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Soil ecosystem properties and processes which simultaneously maintain native fertility 

and sustain plant yields are of principal interest in sustainable agriculture. Native 

prairies in Kansas are relevant in this context, as they have been annually hayed with 

no fertilization or detectable decline in yield or soil fertility. In contrast, intensive 

wheat production has resulted in significant reductions in soil fertility and now 

requires intensive inputs to maintain yield. This study aimed to shed light on the soil 

microbiological differences between these two contrasting agricultural systems in an 

attempt to gain insight into possible mechanisms driving nutrient and energy 

efficiencies in these hayed prairie ecosystems. The objectives of this study were: i) to 

identify major differences in soil bacterial and nitrogen fixing communities between 

prairies and adjacent annual wheat fields, ii) to determine if dramatic losses of soil 

organic carbon (SOC) are a result of obsolete farming practices, or from plant 

community composition, and iii) to document the relative contribution of associative 

N-fixation to total plant N in three C4 prairie grasses. Soil analyses, microbial 

biomass, and terminal restriction fragment length polymorphism analyses (T-RFLP) 

revealed that bacterial and nitrogen fixing communities that were correlated with soil 

chemical, physical, and biological properties indicative of higher soil quality in prairie 

sites. In addition, SOC loss was documented in annual agriculture fields, even in the 

absence of tillage, demonstrating the large role that prairie plant communities play in 

maintaining soil fertility. Finally, evidence of associative N fixation was found in 



 

prairie grasses which may help alleviate N limitations and sustain long-term exports of 

N. Two additional studies were conducted to advance T-RFLP methodology. The first 

study was an evaluation of statistical multivariate analyses for T-RFLP data and 

yielded insight into which analyses were most appropriate given research objectives 

and dataset complexity. The second study yielded T-REX, a free, online software for 

rapid and less-biased analyses of T-RFLP data. Collectively, the results of this work 

suggest a greater synchrony of plant nutrient demand in prairies, which may help to 

explain the greater nutrient use efficiencies seen in these systems relative to wheat. 
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CHAPTER 1 

INTRODUCTION 

 

In 2005, the United Nations released the Millennium Ecosystem Assessment (MEA 

2005), the most comprehensive report to date with the goal of assessing the state of the 

planet and to establish a basis for actions needed to improve the conservation and use 

of ecosystems. Over two thousand authors, scientists and experts in a vast range of 

fields, reported their sobering findings to anyone who was willing to listen. To quote 

the first of the four main findings: “Over the past 50 years, humans have changed 

ecosystems more rapidly and extensively than in any comparable period of time in 

human history, largely to meet rapidly growing demands for food, fresh water, timber, 

fiber, and fuel. This has resulted in a substantial and largely irreversible loss in the 

diversity of life on Earth.”  

 

It is difficult to comprehend the weight and scale of such a statement with words 

meticulously chosen over the course of this five-year synthesis. It is also difficult to 

deny that we find ourselves living in a period of history that is somewhat 

paradoxical—we are armed with enough technical knowledge to simultaneously cause 

such destruction, measure the results of these actions, and predict the implications of 

continuing on our current trajectory.  

 

Although agriculture is only one human activity out of many that is leading to the 

degradation of ecosystems outlined in the MEA, it is a substantial and ubiquitous 

activity that spans all arable regions of the globe. Given how intimately agriculture 

interfaces with the soil, water and atmosphere, improving the ways we grow food, 

fiber and fuel has the potential to bring about great human and ecosystem benefit. 
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The Land Institute is one of many organizations working to improve modern methods 

of food production by focusing on the development of perennial grain crops. The over-

arching mission of the Land Institute is to design agricultural ecosystems that mimic 

the native tallgrass prairies of Kansas—perennial herbaceous mixtures of seed-

producing grasses, legumes and forbs. Such an agriculture could bring many 

environmental advantages (e.g., reduced soil erosion and herbicide use from perennial 

cover, reduced nutrient run-off due to extensive rooting systems), as well as many 

agronomic advantages (e.g., reduced input and on-farm fuel costs, reduced irrigation 

due to greater use of soil water reserves). To date, progress has been made, but much 

more work needs to be done. Perhaps one of the largest hurdles will be to move 

perennial grain breeding and its concepts from a ‘high-risk and fringe’ endeavor, to 

one which makes sound scientific sense, appropriately reflected in research priorities, 

academic dialogue and funding allocations.  

 

The majority of the work in this dissertation is part of a larger research project 

catalyzed by the Land Institute. Seven graduate students from six universities have 

collaborated for the past 2 years examining hayed, native prairies in north central 

Kansas. Research by this team has assessed soil properties, bacterial, nematode, and 

mycorrhizal communities, nutrient budgets, plant communities, above ground insect 

communities and historic watershed N runoff. This dissertation specifically explored 

the soil biological components in this study, namely bacterial community dynamics. It 

is organized by the following chapters. 

 

Chapter 2 in this dissertation outlines the experimental design, rationale, and overall 

motivation for a comparative study between hayed, native prairies and annual wheat 
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fields. It presents data on the effects of the two different management histories on key 

soil properties, as well as on bacterial and nitrogen fixing communities. Results of 

nematode analyses are mentioned briefly to discuss the bacterial findings in a larger 

context. 

 

Chapter 3 presents the results of the conversion study—a study in which native 

prairies were converted to annual no-till agriculture without tillage. Like chapter 2, 

this chapter reports the results of soil data and bacterial and nitrogen fixing community 

data. However, instead of long-term management histories, these results document the 

first three years after the conversion of native prairie to annual crops. 

 

Chapter 4 reports the results of a greenhouse study conducted to document associative 

nitrogen fixation in the three most dominant C4 grasses in the prairie sites. From long-

term nitrogen budgets, it seems likely that there is considerable non-symbiotic 

nitrogen fixation contributing to the N removed in hayed biomass and this study was 

an initial attempt to document and quantify this phenomenon.  

 

Chapter 5 is a statistical comparison of several multivariate ordination methods for the 

analysis of terminal restriction fragment length polymorphism (T-RFLP) microbial 

community datasets. This study empirically tested and theoretically compared seven 

statistical methods with ten diverse soil datasets. Results of the empirical findings and 

theoretical considerations are discussed. 

 

Chapter 6 outlines T-REX, an online tool for the analysis of T-RFLP data. T-REX was 

developed in conjunction with Cornell Bioinformatics Service Unit to facilitate a 

streamlined, more robust analysis of these data. The many features and the benefits 
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offered by this software are presented. An example dataset is presented to demonstrate 

the software’s functionality.  

 

 

Adapting and creating an agriculture that fosters biological synergy and eliminates the 

degradation of our natural resources will be a major challenge for human civilization 

over the next century and beyond. It is hoped that this dissertation not only advances 

the understanding of these perennial grassland systems, but also raises awareness and 

interest in the field of perennial agriculture, as a potential solution to address some of 

the most pressing issues facing us today.  
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CHAPTER 2 

DIFFERENCES IN SOIL PROPERTIES AND BACTERIAL AND FREE-LIVING 

DIAZOTROPHIC COMMUNTY STRUCTURE FOLLOWING 75 YEARS OF 

HIGH-INPUT WHEAT VERSUS NO-INPUT HARVESTED PERENNIAL 

GRASSLANDS IN KANSAS1 

 

Introduction 

 

On a fundamental level, the human endeavor of agriculture is nothing more than the 

harvesting of nutrients. We manage plant communities to take elements from the 

atmosphere and soil and convert them to human usable forms (food, fiber, fuel) via 

photosynthesis. In this context, evaluating the efficiency (input vs. output) of an 

agricultural system’s use of nutrients and energy can provide a useful framework in 

assessing its performance and be an indicator of the overall sustainability of that 

system.  

 

Much of industrial agriculture, as it is practiced today, is characterized by both low 

nutrient use and energy efficiencies. For example, worldwide nitrogen use efficiency 

for cereals is approximately 33% (Raun and Johnson 1999). Despite increased energy 

efficiencies in the last several decades, the United States agriculture still consumes 1.7 

quadrillion Btu (Schnepf 2004) while producing just 1.66 quadrillion Btu of food 

energy (ERS 2004). In addition, pollution of water sources, atmospheric degradation, 

and practically irreversible degradation of soil are common consequences of food 

production today. These issues led the Millennium Ecosystem Assessment to conclude 

                                                 
1 Data from this chapter will be submitted to the Proceedings of the National Academy of Sciences. 
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that agriculture may be one of the largest threats to biodiversity and ecosystem 

function of any single human activity (Assessment 2005). 

 

Looking to soil ecosystem properties and processes which simultaneously maintain 

fertility and sustain plant yields are of principal interest in sustainable agriculture. As 

agricultural systems, perennial grasslands have long been recognized for the 

environmental benefits they provide, such as reduced soil erosion (Lindstrom et al. 

1994), reduced N and C loss  (Gebhart et al. 1994, Knapp et al. 1998, Tilman et al. 

2002) and greater C sequestration (Tilman et al. 2002). However perennial grasslands 

do not provide a direct human food source as the cereals (annual grasses) do, and as a 

result, have generally not been considered as a viable solution to meet direct human 

food demands.  

 

Recent interest in biofuels has demonstrated the utility of perennial grasslands in 

producing fuel. Tillman et al. (Tilman et al. 2006) reported that high-diversity, low-

input perennial grasslands yielded more usable biofuel energy, greater carbon 

sequestration and less pollution than corn grain ethanol or soy-biodeisel. Their study 

drew from ten years of aboveground biomass harvest data which showed that yield 

increased with both increased diversity and time. Other reports have argued that 

perennial grasslands offer a viable and often advantageous option over annual crops 

for biofuel production, especially when considering soil C sequestration potential of 

perennial systems (Schmer et al. 2008). 

 

In a study comparing long-term nutrient removals from landscapes, Glover et al. 

(unpublished) showed perennial grasslands provided comparable levels of harvested N 

in biomass as adjacent high-input wheat fields provided in harvested grain. Over the 
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approximately 75-year management history of the two systems, roughly 26% more N 

has been harvested from the perennial grasslands than from wheat despite the absence 

of fertilizer inputs. In addition, soil fertility indicators (total N, organic matter, water 

stable aggregates) are significantly higher in the prairie sites than in the annual 

agriculture sites. These findings indicate much tighter nutrient cycling in the perennial 

grasslands, and suggest fundamental differences in soil biology. The authors suggested 

these attributes make perennial grasslands a model for a more sustainable agricultural 

system. 

 

Here we build on the Glover et al. (unpublished) study by comparing key soil 

biological, chemical and physical properties between the native tallgrass prairies and 

the adjacent, annual agricultural fields. Our overall objective is to elucidate soil 

biological properties and processes, related to communities, nutrient cycling and 

overall food web structure that are correlated with the sustained long-term nutrient 

export in prairies. This chapter looks at the role of bacterial communities in these 

systems. Its specific objectives are to i) determine differences in key soil variables 

with depth, ii) determine the relative influence of experimental factors shaping 

bacterial community abundance and structure and, iii) examine nitrogen-fixing 

bacterial structure in these systems. 

 

Materials and Methods 

 

Site Descriptions and Soil Sampling. The field sites in this study were located in five 

counties of North Central Kansas as described by Glover et al. (2008). Specific field 

site names and respective locations were: Buckeye, Dickinson Co. N’ 39.2.344, W’ 

97.7.798; Niles, Ottawa Co. N’ 38.58.145, W’ 97.28.616; Goessel, McPherson Co. N’ 
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38.15.333, W’ 97.22.307; New Cambria, Saline Co. N’ 38.53.54, W’ 97.32.615; Five 

Creek, Clay Co. N’ 38’22.665, W’ 97.18.788. Five native, bottom-land prairie 

meadows (perennial grasslands) with adjacent annually cropped wheat fields were 

identified and sampled. Relatively consistent management of the two systems had 

been practiced for 75 years or more.  

 

Soils were sampled three total times: i) June 18 – 22, 2006, ii) October 5 – 9, 2006, 

and iii) June 17 – 20, 2007. Four centimeter diameter cores were taken to a depth of 

one meter in a 25 m transect across wheat and prairie sites. Five cores were taken from 

each field and separated into sections by depth: 0 – 10 cm, 10 – 20 cm, 20 – 40 cm, 40 

– 60 cm, 60 – 80 cm, 80 – 100 cm. The five samples from each depth were bulked and 

mixed until homogeneous. Soils were then frozen at – 20°C for molecular analyses or 

stored at 4ºC for all other analyses. 

 

The field sites consisted of five native prairie meadows (also called ‘perennial 

grasslands’) paired with annual agricultural fields. Prairie sites have never been tilled 

or fertilized and management consisted exclusively of annual mowing in June or July 

for hay removal. Annual wheat field management followed typical practices for the 

region (KSUAES 1996, 1997). This study’s experimental design consisted of four 

factors: sampling date, depth, management history and site. Specifically, there were 3 

sampling dates, 6 depths, 2 management histories, and 5 sites sampled, totaling 180 

samples. Our research objectives led us to focus mainly on the differences between 

management histories (perennial grasslands vs. annual wheat), but also how these 

differences change with depth. Differences detected between sampling date and field 

site were of limited interest here. Multiple sampling dates were taken to verify trends 

seen at any one individual sampling period and multiple sites were sampled in an 
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attempt to capture consistent differences between these two systems, hence making 

our observations more robust. 

 

Soil Properties. Soil properties were analyzed both at The Land Institute (TLI) and at 

the Soil Testing Laboratory at Kansas State University (KSU). Analyses at TLI 

included: pH (Robertson et al. 1999), bulk density by oven drying at 105 ºC, percent 

clay by the hydrometer method (Elliott et al. 1999), water stable aggregates (WSA) by 

wet-sieving (Seybold and Herrick 2001), and readily oxidizable carbon (ROC) (Weil 

et al. 2003). Analyses at KSU included SOM by the Walkley-Black procedure, soil 

organic carbon (SOC) and total N by dry combustion on a LECO CN 2000 

combustion analyzer, total P by a modified Kjeldahl digestion and total K by flame 

atomic absorption. Further details on analyses performed at KSU can be found at 

MEAS (MEAS 1998).  

 

Microbial Biomass. Microbial biomass carbon (MBC) was measured with the 

simultaneous chloroform fumigation extraction (sCFE) method (Fierer and Schimel 

2003). Briefly, 10g of soil from each sample were weighed into two, 70ml glass vials, 

one labeled ‘chloroform’, the other ‘non-chloroform’. 40ml of 0.05M K2SO4 were 

added to both vials and the chloroform vial received 0.5ml of EtOH-free CH3Cl. 

Blanks (both chloroform and non-chloroform vials without soil) were also prepared. 

Vials were sealed and shaken at 150rpm for 4 hours. Extracts were centrifuged for 15 

minutes at 1500 rpm and the supernatant was vacuum filtered through 0.45 µm 

Watman filter paper. Microbial biomass extracts were bubbled for 30 minutes with air 

to remove any residual CH3Cl and stored at – 20 °C until analysis. Dissolved organic 

carbon (DOC) and the natural abundance 13C values of DOC were determined using 

an O.I. Analytical Model 1010 TOC Analyzer (OI Analytical, College Station, TX) 
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interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK) at the University of California Davis Stable Isotope Facility. 

 

MBC was calculated as the difference between chloroform and non-chloroform 

(control) samples divided by a KEC-factor of 0.35 (Sparling et al. 1990). Analyzed 

blank samples contained no to extremely small amounts of C, so no correction was 

made for this insignificant analytical artifact. The 13C isotope composition was 

expressed in parts per thousand (‰) relative to the International PeeDee Belemnite 

(PDB), where δ13C = (R sample/ R standard – 1) × 1000) and R is the molar ratio of 
13C/12C. The δ13C (‰) of MBC was calculated as follows: δ13CMB = [(δ13Cc  × Cc) – 

(δ13Cnc  × Cnc)] / (Cc – Cnc), where Cc and Cnc is MBC (DOC kg ha-1) extracted from 

the chloroform and non-chloroform samples, and δ13Cc and δ13Cnc is the 13C natural 

abundance of the chloroform and non-chloroform extracts (‰), respectively (Ryan 

and Aravena 1994). 
 

Molecular Analyses (PCR and T-RFLP) 

 

16S rRNA gene. Soil DNA was extracted from 0.25 g soil per sample using the 

MoBio PowerSoil™ DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA). 

DNA extracts were quantified and diluted with nuclease-free water to 2 ng µl-1. DNA 

was then amplified by polymerase chain reaction (PCR) using the fluorescently-

labeled forward primer 27f (5′-[6FAM] AGA GTT TGA TCM TGG CTC AG-3′) and 

the unlabeled reverse primer 1492r (5′-TAC GGY TAC CTT GTT ACG ACT T-3′) 

(Invitrogen, Carlsbad, CA). These primers target the bacterial 16S rDNA genes in the 

extracted soil DNA and the amplification results in products of approximately 1500 

bp. Three, 50 µl reactions of each sample were amplified using a PTC 200 thermal 
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cycler (MJ Research, Waltham, MA) as follows: initial denaturation at 95°C for 5 

min; 27 cycles of denaturation at 95°C for 45 s, annealing at 56°C for 45 s, and 

extension at 72°C for 1 min; and a final extension step at 72°C for 10 min. Reaction 

concentrations were: 0.05 U µl-1 AmpliTaq Gold® DNA polymerase (Applied 

Biosystems, Foster City, CA), 1x PCR buffer, and 2.0 mM MgCl2, 0.2 mM deoxy-

nucleotide triphosphates (dNTPs), 0.1 µg µl-1 bovine serum albumin (BSA), both 

primers at 0.1 µM, nuclease free water, and 5 µl of DNA template (10 ng reaction-1). 

Amplified DNA products were verified by electrophoresis on a 1.0% agarose gel. 

 

Following PCR, amplified DNA (three 50 µl reactions per sample) was pooled and 

quantified. DNA concentrations were adjusted to 30 ng µl-1. Two, 30 µl restriction 

enzyme digests were prepared per sample using HhaI and Sau96 I restriction enzymes 

(New England Biolabs, Ipswich, MA). Reaction concentrations were: 5 U enzyme 

(either HhaI or Sau96 I), 1x of the respective buffer, 0.1 µg µl-1 BSA, nuclease-free 

water, and 15 µl of amplified DNA (450 ng reaction-1). Restriction digestion was 

carried out in a MJ Research PTC 200 thermal cycler at 37°C for 4.5 h with a final 

step of 70°C for 15 min to stop the reaction. Complete digestion of the DNA was 

verified by electrophoresis on a 1.5% agarose gel. 

 

Digested DNA was purified using a PERFORMA® DTR Edge Plate (Edge 

BioSystems, Gaithersburg, MD) and lyophilized. DNA was resuspended in a 10 µl 

mix containing 9.85 µl of formamide and 0.15 µl of LIZ 500 size standard (Applied 

Biosystems). Terminal fragment-size analysis was performed using a 3730 ABI 

electrophoretic capillary sequencer in conjunction with the Genemapper Software 

(Applied Biosystems) at Cornell University’s Biotechnology Resource Center, Ithaca, 

NY.   
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nifH. T-RFLP analyses were also performed to characterize free-living diazotrophic 

populations in soils. T-RFLP targeting the nifH gene was performed on all 2006 

samples; however, the electrophoretic traces were very poor quality and rendered 

unusable. After further protocol optimizations, nifH T-RFLP data for June 2007 

yielded satisfactory results. Re-analysis of 2006 samples was not possible, as too little 

extracted soil DNA remained after laboratory optimizations. Hence, only the results of 

June 2007 will be discussed and presented here. The methods used were as described 

above, with the following changes. Soil DNA extracts were amplified by PCR using 

the fluorescently-labeled forward primer nifH-b1-112F (5′-[PET] GGC TGC GAT 

CCC AAG GCT GA-3′) (Applied Biosystems) and the fluorescently-labeled reverse 

primer CDHP Nif723R (5′-[6FAM] GAT GTT CGC GCG GCA CGA ADT RNA 

TSA-3′) (Invitrogen). These primers target nifH, the structural gene for nitrogenase 

reductase, in the extracted soil DNA and the amplification results in products of 

approximately 700 bp. Three, 50 µl reactions of each sample were amplified as 

follows: initial denaturation at 95°C for 10 min; 35 cycles of denaturation at 95°C for 

30 s, annealing at 61°C for 30 s, and extension at 72°C for 45 s; and a final extension 

step at 72°C for 10 min. Reaction concentrations were: 0.05 U µl-1 AmpliTaq Gold® 

DNA polymerase, 1x PCR buffer, and 2.5 mM MgCl2, 0.8 mM dNTPs, 0.5 µg µl-1 

BSA, both primers at 0.25 µM, nuclease free water and 50 ng DNA template reaction-

1. Amplified DNA was digested with the restriction enzyme MspI (New England 

Biolabs) in the following reaction concentrations: 5 U enzyme, 1x of supplied buffer, 

0.1 µg µl-1 BSA, nuclease-free water and 450 ng DNA reaction-1. 
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Statistical Analyses 

 

Analysis of Variance was performed on the soil nutrient data and microbial biomass 

data using PROC MIXED procedure in SAS v.9 (Cary, NC). Depth and management 

history were treated as fixed effects and site a random effect. All soil variables were 

measured at all sampling dates, except ROC, microbial biomass and WSA, which 

were only measured at the June 2007 sampling. Soil variables exhibited consistent 

results across the three sampling periods with no sampling date interactions. 

Therefore, only June 2007 soil data are presented here, with significance differences 

determined at α = 0.05 level of probability. All soil data were converted into mass per 

hectare, in order to account for differences in soil volume and bulk density. Least 

squared means are reported for all soils data. 

 

The T-RFLP data analyzed in this study were uncommonly complex in regard to 

number of underlying environmental gradients (sampling date, depth, management 

history, and site), sample heterogeneity and percent variation from interaction signal. 

As a result of this complexity, nonmetric multidimensional scaling (NMS) analyses 

with the Sørensen distance measure were used to analyze all T-RFLP data. (See 

Chapter 5 for further discussion selecting an appropriate ordination analysis for T-

RFLP.) NMS analyses were performed in PC-ORD v.5 (MjM Software Design, 

Gleneden Beach, OR) with 2 axes selected, 50 runs with real data, <0.0011 stability 

criterion, 50 iterations to evaluate stability. 

 

Multiple-response Permutations Procedures (MRPP) were also employed to test 

significance among the experimental factors within the datasets (Mielke 1984, 

McCune and Grace 2002). This procedure creates p-values to determine statistical 
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significance between groups in a factor, as well as an A statistic. The A statistic, also 

called “the chance-corrected within-group agreement,” describes within-group 

homogeneity and is independent of sampling size. When all items within each group 

are identical, A = 1; if the items within each group equals what is expected by chance, 

A = 0. Negative A values result from cases with less agreement between groups than 

is expected by chance. 

 

 

Results and Discussion 

 

Soil Properties. Key soil properties for all 5 sites are found in Table 2.1. Here, we 

assume (based on soil horizonation and textural properties) that prior to agricultural 

conversion, the soil properties between paired agricultural and prairie sites were not 

different. Under this assumption, the long-term effects of annual agriculture on the soil 

are dramatic. The annual wheat fields have significantly lower amounts of soil organic 

matter (SOM), soil organic carbon (SOC), readily oxidizable carbon (ROC), total soil 

N, and water stable aggregates (WSA) compared to perennial grassland sites at every 

depth measured through 60cm of soil (Table 2.1). Annual agriculture has decreased 

the amount of SOC by 28% and total N by 27% in the upper 60cm of soil, despite the 

fact that agricultural plots have received approximately 70 kg N ha-1 yr-1. 

