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RESEARCH ON A NEW+XIND OF MAGIC SQUARE

BU-4&5-M ' January, 1972

l. A very curious question which has.téxéd the wisdom of many people for
some time led me to make the following investigation which seems to open a new
Field of Analysis and in particular of the theory of combinations. This question
concerns a group of 36 officers, of six different ranks and drawn from six differ-
ent regiments, whom it was a question of arranging in a square in such a way that
on each line, horizontal as well as vertical, there would be found six officers
different from each other in both rank and regiment. However, in spite of the
trouble taken to resolve this problem, one is obliged to admit that such an
arrangement is absolutely impossible, although one is not able to give a rigorous

proof.

2. To explain more clearly the question mentioned, I will mark the six

different regiments by the Latin letters

a, b, ¢, d, e, £,
and the six different grades by the Greek letters

Q By vy 5, €, &;
and it is clear that the characteristics of each officer are determined by two
letters, one Latin and the other Greek, of which the first indicafed his regiment
and the other his rank, and that there will be actually 36 combinations of two
of these letters, as follows:

ac 'ay ad ae af

ap
b BB by b5 be bE
e cp
de dg

ey ¢d ce cf
dy 4 de df
ex e ey ed ee eg
fo B fy 5 fe £y
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each one of which expresses the characteristic of an officer. It is a question
of writing these 36 terms in the 36 divisions of a square so that on each line,

horizontal as well as vertical, one finds the six Latin and the six Greek letters.

3. One will then have three conditions to fulfill; first, that on each row
one finds the six letters, Latin as well as Greek; second, that the same be true
in all the columns; and lastly; that ali the 36 terms above be found actually
inscribed in the square, or that no symbol be found twice, which comes to the
same thing. For, if it were only a matter of satisfying the first two condi-
tions, it would not be difficult to find several solutions; here is one

acx bE cd de ey 1B

B @ fe ed af dy
cy de aB .bt 1B ex
B fy el cf bo ae
ee ad by f& a8 cg
f§& e dx ay ce S

but this arrangement has the fault that the terms b, and de are found twice and

that the terms be and df are lacking entirely.

4+ Then after all the care that has been used for the construction of such

a square of thirty-six entries has proved useless, to give wider generality to
my research, in place of six regiments and six different ranks, I will put an
arbitrary number n, in such a way that there will be n Latin letters

abcd etc
and as many Greek letters

ap vy etc,
to combine in n2 different ways and to arrange in an n Xn square array in such
a way that each row and each column contains all the Latin and Greek letters and

that no term is found twice in the square,
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5, Since each line of the square coptains all these different letters and
IR ..
consequently the sum is everywhere the same, it is clear that such an arrange-
ment will satisfy the condition of the ordinary magic squares. For, to,produce

all the numbers in the natural order, one has only to give to the Latin letters,

I

S .

a, b, c, d, e, etc., the values o, n, 2n, 3n, %n, ... (n-1)n, and t§nﬁhe Greek
letters @, B, v, 8, €, etc., the values 1, 2, 3, 4, 5, +oe n. But since in
these squares it is a question only of the sum of all the numbers which are found
in each line, horizontal as well as vertical, it is not at all necessary that

all the numbers be found on éach line provided that the sum be everywhere the
same; which is also the reason that one can construct ordinary magic squares of

36 boxes.

6. To make easier the operations which I will have to perform eventually,
I will put in place of the Latin and Greek letters the natural numbers 1, 2, 3,
4, 5, etc., where in order to distinguish between them I will call the ones
Latin numbers and the others Greek numbers; and finally, so as never to con-
fuse them, I will join the Greek numbers to the Latin numbers in the form of

superscripts, in the way that will be seen in the following square of 49 boxes,

3 5.7 1

A ARSI SR &
55 l3 7L o0 61* 32 u6
6 H 42 gl 5 3 T
7145 23 62 ° o+ 5

in which I have arranged the Latin numbers following their natural order, in
the first row as well asbﬁhéjfifsﬁﬁéaiﬁﬁh; in“such a way that these numbers

represent simultaneously the indices of these two lines and those of their
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companionse. I have also made the Greek numbers, or superscripts, equal to the
Latin numbers in the first vertical line, as I will do everywhere below, since

the significance of these numbers is completely arbitrary.

T. Since it is easy to convince oneself that all the terms written in the
preceding square satisfy perfectly the three conditions required and indicated
above; to bring the reader closer to the point of view from which one must
picture most of the methods which have brought us to the following research, we
are going to begin by the ahalysis of the construction of the square mentioned
above. For this purpose, we take once more the fundamental Latin square which,
omitting the superscripts, will have the following form:

1 2 3 4 5 6 7

23155476
36 57 14 2
y 5 6 1 7 2 3
5 T 2 6 3 4
67 k325
7h263'1

where each one of the seven lines, horizontal as well as vertical, contains

all the seven numbers, 1, 2, 3, 4, 5, 6, T.

8. Having thus established this Latin square, everything comes back to
finding a sure method of joining Greek numbers, or superscripts, to each Latin
number of this square; and first, in order to begin with the superscript 1,
since it is necessary that it recur in each line, horizontal as well as
vertical, it is a matter of taking from the vertical columns seven numbers such
that they are different from each other and that they are related at the same

time to different horizontal rows or rather: the numbers which one takes from
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each verticai coluﬁn shp;id éll be taken from diffe;eht le?eis, whiéh must be
done similarly in relation to the other exponents, 2, 3, 4, 5, etc. At this
p01nt it must once more be noted that since we suppose the exponents of the
first column to be known, and since we always make them equal to the Latin
numbers of this column, the first terms of these functions which we are going
to describe will always follow the §rder of the natural numbers 1, 2, 3, 4, 5,

6, Ts

9. Since, then, in the following investigation everything depends on these
functions which serve to regulate the writing of the superscripts, or to deter-
mine the ranks of the officers arranged, I will call them below squg;e-fprming
functions; one must have one for each superscript. Thus, in the square o£¥49
entries listed above in the 6th paragraph, the square-forming functions are:

for the superscrlpt 1lthis: 1673425,

moow " 2 2546137,
"o " 3 " 3124756,
"o " " k735612,
oo " 5 " 51726 3,
v " 6 " 625137k,
"o " 7 " 736254 1,

This then is what one must understand by the term square-forming functions,
which we will make use of throughout in the following; and it is first of all
evident that, in order to construct a complete square, it is necessary to have
such a function for each Greek number or superscript. To follow,it is necessary
that all the functions should agree in such a way ambng themselves that in writ-
ing them one on top of the other, one will find in each column all the different
numbers, because otherwise the same number of the Latin (or base) square should

receive two different exponents.
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10. Having therefore established for an arbitrary case a square of Latin
numbers, the first step consists of finding the square-forming(functions for each
superscript, and if it happens that for a single one of these numbers one is un-
able to find any such a function one can boldly state that the Latin square is
incapable of providing a complete square. And even if one has found functions
for all the superscripts, if it is impossible to choose them in such a way that
they agree among themselves in the way in which I have just described, since
that has succeeded in the example above, it is once more a sure sign that the
Latin square is not capable of furnishing é solution to the problem. But one must
be careful not to come to this conclusion except after being fully convinced
that one has found and studied all the square-forming functions which are valid

for the proposed square.

ll. The formation of the square-forming functions is therefore the first
and the main object of this paper; but I must admit that up to this time I have
not had any sure method by which I can conduct this investigation. It even
seems that one should be content with a sort of simple process of trial and
error that I am going to explain for the Latin square of 49 boxes set forth
above.

For example, to find the characteristic function of the superscript 4 of
this square let us choose arbitrarily the first four entries which I will take
as they have been marked

L7 35
and which are taken from the first four columns and from the four rows which
correspond to the indices 4, 6, 1, 2; and it is clear that the last three values
of our function,

1 2 6,
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should be drawn from the last three columns and from the three rows which
correspond to the indices 3, 5, T.. Therefore, the remaining pieces of the

3rd, 5th, and Tth rows furnish us the following table (or array)

1 hbo.2
6 3 N
3 1 5

from which obviously result the last three terms of our functions in the order
6, 1, 2 as we have shown them above. If the first four terms had not been known
to us, one sees by what we have just said that it would have been necessary to

examine in the same way all the possible combinations.

12, After having shown in general the operations which one must undertake

‘

in order to construct such complete squares, I go on to more particular investi-
gations which naturally will vary in accordance with the nature of the Latin
squares, which can be formed in as many more different ways as the number of
entries of which it is made up is large; and one easily perceives that soon the
number of all the possible methods of constructing it becomes so great that one
no longer knows how to make a count. This is the reason that I will be content
here to run through some simple and regular kinds of Latin squares, which will

not fail to lead us to some much more complicated types.

13. First, the simplest Latin square is without doubt the one where all
the numbers 1, 2, 3, 4, ... n progress cyclically in each row and column. The
squares of this first kind, of a classification which so to speak arose
naturally, will have in general for any number n2 of entries, the following

form:
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3 L" 5 6 L] L] . n l 2
4 6 ¢ e+ n 1 2 3
5 6 <ees n 1 2 3 L4

etc.
The squares of this first type which cccur for all n by n arrays will here-

after be named Latin squares & simple marche.

14, Following this classification, the second kind will contain the Latin

squares a double marche, which are formed by taking the numbers of the first

line, arranged in their natural order, two by two and transposing them in the
second line, which will consequently be:

2 1 4 3 7 6 5 8 T |etc
From this and from the first row, one then constructs the third and the fourth
by adding 2 to each of their terms, the fifth and sixth by adding 2 to the
terms of the third and fourth, and so forth. The squares of the second rank
thus formed will have in general the following form:

1 2 3 4 5 6 7 8 etc.
5 8 17 eté;

2 1 4 3 6

3 4 5 6 T 8 9 10 etc.
L 3 6 5 8 7 10 9 ete.
5 6 7 8 9 10 11 12 etc.
6 5 8 7 10 9 12 11 etc.

etCO,
by which one can easily see that this second kind could not occur except for

the squares where the number of boxes in each line is even.
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15. For the third class, T refer to the Latin squares & triple marche,

where in the first line one considers three numbers jdingly, in order to vary
them in three different ways, before forming the subsequent lines, which one
obtains three by three by adding 3 to the terms of the three preceding, as one

can see in the general form which follows:

1 2 3 & 5 6 T 8 9 etce
2 3 1 5 6 4 8 9 7T |etce
3 1 2 6 4 5 9 T 8 etc
b 5 6 7 8 9 10 11 12  etc.
5 6 4 8 9 7 11 12 10 etc.
6 4 5 9 7 8 12 10 11 etc.
7 8 9 10 11 12 13 14 15 etc.
" ete,,

which shows us that this construction is wvalid only if the numbers of the boxes

contained in a line is divisible by 3.

16. In the same way, one can form squares of the fourth kind proceeding

4 quadruple marche by taking separately four by four the entries of the first

horizontal line and passing through all the transpositions which are possible
and which form the four firét’horizontai lines, from which one derives the four
following by adding 4 to each entry, and so on with the others. But since
the first four entries,

1 2 3,
allow several different transpositions, we ﬁili have several general forms for
the squares of this kind, of which it will be suffiéient to cite the first
member (I call "member of a square" any one of these parts which form a separate

square) since it is easy to deduce from it the general form, the transpositions
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being the same in all the other members or simple squares from which is formed
the large Latin square which, in this case, should always have a number of boxes

divisible by h2=l6. Here are 4 similar transpositions

I 11 . II1 v
1 2 3 & 1 2 3 &4 1 2 3 4 1 2 3 &
2 1 4 3 2 1 4 3 2 3 4 1 2 4+ 1 3
3 4 1 2 3 0k 2 1 3 0k 1 2 3 1 L4 2
L 3 2 1 L 3 1 2 L 1 2 3 L 3 2 1

since it would be superfluous to form or to cite the general forms for the

squares composed of similar members. One perceives easily that following the

same laws one has only to vary the following Quaternaries of the first row.
One sees also that this classification could guide us to many other

regular squares; but we stop here, to develop more carefully in the following

sections the four kinds which we have just established and to deduce from them
some complete squares.
First Section

SOMZ IATIN SQUARES A SIMPLE MARCHE OF THE GZNERAL FORM

2 3 4 5 6 ... n
2 3 4% 5 6 +.. n 1
3 4 5 6 +.. n 1 2
b5 6 +ee. n 1 2 3




CASE OF n =2
17. Let us begin by the simplest case, where n = 2 and the Latin square

is

1 2

2 1
from which one is not able to take any square-forming function, and conse-
quently this case is impossible, since it is not possible to deduce any other
square, And in fact, if one satisfies the first two conditions of the question,

cited in Section 3, one comes to the square

where the two terms ll and 22 are found twice, while the two others, 21 and 12,
are missing entirely. Thus, if the question concerns a group of 4 officers of
two different ranks and regiments, one sees first that it will be impossible to

arrange them in a square in the manner prescribed.

