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This thesis presents the formulation and implementation details of a method

based on the modified error in constitutive equation to address the viscoelastic-

ity imaging problem in situations in which information on boundary conditions

is unknown. In the viscoelasticity imaging problem, the goal is to produce im-

ages of the viscoelastic properties of a material from displacements measured

in its interior. These measured displacements are always corrupted with noise,

which poses a challenge to methods designed to solve such problems. More-

over, in practical applications such as biomedical imaging, where the material

of interest is tissue, the magnitude and spatial distribution of the excitation used

to generate the displacements that are measured are not exactly known. This is

a challenge to optimization-based methods for the imaging problem, as the lack

of boundary conditions leads to ill-posed forward problems. The method de-

veloped here overcomes this challenge and at the same time handles noisy and

incomplete displacement data.

This thesis is divided into two chapters. The first chapter, which is an adap-

tation of a journal article that has been submitted for publication, presents the

method and relevant derivations. Results from numerical experiments are also

included in this chapter. The second chapter details the implementation of the

method in the DinamicaE simulation suite, developed by the Computational

Mechanics and Inverse Problems Group led by Professor Wilkins Aquino. The



DinamicaE simulation suite is the result of over four years of development ef-

fort, which is still ongoing. Development of a large component of this software

has been one of the author’s main contributions as a Ph.D. student. Dinami-

caE is a massively parallel research code that solves problems in steady-state

dynamics, acoustics, and acoustic-structure interaction. Moreover, the software

also solves imaging problems in these domains. One of the main goals of Di-

namicaE is to assess the feasibility of algorithms such as the one presented in

this thesis to solve problems of interest in the field of biomedical imaging, which

seeks to provide early diagnosis for many physical illnesses. Its modular de-

sign, which is made possible by the features offered by the C++ programming

language, allows for simple implementations of the algorithm presented in this

thesis and many more.
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iv



ACKNOWLEDGEMENTS

There are far too many people I would like to thank for providing me their

help and/or support during this journey. I will try to keep this list short, but a

part of me feels that I should write an entire book expressing my gratitude to

those who deserve it.

First and foremost, I would like to thank my Ph.D. adviser, Professor Wilkins

Aquino, for his continued guidance and support and interesting discussions

that opened my eyes to the world of research and inverse problems. I would

also like to acknowledge the members of my Ph.D. committee: Professor David

Bindel, the late Professor Lars Wahlbin, Professor Derek Warner, and Professor

Chris Earls. Professor Peter Diamessis deserves a special mention here too for

being the “best sixth man,” and Professor Ken Hover has my eternal gratitude

for being the best instructor a TA could ever have.

Going back to my undergraduate days, I would also like to express my sin-

cere gratitude to Dr. Joe Caliendo, Professor Mark Fels, Professor Gilberto Ur-

roz, Professor Keri Ryan, Professor Jim Bay, and Professor Thomas Fronk. I

learned to consistently keep asking “how” and “why” from you all, so thank

you. My undergraduate adviser, Kathy Bayn, also deserves a huge mention;

you taught me how to navigate engineering school. I would also like to ac-

knowledge the support from the Ministerio de Educación Superior, Ciencia y

Tecnologı́a of the Dominican Republic, who gave me the opportunity to pursue

my undergraduate studies at Utah State University.

I also want to acknowledge my family: my parents, my late grandfathers,

and my grandmothers. You have all encouraged me to pursue my dreams and

goals and to work hard but without taking things too seriously. My sincer-

est gratitude also goes out to my friends, who make all of this worth it: An-

v



dres (who also helped me express my ideas in writing for this thesis), Gabriel,

Giancarlo, Omar, Yolanda, Roberto, Valerie, Haydee, Rafael, Eduardo, Marco

Sanchez, Cecilia Coria, Hilda, Pedro, Manuel P, Ricardo, Lori, Luis, Jose Luis,

Blair, Brett, Jim, Anthony, Swarnavo, Miguel, Heather, Mark, Curtis, Tiffany,

Judy, Jeff, Charles FPCKGdL, Norman, Amalia, Mathieu, Patrick, Andy, Sarah,

Anna, and many more.

In the words of the late Gustavo Cerati, “Gracias... totales!”

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 A Modified Error in Constitutive Equation Approach for Frequency-
Domain Viscoelasticity Imaging Using Interior Data 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Modified error in constitutive equation (MECE) approach to vis-

coelasticity imaging using interior data . . . . . . . . . . . . . . . 7
1.3.1 Updating the Mechanical Fields . . . . . . . . . . . . . . . 9
1.3.2 Updating the Material Properties . . . . . . . . . . . . . . . 12
1.3.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 The Scaling Tensor P and the Penalty Term κ . . . . . . . . . . . . 18
1.4.1 Choosing P . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Choosing κ . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.1 Example 1: 2D reconstruction with 2D data . . . . . . . . . 23
1.5.2 Example 2: 2D reconstruction with window . . . . . . . . 30
1.5.3 Example 3: 2D reconstruction with 1D data . . . . . . . . . 36
1.5.4 Example 4: 3D reconstruction with 3D data . . . . . . . . . 40

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES 46

2 DinamicaE: A Parallel Elastodynamics Finite Element Software 50
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Existing Functionalities of a Finite Element Solver . . . . . 55
2.3.2 The MECE algorithm . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Regularization Parameter Selection . . . . . . . . . . . . . . . . . . 63
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES 67

vii



LIST OF TABLES

1.1 Algorithm diagnostics for Ex. 1 results with known boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 Algorithm diagnostics for Ex. 1 results with unknown boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Algorithm diagnostics for Ex. 2 results with unknown boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Algorithm diagnostics for Ex. 4 results. . . . . . . . . . . . . . . . 44

2.1 Quantities found in MECE algorithm . . . . . . . . . . . . . . . . 56

viii



LIST OF FIGURES

1.1 Diagram of the problem domain in Examples 1, 2, and 3 . . . . . 23
1.2 Real Part of Bulk Modulus for Example 1. Units: kPa, mm . . . . 26
1.3 Real Part of Shear Modulus for Example 1. Units: kPa, mm . . . 27
1.4 Imaginary Part of Shear Modulus for Example 1. Units: kPa, mm 28
1.5 Re(B) for Example 2. Background is BBACK = 50 and GBACK =

5 + 2.5i. Units: kPa, mm . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Re(G) for Example 2. Background is BBACK = 50 and GBACK =

5 + 2.5i. Units: kPa, mm . . . . . . . . . . . . . . . . . . . . . . . . 34
1.7 Im(G) for Example 2. Background is BBACK = 50 and GBACK =

5 + 2.5i. Units: kPa, mm . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8 Shear Modulus for Example 3. Units: kPa, mm . . . . . . . . . . . 39
1.9 Domain used in Example 4 . . . . . . . . . . . . . . . . . . . . . . 41
1.10 Threshold Plots for Example 4. Intervals represent bounds on

values of elements shown in red. Units: kPa . . . . . . . . . . . . 42
1.11 Reconstructed moduli for Example 4 in planes through center of

domain: xy-plane (left column), yz-plane (middle column), and
xz-plane (right column). Units: kPa . . . . . . . . . . . . . . . . . 43

2.1 Class structure of existing finite element code . . . . . . . . . . . 57
2.2 Class structure of existing finite element code (in blue rectangles)

and implementation of MECE algorithm (in green ovals) . . . . . 58

ix



CHAPTER 1

A MODIFIED ERROR IN CONSTITUTIVE EQUATION APPROACH FOR

FREQUENCY-DOMAIN VISCOELASTICITY IMAGING USING

INTERIOR DATA

Abstract

This chapter presents a method for the identification of linearly viscoelastic ma-

terial parameters in the context of steady-state dynamics using interior data. In

this method, the inverse problem of viscoelasticity imaging is solved by mini-

mizing an objective which includes the modified error in constitutive equation

(MECE) functional and is subject to the conservation of linear momentum with-

out the need to introduce any knowledge of external excitations or boundary

conditions. The MECE functional measures the discrepancy in the constitutive

equations that connect kinematically admissible strains and dynamically admis-

sible stresses; in addition to this, it also incorporates the measurement data in a

quadratic penalty term. Regularization is achieved through a penalty parame-

ter in combination with the discrepancy principle due to Morozov. Numerical

results demonstrate the robust performance of the method in situations where

the available measurement data is incomplete and corrupted by noise of varying

levels.
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1.1 Introduction

Inverse characterization of viscoelastic properties is of high relevance in many

areas of science, engineering, and medicine. In particular, in the medical field,

it is well-known that viscoelastic properties are correlated to tissue pathology

[27]. This observation has spurred the development of elastography or elastic-

ity imaging techniques, in which the goal is to identify the elastic or viscoelastic

properties of tissue non-invasively (see [12, 24, 21, 13, 23] for reviews). Other

applications abound, including the nondestructive evaluation of structural sys-

tems such as buildings, bridges, and aircraft components.

In this work, we are concerned with finding viscoelastic material properties

using noisy interior data in domains where traction and/or displacement con-

ditions are unknown or uncertain. This problem is highly relevant in elasticity

imaging, where displacement or velocity fields are obtained using ultrasound

or MRI and the magnitude and nature of the excitation sources are highly un-

certain. Different techniques have been developed that address this problem,

including algebraic direct inversion [20, 27, 22] and the Adjoint Weighted Equa-

tions (AWE) methods [2, 30]. These techniques have the advantage of being

non-iterative, but need derivatives of the data, making them very sensitive to

noise. Optimization approaches [9, 19, 11, 6, 1], which have the advantage of

handling sparse and imperfect data, have received limited or no attention for

problems with interior data in which the boundary conditions are unknown

due to the complication that the forward problem is ill-posed when no bound-

ary conditions are specified.

Our goal in this work is to develop a method for reconstructing viscoelastic

2



properties from interior, imperfect data using iterative optimization algorithms.

To this end, we exploit the concept of the modified error in constitutive equa-

tion (MECE) [16, 11, 4]. The MECE functional combines the error in constitutive

equation (ECE) [17], which measures the discrepancy in the constitutive equa-

tions that connect kinematically admissible strains and dynamically admissible

stresses, and a quadratic error term that incorporates the measurement data.

MECE-based approaches have found applications in model updating with vi-

brational data [16, 5], time-domain formulations [3, 11], and large scale iden-

tification problems in both elastodynamics [4] and coupled acoustic-structure

systems [29]. One of the main features of the approach proposed here is that the

MECE formulation leads to systems that are invertible even in the absence of

conventional Neumann and Dirichlet conditions, which addresses some of the

limitations found in other optimization-based formulations. In addition, we ex-

tend previous ideas regarding the solution strategy for the minimization prob-

lem to the realms of viscoelasticity, where positivity requirements are enforced

using inequality constraints.

