . . . , π|π|−1], and let i0 ≤ . . . ≤ i|A|−1 be a set of indices such that

(π|A)k = πik , i.e. ik gives the indices of the first appearances of each element of A in π.

Then:

d(πA) =

|A|−1∑
k=0

d((πA)k, (πA)k+1)

=

|A|−1∑
k=0

d(πik , πik+1)

≤

|A|−1∑
k=0

ik+1−1∑
j=ik

d(π j, π j+1) By the triangle inequality

= d(π)

Where k + 1 is taken modulo A and j + 1 is taken modulo |π|. The inner sum of the

last line “wraps around” |π|; If b ¡ a
∑b

j=a f ( j) is defined as f (a) + . . .+ f (|π| −1) + f (0) +

. . . + f (b). ut

We now define formally the a priori TSP problem.
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Input A metric space (S , d) and a probability distribution P over subsets of S .

Output A permutation π of S that minimizes E[d(π|A)] where A ∼ P.

Note that while shortcutting is only important in the design of algorithms for

the TSP, it is part of the definition of the a priori TSP, where it plays a central role.

Lemma 7 shows that E[d(π|A)] ≤ d(π) for any metric space (S , d), distribution P,

and π that covers S .

4.3 Literature Review

The a priori TSP is a family of problems as defined above, as it does not specify

how P is given in the input. In this section we present several possibilities.

Suppose first the distribution P is given as a black box polynomial algorithm

that returns samples from P. This is the variant with the least amount of infor-

mation.

In this case there exists a randomized O(log n)-approximative algorithm [94].

There is also no deterministic λ-approximative algorithm with λ = o(log n) [51].

So up to a constant factor and randomization this problem is solved with respect

to approximation algorithms.

It is interesting to mention that the algorithm presented in [94] does not sam-

ple from P. Instead, it computes π that is O(log n)-approximative in expectation

for any distribution P, by approximating the input metric (S , d) with a tree met-

ric [37].

It is also worth noting that construction that proves that the a priori TSP with
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black box distribution model cannot be approximated better than O(log n) has a

support of 2, i.e. P(A) , 0 only for 2 different A ⊆ S .

Now let P be such that if A ∼ P then events Ax = {x ∈ A} are pairwise inde-

pendent, and let Pr(Ax) = px. We call this the independent activation model. In

this model there is a randomized 4-approximative algorithm, even if the distri-

bution P is given as a black box [98]. Furthermore if px are known explicitly

then a deterministic 8-approximative algorithm is known [98].

In the following sections we will discuss a method to find approximative

solutions to the a priori TSP when P is given explicitly, that is you are given

(A, P(A)) for all subsets A ⊆ S with P(A) , 0.

4.4 Solving the A Priori TSP With Explicitly Known P

In this section we will show a method to solve the a priori TSP when the distri-

bution P is given explicitly. Formally, we want to find the following problem.

Input A metric space (S , d) and tuples (Ai, pi) for i = 1 . . .K where Ai ⊆ S , pi > 0

and
∑

i pi = 1.

Output A permutation π of S that minimizes
∑

i d(π|Ai)pi = E[d(π|A)].

Note that if Q = S \
⋃

i Ai , ∅ then the position of the cities of Q in a per-

mutation π of S will not alter E[d(π|A)]. Therefore we assume without loss of

generality that Q = ∅.

We will use extensively the following operation, that combines permutations

π1 and π2 of almost disjoint sets A1 and A2 into one permutation π of A1 ∪ A2.
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Definition 6. Let πi be a permutation of Ai for i = 1, 2 and let A1 ∩ A2 = {a} be a

singleton. Let ki be indices such that πi
ki

= a.

The permutation π = [a, π1
k1+1, π

1
k1+2, . . . , π

1
k1+|A1 |−1, π

2
k2+1, . . . , π

2
k2+|A2 |−1] over A1 ∪ A2

is called the concatenation of π1 and π2 and is denoted π = π1 ⊕ π2. (Indices of πi are

taken modulo |Ai|.) Note that |π| = |π1| + |π2| − 1.