CASE OF n = 3

18. Let us go on to the case of n = 3, and our Latin square will be

1 2 3
2 3 1
3 1 2

where the diagonal with different entries, 1 3 2, furnishes first a character-
istic function for the superscript 1; and since all the numbers increase, while
descending, by one, it is clgéf‘that the characteristic functions will follow

the same order and that consequently they will be
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for the exponent 1 - 1

(v

2)
1" " 1 2 - 2 l 3,
" n n 3 - 3 ) 1.
So in inserting the exponents following this system of functions one will ob-

tain the following complete square;

which is the only solution which can take place for the squares 3 simple marche

of nine entries since function 1, 3, 2 is the only square-forming function for
the exponent 1 and since the fundamental or Latin square proposed is the only

one for the case cited.

CASEOF n = &
19. Let us consider the case where n = 4, vwhich brings us to the following

Latin square:

3 L 1 2
Yy 1 2 3 v
but here, one sees first that it is impossible to find any function for the -

superscript 1, and, on examining the square according to the prescribed rules,Llf

we will see that it is the same for all other superscripts; from which one must ™~

conclude that this Latin square cannot furnish any complete square for the valug

n =4, But one must notice carefully that this Latin square is not the only.

one which can occur for the value cited, considering that one can form.three .

others, among which will be found one which will lead us to three beautiful
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solutions, and éo it is only the square of 16 entries X simple marché which

fails to meet the required conditions.

20, The same inconvenience-is found in all the values where the number
n is even, and this observation leads us to the following theorem:

For all thé cases where the number n is even the Latin square

2 simple marche can never furnish a solution to the question proposeds

To prove this, one has only to show that it is impossible to find any

functions for the superscript 1 of any square & simple marche where the number

of horizontal or vertical entries is even. Let us suppose for this purpose that
such a function might be

-1 a b ¢ 4 e etc.
where the letters a, b, ¢, d, etc., of which the number is n ~ 1, indicate
the numbers 2, 3, 4 ... n, in a given order, which is determined by the
(horizontal) rows corresponding to the values @ B y & € etc., which indicate
also the numbers 2, 3, 4, 5 etc. in such a way that the sum of all the num?ers
Q, B, ¥, 5, etce must be equal to the sum of a, b, c, d, etc.

Then since, in our Latin square, all the numbers of the (horizontal) rows
increase in arithmetical progression where the difference is 1, noticing that in
passing on to the numbers beyond n it is necessary to begin again with one, it
follows that, because the second number, a, of the assumed function is drawn
from the second (vertical) column and from the (horizontal) row which corresponds
to the value @, one will have

a=0a+ 1.
In the same way, since the third entry, b, of this function is drawn from the
third (vertical) column and from the (horizontal) row corresponding to the value
B there will be

b=p + 2
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In following this reasoning, one finds that there will be for the other

entries
c=y+3, d=0+k4%, e=c+5, f=¢+6 etc.,
noticing always that having arrived at a number larger than n one will put in
its place the excess above n. Now let the sum of all the letters be
a+B+y+8d + etec. =8,
and the sum of the letters
a+b+c+d+etce will be =S + 1 +2 + 3 + e + (n = 1),
or rather there will be
a+b+c+d+etce =8 +n(n-1)/2.
Now, the sum of the Latin letters, a + b + ¢ + 4 + etc., and that of the Greek
letters @ + B + y +  + etc., as we have seen above, should be equal to each
other or, which comes to the same thing, the difference should be a multiple
of the number n, which being put = An brings us to this equation
n(n -1)/2 =2,
which gives
A= {n-1)>.

Consequently, since )\ is a whole number, this equality could not exist unless
n - 1 was an even number or n an odd number. In this way, the truth of our
theorem is rigorously proven, and it would be useless to wish to apply the Latin

squares to any case where n is an even number.

CASEOF n =5

21. Let us go back to our squares, and the case of n = 5 leads us to the

following Latin square & simple marche
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5 1l 2 3 L
from which one can without difficulty derive the following three functions for

the exponent 1:

By adding one to each of the terms of these functions, one will obtain those for
the exponent 2, which, by adding one to it again, will give those for the ex-
. ponent 3, and so on for the others. In this way, one will be able to construct

the following three squares capable of determining the writing of the superscripts

I IT III

1 3 5 2 &4 14 2 5 3 1 54 3 2
2 4 1 3 5 2 5 3 1 4 2 15 4 3
35 2 4k 1 31 4 2 5 321 5%
L o1 3 2 L 2 5 3 1 4 3 2 1 5
5 2 4 1 3 5 3 1 4 2 5 4 3 21

22, By means of these three complete systems of functions, we will be able
to make three complete squares of 25 entries and consequently as many solutions,
if the problem concerns a group of 25 officers of five different ranks from five

different regiments. Here are the three complete squares: *

. *To establish the relation between these three complete squares and the functions
at the end of Section 21, one must invert the order of squares II and III. L.G.D.
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2 g5 g3 2 gt 3P0 A
B3 42 5 B3 W 2 ot eSO TC R L LI
A 2 A W52 10 23 3l
55 1% 23 2 )l 55 12 2 gt 3 55 13 2L 3t 42

The construction of these three squares is all the easier since after one has
written the superscript 1, the others follow in their natural order, descending
by the (vertical) columns.

23. It remains for us to remark again regarding the square-forming
functions, that their entries go in arithmetical progression, by increasing in
the first by 2, in the second by 3, in the third by L, in the 4th by 5 and so on
with the others. Next, that the superscripts of the first rows of the three
ccmplete squares are

in the first 1 5 4 3 2

in the second 1 3 5 2 4

in the third 1 4 2 5 3,
which agree with the three square-~forming functions. Finally, the first of
these three kinds of squares, in changing the order of the (horizontal) rows,

furnishes the following very remarkable square
o
1 .5 L )3 2

1 3 5

33 he 51 15 2&
55 1h 23 32 kl
22 31 us 5u l3
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in which not only do the (vertical) columns-and (horizontal) rows contain the

different Greek and Latin letters, but where even the diagonals and their

completed parallels% as

satisfy all the prescribed conditions.

CASE OF n = 7

24, The case of n = 7 gives us the following Latin square 3 simple marche

of 49 entries.

1 2 3 Kk 5 6 7
2 3 4 5 6 7 1
34 5 6 7 1 2
L 5 6 T 1 2 3
5 6 7 1 2 3 L
6 7 1 2 3 L4 5
7T 1 2 3 L4 5 6

where the consideration of the functions increasing in arithmetical progression

(section 20) furnishes us first the following functions for the superscript 1

1 3 5 7 2 4 6
1 4 7 3 6 2 5
1 5 2 6 3 7T &4
1 6 4+ 2 7 5 3
1 7 6 5 k4 3 2

where the first increases by 2, the second by 3, the third by 4, the fourth by 5,

and the fifth by 6. But one must not think that here are all the functions for

EA

This is what is called broken diagonals. L.G.D.
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the superscript 1, because in examining the square more carefully one in addition

finds the following 1k4:

1 3 6 2 7 5 k4
1 3 7 6 L4 2 5
1 4+ 6 3 2 7T 5
1 ¥ 7 5 3 2 6
1 4 7 2 6 5 3
1+ 2 7 6 3 5
1 5 & 2 7 3 6
1 5 7 3 6 L 2
1 6 4+ 7 3 5 2
1 6 4 3 7 2 5
1 6 2 7 3
1 6 2 5 7T L4k 3
1 7 4 6 2 5 3
1 7 5 3 6 2 4

25. All these square-forming functions have been found by the very laborious
method explained above (section 8); but the beautiful order which prevails in

the squares 3 simple marche gives us very easy methods of finding many such

functions, as soon as one has found only one, which will be the subject of the
following problem:

Having found a square~forming function for some square & simple marche

of which the number n is odd, find the sure rules by means of which one can find

several other square-forming functions.

26. lLet

1 a b c d e etc,
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be the characteristic function which has been found, which refers to the super-
script 1, and from which the entry which corresponds to the undetermined index

t be = x, $0 that taking t = 1, x also becomes = l. It is necessary to note

1st) that giving to t all the values possible from 1 to n, the entry x should
also receive all these different values; 2nd) that, since t is the index of ‘the.
(vertical) column from which the number x is taken, the index of the(horizontél)
row will be, as one sees from the construction of the square, =x - t + 1, which
corresponds also to the entry xe Then since the numbers a, b, c, 4, etc. must

be taken from different (horizontal) rows, it follows that this formula x - t + 1,
and consequently also x - t, should include all the different values, in the

same manner as the numbers t and X.

27. That noted, let
1 A B C D E etc.,
be a new square-fofming function which oﬁe wishes to de;i§g fram the one giﬁen
and where the value of any ehégy X will be = T; and one understénés, because we
have said so above, that in giyipg to T all the values possible, not only the
entry X, but also the difference X - T should likewise receive all these same
different values. These conditions will be obviously filled in taking
T=xand X =1t
and consequently one will always obtain a new function by exchanging the two
numbers t and x (between themselves) from which comes this rule for the formation

of a new function:

Take x for the index and t for the entry which corresponds to it.

This new function will then be formed per inversionem, by reversal.

28, One can make another new function by taking

T=tandX =+t ~x,
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For, if one varies the value of t through all the values from 1 to n, it is
evident that the entry o +t - x will also receive all these different values,

no matter what may be the number ¢te Therefore, since X -« T = Q - X, this equation
will also receive all the possible values. But, for this found function to
correspond to the superscript 1, it is necessary that, putting t = 1 and x = 1,
there also ensue X = 1, which gives us @ = 1.

Therefore one will always obtain a new function by taking

T=tandX=1+1«x,

and it is in this that the second rule which I have proposed to give consistse.

29. In combining the two rules which I have just explained, it will be
easy to derive from only one given function a number of new functions which one

can represent in the following way:

I II III IV v VI
T =t % X 1+t % x l+t-x|l+x-~t
X =x 1+t -% t t l+x-1t 2 - X b'd
VII VIII IX X XI XIT
2 - X l+x -1t 2 - x 2-1% 2 -1 2 - t
1+t -x 2 -t 2 -t J l+x -1t 2 - X 2 - X

Here then are eleven different rules by the use of which one can derive eleven
new functions, all different (from each other), from one single proposed square-

forming function.

30. To clarify the two principal rules and those of the preceding section,
which have been derived from them, by an example, let us take at random one of
the functions cited above (section 24), for example this one

1 b 2 7 6 3 5,
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‘ to which we can apply alternately the first and second rule, or else the second

and the first. The two sets of functions which they give rise to are as follows:

given function 14276 '3 5 given function T 1rhao27635
lat rule 1362754 2ng rule 1625743
éndfizle ‘17536.24 istrule ‘V."""‘l376’+25
1st rule 16473502 ond rule P LG 253
2nd rule 1475326 1st rule 1573642

1st rule 1652473 2nd rule 1i5" 2 7 36
2nd rule 14 63275 1st rule 1463275

1st rule 154:2.736 2nd rule 1652473
2nd rule 1573642 1st rule 1475326

1st rule 1746253 2nd rule 16473502
o 2nd rule 1376425 1st rule 17‘53624
1st rule 1625743 2nd rule 136275k

2nd rule 1427635 1st rule 1427635

perfectly equal, with the only difference being that in beginning with the second

rule, the order of the functions is reversed.

31l. Here then are eleven new functions which all derive their origin from
only one, band even from any one among theme. Also all these new functions are
found among the 1% cited above (section 24) and there are only two which failed

to appear in the course of this operation, namely
1472653 and 1643725

both of an unusual kind, since each one re_p_rpduces itself by the first rule,

‘ while, by the second rule,. one is reproduced by the other.
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32. After having found for the value n = T nineteen different functions,
we could derive from each one a complete square, and consequently nineteen
different kinds. For in taking any one and letting it be 1, a, b, ¢, 4, e, £,
and continuing these numbers according to their natural order, one will have the
functions for the following exponéﬁ%s, 2, 3, 4, 5, 6 and 7, and in this wéy, 6ne

will obtain the following square of functions:

1 ai b c | d e £

2 a + 1 b+ 1 c+1 d +1 e +1 f+1
3 a+ 2 b +2 c+2 d+2 e+ 2 f+2
L a+ 3 b+ 3 c+3 d+3 e+3 f+3
5 a+h  b+k c+h  a+h e+l £k
6 a+5 b+5 e+ 5 d+5 e +‘5 f+5
7 a+6 b +6 c+6 a+6 e +6 f+6

where it is evident that each (vertical) column as well as each row, contains
all the (various) numbers from 1 to 7, no matter what may be the order of the

numbers a, b, c, d, e and f.