The rest of this chapter is organized as follows. Section 1.2 describes the

steady-state viscoelasticity problem and the inverse problem of interest. The

details of the derivation are then presented in Section 1.3. Other details specific

to the method presented in this work are addressed in Section 1.4. Section 1.5 is

devoted to a series of numerical examples designed to showcase the capabilities

of the method, and finally, concluding remarks are offered in Section 1.6.
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1.2 Problem Setting

Governing equations of motion Let a solid viscoelastic body occupy a

bounded and connected domain Ω ⊂ Rd (1 ≤ d ≤ 3) with boundary Γ. The

time-harmonic motion of this body is governed by the balance equations

∇·σ + b = −ρω2u in Ω,

(1.1a)

σ ·ns = t on ΓN , (1.1b)

where u is the displacement field, ω represents the specified angular frequency,

ρ denotes the known mass density, b is a given body force density, σ represents

the stress tensor, t and ΓN ⊆ Γ are the given surface force density (traction)

and its support, respectively, and ns is the outward unit vector normal to Γ; the

kinematic equations

u = 0 on ΓD, (1.2a)

ε[u] =
1

2
(∇u+∇uT ) in Ω, (1.2b)

where ε[u] denotes the linearized strain tensor associated with u and ΓD ⊆ Γ is

the portion of the boundary where the displacement is known; and the (linear

viscoelastic) constitutive relation

σ = C :ε[u] in Ω, (1.3)

where C is the fourth-order, complex-valued viscoelasticity tensor field. Equa-

tion (1.2a) specifies a boundary condition that is homogeneous, which is as-

sumed in this work for the sake of simplicity and without loss of generality;

the case of a nonhomogeneous boundary condition can be treated with minor

modifications.
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The boundary sets ΓN and ΓD are only required to not overlap (i.e., ΓN∩ΓD =

∅) and do not necessarily have to form a cover of Γ (i.e., ΓN∪ΓD ⊆ Γ). When they

do not form a cover, equations (1.1a)-(1.3) admit a solution which is not unique.

A unique solution exists only when ΓN ∪ ΓD = Γ. We allow this generality

regarding the boundary sets for the sake of the upcoming formulation, in which

the lack of boundary conditions specified on the entirety of the boundary does

not pose an issue.

Weak formulation We denote the L2(Ω) inner product of square-integrable

second-order tensor fields a and bwith 〈a, b〉:

〈a, b〉 :=

∫
Ω

a :b dV =

∫
Ω

aijbij dV,

where the overline denotes complex conjugation and indicial notation is used

(with repeated indices implying summation). The inner product of vector and

scalar fields follow the same notation. A similar notation is used for the inner

product of fields defined over a surface; e.g.,

〈a, b〉Γ :=

∫
Γ

a :b dS.

The weak formulation of the balance equations (1.1a) and (1.1b) then reads

〈σ, ε[v]〉 − ω2〈ρu,v〉 − 〈σ ·ns,v〉Γ\(ΓN∪ΓD) = F(v), ∀v ∈ W , (1.4)

with the test function space W defined as W := {w : w ∈ H1(Ω;Rd), w =

0 on ΓD} and where the linear functional

F(w) = 〈b,w〉+ 〈t,w〉ΓN
(1.5)

embodies the known excitations in Ω and on ΓN . We remark that ρ ∈ L∞(Ω) is

assumed to be bounded below by a positive constant. Moreover, the space of

5



dynamically admissible stresses is defined as

S(u) := {σ : σ ∈ L2(Ω;R3,3
sym), eqn. (1.4) holds}. (1.6)

Likewise, we define the space Z of admissible viscoelasticity tensor fields as

Z = {C ∈ L∞(Ω;Q) | ε :Re [C(x)] :ε > c0ε :ε, ε : Im [C(x)] :ε ≥ 0 ∀x ∈ Ω and ε ∈

R3,3
sym, ε 6= 0}, where Q denotes the 21-dimensional vector space of fourth-order

tensors C with major and minor symmetries (i.e., Cijkl = Cklij = Cjilk) and c0

is some fixed positive constant. Re[·] and Im[·] denote the real and imaginary

parts, respectively, of a complex-valued quantity.

Measurements In addition to the fundamental equations (1.1a)-(1.3), we as-

sume that the steady-state displacements are measured for the angular fre-

quency ω. More explicitly, we assume availability for the specified frequency

ω of (a) measured displacements d̃ in Ωm ⊂ Ω or (b) measured displacements ũ

on Γu ⊂ Γ, i.e.:

u = d̃ in Ωm, u = ũ on Γu, (1.7)

where Ωm and Γu are not both simultaneously empty. Moreover, the measure-

ment surface Γu is assumed to satisfy ΓD ∩ Γu = ∅, which follows from the fact

that a displacement measurement ũ is not needed on the part of the boundary

where one knows the true displacement exactly.

Remark 1 Even though (1.7) expresses an equality between the experimentally-

measured displacements d̃ and ũ and the model displacement u, this equality will be

relaxed in the upcoming formulation, and u will be required to approximate (and not

necessarily equal) d̃ and ũ due to the noisy nature of experimental measurements.
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Inverse Problem The inverse problem addressed in this work consists of the

following: reconstruct the viscoelasticity tensor field C ∈ Z that satisfies the

governing equations of motion (1.1a)-(1.3) and that is consistent with the mea-

surement of the steady-state response of the solid for a known angular fre-

quency ω.

L2 minimization A common way to solve the inverse problem described

above relies on finding the material parameters that minimize the mean squared

error between the measured and computed responses [19, 10]. We refer to this

method as L2 minimization, which uses the error functional defined by

J (u,C) :=
1

2

[
〈u− d̃,u− d̃〉Ωm + 〈u− ũ,u− ũ〉Γu

]
+R(C), (1.8)

whereR is a non-negative regularization functional. Thus, the L2 minimization

method finds the solution to the inverse problem as

(u∗,C∗) := arg min
u,C

J (u,C) subject to Eqs.(1.1a)− (1.3), (1.9)

which is typically solved using Newton or quasi-Newton methods. Such meth-

ods require the computation of the gradient of J (u,C), which usually relies on

solving a variational problem such as (1.4) (see [19] for details). This problem is

ill-posed, however, when ΓN and ΓD do not form a cover of Γ.

1.3 Modified error in constitutive equation (MECE) approach

to viscoelasticity imaging using interior data

Following the approach presented in [4, 29], the inverse problem addressed in

this work is formulated as an optimization problem in which the unknown con-

7



stitutive tensor is estimated by minimizing an objective function that consists of

two error terms: 1) an ECE functional [17] that has been adapted for viscoelastic

materials and that measures the discrepancy in the constitutive equation that

connects kinematically admissible strains and dynamically admissible stresses

and 2) a quadratic error term that quantifies the mismatch between the pre-

dicted (or model) displacements and the measured ones. Thus, the objective

function, hereafter referred to as the viscoelasticity MECE functional, used in

this work is

Λ(u,σ;C) := U(u,σ;C) +
κ

2

[
〈u− d̃,u− d̃〉Ωm + 〈u− ũ,u− ũ〉Γu

]
, (1.10)

where

U(u,σ;C) :=
1

2

∫
Ω

(σ − C :ε[u]) :P−1 : (σ − C :ε[u]) dV (1.11)

is the ECE functional that has been adapted for viscoelastic materials; P is a

fourth-order tensor that is symmetric, positive-definite, and real-valued; and

κ is a positive weight parameter that adjusts the relative contribution of the

different summands to Λ in (1.10). Further discussion of P and κ (e.g., how to

select them) is deferred to Section 1.4.

The version of Λ used in [4, 29] differs from the one shown in (1.10) in the fol-

lowing way: P−1 in (1.11) is substituted with C−1. Since this work is concerned

with viscoelastic materials, while [4, 29] address elastic materials only, this sub-

stitution is required because C is not positive-definite for viscoelastic materials

in general and fails to yield U with the following desirable properties:

U(u,σ;C) ≥ 0 ∀ C ∈ Z, (1.12)

U(u,σ;C) = 0 ⇐⇒ σ = C :ε[u]. (1.13)

These properties are preserved, nevertheless, with the use of P−1 in U . Thus,

for a given triplet (u,σ,C) ∈ W × S(u)× Z (see Weak formulation in Section 1.2

8



for the definition of these sets), Λ(u,σ;C) provides a quantitative measure of

the compatibility of these variables with (1) the available measurements d̃ and

ũ and (2) the constitutive equation. Since lower values of Λ suggest better com-

patibility, the solution to the inverse problem of viscoelasticity imaging using a

generalized ECE approach is given by

(u∗,σ∗,C∗) := arg min
u∈W,σ∈S(u),C∈Z

Λ(u,σ;C). (1.14)

Notice that (1.14) defines a PDE-constrained optimization problem. A common

approach to solve (1.14) is to use an alternating minimization strategy [11, 4, 29].

This iterative approach defines the transition from the current iterate (u,σ,C)n

to the next iterate (u,σ,C)n+1 through two successive and complementary par-

tial minimizations of Λ(u,σ;C). The first of these minimizations,

(un+1,σn+1) := arg min
u∈U ,σ∈S(u)

Λ(u,σ;Cn), (1.15)

updates the mechanical fields u and σ and imposes the balance of linear mo-

mentum, without the need to introduce any knowledge of external excitations

or boundary conditions as a constraint, while the second minimization pertains

to the update of the material parameter C:

Cn+1 := arg min
C∈Z

Λ(un+1,σn+1;C). (1.16)

1.3.1 Updating the Mechanical Fields

The minimization defined in (1.15) is itself a PDE-constrained optimization

problem. In order to solve this optimization subproblem, we derive the opti-

mality conditions using a Lagrange multiplier approach. This requires defining

9



the Lagrangian L :W ×W × S(u)×Z → R as

L(u,w,σ;C) := Λ(u,σ;C) + Re
(
〈σ ·ns,w〉Γ\(ΓN∪ΓD)−

〈σ, ε[w]〉+ ω2〈ρu,w〉+ F(w)
)
, (1.17)

where Re(·) denotes the real part of a complex quantity. Notice that w ∈ W

plays the role of the Lagrange multiplier and that the term 〈σ · ns,w〉Γ\(ΓN∪ΓD)

in (1.17) is crucial for the case in which ΓN ∪ ΓD 6= Γ (i.e., boundary conditions

are not known over the entire boundary).