We will now prove a key property of concatenations. Let π1 � π2 as the list

[π1
0, . . . , π

1
|π1 |−1, π

2
0, . . . , π

2
|π2 |−1]. Note that |π1 � π2| = |π1| + |π2|.

Lemma 8. Let π = π1 ⊕ π2. Then d(π) ≤ d(π1) + d(π2).

Proof. Let a = π0 be the unique element covered both by π1 and π2. Assume without

loss of generality that πi
0 = a, since d(π) = d(π′) for any cyclic permutation π′ of π.

Let π̃ = π1 � π2. Trivially d(π̃) = d(π1) + d(π2) since π1
0 = π2

0 = a. Note that π is the

restriction of π̃ to A = A1 ∪ A2. Lemma 7 gives d(π) ≤ d(π̃). ut

Intuitively the algorithm will find a set of permutations πi that are approxi-

mations to the optimal solution of instances of the TSP. The concatenation of all

πi will provide the required approximation guarantee to the a priori TSP. Before

we can present the algorithm we need some more notation.

Let a metric space (S , d) and tuples (Ai, pi) for i = 1 . . .K be an input tot he a

priori TSP. We will assume without loss of generality that p1 ≥ p2 ≥ . . . ≥ pK .

Build a graph H = (V, E) where V = {1, . . . ,K} and E = {(i, j) : Ai ∩ A j , ∅}. For

B ⊆ V define A(B) = ∪i∈B Ai as the cities covered by B. See Figure 4.1 for an

example.

Let Hk be the subgraph of H generated by nodes 1, . . . , k, and let H0 be the

empty graph. Let also Ck be the set of connected components of Hk, in other
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words, Ck = {C1
k , . . . ,C

l
k} where C j

k ⊆ {1, . . . , k} mark the nodes of a connected

component of Hk. Note that C0 = ∅.

(a) Subsets
A1, . . . , A6

(b) Corresponding
graph H

Figure 4.1: Example of graph H

Finally, let Dk = {C ∈ Ck−1 : Ak ∩ A(C) , ∅} be the set of connected compo-

nents of Hk−1 that are connected to k in Hk, and let Lk = {k} ∪
(⋃

C∈Dk
C
)
. Note

that Ck = (Ck−1 \ Dk) ∪ {Lk}. For each C ∈ Dk let Cr = maxi∈C i be the repre-

sentative of C, and let vk(C) ∈ Ak be any element such that vk(C) ∈ ∪i∈CAi. Note

that vk(C) exists by the definition of Dk. We will abuse notation and say that

A(Dk) = ∪C∈Dk A(C).

We are ready to present the algorithm.

Algorithm 5 Solving the A Priori TSP

1: function COMBINE(x,D)
2: π← x
3: for C ∈ D do
4: π← π ⊕ πCr

5: return π

6: function SOLVE((S , d), (Ai, pi),A) . WhereA is an algorithm for the TSP
7: for k = 1 . . .K do
8: B̄k ← (Ak \ (

⋃
l<k Al))

9: Bk ← B̄k ∪
(⋃

C∈Dk
vk(C)

)
10: πk ← COMBINE(A(Bk),Dk)
11: return

⊙
C∈CK

πCr

The joining on line 11 is done on any order. Note that B̄k is the set of cities
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that appear for the first time in Ak.

Lemma 9. Let B̄k and Bk be as computed in Algorithm 5, and D̄ ⊆ Dk. Then A(D̄), B̄k,

and A(Dk \ D̄) are pairwise disjoint. Moreover Bk ∪ A(D̄) is the disjoint union of B̄k,

A(D̄), and {vk(C) : C < D̄}.

Proof. Suppose x ∈ A(D̄) ∩ A(Dk \ D̄). Then x ∈ Ai for some i ∈
⋃

C∈D̄ C and x ∈ A j

for some j ∈
⋃

C∈Dk\D̄ C with i, j < k. Then by definition of H we would have (i, j) ∈ E

which contradicts the fact that Dk ⊆ Ck−1. Therefore A(D̄) ∩ A(Dk \ D̄) = ∅. Note

also that B̄k is disjoint to A(Dk) by definition.