33. To facilitate the construction of thé complete square being sought,
it will be well to assign the superscripts which agree with the first row, which
is always the natural series of (the) numbers 1, 2, 3, 4, 5, 6, 7. For this
purpose, in the proposed function |

1 a b c d e f

let the entry which corresponds to the index t = x ; and to this entry x in the
square one should add the superscript l. Then, as the superscripts increase, in
descending through each (vertical) column, following their natural order, the
following entry, x + 1, will have the superscript 2 and, in general, the entry

x + )\ will have the superscript )\ + 1. Let us take then )\ in such a way that
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it becomes x + A = t, from which one‘ﬁéfives x”= t -°X; and consequently, the

number t in the first horizontal line'%{iigﬁéve the suﬁerscript
At+tl=t+1-x,

Then let us give to t successively the values 1, 2, 3, 4 etc., and the super-

scripts of the first row will be the foll&#ing:

l, 3-a, 4 =-b,5=-¢c,6-4d, T~-e,8-7F.

34, We have seen above that this function is also a square~forming function
which results from the first by use of the second rule. This is why, tb construct
the complete square, one éhould first take each square-forming function, to show
the superscripts which should be given to the numbers of the first (horizontal)
row; then, going down the (vertical) columns, one has only to increase the higher
superscripts following their natural order. In this way, if the proposed function
l, a, b, ¢, 4, e, f is at the same time the sequence of the superscripts of the

first row, the complete square which is derived will have the following form:

ll o2 3b € 5d I 7f

22 3a+:|_ 2+b+1 5c+1 6d+l 7e+l lf+1
342 R goaR aeR ekl 2f#é*'
W SB*3 Gb¥3 3 43 es3 43
55 6a+4 7b+4 lC+h 2d+h 3e+1+ hf+l+
66 7a+5 1b+5 55 3d+5 L, &+5 5f+5
77 la+6 2b+6 3c+6 ud+6 5e+6 6f+6

35, Having then found, in all, nineteen functions for the value n =7,
one could make from them as many complete squares; so that, if the question
concerns 49 officers of seven different ranks and taken from seven different
regiments, one can derive a large number of different solutions, all derived

from a single Latin square & simple marche. One can even draw from the same
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source several other solutions; sincé the number of “fiictions is s6 considerable, .
having taken one at random for the superscript 1, one could take the functions

for the following superscripts from other kinds, so that alwvays in arranging

these different functions in a square, the numbers in the (vertical) columns

all differ among themselves. One sees then, in this way, that one will obtain

a much larger number of new kinds of compléete squares, mixed with several square-

forming functions joined togethers It will suffice to clarify this mixture of

functions by a single example.

Functions of superscripts Types of square~forming functions
1 L 7 2 6 5 3 1 b 7 2 6 5 3
2 7 5 L 1 3 6 1 6 L 3 7 2 5
3 6 1 5 L 2 7 1 L 6 3 2 7 5
4 1 3 6 2 7 5 1 5 T 3 6 4 2
5 2 6 3 T L 1 1 -5 2 6 3 7 L
6 3 2 7 5 1 ok 1 5 L 2 7 3 6
7 5 L 1 3 6 2 1 6 5 2 4L 7 3

One easily understands, from this single example, that one can find many other
equally suitable combinations whose number it would even be very difficult to

determine.

36. If one inserts the exponents in conformity with these functions, the

complete square which results therefrom will have this form:
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NP 34 L2 - 56 67 T3
52 36 APER 7& 15
B3 4l 2 g 45 6 T
S T 1
55 63 7l l7 2& 32 h6
€ 72 13 2 3T 5 S
A R P S

Here, one sees first that the superscripts of the rows:are no longer square-
forming functions, as in the nineteen preceding kinds, and that one is not able
to discover any order,since one finds there a mixture of seven different kinds.
This observation is of the utmost importance, because the consideration of the
regular squares might delude us into believing that the superscripts of the first
(horizontal) rows should generally have the properties of square-forming functions.
Moreover, it is without doubt very surprising that, while the case of n =T
furnishes us such a prodigious number of solutions, which will be further augmented

later, the case of n = 6 is not able to furnish even one, even though the case

which precedes it, n = 5, has led us to three different solutionse’

CASEOF n = 9

37 Now let n = 9; and the Latin square 3 simple marche to which the follow-

ing applies, will have this form:

-
no

O O 1 o0 Fw P

H O © 2 o F ow

N OO O oo Fw
W N H W ®= oNwm F
F w O 001 o0NWu
Vi F w0 o
oON U Fw o oH o
-~ O F w o @
OO 31 O F w0
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38. Since it would be very'difficult to look for all the functions which
might be found in this Latin square and since the number undoubtedly will be
enormous, I will be satisfied to consider only those which go in arithmetical
progression, excluding those where the difference would be 2 or 6, since it would
not be prime to the number n = 9, For generally, it is always necessary that the
difference between the terms of these progressions, as well as the difference
between the number x and t, or rather x - t, have no common divisor with the
number n, because a function chosen without regard for this rule would not con-
tain all the values frem 1 to n, or could not be arranged in the class of
square-forming functions. So when these two cases are excluded,the functions

vhich go in arithmetical progression are these:

1 3 5 7T 9 2 & 6 8
i1 6 2.7 3 8 4 9 5
19 8 7T 6 5 L4 3 2

from which one can make three complete squares of 81 entries by taking the functions
for the following superscripts of the same kind, considering that we are excgpt-
ing ourselves from meking an enumeration of the others.
For, in taking one of these three functions, and letting it be
1l a b ¢ d etes,
for the superscript 1, one wiil sée from what we have said above, (sections 23
and 33), that the superscripts of the first row which are 1, 3 - a, 4 = b, 5 - ¢,
6 - d, etcs, also comprise a square-forming function and that, consequently, one

can take first each of these three functions which we have found for the super-

scripts of the first (horizontal) row, which gives us these three complete squares:




-~ [ )RS
w n [l

(0]
=



«28-

‘IIT.
L U A A S
2 31 19 58 67 76 Y 94 13
33 12 5L g9 I 96 15
Bt 53 62 71 85 98 17 26 35
55 gt 3 82 ot 19 B ST 6
66 75 Bu 93 l2 oL 39 h8 57
77 86 9 1& 23 32 yl 52 68
g8 97 l6 59 3h )3 52 3t 79

9 15 o 36 L5 5& 63 72 gl

4O, Here then are three complete squares, derived from the three regular

(isometrical?) functions which we intended to examine. To clarify better the

use of the rules cited above (sections 26, 27 and 28) for the formation of .
functions and finally to be able to judge more easily their number, we are
going to choose one of the functions at random; and by applying to it success-

ively the two rules, we will obtain the following twelve functions:

characteristic adopted 1 6 5 9 2 4 8 7 3
of which the reverse is 1 5 9 6 3 2 8 T Lk
~
by the 2nd rule 1 6 8 5 4 3 9 2 7
1 7 % 8 3 5 9 2 6
by the 1st rule Jl 8 6 5 4% 2 9 3 7
1 8 5 3 6 9 2 k 7
from which one ¢ by the 2nd rule <l L1 9 2 5 8 6 3
derives 1 8 2 9 7 6 5 3
by the lst rule <l 5.9 2 6 8 3 7 &
1 4 9 2 8 T 6 3 5
by the 2nd rule <1 T 4 3 9 8 5 2 6
8 4 3 7 9 2 6 5
L
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where one must stop at the sixth pair, since, if one wished to apply to it
again the first rule, one would obtain the same functions where one reproduces
the other by reversal; thus, our two rules have given us all together eleven

new functions.

L1. One very important observation, which is still to be made, is that
in making use of the third rule, which we have been able to dispense with in
the precééing article about n = T, since it would not have been of any help to
us, one could find another dozen new functions. This rule can be stated in the
following way:

Given for the proposed Qharacteristic the index = t and the entry which

corresponds to it = X,one can take, for the new function, the index T =2t - 1

and the term itself X = 2x ;”i}'for’Which the reason is clear, 1lst) because in

taking t = 1 and x = 1, there results
| - T=1andx =13
2nd) because if the x's vary through all the values, also the 2x's and conse-
quently the 2x - 1's will also pass through (satisfy) all the different values;
and 3rd) since, if x - t contains all the values from 1 to 9, likewise
X=-T=2(x-1t)

will pass through (satisfy) gll the proper variations.

L2, Tt will be well to clarify by an example this new rule, so fruitful

in functions jointly with the two preceding ones; and for this result, we are

going to take the function chosen above; which will give us the following dozen:



¢

The function adopted' furnishes

by the 3rd rule from which one
derives by the l1lst rule

and then {

S~

L3,

functions which we have Jjust found and we will'obtain, with the help of the

by the

by the

by the

by the

by the

2nd

1st

2nd

1st

2nd

rule

rule .

rule
rule

rule

6 5 9 2 L4 8 7 3

7 2 6 -9 L 8 5 3

3.9 6 8 L 2 7 5
1 5 2 8 6 3 9 Lk 7
1 9 4 8 7 3 6 2 5
1 3 6 8 275 9 L 7
1 8 6 3 9.T7.5 4 2
1 9 7 62k 2 8 5.3
1 4 7 2.6 9 3 5 8
1 6 9 5 8 & 3 71 2
1 4+ 7 2 8 5 3 9 6
1 6 4% 9 7 3 5 2 8
1 8 6 3 7 2 5 9 Lk

two preceding rules, the following new dozen:

Let us apply again this third rule to the first of the new dozen
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From the function adopted one 1 7 2 6 9 & 8 5 3,
obtains by the 3rd rule and 1 7:A¢%$t;§i. 39 2 5 8
from that one by the lst rule 17T 5 3 8 4 2 9 6
~ _ e
by the 2nd rile )% 2 9 .8 3.7 6 b 2
1 58 -2 7 3 6 9 4
by the 1lst rule 1 9 5 8 2 T 6 b 3
1 4 6 9 2 7 5 3 8
which gives us{ by the 2nd rule 1 3 8 6 b 9 2 5 7
| 1 8 7T 5 4 9 3 6 2
by the lst rule 17 2 5 8 k 9 3 6
1 9 7 5 & 8 3 2 6
by the 2nd rule 15 2 9 7 3 8 6 k4
= 1 3 6 9 2 8 5 7T 4

Here, (as everywhere else) one has continued as far as the”reproduction of the

original functions, which has occurred until now at theAQiXth pair.

L, If one wishes to apply the third rule to the first of these functions,

that is

one would derive this one

1 8 4 307 9 2 6 5
which is already found in the first dozen; so that our three rules have
furnished us only thrée dozen functions, even théughvtherefcertainly ére'for
this case a much larger number, considering that, among aii those we have just
found, there is none which is in accord with its ;eyeféél. Nevertheless, one

should find several for this case, since in the preceding case, where n = 7,

there were at least two similar functions,
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45, To convince ourselves entirely, let us look for & function which has

the property of reproducing itself by reversal.

Such is this one = = = = ===~ - -1 8 5 9 3 7 €& 2 4k
which reproduces itself by the 1st rule 1 8 5 9 3 7 6 2 4
we will have then by the 2nd rule 1 % 8 5 3 9 é 7 6

by the lst rule o ’l T 2 4 9 é 3 6
by the 2nd rule 1.5 8 3 2 7T 9 6 L4
by the 1lst rule . . 1 5 4+ 9 2 8 6 3 7
by the 2nd rule 1 7 9 5 L4 8 > 6 3

The first function adopted as reversible has thus brought us five other new

functions; from which one sees that there are also functions not reversible which

are found in a close union with those which are reversible and which are not
found at all in the dozen precedinge.