 

In contrast, the annual haying of prairie sites, which have never received fertilization, 

has not resulted in the same rates of degradation. Historic hay yield data from the 

same five counties in KS as the field sites show prairie productivity has been 

maintained and even increased over the same time span (Figure 5 in supplementary, 
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Table 2.1. Soil properties of field sites in this study* 

Depth Management   SOM SOC ROC  Total N Total P Total K  BD 
(cm) History pH clay (Mg ha-1) (Mg ha-1) (kg ha-1) (Mg ha-1) (kg ha-1) (kg ha-1) WSA (Mg m-3) 

0 – 10 PR 5.9 21 62.0 36.8 1040 3.1 427.6 431.4 0.93 1.22 

  W 5.4 24 43.6 25.3 766 2.2 545.8 451.2 0.67 1.48 

   N.S. N.S. 0.005 0.004 0.008 0.005 0.019 N.S. <0.001 0.026 

10 – 20 PR 5.6 25 59.8 35.3 964 3.0 457.0 388.2 0.90 1.44 

  W 5.5 27 42.5 24.8 716 2.1 505.1 442.7 0.67 1.66 

   N.S. N.S. 0.002 0.002 0.006 0.003 N.S. N.S. <0.001 0.030 

20 – 40 PR 5.7 33 55.5 32.2 812 2.7 920.3 843.3 0.85 1.56 

  W 6.0 32 40.4 23.7 615 2.0 850.6 883.2 0.68 1.64 

   N.S. N.S. <0.001 0.001 0.004 0.001 N.S. N.S. <0.001 0.099 

40 – 60 PR 6.0 32 51.1 29.1 660 2.5 851.3 867.3 0.80 1.64 

  W 6.4 30 38.3 22.7 515 1.9 795.3 830.6 0.70 1.66 

   N.S. N.S. 0.002 0.012 0.025 0.010 N.S. <0.001 <0.001 N.S. 

60 – 80 PR 6.2 32 46.8 26.0 508 2.2 842.7 884.2 0.75 1.74 

  W 6.6 32 36.1 21.7 414 1.8 827.2 911.0 0.71 1.68 

   N.S. N.S. 0.043 N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

80 – 100 PR 6.5 31 42.4 22.9 357 1.9 739.3 850.3 0.69 1.66 

  W 6.8 33 34.0 20.6 314 1.7 826.2 944.6 0.72 1.64 

    N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 
* The first two rows at each depth display the least squares means of the fives sites; the third row contains the p-value of those means.  N.S. = not statistically significant (α =  
    0.10);  SOM = soil organic matter; SOC = soil organic carbon; ROC = readily-oxidizable carbon; Total P = total phosphorus; Total K = total potassium; WSA = water stable 
    aggregates; BD = bulk density; PR = prairie; W =  wheat. 
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Glover et al., unpublished). If the annual mowing of the prairie resulted in significant 

degradation in soil fertility, yields would be expected to decline over time. These data 

are consistent with other reports of long-term harvests of unfertilized grasslands. 

Shortridge (Shortrid 1973) found no decline in hay yields were reported from 

unfertilized Kansan prairies after 55 years of annual harvest. Similarly, unfertilized 

grasslands at the Rothamsted Research Park Grass experiment have been hayed twice-

annually for 150 years without experiencing yield declines (Jenkinson et al. 1994, 

Silvertown et al. 1994) or reductions in total soil N over the last 120 years (Jenkinson 

et al. 2004). Fifty years or more of annual, unfertilized grass harvests did not reduce 

SOC or Total N in the upper 2 meters of soil compared to non-harvested grasslands in 

a Russian Chernozem (Mikhailova et al. 2000, Mikhailova and Post 2006). 

 

Soil physical properties were also influenced by management history. Bulk density 

and water stable aggregates (WSA), important physical indicators of soil health and 

plant root activity, were significantly reduced in annual wheat fields compared to 

perennial grasslands. These stark differences in soil fertility—cumulative artifacts of 

decades of ecological processes—suggest fundamental differences in plant community 

functioning, nutrient cycling and associated soil biology between these two systems. 

 

Microbial Biomass. Microbial biomass carbon (MBC) was measured at the June 2007 

sampling date. Perennial grasslands exhibited significantly greater amounts of MBC 

than annual wheat fields at all depths, except 80 – 100cm (Figure 2.1). Values of MBC 

in the surface soils of grasslands are typically at least twice as great as in the surface of 

cultivated fields (Jenkinson and Powlson 1976, Lynch and Panting 1980b, a, Schimel 

et al. 1985, Acosta-Martinez et al. 2007), but few studies have reported MBC through 

multiple depths. In a restored prairie chronosequence, Allison et al. (Allison et al. 
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2007a) found microbial biomass (measured by phospholipid fatty acid (PLFA) 

analysis) to decrease with depth and time since prairie restoration began. At 25cm and 

below, no differences were detected.  

 

 
Figure 2.1. Relationship of microbial biomass carbon (MBC) to depth in prairie 
sites (closed circles) and annual wheat sites (open circles). Significant differences 
were detected at all depths except 80 – 100cm. 

 

Microbial biomass is a chief component of the active SOM pool (Smith and Paul 

1990) and has been shown to be strongly correlated with root biomass and SOM 

lability across many ecosystems (Wardle 1992, Paterson 2003). It has been used as a 

measure of belowground resource availability (Waldrop et al. 2006), an indirect 

measurement of belowground inputs from plants via root exudation and 

rhizodeposition. The greater MBC in the prairie sites coincides with the greater root 
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biomass (Figure 2 from Glover et al, unpublished), suggesting greater availability of 

resources due to root activity (exudation and rhizodeposition). Buyanovsky et al. 

(Buyanovsky et al. 1987) compared decomposition rates and soil organic matter 

accumulation in annual wheat vs. native prairie. They reported CO2 losses from litter 

decay in wheat fields twice as great as prairie sites and estimated belowground 

biomass decay constants almost three times as great in wheat fields. They attributed 

these differences to several factors including greater oxidative potential from tillage 

and higher soil temperatures in wheat fields, and the separation in time of C 

accumulation (spring) and C mineralization (summer) in wheat. They suggested the 

greater synchrony of plant and microbial activity in the prairie likely leads to increased 

competition for nutrients in the summer, especially N and water (see water use data, 

Glover et al., unpublished, Figure 2.3, in supplementary) and ultimately lowers 

decomposition potential in these systems. However, greater MBC in prairie sites could 

also be attributed to the increased diversity, as increased plant diversity has been 

shown to increase microbial biomass (Zak et al. 2003, Waldrop et al. 2006). In 

addition, MBC is known to fluctuate seasonally (Wardle 1992, Steenwerth et al. 

2006). More measurements over the growing season would be needed to make this 

assessment more robust. 

 

Isotope ratio mass spectrometry was used to determine δ 13C values of the microbial 

biomass. This approach takes advantage of the difference in photosynthetic pathways 

(and resulting δ 13C values) between C4-dominated prairies and C3 annual wheat.  

Since prairies dominated this region for the last 10,000 years or more, SOC should be 

primarily derived from C4 photosynthesis. However, since the conversion of prairies 

into agricultural fields, C3 annual wheat has historically been the primary crop grown 

in this region. Hence, new additions of C in annual fields should have C3 δ 13C  
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                             δ 13C Microbial Biomass (‰) 
 
Figure 2.2. Relationship of δ 13C microbial biomass to depth in prairie sites 
(closed circles) and annual wheat sites (open circles). Significant differences were 
detected at all depths. 

 

signatures (roughly -26‰), relative to the background of C4 δ 13C values (roughly -

13‰).  

 

Figure 2.2 illustrates the δ 13C values for MBC. In the surface depths, clear differences 

in δ 13C values exist between prairie and annual wheat, indicating the MBC was 

derived from the different photosynthetic pathways in these two systems. The C4-

dominated prairies yielded δ 13C values much higher than the C3 annual wheat fields.  

However, δ 13C values from deeper profiles in the wheat fields increasingly become 

more enriched in 13C, indicating the MBC at these depths was derived increasingly 

more from C4 photosynthesis. This trend suggests two phenomena. First, very little 
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C3-derived carbon from annual wheat is reaching these lower soil profiles. The wheat 

root biomass data reported by Glover et al. (unpublished) supports this, by showing a 

lack of rooting activity at these lower depths. Since isotopic signatures of microbial 

biomass have been shown to shift within weeks after the incorporation of litter with a 

different signature (Gregorich et al. 2000, Potthoff et al. 2003, John et al. 2004), δ 13C 

of microbial biomass is generally viewed to reflect the signature of the most recent 

input (Dijkstra et al. 2006). Second, the more enriched δ 13C values in wheat field 

MBC at these lower depths suggests this carbon source was derived from SOC 

sequestered by C4 prairie plants prior to agricultural conversion. This phenomenon 

would help explain the lower SOC values measured in annual wheat fields relative to 

prairie sites—heterotrophic bacteria are mineralizing remnant SOC that is not being 

replaced through plant deposition, resulting in a net SOC loss in the annual wheat 

fields.  

 

16S rRNA gene T-RFLP. Soil bacterial community composition was characterized 

with terminal restriction fragment length polymorphism (T-RFLP) (Liu et al. 1997), 

and summarized by nonmetric multidimensional scaling (NMS). NMS analysis of the 

complete dataset revealed sampling date and depth to be the two largest drivers in 

general bacterial structure. Differences between years (June 2007 and June, October 

2006) were the most consistent differences observed (Figure 2.4a). Depth also appears 

to be a large driver of structure, although there was great variability between depth 

profiles (Figure 2.4b). Differences between management history and site were not 

observed when the entire dataset was analyzed (Figure 2.4c and 2.4d). 
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Figure 2.3. Legend of symbols used to depict T-RFLP samples in nonmetric 
multidimensional scaling (NMS) analyses. 
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Figure 2.4. NMS analysis of complete bacterial T-RFLP dataset (June 2006, October 2006, and June 2007). The four panels 
display the same data represented by the four experimental factors: sampling date (a), depth (b), management history (c), 
and site (d). Figure 2.3 contains the symbol legend.
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Since sampling date and depth were the largest drivers of community structure in our 

experiment, we attempted to control for, or eliminate some of this variation in order to 

reveal more subtle patterns pertaining to management history. Depth was controlled 

for first, by decomposing the dataset into two separate matrices: one with the top 3 

depths (0 – 40cm) and the other with the bottom 3 depths (40 – 100cm). This resulted 

in similar ordinations produced with all depths (data not shown), and proved no more 

discriminatory in respect to management history. However, when NMS analysis 

parameters were set to produce a 3-dimensional solution instead of a 2-dimensional 

solution, differences were observed in regards to both management history and site. A 

3-dimensional solution of the top 3 depths showed differences between sampling date 

(Figure 2.5a), depth (Figure 2.5b) and management history (Figure 2.5c). A 3-

dimensional solution of the bottom 3 depths showed sampling date and site to be 

major drivers with neither depth nor management history grouping consistently (data 

not shown). Even though a 3-dimensional solution proved to be more discriminatory 

than 2-dimensional solution with these data, it is much more conventional to report T-

RFLP data in 2-dimensions. This convention likely results from the difficulty in 

accurately representing 3 axes on a 2-dimensional surface, among other things. In light 

of this, 2-dimensional solutions were sought whenever possible. 

  

Completing eliminating the factor of depth from the analysis, by analyzing only 

individual depths revealed that management history drives community structure at 0 – 

10cm (Figure 2.6) and 10 – 20cm (data not shown). Differences in management 

history at lower depths were not consistently observed. Detecting differences between  
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Figure 2.5. NMS analysis of the surface 3 depths (0 – 40cm) in the complete 
bacterial T-RFLP dataset (June 2006, October 2006, and June 2007). The three 
panels display the same data represented by three experimental factors: sampling 
date (a), depth (b), and management history (c). Figure 2.3 contains the symbol 
legend. 
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Figure 2.6. NMS analysis of the 0 – 10cm depth in the complete bacterial T-RFLP 
dataset (June 2006, October 2006, and June 2007) showing differences between 
annual wheat fields (open triangles) and perennial grasslands (closed triangles) 
with respect to sampling date (A = June 06; B = Oct 06; C = June 07). 

 

management histories were made possible only when completely or partially 

eliminating variability from depth. This suggests that sampling time and depth are 

larger drivers of community structure than management history and site. Sampling 

time appeared to drive structure at all depths, while differences in depth were strongest 

in the surface (0 – 40 cm).  

 

Bacterial community structure differences between sampling dates were controlled by 

analyzing each sampling date individually. These 3 analyses (June 2006, Oct 2006 and 

June 2007) revealed the same general patterns between all three dates. Only June 2007 

data are presented here. NMS analyses of June 2007 bacterial communities show that 

removing the effect of sampling date reveals more consistent groupings with 
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Figure 2.7. NMS analysis of the June 2007 bacterial T-RFLP dataset. The three 
panels display the same data represented by three experimental factors: depth 
(a), management history (b), and site (c). Figure 2.3 contains the symbol legend. 
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depth than when all dates are analyzed together (Figure 2.7a), but also that 

management history has a profound effect on community structure (Figure 2.7b). 

Consistent differences in site were not detected here (Figure 2.7c), indicating that 

depth and management history are the primary drivers in community structure when 

sampling date variability is eliminated. When the June 2007 dataset was decomposed 

into upper and lower depths, NMS analyses yield results consistent with the above 

findings—that depth and management history drive structure in the upper depths 

(Figure 2.8a) and that site differences drive structure in the lower depths (Figure 2.8b). 

NMS analyses of individual depths of the June 2007 dataset (i.e., analysis after the 

factors of sampling time and depth have been removed), show detectable differences 

in both site and management history in the upper 3 depths (only 0 – 10cm shown in 

Figure 2.9), while only differences in site were detected in the lower 3 depths (data not 

shown). 

 

A second approach to reduce the effect of sampling date on the ordinations was to 

simply average sampling dates for each sample. Ordinations from datasets with 

averaged sampling dates yielded results that were similar to non-averaged complete 

datasets, where trends in depth and management histories were observed but variable 

(data not shown). However, averaging sampling dates resulted in ordinations with 

groupings based on site differences more consistent than with previous approaches. 

Site differences were most pronounced in lower depths (Figure 2.10). 

 

The final approach taken to analyze general bacterial community structure was to 

average both site and sampling date. This effectively reduced dataset variability due to 

these two factors and allowed for an analysis to focus on the two factors of primary 
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Figure 2.8. NMS analyses of the surface 3 depths (a) showing differences in 
management history and of the bottom 3 depths (b) showing differences in site in 
the June 2007 bacterial T-RFLP dataset. 1 = 0 – 10cm; 2 = 10 – 20cm; 4 = 20 – 
40cm; 6 = 40 – 60cm; 8 = 60 – 80cm; 10 = 80 – 100cm. Figure 2.3 contains the 
symbol legend. 
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Figure 2.9. NMS analysis of the 0 – 10cm depth in the June 2007 bacterial T-
RFLP dataset showing differences between annual wheat fields (open triangles) 
and perennial grasslands (closed triangles) with respect to site. Arrows point to 
samples with different management histories, but from corresponding sites. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.10. NMS analysis of the 40 – 100cm depths in the complete bacterial T-
RFLP dataset averaged by date showing differences between sites. Figure 2.3 
contains the symbol legend. 
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Figure 2.11. NMS analyses of the complete bacterial T-RFLP dataset averaged by 
both sampling date and site showing differences between annual wheat fields 
(open triangles) and perennial grasslands (closed triangles). Top panel (a) shows 
analysis with all depths (0 – 100cm); bottom panel (b) shows analysis with top 4 
depths (0 – 60cm). 1 = 0 – 10cm; 2 = 10 – 20cm; 4 = 20 – 40cm; 6 = 40 – 60cm; 8 = 
60 – 80cm; 10 = 80 – 100cm. 
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interest—depth and management history. Ordinations produced from these datasets 

show the effect of both depth and management history in shaping community 

structure. Trends with management history are consistent to 40 – 60cm depth, after 

which management history appears to have little effect (Figure 2.11a). Removing the 

bottom 2 depths and analyzing the top 4 soil depths indicates the effect of 

management history on communities to a depth of 60cm (Figure 2.11b). With 

variability from site and sampling date minimized by averaging, differences in 

management history down to a depth of 60cm are consistent with the differences 

found in C and N data in Table 2.1. This confirms an expected relationship, as 

bacterial populations have been found to be strongly shaped by the quantity and 

quality of soil carbon and nitrogen pools (Paul and Clark 1996). 

 

MRPP was used to test significance in the datasets with all sampling dates (Table 2.2) 

and with the June 2007 dataset (Table 2.3). These datasets were also analyzed when 

decomposed into upper and lower 3 depths and at each individual depth. MRPP results 

largely confirm findings of the NMS analyses—that differences in depth and 

management history strongly influence bacterial community structure at the surface 

depths, and that site differences drive structure at lower depths. However NMS 

analyses and their interpretations were much more conservative than the results 

yielded from MRPP. For example, MRPP results in Table 2.2 shows statistically 

significant differences between all four factors when all 6 depths are analyzed 

simultaneously. (These results are based on the same data used to produce the 

ordinations in Figure 2.4.) However, these NMS ordinations show strong trends only 

with depth and sampling date, not with management history or site. This example 

exhibited the most discordance among these two classes of analyses, but with large 

datasets, MRPP often yielded significant differences, particularly in regard to site, that  
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Table 2.2. MRPP analysis of bacterial community differences- June ’06, Oct ’06, June ‘07 
 
 

Dataset 
Section 

Analyzed Enzyme Depth  History  Site  Date 
  A p-value  A p-value  A p-value  A p-value 

All Depths HhaI 0.086 <0.001  0.010 <0.001  0.040 <0.001  0.087 <0.001 
 Sau96 I 0.077 <0.001  0.015 <0.001  0.053 <0.001  0.082 <0.001 

10-40cm HhaI 0.070 <0.001  0.037 <0.001  0.027 0.001  0.110 <0.001 
 Sau96 I 0.059 <0.001  0.038 <0.001  0.049 <0.001  0.113 <0.001 

40-100cm HhaI 0.012 0.021  0.001 0.317  0.093 <0.001  0.091 <0.001 
 Sau96 I 0.016 0.011  0.004 0.137  0.112 <0.001  0.094 <0.001 

10cm HhaI - -  0.106 <0.001  -0.015 0.750  0.125 <0.001 
 Sau96 I - -  0.072 <0.001  0.015 0.254  0.157 <0.001 

20cm HhaI - -  0.037 0.004  0.004 0.384  0.135 <0.001 
 Sau96 I - -  0.058 0.001  0.055 0.024  0.125 <0.001 

40cm HhaI - -  0.016 0.087  0.070 0.008  0.178 <0.001 
 Sau96 I - -  0.019 0.074  0.072 0.009  0.170 <0.001 

60cm HhaI - -  0.001 0.380  0.091 0.002  0.121 <0.001 
 Sau96 I - -  -0.007 0.639  0.188 <0.001  0.103 <0.001 

80cm HhaI - -  -0.008 0.777  0.087 0.001  0.068 0.001 
 Sau96 I - -  0.004 0.285  0.116 0.001  0.091 0.001 

100cm HhaI - -  -0.011 0.882  0.081 0.001  0.106 <0.001 
 Sau96 I - -  -0.005 0.640  0.062 0.007  0.093 <0.001 
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Table 2.3. MRPP analysis of bacterial community differences- June ‘07 
 
 
Dataset 
Section 

Analyzed Enzyme Depth 

 

History 

 

Site* 
  A p-value  A p-value  A p-value 

All Depths HhaI 0.149 <0.001  0.061 <0.001  0.061 <0.001 
 Sau96 I 0.170 <0.001  0.022 0.004  0.034 0.006 

10-40cm HhaI 0.128 <0.001  0.060 <0.001  0.038 0.047 
 Sau96 I 0.155 <0.001  0.059 0.059  0.016 0.226 

40-100cm HhaI -0.007 0.616  0.004 0.304  0.200 <0.001 
 Sau96 I 0.014 0.177  0.008 0.212  0.134 <0.001 

10cm HhaI - -  0.200 0.002  - - 
 Sau96 I - -  0.175 0.002  - - 

20cm HhaI - -  0.099 0.004  - - 
 Sau96 I - -  0.136 0.006  - - 

40cm HhaI - -  0.069 0.048  - - 
 Sau96 I - -  0.082 0.013  - - 

60cm HhaI - -  -0.022 0.737  - - 
 Sau96 I - -  -0.038 0.868  - - 

80cm HhaI - -  -0.056 0.916  - - 
 Sau96 I - -  -0.010 0.609  - - 

100cm HhaI - -  -0.004 0.470  - - 
 Sau96 I - -  0.010 0.342  - - 

* Values for site at individual depths were not determined, as MRPP analysis requires groups to have  
    more than 2 items (wheat vs. grassland). 
 

 

were not supported by NMS ordinations. In these instances, the more conservative 

NMS analyses were given greater weight in overall data interpretation. 

 

In this study, four factors were examined in regard to bacterial community 

composition—sampling date, depth, management history and site—all four of which 

have been shown to alter communities in published literature. Bacterial community 

structure has been shown to change due to sampling date (Feng et al. 2003, Culman et 

al. 2006, Rumberger et al. 2007), management practices and management history 

(Drijber et al. 2000, Hedlund 2002, Feng et al. 2003, Gomez et al. 2004, Acosta-
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Martinez et al. 2007), and differences in site (Hackl et al. 2004, McCulley and Burke 

2004, Ulrich and Becker 2006). Other studies have found no detectable differences in 

that above factors (Mummey and Stahl 2003, Kennedy et al. 2005), suggesting that 

factors driving bacterial community dynamics are dependant on site characteristics 

and the relative strength of the measured environmental gradient/s.  

 

Although rarely explored in most studies, depth has also been shown to dramatically 

affect microbial community structure (Kuske et al. 2002, Feng et al. 2003, Fierer et al. 

2003, Allison et al. 2007a). Deeper soil profiles have been characterized by lower 

abundances of fungi compared to bacteria and higher abundances of actinomycetes 

and Gram-positive bacteria compared to Gram-negative bacteria (Zelles and Bai 1994, 

Feng et al. 2003, Fierer et al. 2003, Allison et al. 2007b). Only a few published studies 

have simultaneously looked at differences in microbial community structure with 

depth and site differences (Fierer et al. 2003) or management histories (Allison et al. 

2007b). These studies have found depth to be a stronger determinate of community 

structure than site or management differences. 

 

To our knowledge, this is the first study that has examined microbial community data 

with four factors simultaneously, making it particularly insightful in regards to factors 

shaping bacterial communities in these systems. All four factors were shown to exhibit 

influence on community structure, although the relative strengths of these factors 

varied. In general, bacterial dynamics in the top 40cm of soil were driven by sampling 

date > depth > management history > site; the lower depths (40 – 100cm) were driven 

by sampling date > site > depth > management history. 
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nifH T-RFLP 

  

T-RFLP analysis was also used to target nif H genes in soil, the functional enzyme 

found in bacteria that fix atmospheric nitrogen into ammonia. A slight modification 

was made for nif T-RFLP analysis, where both the forward and reverse primers were 

labeled with different fluorophores (fluor). (This differs from the more traditional 

approach of just using one labeled-primer set). This was done in an attempt to increase 

resolution and overall information pertaining to the nitrogen-fixing community. T-

RFLP analyses with two different fluorescently-labeled primers have been reported in 

the past with studies that claim this approach increased information and community 

resolution (Nilsson and Strom 2002, Gruter et al. 2006). However these reports failed 

to provide specifics on how their reported results from analyses with dual-labeled 

primer sets differed from results from analyses with just one labeled primer set. 

 

To address such a comparison, nifH T-RFLP datasets were analyzed three separate 

ways: on datasets with the forward FAM-labeled primer only, on datasets with the 

reverse PET-labeled primer only, and on datasets containing both FAM and PET-

labeled primers. These analyses showed that the total number of nifH terminal 

restriction fragments (T-RFs) in a sample (richness) was affected by which primer 

(forward or reverse) contained the fluor (Table 2.4). nifH T-RF richness with PET was 

significantly greater than with FAM, indicating that the region of the nifH gene closest 

to the reverse primer contained overall greater sequence variability (in regard to MspI 

restriction sites) than the region closer to the forward (FAM) primer.  
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Table 2.4. Average nif H T-RF richness with different fluors. 
 
