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The complex interaction between tumor and its microenvironment is essential for 

oncogenesis, survival and growth of tumor. These interactions allow tumor to uptake 

nutrient from environment and evade from immune surveillances. Understanding these 

interactions is fundamental to the design of immunotherapies and other targeted 

therapies. Advances in sequencing technologies have enabled measurement of gene 

transcription and regulation across large cohorts of cancer patients and also down to 

the single cell resolution. In this work, using glioblastoma (GBM) as a model system, 

I present the bioinformatic characterization of tumors and their microenvironment, and 

the statistical models towards an unsupervised and automated way of understanding 

the compositions. 

The first part describes the new sequencing method, Chromatin Run-on 

Sequencing (ChRO-seq), and its use in characterizing the transcription regulatory 

landscape in primary glioblastoma. Taking advantage of the ability for ChRO-seq to 

quantify nascent RNAs directly from solid tissues, I developed bioinformatic tools 

called dREG-HD to map the genome-wide positions of transcription regulatory 

elements (TREs) based on their nascent RNA patterns, which formed the basis for 

quantifying the enhancer activity. As ChRO-seq also enables simultaneous 

quantification of transcription activity of genes, I developed the tool tfTarget to map 

the network formed between transcription factor, TREs and target genes. Using 

tfTarget I identified tumor-associated transcription modules and regulatory networks 



 

associated with known GBM subtypes. More importantly, I identified three 

transcription factors from the immune module that negatively correlated with patient 

survival. This work showed that ChRO-seq is a powerful tool for understanding 

transcription regulation in complex diseases, highlighting the clinical importance of 

tumor microenvironment in GBM.  

The second part develops a Bayesian statistical model for understanding the 

tumor compositions using bulk sample RNA-seq and/or ChRO-seq collected from 

large patient cohorts in conjunction with prior knowledge learned from the single cell 

RNA-seq and/or ATAC-seq data collected from normal and tumor tissues. This model 

is expected to address the following questions of central importance in cancer biology. 

First, what transcription pathways are ectopically regulated in tumor patients, and to 

what extent in each patient? Secondly, what are the cell type compositions in the 

tumor microenvironment of each patient? Lastly, do any of pathways or the cells 

present in the microenvironment interact among each other? Answers to these 

questions shall provide insights into new druggable targets through modulating tumor 

microenvironment. 
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CHAPTER 1 

CHROMATIN RUN-ON AND SEQUENCING MAPS THE 

TRANSCRIPTIONAL REGULATORY LANDSCAPE OF GLIOBLASTOMA 

MULTIFORME 

1.1 Abstract 

The human genome encodes a variety of poorly understood RNA species that remain 

challenging to identify using existing genomic tools. We developed chromatin run-on 

and sequencing (ChRO-seq) to map the location of RNA polymerase using virtually 

any input sample, including samples with degraded RNA that are intractable to RNA-

seq. We used ChRO-seq to map nascent transcription in primary human glioblastoma 

(GBM) brain tumors. Whereas enhancers discovered in primary GBMs resemble open 

chromatin in the normal human brain, rare enhancers activated in malignant tissue 

drive regulatory programs similar to the developing nervous system. We identified 

enhancers that regulate genes characteristic of each known GBM subtype, identified 

transcription factors that drive them, and discovered a core group of transcription 

factors that control the expression of genes associated with clinical outcomes. This 

study reveals the transcriptional basis of GBM and introduces ChRO-seq to map 

regulatory programs contributing to complex diseases. 

 

1.2 Introduction 

Our genomes encode a wealth of functional elements that play critical roles in the 

molecular basis of disease. RNAs serve as a marker for a surprisingly diverse group of 

functional elements, revealing the expression level of protein coding genes (mRNAs), 

as well as the location of enhancers and other non-coding regulatory elements which 

transcribe short and rapidly degraded non-coding RNAs (ncRNA)(Cheng et al. 2005; 

Chen et al. 2010; Ulitsky and Bartel 2013; Quinodoz and Guttman 2014; de Santa et al. 
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2010). However, the discovery of ncRNA species, especially of enhancer-templated 

RNAs (eRNAs) characteristic of distal regulatory elements(Kim et al. 2010; de Santa 

et al. 2010), has proven challenging. Most ncRNAs are not represented in RNA-seq 

data, owing to the rapid degradation rates of most ncRNAs by the nuclear exosome 

complex(Preker et al. 2008; Andersson, Refsing Andersen, et al. 2014). Chromatin 

immunoprecipitation and sequencing (ChIP-seq) for RNA polymerase II is of limited 

value because it has a poor signal-to-noise ratio which obscures less abundant RNA 

species(Core et al. 2012). Likewise, assays that measure nuclease accessibility, such as 

DNase-I-seq9 and ATAC-seq(Buenrostro et al. 2013), are poor sources of information 

about transcriptional activity because they identify open chromatin regions 

irrespective of activity, and do not measure critical sources of information about 

mRNAs such as gene expression levels or transcript boundaries.  

Recent studies have shown that sequencing nascent RNAs attached to an actively 

transcribing RNA polymerase complex is an effective strategy for discovering coding 

and ncRNAs(Core, Waterfall, and Lis 2008; Churchman and Weissman 2011; Kwak 

et al. 2013; Mayer et al. 2015; Nojima et al. 2015; Schwalb et al. 2016; Core et al. 

2014; Scruggs et al. 2015). Nascent RNA-seq techniques, such as Precision Run-On 

and Sequencing (PRO-seq)(Kwak et al. 2013), provide significantly higher sensitivity 

in detecting short-lived ncRNAs. Thus, PRO-seq and related assays provide a rich 

source of information about multiple layers of regulatory control, enabling 

simultaneous measurements of transcription at protein-coding genes and the discovery 

of active regulatory elements, including enhancers(Danko et al. 2015; Azofeifa and 

Dowell 2017; Andersson, Gebhard, et al. 2014).   

 

Cancers are a particularly attractive target for nascent RNA sequencing techniques 

because cancer is a disease of gene regulation(Bradner, Hnisz, and Young 2017). In 
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most cancers, somatic changes to DNA sequence affect oncogenic or tumor 

suppressive pathways(Parsons et al. 2008; Brennan et al. 2013). In some cases somatic 

mutations affect the core transcriptional machinery directly(Mohan et al. 2010), 

motivating the use of assays that directly measure the localization of Pol II. Somatic 

mutations initiate secondary changes in gene expression that are responsible for 

initiating changes in cell morphology and behavior that are characteristic of 

malignancy. For this reason, gene expression signatures from RNA-seq and other 

assays have proven effective as biomarkers, denoting cancer subtypes that are 

associated with progression and survival. However, which genes undergo regulatory 

changes in cancer, and especially the identity of key transcription factors that encode 

the malignant behaviors of cancer cells by their effect on target genes, remain poorly 

defined.  

 

Nascent RNA sequencing techniques remain challenging to apply in some cell lines 

and especially to intact clinical isolates derived from cancer patients. Here we 

introduce a new chromatin-based run-on protocol, called Chromatin Run-On and 

Sequencing (ChRO-seq). ChRO-seq produces similar maps of transcription to PRO-

seq in cell lines, but can also be applied to solid tissue samples, even those in which 

RNA is highly degraded. We used ChRO-seq to analyze 24 human glioblastoma 

multiforme (GBM) brain tumors, patient derived xenografts (PDXs), and a primary 

non-malignant brain sample, revealing new insights into the molecular etiology of 

GBM.  
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1.3 Results 

1.3.1 Run-on assays in solid tissue 

We developed Chromatin Run-On and sequencing (ChRO-seq), a new method to map 

RNA polymerase in cell or tissue samples (Fig. 1.1a). The primary challenge faced 

when using PRO-seq is often obtaining nuclei that are suitable for a run-on reaction. 

We therefore developed an alternative method which relies on fractionating insoluble 

chromatin, including engaged RNA polymerase II (Pol II)(Wuarin and Schibler 1994) 

(see Methods). Insoluble chromatin was re-suspended by sonication and used as input 

to a run-on reaction (Fig. 1.1a). The run-on was designed to incorporate a biotinylated 

nucleotide triphosphate (NTP) substrate into the existing nascent RNA that provides a 

high-affinity tag used to enrich nascent transcripts. The biotin group prevents the RNA 

polymerase from elongating after being incorporated into the 3’ end of the nascent 

RNA when performed in the absence of normal NTPs, thus enabling up to single-

nucleotide resolution for the polymerase active site(Kwak et al. 2013; Mahat et al. 

2016).  
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Fig. 1. 1 ChRO-seq and leChRO-seq measure primary transcription in isolated 

chromatin.   

(a) Isolated chromatin is resuspended into solution, incubated with biotinylated rNTPs, 

purified by streptavidin beads, and sequenced from the 3’ end.  leChRO-seq degrades existing 

RNA, extends nascent transcripts an average of 100 bp, and sequences RNAs from the 5’ end. 

(b and c) Comparison between matched ChRO-seq and PRO-seq in 41,478 RefSeq annotated 

gene bodies (b) or at the peak of paused Pol II (c).  (d)  Comparison between ChRO-seq (top 

three tracks), PRO-seq (center), and H3K27ac ChIP-seq, DNase-I-seq, and RNA-seq 

(bottom).  dREG-HD shows the raw signal for dREG (gray) and dREG-HD signal (dark red). 

The shaded background shows the type of RNA produced at each position (e) The distribution 

of read lengths from ChRO-seq (blue) and leChRO-seq (pink) in a 30 year old primary GBM.   
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We performed matched ChRO-seq and PRO-seq experiments in the human Jurkat T-

cell leukemia line, in which both nuclei and chromatin could be obtained. Median 

ChRO-seq signal across annotated genes was within the range of variation observed in 

PRO-seq data from the same cell line (Supplementary Fig. 1.1). In contrast, we noted 

differences in the pause peak and transcription past the polyadenylation site compared 

with mNET-seq and Nascent-seq, two other chromatin-based RNA sequencing 

assays(Mayer et al. 2015; Khodor et al. 2011; Menet et al. 2012) (Supplementary Note 

1.1). ChRO-seq and PRO-seq produced highly correlated levels of RNA polymerase in 

the bodies of mRNA encoding genes (R= 0.98; Fig. 1.1b). Likewise, signal for paused 

Pol II was highly correlated across the 5’ ends of annotated genes (R= 0.96; Fig. 1.1c), 

and pause levels in our test ChRO-seq library were within the range of variation 

observed using nuclei (Supplementary Fig. 1.2). The microRNA MIR181 locus 

illustrates the advantages of ChRO-seq compared with other molecular assays (Fig. 

1.1d). Notably, both ChRO-seq and PRO-seq discovered the primary transcript 

encoding MIR181 as well as dozens of eRNAs that were not discovered using RNA-

seq.  

 

Because RNA prepared from archival tissues is often highly degraded, such samples 

are poor candidates for genome-wide transcriptome analysis using RNA-seq. The 

RNA polymerase-DNA complex is more stable than RNA(Cai and Luse 1987), 

suggesting that engaged polymerases may provide an avenue for producing new RNAs 

in archived samples. We obtained a primary glioblastoma multiforme (GBM) (grade 

IV, ID# GBM-88-04) that was stored in a tissue bank for 30 years. Bioanalyzer 

analysis confirmed that RNA was highly degraded in this sample (RIN = 1.0, 

Supplementary Fig. 1.3), thus precluding the application of RNA-seq (requires RIN of 

2-4). To measure gene expression in this sample, we devised length extension ChRO-
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seq (leChRO-seq), a variant of ChRO-seq that uses transcriptionally-engaged Pol II 

and a mix of biotinylated-NTP and normal NTPs to extend degraded nascent RNA 

transcripts (Fig. 1.1a). Whereas libraries prepared without an extended run-on had a 

median insert size of 20 bp, precisely the length of RNA protected from degradation 

by the polymerase exit channel(Choder and Aloni 1988), run-on samples achieved a 

longer RNA length distribution that was better suited for mapping unique reads within 

the human genome (Fig. 1.1e). Although RNA degradation could, in principal, 

destabilize RNA polymerase, we nevertheless observed that leChRO-seq produced 

maps of transcription that were correlated with those obtained using ChRO-seq and 

PRO-seq, suggesting that leChRO-seq accurately measures gene expression and 

pausing (Supplementary Fig. 1.1a, 1.2, 1.4a). Thus, leChRO-seq allows the robust 

interrogation of archival tissue samples which cannot be analyzed using standard 

genomic tools.  

 

1.3.2 Maps of transcription in primary GBMs 

To demonstrate how ChRO-seq can provide insights into complex disease, we 

obtained ChRO-seq or leChRO-seq data from 20 primary glioblastomas, three patient 

derived xenografts (PDX), and a non-malignant brain (Fig. 1.2a; Supplementary Table 

1.1). Histopathology revealed hallmarks of grade IV malignant astrocytoma in all 

GBMs (e.g., GBM-15-90, Supplementary Fig. 1.5). We sequenced ChRO-seq data 

from each GBM to an average depth of 33 million uniquely mapped reads per sample 

(10-150M reads/ sample). We confirmed that data collected from biopsies isolated 

from nearby regions (technical replicates) were highly correlated (Supplementary Fig. 

1.4c-f, Supplementary Note 1.2).  
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Fig. 1. 2 ChRO-seq detects transcription in primary human glioblastomas.   

(a) RPM normalized ChRO-seq signal at the EGFR locus in nonmalignant brain (top) and 

GBM-15-90 (center).  dREG (gray) and dREG-HD (dark red) signals are shown for GBM-15-

90. dREG-HD peaks that are not DHSs in adult brain reference samples are highlighted in red. 

DHSs in 6 adult brain reference samples and dREG-HD peaks from the non-malignant brain 

sample. (b) Upper matrix: subtype scores for each patient, calculated by Pearson’s correlation 

with the centroid of gene expression of corresponding subtype. Lower matrix: Spearman’s 

rank correlation over subtype signature genes among 20 primary GBMs.  Red square denotes 

four regions dissected from GBM-15-90. Sample order is based on single-link hierarchical 

clustering of the lower matrix, shown by the dendrogram. In total, 838 genes were used for 

calculating the correlation coefficients. (c) Differential gene transcription of primary GBMs in 

each subtype compared with non-malignant brain. Genes of interest are highlighted. lncRNAs 

are highlighted in blue. 
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To gain further insight into how transcription changes in malignant tissue, we 

analyzed transcription within annotated protein-coding genes and non-coding RNAs. 

GBMs from our cohort represent each of the four previously reported molecular 

subtypes(Verhaak et al. 2010) (Fig. 1.2b, Supplementary Fig. 1.6). Though most 

tumors have transcription patterns characteristic of one dominant molecular subtype, 

several tumors in our cohort were similar to multiple subtypes, especially those 

matching neural and mesenchymal signatures, consistent with reports of cellular 

heterogeneity within the same tumor(Patel et al. 2014; Q. Wang et al. 2017) (Fig. 

1.2b). We identified 2,381 protein-coding genes and 1,123 ncRNAs that were 

differentially transcribed across all 20 primary GBMs relative to replicates of the non-

malignant brain (p < 0.05, False discovery rate [FDR] corrected Wald test, 

DESeq2(Love, Huber, and Anders 2014)) (Supplementary Table 1.2). Differentially 

transcribed genes had notable enrichments in biological processes related to cell cycle, 

DNA replication / metabolic processes, development (up-regulated in the tumor), and 

nervous system homeostasis (down-regulated) (Supplementary Fig. 1.7). For example, 

multiple transcription factors with a role specifying nervous system development were 

expressed more highly in nearly all tumors, including the HOX gene clusters and 

engrailed-1 and 2 (EN1 and EN2) (Fig. 1.2c; Supplementary Fig. 1.8). Notably, we 

discovered several differentially transcribed long non-coding RNAs (lncRNAs) that 

confer growth advantages to U87 glioblastoma cells(Liu et al. 2017; Xi et al. 2017; 

Ma et al. 2017; Zhao et al. 2014) (e.g., AC016831.7, PVT1, SNHG1, etc. Fig. 1.2c; 

Supplementary Table 1.3). Taken together, our analysis of ChRO-seq data identified 

transcriptional changes in both genes and lincRNAs that were shared between GBMs 

in our cohort. 
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1.3.3 GBM enhancers retain signatures of normal brain tissue 

Active transcriptional regulatory elements (TREs), including promoters and enhancers, 

have a characteristic pattern of RNA polymerase initiation that allows their discovery 

using ChRO-seq data(Kim et al. 2010; de Santa et al. 2010; Core et al. 2014; Danko et 

al. 2015; Azofeifa and Dowell 2017; Andersson, Gebhard, et al. 2014). We developed 

a novel algorithm to identify the precise location of active TREs, called dREG-HD, 

which takes PRO-seq or ChRO-seq data as input and identifies TREs that are similar 

to the subset of DNase-I hypersensitive sites (DHSs) that exhibit local transcription 

initiation. The dREG-HD algorithm improved the resolution of dREG19 by imputing 

smoothed DNase-I-seq signal intensity, and identified sites initiating transcriptional 

activity with 80% sensitivity at >90% specificity (Supplementary Fig. 1.9). dREG-HD 

recovered the nucleosome depleted region in histone modification ChIP-seq and 

MNase-seq data (Supplementary Fig. 1.10), demonstrating that it had substantially 

higher resolution compared with dREG alone. 

 

The vast majority (96%) of TREs identified by dREG-HD in each primary GBM 

sample were DHSs in at least one of the 216 reference tissues analyzed by ENCODE 

or Epigenome Roadmap(Roadmap Epigenomics Consortium et al. 2015; Dunham et al. 

2012). However, most DHSs were discovered in only a few of the tissues in the 

reference dataset (Fig. 1.3a) and were distal (>1 kb) to annotated transcription start 

sites (Fig. 1.3b), suggesting that many reflect the activity of cell-type specific distal 

enhancers in the tumor. Rare distal TREs (henceforth referred to as “enhancers”) 

provide a unique “fingerprint” for quantitatively evaluating the similarity between two 

samples, and could be used to define the relationship between tumors and normal 

tissue.  
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Fig. 1. 3 Comparison between TREs in primary GBM / PDX and reference DHSs.  

(a) Histogram representing the number of reference samples that have a DHS overlapping 

each dREG-HD site found in any of the 23 primary GBM / PDX samples. (b) Percentage of 

TREs >1kb from the nearest GENCODE transcription start site.  (c) Mutual information 

between TREs in the indicated GBM and reference sample.  (d) Clustering of reference 

samples with primary GBM / PDX based on the activation of TREs. Activate TREs are 

marked in red; inactive ones are in white. 
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We developed a strategy that compares active enhancer landscapes obtained using 

dREG-HD with DHSs across all public datasets (see Methods). Our strategy 

consistently discovered the expected cell lines (Supplementary Fig. 1.11), even 

identifying the expected genotype (GM12878) among all lymphoblastoid cell lines as 

the most similar to GM12878 PRO-seq data (Supplementary Fig. 1.11a). Using unique 

enhancers to “fingerprint” primary GBM samples revealed enhancer landscapes that 

were highly similar to normal brain reference samples compared to other reference 

tissues (Fig. 1.3c, Supplementary Fig. 1.12). In GBM-15-90, for instance, 86% of 

TREs were shared with primary brain tissue, which was greater similarity than 

observed in either GBM cell lines (62% TRE identity) or in vitro cultured primary 

brain cells (75%) (Supplementary Fig. 1.13). Clustering TREs in several brain related 

cell types suggested that differences between primary tumors and GBM cell lines were 

caused by differences in the tumor microenvironment (Fig. 1.3D; Supplementary Fig. 

1.14; Supplementary Note 1.3).  

 

To evaluate whether contamination of the GBM with normal brain tissue explained the 

extensive similarity with normal brain reference samples, we used leChRO-seq data 

from three PDXs, in which primary GBMs were grown in a murine host. In PDXs, 

murine cells replace both normal tissue and stroma(Tentler et al. 2012), and can be 

distinguished from tumor cells based on species-specific differences in DNA sequence. 

Mutual information ranked all PDX samples as similar to the normal human brain 

compared with all other samples (Fig. 1.3c). Thus we conclude that primary GBM 

cells are more similar to their cell of origin than may have been anticipated based on 

prior analysis of cell models.  
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1.3.4 TREs define three distinct regulatory programs activated in GBM tissue 

TREs that were active in tumor tissue, but were not DHSs in any of the available adult 

brain reference samples, are strong candidates for contributing to the malignant 

phenotype of the tumor. Such tumor-associated TREs (taTREs) comprised 2-24% of 

TREs in each tumor (Supplementary Fig. 1.15, 1.16, Supplementary Table 1.4). We 

developed a statistical test to identify tissues which shared unexpectedly high overlap 

with taTREs identified in each tumor that controls for DHS scarcity (Supplementary 

Table 1.4) (see Online Methods). Hierarchical clustering of the taTREs among 

significant cell types revealed three regulatory programs that were enriched in the 

primary GBMs; one resembling a stem-like regulatory program, one associated with 

differentiated support cells, and a cluster of immune cells (Fig. 1.4a, Supplementary 

Fig. 1.17). taTREs significantly (p < 1e-4, bootstrap test) overlapped DHSs in fetal 

tissues of the nervous system (2.3-6.6-fold enrichment in 11/ 23 GBMs), especially 

spinal cord and brain, two fetal tissues derived from the neuroectoderm (Fig. 1.4a, see 

“Outlier tissues”). We also found evidence for enrichment in additional developmental 

tissues, for example embryonic stem cells and other fetal tissues from a variety of 

germ layers, and for a number of terminally differentiated support cell lineages 

including astrocytes, endothelial cells, fibroblasts, and osteoblasts. Regulatory 

programs were partially correlated with previously defined molecular subtypes in 

GBM (Fig. 1.4c; Supplementary Note 1.4). We emphasize that activation of these 

separate transcriptional regulatory programs may reflect gene expression changes in 

subsets of cells within the tumor. Overlap between taTREs and fetal brain tissue likely 

reflects the activation of a regulatory program that promotes stem-like properties 

observed in a population of GBM cells(Suvà et al. 2014). Similarly, overlap with 

astrocytes, endothelial cells, fibroblasts, or osteoblasts may capture tumor cells that 

have trans-differentiated into these lineages(Lucia Ricci-Vitiani et al. 2010; L. Ricci-
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Vitiani et al. 2008). Notably, these two signatures were detected in PDX samples as 

well as primary GBMs, demonstrating that these signatures reflect transcriptional 

diversity in malignant cells. 