For the second part of the lemma, note that B̄k, A(D̄) and {vk(C) : C < D̄} are clearly

pairwise disjoint. Let X = Bk ∪ A(D̄) and Y = B̄k ∪ A(D̄) ∪ {vk(C) : C < D̄}.

Let x ∈ Bk. Then either x ∈ B̄k or x = vk(C). In the latter case C ∈ D̄ then x ∈ A(D̄),

and if not x ∈ {vk(C) : C < D̄}. In any case x ∈ Y , hence X ⊆ Y . The converse is trivially

true by the definition of Bk. ut

Corollary. The concatenation on line 4 in Algorithm 5 is always well defined, and that

COMBINE returns a permutation over x ∪ A(D).

Lemma 10. πk as computed in Algorithm 5 is a permutation of A(Lk).

Proof. We will prove by induction. For k = 1 note that Dk = D1 ⊆ C0 = ∅, and

B1 = A1 = A(L1). Therefore π1 = A(A(B1)) is a permutation of A(L1).

Now let k > 1, and let C ∈ Dk. By induction we know that πCr is a permutation of

A(C). The rest of the proof is a simple consequence of the corollary of Lemma 9. ut

Finally we are ready to prove the correctness of Algorithm 5, i.e. that it

returns a permutation over S .
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Theorem 7. Function SOLVE of Algorithm 5 correctly returns a permutation of S .

Proof. The result is trivial if the graph H is connected. In this case LK = {1, . . . ,K} and

Lemma 10 shows that the return is a permutation of A(LK) = S .

Suppose now that H is not connected. For each connected component C of H

we know, again by Lemma 10 that πCr is a permutation of A(C). Noting that S =⋃
C∈CK

A(C) finishes the proof of the theorem. ut

We have established the correctness of Algorithm 5 in Theorem 7. Note also

that Algorithm 5 clearly runs in polynomial time assuming thatA also does. We

will now study the approximation guarantees of Algorithm 5, but first we will

need some more notation.

Let A be a λ-approximative algorithm for the TSP, i.e. d(A(X)) ≤ λd(π∗(X))

where π∗(X) is an optimal solution for the instance (X, d). Let also π∗ be an opti-

mal solution for the a priori TSP. Note in particular that d(π∗(X)) ≤ d(π∗|X) for all

X ⊆ S .

Lemma 11. Let πk be as computed in Algorithm 5. Then d(πk) ≤ λ
∑

i∈Lk
d(π∗|Ai), for all

k.

Proof. We will prove by induction. When k = 1 we have L1 = {1} and π1 = A(A1). So

clearly d(π1) ≤ λd(π∗(A1)) ≤ λd(π∗|A1).

Now let k > 1. Since B̄k ⊆ Ak we have d(A(B̄k)) ≤ λd(π∗|Ak). By following

COMBINE in Algorithm 5 we have:
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d(πk) ≤ d(A(B̄k)) +
∑
C∈Dk

d(πCr ) By Lemma 8

≤ λd(π∗|Ak) +
∑
C∈Dk

λ
∑
i∈LCr

d(π∗|Ai) By the induction hypothesis

= λ
∑
i∈Lk

d(π∗|Ai)

ut

We are finally ready to prove the approximation guarantee.

Theorem 8. Algorithm 5 is a Kλ-approximation algorithm.

Proof. Assume without loss of generality that H is connected. Otherwise we are essen-

tially running the algorithm in each component of H, and the result clearly follows. Let

π = πK be the permutation returned by the algorithm, and note that π|A j = π j|A j .
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E[d(π|A)] =

K∑
j=1

p jd(π|A j)

=

K∑
j=1

p jd(π j|A j)

≤

K∑
j=1

p jd(π j) By Lemma 8

≤ λ

K∑
j=1

p j

∑
i∈L j

d(π∗|Ai) By Lemma 11

= λ

K∑
i=1

d(π∗|Ai)
∑
j:i∈L j

p j

≤ λ

K∑
i=1

d(π∗|Ai)
∑
j≥i

p j

≤ λ

K∑
i=1

d(π∗|Ai)
∑
j≥i

pi Since p1 ≥ p2 ≥ . . . ≥ pK

≤ λ
∑
i=1K

(K − i + 1)pid(π∗|Ai)

≤ KλE[d(π∗|A)]

ut

In the Example 5 we show that the guarantee of Kλ is tight at most up to a

factor of 2.