Depth FAM PET 
0 – 10cm 19 33 
10 – 20cm 20 30 
20 – 40cm 16 23 
40 – 60cm 18 26 
60 – 80cm 23 30 
80 – 100cm 17 23 
 
 

Despite differences in nifH T-RF richness, NMS analyses of datasets with the three 

possible fluor combinations produced largely similar ordinations, indicating that nifH 

community structure was not greatly affected by fluor-primer selection. Although 

overall interpretations did not change between the fluor combinations, NMS analyses 

on FAM datasets were generally the most inconsistent in regard to known 

experimental factors. PET datasets were generally the most consistent and datasets 

with both fluors together were intermediate (data not shown). These empirical findings 

are supported by the distribution of variance within these datasets. Table 2.5 shows 

results from analysis of variance with PET having the highest relative contribution of 

variance from interaction signal and the highest interaction signal: noise ratio. FAM 

had the lowest interaction signal and signal: noise ratio and FAM + PET was 

intermediate. In this study, using dual fluorescently-labeled primers with nifH T-RFLP 

proved to be no more discriminatory than using a single fluor, although the selection 

of the labeled primer (forward/reverse) made a small, but insignificant difference. As a 

result of these findings, ordinations of nifH T-RFLP data reported here are with the 

PET fluor only. 
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Table 2.5. Distribution of variance in nif dataset with different fluors. 
 
Source of Variance FAM PET FAM + PET 
 ------------------%---------------- 
Main Effects    
     T-RFs 73.5 68.5 71.0 
     Environments 0.9 1.2 0.9 
Interaction Effects    
     Interaction Signal 3.8 5.3 4.7 
     Interaction Noise 21.8 25.0 23.4 
 
 

Differences in nifH T-RF richness between annual wheat and perennial grasslands 

were not found in any of the fluor combinations (Table 2.6). The only significant 

factor was that nifH T-RF richness was significantly affected by depth (p = 0.046) in 

the PET dataset. However, despite a lack of difference in T-RF richness between 

management histories, community structure between management histories was 

significantly different.  

 
 
Table 2.6. Average nifH T-RF richness with different fluors and management 
histories. 

  

 
Annual Wheat Perennial Grassland 

Depth FAM PET FAM PET 
0 – 10cm 18 30 20 35 
10 – 20cm 19 27 21 31 
20 – 40cm 19 24 14 23 
40 – 60cm 18 24 19 27 
60 – 80cm 24 31 21 29 
80 – 100cm 15 19 18 26 

 

Figure 2.12 shows NMS analysis of nifH T-RFLP at all depths, indicating trends in all 

three factors—depth, management history and site. Of these factors, management 



 

 39

history appears to be the most influential in driving nifH community structure (Figure 

2.12b). Unlike general bacterial community structure (Figure 2.7a), differences in 

depth with nifH (Figure 2.12a) were not consistent, suggesting that depth plays a lesser 

role in shaping these communities. Site differences with nifH communities (Figure 

2.12c) were also more consistent than in general bacterial communities (Figure 2.7c), 

indicating the relative importance of site (e.g., pH, soil texture, nutrient pools, biotic 

interactions) in driving nifH community structure.  

 

Decomposing the nifH dataset into upper and lower depths reveals that differences 

between perennial grasslands and annual wheat are the dominant driver in nitrogen-

fixing bacterial community structure in the upper depths (Figure 2.13a). Site 

differences also influence nifH community structure, but become more significant in 

lower depths (NMS data not shown, MRPP data in Table 2.7). Depth has no 

significant effect on community structure in the top 40cm (Figure 2.13, Table 2.7) or 

in the lower depths (Table 2.7) when the dataset is decomposed. Instead, differences 

between management history and site are the primary drivers in this ecologically 

important functional gene. 

 

Finally, site variation was minimized by averaging over site, which enabled an 

analysis focused on depth and management history. The results confirmed earlier 

findings—that management history shapes nitrogen fixing community structure in the 

surface depths only and that depth plays a lesser role in nifH community structure than 

with bacterial community structure (Figure 2.14).  
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Figure 2.12. NMS analysis of the June 2007 nifH T-RFLP dataset. The three 
panels display the same data represented by three experimental factors: depth 
(a), management history (b), and site (c). Figure 2.3 contains the symbol legend. 
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Figure 2.13. NMS analysis of the surface 3 depths of June 2007 nifH T-RFLP 
dataset. The top panel (a) shows differences in management history and the 
bottom panel (b) shows differences in site. 1 = 0 – 10cm; 2 = 10 – 20cm; 4 = 20 – 
40cm. Figure 2.3 contains the symbol legend. 
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Table 2.7 MRPP analysis of nitrogen-fixing bacterial differences-  June ’07 (G) 
 

Dataset Section 
Analyzed Depth 

 
Treatment 

 
Site 

 A p-value  A p-value  A p-value 
All Depths 0.022 0.019  0.014 0.006  0.062 <0.001 
10-40cm 0.014 0.120  0.038 <0.001  0.062 0.001 
40-100cm 0.008 0.252  0.008 0.184  0.121 <0.001 

10cm - -  0.058 0.015  - - 
20cm - -  0.066 0.031  - - 
40cm - -  -0.021 0.749  - - 
60cm - -  -0.029 0.746  - - 
80cm - -  -0.051 1.000  - - 
100cm - -  0.006 0.353  - - 

 
 
 

 

 

Unfortunately, the main factors that drive nifH gene diversity have yet to be identified 

(Zehr et al. 2003) and reports on free-living N2 fixing communities in grasslands are 

few. Patra et al. (Patra et al. 2006) found that intensity of grazing, not plant species, 

affected N2 fixing communities in unfertilized grasslands. In another study, intensive 

grazing increased N-related microbial enzyme activity and altered the composition of 

these groups (N2 fixing, nitrate-reducing and ammonium oxidizing bacteria), 

demonstrating that differences in management can affect functional gene diversity 

(Patra et al. 2005). 
 

The implications of altered nifH gene structure on rates of N fixation are unclear, but 

free-living and associative N fixation could alleviate N-limitation on non-fertilized 

agroecosystems (Patra et al. 2007). Various studies have reported associative N 

fixation with the same temperate C4 grass species found in our study (Tjepkema and 

Burris 1976, Morris et al. 1985, Brejda et al. 1994); however, robust N fixation rates  
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Figure 2.14. NMS analyses of the nifH T-RFLP dataset averaged by site showing 
differences between annual wheat fields (open triangles) and perennial 
grasslands (closed triangles). Top panel (a) shows analysis with all depths (0 – 
100cm); bottom panel (b) shows analysis with top 4 depths (0 – 60cm). 1 = 0 – 
10cm; 2 = 10 – 20cm; 4 = 20 – 40cm; 6 = 40 – 60cm; 8 = 60 – 80cm; 10 = 80 – 
100cm. 
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of these grasses has yet to be quantified. Future work on linking nifH gene diversity 

with N fixation potential is warranted in these systems. 

 

The influence of three factors—depth, management history and site—on free-living 

nitrogen fixing bacteria was simultaneously examined. The relative influences on 

these communities mostly mirrored the findings with general bacterial community 

structure. However the influence of depth was the major exception, it played only a 

minor role, relative to management history and site differences. Again, these data to 

our knowledge are unique in regard to insight into the effects of multiple factors in 

shaping nitrogen fixing bacterial communities. In general, nitrogen fixing bacterial 

dynamics in the top 40cm of soil were driven by management history > site > depth; 

the lower depths (40 – 100cm) were driven by site > management history > depth. 

 

There were multiple differences between each treatment at every factor in this study’s 

experimental design. For example, salient differences in management histories 

between annual wheat and perennial grasslands include differences in plant species, 

plant diversity, rooting architecture, tillage, and nitrogen fertilization. Examples of the 

treatment differences in the other factors include: sampling date (temperature, 

precipitation, crop phenology), depth (pH, soil texture, soil moisture, nutrient status), 

and site (microclimate patterns, soil properties). As a result, making a direct causal 

link with changes in microbial communities between these two systems is not possible 

here. Instead, this study represents the first step in elucidating differences in soil 

biology between these two different agricultural systems.  

 

Collaborative work on nematode communities by Tianna DuPont and Howard Ferris 

at UC Davis have shown equal or greater differences in nematodes communities 
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relative to bacterial communities with respect to our experimental factors. In addition, 

their data suggest that perennial grasslands exhibit greater fungal decomposition 

pathways, fewer plant parasitic nematodes, and greater food web complexity and 

stability than found in annual wheat fields (S.T. DuPont, unpub. M.S. thesis, UC 

Davis, 2008).  

 

Conclusions 

 

A model agroecosystem would provide sufficient nutrient cycling to meet plant 

demands, while exhibiting the greater stability commonly found in natural ecosystems. 

This stability can be defined through essential ecosystem functions, such as 

conservation of soil fertility, tighter mineral cycling and effective pest management. 

Long-term yield data and current soil properties suggest these prairies are more 

capable of meeting plant nutrient demand and exhibiting greater stability than 

cultivated annual wheat. The soil biological data presented here show large differences 

in bacterial (and nematode) community structure and abundance, which suggest 

fundamental differences in belowground processes between prairies and wheat sites. 

These differences have likely contributed to the increased nutrient removal and energy 

efficiencies, and enhanced soil fertility found in the prairie ecosystems. Future work 

will be needed to tease apart these factors in order to determine the causal 

relationships and characteristics which are most important in driving these 

efficiencies. 
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CHAPTER 3 

SOIL BACTERIAL AND FREE-LIVING DIAZOTROPHIC COMMUNTY 

DYNAMICS FOLLOWING THE CONVERSION OF NATIVE TALLGRASS 

PRAIRIE TO ANNUAL WHEAT IN KANSAS2 

 

Introduction 

 

Approximately 50% of the world’s surface area has been converted to grazed land or 

cultivated crops resulting in large losses in soil fertility and dramatic shifts in flora and 

fauna and the ecosystem services they provide (MEA 2006).  Of current world 

cropland, annual-tilled, monocultures produce more than 70% of our food and fiber 

needs. However, intensive production of annual-tilled crops severely impacts soil 

fertility, water quality, biodiversity and ecosystem function (McLaughlin and Mineau 

1995, Tilman 1999, Turner and Rabalais 2003, Roberts et al. 2007).  In particular 

severe losses of soil organic matter (SOM) up to 2 Mg ha-1 yr-1 in US croplands 

threaten water retention, nutrient availability and yield potential (Johnston 1976, 

Lucas et al. 1977, Pimentel et al. 1995).  

 

Organic matter is a dynamic property of soils. The balance between plant production 

and microbial oxidation largely determines soil organic matter (SOM) and soil organic 

carbon (SOC) status and accumulation in soils. Plant- and animal-derived C feeds a 

diverse complex of soil biota collectively known as the soil food web. When organic 

material is added, soil food webs are more active and perform important functions and 

services such as the production of polysaccharides and non-humic compounds that 

form aggregates binding SOM and increase soil porosity, and mineralization of 

                                                 
2 Data from this chapter will be submitted to Ecological Applications. 
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nutrients to plant-available forms (Paul and Clark 1996). SOC may accumulate more 

readily when higher trophic level soil organisms are abundant due to greater C 

conserved in biomass, gradual transformation to more recalcitrant forms of C, and 

protection in smaller aggregate size fractions (Fu et al. 2000). 

 

Aside from the artificial drainage of wetlands, the management practices that most 

critically affect SOC accumulation and cycling are tillage and cropping (Davidson and 

Ackerman 2006). SOC declines rapidly after virgin soil is cultivated; soils lose 20–

40% of soil carbon over the first few decades of agricultural use (Mann 1986, 

Davidson and Ackerman 2006). Tillage breaks up organic residue and aerates the soil 

making SOM more accessible to microbial oxidation and destroys macro-aggregates 

that physically protect labile C (Reicosky et al. 1997).  

 

Conversion of cropping systems from conventional-till to no-till cropping is generally 

thought to build SOC. In a global analysis of 67 long-term agricultural experiments, 

West and Post found an average increase of 57 g C m-2 yr-1 after conversion to no-till 

(2002). However, a recent review has challenged some of the results of this study as 

biased by shallow sampling methods typical of most studies today (Baker et al. 2007). 

Of the 140 comparisons made in the West and Post analysis, none sampled below 

30cm. In another large analysis of no-till practices on SOC in Canada, changes in SOC 

results were largely contingent on the sampling depth (VandenBygaart et al. 2003). In 

studies that sampled to 30 cm or less, 37 of 45 no-till treatments found more SOC in 

the no-till treatments than in conventional till, with a mean annual SOC gain of 0.38 ± 

0.72 t ha-1 year-1. However, in studies that sampled below 30cm, 35 out of 51 trials 

reported less SOC in no-till than in conventional till, with a mean annual SOC loss of  

-0.23 ± 0.97 t ha-1 year-1 (VandenBygaart et al. 2003). 
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Baker et al. proposed that the differences observed regarding depth could result from a 

changed soil environment and subsequent change in plant growth. No-till soil has been 

shown to have lower soil temperatures (Johnson and Lowery 1985, Drury et al. 2005, 

Fabrizzi et al. 2005) and increase bulk densities and penetration resistance (Larney and 

Kladivko 1989, Vyn and Raimbault 1993, Fabrizzi et al. 2005) relative to conventional 

till. These differences likely impact plant growth, as both wheat (Qin et al. 2004) and 

maize (Qin et al. 2005) show differences in root length density under no-till systems. 

Under no-till, greater root densities were found in the upper 5cm, while lower root 

densities were found in the lower soil profiles compared with systems that were 

conventionally tilled (Qin et al. 2004, 2005).  

 

Since soils have lost a significant amount of C since tillage began, it is logical to think 

that ceasing or reducing tillage will lead to SOC accrual. However, Baker et al. (2007) 

suggest that a re-examination of these findings may be appropriate as no-till 

agriculture may only change the distribution of SOC in the soil profile. Baker et al. 

(2007) suggest two other major factors that have likely lead to major losses in SOC: i) 

the agricultural conversion of native perennial plant communities to primarily annual 

crops and ii) the increased rate of SOC oxidation, due to more soil drainage, increased 

aeration and application of mineral N fertilizer. 

 

A recent study by Fornara and Tilman (2008) may shed light regarding changes in 

plant community composition from perennials to annuals. In a 12-year-long 

experiment on agriculturally degraded soil, the authors found that 500% more soil C 

and 600% more soil N accrued under high diversity mixtures of perennial grasslands 

than under monoculture plots of those same species. The higher levels of soil C and N 
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resulted from increases in soil C and N inputs due to greater root biomass and greater 

root biomass accumulation. Their results also suggested that the joint presence of a C4 

grass and a legume species was a key driver of soil C and N accrual in both high and 

low diversity plots (Fornara and Tilman 2008). These results suggest that plant 

community composition can have major impacts of SOC storage and accrual/ loss. 

 

This study was conducted to examine the relationship of SOC changes from perennial 

grasslands to annual wheat. Grasslands generally maintain high levels of SOM and 

associated soil food web functioning relative to agricultural fields (Gebhart et al. 1994, 

Potter et al. 1999).  Recent work by Glover el al. (unpublished) demonstrates that 

perennial grasslands not only maintain soil quality and ecosystem function but can 

also maintain yield efficiencies comparable to those of annual wheat, and thus seem to 

balance a supposed tradeoff between productivity and environmental benefits. 

Comparison of long-term (75 years or more) annual wheat and prairie sites showed 

that perennial fields yielded comparable amounts of protein and nitrogen as high input 

wheat fields, while maintaining soil quality, and supporting diverse above and 

belowground communities associated with nutrient cycling, pollination and pest 

suppression. Chapter 2 demonstrated that these increased efficiencies are related to 

differences in soil biological communities and hypothesized that differences were 

driven by belowground inputs. 

 

The overall objective of this study was to determine which aspects of current 

agricultural systems lead to degradation of soil fertility and lower yield efficiencies 

compared to perennial grasslands. We questioned whether differences in SOM and 

associated soil food webs between perennial grasslands and annual crops found by 

Glover et al. (unpublished) were due to obsolete farming practices, effects of 
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differences in plant community composition on SOC, or both?  This chapter 

specifically deals with the effects of conversion on the soil bacterial communities. The 

specific objectives are i) to determine if conversion from perennial grassland to annual 

cropping significantly affects bacterial community abundance and structure and ii) to 

examine if this conversion affects free-living nitrogen-fixing bacterial structure in 

these systems. 

 

Materials and Methods 

 

Site Description and Soil Sampling. The field site was located in Niles, in Ottawa 

County, Kansas (N’ 38.58.145, W’ 97.28.616). In 2004, three research blocks 20m x 

20 m were established in a section of native tallgrass prairie. Each research block was 

divided in half and two treatments (prairie meadow or no-till annual cropping) were 

randomly assigned to each 10 m x 20 m long plot (Figure 3.1). Prior to this 

experiment, the prairie had undergone relatively consistent management for 75 years 

or more—hayed once annually in June/July with the hay removed offsite and fed to 

livestock. The prairie has never received fertilization, but has been burned 

periodically. In the fall of 2004, no-till annual cropping plots received 2 applications 

of glyphosate and in 2005 were planted into soybean. The annual plots were planted 

into sorghum in 2006 and in wheat in 2007. Prairie management has remained 

consistent to pre-experiment practices. Annual wheat field management followed 

typical practices for the region (KSUAES 1996, 1997). 

 

This study’s experimental design consisted of four factors: sampling date, depth, 

treatment and block. Specifically, there were 7 sampling dates, 6 depths, 2 treatments 

and 3 blocks sampled, totaling 252 samples. Our research objectives led us to focus  
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Figure 3.1. Field map of Niles conversion study site.  
 

 

mainly on the differences between treatment (prairie vs. annual wheat), but also how 

these differences change with depth. Differences detected between sampling date and 

block were of limited interest here. In the regional study (Chapter 2) we assume that 

75 years or more of consistent management have allowed these systems to reach near 

equilibrium. However, since conversion of prairie to annual wheat has occurred within 

the last three years, we assume that many belowground properties will be rapidly 

changing. Our sampling scheme was intended to be frequent enough to monitor these 

changes when they become detectable. Unlike the regional study, the component of 

time in this study does more than conceptually represent a confirmation of previous 

findings; each additional sampling period represents a greater divergence between 

these two systems. We expected that each sampling had a greater chance of observing 

detectable differences between the two systems than the previous samplings.  

 

Soils were sampled seven total times: i) May 5, 2005, ii) June 2, 2005, iii) October 8, 

2005, iv) April 27, 2006, v) June 20, 2006, vi) October 6, 2006, and iii) June 20, 2007. 

Four centimeter diameter cores were taken to a depth of one meter from each plot and 
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separated into sections by depth: 0 – 10 cm, 10 – 20 cm, 20 – 40 cm, 40 – 60 cm, 60 – 

80 cm, 80 – 100 cm. Samples from each depth were bulked and mixed until 

homogeneous. Soils were then frozen at – 20°C for molecular analyses or stored at 

4ºC for all other analyses. 

 

Soil Properties. Soil properties were analyzed both at The Land Institute (TLI) and at 

the Soil Testing Laboratory at Kansas State University (KSU). Analyses at TLI 

included: pH (Robertson et al. 1999), bulk density by oven drying at 105ºC, percent 

clay by the hydrometer method (Elliott et al. 1999), water stable aggregates (WSA) by 

wet-sieving (Seybold and Herrick 2001), and readily oxidizable carbon (ROC) (Weil 

et al. 2003). Analyses at KSU included SOM by the Walkley-Black procedure, soil 

organic carbon (SOC) and total N by dry combustion on a LECO CN 2000 

combustion analyzer, total P by a modified Kjeldahl digestion and total K by flame 

atomic absorption. Further details on analyses performed at KSU can be found at 

MEAS (1998).  

 

Microbial Biomass. Microbial biomass carbon (MBC) was measured with the 

simultaneous chloroform fumigation extraction (sCFE) method (Fierer and Schimel 

2003). Briefly, 10g of soil from each sample were weighed into two, 70ml glass vials, 

one labeled ‘fumigated’, the other ‘non-fumigated’. Forty ml  of 0.05M K2SO4 were 

added to both vials and the fumigated vial received 0.5 ml of EtOH-free CH3Cl. 

Blanks (both fumigated and non-fumigated vials without soil) were also prepared. 

Vials were sealed and shaken at 150 rpm for 4 h. Extracts were centrifuged for 15 

minutes at 1500 rpm and the supernatant was vacuum filtered through 0.45 µm 

Watman filter paper. Microbial biomass extracts were bubbled for 30 minutes with air 

to remove any residual CH3Cl and stored at – 20 °C until analysis. Dissolved organic 
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carbon (DOC) and the natural abundance 13C values of DOC were determined using 

an O.I. Analytical Model 1010 TOC Analyzer (OI Analytical, College Station, TX) 

interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd., 

Cheshire, UK) at the University of California Davis Stable Isotope Facility. 

 

MBC was calculated as the difference between fumigated and non-fumigated (control) 

samples divided by a KEC-factor of 0.35 (Sparling et al. 1990). Analyzed blank 

samples contained no to extremely small amounts of C, so no correction was made for 

this insignificant analytical artifact. Isotope ratio mass spectrometry was also used to 

determine δ 13C values of the microbial biomass. However, repeated problems in 

instrumentation at the UC Davis Stable Isotope Facility rendered these data non-

meaningful. Since the extractant was completely used in the first run, re-analysis of 

the sample was not possible. Therefore, δ 13C data of microbial biomass are not 

included here.  

 

Molecular Analyses (PCR and T-RFLP) 

16S rRNA gene. Soil DNA was extracted from 0.25 g soil per sample using the 

MoBio PowerSoil™ DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, CA). 

DNA extracts were quantified and diluted with nuclease-free water to 2 ng µl-1. DNA 

was then amplified by polymerase chain reaction (PCR) using the fluorescently-

labeled forward primer 27f (5′-[6FAM] AGA GTT TGA TCM TGG CTC AG-3′) and 

the unlabeled reverse primer 1492r (5′-TAC GGY TAC CTT GTT ACG ACT T-3′) 

(Invitrogen, Carlsbad, CA). These primers target the eubacterial 16S rDNA genes in 

the extracted soil DNA and the amplification results in products of approximately 

1500 bp. Three, 50 µl reactions of each sample were amplified using a PTC 200 

thermal cycler (MJ Research, Waltham, MA) as follows: initial denaturation at 95°C 
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for 5 min; 27 cycles of denaturation at 95°C for 45 s, annealing at 56°C for 45 s, and 

extension at 72°C for 1 min; and a final extension step at 72°C for 10 min. Reaction 

concentrations were: 0.05 U µl-1 AmpliTaq Gold® DNA polymerase (Applied 

Biosystems, Foster City, CA), 1x PCR buffer, and 2.0 mM MgCl2, 0.2 mM deoxy-

nucleotide triphosphates (dNTPs), 0.1 µg µl-1 bovine serum albumin (BSA), both 

primers at 0.1 µM, nuclease free water, and 5 µl of DNA template (10 ng reaction-1). 

Amplified DNA products were verified by electrophoresis on a 1.0% agarose gel. 

 

Following PCR, amplified DNA (three 50 µl reactions per sample) was pooled and 

quantified. DNA concentrations were adjusted to 30 ng µl-1. Two, 30 µl restriction 

enzyme digests were prepared per sample using HhaI and Sau96 I restriction enzymes 

(New England Biolabs, Ipswich, MA). Reaction concentrations were: 5 U enzyme 

(either HhaI or Sau96 I), 1x of the respective buffer, 0.1 µg µl-1 BSA, nuclease-free 

water, and 15 µl of amplified DNA (450 ng reaction-1). Restriction digestion was 

carried out in a MJ Research PTC 200 thermal cycler at 37°C for 4.5 h with a final 

step of 70°C for 15 min to stop the reaction. Complete digestion of the DNA was 

verified by electrophoresis on a 1.5% agarose gel. 