46. In examining the first of the characteristics cited, we shall see

.

that they can gi#e us another half-doien altogether new functions. For this

function of the preceding order

r
=

1 8 5 9 3 T 6

by rule 3 gives us this
1 4 6 2 9 3 8 7T 5

which, being reversible, will give us the following characteristics

The reversible function 1 4 6 9 8 7 5
furnished by the 55 yy1e 1 8 7 3 6 L 2 5
1st rule 1 8 L 6 9 5 3 2 T
end rule 1 4 9 8 6 2 5 7 3
lstrulte 1 6 9 2 7 5 8 L4 3
end rule 1 6 4 3 8 2 9 5 7

where we have continued the processes, as before, as far as the reproduction of a

reversible function.
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47. 1In the same way, in applying the uhlrd rule tc the first functicn of the

preceding order, cne gets the following rever31ole function.

from which the following functions are derived by the alternate application of

the first and second rule

Reversible function 1 5 7 6 2 4 3 9 8
2nd rule 1 7 6 8 4% 3 5 9 2
lst rule 1 9 6 5 7 3 2 L4 8
2nd rule 13 7 9 8 4 6 5 2
1st rule 1 9 2 6 8 7 5 L
2nd rule 1 3 2 8 7 9 5 L4 6

48, If we should wish to repeat these operations, by applylng agaln the
third rule to the first function of this new order, we will come agaln to the
first half dozen and then later to the others, so that this sou;ce of character-
istics seems to have been used up by the three rules used. Having then found up
till now three classes of twelve functions and three others of six functions, we
have altogether 5&, and with the first three which proceed in aritlmetical
progression, 57 different functions each one of which can give a complete square;
and in mixing them together, as one can do in the manner shown above (sections 35

and 36) one easily understands that the number of all the possible solutions must

become incomparably largere.

h9. The 57 functions that we have found do not even come close to including
all the possible functions; granted that by using the first direct method, which
I have set forth above (sections 8, 9, and 10), one can easily find the 8 follow-

ing functions which are not included in any of the orders(?) cited:



34

1 3 5 6 2 9 6 & 1
1 3 5 9 8 L& 2 71 6
1 3 6 8 2 Lk 9 71 5
1 3 6 8 kb 2 9 5 71
1 3 6 | 9 AA: 8 2 ’5A 7
1 3 6 2 9 8_“ BT

1 3 6 9 7 & 2 5 8

1 3 7 6 2 9 5 L 8
from which one can conclude that the total number of functions will be at least

four times larger.

SOMz ODD MAGIC SQUARES OF WHICH THE DIAGONALS AND THEIR PARALLZIS ARZ AISO
ENDOWED WITH THE PRESCRIBED CONDITIONS

50. Let n be some Qdd number and é the difference between terms of a

function which proceeds in arithmetical progression

l,'i +d, 1 +24, 1 + 34 etc.
and of which the terms,.if one subtrécﬁs the number n from all those which exceed
this number, should produce all the different values from 1 to n, after having
continued as far as the entry 1 + (n - 1)d.

That being granted, it is clear that the difference d should be a prime
number fo n and that consequently, when n is a prime number, one can give to d
all thé valueé below n; whereas, if n has a factor p, one must exclude all the
progressions where the difference d is p, 2p, 3p, 4p, etce This essential
condition is not even sufficient tb'givé to this progression the property of a
square~-forming function; for sincejfb the index t = 1 + \ there corresponds the
term x = 1 + Ad, as we have shown in another part (section 26) the function

x - t = \(d - 1) must also produce aii the different numbers. From this, it is
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evident that the numper d-1 mﬁﬁ}_be primeugp n; that cqgquuently one must always
exclude the value d =1, and the values d =p +1, d =2p +1, d = 3p + 1 etc.,

every time that n includes a factor p.

.....

thevpumberiqf,galues thatmphe difference d can receive. For, if n is a prime
number, the number of;thefvalpes of d, which one takes always smaller than n,
will be n - 2, and the‘numbef of the functions in pfééﬁession which will occur
will also be n - 2. If n is a product of two factors different from each other,
as n = pq, the number of'all the vélues of d will be

(0 - 2)(a-2) .
And in general, if n is a product of several different factors, p g r s etec.,
the values of d will be to the number of |

(p-2)(a-2)(r-2)(s-2) et

But when n has two or more factors equal to each other, the form of the equation
for the number of vaiues of d will be a little different; For if n = panrYs5
etce. the number of values one can give to d will be

pa-lq?-er-lsﬁ-l etce (p - 2)(q - 2)(r - 2)(s ~ 2) ete.

52. After these remarks, it will be easy to construct in generéi a mégic
square in such a wéy that not only the rows and columns, but even the two diagonals
and ail their parallels (each completed by its corresponding one from thé other
side [section 23]) are made up of terms all of which are different from each other.
For this purpose, I should first note that, whatever may be the form of such a
square represented by Greek and Latin letters, as we did in the beginning, one
can always reduce it to‘numbers and in such a way that the first (vertical)
cOlumn contains all the entries in their natural ordé?, as wé have assumed thus

far; and the problem will come down to seeing in what way one must transpose the
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- vy .. .
P - v

other (vertical) columﬁs of the complete squares; so that the required property

extends to the diagonals and to all their parallels.

53+ Since we will consider here only the functions which go in arithmetic
progression, it is evident that, in the (horizontal) rows, the Latin as well as
the Greek numbers or superscripts will appear in arithmetical progression, and
by using d for the difference in the prqgression of the Latin numbers and & for
that in the progression of Greek numberé, the first horizontal row will be

1+5 1+26

1t (1 +4q) (1 + 2d) etc.
Thus here, since for the following rows one has only to add one to the Latin as

well as the Greek numbers, the complete square will have the following form:

T a o @y 2a)® @+ 3P etes
22 (2 + Q) (2+20)%*® (243070 e
3 3+a)3® 3+20)3 (34303 et
oo ot e ea)“*ftc 4+ 30" e,

54, Now, since the Latin numbers of each (horizontal) row should include
all the possible numbers, it follows that the differenée d should be valued as
we have shown above, that is to say in such a way that neither d nor 4 - 1 has
any common divisor with the number n; and this particular condition extends also
to the difference in the progression of the exponents 8 and requires that both
8 and & - 1 be prime to the number n. Then, it is evident that the two differ-
ences 4 and ® must not be equal, for if they were equal, all the entries would
already have been found in the first (vertical) column; and this second condition
suffices when the number n is prime; but if it is not prime, in addition to that

the number 4 - 5 must be prime to n.
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55. These three ¢onditions ‘filriiled, one will hdve satisried the first of
the principal conditions prescribéd ‘for the construction of the squares with
different diagonals and parallels, that is te say .one will obtain & square where
the (horizontal) rows and (vertical) columns contain all the different numbers,
such as we have constructed in the 1lst part of this.section. There remains only
to see in what way one will be able to fulfill the other condition, of the -diagonals

and their parallels,

56. Let us consider for this purpose the first diagonal, which descends
from left to right, and since the Latin numbers which form it make this progression
1, 2+d, 3+2d, & +33, 5+L4d, 6 +54 etc.

where the difference is d + 1, one sees that this diagonal will include all the

different numbers every time that 4 + 1 is 2 number prime to n; and since all the
. parallels of this diagonal cross with the same difference d + 1, the required

property (%) will extend itself also to the parallels. It is the same for the

Greek numbers or exponents, which also receive all the values possible, provided

the difference of their progressions, & + 1, is prime to the number n.

57, Let us consider also the-second diagonal, which goes from left to right;
and we see first that the Latin and Greek numbers of this diagonal as well:as of
their parallels form the arithmetical progressions where the difference of some
is @ - 1 and of the others & - 1. Then providéd fhat both d ~ 1 and & - 1 are
numbers prime to n, all the entries which are found in this diagonal and in all
these parallels will also be different from each other. Besides, this last

condition is already included in the nature of square-forming functions.

58. Here then are all the conditions required for the construction of the
_ . squares which are the object of this 2nd part. They are reducéd.to the three

following; lst that the numbers d, d + 1 and d - 1 be prime to the number n;
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2nd) that the numbers 5, 8 + 1 apd 5-~ 1 also. bg:prime¢tto.the number n and. 3rd)

that the number d - 5 likewise not have any common: divisor with n.

59. Let us suppose then that b ié a divisor or any factor of theinumber n;i
and it will be necessary to exclude from the values of d these
d=Ap, d=Ap+1, d=1p- 1,
and from the values of the letter ® the folldwing '
8 =Ap, 8 =Ap-1,8=Ap+1.
Let p = 3; and it will be necessary to exclude from the values of d and of
6 all the numbers possible; from which one sees that, in"every case where the
number n is divisible by 3, it will be impossible to construct a square where

the diagonals and the parallels satisfy the required conditions.

60. Now, when the number n is prime, the number of all the different values

which can be given to the differences d and & will be N .

Then, if n is a product of two prime numbers unequal to each other, as n = pg,

the number of the values of d and & will 5e

(p-3)(a=~3).

And in general, if n = pmq,Br'Y etc.; ‘the same number will be expressed by this
formula

Q=1 f=1 =1

P q? rY etes  (p-3)(g-3)(r-3) etc.

61. After these general remarks, let us develop some particular cases, and
since we have just excluded from the values of n the multiples of 3, let us take
n = 5, where the suitable values for d and & will be 2 and 3; one of which can
be taken for d and the other for 8.::Then let d = 2 and 8 = 3; and the square

which results from them will have this form:
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1L 3u % 52 {%5 :&3
2 50 )3 L A
33 51 eh W2 45
ku 1° 35 53 ot

and it is evident that in changing the values of 4 and of d, that is to say in
putting d = 3 and & = 2, one can form another square; but it is not worth the

trouble to distinguish it from this one.

62, Let n = T7: and the proper values of d and & will be 2, 3, 4, 5, which,
including two values which are unedual, give six different combinations, namely

2andd =3, d4=3 and & = b,

d =
d=2andd =4, d=3andd =35,
d=22andd =5 d=4 ands =5,

and the squares which result are the following:

I. Ifd=22and &=3 II. I 3 =2 and & = L
L g5 2 A6 3 T
S 22 18 & 1T st gl P
33 56 72 25 gt 6h 17 33 57 7# ol &5 62 l6
hh & 3 36 52 25 L uu gl 5 32 56 3 o7
55 71 ot T @ 6 2 5 2 63 ’lz; 2
12 5 LT3 P R S U
77 23 46 2 15 51 5h 77 Eh RS G 36 53




=40~

ITI. 1 4 =2 and & = 5 V. If 3 = 3 and & = 4
Lo 2 T 5 g R N R
2 y g2 3 31 56 7h 02 56 3T 7h 51 65
2 st g% ot 2 6P I S e N
A U B o o @ P2
57 P ot w0 g 2 A N A
¢ 2 5T 7 2t R UL N S L
77025 W et 18 S P B P I LY

V.Itd=3and b=5 VI. If d =4 and 8 =5
ot gt R 6T S P - L
22 5T 5 3 b a6 g R R
5 6l 6 Sh 2 T 5 5 7t w6 b 2 ol ¢
R R .25 st 18 A A A
R A N 9 2 6t 0 7t 2 AT
€ o 2 1T W P st I S U S
T 55 g3 L & F 2 AT o5 3 st b g SR

63. The nature of these squares gives us also this advantage, that one

can begin the inscription of his entries by any box of the square which one
wishes. To show the multiplicity of the forms which are derived, let us take
the first of the six squares which we have just constructed and let us fill

the boxes in the following way:



e

- 7 B = { i

ol g IR R R | ot
1 ) T

) 1L

S U A A I (R -C A

75 26 42 _ 65_ nll ;u . 5?

1& 57 53 76 o2 M,AE gL

5 X! 6h 17 55 56 72

cul ECCRN B R P S O B |

6., I one wishes to apply all this to ordinary magic squéfes, one has
only to put in place of the latin numbers these values:
0, 7, 14, 21, 28, 35, ko
and in place ol the Greek numbers the following:
1, 2, 3, &, 5, 6, 7,
in some order, and then to put in place of each entry of the preceding square
the sum of the two Latin and Greek numbers changed in this way. Thus,.in the

complete square we have just found let us put

in place of the lLatin numbers 1 2 3 L4k 5 6 7

the following value i k2 -0 35 21 7 28

and in place of the Greek numbers i1 2 3 L 5 6 7
substitute these 5 4 1 7 2 3 6

and we will obtain the following ordinary magic square:
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i N o 1 1 I“"h N " {
26 | 35 | 48 | 36 | 10 | 18 2
1 16 5 | 28 3k 43 38
29 k5 39 9 19 7 27
N A o | s RN
w e ol .
5 25 . a0 Ui T s .

In this square, not only all the (horizontal) rows and (vertical) columns, but

also all the diagonals and their corresponding and ccompleted parallels, as for

example:

will produce the same sum, namely 175.

65. To give still another idea of cases where the number n is not prine,

8 26

38

7

46

but indivisible by 3, let us consider that of

in which the number of all the values which can be given to the letters d and 5

will be 8. For since here, in putting n = Pq, there is p

n=7535-=57

20

formula which expresses the number of the values is

which fits very well; for the values which the letters d and & can receive are

actually the 8 following:

(p-3)(q-3)=24=

2, 3, 12, 17, 18, 23, 32, 33 .

30,

8,

&

= 5and g = T, the
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Next, in excluding from d and © the numbers whose difierence d - ® is divisible

by 5 or by 7, the allowable combinations will be

on
0

cu
n

o
1]

oy
n

o
n

d

from which can be formed

2 and 5 = 3, d = 12 and & = 23,
2and =18, d = 17 and ® = 18,
2 and & = 33, d = 17 and & = 23,
3 and © = 12, d = 17 and & = 33,
3and =32, 3 =23and d = 32,

12 and & = 18, d = 32 and ® = 33,

twelve different squares of 1225 divisions in which all

the prescribed conditions would be fulfilled; but the reader will willingly

excuse us from the actual construction of even one of them.
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SECOND SECTION

TATIN SQUARE A DOUBLE MARCHE OF THE GZI'ERAL FORM

1 2 3 & 5 6...8-3 n-2 n-l n

2 1 4 3 6 5...n-2 n=3 n n-1

3 4 5 6 7 8...n1 n 1 2

L 3 6 5 8 7 ... n n-1 2 1

5. 6 7 8 9 10... 1 2 2 L
etc.