Example 5. Let (S , d) be the “worst case” of A with N = |S |. In other words, let

d(π) = λd(π∗(S )) where π = A(S ). Extend the metric space (S , d) to (S ′, d′) with

S ′ = S 1 ∪ S 2 ∪ . . . ∪ S k where these unions are disjoint and for each x ∈ S we have

xi ∈ S i. Let d′(xi, y j) = d(x, y) if x , y, and d′(xi, x j) = | j − i|ε where ε > 0 is small

enough. In other words, (S ′, d′) is constructed by considering K copies of (S , d). Build

an instance to the a priori TSP with support K where Ai = S 1 ∪ . . . ∪ S i and pi = 1
K .
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Let π∗(S ) = [α0, α1, . . . , αN−1]. Note that ρ∗ = [α0
1, α

0
2, . . . , α

0
K , α

1
1, . . . , α

1
K , . . . , α

N−1
K ]

is a permutation of S ′.

K∑
i=1

pid(ρ∗|Ai) = N(K − 1)ε +

K∑
i=1

d(π∗(S ))
K

= d(π∗(S )) + N(K − 1)ε

Let ρ be the return of Algorithm 5 given the input above. It is easy to see that one pos-

sible output is ρ = [β0
1, β

1
1, . . . , β

N−1
1 , β0

1, . . . , β
N−1
1 , . . . , βN−1

K ] where π = [β0, β1, . . . , βN−1]

is the return ofA(S ).

K∑
i=1

pid(ρ|Ai) =

K∑
i=1

id(π) + 2(i − 1)ε
K

=
(K + 1)d(π)

2
+ (K − 1)ε

By d(π) ≤ λd(π∗(S )) we get E[ρ|A]
E[ρ∗ |A] →

(K+1)λ
2 when ε → 0. This proves that the

analysis in Theorem 8 is tight up to a constant.

If we are not provided with any structure of the metric d, the best known re-

sult is due to Christofides in 1976 [22], which gives λ = 3
2 . By using Christofides’

algorithm asAwe get a 3K
2 for the a priori TSP with explicitly given distribution.

The O(K) approximation seems like a weak result, but we remind the reader

that the construction that proves it is impossible to get a o(log n) approximation

with the black box model has K = 2. The strength of this result comes from the

lack of dependency on n in the approximation guarantee.
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APPENDIX A

PROOF OF THEOREM 1

Throughout this proof we will let la be the length of arc a. Note that la = 0 if

a ∈ H ∪ V .

We will start by proving a helping lemma.

Lemma 12. If Pa(i, j) = [i′, j′] then ∆a(i, j) ≤ ∆a(i′, j′)

Proof. Let a = [i′, j′] → [i, j]. Then we know that S a(i, j) = S a(i′, j′) + la and

S a+1(i, j) ≥ S a+1(i′, j′) + la. Therefore ∆a(i, j) ≤ ∆a(i′, j′). ut

Note that S a+1(a + 1, ·) = 0 and by Lemma 1 S a(a + 1, j) is a nondecreasing

function of j. This proves that the theorem is true for the row a + 1.

Fix [i, j]. We will prove that ∆a(i, j) ≤ ∆a(i, j + 1) and ∆a(i, j) ≤ ∆a(i − 1, j) by

induction on i then on j using i = a + 1 as our base case.

First note that by induction hypothesis we have ∆a(i, j − 1) ≤ ∆a(i − 1, j −

1) ≤ ∆a(i − 1, j) which are the three options for [i′, j′] = Pa(i, j). So ∆a(i, j) ≤

∆a(i′, j′) ≤ ∆a(i − 1, j) where the first inequality comes from Lemma 12. So we

have established half the claim, that ∆a(i, j) ≤ ∆a(i − 1, j).