In order to derive the optimality conditions, the gradient of L with respect

to u, w, and σ needs to be computed. In order to compute the different gradi-

ents of L, we make use of the Gâteaux derivative. The Gâteaux derivative of a

functional F (g) with respect to g in the direction δg is defined as

F ′g(δg) :=
d

dε
F (g + εδg)

∣∣∣∣
ε=0

.

The quantity F ′g represents the gradient of F with respect to g. Thus, with this

definition, the Gâteaux derivative of L with respect to σ in the direction δσ ∈

S(u) is

L′σ(δσ) = Re
(
〈δσ,P−1 :σ〉 − 〈δσ,P−1 :C :ε[u]〉−

〈δσ, ε[w]〉+ 〈δσ ·ns,w〉Γ\(ΓN∪ΓD)

)
= Re

(
〈δσ,P−1 : (σ − C :ε[u])− ε[w]〉+ 〈δσ ·ns,w〉Γ\(ΓN∪ΓD)

)
. (1.18)

Since L′σ(δσ) = 0 ∀δσ ∈ S(u), we obtain from (1.18)

w = 0 on Γ \ (ΓN ∪ ΓD), (1.19)

σ = C :ε[u] + P :ε[w] in Ω. (1.20)

Notice that (1.19) implies that w ∈ W0 ⊆ W , where W0 :=

{w : w ∈ W , w = 0 on Γ \ (ΓN ∪ ΓD)}.
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Proceeding in a similar manner, the Gâteaux derivative of L with respect to

u in the direction δu ∈ W is

L′u(δu) = Re
( 〈

(C :ε[u]− σ) :P−1 :C, ε[δu]
〉

+

κ
(
〈u− d̃, δu〉Ωm + 〈u− ũ, δu〉Γu

)
+ ω2〈ρδu,w〉

)
. (1.21)

After substituting (1.20) into (1.21) and noticing that L′u(δu) = 0 ∀δu ∈ W , we

arrive at

〈C :ε[w], ε[δu]〉−ω2〈ρw, δu〉 = κ
(
〈u− d̃, δu〉Ωm + 〈u− ũ, δu〉Γu

)
∀δu ∈ W .

(1.22)

Following the same steps for the Lagrange multiplier w and using (1.20) yields

〈C :ε[u] + P :ε[w], ε[δw]〉 − ω2〈ρu, δw〉 = F(δw) ∀δw ∈ W0. (1.23)

Notice that 〈σ ·ns, δw〉Γ\(ΓN∪ΓD) vanishes because δw ∈ W0, i.e. δw = 0 on Γ \

(ΓN ∪ ΓD).

For a given Cn ∈ Z at the nth iteration of the alternating directions scheme,

the mechanical field update thus corresponds to solving the following coupled

variational problems: find (u,w)n+1 ∈ W ×W0 such that

〈Cn :ε[wn+1], ε[δu]〉 − ω2〈ρwn+1, δu〉 − κA(un+1, δu) =

− κAm(δu) ∀δu ∈ W ,

〈P :ε[wn+1], ε[δw]〉+ 〈Cn :ε[un+1], ε[δw]〉 − ω2〈ρun+1, δw〉 =

F(δw) ∀δw ∈ W0,

(1.24)

where

A(un+1, δu) := 〈un+1, δu〉Ωm + 〈un+1, δu〉Γu (1.25)

and

Am(δu) := 〈d̃, δu〉Ωm + 〈ũ, δu〉Γu . (1.26)
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After solving (1.24) for un+1 and wn+1, the stress σn+1 can be computed using

(1.20).

1.3.2 Updating the Material Properties

After computing the updated mechanical fields un+1 and wn+1, the next step in

the alternating directions scheme is to solve (1.16). This inequality constrained

optimization problem is referred to as the material update step. Given the na-

ture of the constraints imposed by Z on the admissible viscoelasticity tensor

fields, the approach used here to compute the material update Cn+1 consists of

the following two substeps.

1. Proposal substep: A proposed material update C̃
n+1

is computed by enforc-

ing the first-order necessary optimality condition L′C(δC) = 0 ∀δC ∈ Z .

2. Correction substep: If the proposed material update C̃
n+1

is not admissible

(i.e., C̃
n+1
6∈ Z), then the actual material update Cn+1 is taken as an admis-

sible viscoelasticity field which approximates C̃
n+1

. Otherwise, Cn+1 is set

to C̃
n+1

.

Proposal substep Enforcing the condition L′C(δC) = 0 ∀δC ∈ Z , one obtains

the rule for C̃
n+1

as

∀δC ∈ Z,
〈(

C̃
n+1

:ε[un+1]− σn+1
)

:P−1 :ε[un+1], δC
〉

= 0. (1.27)

We will focus on isotropic materials for the rest of this chapter. Thus, C has

the form

C =

(
B − 2

3
G

)
(I ⊗ I) + 2GI (1.28)
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with B and G denoting (spatially-dependent) bulk and shear complex moduli,

respectively. I and I are the second- and fourth-order identity tensors, respec-

tively.

The tensor P is assumed to have the same major and minor symmetries as

C. Hence, P can be represented as

P =

(
Bp −

2

3
Gp

)
(I ⊗ I) + 2GpI (1.29)

where Gp and Bp are real, positive constants to be explicitly defined in Sec-

tion 1.4.1.

The formulae for the proposed update are obtained by first decoupling the

stress and strain tensors into deviatoric and volumetric components; i.e.,

σ = σdev + qI, ε[u] = εdev[u] +
1

3
euI,

where σdev and εdev are the deviatoric stress and strain tensors, respectively,

q = 1
3

tr(σ) is the mean stress, and eu = tr(ε[u]) is the volumetric strain. Then,

combining (1.27), (1.28) and (1.29), yields〈
1

2Gp

(
2G̃n+1εdev[un+1]− σn+1

dev

)
:εdev[un+1], δG

〉
+〈

en+1
u

Bp

(
B̃n+1en+1

u − qn+1
)
, δB

〉
= 0 ∀δG, δB, (1.30)

From (1.30), it now follows that the pointwise rule for the proposed bulk

modulus update is

B̃n+1 =
qn+1

en+1
u

=
tr(σn+1)

3 tr(ε[un+1])
, (1.31)

while the pointwise rule for the proposed shear modulus update is

G̃n+1 =
σn+1

dev :εdev[un+1]

2εdev[un+1] :εdev[un+1]
. (1.32)
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The formulae just shown for the proposed material update can be easily ex-

tended to the case in which these moduli are known to be constant over some

region D ⊆ Ω. In this case, both the numerator and denominator of (1.31) and

(1.32) carry an implicit integration over D; i.e.,

B̃n+1 =

∫
D

tr(σn+1) dV

3
∫
D

tr(ε[un+1]) dV
, (1.33a)

G̃n+1 =

〈
σn+1

dev , εdev[un+1]
〉
D

2 〈εdev[un+1], εdev[un+1]〉D
. (1.33b)

Correction substep The proposed material update computed through (1.31)

and (1.32) may not satisfy the inequality constraints imposed by Z [7]. Thus, for

the purpose of this work, the actual bulk update Bn+1 and shear update Gn+1

are taken to be

h(Bn+1) :=


h(B̃n+1) : h(Blow) ≤ h(B̃n+1) ≤ h(Bup)

h (θBn + (1− θ)Blow) : h(B̃n+1) < h(Blow)

h
(
θBn + (1− θ)Bup

)
: h(B̃n+1) > h(Bup)

, (1.34)

h(Gn+1) :=


h(G̃n+1) : h(Glow) ≤ h(G̃n+1) ≤ h(Gup)

h (θGn + (1− θ)Glow) : h(G̃n+1) < h(Glow)

h
(
θGn + (1− θ)Gup

)
: h(G̃n+1) > h(Gup)

, (1.35)

where the function h(·) can be substituted with the Re(·) or Im(·) functions and

θ ∈ [0, 1) is a user-defined parameter (θ = 0.5 for the examples shown in Section

1.5). The complex numbers Blow and Bup serve as lower and upper bounds,

respectively, for the bulk modulus; similarly, Glow and Gup serve as lower and

upper bounds, respectively, for the shear modulus. These bounds, which are

prescribed a priori, act as box constraints on the real and imaginary parts of

the moduli. Whenever the real (imaginary) part of the proposed update falls

outside of the allowable interval, it is replaced with a weighted average of the

real (imaginary) part of the previous estimate and the bound being violated.
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The approach presented here to compute the material update can be made

equivalent to the gradient projection method by replacing the correction sub-

step with a subspace minimization (see [18, p. 488] for details), but in practice,

approximate methods such as the correction substep presented herein are used

to address the subspace minimization problem.

1.3.3 Discretization

The finite element method was used in this work to approximate the solution

of the governing variational problems. Using standard Voigt notation, the trial

and test functions and their derivatives are expressed as

uh = [N ] {u} , δuh = [N ] {δu} , ε[uh] = [B] {u} ,

wh = [N ] {w} , δwh = [N ] {δw} , ε[wh] = [B] {w} ,

where [N ] and [B] represent matrices of finite element shape functions and their

derivatives with respect to spatial coordinates, respectively. Moreover, the vis-

coelasticity field C is discretized using piecewise constant basis functions (i.e.,

the material properties are assumed to remain constant in an element but can

vary from one element to the next).

After substituting the above approximations into (1.24) and applying the

standard finite element method, the discrete coupled system of equations is ob-

tained as  [T ] [K]− ω2 [M ]

([K]− ω2 [M ])
H −κ [D]


{w}{u}

 =

 {F}

−κ{R}

 . (1.36)

Notice that the superscript notation used to denote an iteration within the alter-

nating directions scheme has been dropped for the sake of clarity. The matrices

15



and vectors in the above block system of equations are defined as follows.