 

To identify transcription factors involved in maintaining each regulatory program, we 

classified the taTREs in each tumor sample into regulatory programs based on their 

cell type overlap, and searched for enriched transcription factor binding motifs (p < 

0.05 / 1882 in at least one patient, Fisher’s exact test, Rtfbsdb(Z. Wang, Martins, and 

Danko 2016)). As we were limited in our ability to distinguish between paralogous 

transcription factors that share similar DNA binding specificities, we clustered motifs 

into 14 distinct groups, each associated with multiple transcription factors that may 

contribute to differences in expression (Fig. 1.4b). Many of these motifs showed 

mutually exclusive enrichment in the three regulatory programs (Fig. 1.4b; 

Supplementary Fig. 1.18), supporting the hypothesis that each regulatory program is a 

transcriptionally distinct program mediated by a different group of transcription 

factors. We identified POU domain containing transcription factors enriched in 

taTREs in the stem-like regulatory program. As predicted, taTREs in the stem-like 

program were enriched in both ChIP-seq reads and peak calls for POU3F2 in cultured 

glioma neurospheres(Suvà et al. 2014) (Supplementary Fig. 1.19, 1.20). The 

differentiated support cell program was highly enriched for binding of activating 

protein 1 (AP-1), a heterodimer of the transcription factors FOS and JUN, a motif 

resembling heat shock factor 1 (HSF1), and the TEAD family (Fig. 1.4b). The immune 

program was enriched for C/EBP family (C/EBPA), NF-κB family (RELA), and the 

Retinoic Acid Receptor family (RARA), in agreement with reports that at least two of 

these factors play an important role in inflammatory responses in GBM(Bhat et al. 

2013; Carro et al. 2010). Taken together, we have identified taTREs that correlate with 
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complex behaviors intrinsic to malignant cells, for instance the stem-like regulatory 

program that was shared with neuroectodermal tissue, and identified candidate 

transcription factors that contribute to each behavior. 
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Fig. 1. 4 Tumor associated TREs (taTREs) activate three regulatory programs.  

(a) Boxplots show the log2 fold enrichment of reference tissues enriched in the corresponding 

GBM. Reference samples enriched in each patient were grouped into three regulatory 

programs, called stem (blue, n= 24), immune (green, n= 5), and differentiated (pink, n= 21). 

Box plots show the 25th percentile (bottom of box), median (central bar), and 75th percentile 

(top of box). Whiskers represent minimum and maximum values. Outlier tissues are indicated 

in the legend. (b) Transcription factor binding motifs enriched in TREs of the immune (I), 

stem (S), and differentiated (D) regulatory program compared with TREs active in the normal 

brain. All motifs shown were significantly enriched following Bonferroni adjustment of the 

threshold p value in at least one patient (p < 0.05 / 1882, two-sided Fisher’s exact test). The 

Spearman’s rank correlation heatmap (left) shows the correlation in DNA binding sites 

matching each motif. The radius of the circle represents the median p value across patients is 

and the color represents the magnitude of enrichment (red) or depletion (blue). (c) The radius 

of the circle represents the p value (two-sided Fisher’s exact test) of enrichment of the 

indicated regulatory programs in subtype-biased TREs. The color represents the magnitude of 

enrichment (red) or depletion (blue). Number of subtype-biased TREs in each comparison 

(panels b and c) is shown in Supplementary Table 1.3 and 1.4. 

 

 

 

1.3.5 Transcription factors controlling GBM subtype  

Transcriptional heterogeneity among GBMs is established in large part by the 

differential activity of transcription factors. To identify transcription factors that are 

involved, we focused on TREs with evidence of expression changes among the four 

previously described molecular subtypes (p < 0.01, FDR corrected Wald test, DESeq2) 

(Supplementary Table 1.5). We identified 38 binding motif clusters with extremely 

strong evidence of enrichment in active TREs with biased transcription in any subtype 

(p < 0.05 / 1882, Fisher’s exact test, Fig. 1.5a). Significantly enriched motifs passing 

our stringent multiple testing correction threshold were most common in the 

mesenchymal and neural subtypes, in which several had previous support in the 

literature, including those recognized by nuclear factor-κB (NF-κB) family and 

CCAAT/Enhancer Binding Protein (C/EBP) family enriched in TREs up-regulated in 

mesenchymal tumors(Bhat et al. 2013; Carro et al. 2010). Additionally, we identified 

numerous novel motif associations that correlate with subtype-biased expression 

including, for instance, RARA, SRF, SOX-family, and FOX-family.  
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Next we set out to identify target genes regulated by each transcription factor in GBM 

cells. First, we assume that molecular subtypes described in current literature do not 

completely describe the full range of heterogeneity among GBMs. To identify motifs 

contributing to heterogeneity that are only weakly correlated with the known 

molecular subtypes, we relaxed our statistical cutoff to a more permissive threshold at 

which we expected substantially higher sensitivity at an acceptable false discovery rate 

(p < 0.05, nominal Fisher’s exact test, Supplementary Fig. 1.21, see Methods). We 

identified bound occurrences of each enriched motif using heuristics that provide 

substantial performance improvements over existing high-resolution tools(Danko et al. 

2018). Motif occurrences were connected with the closest two annotated genes sharing 

similar subtype-bias within 50 kb (Fig. 1.5b), using fairly stringent heuristics to limit 

false discovery rates (see Methods). We validated target genes by confirming that 

genes sharing a common transcription factor were more highly correlated across 174 

primary GBMs(Brennan et al. 2013) than expected based on randomly selected genes 

sharing the same subtype specificity (Fig. 1.5c; Supplementary Note 1.5). Thus, we 

have identified transcription factors contributing to major GBM expression subtypes 

and their putative target genes. 
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Fig. 1. 5 Transcription factors influencing transcriptional heterogeneity in GBM.  

(a) Transcription factor binding motifs enriched in TREs that were up- or down-regulated in 

the indicated subtype. All motifs shown were significantly enriched following Bonferroni 

adjustment of the threshold p value (p < 0.05 / 1882, two-sided Fisher’s exact test; sample size 

shown in Supplementary Table 4). The Spearman’s rank correlation heatmap (left) shows the 

correlation in motif recognition. Families of transcription factors and their representative 

motifs are highlighted. (b) Cartoon illustrating heuristics used to identify target genes of 

subtype-specific transcription factor and for defining non-target (control) genes. Changes in 

transcription of both target and non-target genes are of the same direction as that of subtype-

biased TREs. Target genes are the 1st and 2nd genes within 50 Kb of the TRE. Non-target 

genes are at least 0.5 Mb away. (c) Barplots show the -log10 Wilcoxon rank sum p value of 

having higher correlations among target genes of each transcription factor binding motif than a 

control set (columns; N=174 TCGA patients with RNA-seq data available). Barplots are 

colored by subtype in which they were found to be enriched (p < 0.05, two-sided Fisher’s 

exact test). The Spearman’s rank correlation between the binding sites of each motif is shown 

(bottom). Transcription factor families are indicated below the plot. The dotted line shows the 

Bonferroni adjusted threshold for the between-target validation experiment. 
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1.3.6 Direct inference of transcription factor regulatory activities in GBMs 

The gene-regulatory “trans” activities that a transcription factor has on its complement 

of bound TREs can be regulated by multiple transcriptional and post-transcriptional 

mechanisms. While some transcription factors are controlled predominantly by the 

abundance of its protein, many require a subsequent step such as post-transcriptional 

activation of the protein product to regulate target genes (Fig. 1.6a). We asked whether 

we could distinguish between these two broad regulatory activities by using ChRO-seq, 

and using an integrative analysis incorporating both ChRO-seq and publicly available 

mRNA-seq data. 

 

In the simplest mode of regulation, the gene-regulatory activity of a transcription 

factor is determined by the abundance of its protein, which can be correlated with the 

transcriptional activity of its gene and the abundance of its mRNA. To detect this type 

of regulatory activity, we asked whether motifs enriched in active TREs of each 

subtype correspond to changes in Pol II density on the primary transcription unit 

encoding any one of the transcription factors that recognize the corresponding binding 

motif. In some cases, we observed transcriptional changes in the transcription factor 

coding gene in the same subtype in which we also observed motif enrichment (Fig. 

1.6b-c; Supplementary Fig. 1.24b). For instance, ChRO-seq signal in the gene body 

encoding the transcriptional activator CEBPB increased by 4.88-fold in mesenchymal 

tumors (Fig. 1.6b), consistent with a 2.43-fold enrichment of its corresponding motif 

in mesenchymal upregulated TREs (Fig. 1.5a). Likewise, we found several cases in 

which mRNA encoding each transcription factor was correlated with the expression of 

its putative target genes across GBMs to a greater extent than expected based on a null 

model that controls for molecular subtype (Fig. 1.6c; see Methods).  
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Fig. 1. 6 Regulatory activities of transcription factors are controlled by transcription and 

post-transcriptional mechanisms in GBM.  

(a) The cartoon illustrates the stages at which transcription factor activities can be regulated 

and the corresponding signals detected by RNA-seq and (le)ChRO-seq. The activity of some 

transcription factors correlates predominantly with the abundance of its protein. Many 

transcription factors require post-transcriptional activation of the protein product before 

regulating target genes. (b) Barplot shows the FDR corrected -log10 p value (DESeq2, Wald test, 

n= 2 [classical] or 3 [other subtypes]) representing changes in Pol II abundance detected by 

(le)ChRO-seq on the gene encoding the indicated transcription factor. The level of 

upregulation (blue) and downregulation (yellow) in the subtype indicated by the colored boxes 

(below the barplot) is shown by the color scale. The dashed line shows the the FDR corrected 

α at 0.01. (c) Barplot shows the -log10 two-sided Wilcoxon rank sum test p value denoting 

differences in the distribution of correlations between the mRNA encoding the indicated 

transcription factor and either target or non-target control genes. The blue/ yellow color scale 

represents the median difference in correlation between target and non-target genes over 174 

mRNA-seq samples. The dashed line shows the uncorrected α at 0.01.  
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We devised a strategy to estimate which transcription factors have gene-regulatory 

activities that were regulated by transcriptional or post-translational mechanisms. 

Focusing on the 25 unique motifs enriched in up-regulated TREs that are associated 

with multiple transcription factors, we found evidence of correlated changes in ChRO-

seq data for eight and in mRNA-seq for 16 (Fig. 1.6b-c). Several of these correlations 

were weak in magnitude, which may be consistent with gene-regulatory activities 

controlled by multiple regulatory mechanisms for these transcription factors. We 

conservatively identified at least six transcription factors, including TEAD, GATA, 

HSF, and NF-kB, which had low correlations with their putative targets in RNA-seq 

and no evidence of transcriptional changes in ChRO-seq. These transcription factors 

were regulated primarily at a post-transcriptional level in GBM.  

 

1.3.7 Transcription factors control groups of survival-associated genes in 

mesenchymal GBMs 

Known molecular subtypes of GBM do not correlate with survival(Verhaak et al. 

2010), presenting a motivation to identify new classifiers that may have prognostic 

value. We hypothesized that the activity of transcription factors which control 

transcriptional heterogeneity among GBM patients may control biological functions 

correlated with survival. To determine whether gene-regulatory activities of 

transcription factors may be useful in predicting clinical outcomes, we compared the 

hazards ratio at putative target genes of each subtype specific binding motif. We 

analyzed two sets of non-target control genes: 1) The nearest annotated transcription 

start site (within 50 kb) of each subtype-specific TRE that was not changed in that 

subtype, and 2) Differentially transcribed genes in the same subtype that were not 

identified as targets, because the transcription start site was >0.5Mb away from the 

nearest putative binding site. Our analysis identified six transcription factors 
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significantly associated with poor clinical outcomes, all in mesenchymal tumors (p < 

0.05 / 432, Wilcoxon, Fig. 1.7a, Supplementary Fig. 1.25), which we clustered into 

three unique DNA binding specificities (RAR, C/EBP family, and RELA [NF-κB] 

Supplementary Fig. 1.26). Only one of these transcription factors, C/EBP, was 

associated with survival at the mRNA level (Supplementary Fig. 1.27), consistent with 

the gene-regulatory activity of C/EBP family correlating with the abundance of its 

mRNA (Fig. 1.6b). RELA activity was correlated to radio-resistance in GBMs, and in 

this case its activity was shown to be regulated post-transcriptionally by monitoring 

the phosphorylated state of the RELA protein(Bhat et al. 2013), providing an 

additional source of support for a second of the transcription factors identified here 

associated with clinical outcomes. In addition, we also identified RAR, which to our 

knowledge has not been linked to survival in GBM.  

Surprisingly all three survival associated transcription factors regulated overlapping 

sets of putative target genes. Of four different combinations in which multiple 

transcription factors could regulate overlapping targets, three were more common than 

expected (p < 0.01; super exact test(M. Wang, Zhao, and Zhang 2015); Fig. 1.7b; 

Supplementary Fig. 1.28), including 44 target genes that were shared among all three 

transcription factors. Target genes shared among all three transcription factors had 

significantly higher hazard ratios than unique target genes (Fig. 1.7c,d, p = 1.1e-3, 

Wilcoxon). Of the 26 shared targets for which hazards ratios were available, all were 

negatively correlated with survival, and eight were significantly associated with 

clinical outcomes on their own (a significant enrichment [p = 6e-4, Fisher’s exact 

test]), including CCL20 (Supplementary Fig. 1.29a) and ADM (Fig. 1.7d), (p < 0.05, 

Chi-squared test) (Supplementary Table 1.6). High expression of both genes was 

associated with high risk regardless of subtype assignment, indicating that survival 

association of these transcription factors was not simply driven by enrichment in the 
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mesenchymal subtype (Supplementary Fig. 1.29b-c). Moreover, differences in 

survival among these genes were not driven by IDH1 status (Supplementary Fig. 1.30). 

Gene ontology analysis found that targets of all three transcription factors were 

enriched for immune system process and stress responses (p < 1e-5, false discovery 

rate (FDR) corrected Fisher’s exact test, Supplementary Table 1.7). Taken together, 

our analysis suggests that C/EBP, RARG, and NF-кB work in concert to activate a 

shared regulatory program that controls inflammatory processes and correlates with 

poor clinical outcomes in GBM. 
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Fig. 1. 7 Transcription factors control survival associated pathways in GBM.   

(a) Scatter plot shows the -log10 two-sided Wilcoxon rank sum test p value comparing the 

distribution of hazards ratios of target genes for each transcription factor and two groups of 

non-target control genes (see Methods). The radius of the circle denotes the -log10 p value of 

association between transcription factor mRNA levels and survival. Color denotes the loge of 

the hazard ratio at higher mRNA levels. The dotted red line represents the Bonferroni adjusted 

α threshold (0.05/ 432). (b) Venn diagram shows overlap between the target genes of the three 

indicated transcription factors. (c) Violin plot shows the loge hazard ratios for target genes 

shared among (left, N=26) and unique to (center, N=62) three transcription factors, and for 

mesenchymal marker genes (right, N=161). Mean hazard ratios are shown by white dots and 

standard deviations are shown by bars. P values were calculated by a two-sided Wilcoxon rank 

sum test. (d) Browser track of ADM shows the average of RPM normalized (le)ChRO-seq 

signals and dREG-HD scores in mesenchymal (MES, n= 3) and non-MES (n= 8) GBMs. 

MES-biased TREs and motif positions are highlighted in blue. (e) Kaplan–Meier plot shows 

overall survival between 196 patients with high and low average expression level of 26 shared 

target genes. The cutoff was determined based on the minimum p value in the difference 
between survival time using a two-sided Chi-squared test. Shaded regions mark the 95% 

confidence interval. 
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1.4 Discussion 

Nascent transcription is a promising approach for studying the molecular basis of 

complex disease because unstable RNAs provide deep insights into multiple stages of 

gene regulation. ChRO-seq maps nascent transcription in virtually any sample that 

maintains the integrity of protein-DNA interactions – even those in which RNA is 

highly degraded. ChRO-seq has important applications throughout the biomedical 

sciences in analyzing regulatory programs that contribute to solid tumors and other 

tissues which have proven challenging to study using existing molecular tools.   

Our analysis of 20 primary tumors revealed several insights into transcriptional 

regulatory programs in malignant tissue. First, we report that enhancers in malignant 

tissue were surprisingly similar to DHSs in the tissue of origin. This finding suggests 

that regulatory programs in GBM often work within the confines of chromatin 

architecture that is established in the initiating cell. Regulatory programs were also 

similar to normal brain in PDXs, demonstrating that tumor initiating cells are able to 

reconstitute a diverse cell environment that bares surprising similarity to primary brain 

tissue. Yet how are malignant cell behaviors specified by cancer cells despite this 

similarity? We found a rare population of ectopic enhancers that resembled fetal 

tissues isolated from the nervous system, immune cells, and differentiated tumor cells. 

Our observations are consistent with models of tumorigenesis in which tumor cells 

reactivate regulatory programs that were similar in some respects to an earlier 

developmental stage(Stergachis et al. 2013). These regulatory signatures derived from 

rare ectopic enhancers may have important prognostic value that can be exploited in 

future studies.  

Our study highlights how transcription factors are responsible for coordinated changes 

in the expression of groups of genes that contribute to expression heterogeneity among 

tumors. ChRO-seq, like other run on technologies(Azofeifa et al. 2018), provides 
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substantial information about the regulatory activities of transcription factors on 

chromatin that is independent of transcription factor expression levels. In support of 

our general approach, transcription factor candidates activating TREs in the stem-like 

regulatory program were similar to those reported previously to be sufficient for 

initiating tumors in a murine host(Suvà et al. 2014). Additionally, we used ChRO-seq 

data to identify transcription factors that establish differences in gene expression 

characteristic of reported GBM subtypes.  

 

We report three transcription factors, C/EBP, RAR, and NF-кB, whose target genes 

were systematically correlated with poor clinical outcomes. Our work adds new 

transcription factors to the current literature, as well as additional support for the role 

of C/EBP in driving mesenchymal transformation(Carro et al. 2010). NF-кB was 

previously associated with resistance to radiotherapy and involvement in 

mesenchymal transformation in GBMs48. Our present work builds on these studies to 

show that NF-кB activation has an unambiguous influence on clinical outcomes. 

Additionally, we found evidence that a third transcription factor, RAR, drives 

regulatory programs that contribute to survival in GBMs. Notably, post-transcriptional 

mechanisms are responsible for activating two of these three transcription factors, NF-

кB and RAR. Thus insights reported here were possible only because ChRO-seq is a 

more direct indicator of transcription factor activity than other tools previously applied 

in GBM. As the pharmacology for targeting diverse transcription factor families 

develops, the transcription factors reported here, as well as our strategies for finding 

them, will become more useful in nominating targeted therapies. 
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1.5 Methods 

Cell culture. Jurkat cells were grown in RPMI-1640 supplemented with 10% fetal 

bovine serum, 1X Penicillin/Streptomycin Antibiotic, 0.125 mg/ml Gentamicin 

Antibiotic at 37oC, 5% CO2. 1x106 cells were centrifuged at 700 x g 4oC 5 min. The 

media was removed, and the cells were rinsed with 1X PBS, centrifuged, and PBS was 

removed.  

  

Tissue collection and preparation. Glioblastoma-derived cells were prepared from 

freshly biopsied human tumors obtained with patient consent. Sample collection was 

approval by the Institutional Review Board at SUNY Upstate Hospital, Syracuse, NY, 

and followed all relevant ethical regulations. The non-tumor brain sample was 

dissected from the brain of an epileptic patient, also with informed consent and IRB 

approval. To establish patient-derived xenografts, small pieces of freshly resected 

gliomas were implanted subcutaneously in the flank of athymic nude (nu/nu) mice 

(Harlan Laboratories / Envigo, Indianapolis,IN) and serially passaged (mouse-to-

mouse) 3 times for PDX-UMU88-02, 7 times for PDX-UMU89-08, and 57 times for 

PDX-88-04 p57, as previously described(Canute et al. 1998; Eller et al. 2002). All 

mouse work was approved by the SUNY Upstate IACUC and followed all relevant 

ethical regulations. To prepare chromatin pellets tissue samples were pulverized in a 

cell crusher. The Cellcrusher was chilled in liquid nitrogen. Frozen glioblastoma tissue 

(~ 100 mg) was placed in the Cellcrusher, the pestle is placed into the Cellcrusher, and 

the pestle was stuck with the mallet until the tissue was fractured into a fine powder.  

 

Chromatin isolation. The chromatin isolation was based on work first described in 

(Wuarin and Schibler 1994). For chromatin (ChRO) isolation from cultured cells or 

tissue we added 1 ml of 1x NUN Buffer (0.3 M NaCl, 1M Urea, 1% NP-40, 20 mM 
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HEPES, pH 7.5, 7.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 20 units/ml RNase 

Inhibitor (Life Technologies # AM2694), 1X Protease Inhibitor Cocktail (Roche # 11 

873 580 001)). Samples were vigorously vortexed for one minute. An additional 500 

µl of appropriate NUN Buffer was added to each sample and vigorously vortexed for 

an additional 30 seconds. For length extension chromatin (leChRO) isolation from 

cultured cells or tissue we added 1 ml of 1x NUN Buffer, as described previously, 

spiked with 50 units/ml RNase Cocktail Enzyme Mix (Ambion # 2286) in place of the 

RNase Inhibitor. The samples were incubated on ice for 30 minutes with a brief vortex 

every 10 minutes. Samples were centrifuged at 12,500 x g at 4oC for 30 minutes after 

which the NUN Buffer was removed from the chromatin pellet. The chromatin pellet 

was washed with 1 ml 50 mM Tris-HCl, pH 7.5 supplemented with 40 units/ml RNase 

Inhibitor (Life Technologies # AM2694), centrifuged at 10,000 x g, 4oC, for 5 minutes, 

and buffer discarded. The chromatin was washed two additional times. After washing, 

100 µl of chromatin storage buffer (50mM Tris-HCl, pH 8.0, 25% Glycerol, 5mM 

MgAc2 , 0.1mM EDTA, 5mM DTT, 40 units/ml RNase Inhibitor) was added to each 

sample. The samples were loaded into the Bioruptor and sonicated using the following 

conditions: power setting on high, cycle time of ten minutes with cycle durations of 30 

seconds on and 30 seconds off. The sonication was repeated up to 3 times as needed to 

get the chromatin pellet into suspension. Samples were stored at -80oC.  