Now let [i′, j′] = Pa(i, j+1), and let h = [i, j] → [i, j+1], d = [i−1, j]→ [i, j+1],

and v = [i−1, j+1]→ [i, j+1] be the possible values for Pa+1. If d does not exist let

ld = −∞. We will abuse notation and identify the arcs with their first endpoint.

We say that h < d < v meaning that h is preferred over d which is preferred

over v. Let x, y ∈ {h, d, v}. Note that by induction hypothesis and the half of the
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claim already established we have that x < y implies ∆a(x) ≤ ∆a(y). In particular,

if x ∈ {h, d, v}we have ∆a(x) ≥ ∆a(h) = ∆a(i, j).

Let x = Pa(i, j + 1) and y = Pa+1(i, j + 1). Note that if x = y we trivially have

∆a(i, j + 1) = ∆a(i′, j′) ≥ ∆a(i, j). So let us assume x , y. If x < y then:

S a(x) + lx ≥ S a(y) + ly From x = Pa(i, j + 1)

S a+1(x) + lx < S a+1(y) + ly From x > y = Pa+1(i, j + 1)

∆a(x) > ∆a(y)

Which is a contradiction, therefore x cannot be preferred over y. Now assume

x > y. Then:

S a(i, j + 1) = S a(x) + lx

> S a(y) + ly

S a+1(i, j + 1) = S a+1(y) + ly

∆a(i, j + 1) > S a(y) + ly − S a+1(y) − ly

= ∆a(y)

, Therefore ∆a(y) ≥ ∆a(h) = ∆a(i, j) which concludes the proof of the theorem.

ut
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APPENDIX B

ALGORITHM EXAMPLES FOR BISECTION

B.1 Packing Bound

Figure B.1 illustrates our lower bounds. Assume that ε = 0 and that all vertices

have unit weight. Note that W = 24 and W− = W+ = 12, i.e., we must find a

solution with 12 vertices on each side. For simplicity, we refer to vertices by

their rows and columns in the picture: vertex (1,1) is at the top left, and vertex

(4,6) at the bottom right.

Assume some vertices have already been assigned to A (red boxes) and B

(blue disks). First, we compute a flow f (indicated in bold) from A to B (Fig-

ure B.1a). By removing these edges, we obtain the graph G f . We then compute

a tree packing on G f , as shown in Figure B.1b. For each of the 11 edges (u, v)

with u ∈ A and v < A we grow a tree (indicated by different colors and labeled

a, . . . , k) in G f . Note that the deadweight (number of vertices unreachable from

A) is 6, and that 15 free vertices are reachable from A. Finally, we allocate the

weights of these 15 vertices to the trees.

Figure B.1c shows an allocation where each vertex is assigned in full to a

single tree. This results in 7 trees of weight 1 (b, c, e, f , i, j, k), and 4 of weight

2 (a, d, g, h). Together, three of the heaviest trees have weight 6; with 6 units of

deadweight, these trees are enough to reach the target weight of 12. Therefore,

the packing bound is 3. Together with the flow bound, this gives a total lower

bound of 6.

Figure B.1d shows an alternative allocation in which some vertices are split
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equally among their incident trees. This results in 3 trees of weight 1 (e, f , j),

and 8 trees of weight 1.5 (a, b, c, d, g, h, i, k). Now, we must add at least 4 trees

to B to ensure its weight is at least 12. The packing bound is thus 4 and the total

lower bound is 7, matching the optimum solution.

(a) Flow Bound

a a

a b b b

c
c d

d

de

e

f f

g
g

e

g
g

h

hi

jj

j

k k k
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(b) Tree Packing
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(c) Integral Vertex Allocation
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(d) Fractional Vertex Allocation

Figure B.1: Example for lower bounds. Red boxes and blue circles are already assigned to A and
B, respectively. The figures show (a) the maximum A-B flow; (b) a set of maximal edge-disjoint
trees rooted at A; (c) an integral vertex allocation; and (d) a fractional allocation where vertices

with two labels have their weights equally split among the corresponding trees.