66, Ve have already noted in the preceding section, while establishing the
classes of regular squares, that this type excludes completely the odd numbers n;
and we shall see below that the values of n must be not only even numbers, but in
addition evenly even numbers, or rather that the number of entries in a square

% double marche must be divisible by 4. But before coming to the demonstfation

of this truth, it will be necessary to determine in general the relatfbﬂship
existing between the various numbers of the square and their position. In order
to do this; I observe first that because the terms of the first row are at the
same time the indices of the columns which correspond to them, as those of the
first column are the indices of the corresponding rows, each entry of the square
will be determined by two indices, one vertical and the other horizontal., Then
let t in general be the vertical index of some term x, and u be its horiiontal
index; the problem will be to find the relation between the three letters, t, u,
and xe To do this it is necessary to distinguish carefully the case where one
or the other of the two numbers t and u is odd from that in which both t and u
are even; and we will see right away that the first case gives

x=%t +u-1

and the second,

b
n

t+u-~-3,
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which shows at the same time that the two .indices t and u can be exchanged with-
out the term x changing value, since it depends only on the sum of these two
letters. After this observation, we will be able to propose our above-mentioned

theorem, stated in the following manner:

No square & double marche can give rise to a square-forming function

(formule directrice) unless the number of horizontal or vertical temms is

divisible by k.

67. To demonstrate this theorem, let the series

a b c¢c 4 e etc.
be a function of the arbitrary index a; let

a p ~ B € etc.
be the series of horizontal indices indicated by the letter u*, those of the
vertical indices marked by t*, which always follow the series of the natural
numbers, being

1, 2, 3, 4 etcs;
and it will be necessary, by virtue of the nature of the functions, which was
shown in the preceding section, for both of these series to include all the
numbers from 1 to n. Having the two indices, the vertical one t and the
horizontal one u, we can by the preceding rules easily deduce from them the value

of each term of our function.

68, First, it is clear that for the first term one will always have a = 2.
For the second term, b, there are t = 2 and u = B, from which, by distinguishing
between the two possible values of $, which can be even or odd, we will have for
the first b =pf + 1, and for the other b = 8 « 1. For the third term, c, because

t = 3, which is odd and u = vy, there will always be ¢ = v + 2. For the fourth

*
In the original edition, as the result of an error, the letters t and u are
reversed here. We have made them consistent with subsequent notation. -~Ed.
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term, d, vhere t = 4, which is even, and u =5, it is necessary to distinguish
again between the two possible values of dj; if it is odd, there will be d =8 + 3,
and if it is even, d =8 + 1; and thus with the others. One will then have for
the function

a b c da e f g etc.
of a square whose horizontal indices are

@ B, vy B, € (, TN etc
and whose vertical indices are

1, 2, 3, 4, 5, 6, T etcs,

the following terms:

®
il
Q

B+ 1 (B 0dd)
B - 1 (B even)

o
o
U, N

o

I

<
+
n

5 + 3 (5 0dd)

8 + 1 (5 even)

’

+
=

+ 5 (¢ odd)
¢ + 3 (C even)

H
) i
——— m
[}

R
]

=3
+
(0

o + 7 (9 odd)

a3
]
———

9 +5 (9 even)
i=0L+38

etce.
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69. We see, then, that the determination of the letters a, b, c, d etc,
by the indices @, B, vy, d etc. wquld.belabsolutely regular if none of the
alternate letters B, &, (, etc. were even; and that we would then have a = Q,
b=B+1l, c=y+2,d=58+3,e=e+kh, f=(+5, etc., the number of these
terms being always equal to n. Let us suppose for a moment that all these
alternate letters are odd. Let the sum of .the series of horizontal indices be

aQ+p+y+d + e+ etec »=2‘,

and the sum of the terms of the function be
ra+bt+toet+td+erete. =8y

and by adding all these terms, we will have this equation:
S _ 1
S=L+l+2+3+h+5+,,_+(n-l)— +-§n(n-l).

Now since both of our series must include all the numbers from 1 to n, it follows

that the two sums S and.z;must equal each other,” or else that their difference

must be a multiple of n, \n, from which is gotten
:‘S=2+ An

and consequently, it will have to be in this case
% n(n-1) ="\n .

But we have already said above that squares & double marche completely exclude

odd values of n; whence, supposing n (an even number) = 2k, k being some integer,
we will have
k(2 - 1) = 2xk

or rather A\ = k - % or k = N\ + % , which is impossible.

70. But this conclusion originates in the supposition that all the alternate
letters B, 8, (, etc. are odd and it is only for this case that the functions

become completely impossible, whatever value is assigned to n. 1In order that
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there exist functions which generate the square ¥ double marche, it is absolutely

necessary that at least one of the letters B, 5, C, © etc. denote an even number;
and to see what will result from this, we will suppose first that there is only
one, which will decrease the sum of the series of horizontal indices by 2, and
we wili hgve * |

% n(n-1) - 2 = \n;
or rather, putting n = 2k, it will havé to be

k(Zk - 1) - 2 = 2k,
whence it is evident that k must be an even number. Then le£ k = 2m and con-
sequently n = hm; and our equation will become

m(bm - 1) - 1 = 2\nm,
or rather »

1= m(ﬁmv- 1) - 2w =m(bm - 21 - 1)

Now since this equation could not occur unless m = 1 and A= l; it is clear that

this case can exist only when n = k4,

Tl. Let us suppose in general that among the alternate numbers B, 5, 7, 6,

etcs there are m even numbers; and since the total number of these letters is

= n, it is clear that w cannot be greater than L n « Then, since each even value

2 2
of these letters produces, in the sum % n(n-1) a decrease of two, our equation
will be

% n(n-1) - 21 = An
or rather, taking n = 2k, we will have the following:
k(2k - 1) - 2n = 2\,
which can occur only when k is an even number, = 2m, and consequently n = km,

Then our equation will be

# The original edition has here, incorrectly, n(2n - 1) - 2 = \n, and four
lines further, n in place of k. -Ed.
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m(be - 1) - m = 2\my,
from which is obtained the numbers of the alternate letters which are even,
namely

m=mnlln - 2\ - 1),
that is, equal to a product of two factors, one m and the other 4m - 2\ - 1.
Now since 11 cannot be greater than % n = 2m, and since the coefficient of
m, bm - 2\ - 1, is an odd number, it is absolutely necessary that it be

bm - 20 - 1 =1
from which is obtained
A=2n -1
and
T = Mo

Then it is necessary for half of the letters B, 8, {, 6 etc. to be even and for ‘

the number n to be divisible by %; in consequence, oddly even numbers, 2, 6, 10,
14, etc., will be completely excluded from this section, considering that they

could never give rise to square-forming functions, which was to be proved (QED).

T2, Thus we will establish throughout this entire section that the number
n be divisible by 4, by making n = bkm, and in all these cases, the preceding
demonstration enables us to see the possibility of the functions being square-
forming. Let us then consider principally the functions which correspond to
the first superscript, 1, and which, because of a =.1, will have in general this
form:

l1 b ¢ a4 e f g etc.,

to which corresponds this series of horizontal indices

1, B, v, %, €, [, etcs,

the series of vertical indices being that of the natural nunbers

1, 2, 3, 4,75, 6 etc.
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Granting this, we have seen that if t marks the vertical index and u the
horizontal index, the term of the function will be
X=%+u-1
except for the single case where the numbers t and u are even, where 1t will be
x =%t +u- 3;

so that in both cases x is an odd number.

73« Ve have shown that for the number n = hm, the case vhere t and u are
even must always occur m times, from which it follows that there are also m
cases where odd values for u correspond to the even numbers of t; and for the
same reason, for the case of odd t there will be m even numbers and m odd numbers

for u. Let us clarify this by the following example, where w1 = 2 and n = 8:

]

Vertical indices t=1,2,3, 4 5, 6, 7, 8.

1, 6,2, 5 T, 4%, 8, 3.

Horizontal indices u
Here the even indices u = 6 and 4 correspond to the even indices t = 2 and 6.

The odd indices t

3 and 7 correspond to the even indices u = 2 and 8. Next,

the odd indices u = 1 and T correspond to the odd indices t = 1 and 5, and the

odd indices u = 3 and 5 correspond to the even indices t =8 and k. Now from
these two series can be formed, by the formulas x =t + u - 1 and x =t +u- 3

the following function,

1 5 4 8 3 7 6

N

in which all of the terms are different.

4. It is as easy to examine each proposed function to see whether or not
it is square-forming. For ygen one has the numbers x and the horizontal indices
t, one has only to find the indices u, considering one or the other of the
formulas given for x, among which the last, x =t +u- 3 oru=x-1t+ 3,

occurs only when £t is even and x is odd; and when all the numbers found in this
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way for u are different, the proposed function will always be square-forming.
Here are some examples:
I. Indices t=123%4

Function x =134 2

Indices us=1 4 23
II. Indices t=1234k5678
Function @ x=13574L 286
Indices u=14368527
III. Indices t=1 2 3 k4 5 6 78 9 10 11 12
Function x=1 4% 6 81012 2 3 5 7 9 11
Indices u=1 3 4 5 6 7 810 9 12 11 2

where it is observed that the series u include all the different values, so that

the functions proposed for x are truly square-forming.

75 Considering carefully the last two examples, one will observe that it
is easy to examine in general the functions for all numbers divisible by k4.
To do this one need only divide them into two equal parts, each of which contains
2m terms, and one will see, by the prescribed rules, if the series found for u
includes all the different values. Here is the example of two general square-
forming functions for all numbers n = km;

First function.

: t=1 2 3 )+ 5 6.002{#1
First half
x=1 L4 6 8 10 12.,,4n
u=1 3 Y 5 6 7.9‘&1"1
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2m+l 2h+2 ém+3 2m+4;..4m

n ..

"t

Second half
X = 2 3 5 7 ocohm-l
u = 2m+2 2m+h 2m+3 2mibe.. 2

where it is easily verified that, in the two parts found for u, all the different
numbers actually appear.

Second function.
=1 2 3 b 5 6.ee2nm

1t
First half j:

;x 1l 3 p) 7 9 ll-..hm-l

u=1 4 3 6 5 Bieel2m+2

™~

it
Second halfﬂ
X

7,

]

2m+l  2m42  2m+3  2mHi..Wlm

4 2 8 6 -oihh—g

u = 2m# 2m+l 2m+b am;él;.“m-l

In the last part the next-to-last term of u is 4m+2 or rather 2, from which it

is seen that among the values of u are found all the numbers from 1 to bm,

76. Now, having found a single square-forming ﬁmgtigg, one can obtain
from it several others by rules which are similar to those vhich we used in the
preceding section. To clarify this completely, we will consider an arbitrary
function

1 a b c d e f etc.,
in which the term which corresponds to the index t is =x, and we have seen that,
taking u as the horizontal index, two cases must be distinguished; one where t
is even and x odd, which produces u = 3 + x - t; and the other where
u=1+zx-~t, which includes all the other values. To.make it a little easier,
one may represent both of these cases by this ambiguous formula |

u=x-t +2 i l,
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where the plus occurs when x is odd dnd t evenj in all other cases the minus

must be used.

77. Now, the nature of all square-forning functions includes the two
following properties:
1) that, while the letter t varies over all values from one to n = km, the

letter x must also range over all these‘different values;

2) that, while the two 1efters t and X are vafied over all the values, the
formulau=x -t +2 + l will éiso range over all the possible values.,
From these emerge naturally the following third property, that while the
letters x and t vary from 1 to n;, the formula t - x + 2 + 1 will likewise
furnish all the different values, provided that one is aware of the
ambiguity of the signs, the upper of which occurs only when the number t
is odd and x even; above all, since these two letters are so closely linked

that, while one varies over all the values, the other also shows the same

variations, they can be considered interchangeable, at least in this respect.

78. Let us now see how one can deduce the new square-forming function

from the one which we have supposed to be known. For this purpose let
1 A B C D etc

be such a function, of which the term corresponding to the index T is X; and
it will be necessary, while T varies over all the values, for X also to undergo
the same variations, the same being true for X - T +2 + 1 and T ~X + 2 + 1,
provided that the stated rules regarding the ambiguity of the.signs are observed.
Now since it has been noted on the other hand that the letters,t and u may be
interchanged, it follows that a new square-forming function cap be found by
fitting the same term x into the index u =x - t + 2 + 1, that is by taking

T=x-1t +2 +1 and X = X.