  

Chromatin Run-On and sequencing (ChRO-seq) library preparation. After 

chromatin isolation, the chromatin run-on and sequencing library prep closely 

followed the methods described previously(Mahat et al. 2016). Chromatin from 1x106 

Jurkat T-cells or 10-100 mg of primary glioblastoma or 100 mg of PDX in 100 µL 

chromatin storage buffer was mixed with 100 µL of 2x chromatin run-on buffer (10 

mM Tris-HCl pH 8.0, 5 mM MgCl2,1 mM DTT, 300 mM KCl, 400 μM ATP (NEB # 
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N0450S), 40 μM Biotin-11-CTP (Perkin Elmer # NEL542001EA), 400 μM GTP 

(NEB # N0450S), 40 μM Biotin-11-UTP (Perkin Elmer # NEL543001EA), 0.8 

units/μl SUPERase In RNase Inhibitor (Life Technologies # AM2694), 1% Sarkosyl 

(Fisher Scientific # AC612075000)). The run-on reaction was incubated at 37oC for 5 

minutes. The reaction was stopped by adding Trizol LS (Life Technologies # 10296-

010) and pelleted with GlycoBlue (Ambion # AM9515) to visualize the RNA pellet. 

The RNA pellet was resuspended in DEPC treated water and heat denatured at 65oC 

for 40 seconds. In ChRO-seq, we digested RNA by base hydrolysis in 0.2N NaOH on 

ice for 8 minutes, which ideally yields RNA lengths ranging from 40 – 100 bases. This 

step was excluded from leChRO-seq. Nascent RNA was purified by binding 

streptavidin beads (NEB # S1421S) and washed as described(Mahat et al. 2016). RNA 

was removed from beads by Trizol and followed by the 3’ adapter ligation (NEB # 

M0204L). A second bead binding was performed followed by a 5’ de-capping with 

RppH (NEB # M0356S). The 5’ end was phosphorylated using PNK (NEB # M0201L) 

followed by a purification with Trizol (Life Technologies # 15596-026). A 5’ adapter 

was then ligated onto the RNA transcript. A third bead binding was then followed by a 

reverse transcription reaction to generate cDNA (Life Technologies # 18080-044). 

cDNA was then amplified (NEB # M0491L) to generate the ChRO-seq libraries which 

were prepared based on manufacturer's’ protocol (Illumina) and sequenced using 

Illumina NextSeq500 at the Cornell University Biotechnology Resource Center.  

 

Mapping ChRO-seq and leChRO-seq sequencing reads. We used our publicly 

available pipeline to align ChRO-seq and leChRO-seq data. Some libraries were 

prepared using adapters which contained a molecule-specific unique identifier (first 6 

bp sequenced; denoted in Supplementary Table 1.1), and for these we removed PCR 

duplicates using PRINSEQ lite(Schmieder and Edwards 2011). Adapters were 
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trimmed from the 3’ end of remaining reads using cutadapt with a 10% error 

rate(Martin 2011). Reads were mapped with BWA(H. Li and Durbin 2010) to the 

human reference genome (hg19) plus a single copy of the Pol I ribosomal RNA 

transcription unit (GenBank ID# U13369.1). The location of the RNA polymerase 

active site was represented by a single base which denotes the 3’ end (ChRO-seq) or 5’ 

end (leChRO-seq) of the nascent RNA, which corresponds to the position on the 5’ or 

3’ end of each sequenced read respectively. Mapped reads converted to bigWig format 

using BedTools(Quinlan and Hall 2010) and the bedGraphToBigWig program in the 

Kent Source software package(Kuhn, Haussler, and James Kent 2013). Downstream 

data analysis was performed using the bigWig software package. All data processing 

and visualization was done in the R statistical environment(R Development Core 

Team 2011).  

 

Gene transcription analyses. Gene transcription activity quantification for ChRO-seq 

and leChRO-seq. We quantified transcriptional activity using gene annotations from 

GENCODE v25 lift 37, expect for the cross-comparison with TCGA RNA-seq data 

where we used GENCODE v22 lift 37 to match the annotation of TCGA data. We 

counted reads in the interval between 500 bp downstream of the annotated 

transcription start site to the end of the gene for comparisons. This window was 

selected to avoid counting reads in the pause peak near the transcription start site. We 

limited analyses to gene annotations longer than 1,000 bp in length.  

Molecular subtype classification. Transcriptional activity of characteristic genes for 

each GBM subtype (n = 23) were quantified by the methods described above. Reads 

count from each sample are normalized by reads per million total reads count, 

followed by log2 transformation of pseudo count adjusted data (RPM normalized 

reads count+1). The transformed read count was centered to a mean of zero for each 
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gene. The similarity between each sample was measured by Spearman’s rank 

correlation, and clustered using single link clustering. The similarity of each sample to 

molecular subtypes(Verhaak et al. 2010) were calculated using Pearson’s correlation 

with the centroid of corresponding subtype.  

 

Differential expression analysis (DESeq2) for annotated genes. Patients clustered 

in each dominant molecular subtype were treated as biological replicates (Fig. 1.2b 

and Supplementary Table 1.3). Two technical replicates of non-malignant brain were 

used as control. Differential expression analysis was conducted using DESeq2(Love, 

Huber, and Anders 2014) and differentially expressed genes were defined as those 

with a false discovery rate (FDR) less than 0.05.  

 

Comparison of TREs with DNase-I hypersensitive sites. dREG-HD. dREG-HD was 

run using the default settings. A complete description of dREG-HD can be found in 

Supplementary Note 1.6. 

 

Data processing for calling DNase-I hypersensitive sites and dREG-HD sites. We 

reprocessed all DNase-I-seq data and identified DNase-I hypersensitive sites (DHSs) 

using a uniform pipeline. We retrieved mapped reads from either ENCODE or 

Epigenome roadmap projects aligned to hg19. We called peaks in individual 

biological replicates, 921 samples in total, using MACS2(Zhang et al. 2008) and 

Hotspot(John et al. 2011). To group DHSs for each cell and tissue type with high 

confidence, we took the union of peaks (bedtools merge) from biological replicates 

followed by intersecting peaks called by Hotspot and MACS2. Lastly since peaks 

resulted from intersection may be too narrow and hence become missed during 

downstream intersection operations, we expanded all short peaks (<150bp) to 150bp 
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from the peak center. Analyses involving individual replicates, in Supplementary Fig. 

1.11, use only peaks called by MACS2.  

 

ChRO/leChRO-seq data was mapped to hg19 as described above. dREG score was 

thresholded at 0.7 to generate dREG peak regions for dREG-HD run. dREG-HD runs 

were done at the stringent condition, except for analysis of subtype biased TREs, 

where we used dREG-HD sites called at relaxed condition.  

 

Mutual information analysis. We used mutual information to compare the similarity 

between TREs observed in any pair of DHS or dREG-HD datasets. DHSs or dREG-

HD peaks of sample involved in the comparison were merged in order to construct a 

sample space in which two or more samples would be compared. Each dataset was 

then summarized as a random variable, represented by a zero-one vector in which each 

element represents a TREs in the sample space, and takes a value of 1 if it intersects 

with that peak and 0 otherwise. We calculated the mutual information between two 

random variables, X and Y, using the formula below: 

𝐼(𝑋, 𝑌) = ∑∑𝑝(𝑥, 𝑦)log⁡(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 

Comparison between tumor and reference brain tissues and cell lines. We selected 

brain-related samples from uniformly processed DHSs and categorized the reference 

dataset by sample origin, namely normal adult brain tissues (globus pallidus, midbrain, 

frontal cortex, middle frontal gyrus, cerebellum and cerebellar cortex), primary brain 

cells (astrocyte of the hippocampus, astrocyte of the cerebellum, and normal human 

astrocytes), and GBM cell lines (A172, H54 and M059J). 

 

Mutual information heatmap and clustering analysis. To compare the similarity 
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between the dREG-HD sites in each query samples and DHSs in each reference 

sample (Fig. 1.3c), we computed the pairwise mutual information between each pair of 

dREG-HD and DHSs (as described above) on the sample space defined by merged 

peaks among all samples included in the analysis. Information on clustering samples 

based on mutual information, as in Supplementary Fig. 1.14, can be found in 

Supplementary Note 1.7. 

 

TRE clustering analysis. We analyzed the activation pattern across TREs, using the 

same definition of sample space described in the mutual information analysis (above). 

We assigned two states to each TRE, active if intersected dREG-HD/ DHS, and 

inactive otherwise. The Jaccard distance was used to quantify the similarity between 

two samples or between two potential TREs. Clustering across samples (columns) and 

across TREs (rows) was done using ward.D2 method. To reduce the influence of noise 

on the clusters, we limited analysis to TREs that were activated in at least two query 

samples but less than 6 brain-related reference samples (16 samples in total). 

 

taTRE enrichment test and clustering into regulatory programs. taTREs were 

defined as TREs from primary GBM / PDX that do not intersect with any dREG-HD 

peaks from our non-malignant brain control nor with DHSs found in normal brain 

tissues (including globus pallidus, midbrain, frontal cortex, middle frontal gyrus, 

cerebellum and cerebellar cortex). These taTREs represent a stringent subset enriched 

for TREs associated with the malignant phenotypes observed in brain tumors. dREG-

HD sites or DHSs that overlapped with ENCODE consensus hg19 blacklist regions 

were excluded from analysis.  

 

The majority of taTREs intersected DHSs in one or more reference ENCODE and 
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Epigenome Roadmap samples (Fig. 1.3a). We devised a statistical test to determine 

whether the observed number of intersections with each reference sample is 

significantly higher than expected by chance. We generated a null distribution by 

sampling DHSs with replacement from all TREs found in reference samples, 

controlling for the distribution of uniqueness (i.e., the number reference samples 

which each taTRE intersects) of taTREs from a particular GBM / PDX. The 

simulation was run for 105 times for each sample, each simulation drawing the same 

number of taTREs observed in that sample. We selected tissues with a stringent 

statistical significance cutoff of p(Xnull > xobserved) ≤ 1/104. Reference samples that 

showed significant enrichment in at least one third of (≥8) GBM or PDX were chosen 

as taTRE-associated references for downstream analysis.  

 

In total 50 significant taTRE-enriched reference samples were clustered by methods 

described in the TRE clustering analysis section. Fold of enrichment was calculated as 

the xobserved / E[Xnull]. The dendrogram was cut down to three clusters. DHS regions 

that show up in more than half of reference samples in each cluster were picked as 

representative DHS driving a regulatory program that is characteristic for that cluster. 

taTREs overlapping these representative DHSs unique to each cluster were selected 

for downstream analysis.  

 

Motif enrichment analysis of tumor-associated TREs and subtype-biased TREs. 

Defining subtype-biased TREs. To search for TREs that differentially activated or 

repressed in each subtype, we rely on measuring the change of the nascent RNA in the 

TRE regions. We merged dREG-HD sites called using the relaxed setting across 23 

samples. We summed up the reads count of leChRO/ChRO-seq of each merged 

dREG-HD sites extended by 250bp from the center. TREs in patients of the subtype of 
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interest (Supplementary Table 1.5) were compared against those of the rest three 

subtypes. Differential expression analysis was conducted using DESeq2(Love, Huber, 

and Anders 2014), and subtype-biased TREs are defined as those differentially 

transcribed with a false discovery rate (FDR) less than 0.01.  

 

Defining genomic regions for motif enrichment comparison. We examined motif 

enrichment in the positive set compared with a GC-content matched background 

control set. In the taTRE motif enrichment, we used the group indicated in 

Supplementary Fig. 1.15 as the positive set, and dREG-HD sites that intersect with 

active DHSs in the normal brain as the background. For subtype-biased TRE motif 

enrichment analyses we used up or down-regulated subtype-specific TREs as the 

positive set and TREs that did not show significant differential transcription (FDR 

DESeq2 p > 0.1) as the background set. For the positive and background sets we 

selected the center of peaks and then extended by 150bp from the center. We 

subsampled background peaks to construct >2,500 GC-content matched TREs before 

scanning for motif enrichment. 

 

Motif enrichment analysis. We used the R package rtfbsdb to search for motifs that 

show enrichment in each primary GBM(Z. Wang, Martins, and Danko 2016). We 

focused on 1,882 human transcription factor binding motifs from the CisBP 

database(Jolma et al. 2013). When scanning genomic regions of interest, we used 

TFBSs having a loge-odds score ≥7 in positive and background sets, with scores 

obtained by comparing each representative motif model to a second-order Markov 

background model. Motif enrichment was tested using Fisher’s exact test. To account 

for potential bias resulted from difference in GC-content between positive and 

background sets, we ran statistical test on 50 independently subsampled GC-matched 
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dREG-HD regions, and summarized the p values and the fold enrichment across 

background sets by the median across samples.  

 

We refined motifs discovered using several heuristics, as follows: 1) The motif was 

enriched (i.e., with a fold enrichment greater than 1), 2) the enrichment was robustly 

significant to changes in the GC matched background set (median p < 0.05/ 1882), 3) 

the positive sets have at least 10 sites with loge-odds score ≥7, 4) the transcription 

factor was transcribed (for subtype-biased TREs). In the subtype-biased TRE analysis 

for up-regulated TREs we required at least 2 ChRO/leChRO-seq reads in the gene 

body in all samples of either the subtype of interest or other three subtypes.  

 

Summarizing motif enrichment statistics across patients (taTREs analysis only). 

Motifs in the taTRE analysis that were enriched in at least one primary GBM (all 

taTRE against all normal brain TRE) were chosen for downstream analysis. The 

enrichment statistics of three regulatory modules-taTREs were also summarized by 

median over the patients that show significant enrichment for the motif. Lastly, for 

each transcription factors with multiple motif IDs, we reported the one with the most 

significantly enrichment in all taTREs over nbTREs. In the subtype-biased TRE 

analysis, we used all motifs meeting the enrichment criteria and heuristics described 

above. 

 

Motif clustering by genomic position. Because we are not able to rigorously 

distinguish between paralogous transcription factors that share similar DNA binding 

specificities, we developed a method of clustering motifs based on their occurrences in 

the genome. We first scanned motifs enriched over genomic regions defined by the 

positive set. In clustering motifs enriched in taTREs, we used the taTREs merged over 
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20 primary GBMs as the positive set; for motifs enriched in subtype biased TREs, we 

used the corresponding subtype biased TRE in which the motifs were enriched as the 

positive set. We defined the presence of TFBSs for loci (strand-specific) having a loge-

odds score ≥7 in positive and background sets, and absence otherwise, with scores 

obtained by the method described in the section Motif enrichment analysis of taTRE. 

The Spearman’s rank order correlation coefficients were computed for each pair of 

transcription factors, based on their presence/absence pattern across TFBSs of all 

motifs of interest. Heatmaps were generated using agglomerative hierarchical 

clustering using the ward.D2 method.  

 

Validation of regulation between transcription factors and target genes. 

Associating transcription factors to target genes. We associated transcription factors to 

target genes by first identifying its target TREs, and then search for target genes based 

on location of these TREs. To identify target TREs, we scanned “relaxed dREG-HD 

all GBM” regions, extended by 150bp from the center, using itself as the second-order 

Markov background model. For each subtype-specific transcription factor, we defined 

its binding sites as 1) subtype-biased TREs that undergo differentially transcription in 

the same subtype, and 2) have a loge-odds score ≥7 for at least one corresponding 

motif ids that also showed enrichment (p<0.05). This subset of TREs represents the 

potential binding and regulating sites of the TF of interest, referred to as query TREs. 

We use stringent heuristics link the query TREs to target genes in order to reduce false 

positive links. TREs were linked to putative target genes if: 1) the annotated 

transcriptional start site of the genes is the first two closest to the query TRE and 

within 50kb, and 2) the gene is differentially transcribed (FDR corrected DESeq2 p < 

0.05) in the same direction as the query TRE.  
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Defining the background set of non-target genes. We defined background non-target 

genes of each transcription factor as those distal from (>0.5 Mb) the query TRE, but 

which show similar changes in transcription as that of target genes (to control for 

subtype). We required non-target genes had a transcription start site >0.5Mb from the 

closest query TRE. To match changes in transcription between target and non-target 

genes, we subsampled half of the genes away from query TREs and differentially 

transcribed (p<0.05) in the same direction as that of target genes without replacement, 

such that the distribution of log2 of fold change in transcription was insignificant (two-

sided Wilcoxon p > 0.2).  

 

Validation of association between transcription factors and target genes. To validate of 

our approach associating transcription factors to target genes, we compared the co-

expression of target genes to that of background non-target genes. Specifically, we 

used the RPKM normalized TCGA RNA-seq data from 174 GBM patients 

downloaded from, and used the Spearman’s rank correlation to measure the degree of 

co-expression. To avoid the potential co-expression that might be artificially enriched 

in target genes due to higher chance of being located in adjacent positions of the 

genome, we masked the correlations coefficients between adjacent genes. We 

computed the significance for target genes to have higher co-expression using one-

sided Wilcoxon rank-sum test. 

 

Quantifying the association between the transcription level of transcription factors and 

its target genes. We used the RPKM normalized TCGA RNA-seq data from 174 GBM 

patients, and used the Spearman’s rank correlation to measure the monotonic relation 

between the transcription level of transcription factors and the putative target genes. 

We compared the difference between the distribution of correlation coefficients for 
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target and non-target genes using the Wilcoxon rank-sum test and derive the two-sided 

p value. 

 

Identification of transcription factors driving survival-associated programs. For 

each subtype-specific transcription factor, we identified the target genes as described 

above, and compared the hazard ratio of the target genes with that of non-target genes. 

We defined two sets of background based on non-target genes: 1) the closest genes 

whose transcription start site was also within 50 kb to the query TRE, but whose 

transcription unchanged across the samples representing that subtype (p > 0.2, Fig. 

1.7a, x axis), and 2) genes differentially transcribed (p < 0.05) in the same direction as 

target genes, whose transcription start sites were 0.5Mb away from the closest query 

TRE (Fig. 1.7a, y axis). The clinical data, the scaled mRNA abundance level of 11,861 

genes across 200 GBM patients (196/200 with information of survival days available), 

and unified over three microarray platforms, was downloaded from TCGA(Verhaak et 

al. 2010). We computed the hazard ratio of each gene by fitting a Cox proportional 

hazards regression model for survival time of patients with expression level in upper 

25% of transcription levels over those with lower 25%. This ensures that all genes 

were fit for the regression model using the same balanced number of patients. We used 

the Wilcoxon test to compare the distribution of hazard ratios of target genes and 

background genes, and derived a two-sided p values for each background set. 

The hazard ratio of analysis for individual transcription factors in Fig. 1.7a and 

Supplementary Fig. 1.27a-c, and target genes of survival-related transcription factors 

in Fig. 1.7e, Supplementary Fig. 1.27d-f and 1.30, were determined by the same 

regression model. The difference was that, instead of using the upper and lower 

quartiles as the cutoff, we reported the hazard ratio at the threshold between 0.1 

quantile and 0.9 quantile that gave the largest difference between survival times. This 
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difference was calculated by two-sided p value from Chi-squared test. This ensured 

that we reported the largest possible difference in survival time for each individual 

gene. 

 

URLs: ChRO-seq/ leChRO-seq alignment pipeline: https://github.com/Danko-

Lab/utils/tree/master/proseq 

dREG-HD implementation: https://github.com/Danko-Lab/dREG.HD 

tfTarget implementation: https://github.com/Danko-Lab/tfTarget  

bigWig software package: https://github.com/andrelmartins/bigWig 

TCGA Microarray data: https://tcga-

data.nci.nih.gov/docs/publications/gbm_exp/unifiedScaled.txt 

 

Code availability: Custom scripts for the tfTarget package can be downloaded form: 

https://github.com/Danko-Lab/tfTarget. dREG-HD can be obtained from: 

https://github.com/Danko-Lab/dREG.HD.  

 

Data availability: All ChRO-seq and leChRO-seq data can be downloaded from the 

database of genotypes and phenotypes (dbGaP) under accession number 

phs001646.v1.p1. 
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1.6 Supplementary Notes  

 

Supplementary Note 1.1: Comparison between ChRO-seq and other chromatin-

based RNA-seq assays 

 

ChRO-seq draws its intellectual heritage from other run-on and sequencing 

assays(Kwak et al. 2013; Core, Waterfall, and Lis 2008) and from assays that 

sequence RNA from a chromatin fractionation, such as Nascent-seq(Khodor et al. 

2011) and variations of mammalian NET-seq (mNET-seq)(Mayer et al. 2015). 

Compared with other chromatin-based RNA-seq assays, ChRO-seq includes a run-on 

reaction to incorporate an affinity tag that is specific to engaged RNA polymerase. 

This design has a number of advantages compared with other chromatin-based assays. 

In particular, the biotin tag stringently selects for engaged and transcriptionally 

competent RNA polymerase, allowing high-quality data even in cases where there is 

significant contamination from cytoplasmic RNAs, and depleting for highly abundant 

chromatin associated small RNAs. We expected these advantages to decrease the 

variability of the assay and provide a higher confidence that each read represents 

engaged RNA polymerase. 