 

Digested DNA was purified using a PERFORMA® DTR Edge Plate (Edge 

BioSystems, Gaithersburg, MD) and lyophilized. DNA was resuspended in a 10 µl 

mix containing 9.85 µl of formamide and 0.15 µl of LIZ 500 size standard (Applied 

Biosystems). Terminal fragment-size analysis was performed using a 3730 ABI 

electrophoretic capillary sequencer in conjunction with the Genemapper Software 

(Applied Biosystems) at Cornell University’s Biotechnology Resource Center, Ithaca, 

NY.   
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nifH. T-RFLP analyses were also performed to characterize free-living diazotrophic 

populations in soils. The methods used were as described above, with the following 

changes. Soil DNA extracts were amplified by PCR using the fluorescently-labeled 

forward primer nifH-b1-112F (5′-[PET] GGC TGC GAT CCC AAG GCT GA-3′) 

(Applied Biosystems) and the fluorescently-labeled reverse primer CDHP Nif723R 

(5′-[6FAM] GAT GTT CGC GCG GCA CGA ADT RNA TSA-3′) (Invitrogen). These 

primers target nifH, the structural gene for nitrogenase reductase, in the extracted soil 

DNA and the amplification results in products of approximately 700 bp. Three, 50 µl 

reactions of each sample were amplified as follows: initial denaturation at 95°C for 10 

min; 35 cycles of denaturation at 95°C for 30 s, annealing at 61°C for 30 s, and 

extension at 72°C for 45 s; and a final extension step at 72°C for 10 min. Reaction 

concentrations were: 0.05 U µl-1 AmpliTaq Gold® DNA polymerase, 1x PCR buffer, 

and 2.5 mM MgCl2, 0.8 mM dNTPs, 0.5 µg µl-1 BSA, both primers at 0.25 µM, 

nuclease free water and 50 ng DNA template reaction-1. Amplified DNA was digested 

with the restriction enzyme MspI (New England Biolabs) in the following reaction 

concentrations: 5 U enzyme, 1x of supplied buffer, 0.1 µg µl-1 BSA, nuclease-free 

water and 450 ng DNA reaction-1. 

 

Statistical Analyses. Analysis of Variance was performed on the soil nutrient data and 

microbial biomass data using PROC MIXED procedure in SAS v.9 (Cary, NC). Depth 

and treatment were treated as fixed effects and block as a random effect. All soil 

variables were measured at the June 2007 sampling with significance differences 

determined at α = 0.05 level of probability. All soil data were converted into mass per 

hectare, in order to account for differences in soil volume and bulk density. Least 

squared means are reported for all soils data. 
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The T-RFLP data analyzed in this study were uncommonly complex in regard to 

number of underlying environmental gradients (sampling date, depth, treatment, and 

block), sample heterogeneity and percent variation from interaction signal. As a result 

of this complexity, nonmetric multidimensional scaling (NMS) analyses with 

Sørensen distance measure were used to analyze all T-RFLP data. (See Chapter 5 for 

further discussion selecting an appropriate ordination analysis for T-RFLP.) NMS 

analyses were performed in PC-ORD v.5 (MjM Software Design, Gleneden Beach, 

OR) with 2 axes selected, 50 runs with real data, 0.0001 stability criterion, 50 

iterations to evaluate stability. 

 

Multiple-response Permutations Procedures (MRPP) was also employed to test 

significance among the experimental factors within the datasets (Mielke 1984, 

McCune and Grace 2002). The test relies on calculating the average distance within 

each group and then calculating the probability that this weighted mean within group 

distance is greater than expected by chance. This creates a p-value and an agreement 

statistic (A). The p-value determines if the specified experimental factor has 

significantly affected community structure, while the A describes within-group 

homogeneity and is independent of sampling size. When all items within each group 

are identical, A = 1; if the items within each group equals what is expected by chance, 

A = 0. Negative A values result from cases with less agreement between groups than 

is expected by chance (Mielke 1984, McCune and Grace 2002).  

 

Results and Discussion 

 

Soil Properties. Key soil properties for the top 40 cm of soil from the field site are 

found in Table 3.1. Three years after conversion from prairie, most of soil properties 
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show no detectable differences between the background prairie and annual, no-till 

plots. However, ROC, a very labile pool of soil carbon, declined under no-till annual 

agriculture. Soil sampling prior to agricultural conversion showed no differences in 

any measured soil properties between outlined plots (data not shown), therefore 

reductions in ROC were due to the imposed treatments—likely resulting from reduced 

inputs from the crop roots relative to their perennial counterparts, greater SOC 

oxidation, or both. Globally, temperate grasslands average greater than 9 times the 

root biomass of croplands with 37 times greater root/shoot ratio (Jackson et al. 1996). 

This increased biomass may result in greater C inputs via root turnover and 

rhizodeposition. However, in a recent review of long-term yield trials, Khan et al. 

(2007) argued that a long-term fertilization with mineral N results in net SOC loss. 

Newly converted annual plots were fertilized with mineral N, also likely increasing 

SOC loss via increased microbial SOC oxidation. 

 

 

 
Table 3.1. Soil properties to 40 cm depth, 3 years after no-till conversion of 
prairie to annual wheat 
 

  No Till Prairie Meadow 
 Mean Std Dev Mean Std Dev 
SOM (%) 12.10 0.51 12.37 0.27 
Total N (%) 0.62 0.00 0.62 0.01 
SOC (%) 7.04 0.12 7.27 0.17 
ROC (%)* 2.02 0.03 2.12 0.04 
BD (Mg m-3) 3.7 0.15 3.72 0.20 
WSA 2.63 0.03 2.61 0.05 

* Only significant differences detected were with ROC at α = 0.05; SOM = soil organic matter; SOC = soil organic  
    carbon; ROC = readily-oxidizable carbon; WSA = water stable aggregates; BD = bulk density. 
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Microbial Biomass. Prairie plots exhibited significantly greater amounts of microbial 

biomass carbon (MBC) than annual wheat fields at the first three depths (Figure 3.2). 

However, below 40 cm, there were no detectable differences in MBC. Surface MBC 

in grassland soils are typically at least twice as great as in the surface of cultivated 

fields (Jenkinson and Powlson 1976, Lynch and Panting 1980b, a, Schimel et al. 1985, 

Acosta-Martinez et al. 2007). But all of these measurements involved studies where 

agricultural fields had been converted via tillage. To our knowledge, this is the first 

study to convert native prairie into an annual agricultural crop, without the use of 

tillage. Controlling for the often compounding effects of tillage has enabled this study 

to examine the effects of plant community on soil carbon status and microbial 

dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2. Relationship of microbial biomass carbon (MBC) to depth in prairie 
plots (closed circles) and annual wheat plots (open circles). Significant differences 
were detected in the top three depths. 
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Microbial biomass has been shown to be strongly correlated with root biomass, and 

has been used as a measure of belowground resource availability (Wardle 1992, 

Paterson 2003, Waldrop et al. 2006), an indirect measurement of belowground inputs 

from plants via root exudation and rhizodeposition. The reduction of MBC in the 

surface depths likely resulted, in part, from the change in rooting structure and activity 

in the plant community. Reduction of MBC in the annual wheat plots could also be 

attributed to the decrease in diversity, as decreased plant diversity has been shown to 

decrease microbial biomass (Zak et al. 2003, Waldrop et al. 2006). In addition, MBC 

is known to fluctuate seasonally (Wardle 1992, Steenwerth et al. 2006). More 

measurements over the growing season would be needed to make this assessment 

more robust. Additional measurements of microbial biomass with δ 13C values would 

potentially be insightful into SOC dynamics of these systems.  

 

16S rRNA gene T-RFLP. Terminal restriction fragment length polymorphism (T-

RFLP) analysis of the complete dataset (all sampling dates) revealed sampling date 

and depth to be the two largest drivers in general bacterial structure (Figure 3.4, Table 

3.2). The largest difference observed was between the June 2007 and the samplings 

from the 2005 and 2006 years (Figure 3.4a). Depth also appears to be a large driver of 

structure, as fairly consistent separation based on depth profiles can be observed along 

the second axis (Figure 3.4b). Differences between treatments were not observed when 

the entire dataset was analyzed (Figure 3.4c, Table 3.2). Like with the regional study 

(Chapter 2), differences in block were not visually apparent with NMS analysis 

(Figure 3.4d), but were statistically significant with MRPP (Table 3.2). The influence 

of block as a driver of community structure was stronger at lower depths, but was 

insignificant in the surface depths (Table 3.2). These trends are consistent with 

findings in the regional study. 
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Figure 3.3. Legend of symbols used to depict T-RFLP samples in NMS analyses. 
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Figure 3.4. NMS analysis of complete bacterial T-RFLP dataset (May 2005 – June 2007). The four panels display the same 
data represented by the four experimental factors: sampling date (a), depth (b), treatment (c), and block (d). Figure 3.3 
contains the symbol legend.
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Table 3.2. MRPP analysis of bacterial community differences- all sampling dates (May 2005 – June 2007) 
 
 

Dataset 
Section 

Analyzed Enzyme Depth  Treatment  Block  Date 
  A p-value  A p-value  A p-value  A p-value 

All Depths HhaI 0.151 <0.001  -0.001 0.932  0.010 <0.001  0.134 <0.001 
 Sau96 I 0.135 <0.001  -0.002 1.000  0.009 0.001  0.172 <0.001 

10-40cm HhaI 0.087 <0.001  -0.004 1.000  0.002 0.233  0.232 <0.001 
 Sau96 I 0.090 <0.001  -0.005 1.000  0.002 0.240  0.238 <0.001 

40-100cm HhaI 0.052 <0.001  0.000 0.480  0.032 <0.001  0.188 <0.001 
 Sau96 I 0.042 <0.001  -0.003 0.845  0.025 <0.001  0.238 <0.001 

10cm HhaI - -  -0.010 0.977  -0.002 0.510  0.361 <0.001 
 Sau96 I - -  -0.010 0.960  -0.002 0.491  0.359 <0.001 

20cm HhaI - -  -0.017 1.000  -0.004 0.534  0.359 <0.001 
 Sau96 I - -  -0.016 1.000  0.006 0.294  0.357 <0.001 

40cm HhaI - -  -0.012 1.000  0.018 0.085  0.325 <0.001 
 Sau96 I - -  -0.013 1.000  0.011 0.185  0.337 <0.001 

60cm HhaI - -  -0.002 0.544  0.049 0.001  0.230 <0.001 
 Sau96 I - -  -0.008 0.871  0.036 0.013  0.289 <0.001 

80cm HhaI - -  -0.004 0.651  0.050 <0.001  0.229 <0.001 
 Sau96 I - -  -0.010 0.944  0.025 0.052  0.284 <0.001 

100cm HhaI - -  -0.005 0.678  0.025 0.041  0.213 <0.001 
 Sau96 I - -  -0.012 0.978  0.025 0.059  0.301 <0.001 
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Since differences between treatments were of primary interest here, controlling for, or 

eliminating variation from sampling date, depth and/or block was performed in an 

attempt to reveal more subtle patterns pertaining to treatment. Analyzing the 2005 T-

RFLP dataset revealed consistent groupings of bacterial communities only by depth 

(Figure 3.5), but showed no signs of treatment effects (data not shown). Depth was 

controlled by decomposing the dataset into the top 3 depths (0 – 40cm) and the bottom 

3 depths (40 – 100cm), as well as analyzing each depth individually. These approaches 

were no more discriminatory, as detectable shifts in bacterial community structure  

 

 

 
Figure 3.5. NMS analyses of the 2005 sampling year.  Each data point represents 
the average of the 3 blocks. Figure 3.3 contains the symbol legend. 
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based on treatment were not found in the first year (data not shown). Similar analyses 

were performed on the 2006 datasets and yielded similar results—depth was a strong 

driver in bacterial community structure, but treatment differences were not detectable 

(data not shown). 

 

The lack of detectable treatment differences in the first two years of sampling directed 

the focus to the June 2007 sampling date, as it represented the largest divergence 

between the annual agricultural system and the native grassland in regard to time. 

Analysis of the entire June 2007 sampling time revealed similar patterns to analyses of 

earlier datasets—bacterial communities were significantly affected by depth, but not 

by treatment or block (Figure 3.6, Table 3.3). Dataset variation due to depth was 

minimized by decomposing the June 2007 data matrix into the surface three depths 

(Figure 3.7), three bottom depths (Figure 3.8), and into individual depths (NMS 

analyses not shown). These approaches failed to produce ordinations that resulted in 

consistent treatment differences between prairie grasslands and no-till wheat. Despite 

the lack of treatment differences, the effects of block were observed at the lower 

depths (with HhaI at 40 – 100cm in Table 3.3, and suggestive in Figures 3.6 and 3.8). 

In particular, block 3 (represented by blue crosses) in Figures 3.6 and 3.8 

demonstrated unique grouping patterns from blocks 1 and 2. These groupings reflected 

physical distances in the site, as block 3 was furthest in the field from both blocks 1 

and 2. This finding demonstrates that although soil textural properties did not vary 

between the three blocks, other factors leading to field site heterogeneity were large 

enough to alter these communities. 
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Figure 3.6. NMS analysis of the June 2007 bacterial T-RFLP dataset. The three 
panels display the same data represented by three experimental factors: depth 
(a), treatment (b), and block (c). Figure 3.3 contains the symbol legend. 
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Table 3.3. MRPP analysis of bacterial community differences- June ’07. 
 
 
Dataset 
Section 

Analyzed Enzyme Depth 

 

Treatment 

 

Block* 
  A p-value  A p-value  A p-value 

All Depths HhaI 0.328 <0.001  -0.009 0.793  -0.006 0.576 
 Sau96 I 0.353 <0.001  -0.005 0.542  -0.016 0.832 

10-40cm HhaI 0.290 <0.001  -0.031 1.000  0.003 0.391 
 Sau96 I 0.364 <0.001  -0.025 0.925  -0.029 0.755 

40-100cm HhaI 0.097 0.017  0.015 0.210  0.055 0.081 
 Sau96 I 0.070 0.029  0.045 0.040  -0.012 0.593 

10cm HhaI - -  0.001 0.432  - - 
 Sau96 I - -  -0.056 0.818  - - 

20cm HhaI - -  -0.077 0.844  - - 
 Sau96 I - -  0.007 0.460  - - 

40cm HhaI - -  0.005 0.425  - - 
 Sau96 I - -  0.085 0.061  - - 

60cm HhaI - -  0.048 0.255  - - 
 Sau96 I - -  -0.002 0.467  - - 

80cm HhaI - -  ND ND  - - 
 Sau96 I - -  ND ND  - - 

100cm HhaI - -  -0.072 0.954  - - 
 Sau96 I - -  -0.021 0.658  - - 

* Values for block at individual depths were not determined, as MRPP analysis requires groups to have  
    more than 2 items (wheat vs. prairie). ND = no data. 
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Figure 3.7. NMS analysis of the surface three depths of the June 2007 bacterial T-
RFLP dataset. The three panels display the same data represented by three 
experimental factors: depth (a), treatment (b), and block (c). Figure 3.3 contains 
the symbol legend. 
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Figure 3.8. NMS analysis of the bottom three depths of the June 2007 bacterial T-
RFLP dataset. The three panels display the same data represented by three 
experimental factors: depth (a), treatment (b), and block (c). Figure 3.3 contains 
the symbol legend. 
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nifH T-RFLP 

  

T-RFLP analysis of the June 2007 sampling revealed that both depth and block were 

significant in shaping nitrogen fixing communities (Figure 3.9, Table 3.4). Although 

the effect is significant, depth has a much less consistent effect on the nitrogen fixing 

communities (Figure 3.9a), compared to the general bacterial communities observed in 

Figure 3.6a. The distinction between block 3 and blocks 1 and 2 appears to be greater 

in the nitrogen fixing communities (Figure 3.9c) than was observed in the general 

bacterial communities (Figure 3.6c). Differences in treatment in the nitrogen fixing 

community were not found with this dataset. 

 

Analysis of the surface three depths revealed significant differences in depth, and 

suggestive but non-significant differences in treatment (Table 3.4, Figure 3.10). Block 

differences at these depths were also suggestive (NMS analysis not shown) but not 

significant (Table 3.4). When the bottom three depths were analyzed together, depth 

was significant (α = 0.10) with MRPP analysis, but the trends were weak in the NMS 

ordination (Figure 3.11). However, differences in block, not only between block 3 and 

blocks 1 and 2, but between all three blocks were apparent at these lower depths 

(Figure 3.11), to a greater extent than in general bacterial structure (Figure 3.8c).  

 

This study differed conceptually from the regional study (Chapter 2) in two major 

ways. First, the study’s design was limited to one field site, so it did not contain the 

large source of site variability. Second, this study did not have a long-term imposed 

treatment history between the two systems, as the conversion occurred just three years 

prior. Data from the regional study demonstrated that management history and site 

variability were both large drivers in soil microbial dynamics in these systems.  
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Figure 3.9. NMS analysis of the June 2007 nif T-RFLP dataset. The three panels 
display the same data represented by three experimental factors: depth (a), 
treatment (b), and block (c). Figure 3.3 contains the symbol legend. 
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Table 3.4. MRPP analysis of nitrogen-fixing bacterial differences-  June ’07 
 

Dataset Section 
Analyzed Depth 

 
Treatment 

 
Block 

 A p-value  A p-value  A p-value 
All Depths 0.118 <0.001  -0.008 0.901  0.031 0.004 
10-40cm 0.074 0.002  -0.013 0.801  0.019 0.178 
40-100cm 0.040 0.051  -0.021 0.956  0.110 <0.001 

10cm - -  -0.020 0.728  - - 
20cm - -  -0.023 0.762  - - 
40cm - -  ND ND  - - 
60cm - -  -0.028 0.791  - - 
80cm - -  -0.087 0.926  - - 
100cm - -  -0.072 0.898  - - 

 
    ND = no data. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10. NMS analysis of the surface 3 depths of June 2007 nifH T-RFLP 
dataset showing relationship between treatments. 1 = 0 – 10cm; 2 = 10 – 20cm; 4 
= 20 – 40cm. Figure 3.3 contains the symbol legend. 
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Figure 3.11. NMS analysis of the bottom 3 depths of June 2007 nif T-RFLP 
dataset, showing the relationship between blocks. 6 = 40 – 60cm; 8 = 60 – 80cm; 
10 = 80 – 100cm. Figure 3.3 contains the symbol legend. 
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communities. 
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The main factors shaping nifH gene diversity and structure are not well understood 

(Zehr et al. 2003) and reports on free-living N2 fixing communities in grasslands are 

few. To our knowledge, this work is the first report on free-living soil nitrogen fixing 

communities through depth. These results, in conjunction with the regional study, 

show that even in the absence of large drivers such as site and long-term management 

history, free-living nitrogen fixing communities are less influenced by depth and more 

influenced by field-level soil heterogeneity than are general bacterial communities. 
 

In this study, consistent treatment differences between newly converted agricultural 

fields and native prairie were not found in either the general bacterial or the free-living 

nitrogen fixing communities. Three years after the conversion of these prairie plots to 

no-till annual cropping has resulted in declines in microbial biomass abundance, but 

not in detectable shifts in bacterial or nitrogen fixing community structure. 

Collaborative work on nematode communities by Tianna DuPont and Howard Ferris 

at UC Davis have shown that significant differences in nematodes communities 

between the two treatments. Many of the same trends in nematode trophic groups and 

food web indices found in the regional study are also beginning to emerge in this 

conversion study (S.T. DuPont, unpublished data). Although it is unclear, our 

knowledge of soil microbial dynamics suggest that given enough time, differences in 

bacterial and diazotroph community structure will be observed between these two 

systems. However, tillage which is known to dramatically alter microbial communities 

(Paul and Clark 1996, Drijber et al. 2000) has been controlled for here. The relative 

influence of these plant communities in the absence of tillage should shed insight into 

the role they play in shaping soil organic carbon status and soil biota. Documenting 

these interactions will only be possible with continued monitoring of these changes 

over time. 
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CHAPTER 4 

ASSOCIATIVE NITROGEN FIXATION IN THREE  

PERENNIAL C4 PRAIRIE GRASSES: A GREENHOUSE STUDY3 

 
I. Introduction 

 

Biological nitrogen fixation (BNF) is a process that takes gaseous nitrogen 

(N2) and reduces it to ammonia (NH3) or another reactive form of nitrogen that is 

critical for plant growth. BNF is an energetically expensive reaction that is mediated 

by diazotrophs—bacteria and archaebacteria containing nitrogenase enzymes. This 

phenomenon has been of keen interest to agricultural researchers for many decades, as 

it has potential to increase crop yield, decrease cost of production and lead to greater 

agricultural sustainability overall. A great deal of progress has been made in 

understanding and managing symbiotic N fixation in legume-Rhizobium associations 

in agriculture, and it is hoped that research on non-symbiotic/associative N fixation 

with graminaceous, agronomic plants can yield similar results.  

There are several factors that make it difficult to study these diazotrophs and 

the phenomenon of N fixation. Unlike legume-Rhizobium associations, these non-

symbiotic/associative diazotrophic bacteria do not form specialized structures and 

could be living in close association with the plant in the rhizosphere (epiphytic) or 

actually within the plant roots (endophytic) (James, 2000). Also, within the last decade 

molecular tools have revealed the diversity of diazotrophs to be much greater than 

previously believed (Hamelin et al., 2002, Poly et al., 2001). There is mounting 

evidence which suggests that many of our model, culturable diazotrophic organisms 

                                                 
3 The author is unsure if the work reported in this chapter is sufficient for a stand-alone publication. If 
so, this chapter could be submitted to Journal of Rangeland Ecology and Management, or similar 
journal. 
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(e.g. Azotobacter, Azospirillum, Azoarcus) comprise a small non-representative 

minority of total diazotrophs found in the soil (Hamelin et al., 2002, Poly et al., 2001, 

Tan et al., 2003, Zehr et al., 2003). Our inability to culture these organisms severely 

limits our ability to study them or attempt to manipulate these systems. Future 

research will be needed to gain a more comprehensive knowledge of the majority of 

the organisms involved in N-fixation. 

The over-arching goal of associative N fixation research is to promote and 

improve the contributions of N to agronomic grasses from nitrogen (N) fixing bacteria. 

Since N fertilizers are often the greatest input cost for production and because N is 

often the most limiting nutrient in agricultural systems, development of agronomic 

crops that could subsidize some of their N need through BNF would likely have 

significant impacts on agricultural and natural ecosystems on a global scale. However, 

to date, research efforts have not been able to significantly improve the amount of N 

supplied to agronomic grasses through associative N fixation (Rao et al., 1998). 

 

History of Associative N Fixation Research 

The development of the acetylene reduction (AR) method in the late 1960’s led 

to the widespread use of this method to assess and quantify N fixation. The method 

has great sensitivity and is relatively inexpensive to perform, giving a researcher a 

‘snapshot’ in time (minutes to days) of N fixing activity (Myrold et al., 1999). Studies 

using the AR method have shown two consistent patterns among perennial C4 grasses: 

associative N fixation is commonly occurring and is highly variable depending on 

genotype and environment.  

The discovery of the Azotobacter paspali—Paspalum notatum (Bahiagrass) 

association by Dobereiner et al. (1972) generated great interest in the scientific 

community about N fixation in grasses. A subsequent study from the same research 
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group (Day et al., 1975) looked at nitrogenase activity in several tropical perennial 

forage species including, Urochloa maxima [Panicum maximum] (guinea grass), 

Pennisetum purpureum (elephant grass), U. mutica [Brachiaria mutica] (para grass), 

Digitaria eriantha (common finger grass), Cynodon dactylon (bermuda grass), and 

Melinis minutiflora (molasses grass). They showed several of these grasses to have 

potential to fix economically significant levels of N, but concluded that forage 

genotypes can vary widely in the degree of N fixation they support.  

AR showed associative N fixation occurred in almost all of the tropical 

perennial forage grasses that were screened in a study in Zimbabwe (Andropogon 

eucomus, U. mutica, Digitaria gazensis, Hyparrhenia filipendula, H. altissima, 

Paspalum urvillei, Melinis repens [Rhychelytrum repens], Setaria sphaceluta and 

Sporobolus pyramidalis) although the results were variable and the estimated 

contributions of total plant N from these data were low (Maasdorp, 1987). 

In the US, Tjepkema and Burris (1976) used AR to examine N fixation in 

seven prairie grasses, Panicum virgatum (switchgrass), Sporobolus heterolepis (prairie 

dropseed), Spartina pectinata (prairie cordgrass), Hesperostipa spartea [Stipa 

spartea] (porcupine grass), Andropogon gerardi (big bluestem), Schizachyrium 

scoparium [A. scoparius] (little bluestem), and Poa pratensis (Kentucky bluegrass), 

across 16 time frames in a growing season. They found most N fixation rates to be 

fairly low and to occur mostly in the first two species. These rates of N fixation were 

correlated with soil moisture.   