[K] :=
∑

elements

∫
Ωe

[B]T [C] [B] dV (1.37a)

[T ] :=
∑

elements

∫
Ωe

[B]T [P ] [B] dV (1.37b)

[M ] :=
∑

elements

∫
Ωe

ρ [N ]T [N ] dV (1.37c)

[D] :=
∑

elements

∫
Ωe

m

[N ]T [N ] dV +
∑

elements

∫
Γe
u

[N ]T [N ] dS (1.37d)

{F} :=
∑

elements

∫
Γe
N

[N ]T t dS +
∑

elements

∫
Ωe

[N ]T b dV (1.37e)

{R} :=
∑

elements

∫
Ωe

m

[N ]T d̃ dV +
∑

elements

∫
Γe
u

[N ]T ũ dS (1.37f)

[C] and [P ] denote the appropriate matrix representations of the fourth-order

tensors C and P , respectively. Moreover, notice that the coefficient matrix in

(1.36) is a Hermitian matrix. The measured displacements d̃ and ũ in (1.37f) are

assumed to be a continuous field over the part Ωm of the domain and Γu of the

boundary. However, the case in which the measurement data is not continuous

and available only at a finite number of locations (i.e., sparse data) can be easily

taken into consideration. In this case, measurement locations can be made to

coincide with finite element nodes, and [D] in (1.36) is then replaced by a diag-

onal Boolean matrix [Q] with entries being nonzero only for the global degrees

of freedom (dofs) where measurements were taken. In addition, {R} becomes a

vector whose entries are the measured displacements at the different dofs. For

this work, the system (1.36) was solved using the parallel, direct linear solver

PARDISO [25, 26], which provides efficient solutions to such systems.

We now explore the invertibility of the coefficient matrix in (1.36). Let [A] =

[K]−ω2[M ] and assume that ΓN 6= Γ (i.e., not all of the boundary Γ has a natural
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boundary condition such as (1.1b)). Notice that the latter condition makes [T ]

positive definite and, hence, invertible. Let {u} and {w} be elements of the

kernel of the coefficient matrix in (1.36). We then have

[T ]{w}+ [A]{u} = {0} (1.38)

[A]H{w} − κ[D]{u} = {0}. (1.39)

We can see from the above equations that the kernel of the coefficient matrix is

trivial (i.e., {u} = {w} = {0}) only if

Ker([A]H [T ]−1[A]) ∩Ker([D]) = {0}, (1.40)

where Ker(·) denotes the kernel of a matrix. Notice that since [T ] is positive

definite, Condition (1.40) reduces to Ker([A]) ∩ Ker([D]) = {0}. It is important

to point out that we do not consider the case in which ΓN = Γ because it is of

little relevance for interior data problems.

We would like to emphasize that Condition (1.40) calls for a careful design

of experiments in order to obtain an invertible coupled system. For instance, we

will consider in Section 1.5 problems in which boundary conditions are absent

over the entire boundary. In this case, a measured displacement field over the

whole domain (i.e. full-field data) is assumed to be available. This measurement

condition produces a positive definite-observation matrix [D] (i.e., Ker([D]) =

{0}) and the coupled system is guaranteed to be invertible as per (1.40).

17



1.4 The Scaling Tensor P and the Penalty Term κ

This section discusses the details concerning the scaling tensor P and the weight

parameter κ first introduced in (1.10). These quantities were defined in the pre-

ceding formulation, but the particular choices used for this work will now be

presented.

1.4.1 Choosing P

As mentioned in Section 1.3, P is a real-valued, symmetric, positive definite,

and fourth-order tensor, which results in a matrix representation [P ] (as found

in (1.37b)) with the same properties (i.e., real, symmetric, and positive definite).

In this work, P is taken to be some conical combination (i.e., a linear combina-

tion in which the coefficients are all positive) of the real and imaginary parts of

the initial value assigned to C in the first iteration of the alternating directions

scheme (i.e., Cinit). Notice that this choice makes P constant with respect to the

viscoelastic tensor C and satisfies the properties required for P . Moreover, this

particular choice of P results in a matrix [T ], as defined in (1.37b), that is the

same conical combination of the real and imaginary parts of the initial stiffness

matrix, denoted from here on as [K]init and defined by (1.37a) with [C] replaced

by [Cinit]. Various options for the conical combination that defines P were ex-

plored for this work, and the algorithm was found to be robust in this aspect.

The arbitrary choice of equally weighting the real and imaginary parts of [K]init

with a coefficient of 1 was made for all results reported later. Moreover, we

have taken P to be independent of, or constant with respect to, the viscoelastic

constitutive tensor C, a condition that can be relaxed and will be the subject of
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future work.

1.4.2 Choosing κ

The parameter κ in (1.10) weights the relative importance between minimizing

the ECE term and matching the experimental data and thus affects the quality

of the reconstruction of C. The parameter κ, as it affects the smoothness of C,

acts in this sense as a regularizer. However, the role of κ is, as discussed in [29],

reciprocal to that of a conventional Tikhonov regularization parameter.

As a first step, the following form for κ, originally proposed in [4], is used as

κ := αA, (1.41)

A :=

∫
Ω
ε[uinit] :P :ε[uinit] dV

〈d̃, d̃〉Ωm + 〈ũ, ũ〉Γu

, (1.42)

where α ∈ R+ is a dimensionless weighting parameter and uinit is the solution

to a dynamics problem described by equations (1.1a)-(1.3) with the initial guess

C = Cinit. In the case of unknown boundaries, it is necessary to prescribe some

fictitious Neumann and/or Dirichlet conditions in order to obtain a solution.

The arbitrariness of these boundary conditions does not affect the generality of

the method as the solution is used as a means to scale the parameter κ. Notice

that (1.41) makes the different terms in Λ (1.10) dimensionally consistent, with

every term having units of energy.

The next step is to appropriately choose the weighting parameter α. This

parameter is critical because high values of α will result in low values of

the displacement-misfit functionals in (1.10), which is undesirable in the case

of noisy data. Moreover, low values of α will result in high values of the
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displacement-misfit functionals, which is undesirable due to the potential

loss of important information contained in the measurements and the over-

smoothing of the solution to the inverse problem.

The selection of α in this work is based on the discrepancy principle of Mo-

rozov [8, 15], a well-established approach which assumes the level of noise δ

in the measurement data to be known a priori. This principle dictates that the

parameter α should be chosen to be the smallest positive number such that the

final discrepancy between the computed and measured system response is at

the noise level. Thus, if uα denotes the displacement field obtained as a solu-

tion to the optimality system (1.14) for some α, the discrepancy principle states

that α should be chosen such that

1

δ2

∣∣∣∣∣〈uα − d̃,uα − d̃〉Ωm + 〈uα − ũ,uα − ũ〉Γu

〈d̃, d̃〉Ωm + 〈ũ, ũ〉Γu

− δ2

∣∣∣∣∣ ≤ εm, (1.43)

where εm is a specified tolerance. A simple bisection method was implemented

to find α according to (1.43). This requires solving at each step of the bisection

method the optimization problem (1.14) (using, for instance, the alternating di-

rections scheme described earlier). A tolerance εm = O(10−2) was found to be

adequate for the examples of Section 1.5. Lower error tolerances did not yield

any noticeable differences in the solution.

1.5 Numerical Experiments

This section is devoted to a series of numerical experiments, all inspired by the

field of biomedical imaging, that are intended to showcase the capabilities of

the methodology explained earlier. In particular, the examples demonstrate that

the approach proposed in this chapter produces adequate reconstructions of the
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complex-valued bulk and shear moduli of viscoelastic materials in situations in

which information on the boundary conditions is absent. In Example 1, we con-

sider a two-dimensional problem where the shear and bulk moduli fields are

estimated using noisy two-dimensional displacement data with boundary con-

ditions both known and unknown. Example 2 uses the same setup as Example

1, but the reconstruction of the shear and bulk moduli fields is done in a win-

dow of the problem domain. In Example 3, we image the shear and bulk moduli

fields in a three-dimensional domain using a full displacement field. We also re-

mark that the frequencies in the examples presented herein were chosen so as to

maintain low wavenumbers in the domain. This choice was made without loss

of generality and in the interest of avoiding excessively fine meshes.

Synthetic measurement data was generated for all the examples by perform-

ing a finite element simulation with the known material parameters and then

interpolating and corrupting with random noise, in this order, the simulated

displacements. Denoting the simulated displacement at a node i as ûi, the cor-

responding noisy measurement ũi is given as

ũi = ûi(1 + δri), (1.44)

where ri is a normal random variable with zero mean and unit variance and the

parameter δ is a prescribed relative noise level. In our examples, we use δ = 0.01

and 0.05. Although this noise model does not incorporate spatial correlation, it

is still adequate to illustrate the capabilities of the MECE method, since numer-

ical tests (not reported herein) reveal that the MECE method produces results

for spatially correlated noise which are similar to the results presented in this

chapter.

Additionally, the relative L1 and L2 errors of the reconstructed moduli are
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reported for some of the examples. For this purpose, we denote the relative L1

errors by

eGL1 :=

∫
Ω

∣∣G−Gref
∣∣ dV∫

Ω
|Gref| dV

, (1.45)

eBL1 :=

∫
Ω

∣∣B −Bref
∣∣ dV∫

Ω
|Bref| dV

, (1.46)

where G and B denote the reconstructed shear and bulk moduli, respectively,

Ω is the domain of the inverse problem (i.e., the finite element mesh used for

the inverse problem), and Gref and Bref are the true shear and bulk moduli, re-

spectively, in Ω. Gref and Bref were obtained by projecting and interpolating the

moduli fields from the finite element mesh used to generate synthetic data unto

the mesh used for the inverse problem. Likewise, the relative L2 errors are given

by

eGL2 :=

[∫
Ω

∣∣G−Gref
∣∣2 dV∫

Ω
|Gref|2 dV

] 1
2

, (1.47)

eBL2 :=

[∫
Ω

∣∣B −Bref
∣∣2 dV∫

Ω
|Bref|2 dV

] 1
2

. (1.48)

For this work, the alternating directions scheme was stopped and deemed

to have converged when the relative change in the functional (1.10) between

two successive iterations dropped below 0.1% for Examples 1 and 2 and 1% for

Example 3. A higher tolerance was selected for Example 3 to avoid excessively

long computation times. As pointed out in [29], this criterion was confirmed to

be adequate for the examples presented herein as it was verified (from extensive

numerical testing) that the relative change in the mechanical fields and moduli

was negligible for these levels of change in the functional.
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Figure 1.1: Diagram of the problem domain in Examples 1, 2, and 3

1.5.1 Example 1: 2D reconstruction with 2D data

This example shows the ability of the methodology explained earlier to image

the shear and bulk moduli fields of viscoelastic materials with the use of noisy

two-dimensional displacement data. The results shown here were produced

using two different scenarios. The first scenario assumes complete knowledge

of the boundary conditions (i.e., ΓD ∪ ΓN = Γ), while the other assumes no

knowledge of the boundary conditions (i.e., ΓD = ΓN = ∅). Figure 1.1 shows

a schematic of the domain used in this example. It consists of a square back-

ground with an elliptical inclusion. Each side of the square is 4 cm, and the

ellipse has a major radius, respectively minor radius, of 8
√

2 mm, respectively

5
√

2 mm. Moreover, the major radius of the ellipse has an orientation of 45◦ with

respect to the x−axis. A plane strain condition was assumed in this example.