 

We used metagene plots that normalize gene length and compared the median profiles 

obtained across annotated genes among all assays. Median ChRO-seq and leChRO-seq 

signal across annotated genes was within the range of variation observed in PRO-seq 

data from the same cell line, and differed to varying degrees compared to Nascent-seq 

and mNET-seq (Supplementary Fig. 1.1a). Among these assays, Nascent-seq was the 

largest outlier. Nascent-seq was depleted for signal associated with a paused Pol II that 

was picked up by all other assays, likely because of a stringent size selection of 200-
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300 bp after fragmentation that omits short fragments associated with a paused RNA 

polymerase. Pol II is known to continue transcribing for 5-20 kb after polyadenylation 

cleavage before transcription termination and these profiles are captured in PRO-seq 

data(Schwalb et al. 2016). PRO-seq and ChRO-seq show extensive signal for 

transcription past the polyadenylation site, whereas the signal in both Nascent-seq and 

mNET-seq drops quickly after the polyadenylation site. There may be a variety of 

reasons for these differences, including size selection, computational filtering 

steps(Mayer et al. 2015) and other factors.  

 

In addition to differences in the average profile, mNET-seq has large numbers of reads 

aligning to specific regions (or “spikes”) within the gene body that are not visible on 

the average profiles (Supplementary Fig. 1b). Spikes are absent from ChRO-seq data, 

indicating that they are not associated with transcriptionally competent RNA 

polymerase, or that polymerase is sufficiently backtracked that signals are not detected 

in a run-on reaction.  

 

Supplementary Note 1.2: Intra-tumor heterogeneity 

 

We evaluated the concordance of ChRO-seq by analyzing separate slabs of tissue 

available from the same patient for the normal brain sample and GBM-88-04. In all 

cases, ChRO-seq data produced reasonably concordant estimates of Pol II both in the 

bodies and at the 5’ ends of annotated genes (Supplementary Fig. 1.4c-f). To evaluate 

intra-tumor heterogeneity, we performed intraoperative MRI guided neuronavigation 

techniques to dissect GBM-15-90 tissue from four tumor regions (Fig. 1.2b) 

corresponding to the inner mass with necrotic center (core), an area deep within the 

tumor mass inferior to the necrotic area (deep), a site proximal to the cortical surface 
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superior to the necrotic site (cortex), and an actively infiltrating area at the genu of the 

posterior corpus callosum (corpus). ChRO-seq libraries in the four GBM regions 

tested were remarkably highly correlated, especially when compared to inter-tumor 

heterogeneity (Fig. 1.2b). Transcription in the core was situated between the other 

three parts of the tumor in a principal component analysis (PCA) (Supplementary Fig. 

1.5h), consistent with a model in which the tumor originated within the core and grew 

outward radially.  

 

Supplementary Note 1.3: Tumor microenvironment explains enhancer 

differences between primary and in vitro tissue cultures 

 

Two models might explain differences in enhancer profiles between primary and 

cultured GBM cells. Differences might reflect either evolutionary changes as cancer 

cells adapt to in vitro tissue culture conditions, or differences in the cellular 

microenvironment between tissue culture and primary tumors. To distinguish between 

these two models, we used TREs to cluster 20 primary GBMs, 3 PDXs, 8 normal brain 

tissues, 3 GBM cell lines, and 5 brain-related primary cell types which were 

dissociated from the brain and grown in vitro for a limited number of passages. This 

analysis supported two major clusters, one composed of normal brain and tumor 

tissues grown in vivo and the other of cells grown in vitro (Fig. 1.3d, Supplementary 

Fig. 1.14). Notably, PDX samples clustered with the primary brain samples, 

demonstrating that PDXs are a reasonably accurate model for many of the 

transcriptional features associated with primary tumors. That primary brain cells 

passaged for a limited duration in tissue culture clustered with the GBM models 

strongly implicates the microenvironment in causing differences in the enhancer 

landscape of cells.  
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Supplementary Note 1.4: Comparison between regulatory programs and 

molecular subtypes 

 

We asked how the stem, immune, and differentiated regulatory programs relate to 

previously described molecular subtypes in GBM. We used ChRO-seq signal to 

identify 6,775 TREs that were differentially transcribed in 2-3 primary GBMs most 

characteristic of each molecular subtype relative to samples representing the other 

three subtypes (p < 0.01, DESeq2; Supplementary Table 1.4).  We compared subtype-

biased TREs with those in the stem, immune, and differentiated regulatory program. 

TREs upregulated in mesenchymal GBMs were enriched 6-fold in the immune 

regulatory program (p < 1e-10, Fisher’s exact test; Fig. 4c), consistent with the 

mesenchymal subtype having higher numbers of tumor infiltrating immune cells (Bhat 

et al. 2013; Q. Wang et al. 2017). TREs up-regulated in neural and proneural GBMs 

were enriched in signatures in the stem-like program (Fig. 4c). Nevertheless, TREs in 

the stem, immune, and differentiated regulatory programs did not always correlate 

with molecular subtype. For instance, two of the neural tumors in our cohort had a 

substantial immune regulatory program, and several mesenchymal tumors were 

strongly enriched for a stem-like program (Fig. 4a). Thus, the three regulatory 

programs discovered on the basis of rare enhancer fingerprints were distinct from 

previously reported subtypes, motivating correlations between these clusters and 

clinical outcomes once larger cohorts of tumors are analyzed using ChRO-seq.  

 

Supplementary Note 1.5: Validation of motifs and target genes contributing to 

subtype heterogeneity 
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To validate motifs and predicted target genes, we used the expectation that genes 

which share a common transcription factor should have expression levels that are 

more highly correlated with one another across tumors. We analyzed an independent 

RNA-seq dataset from a cohort of 174 primary GBMs(Brennan et al. 2013). Among 

the 304 transcription factors enriched in any subtype we noted a significantly stronger 

correlation between putative target genes for 235 (77%) compared with randomly 

selected genes matched for similar subtype specificity (Fig. 1.5c; Supplementary Fig. 

1.24a). Furthermore, in two cases (NF-κB and STAT1), we found PRO-seq or RNA-

seq data following activation of a signaling pathway targeting that transcription 

factor(Luo et al. 2014; Chuong, Elde, and Feschotte 2016). Despite both published 

experiments occurring in a different cell type and environmental context, we 

nevertheless found predicted targets to be 3.0-fold (NF-κB; p < 3.0e-21, Fisher’s exact 

test) and 6.9-fold (STAT1, p = 1.9e-11, Fisher’s exact test) enriched in genes 

responding in these experiments. Finally, as expected, changes in transcription of 

TREs correlated with nearby genes, and were strongest for the nearest 1-2 genes from 

each TRE (Supplementary Fig. 1.22). Moreover these changes in the nearest two 

genes explained many of the markers defined in microarray studies (Verhaak et al. 

2010) (Supplementary Fig. 1.23).  Thus, we have identified transcription factors 

contributing to major GBM expression subtypes, and a set of putative target genes of 

each transcription factor. 

 

Supplementary Note 1.6: Description of the dREG-HD method 

 

Overview. We trained an epsilon-support vector regression (SVR) model that maps 

PRO-seq, GRO-seq, or ChRO-seq data to smoothed DNase-I-seq intensity values. 
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Because dREG reliably identifies the location of transcribed TREs that are enriched 

for DHSs (Danko et al. 2015), with its primary limitation being poor resolution, we 

limited the training and validation set to dREG sites. The SVR was trained to impute 

DNase-I values of the positions of interest based on its input PRO-seq data. The 

trained SVR can then be used to predict DNase-I-seq signal intensities in any cell type 

for which PRO-seq data is available. To identify the location of transcribed DNase-I 

hypersensitive sites (DHSs) we developed a heuristic method to identify local maxima 

in imputed DNase I-seq data. A detailed description of these tools is provided in the 

following sections. The source code for the R package of dREG-HD is available from 

https://github.com/Danko-Lab/dREG.HD.git. 

Training the dREG-HD support vector regression model. PRO-seq data was 

normalized by the number of mapped reads and was summarized as a feature vector 

consisting of ±1800 bp surrounding each site of interest. In total, 113,568 sites were 

selected, and were divided into 80% for training and 20% for validation. Parameters 

for the feature vector (e.g., window size) were selected by maximizing the Pearson 

correlation coefficients between the imputed and experimental DNase-I score over the 

holdout validation set used during model training (Supplementary Table 1.4). We fit 

an epsilon-support vector regression model using the Rgtsvm R package(Z. Wang, 

Martins, and Danko 2016).  

We optimized several tuning parameters of the model during training. We tested 

various kernels, including linear, Gaussian, and sigmoidal. Only the Gaussian kernel 

was able to accurately impute the DNase-I profile. Experiments optimizing the 

window size and number of windows revealed that feature vectors with the same total 

length but different step size result in similar performance on the validation set, but 

certain combinations with fewer windows achieved much less run time in practice. 

https://github.com/Danko-Lab/dREG.HD.git
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The feature vector we selected for dREG-HD used non-overlapping windows of 60bp 

in size and 30 windows upstream and downstream of each site, and resulted in near-

maximal accuracy and short run times on real data. To make imputation less sensitive 

to outliers, we scaled the normalized PRO-seq feature vector during imputation such 

that its maximum value is within the 90th percentile of the training examples. This 

adjustment makes the imputation less sensitive to outliers and improves the correlation 

and FDR by 4% and 2%, respectively.  

The optimized model achieved a log scale Pearson correlation with experimental 

DNase-I seq data integrated over 80bp non-overlapping windows within dREG 

regions of 0.66 at sites held out from the K562 dataset on which dREG-HD was 

trained and 0.60 in a GM12878 GRO-seq dataset that was completely held out during 

model training and parameter optimization (Supplementary Fig. 1.9).  

Curve fitting and peak calling. The imputed DNase-I values were subjected to 

smoothing and peak calling within each contiguous dREG region. To avoid effects on 

the edge of dREG regions, we extended dREG sites by ±200bp on each side before 

peak calling. We fit the imputed DNase-I signal using smoothing cubic spline. We 

defined a parameter, the knots ratio, to control the degree to which curve fitting 

smoothed the dREG-HD signal. The degree of freedom (λ) of curve fitting for each 

extended dREG region was controlled by knots ratio using the following formula. 

λ=({number of bp in dREG peak} / {knots ratio}) + 3 

This formulation allowed the equivalent degrees of freedom to increase proportionally 

to the length of the dREG peak size, but kept the value of the knots ratio higher than a 

cubic polynomial.  
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Next we identified peaks in the imputed dREG-HD signal, defined as local maxima in 

the smoothed imputed DNase-I-seq profiles. We identified peaks using a set of 

heuristics. First, we identify local maxima in the dREG-HD signal by regions with a 

first order derivative of 0. The peak is defined to span the entire region with a negative 

second order derivative. Because dREG-HD is assumed to fit the shape of a Guassian, 

this approach constrains peaks to occur in the region between ±σ for a Gaussian-

shaped imputed DNase-I profile. We optimized curve fitting and peak calling over two 

parameters: 1) knots ratio and 2) threshold on the absolute height of a peak. Values of 

the two parameters were optimized over a grid to achieve a balance between 

sensitivity and false discovery rate (FDR). We chose two separate parameter 

combinations: one ‘relaxed’ set of peaks (knots ratio=397.4, and background 

threshold=0.02) that optimizes for high sensitivity (sensitivity=0.94 at 0.17 FDR), and 

one stringent condition (knots ratio=1350 and background threshold=0.026) that 

optimizes for low FDR (sensitivity=0.79 at 0.07FDR).  

Validation metric and genome wide performance. We used genomic data in GM12878 

and K562 cell lines to train and evaluate the performance of dREG-HD genome-wide. 

Specificity was defined as the fraction of dREG-HD peaks calls that intersect with at 

least one of the following sources of genomic data: Duke DNase-I peaks, UW DNase-

I peaks, or GRO-cap HMM peaks. Sensitivity was defined as the fraction of true 

positives, or sites supported by all three sources of data that also overlapped with 

dREG. To avoid creating small peaks by an intersection operation, all data was 

merged by first taking a union operation and then by finding sites that are covered by 

all three data sources. All dREG-HD model training was performed on K562 data. 

Data from GM12878 was used as a complete holdout dataset that was not used during 

model training or parameter optimization. 
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Metaplots for dREG and dREG-HD. Metaplots were generated using the bigWig 

package for R with the default settings. This package used a subsampling approach to 

find the profile near a typical site, similar to (Danko et al. 2013). Our approach 

samples 10% of the peaks without replacement. We take the center of each dREG-HD 

site and sum up reads by windows of size 20bp for total of 2000 bp in each direction. 

The sampling procedure is repeated 1000 times, and for each window the 25% quartile 

(bottom of gray interval), median (solid line), and 75% quartile (top of tray interval) 

were calculated and displayed on the plot. Data from all plots were generated by the 

ENCODE project(Dunham et al. 2012). 

 

Supplementary Note 1.7: Description of the dREG-HD method 

We noted a systematic bias in the distribution of mutual information across query 

samples that appeared to reflect data quality and sequencing depth in either ChRO-seq 

or DNase-I-seq data. We devised a strategy to correct for this bias when clustering 

samples. Our strategy effectively normalizes the mutual information of each query 

sample with respect to the sum of mutual information for that query sample.  

Among multiple samples normalizing the mutual information metric is more 

complicated. We devised an approach that was used in Supplementary Fig. 1.14. We 

consider a square matrix with rows and columns representing each sample. Each 

element in this matrix represents the mutual information between a pair of samples. 

Our objective is to center the mutual information across each row or column while 

preserving the rank order and range of mutual information. We accomplished this 

using the following algorithm, which is similar to (Hastie et al. 2015), but guarantees 

symmetry: 
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#matrix centering algorithm 

WHILE convergence criterion does not meet 

 FOR i from 1 to number of columns 

  current mean<-mean of ith column 

  ith row <- ith row - current mean 

  ith column <- ith column - current mean 

END FOR 

END WHILE  

The convergence criterion was defined as the maximum of the absolute value of 

element-wise difference between matrix returned from previous two consecutive runs. 

Although there is no mathematical guarantee of convergence, this approach converged 

typically after four cycles with the datasets that we used. After centering the matrix 

was clustered using the ward.D2 clustering algorithm implemented in the heatmap 

function in R. 
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1.7 Supplementary Figures 

 

 

Supplementary Fig. 1. 1 Differences between ChRO-seq and other run-on assays.  

(a) Length-normalized meta plots show the median signal across 8,403 active gene bodies 

using PRO-seq (gray), ChRO-seq (blue), leChRO-seq (red), mNET-seq (teal), and Nascent-

Seq (purple). (b) The genome browser shows the signal near the EIF4G3 gene locus in ChRO-

seq, PRO-seq, GRO-seq, and mNET-seq. (c) Western blot showing GAPDH and two active 

forms of Pol II, defined as phosphorylated serine 2 (ser2) and serine 5 (ser5) in the 

carboxy-terminal domain, in the chromatin (C) and supernatant (S) fractions.  
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Supplementary Fig. 1. 2 Distribution of signal intensity in the gene body and pause.   

Violin plot shows the distribution of log2 of reads per kilobase per million mapped (RPKM) on 

(a) gene body (N=37,184) and (b) pause site (N=37,184). Plots are grouped by cell type and 

colored by the method. White dots represent the means, while the bars represent standard 

deviations. 
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Supplementary Fig. 1. 3 Bioanalyzer analysis of RNA isolated from GBM-88-04.   

The plot reported by the Bioanalyzer software shows the size of RNA isolated from GBM-88-

04 in units of nucleotides (nt, X-axis) as a function of the relative fluorescence units (RFU, Y-

axis).  RNA Quality Number (RQN = 1) shown in the trace denotes extensive RNA 

degradation. The mode of the distribution of RNA sizes is shown (125 nt). The Bioanalyzer 

analysis was performed once.  
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Supplementary Fig. 1. 4 Correlation between ChRO-seq and leChRO-seq.   

(a-f) Scatterplots show the density of reads mapping in the gene bodies (+1000 to gene end) (a, 

c, e) or in the promoter proximal pause near the transcription start site (b, d, f) of 41,478 

RefSeq genes.  All axes are in units of reads per kilobase per million mapped 

(RPKM).  Spearman’s rank correlation (ρ) is shown in each plot. The color scale denotes the 

density of points. 
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Supplementary Fig. 1. 5. Brain biopsies display immunohistochemical markers of high 

grade glioma in GBM-15-90.  

(a) Pseudopalisading borders with necrotic centers. (b) IDH1 staining is negative. (c) GFAP is 

stained as positive.  (d) Additional markers of high grade glioma between the tumor include 

p53-/- and IDH-/- using an IDH-1 positive glioblastoma as a positive control. All images are 

representative views from a single patient (GBM-15-90). All scale bars represent 200 μm(e) 

Principal component analysis of transcription in the four tumor regions dissected from GBM-

15-90 (N of genes=23,961). 
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Supplementary Fig. 1. 6 Expression of molecular subtype predictor genes in primary 

GBM / PDX samples.   

Heatmap shows the expression of 838 genes relevant for classifying among the four known 

molecular subtypes of glioblastoma. Red colors indicate higher transcription activity and blue 

colors indicate lower activity. Samples are ordered based on subtype. 
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Supplementary Fig. 1. 7 Gene ontology analysis of differentially expressed genes in GBM 

compared to non-malignant brain tissue.  

Barplot shows the the gene ontogoly terms enriched for genes up-regulated in GBM (a, 

N=2,018) and down-regulated in GBM (b, N=1,486). Ontology groups are ordered by 

statistical significance of enrichment and colored by their p values (two-sided Fisher's Exact 
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with FDR multiple test correction). The height of each bar indicates the fold enrichment of the 

indicated gene ontology term. 

 

 

Supplementary Fig. 1. 8 HOXA, HOXC, and EN1 loci show strong differential 

expression in primary GBM and PDX.  

Browser tracks of ChRO-seq signal in primary GBM, PDX, cultured astrocyte, and non-

malignant brain samples, DNase-I hypersensitivity in normal adult and fetal brain tissues, and 

H3K27ac peaks in normal adult brain tissues near (a) HOXA, (b) HOXC, and (c) EN1 loci. 

ChRO-seq signal signals are normalized by RPM, and summarized by the mean+whiskers 

function for display. DNase-I hypersensitivity signal is summed across bigWig files of 

biological replicates from the ENCODE source. 
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Supplementary Fig. 1. 9 dREG-HD refines TRE predictions by imputing DNase-I 

hypersensitivity.  

(a and b) Density scatter plots show a comparison between predicted and experimental 

DNase-I hypersensitivity signals in K562 holdout sites that were not used during training (a, 

N=303,068) and a complete holdout dataset in GM12878 (b, N=448,128). Points represent the 

sum of DNase-I hypersensitivity signals for non-overlapping 80bp windows. (c) Sensitivity of 

dREG-HD to detect DHSs that intersect dREG regions, paired GRO-cap HMM peaks, and the 

intersection of DHSs and GRO-cap pairs. Prediction in K562 and GM12878 are colored in 

blue and red respectively. The sensitivity analyzed under ‘relaxed’ dREG-HD setting was 

colored in dark red/blue, and those under ‘stringent’ setting were colored in light 

red/blue.  The expected false discovery rate of the ‘relaxed’ and ‘stringent’ settings are 

indicated above the barplot. (d) Browser track of a region near the transcription start site of 

BTG3 in K562 cells.  From top to bottom tracks represent: 1) RefSeq genes showing the 

transcription start site of BTG3; 2) PRO-seq colored in red (forward) and blue (reverse); 3) 

dREG scores and peaks; 4) dREG-HD scores and peaks; 5) DNase-I hypersensitivity signal 

and peaks; 5) GRO-cap reads. 6) The no-TAP control experiment matched to GRO-cap signal; 

7) Transcription start sites identified using the GRO-cap signal; 8) Potential transcription 

factor binding detected by ENCODE ChIP-seq.  Peak calls are colored in gray and black and 

the best match to a transcription factor binding motif is colored in green. 
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Supplementary Fig. 1. 10 Metaplots for PRO-seq, chromosome accessibility, and histone 

modifications that marks active TREs.  

Signals of the indicated mark over dREG and dREG-HD regions are shown in blue and red, 

respectively. Shadows marks the 25 and 75 percentiles of 1000 samples of 10% of the data 

(see methods).   
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Supplementary Fig. 1. 11 Mutual information is an accurate similarity measure for 

TREs.  

Histogram represents the mutual information between dREG-HD sites identified using PRO-

seq or GRO-seq data and DHSs from 921 public DNase-I-seq experiments and in the indicated 

sample (a:GM12878, b:K562, c:MCF-7, d:human primary CD4+ T-cells). In all cases, mutual 

information selects the sample that was most similar in the reference DHS data, including 

those of the same or similar cell types, are highlighted. 
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Supplementary Fig. 1. 12 DNase-I hypersensitive sites with differences between brain 

tissues and cultured brain cells.  

(a) Locus near the COPS8 gene that shows consecutive activation of TREs in cultured brain 

cells but not in normal brain tissues. (b) Locus near PHACTR3 gene that shows activation of 

TREs in primary brain tissues but not in cultured brain cells. 
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Supplementary Fig. 1. 13 Venn diagram showing similarity in TREs between primary 

GBMs, normal brain tissue, and primary brain cells grown in tissue culture.   

Venn diagram denotes the overlap between TREs found in GBM-15-90 and normal brain 

(pink), GBM cell line models (green), or primary brain cells that were dissociated from 

normal brain tissue and grown in culture for a limited number of passages (teal). For each 

overlap, the number and fraction of TREs is shown.  Pie charts denote the fraction of TREs 

that are >5kb from the nearest annotated transcription start site (blue), <1kb (red), or between 

1kb-5kb (gray).  
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Supplementary Fig. 1. 14 Pairwise mutual information among TREs from brain-related 

reference DHSs centered by the mean of each sample.  

Heatmap shows the centered mutual information between the indicated samples.  Sample 

order was selected by hierarchical clustering using the algorithm described in Supplementary 

Note 1.7. 
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Supplementary Fig. 1. 15 Distribution of the frequency across GBM patients of normal 

brain and taTREs.  

Histograms show the distribution of the number of primary GBM patients (out of 20) in which 

each TRE is active. 2 to 24% of TREs in GBM samples are not found in normal adult brain 

tissues. The percentage of TREs >1kb from the nearest transcription start site (distal) is shown 

in green dots. 
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Supplementary Fig. 1. 16 EN2 locus show strong differential expression and activation of 

taTREs in GBM.  