 

These early studies and others with maize (Von Bulow and Dobereiner, 1975), 

rice (Yoshida and Ancajas, 1971, Yoshida and Ancajas, 1973) and other agronomic 

crops created great interest and optimism in the literature about the associative N 

fixation in both perennial and annual agronomic grasses. However, AR is limited in its 
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ability to measure N fixation over an entire growing season, and it became 

increasingly clear that this technique would not allow for reliable extrapolation of the 

total amount of N accumulated in the plant from BNF. Isotopic 15N studies hold a 

great advantage over AR, in this regard, as they can provide an integrative measure of 

total N derived from the atmosphere. 15N studies can and have been used in a variety 

of ways to measure associative N fixation, but usually involve labeling soil 15N or 

atmospheric 15N (isotopic dilution), or by taking advantage of the natural enrichment 

of 15N in soil (natural abundance). It has become more popular in recent years as this 

technology has become more affordable and the sensitivity of mass spectrometers has 

increased (Myrold et al., 1999).  

In the last 20 years isotopic 15N studies (often complemented with AR and/or 

other methods) have settled some disputes by giving more accurate estimates of total 

N accumulated in plants through BNF. Morris et al. (1985) used AR and 15N to 

examine N fixation in 9 rangeland plants across 25 field sites in Texas. They found N 

fixation to vary greatly based on genotype, soil moisture and technique used, and 

extrapolated fixation rates to range from 0 – 20 kg N ha-1 yr-1 for the entire study. 

Another study using 15N with P. purpureum, Urochloa brizantha [Brachiaria 

brizantha] and U. ruziziensis [B. ruziziensis] (Reis et al., 2001) echoed the results of 

Morris et al. with regard to genotype variation in N fixation. However, estimated BNF 

inputs were higher than in the Morris et al. study, with the highest Pennisetum and 

Brachiaria estimates of the accumulated N from BNF at 41% and 20%, respectively. 

A recent paper by Dalton et al. (2004) utilized several techniques to confirm N 

fixation in two widespread species of dune grass on the Oregon coast, Ammophila 

arenaria (European beachgrass) and Leymus mollis [Elymus mollis] (American 

dunegrass). Their results indicate that N-fixation likely contributes to the great success 

of these grasses on nutrient poor sand dunes.  
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There are several other reports like those listed above, essentially documenting 

the ability of specific grasses to support associative N fixation. There are however, 

relatively few model systems where investigation has been quite extensive. Two of 

these model systems will be discussed below in greater depth, as they are the only 

cases that have reported direct evidence of fixed N transferred from a specific 

diazotroph to the host plant. This was possible through inoculation experiments with a 

non-nitrogen fixing (Nif -) mutant (Hurek et al., 2002, Sevilla et al., 2001), and they 

represent possibly the most promising cases that associative and/or endophytic 

diazotrophs could be exploited for better crop performance. 

 

Two Case Studies 

One of the most well studied endophytic N fixation associations in grasses is 

with sugarcane (Saccharum sp.) and Acetobacter diazotrophicus (synon. 

Gluconacetobacter diazotrophicus). Four million hectares of sugar cane (Saccharum 

spp.) are grown in Brazil each year. In many areas the sugar cane is cultivated without 

N input and yet high yields of this crop are still obtained (Triplett, 1996). 15N and N 

balance techniques have shown that sugarcane can attain up to 80% of its needs 

through N fixation, with 150 and even 200 kg N ha-1 yr-1 attained through associative 

BNF (Boddey and Dobereiner, 1995, Dobereiner et al., 1993, Lima et al., 1987, 

Urquiaga et al., 1992). The large levels of N fixation observed in sugarcane are largely 

thought to be from N fixation from A. diazotrophicus and the Herbaspirilium genus 

(Dobereiner et al., 1993, Lima et al., 1987).  

A. diazotrophicus is a small, Gram-negative, aerobic rod. It has been shown to 

have high tolerance for oxygen, can grow on a 10% sucrose solution as its sole carbon 

source, prefers a very low pH for optimum growth, and shows little to no inhibition of 

nitrogenase activity in the presence of nitrates and/or ammonia (Boddey and 



 

 91

Dobereiner, 1995, Boddey et al., 1991, James, 2000). More importantly, researchers 

have demonstrated its capacity to directly transfer half of the N it fixes to amylolytic 

yeast (Lypomyces kononenkoae) in a mixed culture which suggests that it would be 

capable of a similar transfer in the sugar cane plant (Cojho et al., 1993). 

Additionally, the relationship between Acetobacter and sugar cane is now 

viewed by many as an effective experimental model. Studies in India using A. 

diazotrophicus as an inoculum in sugar cane effectively increased yields in four 

varieties when applied in association with vesicular arbuscular mycorrhizae. The 

researchers in this case believe that this practice can be substituted for recommended 

application of urea-nitrogen in this system (Muthukumarasamy et al., 1999). There is 

an extensive body of literature involving sugarcane and BNF, especially from Brazil. 

For a through review, see Baldani and Baldani (2005). 

Another intensively studied diazotroph is Azoarcus sp. Strain BH72, an 

endophytic Gram-negative N2-fixing bacterium. It was originally isolated from kallar 

grass (Leptochloa fusa Kunth) found growing in the saline-sodic soils typical of 

Pakistan (Reinhold-Hurek et al., 1993). Several other diazotrophs have been isolated 

from the rhizosphere of kallar grass but the Gram-negative rods of Azoarcus 

predominate inside the roots (Reinhold et al., 1986). Similar to the relationship 

between sugarcane and Acetobacter, Azoarcus is found only in the xylem of the plant 

and never in living cells (Hurek et al., 1994b). 

  Bacteria of the genus Azoarcus have a strictly aerobic type of metabolism and 

have been found to fix N microaerobically (Hurek and Reinhold-Hurek, 1995). Some 

studies indicate that Azoarcus may fix N2 in planta and transfer the fixed N to the 

kallar host plant (Hurek et al., 2002). In fact, in various green house and field 

experiments conducted by Malik et al. (1997), kallar grass has been shown to fix up to 

26% of its N content. This potential plant-associated “symbiosis” merits further study 
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as a potential endophytic N-fixing microsymbiont for cereals. It has already been 

shown that other species of Azoarcus have been found to colonize other grasses such 

as rice in both the field and laboratory and that the presence of Azoarcus cells in rice 

seedlings significantly promotes the growth of the plants (Hurek et al., 1994b). 

 

Non-N-related Plant Growth Promotion 

In addition to possible transfer of fixed N to plants, a body of literature has 

emerged over the last few decades examining the possible role diazotrophs play in 

plant growth promotion. This has been demonstrated in numerous experiments, as Nif- 

mutants (unable to fix N2) of Azospirillium, Azoarcus, Acetobacter and Pseudomonas 

often promote plant growth (Bashan et al., 1989, Bastian et al., 1998, Fuentes-Ramirez 

et al., 1993, Hurek et al., 1994a, Lifshitz et al., 1986). Research in this area has 

focused on the production and export of phytohormones by diazotrophs to the host 

plant (Dobbelaere et al., 2003). Phytohormones are plant growth regulators, vital to 

the regulation of plant growth and development. Auxins, cytokinin-like and 

gibberellin-like substances have all been proposed as possible ways diazotrophs 

promote plant growth, since inoculations with diazotrophs and these phytohormones 

often produce similar plant responses. Other possible mechanisms for plant growth 

promotion may include synthesis of enzymes that can modulate plant growth, 

increased nutrient uptake, enhanced stress resistance, increased nutrient availability 

through organic and inorganic phosphate solubilization, vitamin production, 

biocontrol, increases in root-adhering soil, and interactions with other microorganisms 

(Dobbelaere et al., 2003). 
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Justification and Significance of Study 

 

This experiment attempted to address a missing piece of the puzzle regarding 

the ability of the prairie sites in Chapter 2 to sustain long-term N removal without 

fertilization. Over the course of the last 75 years (assuming the consistent yields that 

the county yield averages indicate), the prairie sites have exported roughly 664 kg ha-1 

more N than the average for wheat fields in this region (Glover et al, unpublished 

data). Current N removal rates between prairie sites and wheat fields are not 

statistically different (roughly 45 kg N ha-1 yr-1), despite the fact that wheat fields 

typically receive 70 kg N ha-1 yr-1 and prairie sites do not receive fertilization (Glover 

et al, unpublished data). In order to determine the source of this annually removed N 

in the hay, a N budget was adapted for our prairie sites, from data obtained at the 

Konza Prairie LTER site (Blair et al., 1998), approximately 70 miles from the field 

sites (Table 4.1).  

 

Table 4.1. Nitrogen budget for annually hayed bottomland tallgrass prairie 
 

Source Minimum 
(kg N ha -1) 

Maximum 
(kg N ha -1) 

Inputs into System    

Atmospheric deposition  10 20 
Biological N fixation  ? ? 

Total Inputs = 10 20 

Outputs from System    

Leaching and Runoff  0.2 0.4 
Denitrification  0 10 
Hay removal  35 65 

Total Outputs = 35 75 
   
Min Output –  Max Input = 15 
Max Output – Min Input = 65 
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Biological N fixation and soil N mineralization (and source of internal transfer) 

are inherently difficult to measure and/or vary greatly based on site-specific 

environmental factors. As a result, they were treated as unknowns in this budget. 

These data show that when hay removal is taken into account, rates of N removal, 

there is a range of 15 – 65 kg N ha-1 yr-1 that can be attributed to soil N mineralization 

and/or BNF.  

Although it’s unknown if soil N mineralization is a major source of N removed 

from these fields, it seems unlikely that mineralization alone is accounting for this 

export. The amount of N removed from these landscapes over the past 75 years 

(approximately 3.6 Mg N ha-1) is roughly ¼ of the total N in the first 1 meter of soil 

(15.4 Mg N ha-1). If all N was coming from mineralized organic matter, yield declines 

would be expected. However, county hay yields in this region over the past century, 

show no evidence of yield decline. In addition, previous reports of long-term hay 

removal from unfertilized grasslands have shown no detectable declines in total soil N 

(Jenkinson et al., 2004, Mikhailova et al., 2000, Mikhailova and Post, 2006), 

suggesting that soil N mineralization might not be the primary source of N in the 

hayed biomass. Although the extent is unknown, it seems likely that biological N 

fixation could account for a large fraction of this removed N. 

 The annual contribution of legume N from symbiotic N fixation was estimated 

for each of the five sites. Legume biomass was measured in June and October of 2006 

across all five sites. Since legumes commonly fix around 20-25kg of shoot N for every 

tonne of shoot dry matter (Peoples and Baldock, 2001), legume N contribution in our 

systems likely range from 0.2 – 9.2 kg N ha-1 yr-1, with an average yearly contribution 

of 3.5 N ha-1 yr-1 (Mangan and Crews, unpublished data). The relatively small 

amounts of N potentially coming from symbiotic N fixation, directed our research 

interest to associative N fixation in grasses.  
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This study attempted to quantify the amount of N-fixation that can occur 

associatively (either in the rhizosphere or endophytically) in the three dominant C4 

perennial prairie grasses are the field sites—big bluestem (Andropogon gerardii), 

indiangrass (Sorghastrum nutans), and switchgrass (P. virgatum). A second 

experiment looked at the effect of clipping on the amount of N-fixation that can occur 

in big bluestem. The objectives of this study were to: i) document associative N 

fixation in three C4 prairie grasses, ii) quantify the relative contribution of associative 

N fixation to total plant N in these grasses, and iii) measure the effect of clipping on 

atom 15N % excess in big bluestem shoots.  

 

 

II. Materials and Methods 

 

Experiment 1. Seeds of big bluestem, indiangrass and switchgrass were 

collected from the grasses at the Niles field site, in Ottawa County, Kansas (N’ 

38.58.145, W’ 97.28.616) in August 2007. These seeds were tested for germination 

rates, and all three grasses exhibited < 5% germination. As a result, seeds of big 

bluestem (Kaw cultivar), indiangrass (Cheyenne cultivar) and switchgrass (Blackwell 

cultivar) with known high rates of germination were purchased from a commercial 

source (Sharp Brothers Seed, Healy, Kansas) and used instead of seeds collected from 

the field site.  

Three separate patches of each grass species were located in the Niles site. On 

October 31, 2007, a large plant from each patch was sampled by digging around the 

plant with a spade to a depth of 40cm. The plant and rooting structure were removed 

and bulk soil was shaken off the roots. Roots from the same species were composited 

and all samples were stored at 4°C until processed.  
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The greenhouse experiment was conducted at University of California, Davis 

from December 5, 2007 – February 21, 2008. See Figures 4.1 and 4.2 for graphic 

representations of the methods. The experiment contained 3 species of grass, 3 levels 

of N, 2 inoculum treatments and 5 replicates, totaling 90 pots. Leonard jars (magenta 

units) were used in place of standard pots in order to minimize contamination from 

watering. The jars were made from plastic culture vessels (Phytotechnology Labs, 

Shawnee Mission, KS) which relied on a cotton-nylon wick to passively transfer 

nutrient solution from a lower holding container to the potting media (Figure 4.2a). 

New nutrient solution was added via a tube which bypassed the upper media 

compartment to the lower nutrient solution holding compartment (Figure 4.2a and 

4.2b). This approach sought to avoid the flushing of microorganisms that have settled 

on the surface of the media into the rooting zone. 

A microbial inoculum for each grass species was prepared by blending roots 

and rhizosphere soil with 700 ml of sterile 0.05 M K2SO4 solution in a Warring 

laboratory blender (New Hartford, CN) at 1300 rpm for 60 s to dislodge rhizosphere 

and endophytic microorganisms from roots and soil. The resulting slurry (microbial 

inoculum) was filtered through a sterilized #20 mesh (0.85 mm) filter to remove root 

segments and then divided evenly into two sterilized containers, one for the inoculum, 

the second for the control. The control containers were autoclaved for 2 hours to 

sterilize, and then allowed to cool to room temperature. 

Seeds were surface sterilized using a 0.07M (10%) NaOCl for 15 minutes and 

then rinsed twice with sterile distilled water and blotted on sterile paper towels to dry. 

Approximately ten seeds were planted in each 350 ml sterilized pots containing a 

sterilized 50:50 mix of vermiculite and sand.  One half of all pots were inoculated by 

applying 10 ml of the microbial inoculum to the surface of the media above the 

planted seeds in each pot. The remaining pots received 10 ml of the sterilized (control) 
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inoculum to account for added nutrients in the (non-sterile) inoculum. Pots were 

wrapped in aluminum foil to keep light out of media and the nutrient holding 

compartments. Sodium vapor lights were used to provide a 14 hour photoperiod and 

the greenhouse temperature was maintained between 16 and 32°C.  

Plants were watered with one of three different ½ strength Hoagland’s Solution 

#1 (Hoagland and Arnon, 1950), modified to three different levels of N. Ammonium 

nitrate (15NH4
15NO3) with 15N at 5 atom % excess, was used at 0.25mM, 1mM, and 

4mM in order to test of the effects of a N gradient on N fixation rates. Watering took 

place before planting (Dec 3rd) and periodically throughout the experiment (Dec 21st, 

Jan 17th, Feb 2nd), whenever the nutrient solution was running low in the lower 

compartment. A total of 850ml of nutrient solution was administered to each pot, 

equivalent to 5.95 mg, 23.8 mg and 95.2 mg of N for the 0.25 mM, 1 mM, and 4 mM 

of N solutions, respectively. All nutrient solution was sterilized before adding to 

nutrient holding compartments and aseptic techniques were used during watering. 

Twenty-nine days after planting (Jan 3rd), seedlings were thinned to one plant 

per pot, by clipping and removing every seedling except for the most vigorous. Plants 

were harvested in the pre-boot stage, 78 days after planting, on February 21, 2008. 

Plant shoots were separated from the roots, oven dried at 70°C for 48 hours and 

weighed to determine biomass. Before roots were oven-dried and weighed, they were 

examined for mycorrhizal infection. This was done in order to assess the effectiveness 

of the sterilization treatment. (It was assumed that if mycorrhizal infection was present 

in the control pots, then other contaminating microorganisms were likely also present 

in the rhizosphere of the control plants.) Roots were cleared by placing roots in glass 

vials with 10% KOH and incubating at 90°C for 1 hour. Roots were then removed and 

rinsed 5 times with distilled water and acidified by submersing them in 1M HCl for 5 

minutes. HCl was drained and the roots were stained with a 1:1:1 mix of glycerol: 
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water: lactic acid with 0.05% trypan blue. Samples were incubated at 90°C for 45 

minutes and rinsed with distilled water 5 times. Stained roots were mounted on slides 

and examined for mycorrhizal infection with a Nikon dissecting scope. Infection was 

assessed with one half of all plant roots in the experiment and was scored for presence/ 

absence only. 

 

Experiment 2. The second experiment was conducted on big bluestem grown 

with the 1 mM level of N (supplied as 15NH4
15NO3). Ten pots (5 inoculated, 5 control) 

of big bluestem were grown for a clipping treatment and compared with ten (5 

inoculated, 5 control) pots for an unclipped control. Plants and experimental 

conditions were identical to those outlined in experiment 1. On February 4, 2008, each 

plant in the clipped treatment was clipped with scissors to simulate a haying event. 

Beginning with the second leaf, every other leaf was fully clipped. A maximum of 

three leaves were clipped, as no plant had more than 6 leaves total. Because of the pre-

existing N stress observed in the plants, it was unclear if clipping the entire plant 

(similar to what would occur in an actual haying event) would result in the death of 

the plant. Instead, only half of the plants’ leaves were clipped to ensure the experiment 

would produce results. Clipped and unclipped plants were harvested on February 21, 

2008 with the plants in experiment 1. 

All plant shoots were ground to powder by placing samples in 25ml 

scintillation vials with two, 8 mm stainless steel balls (Winsted Pricision Ball 

Company, Winsted, CT) and shaking vigorously on a modified paint shaker. Ground 

samples were weighed into 5 x 9 mm tin capsules (Costech Analytical Technologies, 

Valencia, CA). Total N and atom % 15N excess values were determined with a PDZ 

Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope 
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ratio mass spectrometer (Sercon Ltd., Cheshire, UK) at the University of California 

Davis Stable Isotope Facility. 

Analysis of variance was used to test the effects of N level (N), inoculation (I), 

and N × I in the first experiment and inoculation (I), clipping (C), and C × I in the 

second experiment using a mixed model in SAS v.9 (Cary, NC). In addition, the 

effects of time (T), inoculation (I), and T × I on the clipped plants were tested using 

the same method. All factors were treated as fixed effects, except replicated plots 

which were treated as random effects. Graphs were plotted in SigmaPlot v.9 (San Jose, 

CA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Graphic depiction of methods. 
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Figure 4.2. Experimental pot (a) and nutrient solution watering set up (b). 

 

 

III. Results 

 

Twenty-three days after planting (Dec 28th), 100% of the big bluestem pots, 

63.3% of the indiangrass pots, and 100% of the switchgrass pots contained germinated 

seeds. However, throughout the experiment, all plants appeared N-stressed and some 

died. At harvest, only 83.3% of the big bluestem pots, 30% of the indiangrass pots, 

and 96.7% of the switchgrass pots contained viable plants. Because of the poor growth 

of indiangrass plants (9 plants out of 30 possible), these data should be interpreted 

with caution. Nevertheless, these data are still presented here.  

a b 
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 Mycorrhizal infection was found in the roots of both control and inoculated 

plots in switchgrass. There was no evidence of infection found in indiangrass or big 

bluestem.  

 

Experiment 1. Table 4.2 shows the summary of ANOVA results for all of 

experiment 1. Significant differences were detected in the inoculated (I) treatment, the 

N level (N), and the interaction between I and N (I × N). However, most of these 

differences did not follow trends that were consistent across all species. 
 
 
 
 
Table 4.2. Summary of significant differences found in experiment 1. Values 
represent p-values from ANOVA. 
 

 
Percent N in 

Shoots 
Shoot 

Biomass 
Total N in 

Shoots 
Atom 15N % 

excess 
Bluestem     
     Inoculated (I) 0.088 -- -- -- 
     N level (N) <0.001 -- -- 0.002 
     I × N -- -- -- -- 
Indiangrass     
     Inoculated (I) -- -- -- -- 
     N level (N) -- 0.063 0.011 0.031 
     I × N -- 0.052 0.047 -- 
Switchgrass     
     Inoculated (I) <0.001 0.040 0.006 0.011 
     N level (N) <0.001 -- 0.012 <0.001 
     I × N -- -- 0.011 <0.001 
-- = no significant differences detected 
 

 

 

In big bluestem, the percent of N found in shoots was greater in the control 

plants relative to inoculated plants and was also greater in the plants receiving higher 

levels of N (Figure 4.3a). However, no differences were found in shoot biomass or in 
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the total amount of N found in the shoots (calculated as percent N in shoots × shoot 

biomass). The level of N in the nutrient solution, but not the inoculation treatment, 

significantly influenced the atom 15N % excess, with lower values being reported at 

lower nutrient concentrations (Figure 4.3d). 

No measured variables in indiangrass were influenced by the inoculation 

treatment (Table 4.2, Figure 4.4). However, the N level significantly influenced the 

shoot biomass, the total N in the shoots, and the atom 15N % excess. 

All variables measured in switchgrass were significantly affected by the 

inoculation treatment (Table 4.2, Figure 4.5). The percent N was greater in the 

inoculated plants, but the shoot biomass, the total N in the shoots, and the atom 15N % 

excess, were all greater in the control plots. The level of N significantly impacted all 

variables, except shoot biomass (Table 4.2, Figure 4.5). In most cases, greater N levels 

in the nutrient solution increased the measured response variables. Significant 

interactions between N and I were found in indiangrass and switchgrass and resulted 

from smaller rates of increase in the response variable in inoculated plants relative to 

the control plants (Figures 4.4 – 4.5). 

The only consistent trend observed across all three grasses was with the effect 

of N level on atom 15N % excess (Table 4.2). Plants grown with nutrient solutions with 

lower concentrations of N had shoots with consistently lower values of atom 15N % 

excess (Figures 4.3d, 4.4d and 4.5d). 
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Figure 4.3. Effects of N level and inoculation on percent N (a), shoot biomass (b), total N in shoots at harvest (c) and atom 15N 
percent excess (d) in big bluestem. 

Inoc = .087 
N level < .001 

N level = .002 
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Figure 4.4. Effects of N level and inoculation on percent N (a), shoot biomass (b), total N in shoots at harvest (c) and atom 15N 
percent excess (d) in indiangrass. 
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Figure 4.5. Effects of N level and inoculation on percent N (a), shoot biomass (b), total N in shoots at harvest (c) and atom 15N 
percent excess (d) in switchgrass.

Inoc < .001 
N level < .001 
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N level = .012 
Inoc*N = .011 

Inoc = .011 
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Experiment 2. Clipping big bluestem at 1 mM ammonium nitrate reduced the 

percent of N in the shoots at α = 0.10 (Figure 4.6a). The interaction of inoculation and 

clipping (I × C) was significant with shoot biomass and total N in the shoots, as 

clipped, control plants yield greater shoot biomass and total N (Figure 4.6b and 4.6c). 

Neither clipping nor inoculation had a significant effect on atom 15N % excess (Figure 

4.6d). 

Shoot material that was clipped (i.e., clipping) to simulate the haying event 

was compared with the regrown shoot material collected at final harvest (labeled 

‘harvest’). This comparison was with material that came from the same ten clipped big 

bluestem plants. The percent N in the clipping and harvest material did not change, 

nor was it affected by the inoculation treatment (Figure 4.7a). However, the atom 15N 

% excess was significantly lower in the inoculated plants (Figure 4.7b). 