Thus, having for the case n = 8 this function

1 3 5 8 2 % &6 7,
to which corresponds, for u,

1 4+ 3 5 5 7T 8 2
one will deduce a new function by putting the second term, 3, in the fourth
place, assigned by the nuﬁﬁer u written under it; the third term; 5, in the
third place, and so on for the rest, which will give the new fUnétion

1 7 5 3 8 2 Lk 6.

79« DNext, one will always find a new square-forming function by inter-
changing the letters t and x and taking

T=x and X =1; .

in this way, the first properéy is already fulfilled by itself, and the other,
which concerns the formula X - T + 2 + 1, will also be‘perfectly fulfilled;
for this formula, at present t - x + 2 + l, w1ll take on all the values, prov1ded
that it is observed that the upper (plus) 31gn ocecurs only vhen t is even and X
odd. It is easy to see that this rule égreeé with the first of those which we -
gave in Section 27 of the preceding section and which we characteriZed gy:thé
term "reversal'; so that the same rule can always be used without én&véltérationi
in this section. The square-forming function of the preceding exaﬁple, that is

1 3 5 8 2 4 6 7,
will thus produce by reversal the following

1 5 2 6 3 7 8 k.,

80. Another rule may be deduced from the first case by taking
T=t and X=t-x+2+1,
since from this results U =X - T + 2 + 1, where the ambiguity of the signs
works in‘the opposite way from the preceding, so that one obtains, by sub-

stituting, in place of T and X, their values,



U=-x+1L,
a formula which, without ambiguity, will receive all the possible variations
while t and therefore also x are taking on all the values. This rule is
analogous to the second one in the preceding section, where we also had
T=t and X =% - x +1,
which occurs in all cases except those where t is odd and x even, which obliges
us to use the value
X=%t-x+3.

If we let, for example, the

gs=1 2 3 b 5.6 T 8,
and the |

xs=1 3 5 8 2 4 6 1,
we will have

X=1 8 7 5 6 3 4 2.

813 By means of these two rules, one can deduce from each known function
several others and almost always a dozen new ones, as happened in the preceding
section (compare the example of section 42 and what follows it), provided how-
ever, that the second rule is used with the indicated rectification.

To illuminate all this by an example, let us take once more the function
which we have used up to this point, and write under it its reverse, applying
then the second and first rules alternately; one will obtain a total of a dozen

new functions, including the proposed one, as may be seen from the following.

# The original edition erroneously has here 1 8 T 5 6 3 2 4k, -Ed.
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‘ The proposed function 1 3 5 8 2 4% &6 7 {
. o I
gives by reversal 1 5 27 3 7 8 L
and then*
by the second rule 1 8 7 5 6 3 4k 2 I,
: o N . fr
[applied to I] 1 6 4L 7 3 8 2 5 i
by the first rule 1 7 5 3 8 2 4 6 [
- IIT
[applied to I] 1 8 6 7 5 3 2

by the second rule 1 4% 7 2 8 5 6 3{
Sihtaaheli ‘ v

[applied to III] 1 3 8 6 4 2 5 7

by the first rule 1 6 2 5 7 & 8 3 {
, £ . v
[applied to II] 1 4+ 8 2 6 7 3 5
by the second rule 1 S5 4 8 7 3 2 6 I
' ] VI

[applied to V] 1 7 6 3 2 8 5 4

vhere we have continued these operations until the reproduction of the last

functions, which occurs at the sixth pair.

82, Let us apply the same operations to a function of twelve terns, adopt-
ing one formed from those which proceed in arithmetic progression, and the

complete dozen which are obtained by these two rules will be:

% In the original edition, the order of succession of the functions is inter-
changed for groups III and IV. The numbering of the pairs of functions
(Roman numerals) is not found in the original edition.

. The same remark about order of succession applies to section 82 as well as
to each of the four dozens of section 9. -Ed.



Proposed L 3 5 7 £ 11 A 2 5 6 12 10}
: I
Reversed o 1 8 2 7.3 10 4 9 5 12 6 11
by the second rule 112 11 10 5 8 6 7 L 5 2 3}
II
[applied to I] 1 7 4 10 3 9 6 12 5 11 8 2
by the first rule 1 12 5 3 ¢ 7 211 6 L4 10 8}
: III
[applied to I] 1 11 12 9 10 7 8 6 5 4 3 2
by the second rule 1 31 2 9 1 8 10 6 7 L 5}
IV
[applied to III] 1 4 6 8 10 12 2 3 5 7 9 11
by the first rule 1 7 8 2 9 310 Lk 11 5 12 6}
- v
(applied to II] 1 4 2 11 12 9 10 7 5 8 3 6
by the second rule 1 8 10 3 9 4 12 5 11 6 2 71
VI
[applied to V] 1 11 4 6 8 10 12 2 5 3 9 1)

of which the last pair are reproduced by the first rule.

83. Now each of the square-forming functions for the superscript 1
furnishes, as we have shown above, appropriate functions for all the other
superscripts and even such that they present different terms for all the
columns. For it is clear, by the construction of the Latin square, that by
increasing by a value of 2 the terms of the function for the superscript 1,
one will obtain another function for the superscript 3, and by increasing the
terms of the latter by 2, another function for the superscript 5. And in
general, for a function for the superscript a, letting it be

a b ¢ d e eté.,

a function will be deduced for the superscript a + 2 by adding 2 to each temrm
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. of the preceding functiqn. Thus for the case of n = 8, each function for the
superscript 1, of which we have set forth a dozen, will furnish appropriate

functions for the odd superscripts; for example

for the superscript 1 1 3 5 7 4 2 8 6
for the supersc¥ipt 3 3 5 7T 1 6 L4 2 8
for the superscript 5 5.7 1 3 8 6 Lk 2
for the superscript 7 7 1 3 5 2 8 6 4

where each vertical column contains different numbers, even or odd, separately.

84, The formation of functions for the superscript 2 and the other even

numbers is not so obvious; nevertheless, as in the Latin square the second row
is deduced from the first by adding one to all the odd terms and subtracting one
from the even ones, one can suppose that, in doing the same thing in regard to

. the proposed function, one will get the function for the superscript 2, because
in effect all the odd terms produce in this way all the even ones, and reciprocally
all the even terms, when one is subtracted from them, produce the odd ones. But
it must again be demonstrated that the function which results from this is

effectively a square-forming function.

85. TFor this purpose, in the function for the superscript 1, let the tem
which corresponds to the index t = x, and let x' be the one which corresponds to
the same index in the function for the superscript 2. In the same way let u be
the horizontal index of the same term x of the first function, and u' that of
the term x' in the other; and one will have, by observing the prescribed rules

about the ambiguity of the signs,

u=x-%1t +2 +1 and u' =x' -t + 2 * 1.
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Thus there will be four cases to consider, according to whether the two numbers
t and x are even or odd; and the values of .u and u' will be for each case ex-

pressed in the following mammer:

T II III IV

=2i t =2i = 2i+1 = 2i+l

= 2k x = 2k+1 X = 2k = 2k+1

= 2k-2i+l | u = 2k-2i+4| u = 2k-2i = 2k-2i+l
x'= 2k-1 x'= 2k+2 x'= 2k-1 x'= 2k+2
w'= 2k-2i+42 | u'=2k-2i+3 | u'= 2k-2i+l | u'= 2k-2i+2

86. From this it is seen that the second and third cases give even values
for u and that the values of u' are less than one, from which it is evident that
all the even values of u produce for u' all the odd valﬁes.

Next, the first and the fourth case,‘where the values of u are odd, furnish
for u' values greater than one, énd thus all the odd values of u produce for u'
all the even values; so that all the values of u, different one from another,
produce also for u' all the possible values, and the function is unguestionably

square-forming, since it has all the necessary characteristics.

87. Having thus found the function for the superscript 2 in the way which
we have Jjust taught, one will form from it, by the first rule, functions for all
the other even superscripts, and by this means one will easily construct,'from
each function prbposed for the superscript 1, a complete system of functions

similar to the one which we give here for the function

1 3 5 7 4 2 8 6.
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For the superscript 1 0.3 "5 17 % 2 8 6
For the superscript 2 2.4 6 8.3 1 7 5

For the superscript

= w
=
o
[oe}
o
Ul
w
]
3

For the superscript

()]
W
]
ol
w
@
(0)
=
no

For the superscript
For the superscript 6 6 8 2 L 7 5 3 1
For the superscript 7 7 1 3 5 2 8 6 L4

For the superScripﬁ 8 8 2 4 6 1 7 5 3

where one sees that in each row the terms are all different one from another and
that consequently when the superscripts are joined in the manner which has been
explained to all the numbers in the proposed Latin square, no term can appear

more than once, and the square will be complete.

88. In considering more attentively the complete system of functions which
we have formed one will see first that all the rows fit in perfectly with those
of the Latin square "& double marche" and that there is no difference except in
their order, which is changed, that is to say the horizontal indices, which in
the square appear in the natural order 1 2 3 L4 5 6 7 8, are here
1 3 5 7 & 2 8 6. In considering then in general any row, and
letting its index be t and its highest (suprgme) term be x expressed with the
superscript 1, if we express the terms which follow the x, in descending order,
by

x', x'', x'v', etc.
and give them the
2, 3, L, etc.
(%)

the term x will have the exponent ¢ + 1; and taking ¢ so that it becomes

ORI
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which is the term which corresponds to the same index in the first row of the latin
square, it will be necessary to give to that term the superscript ¢+l. Or, whenever
the values x, X, X'', x''' . x ?/ take the same order as in the latin square, one
will always have t = x + ¢ ~ {g or rather ¢ = t - x + {g, and therefore

1

p+l=t-x +{3

=t -x+2+1,
where the ambiguity of the signs follows the same laws that we have stated above.

89. From this it is clear that the superscripts of the first row of our
Latin square also form a square-forming function, derived from the proposed
function by the second rule, and that in order to construct a complete sguare
one can begin with the first row, assigning to it superscripts according to any
function and continuing to assign the others by déséending according to that
column of the square which begins with the same ndﬁber. Thus, since one derives
from the proposed function,

1 3 5 7 4% 2 8 6,
by the second rule the function

1 8 7 6 4 5 2 3,
one can begin with this function combining it with the first row‘of the original
(simple) square, for whose terms it will serve as superscripts; and the others
will be inserted in the way which we have just explained and which we will makev

clearer by the example of the following square:

1t 284 37 u6 5l+ 65 72 83
22 l7 u8 35 63 56 81 7h
33 y2 51 68 76 g7 lu 59
uu 31 62 57 g5 78 3 l6
2 6 13 g2 10 2t P T
66 53 8“ 71 ST 12 )5 38
77 86 19 21+ 32 )3 58 6l
g 5 b 3l TP
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But it must be noted that this beautiful property of the superscripts of the
first row can occur only when the system of functions is formed from a single

proposed function.

80. However, it is easy to combine several square-forming functions to-
gether to form such a complete system, as we have shown in section 35 of the
preceding section. I add also, in regard to that section, that after having
obtained the functions for the odd superscripts of some function of the super-
script 1, one can deduce the functions for the even superscripts of another
function, provided that its terms follow the same order as far gs even and odd are
concerneds Thus for the preceding example, after deducing the odd square-
forming functions of the functionl 3 5 T 4 2 8 6, one will be
able to obtain those which determine the formation of the even superscripts of
that function: 1 5 7 3 8 L4 6 2, ;ﬁich is also square-forming and

vhose terms, as concerns even and odd, follow the same order. Here is the

complete system:

For the superscript 1 1 3 5 7 L 2 8 6
For the supérscript 2 2 6 8 4 7 3 5 1
For the superscript 3 3 5 7 1 6 L 2 8
For the superscript 4 L 2 6 1 5 T 3
For the superscript 5 5.7 1 3 8 6 Lk 2
For the superscript 6 6 2 4 8 3 7 1 5
For the superscript 7 7 1 3 5 2 8 6 L4
For the superscript 8 8 4+ 6 2 5 1 3 7



T
22 l7 ué 35 63 5u 81 78
3 48 1ot 2 gl & S

5 62 3 g 4 ot 38' \ T
66 53 82 7t of l8 )5 3h
7 gh 15 B P 3 2 gl
g8 75 M3 2 67 56

where the superscripts of the firsi rov have this order:
1 6 7 2 .8 5 u’ 3,

which plainly is not square-fofming, since the values of u would be
105 5 1 b 2 6 6,

and therefore far from being‘different one from another.