Browser tracks of ChRO-seq signal in primary GBM and PDX, normal astrocyte and non-

malignant brain samples, DNase-I hypersensitivity and in normal adult and fetal brain tissues, 

and H3K27ac peaks in normal adult brain tissues near the EN2 gene. taTREs that are activated 

in GBM samples are highlighted in blue. The yellow bar highlights a TRE that is highly active 

in GBM but not in non-malignant brain. Although it is DNase-I hypersensitive in some of 

adult brain tissues, it is not associated with the active transcription marker H3K27ac in any of 

the normal adult brain tissue. 
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Supplementary Fig. 1. 17 Clustering of taTREs-enriched reference samples.   

Clustering of reference samples enriched for taTREs based on the activation of TREs. Active 

TREs are marked in red; inactive ones are in white. Row dendrograms are cut down to three 

trees, each corresponding to the indicated transcriptional regulatory program (i.e., stem- or 

fetal-like, immune, and differentiated).  
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Supplementary Fig. 1. 18 Transcription factor binding motifs enriched in TREs in the 

indicated regulatory program compared with normal brain.  

Transcription factor binding motifs enriched in TREs that are members of the immune (I), 

stem (S), or differentiated (D) regulatory program (top) compared with TREs active in the 

normal brain. Spearman's rank correlation (heatmap, left) shows the correlation in DNA 

sequence recognition motif. Families of transcription factor and their representative motifs are 

highlighted. The median p value across patients significantly enriched/depleted (unadjusted p 

< 0.05, two-sided Fisher’s exact test) in taTREs for each motif (right) are represented by the 

radius of the circle and enrichment (red) or depletion (blue) are represented by the color. The 

number of taTREs in each test is shown in Supplementary Table 1.3. 
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Supplementary Fig. 1. 19 taTREs show enrichment of POU3F2 binding in tumor 

propagating cells.   

Heatmaps show ChIP-seq signals for POU3F2 in tumor propagating cells ±5kb surrounding 

the center of taTREs. Data was from (Suvà et al. 2014). Rows were ordered by the sum of 

ChIP-seq signals. Plots are made using the R pheatmap package (Kolde 2015). 
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Supplementary Fig. 1. 20 Stem program taTREs enriched for POU3F2 ChIP-seq peaks.  

The height of bars shows the fraction of POU3F2 ChIP-seq peaks that intersect with taTRE in 

each of the primary GBM / PDX samples. taTREs from differentiated and stem programs are 

colored in red and green respectively. Primary GBM / PDX samples in which ChIP-seq peaks 

were enriched in stem program taTREs are marked by an asterisk (unadjusted p < 0.05, one-

sided Fisher’s exact test). Sample size for POU3F2 ChIP-seq peaks overlapped with each 

module: differentiated: mean=3.1, sd=1.5; stem: mean=5.8, sd=3.5; immune: mean=0.5, 

sd=0.5.  

  



 

 

 

73 
 

 

 

  



 

 

 

74 
 

 

 



 

 

 

75 
 

 

  



 

 

 

76 
 

 

 

  



 

 

 

77 
 

 

 

  



 

 

 

78 
 

 

 

  



 

 

 

79 
 

 

 

Supplementary Fig. 1. 21 Transcription factor binding motifs enriched in TREs up-

regulated or down-regulated in each known molecular subtype.  

Transcription factor binding motifs enriched in TREs that were up- or down-regulated in the 

indicated subtype. The Spearman’s rank correlation heatmap (left) shows the correlation in 

DNA binding sites matching each motif. Families of transcription factors and their 

representative motifs are highlighted. Right: Enrichment of transcription factor binding motifs 

in TRE with biased transcription in the indicated subtype. The unadjusted p values (two-sided 

Fisher’s exact test) of motifs are represented by the radius of the circle, and enrichment (red) 

or depletion (blue) are represented by the rainbow color scale. The number of subtype-biased 

TREs in each group is shown in Supplementary Table 1.4. 



 

 

 

80 
 

 

  
 

Supplementary Fig. 1. 22 Subtype-biased TREs correlate with the transcription of 

nearby genes.  

(a) Violin plots show the distribution of log2 fold change in the transcription of n th closest 

genes to TREs that were up (red, N=4,960) or down (blue, N=1,815) -regulated in any subtype. 

White dots represent the means, while the bars represent standard deviations. (b and d) Scatter 

plots show the -log10 two-sided t-test p value testing the null hypothesis that the log2 fold 

change is equal to zero as a function of nth closest gene to the subtype-biased TRE. Separate 

plots are shown for up (b, N=4,960) or down (d, N=1,815) -regulated gene/ TRE pairs. 

Median log2 fold change in transcription is represented using red and blue color scale. (c and e) 

The rank-ordered version of (c) and (d) show outliers in change of transcription determined at 

the inflection point (marked by red).   
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Supplementary Fig. 1. 23 Subtype-biased TREs are near a large proportion of subtype 

specific genes.  

Line chart show the percentage of subtype marker genes (Y-axis) positioned n genes from the 

closest subtype-biased TREs. Separate lines are shown for up (red, N=4,960) or down (blue, 

N=1,815) -regulated gene/ TRE pairs. The enrichment (red) or depletion (blue) over the 

expected number of genes is represented by the color, and the unadjusted p values of two-

sided Fisher’s exact test for enrichment is represented by the radius of the circle. 
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Supplementary Fig. 1. 24 Barplots show the relationship between transcription factors 

enriched over TREs down-regulated in each subtype and their putative target genes.  

(a) Barplots show the -log10 Wilcoxon rank sum of p value of having higher correlation among 

174 TCGA patients between target genes for each transcription factor compared with a control 

set. Barplots are colored by subtype in which they were found to be enriched (unadjusted p < 

0.05, two-sided Fisher’s exact test). (b) Barplot shows the FDR corrected -log10 p value 

(DESeq2, Wald test, n= 2 [classical] or 3 [other subtypes]) representing changes in Pol II 

abundance detected by (le)ChRO-seq on the gene encoding the indicated transcription factor. 

The level of upregulation (blue) and downregulation (yellow) in the subtype indicated by the 

colored boxes (below the barplot) is shown by the color scale. The horizontal color bar below 

the barplot indicates the corresponding subtype in which the motif shows enrichment in the 

downregulated TREs. The dashed line shows the the FDR corrected α at 0.01. (c) Barplot 

shows the -log10 two-sided Wilcoxon rank sum test p value denoting differences in the 

distribution of correlations between the mRNA encoding the indicated transcription factor and 

either target or non-target control genes. The blue/ yellow color scale represents the median 

difference in correlation between target and non-target genes over 174 mRNA-seq samples. 

The dashed line shows the uncorrected α at 0.01 
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Supplementary Fig. 1. 25 Barplots show transcription factor binding motifs controlling 

survival-related genes in mesenchymal GBMs.  

The minimum of the two -log10 p values on the x-axis and y-axis of Fig 1.7a (two-sided 

Wilcoxon rank sum test) are plotted by the order of motifs cluster. In total, 196 TCGA patients 

with microarray data and survival information were used to calculate the hazard ratio. The 

dotted red line represents the Bonferroni adjusted α value at 0.05.  
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Supplementary Fig. 1. 26 Heatmap shows the clustering of target genes of six 

transcription factors with significant survival association.  

Hierarchical agglomerative clustering groups target genes of one or more transcription factor. 

Red indicates the target gene belongs to the putative targets of the corresponding transcription 

factor and white indicates otherwise.  
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Supplementary Fig. 1. 27 Kaplan–Meier plots show the difference in survival between 

patients with different expression levels of transcription factors (a-c) and of their 

corresponding target genes (d-f).  

P values and hazard ratios were calculated by comparing patients of higher expression level 

(red) with those of lower expression level (blue) across 196 patients. The mean expression 

level was used to represent target genes of each transcription factor. The optimum cutoff of 

mean expression level was determined by minimizing the p values (two-sided Chi-squared test) 

between survival time. Shaded regions mark the 95% confidence interval of each group. 
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Supplementary Fig. 1. 28 Concentric circles visualize the enrichment of overlapping 

between target genes of C/EBP, RARG, and NF-кB/RELA.  

The first three inner circles indicate the combination of transcription factors (C/EBP, RARG, 

and NF-кB/RELA) regulating each target gene. The outer circle is filled by a color scale 

representing the -log10 of p value (one-sided super exact test) of the overlap compared with 

random assignment among 362 genes in proximity to mesenchymal-biased TREs and up-

regulated in mesenchymal GBM subtype. In total, 289 genes from three transcription factors 

were involved in the test. The exact number of each combination is shown on the outermost 

sector. Statistically significant overlap (one-sided super exact test, unadjusted p < 0.01) is 

marked by an asterisk.  
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Supplementary Fig. 1. 29 The Browser track of CCL20 and Kaplan–Meier plots of 

CCL20 and ADM.  

(a) Browser track of the locus encoding the CCL20 gene shows the average of RPM 

normalized (le)ChRO-seq signals and dREG-HD scores in mesenchymal (n= 3) and non-

mesenchymal (n= 8) GBMs. Mesenchymal-biased TREs are highlighted in blue. Positions of 

MES-biased TRE and motifs of C/EBP, RARG, and NF-кB/RELA transcription factors are 

shown on the bottom. (b and c) Kaplan–Meier plots show survival rate for patients with 1) 

lower quartile CCL20 (b) or ADM (c) expression level (light blue), 2) upper quartile 

expression level of tumors in the non-mesenchymal subtype (red), and 3) upper quartile gene 

expression level for tumors in the mesenchymal subtype (purple). P values were calculated 
using a two-sided Chi-squared test. Shaded regions mark the 95% confidence interval of each 

group. 
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Supplementary Fig. 1. 30 Kaplan–Meier plot shows survival rate of IDH wild-type 

patients. 

Kaplan–Meier plot shows overall survival between 104 IDH1 wild-type patients with high and 

low average expression level of 26 shared target genes. The cutoff was determined based on 

the minimum p value in the difference between survival time using a two-sided Chi-squared 

test. Shaded regions mark the 95% confidence interval.  
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1.8 Supplementary Tables 

 
Supplementary Table 1. 1 Technical information for all samples used in the experiment.  

 
 

Run-on 

method 
Sequencing 

Depth 

(number of 

total mappable 

reads) 

# 

dREG 

sites  

# 

dREG-

HD sites 

(0.1 

FDR) 

# 

dREG-

HD sites 

(0.16 

FDR) 

Unique 

molecular 

index 

barcode 

K562 PRO-seq 374946808 54933 24434 43826 
 

GM12878 GRO-seq 105936649 59300 31026 47280 
 

MCF-7 PRO-seq 134344736 45112 24044 37782 
 

Human Naive T cell PRO-seq 96447847 25513 22138 32186 
 

Nonmalignant brain-all ChRO-

seq / 

leChRO-

seq 

26618420 22005 26684 20359 
 

UMU94-13_Chr 

(normal_brain_ATCACG) 
ChRO-

seq 
19012439 

    

UMU94-13_leChr 

(NB_Deep) 
leChRO-

seq 
7605981 

   
X 

Human astrocytes leChRO-

seq 
13124347 18851 17276 23682 

 

GBM-05-16 
leChRO-

seq 12026819 
21490 25259 19950 X 

GBM-07-05 
leChRO-

seq 33477124 
32647 40065 29420 X 

GBM-05-17 
leChRO-

seq 37121068 
33150 40099 28699 X 

GBM-05-23 
leChRO-

seq 38750059 
37637 45178 32574 X 

GBM-05-05 
leChRO-

seq 31814017 
37146 44211 32874 X 

GBM-07-07 
leChRO-

seq 53694384 
44676 52255 37165 X 

GBM-05-35 
leChRO-

seq 18865872 
26219 31269 24524 X 
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GBM-97-04 
leChRO-

seq 10593102 
16014 17872 14968 X 

GBM-15-90 (all) 
ChRO-

seq 150711728 
67812 53197 80953 

 

GBM-15-90 
Core 

ChRO-

seq 
38115236 

    

GBM-15-90 
Corpus 

ChRO-

seq 
38896761 

    

GBM-15-90 
Deep 

ChRO-

seq 
36289294 

    

GBM-15-90 
Cortex 

ChRO-

seq 
37410437 

    

GBM-05-15 
leChRO-

seq 21731177 
36089 44682 33388 X 

GBM-07-02 
leChRO-

seq 10303802 
20144 24138 18988 X 

GBM-05-30 
leChRO-

seq 26041476 
48728 59064 44908 X 

GBM-05-18 
leChRO-

seq 34744863 
54982 65604 49345 X 

GBM-05-21 
leChRO-

seq 27920964 
37450 44699 33950 X 

GBM-05-33 
leChRO-

seq 25874121 
24782 30388 23024 X 

GBM-05-45 
leChRO-

seq 21405989 
40558 48592 37792 X 

GBM-06-12 
leChRO-

seq 19037300 
32594 40524 30744 X 

GBM-88-04 (all) 

ChRO-

seq / 

leChRO-

seq 

22477998 20981 26621 19551 X 

GBM-88-04_leChr1 

(ROS1_RNase) 
leChRO-

seq 
11982314 

   
X 

GBM-88-04_Chr 

(ROS1_primary_d2e7) 
ChRO-

seq 
4236986 

    

GBM-88-04_leChr2 leChRO- 6258698 
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(GBM_primary) seq  

GBM-05-26 
leChRO-

seq 11581790 
22825 27083 21509 X 

GBM-06-05 
leChRO-

seq 32896583 
38268 46223 35007 X 

PDX-88-02_P3 
leChRO-

seq 29292587 
41525 37769 50183 X 

PDX-89-08_P7 
leChRO-

seq 18944268 
22675 27496 20462 X 

PDX-88-04_P57 ChRO-seq 119662422 34901 42500 28063 
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Supplementary Table 1. 2 Differentially transcribed genes across all 20 primary GBMs 

relative to technical replicates of the non-malignant brain detected using DESeq2.  

The first 7 columns show the information of the annotated genes. The log2FoldChange shows 

the log2 of ratio in transcription, measured as primary GBM patients (n=20) over non-

malignant brain (n=2). The padj shows the FDR-corrected p values (Wald test). Genes with 

padj<0.05 were shown. 

 
 
Supplementary Table 1. 3 Differentially transcribed genes across each GBM subtype 

relative to technical replicates of the non-malignant brain detected using DESeq2.  

The first 7 columns show the information of the annotated genes. The last eight columns show 
the log2 fold change and adjusted p values for each of the four 

subtypes.  Subtypename.log2FoldChange shows the log2 of ratio in transcription, measured as 

the GBM of the given subtype ( n= 2 [classical] or 3 [other subtypes]) over non-malignant 

brain (n=2). The Subtypename.padj shows the FDR-corrected p values (Wald test) for the 

change of transcription in the given subtype. Genes with padj<0.05 in at least one subtype 

were shown. 

 

 
Due to the length of the list, please refer to the online Supplementary Information 

https://doi.org/10.1038/s41588-018-0244-3 

 
 
 

 

 

  

https://doi.org/10.1038/s41588-018-0244-3
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Supplementary Table 1. 4 The distribution of taTRE in each patient and each 

transcriptional module. 

 

 
Sample 

No. of 
total 
TRE 

No. of 
taTRE 

Percentage 
of taTRE 

No. of taTRE in 
differentiated 
module 

No. of 
taTRE in 
stem 
module 

No. of taTRE 
in immune 
module 

GBM-05-05 32874 4101 0.12 441 207 147 

GBM-05-15 33388 5511 0.17 1219 201 596 

GBM-05-16 19950 1255 0.06 186 52 40 

GBM-05-17 28699 2374 0.08 52 137 50 

GBM-05-18 49345 11910 0.24 1687 449 497 

GBM-05-21 33950 4703 0.14 545 237 394 

GBM-05-23 32574 4556 0.14 488 204 158 

GBM-05-26 21509 1567 0.07 222 59 273 

GBM-05-30 44908 9046 0.2 1602 310 587 

GBM-05-33 23024 1832 0.08 182 92 187 

GBM-05-35 24524 1435 0.06 106 59 214 

GBM-05-45 37792 6541 0.17 1420 189 440 

GBM-06-05 35007 4475 0.13 828 169 498 

GBM-06-12 30744 4800 0.16 838 118 1049 

GBM-07-02 18988 1455 0.08 210 67 224 

GBM-07-05 29420 3661 0.12 342 208 94 

GBM-07-07 37165 5126 0.14 286 265 227 

GBM-88-02_P3 37769 6668 0.18 739 198 173 

GBM-88-04 19551 1297 0.07 278 254 123 

GBM-88-
04_P57 

28063 4156 0.15 

136 33 261 

GBM-89-08_P7 20462 1994 0.1 116 125 48 

GBM-97-04 14968 319 0.02 8 5 49 

GBM-15-90 53197 6648 0.12 567 456 349 
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Supplementary Table 1. 5 The distribution of subtype-biased TRE. 

 

 
Total dREG-HD called at relaxed condition sites=177729 

Subtype Patient up down unchanged 

Classical GBM-05-05, GBM-07-07 243 58 69994 

Mesenchymal GBM-07-02, GBM-06-12, GBM-88-04 2174 732 134435 

Neural GBM-05-35, GBM-97-04, GBM-15-90 2134 100 155556 

Proneural GBM-05-16, GBM-07-05, GBM-05-23 409 925 129648 
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Supplementary Table 1. 6 Clinical statistics of the target genes shared by three survival-

associated transcription factors.  

P value is calculated by two-sided Chi-squared test for the survival days of patient with upper 

quartile expression (N=51) and lower quartile expression (N=51) of the given gene. Hazard 

ratio is defined as higher expression / lower expression. NA value indicates that the genes is 

not measured by the microarray data.  
 

 
Gene name 

P 
value 

Difference in median of survival 
time (days) 

Hazard ratio of high 
transcription 

CXCL3 0.0387 -64 1.57 

PPP1R15A 0.0566 -73 1.49 

ALOX5AP 0.396 -37.5 1.19 

SLC25A37 0.773 -48 1.06 

MGAT1 0.159 -50.5 1.35 

ZC3H12A 0.106 -67 1.42 

LPCAT1 0.291 -100.5 1.25 

VPS37C 0.233 -42.5 1.28 

DUSP6 0.0151 -137 1.68 

SDCBP 0.614 -40 1.11 

SLC16A6 0.916 -48 1.02 

PAX8 0.633 -46 1.11 

ADM 0.0343 -98 1.60 

KYNU 0.997 38.5 1.00 

SERPINH1 0.146 -73 1.36 

SERPINE1 0.289 -52 1.25 

UPP1 0.0187 -107 1.66 

ITGA5 0.00541 -137 1.81 

RHOH 0.228 -67 1.29 

TNFAIP3 0.389 -37 1.20 

CHI3L1 0.0211 -74.5 1.64 

NNMT 0.329 -17 1.23 

BCL2A1 0.0396 -86 1.55 

CFLAR 0.199 -31 1.31 

MYBPH 0.0812 -96.5 1.45 
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CCL20 0.00237 -149 1.94 

CD300LB NA NA NA 

RP13-
516M14.2 NA NA NA 

LINC01272 NA NA NA 

LINC01270 NA NA NA 

OSM NA NA NA 

EAF1 NA NA NA 

RP11-24F11.2 NA NA NA 

RBM47 NA NA NA 

FILIP1 NA NA NA 

RP11-356I2.4 NA NA NA 

CCDC71L NA NA NA 

NECTIN4 NA NA NA 

RP11-
519G16.3 NA NA NA 

AC092839.3 NA NA NA 

PAX8-AS1 NA NA NA 

AF064858.8 NA NA NA 

CTB-138E5.1 NA NA NA 

AC051642.1 NA NA NA 
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Supplementary Table 1. 7 Gene ontology analysis of target genes of three survival-

associated transcription factors.  

Table shows the fold of enrichment and p value ( two-sided Fisher's Exact with FDR multiple 

test correction) of each gene ontology terms (Sample size: RELA=127; C/EBP=196; 

RARG=273).  
 

 RELA  C/EBP  RARG 

GO Terms 
Fold 

Enrichment FDR 
Fold 

Enrichment FDR 
Fold 

Enrichment FDR 

regulation of 
phosphorus 

metabolic process 
(GO:0051174) 3.83 2.30E-06 3.61 1.16E-11 2.82 4.92E-06 

regulation of 
phosphate 

metabolic process 
(GO:0019220) 3.86 3.80E-06 3.49 3.57E-11 2.77 1.09E-05 

response to stress 
(GO:0006950) 2.69 5.94E-06 2.58 2.72E-11 2.6 3.14E-10 

regulation of 
phosphorylation 

(GO:0042325) 4.01 7.42E-06 3.8 3.86E-11 2.93 1.21E-05 

positive regulation 
of phosphate 

metabolic process 
(GO:0045937) 4.57 8.39E-06 4.25 1.84E-10 3.62 1.58E-06 

positive regulation 
of phosphorus 

metabolic process 
(GO:0010562) 4.57 9.59E-06 4.25 2.11E-10 3.62 1.72E-06 
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response to 
lipopolysaccharide 

(GO:0032496) 9.38 1.23E-05 7.84 1.13E-08 7.06 1.88E-06 

response to cytokine 
(GO:0034097) 4.58 1.48E-05 3.99 1.26E-08 4.02 1.05E-06 

response to 
molecule of 

bacterial origin 
(GO:0002237) 8.84 1.78E-05 7.39 2.36E-08 6.66 3.39E-06 

regulation of protein 
phosphorylation 

(GO:0001932) 3.84 3.86E-05 3.96 3.11E-11 3.01 1.79E-05 

regulation of 
response to stimulus 

(GO:0048583) 2.3 4.05E-05 2.13 3.85E-08 1.95 3.04E-05 

response to organic 
substance 

(GO:0010033) 2.69 5.46E-05 2.61 1.64E-09 2.39 1.87E-06 

response to 
chemical 

(GO:0042221) 2.25 8.36E-05 2.08 9.65E-08 1.94 2.47E-05 

immune system 
process 

(GO:0002376) 2.75 8.45E-05 2.8 2.42E-10 2.78 6.58E-09 
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CHAPTER 2 

DISCOVERING TRANSCRIPTIONAL REGULATORY ELEMENTS FROM 

RUN-ON AND SEQUENCING DATA USING THE WEB-BASED DREG 

GATEWAY 

 

2.1 Abstract 

Transcription is effective mark that can be used to identify the location of active 

enhancers and promoters, collectively known as transcriptional regulatory elements 

(TREs). We have recently introduced dREG, a tool for the identification of TREs 

using run-on and sequencing assays like GRO-seq, PRO-seq, and ChRO-seq. In this 

protocol, we present step-by-step instructions for running dREG on an arbitrary run-on 

and sequencing dataset. Users provide dREG with bigWig files representing the 

location of RNA polymerase in a cell or tissue sample of interest. dREG returns 

genomic regions that are predicted to be active TREs. Finally, we demonstrate the use 

of dREG regions in discovering transcription factors controlling response to a stimulus 

and predict their target genes. Together, this protocol provides detailed instructions for 

running dREG on arbitrary run-on and sequencing data. 