B.2 Forced Assignment

Figure B.2 gives an example for our forced assignment techniques. We start

from the tree packing in Figure B.1b. Figure B.2a shows how the flow-based

forced assignment applies to vertex (2, 2). It is incident to four trees (b, e, f , g). If
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(a) Flow-based
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(b) Subdivision-based

Figure B.2: Examples of forced assignments. Figure (a) shows the additional flow that would be
created if vertex (2, 2) were assigned to B (blue circles); solid edges correspond to the standard
flow-based forced assignment and dashed edges to the extended version. Figure (b) shows (with
primed labels) new trees that would be created if vertex (4, 2) were assigned to A (red squares).

it were assigned to B (blue circles), the flow bound would increase by 4 units, to

7. Using the extended flow-based forced assignment, we can increase the flow

bound by another 2 units, sending flow along f + j and b + a to A (red squares).

If the total lower bound, including the recomputed packing bound, is at least as

high as the best solution seen so far, we can safely assign vertex (2, 2) to A.

Figure B.2b illustrates our subdivision-based forced assignment. Consider

what would happen if we were to assign vertex (4, 2) to A. We implicitly split all

trees incident to this vertex (i and j) into new trees i′, i′′, and j′. Tree i′ is rooted

at vertex (4, 3), and the others at vertex (4, 2). The vertex assignment remains

consistent with the original one (as in Figure B.1c or B.1d, for example). We

then recompute the packing bound for this set of trees. If the new lower bound

is at least as high as the best solution seen so far, we can safely assign vertex

(4, 2) to B.
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APPENDIX C

FIGURES FOR CHAPTER 3

We now present a few figures that demonstrate some of the concepts treated

before, and then present a graphical representation for the optimal solution of

several instances.

Figure C.1: Trees are represented in different colors. Note that trees intersect other trees in
several places, making it easier to balance their weights with vertex fractional allocation, as

well as doing forced assignments.
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(a) Subproblem 1 of 30 (b) Subproblem 2 of 30

Figure C.2: Example of decomposition

As seen in Figure C.2 we generate nodes with very high degrees after edge

contraction.

(a) Without Decomposition (b) With Decomposition

Figure C.3: Example of flow bound without and with decomposition.

Figure C.3 shows how useful decomposition can be. The total bound (flow

+ packing) of Figure C.3a is 17 = 11 + 6 after fixing 10 vertices (i.e. at depth 10 of

the branch-and-bound tree). The bound of Figure C.3b is 23 = 19 + 4 after fixing

only 3 vertices.
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C.1 Solutions

Figure C.4 gives some intuition on why lks is such a hard instance. The problem

is the existence of an almost balanced very small cut. Heuristic methods try to

tweak the cut to make it balanced, while our approach without fractional flows

give unsatisfactory packing bounds, since the region around the small cut will

be full of flow edges, which will render them unreachable by our tree packing

(i.e. they will be deadweight.) Instead, the optimal solution involves a not

connected cell.

Figure C.4: Optimal bisection of lks which is a road map of the Great Lakes region of the USA.

Figure C.5 shows solutions arising from VLSI. These instances are generally

solved well by our algorithm.

(a) alue5067 (b) alue7065

Figure C.5: VLSI instances

Figure C.6 shows optimal solutions for several 3d meshes. Note that the
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optimal solution in Figure C.6b has a cell that is not connected. The reason for

it is the big wings that are very heavy and highly connected.

(a) cow (b) feline

(c) horse (d) dragon

Figure C.6: Mesh Instances

Figure C.7 provides solutions for instances corresponding to road networks.

These instances represent the shape of a highway by creating several vertices,

which leads to a very sparse network (as several vertices have degree 2). Note

that our algorithm finds geographical features like rivers in Figure C.7d. We

reinforce that the only input to our algorithm is the graph, we do not take geo-

graphical information.

The last three figures show the largest instances we were able to solve. In

Figure C.10 we can see how the Mississippi river is almost a perfect bisection.

To gain the correct balance the optimal solution deviates slightly from it. In

Figure C.9 note that we find the Alps, the Pyrenees, and a fjord that separates
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(a) bay (b) belgium

(c) luxembourg (d) netherlands

Figure C.7: Road Networks

Germany and Denmark.

Figure C.8: Italy
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Figure C.9: Europe (not proven optimal)

Figure C.10: USA
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