91. After these general thoughts, which can be applied to all Latin squares

% double marche, no matter how large n is, as long as it is divisible by 4, we

will develop some particular cases where n = 4 and n = 8, but omitting larger
ones, which would lead us too far; and since, for the case of n = 8, we have
already given several examples, we will limit ourselves to finding all its square-
forming functions; having shown that each of them can furnish a complete system
and that two different square-forming functions can also lead to a complete system,
as long as the terms maintain the same order as far as even and odd are concerned.
Once these systems have been formed, whose number obviously is much larger than
that of the first square-forming functions, the construction of the squares

offers not the slightest difficulty.

# The original edition erroneously gives 8% instead of 8° and T° instead of
71 in the fourth column. -Ed.
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THE CASE OF n = 4

92, The Latin square 2 double marche is in this case

1 2 3 &4
2 1 L4 3
3 4L 1 2

L 3 2 1
which gives for the superscript 1 only the two following functions:
1 4 2 3 and 1 3 L4 2
of which one, if one applies the two prescribed rules, produces the other. From

these two functions can be formed the two complete systems which follow.

For the superscript 1 1 hI 2 3 1 BII L 2
For the superscript 2 2 3 1 k4 2 L4 3 1
For the superscript 3 3 2 Lk 1 3 1 2 4
For the superscript b L 1 3 2 y 2 1 3

and by writing out the superscripts according to these functions, one obtains

the two complete squares below:

One will easily be convinced that, whatever other Latin square one wants
to construct, one will never be able to obtain from it other complete squares
which satisfy the prescribed conditions. However, both of the squares which we
have just formed also admit of transpositions of the columns such that the

prescribed properties appear even in the diagonals. Here are two examples:
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I II
Lo 42 3 3 4
22 3 g | 2T 3l
312 o L3 2 b
oot 3 2 )t 2ot 23

CASEOF n = 8

93. The fundamental Latin square is:

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 L 5 6 7 8 1 2
L3 ‘6 5 8 72 1
5 | 6 A7 8 1 2 3 4
6 8 7 2 1 Lk 3
7 8 1 2 3 4 5 6

8 7 2 1 4 3 6 5
for which the two general formulae furnish first the two following square-forming

functions

of which the first begins with the four odd numbers; and it is not hard to find
all the functions whose even and odd terms preserve the same order; they are the

four which follow:

1 3 5 7 4 2 8 6
1 5 7 3 4 8 2 6
1 5 7T 3 8 Lk 6 2
1 7 5 3 8 2 L4 6
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. 94, Let us then apply successively the two rules presented and demonstrated

above (section 78 ff.) to these four functions, which will give us the four

following groups of twelve.

3L

First group of twelve

»)

fundamental 305 7 & 2 8 6
reversed 6 5 3 LT J
second rule 1 8 7 6 L 5 2 3 1T
(applied toI) J1 5 4 8 3 7 6 2
first rule I‘ 1 8 5 3 2 71 6 1*1 ITI
(applied to I) \’l 7T 8 5 6 L 3 2j
second rule fl 37T 2 6 8 Lk 5 v
(applied to 111)\} L 6 8 2 3 5 7T
first rule 1 5 6 2 7T 3 8 4 v
(applied to II) Y1 4 2 7 8 5 3 6
. second rule 1 6 8 3 7 K 2 5%
(applied toVv) Y1 7 &% 6 8 2 5 3,
Second group of twelve
fundamental 1 5 7 3 L 8 2 6 I
reversed 1 7 4 5 2 8 3 6
second rule 1 6 5 2 4 7 8 31 IT
(applied toI) Y2 4 2 8 6 7 5 3J
first rule 1 3 8 2 1 5 6 Wl o
(applied toI) Y1 4 8 5 3 2 6 7
second rule 1 8 6 3 7 2 4 5 v
(applied to IIT)Y2 7 6 8 3 5 L 3
first rule 1 8 5 7 6 3 2 | v
(applied to II) Y1 6 4 7 8 3 5 2
second rule 1 3 17 6 2 & 8 5 o
. (applied to V) J1 5 2 6 b3 7

# In the original edition, the order of succession of the square-forming functions
is reversed in groups III and IV of each group of twelve. See note 1, p. 340.
- Ed.
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fundamental 5 7 3 8 L 6 2 1
reversed 8 4+ 6 2 7 3 5
second rule 1 6 5 2 8 3 Lk 71 1T
(applied to I) 1 3 2 7 6 8 5 4
first rule 1 3 2 8 7 5 & 6\ o
(applied toI) )1 4 6 7 3 2 8 5
second rule 1 8 ¥ 5 7 2 6 3 v
(applied to ITII) |1 7 8 6 3 5 2 L
first rule fﬁ. 7T 5 8 6 4 2 3 v
(applied toII) },1 6 8 3 4 7 5 2
second rule 1 % 7 5 2 3 8 & VI
(applied to V) 1 5 6 2 4 8 3 7
Fourth group of twelve

-
fundamental 1 7 5 3 8 2 L 6 I ‘
reversed 1 6 4 7 3 8 2 5
second rule 1 » 7 2 8 5 6 3 IT
(applied to I) 1 5 2 6 3 7 8 b4
first rule 1 3 5 8 2 b 6 7\ o
(applied to I) 1 4 8 2 6 7T 3 5
second rule 1 8 7 5 6 3 4 2 IV
(epplied to III) |1 7 6 3 2 8 5 L
first rule 1 5 L 8 7 3 2 6 -
(applied to II) |1 8 6 T & 5 3 2
second rule 1 6 2 5 7 L 8 3 VI
(applied to V) 1 3 8 6 4 2 5 7

95.

Thus here are forty-eight square-forming functions, which exhaust our

whole Latin square; for all the functions which can be obtained from it by the
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ordinary method ere-found in'tﬂé foﬁr préceding é?&&bs of'twelvé. Thus by héing
only one of these f;nctions, one can construct from it a complete square and
consequently forty-eight different solutions, without counting those which
spring from the combination of several of these functions whose even and odd
terms preserve the same order and whose number is prgbably very considerable.

To facilitate such combinations and to be able at the same tire to Jjudge of the
number of all the diffefent solutions, we are going to distribute these forty-
eight functions in different classeé, according to:the order that is observéd
as far as even and odd are concefned, and we will designate even numbers by the

letter e and odd ones by the letter o; we will obtain the followiné types:

I. o ) 0 0 e e e e Ve © 0 e o) e e 0 e
1 3 5 7 4 2 8 6 1 3 2 7 6 8 5 4

1 5 7 3 & 8 2 6 1 7 4 5 2 8 3 6

1 5 7 3 8 4 6 2 1 7 6 3 2 8 5 b4

1 7 5 3 8 2 L4 6 1 7 8 5 6 & 3 2

II. 0o 0o o e e & e o VI. o e e o e o o e
1 3 5 8 2 4 6 7 1 ¥ 2 7 8 5 3 6

1 3 7 2 6 8 L 5 i1 6 4+ 7 8 3 5 2

1 3 7 6 2 4 8 5 1 6 8 3 & 7 5 2

1 7 5 8 6 L4 2 3 1 8 6 7 4 5 3 2
IIT. o o e e e e ©0 o VII. 0 e o'o e o e e
1 3 8 6 L4 2 5 7 1 4+ 7 5 2 3 8 6

1 5 2 6 8 4 3 7 1 8 5 3 2 7 6 4

1 5 6 2 4 8 3 7 i 8 5 7T 6 3 2 4

1 7 4 6 8 2 5 3 1 8°'7 5 6 3 L 2

Ive o e e e e 0 0 0 VIII. o e 0 e e 0 e 0
1 » 2 8 6 7 5 3 1 ¥ 7 2 8 5 6 3

1 4+ 6 8 2 3 5 7 1 6 5 2 4+ 17 8 3

1 4~ 8 2 6 7T 3 5 1 6 5 2 8 3 Lk 7

1 8 ¥ 6 2 7 3 5 1 8 7 6 4 5 2 3

% The originai edition has,erroneously, 1 8 7 56 3 2 Lk, -Ed.
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IX. o© °) e e 0 o € € Xe © e e O o e e o
1 3 2 8 7 5 4k 6 1 4 6 7 3 2 8 5
1 3 8 2 7 5 6 L4 1 4+ 8 5 3 2 6 7
i1 5 2 6 3 7 8 &4 1 6 2 5 3 8 4 71
1 5 4 8 3 7 6 2 1 6 2 5 7T L4 8 3
1 5 4 8 7 3 2 6 1 6 4 7 3 8 2 5
1 5 6 2 7 3 8 k4 1 6 8 3 7T 4 2 5
1 7 6 8 3 5 L 2 1 8 4 5 7 2 6 3
1 7 8 6 3 5 2 4 1 8 6 3 7 2 L4 5

96, In considering some class of square-forming functions containing 3
functions, it is clear that, since one can combine each of them with each of the
functions of another class, one will obtain A2 different solutions. Thus, since
we have in all eight classes each of which contains four functions, of which each
can be combined with one or the other of the same class%, one can deduce sixteen
solutions from each class and consequently 128 solutions from the eight classes;
and by adding to them the two classes of eight functlons, each of which furnishes
64 solutions, the number of all the possible solutlons w1ll be 256 all of which
will equally satisfy the problem. But it must be noted that the Latin squares

3 quadruple marche will give a still greater number of them, without counting

tho§e which cannbe obtainedlpy'several transformations which are explained above
and which will be even more clearly explained in what follows. This, added to
the different solutions for the cases of n = 3, n =4, n =5, and n = 7, ought
to increase our surprise in regard to the case of n = 6, the impossibility of

which appears to be more and more tonfirmed.

End of second section

s The original edition erroneously has: '"...combined with one or another of

the other classeSe.s''« -Ed.
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THIRD SECTION

ON IATIN SQUARES A TRIPLE MARCHE OF THE GENERAL FZRM

1 2 3 4 5 6 7T 8 9 etec.
2 3 1 5 6 4 8 9 7 |etc.
3 1 2 6 4 5 9 T 8 etc
4 5 6 7 8 9 10 11 12 etc.

etc.

9%6. [a]* Here, it is evident that the number n must necessarily be
divisible by 3; we will thus establish throughout n = 3m, where m will indicate
the number "members" (groups of 3) of which each row and column is composed.
Thus, the simplest case will be the one vhere m = 1 or rather n = 3, and the

Latin square comprising a sinéle'member of the general square 3 triple marche

will De:
1 2 3
2 3 1
3 1 2

the construction of which has been sufficiently explained in section 18 of the

first sectione.

97. The first question which presents itself here is that of knowing

whether or not all the cases of this square ¥ triple marche always admit of

square-forming functions. ©Now I should first take note of the fact that when
the square is made up of two members, it can never admit of square-forming
functions, so that the case of n = 6 must again be excluded from this type of

simple squares. One can convince oneself of the truth of this by the ordinary

# The original edition erroneously has section 96 twice. -Ed.
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method of looking for functions, but this truth will acquire that much higher a

degree of certainty since one can give a very rigorous demonstration of it, drawn
from principles which are completely different from those by which we have proved
the impossibility of the preceding cases, where the number n was oddly even, and
which could not be applied in this section because of the multiplicity of differ-

ent cases which one would be obliged to consider.

98. 1In order to make this demonstration clearer and easier, I will indicate

the first member of the proposed square & triple marche, which is

1 2 3
2 3 1
3 1 2

by the letter A, which will thus include three rows and three columns; and the
letter a will indicate each number contained in this small square, that is to

say, 1, 2, or 3. 1In the same way, I will express the second member of the square,

which is
Y 5 6
5 6 4
& L4 5

by the letter B and each of the numbers which it contains by b. Granting this,
we can represent the Latin square with two members, that is to say for the case
where n = 6, in this way:

A B

B A

. . ¥
where each row and column includes six terms.

# Original edition:"...includes three terms." -Ed.
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99. Now I observe that, if this square admitted of a square-forming function,
it should contain three a's and three b's, some of which would be taken from the
first column AB, and others of which would be taken from the second column BA.
Now since all the terms of such a function should be taken from different rows
and columns, each term which one puts in the function excludes one row and one
column. Thus, when one wishes to take all three a's from the first column, since
they would be taken from the letter A, the first row will at once be excluded, and
so will the first column, and consequently the three b's should be taken from the
second part of the second column, that is from the member A, the only one remain-
ing which contains no b's at all.

Let us suppose then, that one takes from the first column two a's and one b,
that is, three terms; and it will be necessary for the other to provide as many,
that is, one a and two b'se. Now since the two a's are taken from the member A
of the first row and the b from the member B of the second row, it is clear that
the remaining term of the first row can be only b, and that of the second row
a a;since the first column is excluded. Instead of the missing terms a b b,
we obtain a a be From th{s one already sees fairly clearly that while taking one
a and two b's from the first column, it would be similarly impossible to derive
from the second column the remaining terms a a b. Consequently, it is demon-
strated that the case of n = 6 admits of no square-forming function.