 

 

IV. Discussion 

 

 This study was conducted to quantify the amount of associative N fixation that 

occurred in three C4 prairie grasses and to test if clipping influenced this fixation. The 

evidence of mycorrhizal infection in the control plants of at least one of the grasses 

suggests that efforts to keep the rooting system free from microorganisms were 

marginally successful at best. It is likely that since mycorrhizal infection was found in 

some of the plants, the rooting system of the control plants were not in true sterile 

environments. It is unclear whether the mycorrhizal infection resulted from a lack of 

effective seed or inoculum sterilization, or if they were introduced after planting. In 

any event, these findings compromise the integrity of the control vs. inoculation 

treatment. 
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Figure 4.6. Effects of clipping and inoculation on percent N (a), shoot biomass (b), total N in shoots at harvest (c) and atom 15N 
percent excess (d) in big bluestem grown with 1mM N.

Clip = .0912 
Inoc = .052 
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I × C = .008 
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Figure 4.7. Changes with time and inoculation on percent N (a) and atom 15N 
percent excess (b) in clipped big bluestem grown with 1mM N. Clipping indicates 
analysis of clipped material; harvest indicates analysis of shoot biomass at 
harvest (after regrowth). 
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Although the inoculation treatment was likely compromised, there were still 

significant differences detected between control and inoculated plants with percent N 

in big bluestem and between all measured variables in switchgrass. This demonstrates 

that despite possible contamination, the microbial communities likely differed enough 

to influence plant growth. In switchgrass (where mycorrhizal infection was observed), 

inoculated plants yielded much lower amounts of shoot biomass and total N in the 

shoots. This suggests a parasitic role of the mycorrhizal fungi, which has been shown 

previously (Hendrix et al., 1992, Klironomos, 2003, Modjo and Hendrix, 1986) or 

possibly some other pathology due to microorganisms in the inoculum.  

The significant influence of N level on percent N, shoot biomass, and total N 

in the shoots observed in these grasses indicates that they were N limited during 

growth, as more N in nutrient concentrations generally yielded greater values in these 

measured variables.  

The only consistent trend across all three grasses was the increase in atom 15N 

% excess with increase in N concentration in the nutrient solution. Since the nutrient 

solution was labeled with 15N ammonium nitrate, lower atom 15N % excess values 

indicate a dilution of the isotopic 15N via N fixation. Lower atom 15N % excess values 

at lower N levels indicate that more N fixation occurred with these plants, relative to 

plants grown with higher concentrations of N. Lower levels of available N has 

corresponded to higher levels of N fixation in many studies on symbiotic N fixation 

(Crews et al., 2004, Peoples and Herridge, 1990, Streeter, 1998), but to the author’s 

knowledge, this is the first study that demonstrates this phenomenon with associative 

N fixation. Much of the previously reported work on associative N fixation has 

involved field-based studies and has shown the variability associated with rates of N 

fixation are due mainly to genotype (site) differences and soil moisture levels (Morris 

et al., 1985, Reis et al., 2001 Tjepkema and Burris, 1976). However, assessing effects 
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of soil N levels on fixation in these studies was not entirely possible, since variability 

due to differences between field sites was confounding. Here, the effect of available N 

levels on N fixation was made possible since soil moisture levels were held nearly 

constant and site conditions were controlled. 

 In the second experiment, clipping had a stimulatory effect on shoot biomass 

and total N in shoots with the control plants, but not with the inoculated plants. These 

results were unexpected, as previous studies have shown that clipping grasses can 

increase soil N pools and positively feedback into plant N uptake (Hamilton and 

Frank, 2001). Although it is unclear, it is possible that more N was immobilized into 

microbial biomass after clipping and less available for plant uptake in the inoculated 

plants due to differences in microbial communities between inoculated and control 

plants.  

 There was not consistent evidence that inoculation with native microorganisms 

influenced N fixation across all species, but there was evidence of this phenomenon in 

switchgrass (at 1mM and 4mM NH4NO3) and with clipped big bluestem. In these 

examples, inoculated plants had significantly lower atom 15N % excess values 

indicating that more N was fixed associatively with these plants than with the control 

plants. In big bluestem, the influence of inoculation on N fixation was only apparent 

when considering clipped plants, suggesting an interaction between these factors. 

 This study was an initial attempt to document associative N fixation. The likely 

contamination of the control plants inhibits our ability to extrapolate how much N in 

the plant shoot was derived from the atmosphere, since in many comparisons, 

inoculated and control plants had similar atom 15N % excess values, indicating no 

difference in N fixation between these treatments. Although the results are mixed, it is 

suggestive that both N levels and microbial communities interacted with the plants to 

determine N fixation rates. There are still many unknowns at this point, such as, how 



 

 111

these N fixation rates change with plant phenology, the effect of plant diversity on N 

fixation (i.e., interactions with neighboring plants of different species), and long term 

effects of clipping on associative N fixing dynamics. The results of this study show 

that associative N fixation in these species in the field is likely, and the rates of 

fixation are likely influenced to a large extent by available soil N. To what extent that 

associative N fixation can contribute to plant total N and to how much N is removed 

from the hayed prairie landscapes remains to be determined. Future work to replicate 

the results of this study and possible microplot field studies will be needed in the 

future to answer these questions.  
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CHAPTER 5 

ANALYSIS OF T-RFLP DATA USING ANALYSIS OF VARIANCE AND 

ORDINATION METHODS: A COMPARATIVE STUDY4 

 

Abstract 

 

The analysis of T-RFLP data has developed considerably over the last decade, 

but there remains a lack of consensus about which statistical analyses offer the best 

means for finding trends in these data. In this study, we empirically tested and 

theoretically compared ten diverse T-RFLP datasets derived from soil microbial 

communities using the more common ordination methods in the literature: principal 

component analysis (PCA), non-metric multidimensional scaling (NMS) with 

Sørensen, Jaccard and Euclidean distance measures, correspondence analysis (CA), 

detrended correspondence analysis (DCA), and a technique new to T-RFLP data 

analysis, the Additive Main Effects and Multiplicative Interaction (AMMI) model. 

Our objectives were i) to determine the distribution of variation in T-RFLP datasets 

using analysis of variance (ANOVA), ii) to determine the more robust and informative 

multivariate ordination methods for analyzing T-RFLP data, and iii) compare the 

methods based on theoretical considerations. For the 10 datasets examined in this 

study, ANOVA revealed the variation from Environment main effects was always 

small, variation from T-RFs main effects was large, and variation from T-RF × 

Environment (T×E) interactions was intermediate. Larger variation due to T×E 

indicated larger differences in microbial communities between environments/ 

treatments and thus demonstrated the utility of ANOVA to provide an objective 

assessment of community dissimilarity. The comparison of statistical methods 

                                                 
4 The chapter is currently in press in the Journal of Microbiological Methods. 
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typically yielded similar empirical results. AMMI, T-RF-centered PCA, and DCA 

were the most robust methods in terms of producing ordinations that consistently 

reached a consensus with other methods. In datasets with high sample heterogeneity, 

NMS analyses with Sørensen and Jaccard distance were the most sensitive for 

recovery of complex gradients. The theoretical comparison showed that some methods 

hold distinct advantages for T-RFLP analysis, such as estimations of variation 

captured, realistic or minimal assumptions about the data, reduced weight placed on 

rare T-RFs, and uniqueness of solutions. Our results lead us to recommend that 

method selection be guided by T-RFLP dataset complexity and the outlined theoretical 

criteria. Finally, we recommend using binary or relativized peak height data with soil-

based T-RFLP data for ordination-based exploratory microbial analyses. 

 

1. Introduction 

 

Terminal restriction fragment length polymorphism (T-RFLP) analysis is a 

robust and effective DNA-fingerprinting technique commonly used to compare 

microbial communities (Clement et al., 1998, Liu et al., 1997, Osborn et al., 2000, 

Thies, 2007, Tiedje et al., 1999). Although the analysis of T-RFLP data has developed 

considerably over the last decade, there remains a lack of consensus about which 

statistical analyses offer the best means for finding trends in these data. Researchers 

surveying recent literature on T-RFLP analyses will find publications with common 

research objectives that use a wide range of statistical techniques, often with no 

justification of their selected method.   

In this study, we aimed to address this lack of consensus by comparing the 

more common ordination methods used in the literature—Principal Components 

Analysis (PCA), Nonmetric Multidimensional Scaling (NMS, MDS, NMDS) with 
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either Sørensen, Jaccard or Euclidean distance, Correspondence Analysis/Reciprocal 

Averaging (CA) and Detrended Correspondence Analysis (DCA). The utility of a 

technique new to T-RFLP data analysis, the Additive Main Effects and Multiplicative 

Interaction (AMMI) model (Gauch, 1992), was also examined. 

Blackwood et al. (2003) compared several T-RFLP datasets using two 

classification methods with several distance measures. Here, we explore another class 

of methods commonly employed to analyze T-RFLP data. We focused on ordination 

methods used for exploratory purposes only, not including analyses which test specific 

hypotheses (e.g. that two microbial communities are significantly different), or relate 

microbial community data to environmental variables (i.e., constrained ordinations, 

such as CCA). The objectives of this study were i) to determine the distribution of 

variation in a variety of T-RFLP datasets using analysis of variance (ANOVA), ii) to 

determine the more robust and informative multivariate ordination methods for 

exploratory analysis of T-RFLP data, and iii) compare the methods based on 

theoretical considerations. 

     

2. Materials and methods 

 

2.1. T-RFLP datasets 

Ten T-RFLP datasets were used in this study (Table 5.1).  Here we use the 

word ‘dataset’ to define a particular microbial community characterized. Each dataset 

consisted of multiple data matrices which were derived from the same template DNA 

and reflected the same community. Multiple data matrices resulted from 1) the three 

ways to represent T-RFLP data (binary [i.e., presence/ absence], peak height, peak 

area; called ‘types of data’ henceforth) and 2) use of multiple restriction enzymes. We 

examined 46 data matrices in all, derived from these 10 datasets. 
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Table 5.1. T-RFLP datasets used in this study 
 

Dataset System Site Location 

Targeted 
Community 

(Primers) 
Restriction  
Enyme(s) References 

Bioreactor Fluidized-bed reactor Milan, Tennessee Bacteria 
(27f – 1492r) 

HhaI, MspI, 
RsaI 

Blackwood et al., 
2003 

Khum Bacteria,  
Ramp Bacteria 

Soil solarization in 
paddy, lowland rice 

Khumaltar and 
Rampur, Nepal 

Bacteria 
(27f – 1492r) HhaI, Sau96I Culman et al., 2006 

Fractionation ‘98 
Fractionation ‘99 

Conventional and 
organic corn; Alfalfa 

Kellogg Biological 
Station, Michigan 

Bacteria 
(27f – 1392r) RsaI Blackwood and Paul 

2003 

Prairie Native tallgrass 
prairie Niles, Kansas Bacteria 

(27f – 1492r) HhaI, Sau96I Culman et al., 
unpublished data 

AWD  
 

Alternating wetting 
and drying in paddy 
lowland rice 

Chiang Mai, Thailand 
Archaea 

(Ar109f – 
Ar912r) 

HhaI, Sau96I 

Sooksa-nguan et al., 
unpub. Ph.D. 

Thesis, Suranaree 
University of 

Technology, 2007 

Khum Fungi,  
Ramp Fungi 

Soil solarization in 
paddy, lowland rice 

Khumaltar and 
Rampur, Nepal 

Fungi 
(ITS1F – ITS4) Sau96I Culman et al., 2006 

Multiregional Soils from wide-
ranging environments 

Michigan, Tennessee, 
Nevada 

Bacteria 
(27f – 1492r) 

HhaI, MspI, 
RsaI 

Blackwood et al., 
2003 
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The prairie dataset (Culman, unpublished data) was generated with the same 

procedures (PCR reactions, restriction enzyme digests, 3730 ABI capillary sequencer) 

as described in Culman et al. (2006); the alternating wetting and drying (AWD) 

dataset (Sooksa-nguan et al., unpub. Ph.D. Thesis, Suranaree University of 

Technology, 2007) was generated with the same procedures described by Lueders and 

Friedrich (2000), with minor modifications. Other datasets have been previously 

described (Table 5.1). These soil microbial community-based datasets were selected to 

represent substantial diversity in dataset sizes, targeted microbial communities, 

imposed treatments and geographical regions. Table 5.2 provides additional detail 

about the dataset properties and characteristics. 

 

2.2. Data processing 

Data processing (determining ‘true peaks’ from noise, manual alignment of 

peaks, data transformations, etc.) was performed in numerous ways based on the 

researcher’s original methods. Although the effects of processing raw data were not 

examined here, Adbo et al (2006) offer a number of good suggestions to consider in 

this regard. 

All T-RFLP electropherograms were visually inspected to ensure quality runs. 

Electropherograms were tabulated in either GeneScan or Genemapper v3.5 (Applied 

Biosystems, Foster City, CA) using the Local Southern method as the size-calling 

algorithm. A baseline threshold of 50 fluorescence units was used to determine ‘true 

peaks’ from background noise with all datasets, except from the solarization study 

(Khum and Rampur Bacteria and Fungi), in which the baseline was set at 200. 

Terminal restriction fragments (T-RFs) less than 50 base pairs (bp) and greater than 

500 bp were eliminated from all datasets. Manual alignment of peaks (often called
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Table 5.2. Characteristics of T-RFLP datasets used in this study a 
 

Dataset 

Number of 
Environments 
(Treatments, 
Replicates) 

Total number 
of T-RFs in 
Data Matrix 

Richness b 
(Minimum, 

Maximum T-RFs) Evenness c 

Percent 
Empty Cells 

in Matrix |Skew| d 
Beta 

Diversity e 
NMS 

Stress f 

Bioreactor 12 ( 3, 4) 66 26.0 (41, 20) 0.95 60.2 1.51 1.54 11.2 

Khum Bacteria 64 (16, 4) 217 116.3 (140, 95) 0.87 46.3 3.26 0.86 7.3 

Ramp Bacteria 64 (16, 4) 218 114.6 (126, 101) 0.88 47.3 3.00 0.90 7.2 

Fractionation ‘98 48 (12, 4) 120 53.2 (68, 46) 0.92 55.7 1.95 1.26 13.1 

Fractionation ‘99 48 (12, 4) 103 52.6 (61, 46) 0.91 48.9 1.82 0.96 9.8 

Prairie 153 (51, 3) 221 88.9 (62, 111) 0.87 59.7 4.92 1.49 9.4 

AWD 160 (20, 8) 356 190.5 (168, 221) 0.71 46.5 7.10 0.87 9.0 

Khum Fungi 64 (16, 4) 393 168.7 (142, 204) 0.86 57.1 4.72 1.33 9.9 

Ramp Fungi 64 (16, 4) 417 175.9 (123, 261) 0.85 57.8 5.29 1.37 9.1 

Multiregional 12 ( 3, 4) 97 36.8 (29, 46) 0.95 62.2 2.06 1.64 0.1 
a   For experiments with multiple restriction enzymes, values were averaged across those enzymes. Since skew and NMS stress varied      
    between types of data, these values were averaged over all types of data and enzymes. 
b   Defined as the average number of T-RFs in a dataset 
c   Pielou’s J 
d   |Skew| values averaged over binary data, relativized peak height and relativized peak area were 0.8, 4.8, and 6.8, respectively. 
e   Defined as: [(total number of T-RFs in a dataset) / (average T-RF richness in the environments)] – 1 
f   Sorensen distance measure, 2 axes selected, 50 runs with real data, 0.0001 stability criterion, 50 iterations to evaluate stability; NMS 
    stress values averaged over binary data, relativized peak height and relativized peak area were 8.6, 8.3, and 8.7, respectively. 
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‘binning’) is often used to account for T-RF drift (improperly sized T-RFs due to 

differences in fragment migration and purine content [Kaplan and Kitts, 2003, Marsch, 

2005]). The Bioreactor, Fractionation ’98, Fractionation ’99 and Multiregional 

datasets were all manually aligned (with sample identities concealed). The peaks of 

the remaining datasets were aligned by rounding to the nearest integer (nucleotide) 

size.  

 Raw peak height and raw peak area were relativized to account for 

uncontrolled differences in the quantity of DNA between samples. Relativized peak 

height was calculated by dividing each raw peak height by the cumulative peak height 

of that sample. This is analogous to making each peak height a percentage of the total 

peak height of a sample. Likewise, relativized peak area was calculated by dividing 

each raw peak area by the cumulative peak area of that sample. Peak areas from four 

of the ten datasets could not be obtained. 

 

2.3. Sources of variation in T-RFLP datasets 

Multivariate T-RFLP data analysis often begins by organizing the data into a 

species (T-RF) × samples matrix, analogous to those found in many other applications 

in community ecology. This matrix will contain three distinct sources of variation: i) 

main effects for T-RFs, also called operational taxonomic units (OTUs); ii) main 

effects for Environments, also called treatments, plots, samples, and iii) interaction 

effects for T-RF × Environment (T×E). When this matrix is subjected to a 

dimensionality-reduction method, the selected method will generally analyze all three 

sources of variation simultaneously. However, here we argue that when T-RFLP is 

used as a tool for exploratory microbial community analysis, the scientifically 

interesting question commonly being asked is, “How are the T-RFs differentially 
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responding to (i.e. interacting with) the environments?” It is therefore important to 

distinguish between these sources of variability, and to focus on the T×E interactions.  

T-RF variation arises from the fact that some T-RFs occur commonly across 

all samples in a dataset, while others occur only rarely. In other words, it reflects 

variability in the means of different T-RFs. When studying macroorganisms, species 

have a real and tangible meaning to the researcher. On the contrary, for T-RFs, the 

represented ‘species’, are often considered somewhat of a ‘black-box’ during the 

analysis of T-RFLP datasets. Microbial ecologists must use caution when 

conceptualizing T-RFs as unique species or even unique OTUs, as Clement et al. 

(1998) and others have shown that multiple organisms can share similar or identically-

sized T-RFs. Except when working with a specific organism, group-specific primers 

or with a locally-constructed clone library, individual T-RFs in a T-RFLP dataset are 

often ambiguous, limiting the researcher from drawing information from them. T-RF 

variation constitutes inherently simple information on commonness or rareness that 

can distract a multivariate analysis from capturing the truly complex interaction 

information.  

The logic outlined above for T-RF variation does not apply to the 

environmental variation in a T-RFLP data matrix, which arises from differences in 

numbers of peaks or overall signal strength in T-RFLP profiles representing different 

environments. Environments represent a very real and tangible concept to the 

researcher. However, true environmental variation (e.g., due to microbial biomass) is 

masked in T-RFLP analyses by analytical variability related to, for example, DNA 

purification efficiency, pipetting error, and community structure (Blackwood et al., 

2003, Dunbar et al., 2000). As a result, this known source of analytical noise is 

commonly removed in peak height and area with the relativization process. Hence, 

when using T-RFLP as a method of exploratory data analysis on microbial community 
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structure, the T×E variation is often most relevant to the researcher. In this study, we 

discuss sources of T-RFLP variation in this context, assuming that T×E variation is of 

primary interest. 

 

2.4. Analysis of variance 

Two-way ANOVA was performed on all T-RFLP datasets in Table 5.1, using 

MATMODEL software (Gauch, 2007, Gauch and Furnas, 1991). The percent of 

variation from each source in the ANOVA (T-RF, Environment, and T×E) was 

calculated by dividing that source’s sum of squares (SS) by the treatment SS and 

multiplying by 100. The interaction SS was further decomposed into interaction signal 

SS and interaction noise SS. The interaction noise SS was estimated by multiplying 

the interaction degrees of freedom (df) by the mean squared error (MSE). The 

interaction signal SS was estimated by subtracting the interaction noise SS from the 

interaction (total) SS. The interaction signal SS and interaction noise SS were then 

divided by the treatment SS to calculate the percent variation in the dataset due to 

these sources. See Gauch (1992) for more details on these calculations.  

 

2.5. Empirical testing of ordination methods 

In order to determine the more robust and informative methods, several of the 

more common multivariate statistical ordination analyses in the literature were 

compared: (i) PCA, (ii) CA, (iii) DCA and (iv) NMS using the Sørensen (Bray-Curtis) 

distance measure, (v) NMS using the Jaccard distance measure, (vi) NMS using the 

Euclidean distance measure, and (vii) the Additive Main effects and Multiplicative 

Interaction (AMMI) model. The AMMI model, also known as ‘doubly-centered PCA’, 

has been used extensively in agriculture research, particularly in analyses of yield 

trials. AMMI uses ANOVA to first partition the variation into main effects and 
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interactions, and then applies PCA to the interactions to create interaction principal 

components (IPCs) (Gauch, 1992). Therefore, instead of examining overall variability 

of the data, AMMI can focus on the differential responses of T-RFs to the treatments, 

that is, T×E. Here, the ‘main effects’ are defined as the T-RF and environment 

variation. Including the AMMI model, there were 7 separate analyses performed on 

each of the 46 T-RFLP data matrices, totaling 322 graphs evaluated. 

Environments (E) were replicated for all experiments in this study. Initially, 

two analyses of each statistical method were run on each dataset, one analysis with the 

original replicated dataset and a second analysis with the averages over replicates, 

using T-RF Manager software (Culman et al., unpublished; 

http://cbsusrv02.tc.cornell.edu/TRF/index.aspx). The two ordinations produced from 

these analyses were very similar, and if the two graphs were overlaid, the individual 

replicates would simply scatter somewhat around the averaged value. The two 

ordinations were equally discriminatory with respect to our criteria for evaluating 

statistical methods (see below), so we subsequently focused the comparison on the 

simplified datasets with averages over replicates.  

 

2.6. Statistical software and parameters 

• PCA was performed with PC-ORD v4 (MjM Software Design, Gleneden 

Beach, OR; McCune and Mefford, 1999) with the VARIANCE/COVARIANCE 

(CENTERED) option selected. This option centers the T-RFs by subtracting the 

average for each T-RF over environments from each matrix entry for that T-

RF. This produces a variance-covariance matrix. By contrast, use of the 

CORRELATION (STANDARDIZED) option first centers the T-RFs and then divides 

each matrix entry by the standard deviation for each T-RF, thus producing a 

correlation matrix. Our reason for this selection is discussed section 3.3. 
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• CA was performed with PC-ORD, with DOWNWEIGHT RARE SPECIES not 

selected. 

• DCA was performed with PC-ORD using the default settings: (i) DOWNWEIGHT 

RARE SPECIES was not selected, (ii) RESCALE AXES was selected, (iii) RESCALING 

THRESHOLD = 0, and (iv) NUMBER OF SEGMENTS = 26.  

• NMS was performed with PC-ORD, using the MEDIUM AUTOPILOT mode. This 

mode specifies: (i) MAXIMUM NUMBER OF ITERATIONS = 200, (ii) INSTABILITY 

CRITERION = 0.0001, (iii) STARTING NUMBER OF AXES = 4, (iv) NUMBER OF REAL 

RUNS = 15, and (v) NUMBER OF RANDOMIZED RUNS = 30. Three separate distance 

measures were selected for the MDS analysis: Sørensen, Jaccard and 

Euclidean. When the AUTOPILOT mode recommended a final solution that was 

more or less than 2 axes, the analysis was re-run with the same parameters, but 

forcing a 2-dimensional solution (AUTOPILOT mode deselected). 

• The AMMI analysis was performed with MATMODEL.  

Scatterplots of the first two axes of each ordination were graphed with Minitab 

v.14.1 (State College, PA). 

 

2.7. Criteria for empirical comparisons 

Evaluating the ability of an ordination to reveal the true structure of a dataset is 

problematic, because it is only with simulated data that we know the true and exact 

structure of a particular dataset. However, with field data, we do have two 

considerations to aid our evaluation of the accuracy and effectiveness of an ordination: 

(i) a priori information about the experiment’s treatment design and microbial 

community dynamics and (ii) consensus among the ordinations performed. In this 

study we used these two criteria as a surrogate for the true structure of the data. For 

each of the 46 data matrices, we compared the scatterplots of the first two axes 
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produced by the seven ordination methods and evaluated each method’s ability to 

demonstrate known gradients or treatments, such as time, crop phenology, soil depth, 

etc. We also examined each method’s performance against one another within each 

data matrix, evaluating if the method complied with the consensus reached by the 

majority of analyses. For each data matrix, every method was scored as demonstrating 

the expected gradient/s either i) very well, ii) reasonably well or iii) poorly/not at all. 