The frequency used in this example was 100 Hz, and the mass density of

both the background and the inclusion was 1, 000 kg/m3. Moreover, the bulk
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moduli of the background and the inclusion were 50 kPa and 200 kPa, respec-

tively; the bulk modulus was assumed to be purely elastic as is the case in many

practical applications. Likewise, the shear modulus of the background and the

inclusion was taken as 5+2.5i kPa and 20+10i kPa, respectively, where i =
√
−1.

Thus, the material properties of the inclusion were four times those of the back-

ground. The boundary conditions used to generate the measurement data can

also be appreciated in Figure 1.1. The bottom was fixed, while traction loads

were applied to all other sides. The tractions were as follows: t1 = [0 − 5] kPa,

t2 = [−5 5] kPa, and t3 = [5 − 5] kPa. Moreover, the measurement data was

generated by performing a finite element simulation using a mesh with about

22, 000 linear quadrilateral (Q4) elements, interpolating the resulting displace-

ments to the inverse problem mesh with about 15, 600 Q4 elements, and adding

random noise as described earlier. The inverse problem mesh did not account

for the geometry of the inclusion. Moreover, the noise levels considered for this

particular example were δ = 0.01 and 0.05.

The initial guess for the moduli in the alternating directions algorithm de-

scribed earlier was the corresponding values of the background. Thus, the ini-

tial guess for the bulk modulus was 50 kPa, while the initial guess for the shear

modulus was 5 + 2.5i kPa. Figure 1.2 shows the reconstruction results for the

real part of the bulk modulus. As it can be appreciated, the value of the back-

ground was correctly identified in all cases. Moreover, the shape of the inclu-

sion was also accurately recovered, but its value, however, varies according to

the noise in the data and the presence or absence of boundary conditions. For

instance, the value of the inclusion corresponding to the reconstructions done

with 1%-noise data is closer to the true value of the inclusion than those cor-

responding to the 5%-noise data, which is expected. Moreover, the unknown
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boundaries reconstructions show a degradation in accuracy when compared to

their known boundaries counterpart, but this degradation is not significant. In-

deed, the presence of a stiff inclusion can be identified in all images in Figure

1.2.

The imaging results for the real and imaginary parts of the shear modulus

are shown in Figures 1.3 and 1.4, respectively. Trends similar to the results for

the real part of the bulk modulus can again be observed in these figures. We

also notice that the reconstruction of the imaginary part of the shear modulus

appears to be less accurate than the reconstruction of the other quantities, as it

can be appreciated from the images. This can be explained by the sensitivity of

the imaginary part of the shear modulus on the measured data, since different

reconstructions (not reported herein) were obtained using data generated with

different loading conditions.

Tables 1.1 and 1.2 show the values of the weighting parameter α selected ac-

cording to Morozov’s Principle (see Section 1.4.2) for the results corresponding

to the scenarios with known and unknown boundary conditions, respectively.

These tables also report the relative L1 and L2 errors in the reconstructed mod-

uli as defined in (1.45)–(1.48). For comparison purposes, the inverse problem

was also solved using an initial guess for the moduli in the alternating direc-

tions scheme that corresponds to an elastic material (i.e., the real part of the true

background moduli), and the corresponding values for α and the relative errors

in the reconstructed moduli were also reported in Tables 1.1 and 1.2. As it can

be appreciated in these tables, the value of α decreased with increasing noise

level – which is indeed expected because the noisier the measurement data, the

less strictly it should be enforced. Additionally, the α values corresponding to
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the elastic initial guess are lower by a few orders of magnitude than those cor-

responding to the initial guess of the background moduli. This is a direct result

of the choice of normalization used for this work, which is presented in (1.41)

and (1.42). More specifically, an elastic initial guess yields uinit, which often has

a larger magnitude than the one obtained using a viscous initial guess (holding

the real part constant), since uinit in the latter case is attenuated by damping.

Hence, uinit with a larger magnitude leads to a higher value of A, which is com-

pensated with a lower value for α in order to satisfy Morozov’s Principle.

Table 1.1: Algorithm diagnostics for Ex. 1 results with known boundary
conditions.

Initial Guess Noise Level α eBL1 eBL2 eGL1 eGL2

Background
1% 0.20 0.15 0.23 0.15 0.15

5% 0.14 0.28 0.36 0.25 0.24

Real Part of Background
1% 6.6× 10−5 0.16 0.22 0.15 0.15

5% 4.9× 10−5 0.27 0.33 0.26 0.25

Table 1.2: Algorithm diagnostics for Ex. 1 results with unknown bound-
ary conditions.

Initial Guess Noise Level α eBL1 eBL2 eGL1 eGL2

Background
1% 0.30 0.29 0.30 0.32 0.29

5% 0.10 0.45 0.48 0.40 0.39

Real Part of Background
1% 8.9× 10−5 0.27 0.29 0.34 0.29

5% 2.7× 10−5 0.41 0.46 0.47 0.42

It is important to point out that the L1 and L2 errors presented in Tables 1.1

and 1.2 may provide a misleading sense of the accuracy of the reconstructed
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moduli. For instance, small errors in the shape or location of the reconstructed

inclusion could lead to relatively high L1 and L2 errors, but as it can be appre-

ciated in Figures 1.2–1.4, these high errors are not truly representative of the

visual quality of the reconstructions. The L1 and L2 errors presented in Tables

1.1 and 1.2, however, are useful for making relative comparisons between the

different reconstructions. For example, the errors in the reconstructed moduli

increase with greater noise levels in the measured displacement data, which is

indeed expected. Moreover, the nature of the initial guess (i.e., elastic vs. vis-

coelastic) does not seem to have a significant impact on the final reconstruction

of the moduli. In other words, the algorithm exhibits robustness with respect to

the initial guess. Finally, the reconstructions obtained with unknown boundary

conditions are accompanied by L1 and L2 errors in the moduli that are higher

than those for the reconstructions obtained with known boundary conditions,

which is expected due to the loss of boundary information in the former case.

1.5.2 Example 2: 2D reconstruction with window

This example highlights the ability of the approach proposed in this chapter to

perform reconstructions of the shear and bulk moduli fields in a subdomain, or

window, of the original problem domain. The current example also shows the

effects of using different initial guesses for the viscoelastic parameters required

by the alternating directions scheme. For this purpose, the problem setup used

for this example was very similar to the one used for Example 1. In particular,

every detail except the domain and mesh used for the inverse problem (i.e., the

domain and mesh for which the measured data is available) was the same as in

Example 1. The domain used for the inverse problem was in fact a subdomain
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of the one shown in Figure 1.1 and consisted of a square window with sides

of 28 mm in length and whose center coincided with the center of the larger

domain. This window covered 49% of the area of the larger domain and was

uniformly meshed with 6,400 linear quadrilateral (Q4) elements. Additionally,

a noise level of δ = 0.01 and different initial guesses for the viscoelastic moduli

were considered.

Figures 1.5, 1.6, and 1.7 show the reconstructions, all performed without

any knowledge of boundary conditions. Each figure shows the true solution

of the inverse problem along with the window in which the reconstructions

were performed. In addition, these figures show the reconstructions obtained

with different initial guesses for the alternating directions algorithm. The initial

guesses considered are as follows: 1) Binit = 50 kPa and Ginit = 5 kPa, which

correspond to the real part of the background moduli; 2) Binit = 50 kPa and

Ginit = 5 + 2.5i kPa, which correspond to the true background moduli; 3) Binit =

50 kPa andGinit = 5+4.5i kPa; and 4)Binit = 50 kPa andGinit = 10+3i kPa. Thus,

each initial guess represents a different level of damping in the shear modulus.

As it can be seen in Figure 1.5, the different initial guesses did not have a sig-

nificant effect on the reconstruction of the real part of the bulk modulus. This is

indeed expected because the bulk modulus of the initial guess was the same for

all cases. Moreover, these reconstructions correctly identified the value of the

background modulus, but underestimated the value of the inclusion modulus.

This is also seen in Figure 1.6 to be the case for the real part of the shear, whose

estimated value is nevertheless more accurate. In addition, an initial guess of

Binit = 50 kPa and Ginit = 10 + 3i kPa resulted in a reconstruction of the real part

of the background shear modulus with a higher error than the other reconstruc-
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tions, which seems to be a reflection of the large discrepancy between the real

part of the shear modulus of the initial guess and the corresponding true value

for the background. Finally, all reconstructions of the real part of both the shear

and bulk moduli correctly identified the shape of the inclusion.

The reconstruction of the imaginary part of the shear modulus, shown in

Figure 1.7, was the most affected by the different initial guesses considered.

We observed that the quality of the reconstruction of the inclusion improved

as the value of the imaginary part of the shear modulus taken as initial guess

increased. Indeed, the shape and estimated value of the imaginary part of the in-

clusion shear modulus seem most accurate in the reconstruction obtained with

an initial guess of Binit = 50 kPa and Ginit = 5 + 4.5i kPa. This trend appears to

be reversed, however, for the reconstruction of the imaginary part of the back-

ground shear modulus. Additionally, the use of a window led to a degradation

in the quality of the reconstructions. It is conjectured that this degradation is

due to less displacement data being taken into consideration in a window sub-

domain.

Table 1.3 shows the value for α obtained according to Morozov’s Principle

and the relative L1 and L2 errors in the reconstructed moduli for the different

initial guesses considered. As it can be seen, the errors in the reconstructed mod-

uli do not vary significantly from one initial guess to the next, which confirms

the robustness of the algorithm in this sense, but these errors are, in general,

slightly greater than their counterparts in Example 1, which is evidence of the

small degradation in the quality of the reconstructions obtained with the use of

a window. Moreover, as was the case with Example 1, the value for α corre-

sponding to the elastic initial guess is lower than the corresponding values for
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(a) Reference with window
(b) Initial guess: real part of back-
ground

(c) Initial guess: background (d) Initial guess: Binit = 50; Ginit = 5 +
4.5i

(e) Initial guess: Binit = 50; Ginit = 10 +
3i

Figure 1.5: Re(B) for Example 2. Background is BBACK = 50 and GBACK =
5 + 2.5i. Units: kPa, mm

33



(a) Reference with window
(b) Initial guess: real part of back-
ground

(c) Initial guess: background (d) Initial guess: Binit = 50; Ginit = 5 +
4.5i

(e) Initial guess: Binit = 50; Ginit = 10 +
3i

Figure 1.6: Re(G) for Example 2. Background is BBACK = 50 and GBACK =
5 + 2.5i. Units: kPa, mm
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(a) Reference with window
(b) Initial guess: real part of back-
ground

(c) Initial guess: background (d) Initial guess: Binit = 50; Ginit = 5 +
4.5i

(e) Initial guess: Binit = 50; Ginit = 10 +
3i

Figure 1.7: Im(G) for Example 2. Background is BBACK = 50 and GBACK =
5 + 2.5i. Units: kPa, mm
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the other initial guesses.