 

2.2 Introduction 

DNA sequence control regions, such as promoters, enhancers, and insulators, 

collectively known as transcriptional regulatory elements (TREs), are critical 

components of the genetic regulatory programs of all organisms. TREs can be 

identified using a family of run-on and sequencing assays that map the location of 

RNA polymerase, including global run-on and sequencing (GRO-seq), precision run-

on and sequencing (PRO-seq), and chromatin run-on and sequencing (ChRO-seq) 

(Core, Waterfall, and Lis 2008; Chu et al. 2018). The detection of transcriptional 

regulatory elements by GRO-seq, PRO-seq, and ChRO-seq data (dREG) is a method 
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that can be used to identify the location of transcriptional regulatory elements (Danko 

et al. 2015; Z. Wang et al. 2019).  

 

In this article we provide a detailed protocol for using dREG to identify TREs in any 

global run on and sequencing experiment. We provide two separate ways to run dREG: 

First, we demonstrate the use of the dREG web server, available at 

(http://dreg.dnasequence.org). Second, we provide a detailed account of the steps that 

are required to download and run dREG in a user’s own computer system. Finally, we 

provide an example of how the output of dREG can be used to map the location of 

transcription factors and predict which genes are targets. In summary, this protocol 

allows researchers to discover the location of active TREs by running dREG on PRO-

seq data collected in their own lab. 

 

 

2.3 Strategic Planning 

The input to dREG consists of mapped reads from a GRO-seq, PRO-seq, or ChRO-seq 

experiment. The quality and quantity of the experimental data are major factors in 

determining how sensitive dREG will be in detecting TREs. We have found that 

dREG has a reasonable statistical power for discovering TREs with as few as ~40M 

uniquely mappable reads, and saturates detection of TREs in well-studied ENCODE 

cell lines with >80M reads (Z. Wang et al. 2019). To increase the number of reads 

available for TRE discovery, we typically merge biological replicates to improve our 

statistical power prior to running dREG. To further improve data quality, our lab 

makes extensive use of unique molecular identifiers (UMIs) in RNA adapters during 

library prep, which allow us to identify and remove any PCR duplicates (Mahat et al. 

2016; Fu et al. 2014). Typical duplication rates vary due to a variety of factors, 
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including the quality of the input sample, the amount of starting material, and the 

number of cycles of PCR amplification. These experimental controls and 

considerations must be considered carefully while planning a PRO-seq experiment.  

 

Once investigators have experimental data in hand, the next step is to produce two 

bigWig files which represent the position of RNA polymerase on the positive and 

negative strands. The sequence alignment and processing steps to make the input 

bigWig files is another major factor influencing the success of dREG. Users can create 

bigWig files from their own alignment pipeline that are compatible with dREG. 

However, dREG makes several assumptions about data processing that are critical for 

success. Critical elements of a bioinformatics pipeline will include:  

 

• Include a copy of the Pol I transcription unit in the reference genome. 

PRO-seq data resolves the location of all four RNA polymerases found in 

Metazoan cells (Pol I, II, III, and Mt) (Core, Waterfall, and Lis 2008; Kwak et 

al. 2013; Blumberg et al. 2017; Hah et al. 2011). DNA encoding the Pol I 

transcription unit is highly repetitive, and is not included in most mammalian 

reference genomes. Nevertheless, the Pol I transcription unit is a substantial 

source of reads in a typical PRO-seq experiment (10-30%). Many of these 

reads will align spuriously to retrotransposed and non-functional copies of the 

Pol I transcription unit, which can create mapping artifacts (Core, Waterfall, 

and Lis 2008). To solve this issue, we include a single copy of the repeating 

DNA that encodes the Pol I transcription unit in the reference genome used to 

map reads. We use GenBank ID# U13369.1. Including a copy of this 

transcription unit provides an alternative place for Pol I reads to map, 

preventing reads from accumulating in Pol I repeats. 



 

 

 

102 
 

 

• Trim 3’ adapters, but leave the fragments. Much of the signal for dREG 

comes from paused RNA polymerase. RNA polymerase pauses 30-60 bp 

downstream of the transcription start site (Kwak et al. 2013). Due to this short 

RNA fragment length, paused reads in most PRO-seq libraries will sequence a 

substantial amount of adapter. This leads to poor mapping rates in full-length 

reads. Therefore, it is crucial to remove contaminating 3’ adapters so that 

paused fragments will map to the reference genome properly. 

• Representing RNA polymerase location using a single base. PRO-seq 

measures the location of the RNA polymerase active site, in many cases at 

nearly single nucleotide resolution. Therefore, it is logical to represent the 

coordinate of RNA polymerase using the genomic position that best represents 

the polymerase location, rather than representing the entire read. dREG 

assumes that each read is represented in the bigWig file by a single base. We 

have noted poor performance when reads are extended. It is critical that users 

pass in bigWig files that represent RNA polymerase using a single nucleotide. 

• Data represents unnormalized raw counts. dREG assumes that data 

represents the number of individual sequence tags that are located at each 

genomic position. For this reason, it is critical that input data is not normalized. 

The dREG server checks to ensure that input data is expressed as integers, and 

will return an error if this is not the case. 

 

As an alternative to developing their own pipeline, users are also able to use our 

bioinformatic pipeline for aligning PRO-seq data. Our pipeline produces bigWig files 

that are compatible with dREG, and can be found at the following URL: 

https://github.com/Danko-Lab/proseq_2.0. Our PRO-seq pipeline takes single-end or 

pair-ended sequencing reads (fastq format) as input. The pipeline automates routine 
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pre-processing and alignment steps, including pre-processing reads to remove the 

adapter sequences and trim based on base quality, and deduplicate the reads if UMI 

barcodes are used. Sequencing reads are mapped to a reference genome using BWA. 

Aligned BAM files are converted into bigWig format in which each read is 

represented by a single base.  

 

To run our pipeline users must first download the pipeline files and install 

dependencies indicated in the README.md. In addition, users need to provide a path 

to a BWA index file and the path to the chromInfo file for the genome of choice. After 

running this pipeline, users should have processed data files in the specified output 

directory. 

 

Finally, we also provide a tool that converts mapped reads from a BAM file into 

bigWig files that are compatible with bigWig. This tool is available here: 

https://github.com/Danko-Lab/RunOnBamToBigWig  

 

We have found that visualizing aligned data in a genome browser prior (e.g., IGV or 

UCSC) to downstream analysis is a useful way to catch any data quality or alignment 

issues. Users are directed to the Troubleshooting section for additional information 

and examples. 
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2.4 Basic Protocol 1 

Finding TREs in PRO-seq data using the dREG web server. 

 

2.4.1 Introductory paragraph 

 

dREG identifies active transcriptional regulatory regions (TRE) based on a pre-trained 

Support Vector Regression (SVR) model, which can be used to do TRE discovery and 

peak-calling on GRO-seq, PRO-seq, or ChRO-seq data. In general, running dREG by 

the web server executes the following steps.  

 

1) Identify informative genomic positions. Loci that are low in PRO-seq reads are pre-

filtered and excluded from running peak calling. We select loci for analysis that meet 

either of the following heuristics: 1) contain more than 3 reads in a 100 bp interval on 

either strand, or 2) more than 1 reads in 1 kbp interval on both strands. We refer to 

positions meeting these criteria as “informative positions”.  

 

2) Predicting dREG scores. We used support vector regression (SVR) to score 50 bp 

intervals along the genome, using a pre-trained SVR model. The PRO-seq profile of 

each informative position was described using a 360-dimensional feature vector. This 

feature vector integrates the PRO-seq counts using sliding windows at 5 different 

scales, and transformed using logistic normalization to better represent their shapes. 

Extracting the feature vector was done on CPUs, and can be distributed on multiple 

CPU cores. dREG runs the actual prediction on the GPU, leveraging the power of 

parallelized computing, and hence greatly improves the efficiency of computing.  

 

3）Calling dREG peaks. We stitch regions of high dREG scores into candidate peaks, 
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and then estimate the probability that these peaks are drawn from the negative set of 

sites. The final predictions for genomic regions that contain transcription start sites are 

corrected using the false discovery rate correction for multiple testing and reported to 

the user.  

 

2.4.2 Necessary Resources 

1）Javacript and Cookie-enabled browsers. Currently 3 browsers are recommended: 

Firefox, Google Chrome, and Safari. 

 

2) Sample data: 

bigWig files compatible for running dREG can be downloaded from Gene Expression 

Omnibus (GEO). Links to the example bigWig files are listed in Table 2.1. For 

simplicity, we rename each files by removing the GSM/GSE ID, such that 

GSM2265095_H1-U_plus.bw becomes H1-U_plus.bw, etc. The bigWig files can also 

be downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/bigWigs.raw . 

 

 

2.4.3 Protocol steps—Step annotations 

 

1) Map reads to the reference genome and confirm the appropriate format and data 

quality. dREG makes several assumptions about how RNA polymerase is represented 

in the input bigWig files that substantially affect the results (see Strategic Planning 

section). In particular: (1) The location of each read must be represented by a single 

base that denotes as accurately as possible the location of the RNA polymerase active 

site, and (2) Data must be unnormalized raw read counts. Users who have not worked 

with PRO-seq data before can use our alignment pipeline, which is compatible with 
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GRO-seq, PRO-seq, and ChRO-seq data that is both single or paired-end. Finally, 

bigWig files can be merged from correlated replicates using the script 

https://github.com/Danko-Lab/proseq2.0/blob/master/mergeBigWigs.bsh.   

 

2) For the purpose of demonstration, we provide an example using human primary T 

cells with/without PMA and ionomycin treatment (PI). The sample files are listed 

above, and can be downloaded as dREG-ready bigWigs files from the GEO database 

using either ftp/http protocol. 

 

To increase the sensitivity of dREG, users may merge the bigWigs of biological 

replicates under each experimental condition, i.e. PI treated and untreated, using the 

mergeBigWigs.bsh. The script is shown below. The merged bigWig files can also be 

downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/bigWigs.merged. 

 

$ mergeBigWigs.bsh -c chromInfo.hg19 H-U_plus.bw H1-U_plus.bw H2-U_plus.bw 

H4-U_plus.bw 

$ mergeBigWigs.bsh -c chromInfo.hg19 H-U_minus.bw H1-U_minus.bw H2-

U_minus.bw H4-U_minus.bw 

$ mergeBigWigs.bsh -c chromInfo.hg19 H-PI_plus.bw H1-PI_plus.bw H2-PI_plus.bw 

H4-PI_plus.bw 

$ mergeBigWigs.bsh -c chromInfo.hg19 H-PI_minus.bw H1-PI_minus.bw H2-

PI_minus.bw H4-PI_minus.bw 

 

Where the chromInfo.hg19 is a text file that specifies the chromosome size, and can be 

downloaded and generated from 
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http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/ . We will use one pair of 

merged bigWig files, H-U_plus.bw and H-U_minus.bw, as an example to run dREG. 

To run the downstream analysis on differential regulation, users need to run dREGs 

for H-PI_plus.bw and H-PI_minus.bw as well. The output of dREG of these two pairs 

of files can be downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/dREG.output. To avoid wasting 

unnecessary computing resources on running the examples, users are advised to 

directly download the results for the examples from the above ftp link, or use their 

own data of interest.  

 

3) Navigate to the dREG Science Gateway. The dREG Science Gateway can be 

accessed at http://dREG.dnasequence.org/.  

 

4) Register for an account. The dREG gateway requires users create a new account. 

Users may register for an account at the homepage of dREG gateway. The dREG 

gateway will send an email containing the link to activate the account. Please check 

the spam email in case the registration email is blocked. Under rare circumstances, the 

activation email can be quarantined by institutional email accounts, which are usually 

are not delivered to the email box, and hence cannot be found in any email folders, 

including inbox and spam. If the emails from dREG gateway are found to be 

undeliverable, please contact your administrator or use another email account, such as 

Gmail, for registration propose.  

 

Once the registration is completed, users may sign in the account and use the 

following steps to run a dREG analysis. 
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5) Once logged in, a dashboard will show up to the user. Click the “Start dREG” icon 

to create a new dREG analysis. 

 

 

 

 

Fig. 2. 1 The Dashboard page.  

This page is the entry point for dREG peak calling. Select “Start dREG” to launch a new 

computation experiment for a new PRO-seq data set.  
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6) The next window (Fig. 2.2) requests information about the dREG experimental 

design, including the name of the experiment, the project name “Default Project”, and 

other metadata. 

 

 

 

Fig. 2. 2 The webpage to launch a new dREG experiment.  

Users need to select the dREG peak calling application and input metadata about the 

experiment. The experiment name can be used to identify the experiment in shared projects. 
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7) Upload the bigWig files representing the location of RNA polymerase on the plus 

and minus strand, in which case we use H-U_plus.bw and H-U_minus.bw . Users also 

need to specify the prefix to the names of the output files, which will be used to label 

the files that are delivered to the user in the output. Once bigWig files are uploaded 

onto the server, please click “Save and launch”.  

 

Upon being launched, dREG gateway will submit the computing task to computers in 

the XSEDE cluster using the Apache Airavata server (Pamidighantam et al. 2016). 

These processes include i) transfering user-submitted files to storage space of the GPU 

node, ii) submitting a bash script which specifies the runs of dREG to the GPU node, 

iii) the execution of bash script is queued, and an notification email will be sent back 

to Apache Airavata server once the script is executed, iv) once the dREG run is 

complete, another notification email will be sent to the Apache Airavata server, v) the 

Apache Airavata server returns the result of dREG run to the user’s web storage and 

notify the user through user’s email. 
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Fig. 2. 3 The Data Upload page.   

This page is the second step of starting new dREG experiment.  

 

 

 

8) After launching dREG, users will be directed to a summary table of the current task, 

shown in Fig. 2.4, which lists the cluster address, the status of queue, the input files, 

and the creation time of the task. If the computing task is returned quickly, it usually 

means the dREG run was interrupted by errors.  

 

There are two possibilities to this: the use of bigWig input files that do not meet the 

requirement, such as use of normalized values, and the mapping of whole reads 

instead of only the end of the reads to the bigWig, or insufficient computing resource 

of the server (see Troubleshooting). Click “Open” under the “Storage Directory” and 
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access the log files to identify any errors. If the project runs normally, users may close 

the webpage. Each run usually takes 4-12 hours, depending on the queue and the 

execution time on the GPU node. 

 

 

 

 

Fig. 2. 4 The Experiment Summary page.  

This table page lists the basic experimental information, jobs status, and allows the user to 

download or visualize data once complete.  
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9) Downloading results. Users will be notified by e-mail when the dREG run is 

complete. Once dREG is complete, users may log in the dREG gateway and click the 

“Browse Experiments” icon on the user dashboard to access the dREG results. Users 

will be directed to “Experiment Summary”, where the results of the dREG run will be 

available for download onto a local machine (see Guidelines for Understanding 

Results). Results can also be visualized using the WashU Epigenome Genome browser.  

 

 

 

Fig. 2. 5 The Output File list.  

The drop-down list shows main 4 results can be downloaded using the download link. In the 

web storage page, additional files are available for download. To run downstream analysis of 

differential regulation, download the results to local directory.   
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10) Visualizing results on the WashU Epigenome Browser (Zhou et al. 2011). To 

visualize the result, choose / type in the reference genome build in UCSC version 

numbering that was used to create the bigWig files (e.g., hg38 or hg19 for human, or 

mm10 for mouse) and then click “Switch to genome browser”. The browser will open 

a new tab that will lead users to the WashU epigenome browser webpage. Both the 

input bigWig files and results of dREG will be visualized in separate tracks, as shown 

in Fig. 2.6.  

 

 

 

Fig. 2. 6 The Genome Browser page.  

The four genome browser tracks show mapped PRO-seq reads in plus strand, mapped reads in 

minus strand strand, dREG scores for each informative position, and the location of significant 

peak region (FDR<0.05). Use the zoom buttons at the top line to view dREG peaks near your 

locus of interest.  

 

11) Once dREG is complete, results will be stored on the server for a period of 30 

days.  
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2.5 Alternate Protocol 

 

Running a local copy of dREG 

 

Many applications may require downloading and running dREG locally. Here we 

provide a detailed protocol for running a local copy of dREG. 

 

2.5.1 Necessary Resources 

 

Estimates of hardware resources are based on a deeply sequenced (~40-400 M mapped 

reads) PRO-seq for Human Genome Reference GRCh37d5 

 

Hardware 

A Linux computer with at least 128 GB of RAM 

8 CPU cores 

GPU with 12 GB memory (supports CUDA 6.5 or above) 

Disk storage of 1TB 

Run-time, 4-12 hrs 

 

Software 

(1) Git (https://git-scm.com/download/linux) 

(2) bedops (http://bedops.readthedocs.org/en/latest/index.html) 

(3) boost library (https://www.boost.org/users/download/) 

(4) CUDA 6.5 or above (https://developer.nvidia.com/cuda-toolkit) 

(4) R software with the following package: 

a) dREG and its dependencies (https://github.com/Danko-Lab/dREG) 
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   bigWig (>= 0.2-9), data.table, e1071,  mvtnorm, parallel, rmutil, randomForest, 

snowfall. 

    See Support Protocol for installation instructions 

b) Rgtsvm and its dependencies (https://github.com/Danko-Lab/Rgtsvm)  

   bit64, snow, SparseM, Matrix 

    See Support Protocol for installation instructions 

 

Files 

dREG SVR model used for peak calling, it can be downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/dreg.models 

As of this writing, the most recent model is named asvm.gdm.6.6M.20170828.rdata. 

 

2.5.2 Protocol steps—Step annotations 

1)  Map reads to the reference genome and confirm the appropriate format and data 

quality.  

 

2) Run the main dREG application. The main dREG pipeline scores 50 bp intervals 

along the genome for similarity to a TRE, and generates a BED file with narrow peaks, 

peak scores, probability, and peak center positions. We provide a bash script which 

allows users to automatically execute all of the stages of this pipeline. The script is 

under the dREG directory, and can be configured and run as follows:  

 

1. Set an environment variable for the path to the RData file containing the pre-trained 

SVM 
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export dREG_MODEL=/your/path/asvm.gdm.6.6M.20170828.rdata      

 

2. Run dREG by executing the main bash script: run_dREG.bsh. First define and 

assign variables required for running the run_dREG.bsh 

 

# -- PRO-seq data (plus strand).   

# Read counts (not normalized) formatted as a bigWig file. 

PLUS_STRAND_BW=H-U_plus.bw 

 

 

#-- PRO-seq data (minus strand).  

# Read counts (not normalized) formatted as a bigWig file. 

MINUS_STRAND_BW=H-U_minus.bw  

 

#-- The prefix of the output file. 

OUT_PREFIX=H-U       

 

# [optional, default=1]  

# CPU cores can be used for feature extraction and peak identification. 

CPU_CORES=16       

 

 

# [optional, default=NA]  

# GPU id when multiple GPU cards are available. The first ID is 0. 

GPU_ID=0          
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Build the run_dREG.bsh command (this example uses parameters defined above): 

 

$ bash run_dREG.bsh\ 

   $PLUS_STRAND_BW\ 

   $MINUS_STRAND_BW\ 

   $OUT_PREFIX\ 

   $dREG_MODEL\ 

   $CPU_CORES\ 

   $GPU_ID 

 

The actual time for running run_dREG.bsh depends on the number of informative 

positions, the number of broad peaks generated from these informative positions, and 

the speed of the computer on which dREG is run. Due to the large size of the new 

dREG model, large amounts of intermediate data are generated when running dREG. 

Users are advised to make sure that they have sufficient amount of free memory, 

otherwise the dREG process may be killed by the system.  

 

Once dREG exits, it should add 5 main files under the current working directory. 

These files are described in detail under Guidelines for Understanding Results. 
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2.6 Basic Protocol 2 

 

Using dREG to identify transcription factors and their downstream target genes  

 

2.6.1 Introductory paragraph 

Transcription factors (TFs) are proteins that affect the abundance of RNA polymerase 

on genes by binding to specific DNA sequence elements in TREs identified using 

dREG. PRO-seq and related run-on and sequencing assays measure RNA polymerase 

at both regulatory elements and annotated genes. This information can be used to 

identify specific groups of TREs regulated by each transcription factor, and predict a 

set of putative target genes responding to each TF. This information results in 

predictions for a partial regulatory network connecting TFs to the set of bound TREs, 

and the potential target genes associated with each binding event (TF-TRE-target 

gene).  

 

One important task in many biological applications is to identify changes in TF 

binding between two conditions (e.g. treatment vs. control). Other applications require 

connecting changes in TF recruitment to the activity of downstream target genes. We 

have recently developed a strategy to solve both of these problems, and implemented 

our solution in an R package called tfTarget (Chu et al. 2018). This protocol describes 

how to use tfTarget to identify the TF-TRE-target gene networks that control 

differences between groups of samples.  

 

2.6.2 Necessary Resources 

 

Recommend requirements: 

A Linux computer with 128 GB of RAM 
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CPU 16 cores 

Data storage of 2TB 

Run-time, 1 hr 

 

Minimum requirements: 

A Linux computer with 16 GB of RAM 

1 core 

Data storage of 200 GB 

Run-time, 5  hr 

 

Input files: 

dREG narrow peaks of two conditions. An example can be downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/dREG.output.  

bigWig files for PRO-seq data of two conditions, with at least two replicates for each 

condition. An example can be downloaded from 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/bigWigs.raw . 