In addition, the method was scored as reaching a general consensus with the other 

methods or not. Consensus could be viewed as a more robust ranking scheme, 

indicating if the overall interpretation of a particular ordination was similar to the 

majority of analyses. The ranking of ordination methods was judged for consistency 

across all datasets to minimize any anomalous results specific to a given dataset. The 

large number of datasets examined here mitigated the subjectivity of this coarse 

scoring system, making this empirical assessment more robust than in any previous 

study. 

 

2.8. Most informative type of data 

The most informative type of data (binary, relativized peak height or 

relativized peak area) was evaluated based on the number of times a consensus with 

the majority of the methods was reached. The total number of times a consensus was 

reached was summed over every data matrix for that type of data.  

 

2.9. Theoretical criteria for evaluating methods 

The ordination methods in this study were not only compared empirically, but 

also theoretically. Although these criteria are not exhaustive, the more relevant 

theoretical aspects when analyzing T-RFLP data are listed below: 
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1) Assumptions—What assumptions does the analysis make about the data? Are 

these assumptions appropriate for microbial community data? 

2) Proportion of Variation Represented—Does the analysis quantify the 

amount of variation captured in the first 2 (or 3) axes? 

3) Integrated Dual Analysis—Is there an integrated analysis of T-RFs and 

treatments, or only an analysis of one of these? 

4) Uniqueness of Solution—Given the same data, would multiple users come to 

similar conclusions? Or does this method suffer from ‘optionitis’? (‘Optionitis’ 

= an excessive number of choices not determined by objective criteria).  

5) Weight of Rare T-RFs—How much importance does the analysis give rare T-

RFs? 

 

3. Results 

 

3.1. Analysis of variance 

Table 5.3 shows the distribution of variation within the T-RFLP datasets from 

ANOVA, arranged in descending order of variation due to main effects (T-RF and E 

variation). Main effects variation ranged from 89.4% (Bioreactor, relativized peak 

height) to 39.4% (Multiregional soil, binary). The vast majority of the main effects 

variation was made up of T-RF variation, with E variation contributing very little. 

Note that E main effects with relativized peak height and area will be exactly zero, as 

a result of the relativization process. However, E main effects of binary data, which 

were not relativized, still contributed no more than 2.0% (Bioreactor) and as little as 

0.1% (Ramp Bacteria and Fractionation ’98) of the total variation. This indicates that 

the total number of T-RFs in each sample was nearly constant.  
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Table 5.3. Percent of variation in T-RFLP datasets from Analysis of Variance a 
 

Study 
Main 

Effects T-RFs Environments 
Interaction 

Effects Signal Noise 
 -------------------------------------- % --------------------------------------- 
Bioreactor       
     Binary 83.7 81.7 2.0 16.3 6.3 10.0 
     Height 89.4 89.4 0.0 10.6 6.2 4.4 
Khum Bacteria       
     Binary 73.7 73.4 0.3 26.3 12.2 14.1 
     Height 83.4 83.4 0.0 16.6 6.8 9.8 
     Area 84.8 84.8 0.0 15.2 6.9 8.3 
Ramp Bacteria       
     Binary 72.6 72.5 0.1 27.4 13.3 14.1 
     Height 74.5 74.5 0.0 25.5 16.0 9.5 
     Area 75.5 75.5 0.0 24.5 15.6 8.9 
Fractionation ‘98       
     Binary 78.9 78.8 0.1 21.1 11.7 9.4 
     Height 79.5 79.5 0.0 20.5 15.6 4.9 
Fractionation ‘99       
     Binary 75.7 75.4 0.3 24.3 12.6 11.7 
     Height 76.5 76.5 0.0 23.5 17.0 6.5 
Prairie       
     Binary 61.9 60.9 1.0 38.1 21.6 16.5 
     Height 78.0 78.0 0.0 22.0 14.4 7.6 
     Area 78.2 78.2 0.0 21.8 13.8 8.0 
AWD       
     Binary 68.2 67.1 1.1 31.8 19.8 12.0 
     Height 84.0 84.0 0.0 16.0 11.7 4.3 
     Area 86.7 86.7 0.0 13.3 8.7 4.6 
Khum Fungi       
     Binary 60.1 59.3 0.8 39.9 14.7 25.2 
     Height 60.3 60.3 0.0 39.7 21.6 18.1 
     Area 59.4 59.4 0.0 40.6 21.9 18.7 
Ramp Fungi       
     Binary 52.9 51.0 1.9 47.1 21.0 26.1 
     Height 54.4 54.4 0.0 45.6 32.0 13.6 
     Area 53.5 53.5 0.0 46.5 32.8 13.7 
Multiregional       
     Binary 39.4 39.1 0.3 60.6 56.6 4.0 
     Height 46.5 46.5 0.0 53.5 52.2 1.3 
a   The values are percentages based on the three T-RFLP data types: binary (presence/    
    absence), height (relativized peak height) and area (relativized peak area). Main effects   
    and interaction effects make up the two main sources of variation within a T-RFLP  
    dataset. The main effects are a subtotal for the T-RFs and Environments. Similarly, the  
    interaction effects are a subtotal for both interaction signal and interaction noise. For  
    experiments with multiple restriction enzymes, the variation across these enzymes was  
    averaged, as this variation was insignificant. 
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Percentages of variation due to interaction effects and the relative proportion of 

interaction signal not only varied with the dataset, but this variation coincided with 

background knowledge of these datasets. For example, the Bioreactor dataset is 

composed of bacterial communities from several bioreactors that were treated 

identically. These bacterial communities would be expected to vary little, and the 

ANOVA confirms this expectation, with the interaction effects making up only 16.3% 

and 10.6% of the total variation in the binary and peak height data, respectively. Of 

this variation, just 6% is from interaction signal for both types of data. In contrast, the 

Multiregional soil dataset is composed of communities from extremely different soil 

types. These communities appear to be very different, as the majority of the total 

variation in the binary and peak height data is due to interaction signal (56.6% and 

53.5%, respectively). The ANOVA output given in Table 5.2 suggests that the 

community differences need not be that extreme in order to be detected. Relatively 

larger interaction variation from the Khum and Ramp fungal datasets compared to the 

Khum and Ramp bacterial datasets also coincides with the results of the ordinations 

reported elsewhere (Culman et al., 2006). 

ANOVA revealed overall consistency in the distribution of variation between 

the three types of data: binary, relativized peak height and relativized peak area (Table 

5.2). Analyzing binary data resulted in the lowest main effects variation and the 

highest interaction effects variation in 9 out of the 10 datasets. The ratio of interaction 

signal to noise was lowest in the binary data 9 out of 10 times and highest in peak 

height 7 out of 10 times.  

 

3.2. Empirical ordination results 

Overall, the ordinations from the seven analyses generally yielded graphs that 

did not drastically deviate from one another. Consequently, the scoring differences 
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were limited to a relatively narrow range (Table 5.4). Individual methods are 

discussed below. 

 
Table 5.4. Results of empirical comparisons between ordination methods with 
values representing the number of data matrices scored for each category. 
 

Method 

Demonstrated 
known 

gradient(s) 
very well 

Demonstrated 
known 

gradient(s) 
reasonably well

Demonstrated 
known 

gradient(s) 
poorly/ not at all 

Reached 
consensus 
with other 
ordinations 

T-RF-centered PCA 25 21 0 46 
AMMI 25 21 0 46 
CA 21 19 6 42 
DCA 23 23 0 46 
NMS with Sørensen  26 18 2 44 
NMS with Jaccard  25 20 1 45 
NMS with Euclidean  22 20 4 42 
 

3.2.1. PCA and AMMI 

In this study, both variable-centered (T-RF-centered) PCA and AMMI 

(doubly-centered PCA) were performed. In T-RF-centered PCA, the T-RF main 

effects variation is reduced to zero in a manner similar to the relativization process 

with the environments. Hence, with little to no main effects variation, a T-RF-centered 

PCA approximates the AMMI analysis, because the environment variation is small 

(2% or less). As a result, the T-RF-centered PCA and AMMI analysis ordinations 

were nearly identical and performed equally well at recovering expected gradients, 

reaching a consensus with every data matrix analyzed (Table 5.4). 

Variants of PCA that were not T-RF-centered or T-RF-standardized did not 

remove the T-RF main effects variation and as a result produced quite different 

ordinations that were dominated by T-RF main effects. Figure 5.1a shows the results 

of an environment-centered PCA, an analysis that removes variation that is already 
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Figure 5.1. Ordinations of fungal community T-RFLP data (Khum, Sau96I, binary data) with (a) environment-centered 
PCA and (b) AMMI analysis. The AMMI analysis removes the main effects variation by applying PCA to the interaction 
matrix, thus focusing solely on the pattern of interest. Environment-centered PCA does not remove the variation from T-
RFs (59.3% of the total variation) and therefore, the primary pattern of interest—interaction signal—is obscured by less 
interesting main effect variation from the T-RFs. 
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very small (0.8% environment main effects), but does nothing to remove the main 

source of variation (59.3% T-RF main effects). Figure 5.1b shows PCA (AMMI) 

applied to the same data, but after first removing the large T-RF variation and small 

environment variation. Removing these sources of variation (i.e., doubly-centering) 

produces the interaction matrix that AMMI ordinates. The environment-centered PCA 

(Figure 5.1a) is an inferior procedure, as the more subtle trends in treatment difference 

(indicated by circled data points) are not consistently captured. This analysis could be 

produced by a researcher simply entering and analyzing a mistakenly transposed T-

RFLP data matrix. Note that a variable-centered PCA is the default procedure in some 

statistical packages (e.g., SAS, Cary, NC), while in other commonly used packages 

(e.g., Canoco, Microcomputer Power, Ithaca, NY), the user must select this option.  

 

3.2.2. CA and DCA 

CA was among the poorer methods for demonstrating expected gradients and 

reaching a consensus with the other methods (Table 5.4). However, when CA was 

rerun with rare species downweighted with four of the data matrices, the resulting 

ordinations were acceptable and reached a consensus with other methods, making the 

method more robust (data not shown). DCA performed comparable to other methods 

with all datasets, except the Multiregional dataset, where it scored ‘reasonably well’ in 

all six of the data matrices. These did not affect the overall interpretation of the 

dataset, enabling DCA to reach a consensus with all 46 data matrices, demonstrating 

its overall robustness (Table 5.4).  

 

3.2.3. NMS 

Overall, the ordinations produced from NMS analyses were very similar to the 

eigenvector-based methods evaluated above. NMS analyses with Sørensen and 
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Jaccard distance measures scored high in demonstrating gradients ‘very well’, with the 

Sørensen distance measuring scoring better than any method compared (Table 5.4). 

However, two NMS analyses with Sørensen distance and one analysis with the Jaccard 

distance measure produced ordinations that were wildly different from the consensus 

reached by other ordinations. These analyses were re-run several times each with 

different initial configurations, but produced similar idiosyncratic results. NMS with 

the Euclidean distance measure ranked the worst at reaching a consensus and was 

judged to be the poorest performing method examined (Table 5.4).  

For the most complex datasets, NMS analyses with Sørensen and Jaccard 

distance measures performed better at demonstrating known gradients than all other 

analyses. For example, NMS outperformed all other analyses with the entire tallgrass 

prairie datasets analyzed as a whole, but when this dataset was decomposed (based on 

experimental design) into two separate datasets and reanalyzed, the NMS analyses 

were no longer more discriminatory than the other methods (data not shown). This 

phenomenon was also observed in the datasets from the solarization study (Figure 

5.2). The combined rice and wheat dataset (Rampur, Bacteria, Sau96I enzyme) is 

shown analyzed with the AMMI model (Figure 5.2a) and with NMS with the Sørensen 

distance measure (Figure 5.2b). When the rice and wheat seasons were analyzed as a 

single dataset, the NMS analysis was more discriminatory at demonstrating the 

treatment differences (soil solarization) in rice than was the AMMI analysis. This is 

demonstrated by the circled data points and arrows in Figure 5.2b, and the lack of 

consistency in treatment trends represented in Figure 5.2a. However, when the rice 

season was decomposed and analyzed separately from the wheat season (Figure 3 

from Culman et al. (2006)), the resulting ordinations from all the methods were 

equally informative, and were generally more informative than the NMS analysis of 

the combined rice and wheat dataset. Neither AMMI nor NMS revealed treatment 
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Figure 5.2. T-RFLP bacterial community data (Ramp, Sau96I, binary) analyzed with (a) AMMI (b) and NMS with 
Sørensen  distance measure, demonstrating the greater discriminatory power of NMS in the rice crop with heterogeneous 
data (rice and wheat data analyzed together). Closed data points represent non-solarized plots; open data points represent 
solarized plots. Circled data points represent the rice crop; non-circled data points represent the wheat crop. Differing 
shapes and colors represent different sampling time periods. See Culman et al. (2006) for details of experiment and legend. 
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differences in the wheat sampling periods when either the combined or separated 

datasets were analyzed. 

 

3.2.4. Most informative type of data—binary, peak height or peak area 

Overall, there were few differences in the final ordinations derived from the 

three different types of data. Our analyses demonstrated that binary data were the most 

robust, with only one instance when a method didn’t reach a consensus in the binary 

data matrices (18 total). A consensus was not reached five times in the relativized peak 

height data matrices (18 total), and five times in the relativized peak area data matrices 

(10 total). 

 

3.3. Theoretical ordination results 

Assumptions. PCA uses Euclidean distance and assumes a linear relationship 

among variables, which may not be appropriate for community ecology data (Beals, 

1984, McCune and Grace, 2002). However, this issue is resolved by use of appropriate 

data transformations which allow PCA to be performed with a wide variety of distance 

metrics appropriate for community ecology data (Legendre and Gallagher 2001). CA 

and DCA are both eigenvector-based ordination techniques that use a chi-square 

distance measure and assume that T-RFs have a unimodal distribution along 

ecological gradients. This is a more appropriate assumption than linearity for 

ecological community data, as it is in agreement with the usual outcome of ecological 

studies (Gauch, 1982), but is still capable of being violated with community ecology 

datasets (Beals, 1984, Legendre and Legendre, 1998, Minchin, 1987). NMS 

fundamentally differs from the above techniques because it uses rank order 

information from a similarity matrix to ordinate the data, rather than metric 

information (Gauch, 1982). NMS does not assume linear relationships among 
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variables and it allows virtually any distance measure to be used in the construction of 

the similarity matrix. Rees et al. (2004) argued that these attributes make NMS more 

appropriate for T-RFLP community analysis over other methods.  

Proportion of Variation Represented. Interpretation of ordination analyses 

must be guided by an objective assessment of how much variation is being captured in 

the first few ordination axes. PCA (including AMMI) is the only method that can 

precisely calculate this variance from the ratio of eigenvalues to total variation. This 

attribute favors PCA when an objective assessment of variation represented is desired. 

It should be noted that all methods can use an after-the-fact assessment which 

calculates a coefficient of determination (r2) as an assessment of how much variation 

is captured in the first few axes (McCune and Grace, 2002). However, this approach 

was not evaluated here since several distance measures were compared, making these 

measures incommensurable.  

The proportion of variation represented in the IPCs in AMMI analysis can be 

directly related to the predicted interaction signal given in Table 5.3. For instance, the 

T×E signal comprises only 14.7% of the total variation for the data represented in 

Figure 5.1b, but this figure focuses on T×E exclusively and AMMI’s first two IPCs 

account for nearly all of the interaction signal. Across all datasets, the average percent 

of interaction variation represented in the first two IPCs was 94.5%. This directed 

focus can be advantageous when research interests focus on T×E, and this interaction 

is a small portion of the overall variation. 

Integrated Dual Analysis. Biplots are scatterplots of samples and species 

(Environments and T-RFs) in the same graph. These can be extremely insightful in 

determining which T-RFs are most closely associated with which environments. 

Eigenvector techniques (PCA, AMMI, DCA, and CA) use integrated, dual analysis of 

the rows and columns of a data matrix, resulting in scores for both Environments (E) 
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and T-RFs. NMS analyses are not dual by nature, because a distance matrix is 

constructed based on similarities of T-RFs or E, but not both.  

Uniqueness of Solution. Analyses that have a large number of parameters that 

need to be specified have potential for confusion. Optionitis—a term we use to 

describe this phenomenon—can become problematic when these parameters are not 

selected by objective criteria and when the results vary depending on which 

parameters are selected. PCA has several variants, but the most appropriate can be 

selected by objective criteria. CA and DCA have a few important input options that 

the user must select. Depending on the software used, NMS has several criteria that 

need to be selected (distance measure, stress level, number of iterations, starting 

configuration, number of axes), which can lead to a number of possible outcomes. 

Current computing power enables the user to be very conservative with most of these 

parameters, alleviating most of these concerns. However, in our experience, if these 

parameters are not set conservatively, the results can be quite variable. 

Weight of Rare T-RFs. The distance measure that an analysis uses can impact 

the relative influence of rare T-RFs. The chi-square distance measure has been 

criticized by several authors (Faith et al., 1987, Legendre and Legendre, 1998, 

Minchin, 1987) for its tendency to give greater weight to rare species and less weight 

to commonly occurring species. This is an important issue as rare T-RFs commonly 

occur in T-RFLP data and can be methodologically exacerbated with mis-called 

electrophoretic reads of peak size (T-RF drift) or by PCR artifacts. Since both CA and 

DCA use the chi-square distance measure, they will potentially give greater weight to 

rare species—an undesirable characteristic. Although the program DECORANA (Hill, 

1979), on which most DCA software is built, and various versions of CA do give the 

option of ‘down-weighting’ rare species, this does not fully remedy the problem 

(Jongman et al., 1995). Likewise, rare species are also given greater weight in 
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standardized (correlation-matrix) PCA (not empirically evaluated here) than in 

centered PCA. Because standardized variables give each T-RF equal variance, rare 

and common T-RFs contribute equal information to the ordination. Therefore, using 

T-RF-centered variables, rather than T-RF-standardized variables, is generally more 

desirable in T-RFLP analysis. NMS offers the greatest flexibility with regard to 

selecting a distance measure. Rees et al. (2004) and others (Legendre and Legendre, 

1998, McCune and Grace, 2002) have recommended the Sørensen (Bray-Curtis) 

distance measure (with NMS) as an ecological distance measure for several reasons. 

Perhaps the most important is the ability of Sørensen to appropriately ignore joint 

absences (i.e. if two samples do not contain many of the same T-RFs, this is not 

measured as similarity between them). See Legendre and Legendre (1998) for further 

discussion of these ecological distance measures. 

The potential problem of rare species receiving greater weight can be side-

stepped by simply deleting rare species from the dataset. While this would not be 

appropriate if the researcher was interested in diversity measures, it can often reduce 

overall noise and improve the correlation structure in datasets. McCune and Grace 

(2002) suggest deleting species (T-RFs) that only occur in fewer than 5% of the 

samples. In our experience, deleting rare T-RFs strengthens the observed patterns from 

ordinations.  

 

4. Discussion 

Analysis of variance was performed on all datasets in this study in order to 

gain insight into the distribution of variation in these T-RFLP datasets. Main effects 

variation dominated the majority of the datasets and was comprised almost entirely of 

T-RF variation. This variation is inherently simple information on the rareness or 

commonness of T-RFs and is often not of primary interest. The main effects variation 
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from E was always small—either the total number of T-RFs across all treatments 

remained fairly constant (in binary data), or the variation was eliminated by the 

relativization step (in peak height and area) to remove a known source of analytical 

noise. The small contribution from E was due in part to the quality control step that 

eliminated poor-quality runs from the analysis, but also reflected the nature of the 

datasets examined. Despite often large differences between treatments, the number of 

T-RFs in each environment remained fairly constant (evenness values in Table 5.2; 

binary environment variation in Table 5.3). The nature of T-RFs and E main effects 

variation directs the researcher to focus entirely on the interaction variation, as nearly 

of all the relevant information concerning the environments, imposed treatments, 

samples, etc. is found in the interaction. This interaction captures how T-RFs 

differentially respond to the E. In this context, ANOVA can be used as a standard 

procedure that can be applied to any dataset in order to objectively measure microbial 

community dissimilarity. This in turn can provide insight into whether these 

differences are ecologically meaningful.   

Table 5.3 demonstrates a large proportion of dataset variation from T-RFs. 

This variation needs to be removed by the selected analysis, or the resulting ordination 

will be dominated by this simple and often uninteresting information. This 

phenomenon is demonstrated dramatically in Figure 5.1. We were intrigued to 

discover that the necessity to remove the T-RF variation only seems to be germane 

with PCA, as all the other methods examined in this study (CA, DCA and NMS) have 

means to ignore or minimize this variation. 

In this study, all methods produced empirical results that generally did not 

deviate from the overall consensus. Likewise, the theoretical criteria did not solely 

favor one particular analysis over the others. However all methods did not perform 

equally. Some methods have distinct advantages which aid in data interpretation and 
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tend to be more robust, while others have qualities that could be potentially 

problematic.  

The AMMI analysis and PCA yielded nearly identical empirical results and 

scored favorably with all but one theoretical criterion—assumptions about the data. 

The AMMI analysis also measures how the variation within a dataset is distributed, 

including the amount of interaction signal that the IPCs capture. This can provide 

valuable insight into the relative strength of the observed pattern. Empirically, DCA 

performed well and proved to be among the more robust analyses. CA was not as 

robust as DCA, but performed well when rare species were downweighted. DCA and 

CA both scored favorably in only two out of the five theoretical criteria. NMS 

analyses with Sørensen and Jaccard distance measures both performed well at 

demonstrating expected gradients. NMS analysis with Euclidean distance ranked as 

being the least discriminatory. Theoretically, NMS analyses scored poorly with all but 

one criterion—the lack of assumptions made on the data. This attribute could 

potentially be very important, but we have found it is usually not germane. In our 

experience, soil-based T-RFLP data are generally not very complex relative to other 

types of ecological community data. Legendre and Gallagher (2001) refer to these 

types of datasets as having short gradients. Measures of dataset complexity can 

account for various factors, including sample heterogeneity, the number of underlying 

gradients, T×E interactions, and relative noise to signal. We found sample 

heterogeneity (also known as beta diversity) to be a satisfactory and simple measure of 

this complexity.  

We assessed T-RFLP environment heterogeneity by measuring beta diversity, 

defined as [(total number of T-RFs in a dataset) / (average T-RF richness in the 

environments)] – 1 (Whittaker, 1972). McCune and Grace (2002) state as a rule of 

thumb that beta diversity less than 1 is rather low and greater than 5 is very high. We 
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found the average beta diversity across all T-RFLP datasets to be 1.22, suggesting that 

overall heterogeneity between environments in T-RFLP datasets is relatively low. 

(Note that beta diversity is often highly correlated with the percent of empty cells in a 

data matrix.) Another observation to support the idea that soil-based T-RFLP data 

have relatively low complexity was the empirical findings. Overall, ordinations of the 

same dataset with different methods did not drastically deviate from each other, 

suggesting the relative ease of the ordinations by the various methods. This same 

phenomenon—when sample heterogeneity is low, ordinations from different methods 

perform comparably—has been shown in numerous ecological studies (Beals, 1984, 

Fasham, 1977, Gauch et al., 1977, Kenkel and Orloci, 1986, Minchin, 1987). 

 The lack of complexity or heterogeneity in T-RFLP datasets is likely related to 

the type of questions that T-RFLP is employed to ask. Microbial ecologists rarely use 

T-RFLP to assess community structure from two very different environments (e.g., 

very wet to very dry gradients, very different soil types, etc.) as most researchers will 

(often correctly) assume that these microbial communities will be very different. As a 

consequence, the length of the ecological gradient is often kept relatively short by the 

researcher’s experimental design when employing T-RFLP. 