Table 1.3: Algorithm diagnostics for Ex. 2 results with unknown bound-
ary conditions.

Initial Guess α eBL1 eBL2 eGL1 eGL2

B = 50 kPa; G = 5 kPa 0.05 0.55 0.45 0.53 0.41

B = 50 kPa; G = 5 + 2.5i kPa 0.43 0.58 0.47 0.51 0.40

B = 50 kPa; G = 5 + 4.5i kPa 0.61 0.57 0.46 0.60 0.44

B = 50 kPa; G = 10 + 3i kPa 0.43 0.58 0.48 0.65 0.47

1.5.3 Example 3: 2D reconstruction with 1D data

This example is inspired by the field of ultrasound imaging. In such situations,

the displacement data collected is unidirectional, specifically along the axis of

the ultrasound transducer. Thus, we show how the unknown boundaries sce-

nario can be used for the purpose of estimating the complex-valued shear mod-

ulus field using noisy unidirectional data. The domain used is the same as in

Example 1 (where a more detailed description can be found) and is shown in

Figure 1.1. For this example, moreover, a frequency of 300 Hz was used, and

the mass density was again set to 1, 000 kg/m3. The bulk modulus of both the

background and inclusion was fixed to 2.2 GPa, while the shear modulus of the

background and the inclusion was set to 5 + 1i kPa and 20 + 5i kPa, respec-

tively. These properties rendered the material nearly-incompressible, and thus,

the mean-dilatation approach [14] was used to handle such phenomenon.

The boundary conditions used to generate the synthetic displacement data
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can be appreciated in Figure 1.1; these were chosen to produce a displacement

field dominated by one direction due to the limitations of ultrasound. In this

case, t2 = t3 = 0, and t1 = [5 + 0.5i 0] kPa. Additionally, the bottom, in-

stead of being fixed, simulated an absorbing boundary (i.e., the domain was

semi-infinite). Moreover, the mesh used for the finite element simulation to

produce the raw (i.e., before interpolating and adding noise) displacements had

around 22, 000 linear quadrilateral (Q4) elements, and the one used for the in-

verse problem, onto which the raw displacements were interpolated, had about

15, 600 Q4 elements. In addition, random noise, in this case with a level δ = 0.01,

was added to the displacements after interpolation to produce the measurement

data.

For this example, the bulk modulus was assumed to be known and thus was

not imaged (i.e., reconstructed). This selection was done to mimic the fact that

soft biological tissue is nearly incompressible. Moreover, the initial guess for the

shear modulus in the alternating directions algorithm was taken to be the real

part of the background, 5 kPa. We also remark that since the available measure-

ment data for the inverse problem was unidirectional (i.e., in the direction of

the x−axis in Figure 1.1), we had to estimate the displacements in the missing

direction, which corresponds to the y−axis, in order to obtain meaningful re-

constructions for the unknown boundaries scenario. The vertical displacements

were estimated in this case to be exactly zero, which is a reasonable assumption

given the setup of the problem (i.e., the boundary conditions used to generate

the measurement data produced displacements in the vertical direction which

were about one order of magnitude smaller than displacements in the horizon-

tal direction). Such a setup is quite common in experimental settings such as

shear wave elasticity imaging [28, 13, 23], for instance. However, due to esti-
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mating the displacement data in the missing direction, the true level of noise in

the measurement data was unknown, and as a result, Morozov’s principle was

not applicable to select the weighting parameter α. In this scenario, the error

balance approach introduced in [29] was used. This criterion seeks to adjust

α so as to strike a balance between the minimization of the different compo-

nents of the viscoelasticity MECE functional, hoping to achieve a satisfactory

tradeoff between over-smoothing the inverse problem solution (over-emphasis

on ECE minimization) and over-fitting the data (over-emphasis on data discrep-

ancy minimization). Using this selection criterion, the weighting parameter was

determined to be α = 106. Moreover, 15 iterations of the alternating directions

algorithm were sufficient to achieve convergence – a lower number of iterations

required in this case due to the higher value of α.

Figure 1.8 shows the results obtained for the unknown boundaries scenario.

We first notice that the inverse problem domain has been truncated, and the

height of the truncated square is 31 mm. The top 9 mm of the original domain

were discarded for the inverse problem because the displacement data was not

dominated by one direction in this region, and as a result, our assumption broke

down, introducing a significant error. We highlight the fact that the ability to

truncate the domain in this manner is a salient feature of the approach presented

in this chapter.

As it can be appreciated in Figure 1.8, the reconstruction of the real part of

the shear modulus clearly shows the inclusion (i.e., the shape and value of the

inclusion were correctly recovered). Moreover, this reconstruction also correctly

identified the value of the background. The reconstruction of the imaginary part

of the shear modulus, however, is not as accurate as its real counterpart. As in
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(a) Reference for Re(G) (b) Reconstruction of Re(G)

(c) Reference for Im(G) (d) Reconstruction of Im(G)
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(e) Line Plot along CD (see Fig. 1.1) of Re(G)

Figure 1.8: Shear Modulus for Example 3. Units: kPa, mm

Examples 1 and 2, reconstructing the imaginary part of the shear modulus was

harder than reconstructing its real counterpart, but for this example, the error

introduced by estimating the displacements in the missing direction may be

quite large and make a meaningful pointwise reconstruction of the imaginary

part of the shear modulus impossible.

Nevertheless, if the reconstruction is done assuming known geometries (i.e.,

the mesh for the inverse problem includes the elliptical inclusion, and both the
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background and inclusion are each assumed to be homogeneous), the values of

the imaginary part of the shear modulus are correctly identified. Such a recon-

struction may be done once the shape of the inclusion is identified (as seen in the

pointwise reconstruction of the real part of the shear modulus in Figure 1.8(b)).

In this case, the imaginary part of the shear modulus of the background and the

inclusion were estimated to be 1.14 kPa and 3.42 kPa, respectively. Likewise,

the real part of the shear modulus of the background and the inclusion were

estimated to be 4.7 kPa and 17.4 kPa, respectively. Moreover, the weighting pa-

rameter used for this reconstruction was α = 502, and a total of five iterations

of the alternating directions scheme were necessary to achieve convergence.

1.5.4 Example 4: 3D reconstruction with 3D data

This example is designed to showcase the ability of the algorithm discussed ear-

lier to scale to more general three-dimensional situations. The reconstructions

performed for this example were done for the unknown boundaries scenario

and using noisy displacement data. The domain, which is shown in Figure 1.9,

consists of an elliptic cylinder inclusion whose center coincides with the center

of a cube with an edge length of 4 cm. The elliptic cylinder has a height of 2 cm,

a major radius of 11.3 mm, and a minor radius of 7 mm. Moreover, the cylinder

has been rotated 45◦ in the xy-plane.

The frequency used in this example was 50 Hz, and the mass density of both

the background and the inclusion is 1, 000 kg/m3. Moreover, the bulk modu-

lus of the background and the inclusion were taken as 100 kPa and 300 kPa,

respectively. Likewise, the shear modulus of the background and the inclusion
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Figure 1.9: Domain used in Example 4

were 20 + 2i kPa and 60 + 8i kPa, respectively. The boundary conditions used to

generate the measurement data consisted of compression and shearing loads on

every face of the cube except the bottom face, which was fixed. Moreover, the

measurement data was generated by performing a finite element simulation us-

ing a mesh with about 60, 000 quadratic tetrahedral elements, interpolating the

resulting displacements to the inverse problem mesh with about 15, 600 linear

hexahedral elements, and adding random noise as described earlier. The noise

level considered for this particular example was δ = 0.01.

The initial guess for the moduli in the alternating directions algorithm de-

scribed earlier corresponds to the background. Thus, the initial guess for the

bulk modulus was 100 kPa, while the initial guess for the shear modulus was

20 + 2i kPa. Figure 1.10 shows threshold plots for all reconstructed values of

the moduli. These plots show the cube background and the inclusion with cor-

responding elements from the mesh shaded in for reference purposes. Addi-

tionally, Figure 1.11 shows cuts parallel to the cube faces, going through the

center of the domain. As it can be observed in these figures, the algorithm was
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(a) Re(B). (Min, Max)=(175, 234) (b) Re(G). (Min, Max)=(35, 46)

(c) Im(G). (Min, Max)=(4.5, 8)

Figure 1.10: Threshold Plots for Example 4. Intervals represent bounds on
values of elements shown in red. Units: kPa

able to correctly identify the location and shape of the inclusion as well as the

value of the background’s moduli. The reconstructed values of the inclusion,

nevertheless, underestimate in all instances the true values. Indeed, the recon-

structed maximum value in the domain is less than the corresponding value

of the modulus of the inclusion in all cases. We observed consistently during

our numerical investigations that accuracy was lost in reconstructions obtained

without any knowledge of boundary conditions when compared to the same re-

constructions obtained with application of the boundary conditions. It may be

possible to improve the accuracy of the results obtained with unknown bound-

ary conditions by enriching the measured data using multiple experiments. The

authors are presently investigating this possibility.
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(a) Reference (b) Reference (c) Reference

(d) Re(B) (e) Re(B) (f) Re(B)

(g) Re(G) (h) Re(G) (i) Re(G)

(j) Im(G) (k) Im(G) (l) Im(G)

Figure 1.11: Reconstructed moduli for Example 4 in planes through center
of domain: xy-plane (left column), yz-plane (middle column),
and xz-plane (right column). Units: kPa
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Table 1.4 shows the value of the weighting parameter α, selected according

to Morozov’s Principle, and the relative L1 and L2 errors in the reconstructed

moduli in the scenario with unknown boundary conditions and, for compari-

son purposes, in the scenario with known boundary conditions. As it can be

appreciated, the lack of knowledge of boundary conditions yields reconstruc-

tions that are less accurate than those obtained using knowledge of the bound-

ary conditions, but the former reconstructions, as demonstrated by Figures 1.10

and 1.11, are still meaningful and useful for biomedical imaging purposes.