A gene annotation file, of the same genome assembly of the bigWig files. See 3.2 for 

details. 

The tfs.rdata file containing the TF motif database (required for non-human species). 

See 3.3 for details. 

The 2bit file representing the genome of interest. See 3.4 for details. 

 

Install the tfTarget package and dependencies.  

 

1. Install R, and dependent packages including rphast, rtfbdbs, grid, cluster, apcluster, 

DESeq2, gplots. 
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2. Install tfTarget package for R 

$ git clone https://github.com/Danko-Lab/tfTarget.git 

$ cd tfTarget 

$ R CMD INSTALL tfTarget 

 

Prepare input files.  

 

3. tfTarget works by 1) identifying differentially transcribed genes and TREs, 2) 

scanning the differentially transcribed TREs and assigning TF motifs to each of them, 

and 3) tabulate the TF, TRE and genes nearby with the information about differential 

transcription. Step 1 requires genomic intervals specifying the regions of genes, i.e. 

the gene annotation file, and TREs, i.e. the dREG regions. Step 2 needs the additional 

information about the TF motif database, stored in an rdata file. 

 

3.1 Prepare a BED file specifying genomic intervals of TREs (using dREG). Some 

thought must be put into how to handle separate dREG intervals from multiple 

separate conditions. We will typically merge dREG regions across different biological 

conditions, and use these BED regions for downstream analysis (Danko et al. 2018; 

Chu et al. 2017). The genomic intervals of TREs are in bed3 format. Only the first 

three columns will be used. Use “cat” instead of “zcat” if the input dREG files are 

unzipped.  

 

$ zcat H-PI.dREG.peak.score.bed.gz  H-U.dREG.peak.score.bed.gz \ 

| LC_COLLATE=C sort -k1,1 -k2,2n \ 

| bedtools merge -i stdin > merged.dREG.bed 
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3.2 Prepare the gene annotation files. The gene annotation file should be in bed6 

format, i.e. strand specific. This can be prepared from GENCODE or Refseq gtf files. 

We recommend specifying gene ID and gene name as 4th and 5th columns of the 

annotation file, which will show up in the output for identification. GENCODE files 

can be downloaded from https://www.gencodegenes.org/releases/current.html. The 

script below give an example of downloading the gene annotation gtf file and then 

converting it to bed6 format. The output file is also available to download at 

ftp://cbsuftp.tc.cornell.edu/danko/hub/protocol.files/gencode.v19.annotation.bed . 

 

$ wget 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.an

notation.gtf.gz 

$ zcat gencode.v19.annotation.gtf.gz \ 

| awk 'OFS="\t" {if ($3=="gene") {print $1,$4-1,$5,$10,$18,$7}}' \ 

| tr -d '";' > gencode.v19.annotation.bed 

 

3.3 Generate the database of motifs (required only for non-homo sapiens species). The 

tfTarget package uses motifs predicted in the Cis-BP database (Weirauch et al. 2014), 

and computes locations using RTFBSDB (Z. Wang, Martins, and Danko 2016). For 

Homo sapiens, the database of motifs is self-contained in tfTarget package, and will be 

used by default. For others species, users may use the following command to generate 

the species.tfs.rdata, which contains the curated transcription factor motifs database 

for the species of interests. The look-up table for species name can be found from the 

"species" column (the 1st column) of 

http://cisbp.ccbr.utoronto.ca/summary.php?by=1&orderby=Species 
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$ R --vanilla --slave --args Mus_musculus < get.tfs.R 

  

3.4 Download the reference genome in 2bit format. Reference genome can be found at 

http://hgdownload.cse.ucsc.edu/downloads.html . For the example, we download the 

reference genome for hg19. 

 

$ wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit 

 

Running tfTarget package: 

 

4. tfTarget can be run using the following command “bash  run_tfTarget.bsh ...”, 

with … specifying the parameters of running the tfTarget. In our case, we specify the 

following parameters. Users may need to change to their own directory 

correspondingly.  

 

$ dreg_path=merged.dREG.bed 

$ gene_path=gencode.v19.annotation.bed 

$ bigWig_path=/your/path/ 

$ twoBit_path=/your/path/hg19.2bit 

$ ncores=30 

$ prefix=tcell 

$ query_files="H1-PI_plus.bw H1-PI_minus.bw H2-PI_plus.bw H2-PI_minus.bw H4-

PI_plus.bw H4-PI_minus.bw" 

$ control_files="H1-U_plus.bw H1-U_minus.bw H2-U_plus.bw H2-U_minus.bw H4-

U_plus.bw H4-U_minus.bw" 
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$ bash run_tfTarget.bsh\ 

     -TRE.path $dreg_path\ 

     -gene.path $gene_path\ 

     -bigWig.path $bigWig_path\ 

     -2bit.path $twoBit_path\ 

     -query $query_files\ 

     -control $control_files\ 

     -prefix $prefix\ 

     -ncores $ncores 

 

 

-TRE.path and -gene.path options specify the paths to the bed files of dREG and gene 

annotations, respectively. -2bit.path specifies the path to the 2bit files. The genomic 

assembly should be consistent for these three files. -bigWig.path together with -control 

and -query specify the bigWig files, ordered by plus then minus strand. If -

bigWig.path is not present, the current directory will be used as default. -prefix 

specifies the prefix for all output files. Other parameters are optional, and the details 

are listed on https://github.com/Danko-Lab/tfTarget.  

 

tfTarget will by default run the complete workflow. tfTarget will identify differentially 

regulated TF-TRE-gene combinations between the two conditions. Alternatively, users 

may run only subsets of modules. Use the tag “-deseq” (without argument) to only run 

DEseq2 on TREs and genes. Use the tag “-rtfbsdb” to only run DEseq2 and then 

rtfbsdb to identify TF motifs enriched in differentially regulated TREs.  
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Interpreting the results from tfTarget 

  

A complete tfTarget run will output several .pdf files and .txt files. The TFs enriched 

in differentially regulated TREs are shown in 2D dot plots grouped in two pdfs (Fig. 

2.7), up.motif.pdf and down.motif.pdf. The p values of enrichment/depletion of motifs, 

calculated by two-sided Fisher’s exact test, are represented by the radius of the circle, 

and enrichment (red) or depletion (blue) are represented by the rainbow color scale. 

 

 
Fig. 2. 7 Motifs enriched in TREs up-regulated (left) and down-regulated (right) in PMA 

and ionomycin treatment, ordered by motif clusters. 

 

Methods relying on the use of each TFs’ position weighted matrix are limited in the 
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ability to distinguish between paralogous transcription factors that share similar DNA 

binding specificities. To account for that when interpreting the enrichment results, 

tfTarget generates two additional heatmaps in pdf format that show the relation among 

motifs by clustering them into distinct groups based on their position in differentially 

regulated TREs. Note that the ordering of the motifs are consistent between 2D plots 

and heatmaps. The example of heatmap is shown in Fig 2.8.  

 

The detailed statistics of tfTarget output are provided in three txt files. The 

“.TRE.deseq.txt” and the “.gene.deseq.txt” file lists DESeq2 statistics for each TRE 

and gene. Rows with all NA value are genes excluded from DESeq2 runs due to short 

gene length (<=1Kb).  

 

The “.TF.TRE.gene.txt” file tabulates the relation between TFs, TREs and target genes. 

The results are subjected to the restriction by distance between TREs and the 

transcriptional start site of target gene (specified by “-dist” tag, default=50kb), the nth 

closest gene to the TRE (specified by “-closest.N” tag, default=2), and the p values for 

genes that showed same direction of log2foldchange as its regulator TRE (specified by 

“-pval.gene” tag, default=0.05). If needed, the latter two tags can be switched off by 

specifying “-closest.N off” or “-pval.gene off” to output a more inclusive list of 

potential target genes. 
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Fig. 2. 8 Heatmap shows clusters of TF motifs enriched in TREs up-regulated (upper) 



 

 

 

128 
 

 

and down-regulated (lower) in PMA and ionomycin treatment. 

 

2.7 Support Protocol 

 

INSTALLATION OF dREG AND DEPENDENCIES 

 

dREG has been packaged to minimize the complexity of installation. The examples 

below use the version available at the time of publication. Please see the repositories 

for up-to-date instructions. 

 

In the following examples, please modify/your/cuda/home and /your/boost/home to 

appropriate locations. Also, please use the same path to dREG and use this path in all 

of these steps. 

 

Necessary Resources 

Linux-based system with Web access 

 

dREG and Rgtsvm Installation 

 

1. Install R, CUDA, and Boost libraries. Please discuss this with your local systems 

administrator if you are unsure how to proceed. Make sure you know the path to both 

the CUDA home and BOOST home directories. 

 

2. Install Rgtsvm package for GPU 

 

$ export YOUR_CUDA_HOME=/your/cuda/home 
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$ export YOUR_BOOST_HOME=/your/boost/home 

$ git clone https://github.com/Danko-Lab/Rgtsvm.git 

$ cd Rgtsvm 

$ make R_dependencies 

$ R CMD INSTALL --configure-args="--with-cuda-home=$YOUR_CUDA_HOME -

-with-boost-home=$YOUR_BOOST_HOME" Rgtsvm 

 

 

3. Install dREG package for R 

$ git clone https://github.com/Danko-Lab/dREG.git 

$ cd dREG 

$ make R_dependencies 

$ make dreg 

 

4. Add the dREG directory to the path environment variable 

 

export PATH=/your/dreg/path:$PATH 
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GUIDELINES FOR UNDERSTANDING RESULTS  

 

The results contains the following files compressed using zip format, dREG scores of 

informative positions (BED format), significant dREG peaks with full information, 

significant dREG peaks with score only, significant dREG peaks with probability only 

and raw peaks. Users may either download all files as a whole or individual files 

separately. Raw data and results will be stored in the web storage space for up to 1 

month, and outdated data will be cleaned periodically. Users are advised to download 

their results in time. 

 

Running dREG will generate 5 main files under the current directory, as follows:  

 

1. $OUT_PREFIX.dREG.infp.bed.gz: 

BEDGRAPH file,  includes all informative sites and dREG scores. 

 

2. $OUT_PREFIX.dREG.peak.full.bed.gz: 

BED file, reportes all statistically significant peaks under the FDR correction (p-value 

< 0.05) with information about the peak position, max score, p-value (corrected using 

the Benjamini and Hochberg (Benjamini and Hochberg 1995) false discovery rate), 

and peak center. 

 

3. $OUT_PREFIX.dREG.peak.score.bed.gz: 

BED file, Significant peaks with dREG score using FDR correction ( p-value < 0.05), 

it is partial of full information. 
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4. $OUT_PREFIX.dREG.peak.prob.bed.gz: 

BED file, Significant peaks with probability using FDR correction ( p-value < 0.05), it 

is partial of full information. 

 

5. $OUT_PREFIX.raw.peak.bed.gz: 

BED file, All raw peaks without p-value correction and any filters. This file is only 

available in the storage directory. 

 

The peak calling script provides the option of outputting additional information for 

each dREG peak in the file .dREG.peak.full.bed.gz. This information includes the 

maximum dREG score, the probability of containing the TSS, the position of the peak 

center. The example is shows as follows. 

 

$ zcat H-U.dREG.peak.full.bed.gz | head - 

0.0233064860794223 718600 

chr1 565610 565820 0.481951465645328 0 565730 

chr1 567400 567760 0.899182482973753

 0.0000000788965314509619 567590 

chr1 569770 570140 0.598068431544673 0.000421199513751816

 569960 

chr1 713850 714390 1.03941550120052 0 714210 

chr1 714410 714780 0.426737839205382 0.00319618563824731

 714580 

chr1 718370 718720 0.307836830876394 0.0233064860794223

 718600 
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chr1 723510 723830 0.333111129863476 0 723690 

chr1 762570 762800 0.52136896174093 0.0104458702875426

 762740 

chr1 762820 763230 0.655564547732281 0.000339774400826395

 762970 

chr1 776390 776730 0.283670427106323 0.0350731200504118

 776590 
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2.8 Commentary 

 

Background Information  

 

DNA sequence control regions, such as promoters, enhancers, and insulators, 

collectively known as transcriptional regulatory elements (TREs), are critical 

components of the genetic regulatory programs of all organisms. TREs regulate gene 

expression by facilitating (or inhibiting) chromatin decompaction, transcription 

initiation, and the release of RNA polymerase II (Pol II) into productive elongation 

(Fuda, Ardehali, and Lis 2009). In addition to well-characterized roles in cellular 

development, dysfunction in TREs also play pivotal roles in a myriad of different 

disease states (Shlyueva, Stampfel, and Stark 2014; Long, Prescott, and Wysocka 

2016). The comprehensive identification of TREs has therefore emerged as a primary 

challenge in genomic research.  

 

Active TREs recruit RNA polymerase and initiate a local and highly characteristic 

pattern of transcription initiation (Kim et al. 2010; de Santa et al. 2010; Core et al. 

2014; Scruggs et al. 2015). Transcription initiation is a highly specific signal that can 

be useful for identifying active TREs in a cell type–specific manner (Melgar, Collins, 

and Sethupathy 2011; Core et al. 2014; Danko et al. 2015; Andersson, Gebhard, et al. 

2014; Azofeifa and Dowell 2017). Although first characterized in mammals, initiation 

appears to mark enhancers in other Metazoan organisms (Henriques et al. 2018; 

Mikhaylichenko et al. 2018; Rennie et al. 2018). However, the majority of initiation 

events give rise to highly unstable RNA species that are rapidly degraded by the 

nuclear exosome complex (Preker et al. 2008; Andersson, Refsing Andersen, et al. 

2014). For this reason, methods that measure the production of nascent RNAs on 
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chromatin, such as precision run-on and sequencing (PRO-seq) and related run-on 

assays, are particularly sensitive experimental methods to detect these transient 

enhancer-associated RNAs because they measure primary transcription before 

unstable RNAs are degraded by the exosome (Core et al. 2014).  

 

We have recently introduced a novel computational method called the detection of 

regulatory elements using GRO-seq, PRO-seq, or ChROseq (dREG) to identify TREs 

de novo using PRO-seq, GRO-seq, or ChRO-seq data (Danko et al. 2015; Z. Wang et 

al. 2019). Most recently, we have developed a web-based portal using XSEDE servers 

to run dREG (Z. Wang et al. 2019). Here we provide a detailed step-by-step tutorial 

into how to use both the dREG web server and the downloaded dREG software. 

Finally, we close by providing insights into the downstream applications of these 

methods for discovering transcription factors responsible for a variety of biological 

processes. 

 

2.8 Critical Parameters 

 

The quality and quantity of the experimental data are major factors in determining 

how sensitive dREG will be in detecting TREs. We have found that dREG has a 

reasonable statistical power for discovering TREs with as few as ~40M uniquely 

mappable reads, and saturates detection of TREs in well-studied ENCODE cell lines 

with >75M reads (Z. Wang et al. 2019). To increase the number of reads available for 

TRE discovery, we typically merge biological replicates to improve our statistical 

power prior to running dREG.  

 

To further improve data quality, our lab makes extensive use of unique molecular 
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identifiers (UMIs) in RNA adapters during library prep, which allow us to identify and 

remove any PCR duplicates (Mahat et al. 2016; Fu et al. 2014). Typical duplication 

rates vary due to a variety of factors, including the quality of the input sample, the 

amount of starting material, and the number of cycles of PCR amplification. These 

experimental parameters must be considered carefully while planning a PRO-seq 

experiment.  

 

2.9 Troubleshooting  

 

The most common problems associated with running dREG can be identified by a 

careful examination of the input bigWig files using a genome browser (e.g., IGV, 

WashU, or UCSC). A genome-browser view that shows high-quality PRO-seq data is 

depicted in Fig. 2.9. Note that the direction of transcription resolved by PRO-seq is 

largely consistent with gene annotations, and gene bodies tend to have a uniform 

coverage of reads without excessively large gaps. Notes on identifying several 

common problems that are likely to be faced by users are listed below:  

 

Poor quality PRO-seq data. Poor quality PRO-seq data is characterized by high 

numbers of reads at only a handful of genomic locations (Fig. 2.9). Unfortunately, this 

problem requires re-making new data. Troubleshooting tips for the experimental data 

are covered elsewhere (Mahat et al. 2016). Users are also encouraged to start with 

more input material and make use of UMIs in their sequencing adapters, which can 

help to clean up data that has been amplified for too many cycles (at the expense of 

sequencing depth).  

 

Extending reads. The location of RNA polymerase in PRO-seq data is naturally 
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represented by a single nucleotide position. dREG assumes that bigWig files will 

represent RNA polymerase in this manner. The solution to this problem is to remake 

bigWig files while representing the data using only a single position. 

 

Using normalized counts in bigWig files. dREG assumes that input data will consist of 

integers (i.e., 0, 1, 2, …), and will return an error if it finds this is not the case. The 

solution to this problem is to remake bigWig files with raw counts. 

 

Failure to reverse the strand. Many (but not all) PRO-seq protocols sequence from the 

reverse complement of the tagged RNA, and as a result reads must be reversed prior to 

downstream analysis. Reversed data is shown in Fig. 2.9. Note that most of the reads 

aligning within annotated genes is reversed relative to the annotation, and the 

divergent transcription and pause peak appear on the end (rather than the beginning) of 

each transcription unit. At the time of this writing, dREG does not detect this issue 

automatically. The solution to this problem is to remake bigWig files reversing the 

strand. 

 

Fig. 2. 9 Genome browser shows high quality PRO-seq data (top), poor quality data 

(center), and data that was mapped to the reverse strand (bottom). 
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Table 2. 1 The GEO links to the example files used in the protocol. 

 
 

  

Gene 

Expression 

Omnibus ID 

Sample name Link File names 

GSM2265095 Human 1 - CD4+ 

T-cells Untreated 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265095  GSM2265095_H1-

U_plus.bw 

GSM2265095_H1-

U_minus.bw 

GSM2265096 Human 1 - CD4+ 

T-cells 

PMA+Ionomycin 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265096  GSM2265096_H1-

PI_plus.bw 

GSM2265096_H1-

PI_minus.bw 

GSM2265098 Human 2, draw 2 

- CD4+ T-cells 

Untreated 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265098  GSM2265098_H2-

U_plus.bw 

GSM2265098_H2-

U_minus.bw 

GSM2265097 

and 

GSM2265099 

Human 2, 

(merged from 

draw 1 and 2) - 

CD4+ T-cells 

PMA+Ionomycin 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85337  GSE85337_H2-

PI_plus.bw  

GSE85337_H2-

PI_minus.bw 

GSM3021718 Human 4 - CD4+ 

T-cells Untreated 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3021718  GSM3021718_H4-

U_plus.bw 

GSM3021718_H4-

U_minus.bw 

GSM3021719 Human 4 - CD4+ 

T-cells 

PMA+Ionomycin 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3021719  GSM3021719_H4-

PI_plus.bw 

GSM3021719_H4-

PI_minus.bw 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265095
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265096
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2265098
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85337
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3021718
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3021719
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CHAPTER 3 

JOINT BAYESIAN STATISTICAL MODELING OF TUMOR AND 

MICROENVIRONMENT 

 

3.1 Abstract 

The complex interaction between tumor and its microenvironment is essential for the 

oncogenesis, survival and growth of the tumor. These interactions allow tumors to 

uptake nutrients from the environment and evade immune surveillance. Understanding 

these interactions is fundamental to the design of immunotherapies and other targeted 

therapies. Advances in sequencing techniques, such as RNA-seq and ATAC-seq, have 

enabled measurements of gene transcription and regulation across large cohorts of 

cancer patients down to the single cell resolution. However, single cell assays are still 

too cumbersome and expensive to scale to hundreds of patients necessary to 

understand interactions between tumor cells and their microenvironment. In this work 

I present statistical models called Tumor Microenvironment Deconvolution (TED) that 

jointly infer the regulation of tumor-specific pathways and the composition of multiple 

cell types in the tumor microenvironment for each patient from bulk RNA-seq/ATAC-

seq data. TED shows high accuracy on both simulated and scRNA-seq glioma data, 

and significantly outperforms linear regression models.  

 

3.2 Introduction 

Tumor growth requires malignant cells to overcome multiple environmental pressures, 

including escaping detection by the immune system and hijacking body nutrient 

supplies to promote angiogenesis. To achieve these, tumors often must interact with 

their unique microenvironment, which is comprised of non-malignant environmental 

cell types including immune and stromal cells. Within the last decade, immune 
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checkpoint pathways whereby tumor cells escape immune surveillance have been 

found, targets among which include the cytotoxic T-lymphocyte associated protein 4 

(CTLA4), programmed cell death 1 (PD1) protein and the programmed death-ligand 1 

(PD-L1) protein. Targeting these molecules by engineered antibodies, known as the 

immune checkpoint inhibitors, has shown efficacy in multiple cancer types, including 

melanoma, non-small cell lung cancer, liver cancer, kidney cancer and lymphoma 

(Wolchok 2015), suggesting a common immune-escape mechanism shared by 

multiple cancer types. Although current immune checkpoint inhibitors may achieve 

curative performance, they are often responsive in only a small subset of patients. This 

suggests that tumors may adopt other unknown mechanisms to escape immune 

surveillance. Unraveling the interactions between tumor and other cell types in the 

microenvironment and understanding their heterogeneity is imperative to the 

discovery of new druggable targets.  