An irony currently exists in the literature in which researchers meticulously 

report the concentration and reaction details of their PCR (even though T-RFLP has 

been shown to be robust to these variations (Osborn et al., 2000)), but often fail to 

report rudimentary information about the statistical analyses. A survey of recent T-

RFLP literature will show many papers that fail to report any parameters about the 

analyses employed, even parameters as fundamental as which variant of PCA or 

distance measure of NMS. Omissions such as these should be avoided, as they 

compromise the repeatability of experiments and analyses. McCune and Grace (2002) 

have offered criteria to report for each analysis. Of these criteria, we judge the most 
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important for T-RFLP analysis to be: i) PCA and AMMI: form of cross-products 

matrix (correlation, variance-covariance, or doubly-centered), number of axes 

interpreted and the proportion of variance represented by each axis, and justification of 

the assumption of linear relationships among T-RFs; ii) CA and DCA: number of axes 

interpreted and the proportion of variance represented by each axis (after-the-fact 

assessment), whether downweighting was selected, and justification of the assumption 

of unimodal distribution of T-RFs; iii) NMS: distance measure, stress of final solution, 

number of dimensions in final solution, proportion of variance represented by each 

axis, number of runs with real data, and number of iterations for final solution. 

 

 

Conclusions and Recommendations 

 

Based on our findings there is no single method that we can recommend above 

all others for soil-based T-RFLP community analysis. We recommend that it become 

conventional for all T-RFLP data to be reported with two important dataset 

characteristics: beta diversity and percent of main and interaction effects. We found 

these two characteristics to be highly informative indicators of the nature of the 

datasets examined in this study. Datasets with high beta diversity (2 or greater in our 

experience), or otherwise greater complexity than those examined in this study, should 

likely employ NMS analyses with Sorensen or Jaccard (or another appropriate 

distance measure). Analyses of low beta diversity datasets should be more strongly 

guided by the outlined theoretical criteria. Both interaction effects and beta diversity 

are easily calculated with the free online software, T-RF Manager 

(http://cbsusrv02.tc.cornell.edu/TRF/index.aspx). 
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We prefer the AMMI analysis for most T-RFLP data that we have 

encountered, as it has performed very well empirically, and also yields an ANOVA 

table which provides a tool to assess microbial community dissimilarity. The ability of 

the analysis to focus on the differential responses to the treatments may also be 

amenable for use on microarray data or other approaches focusing on differential gene 

responses. Unless otherwise justified, DCA and CA analyses should be run with the 

‘downweight rare species’ option selected. We generally do not recommend NMS 

with the Euclidean distance measure; it performed the worst empirically, and has no 

advantages over the other methods that we judge important for T-RFLP. Finally, we 

recommend confirming initial findings with other multivariate method/s whenever 

possible. 

In this study, binary data were less prone to variable results than relativized 

peak height or area, making binary data the most robust measure. Relativized peak 

height had, on average, greater interaction signal to interaction noise ratios, lower 

|skew|, and lower NMS stress than relativized peak area. For these reasons and those 

outlined in Grant et al. (2003), we recommend using binary data or relativized peak 

height for ordination analyses over relativized peak area. 
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CHAPTER 6 

T-REX: SOFTWARE FOR THE LABELING, PROCESSING,  

AND ANALYSIS OF T-RFLP DATA5 

 

Background 

 

Despite increasing popularity and improvements in terminal restriction fragment 

length polymorphism (T-RFLP) and other molecular-based microbial community 

fingerprinting techniques, there are still some formidable barriers that plague the 

analysis of these datasets. Many steps are required to process raw data into a format 

ready for analysis and interpretation. These steps can be time-intensive, error-prone, 

and can introduce unwanted variability into the analysis. Currently, some of greatest 

obstacles of T-RFLP analysis are: i) determining true peaks from noise, ii) aligning 

peaks between samples iii) creating two-way data matrix from tabulated raw data, iv) 

rapid manipulation of data matrices, and v) determining dataset complexity (sample 

heterogeneity and interaction effects). Each one of these issues will be discussed more 

thoroughly below. 

 

Determining "true peaks" (i.e., distinguishing peaks from background fluctuations in 

fluorescence) is often a major challenge in T-RFLP data analysis, as the baseline 

threshold can dramatically affect the community fingerprint and downstream analyses. 

A common procedure is to apply a researcher-determined baseline threshold across all 

samples to delineate true peaks from noise [1-3]. However, this threshold is often 

subjectively determined and may not be the most appropriate approach. Since the 

number of spurious peaks in a sample may increase when the amount of PCR product 

                                                 
5 This chapter will be submitted to BMC Bioinformatics 
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analyzed increases, the amount of noise relative to signal in a sample may be a 

methodological artifact. When DNA concentrations vary from sample to sample, 

determining true peaks from noise based on variability in each sample [3], rather than 

a value across all samples is conceptually more appropriate. 

 

The size (in base pairs) of every T-RF is determined by referencing the T-RF with an 

internal size standard. However, T-RFs can be improperly sized due to differences in 

fragment migration, purine content, and fluorophores [4, 5]. These analytical errors in 

determining fragment length (T-RF drift) are often corrected for by aligning peaks 

manually [2], aligning them automatically [1, 6], or simply ignored and treated as 

analytical error. However, to date, there have been no reports on the effect of these 

three approaches. Since most peak alignment software isn’t integrated with 

downstream multivariate analyses, it is often difficult to determine the effects of this 

alignment on the overall interpretation of the data. 

 

Because of the complexity associated with T-RFLP and other microbial community 

datasets, multivariate statistical analyses are typically performed on these data to 

summarize the complex relationships of the microbial communities with their 

environments. Raw T-RFLP data exported from Genemapper™, Peak Scanner™, or 

similar size-calling software is typically in a tabulated or listed format, where one 

column contains all the records for each variable (i.e., one column for all T-RF sizes, 

one column for all peak heights, etc.). However, these data need to be formatted into a 

two-way data matrix, which is required by most multivariate-focused statistical 

software packages (e.g. Canoco, Primer, PC-ORD). The formatting of tabulated raw 

data into a data matrix is generally performed in a spreadsheet software application 

(e.g., pivot table in MS Excel). In order to do this, the electrophoretic runs need to be 
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labeled with information about the sample, which usually pertains to the experimental 

design (sampling period, treatment, replicate number, etc.). Assuming the researcher 

employed randomization on the lab bench to minimize bias throughout the entire 

analysis, this labeling procedure and data matrix construction can be time-intensive 

and error-prone. 

 

A thorough analysis of large T-RFLP datasets requires various data matrix 

manipulations, such as examining the three types of data (presence/absence, peak 

height, peak area), relativization of peak height or peak area, averaging replicated 

samples, examining specific experimental factors, deleting rare T-RFs, etc. Most 

spreadsheet software applications aren’t always amendable to these more sophisticated 

or time-intensive manipulations, making an exhaustive analysis of these data difficult. 

In our experience, an exhaustive analysis can be quite fruitful, as manipulating 

datasets based on experimental design can reveal patterns in ordinations that were 

previously obscured by stronger patterns or by lower signal: noise ratios [7, 8]. 

 

Finally, there is a lack of consensus in the literature today about which statistical 

analyses are more appropriate to analyze T-RFLP data. In a comparative study of 

multivariate methods, Culman et al. [7] attempted to address this lack of consensus 

and found that most common multivariate methods yielded similar empirical results 

when the T-RFLP dataset exhibited low complexity, as measured by beta diversity and 

percent interaction effects. They reported that this complexity could be prescriptive, as 

datasets with greater complexity should likely employ nonmetric multidimensional 

scaling (NMS) analyses, and datasets with low complexity should be guided by 

theoretical criteria. Although beta diversity can easily be calculated in a spreadsheet 

application, the calculation of interaction effects is computationally-intensive. Culman 
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et al. [7] also demonstrated the utility of the Additive Main Effects and Multiplicative 

Interaction (AMMI) model as a robust and advantageous method for T-RFLP analysis. 

This model is found in only a few multivariate software packages offered today. 

 

Currently, there are few options that researchers have to choose from when analyzing 

microbial community data. Most software that has been developed is aimed at 

referencing community fingerprints or profiles with a sequence database in order to 

predict specific taxa  present in the profile (e.g. TAP-TRFLP [9, 10], MiCA [11], T-

RFLP FRAGSORT [12], PAT [13]. There are, however, a few available packages that 

do aid with multivariate data analysis. T-Align [6] implements an algorithm to align 

peaks, hence removing the potential of subjective bias during peak alignment. 

However, this peak alignment is limited to single or duplicate samples, and fails to 

simultaneously align peaks in samples containing more than two replicates. Another 

package, T-RFLP Stats [3] allows users to align peaks (as does T-Align), group 

samples based on various classification procedures and then references these profiles 

to a clone library. This software shows promise, but is written in three separate 

languages (R, Perl and SAS) requiring three separate platforms. These platforms are 

primarily command driven and are all potentially cumbersome to inexperienced users. 

SAS also requires a purchased license for use. In addition, T-RFLP Stats offers no 

labeling procedure to designate and format raw data, nor does it perform any 

ordination analyses, argued by some to be superior to classification procedures for the 

analysis of microbial community data [14]. More recently, a few commercial software 

packages have become available that offer a range of features regarding 

electropherogram manipulation, with some limited multivariate procedures, most 

notably GelQuest (SequentiX, Germany), Genemarker (SoftGenetics, USA), and 

Torast (Dresden, Germany). However, the high costs of these programs (for a single 
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license, GelQuest costs €1,299, with an additional €669 for ClusterVis, a program for 

clustering procedures; Genemarker costs $3,500; Torast costs €249) make them 

inaccessible to some research labs. In addition, features and functions vary widely 

between these programs, as T-RFLP community analysis was not the primary motive 

for the development of these software packages. 

 

Here, we developed T-REX (T-RFLP analysis EXpedited), a free, web-based tool that 

was developed to address current obstacles of T-RFLP analysis. T-REX allows users to 

i) label raw data with attributes related the experimental design of the samples, ii) 

determine a baseline threshold for identification of true peaks over noise, iii) align T-

RFs in all samples (bin T-RFs), iv) construct a two-way data matrix from labeled data 

and manipulate the matrix in a variety of ways, v) produce several measures of data 

matrix complexity, including the distribution of variance between main and interaction 

effects and sample heterogeneity, and vi) analyze a data matrix with the additive main 

effects and multiplicative interaction model (AMMI). T-REX offers users a 

consolidated and rapid analysis of T-RFLP data with great flexibility of functions 

performed on the data.  

 

 

Implementation 

 

T-REX can be found at the web address: http://trex.biohpc.org/. The program is free, 

platform independent, and requires only a web browser and an internet access to use. 

The Home page outlines the program’s features and introduces the user to the typical 

flow of analysis (Figure 6.1). Tabs on the left of the page direct the user to different 

functions of the program. 

http://trex.biohpc.org/
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Figure 6.1. Screenshot of T-REX Homepage. 

 

User Profile and Project Management (Log In). Users can work as a guest or may 

become a registered user. Registered users can store multiple projects (up to 25 unique 

projects) on the server at any time. Saved projects can later be concatenated, renamed, 

or deleted. Guests are allowed everything except storing their data on the server. New 

users can self-register and registered users log into their account via the Log in page.  

 

Uploading Data and Labeling Procedure (Upload Data and My Projects). The first 

step in using T-REX is to upload and label the data, which happens simultaneously and 

requires two files: i) the raw data file and ii) the label file. The raw data file is the 

tabulated file that is exported in Genemapper™ or similar size-calling software that 

contains the peak information for a set of samples. The label file contains a set of 

labels/attributes that describe each sample and often correspond to factors in the 

experimental design. Both files should be a simple text file in tab-delimited format. 



 

 155

Please see the T-REX’s program documentation for specific guidelines on raw data 

and label file formats. 

 

A new project is created when a user uploads and labels data. Registered users should 

specify a unique name for this project as it will be stored on the server, and can later 

be modified. Alternatively, a registered user can upload new raw data to a specified 

existing project. The name of the active project and the registered user is displayed in 

the blue box under the T-REX header icon. 

 

T-REX performs several functions that take advantage of information provided by 

replicated data (i.e., samples that are conceptually identical, or belong to the same 

environment/treatment). However, data need not be replicated for the majority of the 

program's functions. If replication is part of the experimental design, users can define 

what samples are replicates during data upload, or manually in the Sample Summary 

page. Replicated samples are organized into groups called environments. Each 

environment has a unique identifier—a positive integer. At any given time, each 

sample belongs to only one environment and the corresponding environment identifier 

is displayed in the Env column on Sample Summary page. T-REX’s program 

documentation outlines specific guidelines on defining replicated data into 

environments.  

 

Missing data occurs when one or more samples are omitted from the analysis. Missing 

data can result from multiple scenarios. First, a researcher could throw a sample out 

after the visual inspection of the electropherogram showed that the run was of too poor 

quality to be meaningful. Genemapper™ software can also omit poor-quality samples 

from the exported Genemapper™ file. (In this scenario, the sample will not be present 
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in the raw data file.) Missing data can also arise from filtering procedures or other 

parameters applied to the dataset in T-REX that eliminate samples from down-stream 

analyses. 

 

T-REX is able to appropriately deal with all possible cases of missing data. In 

scenarios when there is a discrepancy regarding samples between the raw data file and 

label file the program will enter and record these non-matched samples, but mark them 

as missing data. More specifically, if the label file contains a file name that is not 

represented in the raw data file, the corresponding sample will be entered into the 

system and marked as missing data. Likewise, if the raw data file contains file names 

not in the label file, the samples corresponding to these missing names will be marked 

as missing data and zeroes will be added as labels. In an extreme case when a label file 

is not supplied, all samples in the raw data file will be marked as missing data. Users 

have the option of manually supplying the labels and removing the missing data mark 

from the Sample Summary page. Missing data are stored in the active project, but do 

not affect any procedures or manipulations of data. They are marked in red and can be 

viewed in the Sample Summary page. 

  

Once a project is created, it can be renamed, merged, or deleted in the My Projects 

page. Users can also come back to pre-existing projects and load them in this page for 

further manipulation.  

 

Viewing and Editing Individual Samples (Sample Summary). The Sample 

Summary page is synonymous to the home page of a particular project (Figure 6.2). 

All samples are consolidated to show the total number of peaks, total peak height and 

peak area, as well as the properties relating to the experimental factors assigned in the 



 

 157

labeling procedure. If data are replicated, users can view which environment they are 

grouped with in the Env column. The Sample Summary page also shows users how 

data processing procedures (such as noise filtering or T-RF aligning) have removed 

peaks originally found in the raw data file.  

 

Figure 6.2. Screenshot of T-REX Samples Summary page. 

 

Individual samples can be viewed, edited, and even removed from the analysis in the 

Sample Details page, accessible by selecting the sample ID in the Sample Summary 

page. Once viewing an individual sample, the user will see individual peak properties 

and will be able to manipulate labels, remove individual peaks of that sample, or mark 

the entire sample as missing data within the project.  

 

Export Labeled Data to Use Elsewhere (Export Labeled Data). The Export 

Labeled Data page was designed for users who want to take advantage of T-REX’s 

rapid labeling procedure, but analyze their data with another software program. Users 
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can also manipulate data via the Filter Noise and/or Align T-RFs pages before 

exporting the labeled data. Labeled data is exported as a simple text file with columns 

separated by a specified separator (tab-delimited by default).   

 

Procedure to Filter out Noise from True Peaks (Filter Noise). T-REX uses the 

approach outlined by Abdo et al. [3] to find true peaks and eliminate background 

noise. True peaks are identified as those whose height (or area) exceeds the standard 

deviation (assuming zero mean) computed over all peaks and multiplied by the factor 

specified in the box provided. The procedure is then reiterated with the peaks which 

were not identified as true ones. The iterations continue until no new true peaks are 

found. 

 

The filtering of peaks can be based on standard deviations of peak height or area and 

may be applied to all samples or just selected samples in the active project. Users 

should select an appropriate standard deviation multiplier based on the original 

electropherograms and results of the filtering procedure. The program allows for rapid 

manipulation of the multiplier and subsequent reviewing of results in the Samples 

Summary page if a user wants to determine an appropriate multiplier empirically. At 

any time the filtering procedure can be cleared and the data reverted to their original 

state with the ‘Clear filtering’ button. 

 

Automated Alignment of Peaks (Align T-RFs). An automated alignment of peaks 

across all samples is possible in the Align T-RFs page. This function models the 

approach taken by the software program T-Align [6]. Briefly the smallest peak across 

all samples is identified and tagged. Peaks within the range specified by the clustering 

threshold are then identified and grouped into a T-RF. The next smallest peak across 
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all samples not falling into the first T-RF is identified and tagged. Peaks within the 

specified clustering threshold are identified and grouped with the second T-RF. This 

process continues until all peaks are grouped into a T-RF. Alternatively, peaks can 

simply be rounded to the nearest nucleotide (integer) size with no real clustering 

across samples by using the ‘Round to the nearest integer’ function. 

 

Grouping Samples into Environments (Environments). The Environments page 

allows users to rapidly classify samples into environments based on the given labels. 

This approach is especially useful when replication in an experiment occurred at 

multiple scales (e.g., analytical, field) and a user wants to compare results based these 

different ways of defining replication. Users can assign and/or reassign replicated 

samples into environments by using the provided checkboxes to define the set of 

labels that determine an environment. Samples will be considered replicates (i.e., 

belonging to the same environment) if they have identical sets of checked label values. 

 

 

Data Matrix Construction and AMMI analysis (Data Matrix/ AMMI). The Data 

Matrix/ AMMI page allows users to first construct a two-way data matrix and second 

run the AMMI model on this data matrix. Data matrix construction involves six steps. 

The first two steps require that all peaks be assigned to a particular T-RF via the Align 

T-RFs function and that each sample be associated with an environment. Note that a 

data matrix can be constructed when samples are only rounded to the nearest base pair 

and when data are not replicated (i.e., each sample is designated into a unique 

environment). The third step allows users to specify which type of data 

(presence/absence, peak height, or peak area) to use for data matrix construction, and 

if these data should be averaged across replicates and/or relativized. The fourth step 
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allows users to select which experimental factors should be included in the data 

matrix. Users have the option of selecting all, or just specific fluors and/or specific 

factors to be included in the data matrix and subsequent analysis. The fifth step allows 

users to omit rare T-RFs or samples with poor peak representation. T-RFs or entire 

samples can be omitted based on number or percentage of occurrences across samples, 

or based on total T-RFs in samples or the cumulative peak height or area within a 

sample. This step represents a final quality control process to be placed a final data 

matrix. Selecting ‘Create Data Matrix’ in the sixth step will take the user to another 

page where a data matrix in tab-delimited format is ready, as well as output on basic 

data matrix properties, such as total samples and T-RFs present, maximum and 

minimum, and average number (richness) of T-RFs across samples, and sample 

heterogeneity (Figure 6.3).  

 

 

Figure 6.3. Screenshot of T-REX Create Data Matrix/ Run AMMI page. 
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At this point the user is able to export this data matrix for analysis with another 

software package, or continue with the AMMI analysis by clicking ‘View AMMI 

Analysis’. Choosing the latter will take the user to another page where four output 

tables summarize the ANOVA results and there are a number of files containing 

output available to download (Figures 6.4 and 6.5). The first table reports the degrees 

of freedom, sum of squares (SS) and mean squares for the sources of variance; the 

second table reports the estimations of interaction SS for pattern and noise, if the data 

are replicated. The third table reports the percentages of variation from each source of 

the main effects and interaction effects and the fourth table reports the percentage of 

interaction signal variation that is captured by the first two interaction principal 

components axes (IPCA) (Figure 6.5). These tables are written to a text file called 

“AMMI Summary” and the graphing scores are written to the “AMMI Graphing Data” 

file. 

 
 

 
Figure 6.4. Screenshot of tables 3 and 4 produced with output from the AMMI 
analysis in T-REX 
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Figure 6.5. Screenshot of the tables 3 and 4 produced with output from the 
AMMI analysis in T-REX 

 

Summary of Results and Output (Results Summary). The Results Summary page 

reports the results of relevant basic data matrix properties and summarizes the results 

of the AMMI analysis in one place. The ‘T-RF Abundance table’ reports the number 

of samples (samples present) and percentage of samples (% of samples present) that 

each T-RF occurs. All generated output files are also available for download at this 

page. 

 

Example Dataset. We used T-REX to analyze 16S T-RFLP data from Chapter 2, 

generated from soils under native tallgrass prairies and annual wheat fields from five 

different sites across north central Kansas. Soil was sampled at 6 different depth 

intervals on three separate dates. This experiment created a complex factorial design 
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(3 sampling dates × 5 field sites × 6 sampling depths × 2 management histories), 

totaling 180 samples.  

 

 

Results and Discussion 

 

Analysis of the all samples in the dataset revealed that sampling date and depth were 

the two primary drivers of bacterial community structure, while differences in 

management history were not observed (Figure 2.4, in Chapter 2). Sample 

heterogeneity was extremely high for previously encountered soil T-RFLP datasets 

(Table 5.2 in Chapter 5) with a beta diversity of 4.82. However, differences in 

management history were of primary interest in this study, and attempts to minimize 

or eliminate variance from sampling date and depth were taken in order to reveal 

possible, more subtle trends of management history. Sampling date variance was 

easily removed by selecting only the last sampling date (June 2007) during the data 

matrix construction in T-REX. Removing the first two sampling dates resulted in a 

dataset with a smaller beta diversity (3.46), but still large enough to indicate that  

NMS analyses would produce more discriminatory results compared to parametric 

ordinations (AMMI, principal components analysis, etc.).  

 

Eliminating sampling date variance revealed more subtle differences in management 

history (Figure 2.7 in Chapter 2). Since the relationship between management history 

and depth was of interest in this study, the June 2007 dataset was decomposed down in 

T-REX by looking at the surface three depths together (0 – 10 cm, 10 – 20 cm, 20 – 40 

cm), and then, the bottom three depths  (40 – 60 cm, 60 – 80 cm, 80 – 100 cm).  

Looking at a subset of this dataset revealed that management history and depth drove 
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microbial community composition in the surface depths, while differences due to site 

largely shaped the microbial communities at the lower depths (Figure 2.8 from 

Chapter 2). Analyzing the June 2007 data matrix in two subsets lowered the beta 

diversity measures in the surface depths to 2.48 and in the lower depths to 2.88. 

 

A final approach was taken to minimize both sources of variation due to differences in 

site and sampling date—averaging the samples across both site and sampling date. 

This approach proved to be fruitful, as ordinations revealed that the bacterial 

communities were different between prairie and annual wheat sites down to 60cm 

depth (Figure 2.11 from Chapter 2), aligning with similar findings in SOC and soil N 

pools (Chapter 2). 

 

The T-RFLP dataset in this study was complex, as they were many strong drivers of 

community structure present. However, some signals were so strong (sampling date, 

depth) that they obscured more subtle signals of interest (management history). Hence, 

exploratory data analysis and data matrix manipulation was required to elucidate 

which factors exerted the greatest influence on bacterial community structure and how 

those factors changed through depth. These data matrix manipulations would have 

been time intensive to perform manually and prone to error for even simple 

manipulations, such as averaging of samples. However, with T-REX, a rapid, robust, 

and thorough analysis of this dataset was made possible.  

 

In addition to rapid data matrix manipulation, T-REX also produced a more robust 

dataset, as prior to data matrix construction, the data were subjected to noise filtering 

and T-RF alignment. The calculations of beta diversity and interaction effects that T-
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REX output were also used as prescriptive indicators that the data were complex and 

non-parameteric analyses, such as NMS should be employed [7]. 

 

Conclusions 

 

T-REX facilitates a streamlined, more reliable and less biased analysis of microbial 

community data with a suite of flexible functions that allows researchers to choose the 

most appropriate data manipulations based on research objectives. T-REX also enables 

researchers to implement the AMMI analysis, a method which holds many advantages 

for microbial community data analysis. In addition, this software provides a tool to the 

research community to rapidly and robustly test the effects of various data processing 

methods on the overall results of datasets. Many of these processing methods are 

known sources of analytical variability, but there is no consensus in the literature of 

how to most appropriately minimize this variability. T-REX will allow microbial 

community analyses to continue to develop as an important tool in understanding 

microbial community dynamics and their effects on ecosystem processes. 

 

 

Availability and Requirements 

- Project name: T-REX 

- Project home page: http://trex.biohpc.org 

- Operating system(s): Platform independent 

- Programming language: Sequel 

- License: GNU GPL 

- Any restrictions to use by non-academics: none 

http://trex.biohpc.org/
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