Table 1.4: Algorithm diagnostics for Ex. 4 results.

Boundary Conditions α eBL1 eBL2 eGL1 eGL2

Known 4.9 0.25 0.30 0.13 0.16

Unknown 2.7 0.38 0.40 0.31 0.35

1.6 Conclusions

We have developed and demonstrated the feasibility of an error in constitutive

relationship methodology for the inverse identification of linearly viscoelastic

material parameters using interior data. Our proposed approach would be par-

ticularly useful in the area of biomechanical imaging, where the goal is to pro-

duce images of the material parameters of a tissue from displacements mea-

sured in its interior and where accurate information on boundary conditions is

not readily available. Thus, our contributions with this work include the ability

to address viscoelasticity imaging problems through the use of a generalized

error in constitutive equation functional and to handle, in a very natural way,
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situations in which there is no knowledge on boundary conditions. In addi-

tion, the resulting optimality sub-system for the mechanical fields was shown

to be invertible. Moreover, regularization of the inverse problem of viscoelastic-

ity imaging is achieved using the discrepancy principle due to Morozov, which

supposes that the relative noise level in the measurement data is known. The

numerical experiments shown highlight the robust performance of the algo-

rithm in characterizing the viscoelastic properties of a material in situations in

which incomplete and noisy displacement data is available and, in addition, in-

formation on boundary conditions is unavailable. Finally, future directions of

investigation include the following: 1) to validate the algorithm with real ex-

perimental data; 2) to extend the formulation to address imaging problems in

which measured data from multiple experiments is available; 3) to determine

the convergence properties of the alternating directions strategy ; and 4) to de-

vise regularization techniques to select the weighting parameter α in cases in

which the noise level in the data is unknown.
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CHAPTER 2

DINAMICAE: A PARALLEL ELASTODYNAMICS FINITE ELEMENT

SOFTWARE

2.1 Introduction

DinamicaE is a massively parallel finite element software package developed

by the Computational Mechanics and Inverse Problems Group led by Professor

Wilkins Aquino. Its development started in 2010, and efforts are ongoing to con-

tinue adding functionalities of interest. At the time of writing of this thesis, the

DinamicaE simulation suite is able to perform finite element computations re-

lated to steady-state structural dynamics and acoustics, with the ability to han-

dle nearly incompressible materials. Moreover, it has features to model infinite

and semi-infinite domains through the implementation of absorbing boundary

conditions and perfectly-matched layers (PML). In addition, DinamicaE has the

ability to model problems in acoustic-structure interaction (ASI) with the added

benefit of inheriting all the capabilities mentioned for each of the individual

problem domains. A unique feature found in DinamicaE is the ability to solve

large scale material identification problems in elasticity, viscoelasticity, and ASI.

DinamicaE has been developed in the C++ programming language with

the help of Diffpack [4], a sophisticated collection of libraries that enables the

numerical solution of partial differential equations through the finite element

method. As such, DinamicaE (and Diffpack) takes advantage of the features of-

fered by C++, which include object-oriented programming, abstract data types,

templates, data encapsulation, and inheritance. This approach to developing

numerics software has recently proven to be quite successful due to the ease of

50



maintaining and extending it [4].

The implementation of the MECE approach using finite elements will be ex-

plained throughout the rest of this thesis. We assume the availability of an im-

plementation of a finite element solver and discuss how to extend it to include

the MECE technique. An overview of the algorithm is first explained in the next

section, while the subsequent section is devoted to details of the implementa-

tion. A brief overview of the assumed finite element solver functionalities is

given, and the details of the implementation of the MECE approach are fur-

ther explored. Finally, a crucial aspect of the MECE algorithm, the selection of

the weighting parameter, is discussed, and some conclusions are offered after-

wards.

2.2 Algorithm Details

The MECE algorithm is repeated here for convenience to the reader. Notice that

the algorithm flow depends on whether the material is elastic or viscoelastic,

which are the only kinds of material considered in this work. The reader is re-

ferred to [1] for details specific to the treatment of elastic materials in the context

of the MECE algorithm. Moreover, it is assumed that the bulk and shear moduli

are defined elementwise (i.e., they are both constant over each element in the

mesh).
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Data: Domain with mesh; harmonic frequency ω; regularization

parameter α; initial guess Binit and Ginit; bounds Blow, Bup, Glow,

Gup; measured displacement data

Result: Final estimates of B and G, the displacement field u, and the

Lagrange multiplier field w

/* Initialization */

Compute finite element traction vector {F}init from known (or assumed)

loading;

Solve ([K]init − ω2[M ]) {u}init = {F}init for {u}init;

if material is elastic then

Set A :=
{u}Tinit[K]init{u}init

{um}T {um} ;

else

/* Material is viscoelastic */

Set [P ] := Re ([C]init) + Im ([C]init);

Set [T ] := Re ([K]init) + Im ([K]init);

Set A :=
{u}Tinit[T ]init{u}init

{um}T {um} ;

end

Compute κ according to

κ = Aα (2.1)

/* MECE iterations */

while not converged do

Do: Mechanical fields update (see details in Algorithm 2 )

Do: Material update (see details in Algorithm 3)

end

Algorithm 1: MECE algorithm
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/* Mechanical fields update */

Update [K] with latest values of B and G;

if material is elastic then

Set [T ] := [K];

end

Solve  [T ] [K]− ω2 [M ]

([K]− ω2 [M ])
H −κ [D]


{w}{u}

 =

 {F}

−κ{um}

 (2.2)

for {u} and {w};

Algorithm 2: MECE algorithm: Mechanical fields update
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/* Material update */

for n := 1 to total number of mesh elements do

/* Proposal substep */

Set {ε}elem
n := [B̂]elem{u}elem

n ;

if material is elastic then

Set {σ}elem
n := [C]elem

n [B̂]elem
(
{u}elem

n + {w}elem
n

)
;

Set B∗n :=
〈tr({σ}elem

n ),tr({σ}elem
n )〉1/2

3〈tr({ε}elem
n ),tr({ε}elem

n )〉1/2 ;

Set G∗n :=
〈{σdev}elem

n ,{σdev}elem
n 〉1/2

〈{εdev}elem
n ,{εdev}elem

n 〉1/2 ;

else

/* Material is viscoelastic */

Set {σ}elem
n := [C]elem

n [B̂]elem{u}elem
n + [P ]elem

n [B̂]elem{w}elem
n ;

Set B∗n :=
∫
Ωelem tr({σ}elem

n ) dV
3
∫
Ωelem tr({ε}elem

n ) dV ;

Set G∗n :=
〈{σdev}elem

n ,{εdev}elem
n 〉

2〈{εdev}elem
n ,{εdev}elem

n 〉 ;

end

/* Correction substep for bulk modulus (analogous

for shear modulus) */

/* h(·) stands for Re(·) and Im(·). */

if h(B∗n) < h(Blow) then

Set h(Bn) := h (θBn + (1− θ)Blow);

else if h(B∗n) > h(Bup) then

Set h(Bn) := h
(
θBn + (1− θ)Bup

)
;

else

Set h(Bn) := h(B∗n);

end

end

Algorithm 3: MECE algorithm: Material update
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Table 2.1 describes the different quantities that appeared in the MECE al-

gorithm. For convenience, second-order tensor quantities such as stress and

strain have been represented as vectors using Voigt notation. Additionally, an-

gle brackets (i.e., 〈·, ·〉) have been used to represent the L2-inner product of two

Voigt-notation vectors, and the trace function of such a vector is denoted with

tr(·). We also remark that the function h(·) is used to denote the Re(·) function

in the case of elastic materials and both the Re(·) and Im(·) functions in the case

of viscoelastic materials. Finally, notice that the correction substep for the shear

modulus has been omitted from the algorithm due to its similarity to the same

substep for the bulk modulus.

2.3 Implementation

In this section, we explain how to exploit an existing finite element code and its

associated functionalities in order to implement the MECE algorithm previously

described. For this purpose, we reproduce the implementation of the algorithm

done in the DinamicaE simulation suite.

2.3.1 Existing Functionalities of a Finite Element Solver

Figure 2.1 shows the class structure of the existing finite element code (i.e., the

structure assumed available to a developer) that is taken as the point of depar-

ture. In this figure, a solid line is used to represent direct inheritance between

two classes, so for instance, IsoElastic is assumed to be a child of the class

Material. Moreover, a dashed line is used to indicate ownership, so for ex-
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Table 2.1: Quantities found in MECE algorithm

Variable Description

A normalization factor for regularization parameter

{F} finite element traction vector from known loading

{F}init traction vector from known (or assumed) loading to compute A

[K]init stiffness matrix assembled with initial guess Binit and Ginit

[M ] mass matrix

{u}init displacement vector used to compute A

{um} vector with measured displacements

[C]init matrix representation of constitutive tensor for initial guess

B bulk modulus

G shear modulus

[K] stiffness matrix

[D] measurement-location indicator matrix

{u} displacement vector

{w} Lagrange multiplier vector

{u}elem
n element displacement vector for element n

{w}elem
n element Lagrange multiplier vector for element n

[B̂]elem element matrix with derivatives of finite element shape functions

[C]elem
n matrix representation of constitutive tensor for element n

{σdev}elem
n deviatoric projection of {σ}elem

n

{εdev}elem
n deviatoric projection of {ε}elem

n

θ weighting parameter for correction substep

56



ComplexSolidSS LinearSolver 

Material 

IsoElastic IsoViscoElastic 

Figure 2.1: Class structure of existing finite element code

ample, ComplexSolidSS owns (i.e., has a pointer to) LinearSolver. The

structure shown in Figure 2.1 has been assumed as such because it facilitates

the implementation of the MECE algorithm discussed previously.

ComplexSolidSS handles tasks related to the finite element method such

as preprocessing, assembly of the stiffness and mass matrices and the trac-

tion vector, solution of the resulting system of equations, and postprocess-

ing. Even though there is a more complicated class structure surround-

ing ComplexSolidSS that distributes and decentralizes these tasks, only the

classes most relevant to the implementation of the MECE algorithm have been

shown for the sake of simplicity. For instance, the importance of explicitly show-

ing the dependency of ComplexSolidSS on the class Material will become

apparent later when the implementation of the MECE algorithm is discussed.