 

Transcription and epigenetic profiles contain information from all of the cell types 

within a sample. The decreasing cost of high throughput RNA-seq enables scalable 

transcriptome profiling to hundreds of cancer patients. The signal measured from these 

bulk tissues (bkRNA-seq) is approximately a weighted sum of the transcription of 

multiple cell types. Although recent advancement in single cell RNA-seq (scRNA-seq) 

allows the measurement of transcriptome profile in individual cells, it is still costly, 

generates relatively sparse signals, and require extensive sample preprocessing. As a 

result, the existing scRNA-seq datasets of tumor patients are limited to only a few to 

dozen patients. Therefore, deconvolving cell type compositions from bkRNA-seq is a 

promising approach to generate sufficient statistical power for understanding the 

interactions among different cell types.  
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Current methods of deconvolution fall into two categories, each has their own 

limitations. Noticeably, none of them can be used to explicitly model the heterogenous 

expression profile of tumor cells, and hence their inferred data cannot be immediately 

used to study the interaction between tumor and environmental cells. Most of the 

methods, except for a few marked below, require marker genes, either manually 

curated or predetermined from reference expression profiles. Selecting the marker 

genes is a highly arbitrary task and risks losing signal. It is unclear to what extent do 

different criteria of marker genes affect the deconvolution. This is particularly 

problematic since expression profiles from related cell types are not independent, but 

form tree structures in which related cell types share the bulk of their expression 

programs. Hence curating the marker genes down to the root will cause significant 

loss of signal. For example, curating the marker genes of T helper cells, T memory 

cells and T regulatory cells inevitably forgo the signature genes of CD4+ T cells. As a 

result, the curated marker genes are often at the scale of as few as several hundred - 

orders of magnitude sparse than the total number of annotated genes in the genome 

(~60K, including both coding and non-coding genes). The first type of deconvolution 

algorithm is known as the complete deconvolution, which explicitly relies on marker 

genes of each reference cell types to jointly impute the expression profile of the cell 

type and their proportions based on non-negative matrix factorization. Methods belong 

to this category include, MMAD, deconf, ssKL and ssFrobenius(Liebner, Huang, and 

Parvin 2014; Repsilber et al. 2010; Brunet et al. 2004; Lee and Seung 2001). These 

methods are not viable on real cancer data, due to the heterogeneity among patients, in 

which curating marker genes for tumor cells are infeasible. Moreover, the use of 

marker genes, referred to as the “anchors” in the language of non-negative matrix 

factorization assumes the expression of the gene in only the corresponding cell type 

and zero in other cell types, which is usually violated in real gene expression profiles. 
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The second group is referred to as partial deconvolution, which only attempts to infer 

the percentage of environmental cells. They are built upon either constrained 

optimization, including EPIC and quanTIseq (Racle et al. 2017; Finotello et al. 2017) 

which uses non-negativity and sum-to-one constraint to infer the absolute proportion, 

TIMER (B. Li et al. 2016) which uses non-negativity constraint to infer relative 

proportions, CIBERSORT (Newman et al. 2015) which uses regularized but 

unconstrained optimization and may yield uninterpretable negative or greater-than-one 

proportionalities. CIBERSORT implicitly assumes marginal independence among 

samples, and hence information shared among samples is not utilized. Approaches of 

this type are built on the (yet untested) assumption that the marker genes are only 

expressed in environmental cells, but zero in the tumor cells. Some genes, such as PD-

L1, are expressed in both the tumor and immune cells. As a result, the estimators of 

these approaches are bound to overestimate the fractions of environmental cells. Other 

methods such as NNML and PERT (Qiao et al. 2012)assumes weights of 

environmental cells sum up to one, and do not take the proportion of unknown tumor 

fraction into consideration, and hence can only work to deconvolve the mixture 

composed of approximately linear combinations of environmental cells. The related 

methods NNMLnp (Qiao et al. 2012) is the only model, to our knowledge, that 

explicitly models the expression profile of tumor without the need for marker genes. 

However, it assumes the existence of only one type of expression profile of unknown 

tumor fraction across multiple tumor patients, and hence cannot capture the 

heterogeneity across patients. Moreover, it erroneously assumes the only tumor 

expression profile is a linear combination of normal cells, which is clearly violated in 

real tumor samples, where tumor cells often up-regulates large number of oncogenes 

that are not expressed in normal cells. Lastly, the majority of deconvolution 

algorithms, with the notable exception of NNML, NNMLnp and PERT, work on log 
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transformed version of the depth/gene length normalized count, which cannot capture 

the error distribution of integer-valued count data. 

 

3.3 Statistical Model 

The statistical model of TED is based on several assumptions about the tumor and the 

microenvironment. Previous scRNA-seq studies have shown that tumor cells are 

highly heterogenous, and often clustered by patients when visualized on the tsne plot. 

In contrast, environmental cells, e.g. immune, stroma, endothelial and other normal 

cells, are largely clustered by their cell types than by patients. This observation can be 

explained by the heterogeneous somatic mutations accumulated in the clonal events of 

the tumor cells, while normal environmental cells, expect for a few genes which are 

indicative of immune clonal expansion, such as the T cell receptor genes, are devoid 

of such events. Built upon such observations, TED assumes the expression profiles of 

environmental cells is preserved across all tumor patients, yet allows those describing 

tumor cells to be estimated for each patient. Therefore, TED explicitly models the 

heterogeneity of the tumor cells. It also relies on the use of a complete set of gene 

expression profiles for the environmental cells, which can be readily derived from 

scRNA-seq of the whole tumor from a small number of patients. In practice, the 

environmental cells may also show mild variations and form subtypes due to the 

differences in tumor microenvironment, e.g. M1 macrophage and M2 macrophage. In 

case of incomplete observation, components that cannot be accounted for by the 

references will be absorbed by the tumor fraction and hence inflate the proportions of 

tumor. 
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The graphical model of TED is illustrated in Fig. 3.1. Let X denotes the bkRNA-seq 

measured for N patients on G genes. Each patient n∈{1,⁡…,⁡N} is sequenced at the 

depth of Rn reads. The expression profiles of one reference origin of tumor cells and m 

environmental cells are also observed, denoted by φ∈ℝG and ψm ∈ℝG respectively. We 

allow φ to undergo K types of perturbations, i.e. log of fold change, denoted by γk. 

The perturbed expression profile, concatenated with ψ, yields the overall expression 

profile Φ ∈⁡ℝ𝐺∗(𝐾+𝑀). θn ∈⁡ℝ𝑀+⁡Kdenotes the proportion of each cell type in the nth 

sample. Z denotes the cell type from which each read is generated. α and σ are hyper-

parameters of the model. All other variables are learned during model inference.  

 

Fig. 3. 1 The Plate Model of TED.  

Hyper-parameters are colored in blue; observed variables are colored in red; latent variables 

are in black. Double cycle denotes deterministic augmented variables.  
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The generative process of the TED is as follows. 

1. Generate the full expression profiles: 

log (γ k,g) ~ Normal (0, σ k, g),  for g∈{1,⁡…,⁡G}⁡and⁡k ∈ {1,⁡…,⁡K} 

 {
Φ⁡j,g =⁡

φg∗γj,g

∑ φg∗γj,g
G
g=1

⁡,⁡⁡⁡⁡⁡if⁡j⁡ ∈ ⁡ {1,… , K⁡}

Φj,g ⁡ = ψ𝑗−𝐾,𝑔⁡⁡, if⁡j⁡ ∈ ⁡ {K + 1,… , K +M}
⁡ 

2. Generate proportions for tumor pathways and environmental cells: 

θn ~ Dirichlet (α), i.i.d. for n∈{1,⁡…,⁡N},⁡where⁡α∈⁡ℝ𝐾+𝑀.  and α > 0. 

3. Generate the reads for bkRNA-seq:  

p(Zn | θn ) ~ Multinomial (Rn , θn), independently for n∈{1,⁡…,⁡N} 

p(Xn,r | Zn , Φ) ~ Categorical (Φ𝑍𝑛 ⁡), i.i.d. for r ∈{1,⁡…,⁡Rn}  

3.4 Model inference  

We use a generalized Gibbs-Expectation Maximization (EM) algorithm to get point 

estimate of the γ by maximizing the log of posterior, marginalizing over other 

nuisance variables. In the E step we use Gibbs sampling to approximate posterior p(θ, 

Z | γold, φ, ψ, X ; α), since computing the exact distribution is intractable. In the M step 

we use the conjugate gradient algorithm to numerically maximize the log of posterior 

Ep(⁡Z⁡|γold ,X)[⁡log⁡(p(γ, Z⁡|φ, ψ, X⁡; ⁡σ))].  

 

3.4.1 E step (Gibbs sampling): 

The posterior distribution of the E step is closely related to the Latent Dirichlet 

Allocation model. Considering the conditional independence relations that  

p(θ, Z | γ, φ, ψ, X ; α) = ∏ p⁡(θn, Zn⁡|⁡γ,φ, ψ, ⁡Xn⁡; ⁡α⁡)𝑛 , the posterior of each patient 

p⁡(θn, Zn⁡|⁡γ,φ, ψ, ⁡Xn⁡; ⁡α⁡)⁡can be sampled in parallel by multithreading. Therefore, 

we use Gibbs sampling, to iteratively sample p(θn | Zn, γ, φ, ψ, Xn ; α) and p(Zn | θn, γ, 
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φ, ψ, Xn ; α). Zhu et.al. has shown that by introducing augmented variables X̃gn⁡ =

⁡∑ 𝐼{𝑋𝑟,𝑛=𝑔}
𝑅𝑛
𝑛=1  , and Z̃gn,j⁡ =⁡∑ 𝐼{𝑍𝑟,𝑛=𝑗}{r:𝑋r,n=⁡𝑔} , the complexity of Gibbs sampling 

does not scale with the read depth, which enables efficient sampling and memory 

usage. Due to the conjugacy of Dirichlet and multinomial, the posterior distribution 

can be read off from the joint distribution, shown as below.  

p(θn | Z̃n, γ, φ, ψ, Xn ; α) ~ Dirichlet (α + ∑ Z̃gn
𝐺
𝑔=1 ) 

p(Z̃gn | θn, γ, φ, ψ, Xn ; α) ~ Multinomial (X̃gn⁡,
Φ.g⊙θn

∑ Φj.gθn
K+M
𝑗=1

), where ⊙ denotes 

elementwise multiplication.  

Empirically, the Gibbs chain converged to the stationary distribution fairly quickly. 

The Gibbs samples are collected after burn-in and thinned to reduce auto-correlations.  

 

3.4.2 M step: 

In the M step, the parameter γ is updated to maximize the expectation of the log 

posterior, with the expectation taken with respect to the Gibbs samples drawn from the 

E step. Since there is no closed form solution to the posterior, we use the conjugate 

gradient algorithm to numerically optimize the posterior using the analytical gradient. 

Also, observing the conditional independence relations  

Specifically, the objective function is:  

⁡⁡⁡⁡⁡E[⁡log⁡(p(γ, Z̃⁡|φ, ψ, X⁡; ⁡σ))]  

∝ E[⁡log⁡(p(⁡Z̃⁡|⁡Φ⁡))] + E[⁡log⁡(p(γ⁡|⁡σ))]⁡  

= E[⁡∑ ∑ log⁡(p(⁡Z̃.n,j⁡⁡|⁡Φ𝑗))𝑛𝑗 ] + E[⁡∑ log⁡(p(γ𝑗⁡|⁡σ𝑗))𝑗 ]⁡  

∝ ∑ ∑ ∑ ∑ Z̃s,gn,j⁡𝑔 ∗ ⁡ log(Φj,g)𝑛𝑗𝑠  + ∑ ∑ −
1

2σ𝑗,𝑔2
𝑔 ∗⁡γ𝑗,𝑔

2
𝑗  
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, where s denotes the Gibbs samples.  

The derivatives are:  

 
∂⁡E[⁡log⁡(p(γ,Z̃⁡|φ,ψ,X⁡;⁡σ))]

∂γ𝑗,𝑔
= ∑ ∑ Z̃s,gn,j⁡ −⁡∑ ∑ ∑ Z̃s,gn,j⁡𝑔 ∗⁡𝑛𝑠 ⁡Φj,g𝑛𝑠 + −

1

σ𝑗,𝑔2
∗ ⁡γ𝑗,𝑔 

   Observe that the derivative of γ𝑗0 does not depend on other γ𝑗≠𝑗0, each γ𝑗 can be 

optimized in parallel, with respect to the objective function being   

∑∑∑Z̃s,gn,𝑗0⁡
𝑔

∗⁡ log(Φ𝑗0,g)

𝑛

+⁡∑−
1

2σ𝑗0,𝑔2
𝑔

∗ ⁡γ𝑗0,𝑔
2

𝑠

 

 

3.5 Results 

3.5.1 Evaluate on simulated data 

In this section, we evaluated TED on data simulated from known parameters. We used 

bkRNA-seq collected from hemopoietic lineages to better reflect the distribution of 

expression profiles of real cells, which often shows bimodality after log 

transformation (Fig. 3.2), and the correlation structures among them.  

 

 

 

 

 

 

 

 

 

Fig. 3. 2 data distribution of bkRNA-seq data.  

Left: histogram illustrates the log of depth-normalized read counts. Right: heatmap shows 

pairwise spearman rank correlation coefficients between the gene expression profiles in 

different cell types. 

log (read count / total) 
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We set alpha=1, sigma=2, and perturbed the expression profile of B lymphocytes (the 

first column in the data matrix) to generate tumor profiles at K=10. In total, we 

simulated 50 patients, and the read depth of each patient was drawn from Poisson 

distribution λ=109. To avoid a vanishing gradient caused by extremely small value of 

Φ⁡j,g, we resampled the distribution of γj,g to match the range of φ. The EM 

converged, and successfully recovered the proportions of each cell type as well as the 

expression profiles of tumor pathways (Fig. 3.3).   

 

 

 

   
 
Fig. 3. 3 Performance on Simulated data.  

Left: log posterior increment over the EM cycles. Middle: inferred cell types fractions verse 

ground truth. Right: inferred tumor pathway expression profiles (rows) verses true tumor 

pathway expression profiles (columns).  

 

 

3.5.2 Evaluation on glioma scRNA-seq data 

 

To validate on real tumor datasets, we evaluate the performance of TED on bkRNA-

seq data simulated by adding up read counts measured using scRNA-seq data. We 

curated scRNA-seq data from 8 high grade glioma patients, and performed a leave-

one-out test. Specifically, we used the φ and ψ derived from 7 training samples, infer 
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over the whole set, and evaluated the performance on the holdout sample. Hyper-

parameters are set at sigma=2, alpha=1, K=10. TED learned to optimize the tumor 

expression profile, and reached high accuracy over the holdout set (Fig. 3.3) after EM 

converges. TED also showed robust performance at multiple Ks, reaching a 

comparable performance even at K=30 (r=0.993), and does not seem to overfit the 

tumor component.  

 

Fig. 3. 4 The expected proportion of different cell types after the 1st E step, i.e., before 

optimization (left), and at the convergence of EM (right).   

 

TED also learned to accurately recover the expression profiles of the tumor cells in 

each patient (Fig. 3.4). TED showed interesting properties on the inferred parameter γ 

describing tumor pathways. At K equal or greater than the number of patients, TED 

still has the tendency to group patients of similar transcription rather than distributing 

each patient into an individual γ (Fig. 3.5). We found that two patients PJ032 and 

PJ017 shared the activation of the 8th tumor pathway. They are the only two patients 

of mesenchymal subtype which show high myeloid infiltration, and are also the closest 

on the tsne plot (Fig.1a of (Yuan et al. 2018)). Interestingly one tumor patient PJ016 

showed activation of two correlated pathways to slightly different extent is the one 
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shows two distinct subpopulations on the tsne plot (Fig.1a of (Yuan et al. 2018)).  

 

 

 

 

 

 

 

 

 

 

Fig. 3. 5 Spearman correlation between the expression profiles of inferred tumor cells 

(rows) and ground truth (columns).  

Tumor profiles are calculated by collapsing tumor cells from each patient. Left: 

expression profiles learned after the 1st cycle. Right: expression profiles learned at the 

convergence of EM. 
 

 

 

Spearman’s rank 

correlation coefficient 
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Fig. 3. 6 Heatmap shows the activation of tumor pathways in each patient at K=10.  

 

  

We compared the performance of TED by benchmarking against linear models. We 

tried depth normalized and log depth normalized feature vectors under two scenarios, 

namely with or without the expression of tumor expression profile summed up from 

the training scRNA-seq data (Fig. 3.6). We observe that in all cases, linear regression 

severely underestimated the tumor fractions, while overestimate those of rare 

populations of environmental cells. Regression without the tumor variable has the 

poorest performance, due to the false assumption that tumor cells have zero expression 

over all gene dimensions. This is observed but often overlooked in naive regression-

based methods, such as CIBERSORT and quanTIseq. Incorporating the tumor variable 

into the regression model significantly improves the estimates, yet still underestimates 

the tumor fraction but overestimates other populations. This is due to the inability for a 
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single tumor cell reference to account for the heterogeneities among patients, 

especially the unobserved patient in the holdout set. Residuals resulted from the 

deviation from the reference tumor will be absorbed into other cell types and inflate 

their proportions. Applying the log transform to the feature space is essential for the 

linear regression approach, as the error in the RNA-seq data usually become more 

normally distributed after log transformation. Taken together, through actively 

learning the embeddings of the tumor transcription profile, TED greatly improves the 

inference of cell fractions. 
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Fig. 3. 7 Cell Fractions Predicted using Linear Regression (least square fit).  

 

 

3.6 Discussion 

We have built the Bayesian statistical model TED which accurately jointly infers the 

tumor pathways and fractions of environmental cells from raw RNA-seq read counts, 

without the need for marker genes. TED significantly improves over the regression-

based methods, where tumor faction is inevitably underestimated. Considering the 

enormous amount of bkRNA-seq data collected from large cohorts and across cancer 
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types, TED can be of great potential in uncovering the covariance structure between 

tumor pathways and the fractions of each environmental cell. This would allow us to 

answer important questions such as how tumor cells evade, inhibit or even hijack the 

immune system. Specifically, for glioblastoma, one important, but yet unanswered 

question, is how cells of myeloid or lymphoid lineage infiltrate the brain tumor from 

blood, and what role they play in oncogenesis. Conversely, TED can also be used to 

infer immune expression profiles when the expression profiles of other cell types are 

held fixed. As bkRNA-seq data is available for large number of cohorts via GTEx, this 

can have important applications in studying the tissue-specific immune profiles of the 

tissue residential cells or other immune cells that migrate into the tissue under healthy 

or disease states.  

 

It is tempting to jointly infer the expression profiles and proportions of both the tumor 

and environmental cells of interest. However, this may run into identifiability issues, 

where environmental cells may absorb gene expressed from the tumor cells. Future 

directions of TED can explore the use of gene-specific variance / co-variance σ2 , and 

cell type-specific α estimated using empirical Bayes approach from prior datasets to 

make the posterior identifiable. TED can incorporate the use of multiple φs, each has a 

unique biological meaning, e.g. potential tumor cell origins or cells collected at 

different developmental lineages / time series, allowing the inferred tumor pathway to 

have richer biological meaning.  

 

3.7 Data Access 

The scRNA glioma datasets are curated from GEO (accession ID: GSE103224). The 

annotations of cell types are kindly provided by Dr. Peter A. Sims through personal 

correspondence.  
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CONCLUDING PERSPECTIVE 

 

The two chapters represent top-down and bottom-up frameworks for understanding 

transcription regulation in tumor and its microenvironment. They rely on functional 

epigenomic measurements, such as ChRO-seq and RNA-seq, from bulk tumor tissues, 

and leverage prior knowledge from reference cells of known cell types. Chapter one 

takes advantage of the highly cell type-specific TREs measured by ChRO-seq, and 

compared its activation profile with respect to those of reference cells measured by 

DNase I-hypersensitive sites. These TREs allowed us to map the cell types resembled 

by the tumor and its microenvironment and get a semi-quantitative enrichment score 

for each reference cell type. Several transcription factors enriched in the immune 

transcription modules showed survival association, highlighting the clinical 

importance of tumor microenvironment in GBM. Chapter two develops TED, a 

Bayesian statistical model that jointly infers the tumor expression profile and the 

proportion environmental cells. TED accounts for the heterogeneity of tumor cell by 

modeling it as a weighted sum of multiple cells with perturbed pathways. On both 

simulated and scRNA-seq data, TED reaches high accuracy and significantly 

outperform linear regression, representing a fully automated and quantitative approach 

for understanding the tumor cell in context of the microenvironment.  

 

Both frameworks have advantages and disadvantages. The top-down framework is 

easy to comprehend and does not explicitly assume a specific generative model, yet 

often requires extensive manual intervention. It relies on the use of enhancers which 

are highly cell type-specific and is unclear to what extent it may generalize to the use 

of transcription level of genes.  The top-down framework also analyzes one sample at 

a time, and hence information shared cannot be captured. The bottom-up approach is 
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based on a specific model built according to human prior knowledge. The model 

implicitly extracts cell type-specific signals and does not require the need for manually 

curating maker genes a priori, which fully utilizes all measured signals. As a result, 

model training is highly automated, and performs well on transcription abundance of 

genes. In addition, due to the joint inference over multiple patients, estimates of 

parameters have the desired shrinkage effect. The main disadvantage is that the 

training process may be difficult to control, e.g. sensitivity to initialization and 

susceptibility to local minimum/maximum. The combination of these two approaches, 

i.e. post-hoc inspection using top-down approach for parameters inferred from 

modeling, represents an ideal framework for understanding the compositions of tumor 

and the microenvironment. In addition, TED can be easily modified to allow joint 

inference using matched transcription and regulatory signals.  

 

The bottleneck of TED is its assumption that environmental cells do not show 

heterogeneity across patients, which may be violated due to tumor microenvironment 

interactions.  Whereas TED accurately recovers the transcription profile of tumor 

cells and the proportions of environmental cells, it cannot infer unknown cell types of 

the environmental cells. In case of the presence of unknown cell types or cell types 

that deviate from the reference component, TED will absorb their read count into the 

tumor component and may underestimate the proportions of the reference component. 

Future directions that incorporate the use of gene-specific hyperparameters may allow 

joint inference of expression profiles of environmental cells of interest. The 

fundamental structure of TED separates the modeling of gene regulation and cell type 

proportions into individual sub-models, allowing more engineering flexibility. For 

example, a multivariable Gaussian distribution, or even non-parametric Bayes 

approaches, can be used to model the prior distribution of differential regulation in 
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each cell type, and logistic normal distribution can be used to directly model the 

covariance structures between proportions of each cell type. Taken together, TED 

represents a groundbreaking framework that automatically leverages prior knowledges 

to study tumor and its microenvironment. 
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