For now, it is important to know that ComplexSolidSS gets from the class

Material the constitutive matrix of each element of a material in the mesh in

order to assemble the stiffness matrix. Moreover, depending on whether the

material is elastic or viscoelastic, the constitutive matrix of the element is as-
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ComplexSolidSS LinearSolver 

SteadyStateBlockMECE SteadyStateMECE 

Material InvMaterial 

IsoElastic IsoViscoElastic InvIsoElastic InvIsoViscoElastic 

Figure 2.2: Class structure of existing finite element code (in blue rectan-
gles) and implementation of MECE algorithm (in green ovals)

sembled by the class IsoElastic or IsoViscoElastic, respectively. Thus,

the class Material serves as an interface between classes representing different

material types and the main finite element simulator class ComplexSolidSS,

which is an example of an efficient use of polymorphism allowing flexibility in

DinamicaE. The other important class, LinearSolver, serves as an interface

for ComplexSolidSS to communicate with a linear solver, which provides the

solution to a linear system of equations upon request by ComplexSolidSS.

2.3.2 The MECE algorithm

Figure 2.2 shows the class structure of the MECE algorithm implementation.

SteadyStateMECE is the driver class that administers the MECE iterations

loop and is partly responsible for the initialization by storing the measured dis-

placements in an internal data structure. The rest of the MECE algorithm ini-

tialization is completed by the class SteadyStateBlockMECE. This class takes

advantage of the functionalities found in ComplexSolidSS, which is its parent,

in order to compute κ according to (2.1). Such functionalities include to set up
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and solve a system of equations that involves stiffness and mass matrices and a

traction vector. SteadyStateBlockMECE is also responsible for the mechani-

cal fields update, whereas the material update falls under the responsibility of

the class InvMaterial.

Solving the Coupled System of Equations

Once the algorithm initialization is complete, the MECE iterations begin, and

the first step here is the mechanical fields update. This step consists of solving

the system of equations shown in (2.2), and the class SteadyStateBlockMECE

is responsible for completing this step. This class relies on its parent class

ComplexSolidSS to assemble the stiffness and mass matrices and the trac-

tion vector (in the case where boundary conditions are known). Moreover,

SteadyStateBlockMECE assembles the matrix [T ] once the stiffness matrix

is available, and it also assembles the measurement-location indicator matrix

[D] with the help of the measured displacements map. [D] is a Boolean matrix

with a nonzero entry (i.e., the entry is “1”) in the diagonal position correspond-

ing to a degree of freedom where a displacement measurement was taken. Ad-

ditionally, the class SteadyStateBlockMECE also assembles the vector with

measured displacements.

Once all the individual blocks of the system (2.2) are assembled and ready,

SteadyStateBlockMECE then puts together the coefficient matrix and the

right-hand side of (2.2). Afterwards, this class enforces essential boundary con-

ditions on the fields u, w, or both through static condensation, a capability

which is also provided by ComplexSolidSS. Now that the system of equa-

tions is ready to be solved, SteadyStateBlockMECE accesses LinearSolver
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in order to obtain a solution, and the latter class then stores the result in two dif-

ferent internal vectors for later use in the material update.

Executing the Material Update

Once the mechanical fields are updated, the next step is the material update.

An important assumption behind the implementation of this latter step is that

the material properties (i.e., the bulk and shear moduli) are assumed to be con-

stant in one element. Hence, the material update step is done elementwise as

is shown in the pseudocode for Algorithm 3. This can be easily modified, how-

ever, in order to accommodate situations in which the material properties are

known to remain constant in a group of elements.

In order to initiate the material update step, SteadyStateMECE obtains the

result from the previous step (i.e., the solution to the system (2.2)) and passes it

to the class InvMaterial. This class is responsible for executing a loop over

the total number of elements in the mesh, and once at the element level, the pro-

posal and correction substeps take place. In the proposal substep, candidates

for the bulk and shear moduli updates are computed according to the formu-

las shown in the pseudocode for Algorithm 3. If the element is identified as

an elastic material, the class InvIsoElastic computes the candidates for the

update, whereas the class InvIsoViscoElastic performs the corresponding

computation for elements of a viscoelastic material. It is important to note that

computing these candidates for the moduli update requires performing an inte-

gration over the element. This is easily achieved with the numerical integration

functionality provided by Diffpack.
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In the correction substep, the candidates computed by the previous proposal

substep are checked to determine if they fall within some bounds specified a

priori (i.e., the user of the MECE algorithm may know that the material prop-

erties of interest fall within some bounds). If the candidates satisfy these in-

equality constraints, they are taken as the update, whereas if they violate the

constraints, the update is then computed as a weighted average between the

current material property and the bound being violated. This correction is done

for the real part of the bulk and shear moduli of elastic materials and for both

the real and imaginary parts of the shear and bulk moduli of viscoelastic mate-

rials. Moreover, the weighted average is controlled by the parameter θ shown

in the pseudocode for Algorithm 3; θ is currently set to 0.5 in the DinamicaE

implementation of the correction substep.

Once the updates are finally computed, these are passed to IsoElastic

or IsoViscoElastic, via the class Material, so that the material properties

stored in these classes can be updated to their latest values, and this concludes

the material update step of the MECE algorithm. It is important to notice the

parallelism between the child classes of Material and those of InvMaterial.

In this case, the flexibility of the C++ programming language allows developers

to easily add the functionality to apply the MECE algorithm to other types of

materials besides elastic and viscoelastic. For instance, if an orthotropic material

is implemented as a child of Material, the corresponding class to compute

the update in the MECE algorithm can be implemented as a child of the class

InvMaterial once the corresponding update formulas have been derived.
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Computing Errors

The MECE methodology naturally provides two quantities that are extremely

useful in monitoring the progression of the algorithm iterations. These are the

error in constitutive equation (ECE) and the displacement L2-error. Suppose

that the stress field σ, the displacement field u, and the constitutive tensor C

satisfy the partial differential equation of motion for steady-state dynamics (see

[1] for more details) in Ω. The ECE for elastic materials is defined as

U(u,σ;C) :=

∫
Ω

(σ − C :ε[u]) :C−1 : (σ − C :ε[u]) dV, (2.3)

where ε[·] is the linearized strain operator, and the displacement L2-error as

L(u) := ‖u− um‖2
L2(Ωm), (2.4)

which is the square of the L2-norm of the difference between u and the mea-

sured displacements um. Ωm is the subset of Ω on which um is defined (i.e.,

where displacements were measured).

We first address the computation of the ECE. After the mechanical fields

update step, the relationship

σ = C : (ε[u] + ε[w]) (2.5)

holds true for elastic materials [1], where w is the Lagrange multiplier field.

After substituting (2.5) into (2.3) and simplifying, we obtain

U(w;C) =

∫
Ω

ε[w] :C :ε[w] dV, (2.6)

which is easily computed during the material update step by taking advantage

of the already ongoing numerical integration. For viscoelastic materials, (2.6)

becomes

U(w;C) =

∫
Ω

ε[w] :P :ε[w] dV. (2.7)
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In practice, Ωm is a finite set, which is naturally associated with the counting

measure, and hence, L(u) reduces to

L(u) = ({u} − {um})T ({u} − {um}) (2.8)

because the displacement measurements are available at the discrete points part

of Ωm which also coincide with finite element nodes. Moreover, this computa-

tion is simple to perform with the tools available in Diffpack.

The stopping criteria for the MECE algorithm iterations implemented in Di-

namicaE makes use of these two errors. The iterations are stopped once the rel-

ative change in U(w;C) +κL(u) between two successive iterations drops below

a certain user-defined tolerance. This stopping criteria has yielded successful

results in numerical experiments.

2.4 Regularization Parameter Selection

As explained in Section 1.4.2, one of the most important aspects of the MECE

algorithm involves the selection of the weighting parameter α, which controls

how strongly the measured displacement data is enforced when computing a

solution to the inverse problem. Although there is no optimal selection rule for

the weighting parameter, the discrepancy principle due to Morozov [2, 3] is an

intuitive approach that works well in practice (see Section 1.4.2 for details). If we

let {uα} denote the solution to system (2.2) during the last MECE iteration (i.e.,

the displacement that is part of the MECE solution to the inverse problem) for a

given value of α and δ denote the level of noise in the measurements, Morozov’s
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discrepancy principle states that α should be chosen such that

({uα} − {um})T ({uα} − {um})
{um}T{um}

= δ2 (2.9)

When the level of noise δ is known, equation (2.9) is solved in Dinami-

caE with the bisection method. This method is implemented in the class

SteadyStateMECE and calls the function that executes the MECE iterations

whenever it requires a function evaluation.

In the event the level of noise in the measured data is unknown, a different

rule is required to choose α. One such rule, proposed in [6] and known as the

error balance approach, states that the chosen value for α should minimize the

sum L2
α + U2

α, where Lα and Uα are the displacement L2-error and the ECE,

respectively, at the end of the MECE iterations for a given value of α. Analogous

to the bisection method, a golden section search is implemented in the class

SteadyStateMECE of DinamicaE in order to select α according to this rule.

One of the appealing aspects of DinamicaE is that it is fairly easy to imple-

ment other criteria to select α in order to compare their performance. Within the

already discussed framework, a class that wraps around SteadyStateMECE

can be designed in order to implement the different criteria and to call upon

the latter to evaluate the required quantities whenever necessary. Moreover,

optimization-based selection rules can be implemented along with well-known

and available optimization algorithms such as BFGS [5] in order to leverage

their performance.
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2.5 Conclusion

The modified error in constitutive equation approach to solve inverse problems

has shown great promise to tackle a wide range of imaging problems. Part of

MECE’s success is due to its ability to use finite elements as the underlying mod-

eling tool. Thus, with the versatility and generality of finite elements, MECE is

able to address imaging problems that arise in numerous applications (e.g., from

seismic inversion to biomedical imaging).

In addition, as it has been shown, MECE is relatively simple to implement in

existing finite element codes, and more importantly, implementations in object-

oriented languages are quite amenable to enhancements and adaptations. An

example of this is the easy extension of MECE in DinamicaE to handle new ma-

terial types (e.g., anisotropic or nonlinear). Moreover, the modular structure

provided by an object-oriented implementation is another attractive aspect of

MECE in DinamicaE, since the entire software package benefits from improve-

ments to its different parts and pieces. For instance, the MECE algorithm in

DinamicaE will inherit performance optimizations that are directly done to the

linear solvers used in the software package, or benefit from a new and faster

solver that is easy to interface with the existing framework due to its modular-

ity.
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