100. But if for the case of n = 9 or m = 3, we mark the third member of

the general square, that is

T 8 9
8 9 1
9 T 8

by the letter C and the three numbers, 7, 8, 9 which it contains by the letter

¢, we shall have the square
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A B C
B C A
C A B

to examine, and the square-forming function, if there is one, will include three
a's, three b's, and three c's. In taking the three a's from the first column,
the first row will be excluded and in consequence one will be able to take from
the second column only the three c¢'s, which will exclude the second row; and
because there are still the three b's remaining in the third column, one easily
sees that this case furnishes square-forming functions; one will even be able to

deduce some in other ways.

10l. In examining in the same way the case of n = 12 or n = 4 and designat-

ing the fourth member of the general square

10 11 12
11 12 10
12 10 11

by the letter D and the terms which it contains, 10, 11, 12 by d, so that the

square to be examined is

C D A B

D A B C
one will see that, no matter in what way one takes the small letters from the
rows and columns of this square, it will never furnish square-tforming functions;
and it seems that one can dare to draw the same conclusion for all cases where
n is an even number, so that this section applies only to odd multiples of 3,

like 3, 9, 15, 2L etc.
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102. The beauty of the demonstration for the case o1 n = €, presented in

sections 98 and 99, leads me to digress to Latin squares ¥ quintuple marche,

or 3 septuple marche or that of any other odd number, for which one can

demonstrate with the same ease that any of them which comprise only two members
can never admit of square-forming functions. For designating, for the case of
n =10 =2 X 5, the two members of which it is composed by A and B, and the five
terms which they each contain by a and b, it will be a matter of deducing from

the square

or

. . L . L] L . . . .

b b b bbaaaaa
a function which contains, in some order, five a's and five b's.

103, Thus, if we wanted to take all five a's from the first column,
the first row would be excluded and there would remain in the second column
only the term A, which includes no b's. If we took from the first column four
a's and one b, the second column could furnish only one b and four a's, while
we would need one a and four b's in order to complete the function. The same
problem occurs when three a's and two b's are taken from the first column, for,
instead of the two a's and three b's that we still would need the second column

would furnish only two b's and three a's. From this one sees that there are
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no square-forming functions to be expected from it; and the reason is frankly
the fact that the number of small letters is odd, and it seems that one can
maintain that the same impossibility exists in all cases where the number of

members A, B etc. is even.

104k, But in all cases where the number of small letters ié even, this
impossibility ceases completely. For let us suppose that it is a question of a

square ¥ quadruple marche which includes two members, A and B, each of which

contains its small letter, a or b, four times, which would be the case for

n = 8; it will be necessary to obtain from the square gﬁ a function which
includes, in some order, four a's and four b's, which presents not the slight-
est difficulty. One has only to take two a's and two b's from the first column;
and since in the second column the first member, B, provides two more b's and the
other member, A, provides two more a's, the square-forming function will be
complete. From this one sees at the same time that in all these cases it is

always necessary to take two a's and two b's from each column; and this reason-

ing holds good for all even numbers.

105, Let us return to our square ¥ triple marche; and in order to find

its square-forming functions, let us consider some terms, x, which corresponds
to the vertical index t and to the horizontal index u; and by comparing this
term to the sum of its indices, t and u, one will soon observe that there is a

double relation between them; one of which is

X t+u-1
and the other
x=t+u-15L

the difference between them depending on the divisibility of the numbers t and

u by 3. Now these numbers reduce to three types, which we can represent by
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3N+ ;, 3N+ e, W+ 3, or,§imply by 1, 2, 3’,VP;%h can equally well designate
the three types. Next, because of the ambiguity of the numbers 1 and 4 in the
two expressions for x, we will put

x=t+tu=-w .
Granting this, the following table will serve to determine the relation between

x and its indices and the values of w, for all types of values of t and u.

If{t“-lll 2|]3]3]3
={1]2|3 3([1]2]3
onewillhaVe{W=lll 1{afhf L in

x =i1{2i3li2i3i1ti3l1i2

from which one sees that there is w = 4 when one or the other of the indices

]

t and u is = 3 and neither one 1.

1]

106. Having thus found x =t + u - w, one obtains reciprocally

h u=x-t + w,
from which one can find the horizontal index u of each term x and the correspond-

ing vertical index; and from tﬁére, one can assign the true value of w for all

values t and x, as one can see from this table:

If {x
%

one will have w

1{1(rli2|2|2|(3}3}3
1{213]|1{2{3|[1]|2]3

]

Vikihiialiedininla

There are consequently three cases where w = 4, which we will represent separately

w=h, if {:

107. This last table will be a great help in examining if a proposed

thus:

1
2

2
3

1
3

]

function is square-forming or not. For one need only write this formula or the

series of x and that of t one.under the other, and deduce from it, according to
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this table, the values of u, and when one finds that they are all different, it .

is a sure sign that the proposed function is in effect square-forming. To
illustrate this with an example, let us take for the case of n = 9
this progression for x: 1357924638

and writing under it the series of t: 123456789

by means of the stated rule,one will have u= 1264 59783
which, in including all the different values, shows that the arithmetic
progression

1 3 5 7 9 2 L 6 8

is in effect square-forming.

108. Now, having found one square-forming function, one can, by methods
similar to those which we have used in the preceding sections, deduce from it

many other functions which are also square-forming. For, granting that for a

new function the term X correspohds to the vertical index T end the horizontal
index U, since we had a while ago x =t + u - w, one sees that the two indices
t and u are permutable, so that, taking o
T=u and U =£t,
one will have
X = X

Thus in the preceding example, having before one's eyes the values of u, one
has only to arrange them in their natural order and to write under each one its
number x, in the following manner:

T=1 2 3 L4 5 6 7T 8 9

X=1 3 8 T 9 5 L 6 2
and this function will surely be a new square-forming function, since all the

U's, being the same as the t's, have different values.
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109. One will thus be able, as in the preceding sections, to exchange
the two letters t and x, taking
T=x and X =4,
from which one will get, as above, a new function, the inverse. Thus, the
functidn proposed above
1 3 5 7 9 2 L4 6 8
will furnish by inversion this new function
1 6 2 7.3 8 4 9 5
and the function which we have gotten from the proposed one by the other rule,
1 3 8 7 9 5 k 6 2
leads, when inverted, to the following:

1 9 2 7 6 8 4 3 =5,

110. Having for U by virtue of this rule, where T = x and X = t, the
formula
U=X-T+w=t -x+w,

since these expressions range over all the values while t and x undergo the
necessary variations, it follows that, taking

T =1,
one can put

X=t-x+w,

and that is the essence of the second rule which differs from those of the
preceding sections only w}thﬁ;§§pegtvpo the meaning of w, which here will al-

ways be = 1, except for the three cases mentioned in section 106, that is*

# The permutation of x and t with respect to the end of section 106 comes from
the fact that one supposed, at the beginning of section 110, T = x and
X =1t. -Ed.
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t

n

2

)

X
for which it is necessary to take w = 4., By means of these two rules, as soon
as one has found some functions by the ordinary methods, one can deduce from

them several otherse.

111l. But here, one will soon discover great variety in the functions
which one wants to transform by these rules. There are some which remain
unalterable by both rules. Such a one is

1 3 2 7 9 8 4 6 5
which is the diagonal of the proposed square; it is reproduced by both the first
and the second of our rules. Next, there are also functions which by the use
of both of these rules produce only one new function. Such a one, for example,
is the arithmetic progression decreasing by 1,

1 9 8 7 6 5 k 3 g2
which reproduces itself by the first rule, while the second rule furnishes this
function:

1 6 5 7 3 2 L4 9 8,

which reproduces itself by reversal.

112. Let us develop the proposed arithmetic progression
1 3 5 7 9 2 & 6 8,
which with the help of our two rules [sections109 and 110] furnishes, as one
will see, four new functions.
Proposed function 1 3 5 7 9 2 L4 6 8

Reversed function 1

O\
o
]
w
@
=
\O
i

Second rule
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There are, thus, with the preceding ones, seven squageiﬁorming functions for

the case of n = 9, which all have the excellent propergg thatléheir terms follow
the same order with respect to their divisibility by three. Now it is easy to
find still others which in this regard follow the same laws, ﬁﬁich we will set

forth all together.

1 3 2 7 9 8 Lk 6 5
1 3 5 7 9 2 L 6 8
1 3 8 7 9 5 Lk 6 2
1 6 2 7 3 8 4 9 5
1 6 5 7 3 2 L4 9 8
1 6 8 7 3 5 k& 9 2
1 9 2 7 6 8 L4 3 5
1 9 5 7 6 2 4 3 g
1 9 8 7 6 5 4 3 2

all of which we have found, except the fo%lowing two:

1 6 8 7T 3 5 4 9 2
1 9 5 7 6 2 4 3 8
which reproduce each other by both the first and second rules.

It is important to have set forth ﬁéése 9 functions which keep the same
order with respect to the terms which are divisible by three. For we will see
in the following section that, in order to form & complete magic square, one can
use 2 and even 3 similar functions for the different superscripts in regard to

ouwr three types of numbers; from this one sééégtﬁét these nine functions are

capable of producing a prodigious number of different squares.

% The original edition erroneously has 19 5F6 2 4 9 8. -Ed.
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113. But there is also a quantity of square-forming functions which in .

this way furnish as many as a dozen new ones, as one can see from the following

one, chosen at random.

Proposed function 1 3 8 6 7T 9 2 5 L

Reversed function 1 7 2 9 8 L4 5 3 6
from which one gets by the

second rule 1 3 5 2 8 7 9 4 6

{ 1 5 2 8 7 3 6 9 4

first rule 1 4 2 8 3 9 6 5 T

{ 1 3 6 9 2 7 5 L 8

second rule 1 8 2 9 6 7T 5 L4 3

{ 1 3 7 8 L 9 6 2

first rule 1 3 9 8 7 5 6 2 4

{ 1 9 2 5 8 7 L 6

second rule 1 3 4+ 9 8 2 5 7T 6

1 6 2 3 7 9 8 5 &

and consequently twelve, none of which was known to us before.

11k. After thése rules for the invention of square-formihg functions for
the superscript 1, it still remains to see what means are neceésary to deduce
functions for the other superscripts, or rather in what way it is necessary to
construct the complete system. In order to do this, I observe in general that
having found, for some superscript a, the function

a b ¢ d e etec.,

% Here, the first rule consists in forming the reversed function. In this table, .
a pair of functions is always deduced from the one which precedes it, which is
not the case in sections 81 and 9%. See the note on sections 81 and 82. -Ed.
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one will derive from it, by virtue of the form of the Latin square, the function

13

Ji.

for the superscript a + 3, by adding 3 to,ea?h.term of the first function. And
considering attentively the form of the proposed square, one may even suspect
that, if some term of the proposed function is of Epe form 3@ + 1, the term for
the superscript 2 will be of the form-aa + 2 and the one for the superscript 3
of the form 3@ + 3, Next, if a term of the proposed function for the superscript
1 has thé form 3@ + 2, the corresponding one for the ﬁgnction for the superscript
2 will'have the form 3@ + 3 and the one for the superscript 3 will have the form
3@ + 1. Finally, if the term of the proposed function is of the form 3 + 3,
the one for the superscript 2 will be of the form 3@ + 1 and the one for the
superscript 3 will be of the form 3 + 2. This conjecture, which it will be
well to set forth for greater clarity in the folléwing table:

form of the | for the superscripts

term 2 3;
i+ 1 3+ 2 300 +:3
X+ 2 3+ 3 3+ 1
3+ 3 3+ 1 .+ 2

can even be demonstrated rigorously in the following way.

115. Let there be, in the proposed square-forming function for the super-
script 1, some term x which corresponds to the verﬁieaL index t and the horizontal
index u, so that

u=x-%t +w .
Next let there be, in the function for the superscript 2, a term x which
corresponds to the same vertical index t, but to the horizonfdl index u', so that
u'.= x* -t +w .

Finally, let there be, in the function for the superscript 3, a term x''
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corresponding to the same vertical index t and to the horizontal index

u'!' =x'"" -t +w .
It should be noted that the horizontal indices u, u', u'' nust be taken from
the same function explained above. Granting this, it is necessary to show that,
while the index u ranges through all the values (and that is the essence of the
nature of square-forming functions), the two other indices u' and u'' also
range through all the values. Now this will seem clear in the table below,
which represents all the possible cases with respect to the two given values

t and x, where we have put, in order to shorten this, & - B = v «

t=3+)1]273)1})2]3]1]2}3
x=3+|1|2|3)2|3]1|3({1]|2
u=3y+|1|1]1f2]e 31313
=3+ (23 {1f3f1]|2]1r]|2]3
w=3y+|22laf3)3]|3)1]1]1
x"=3+ (3 |1]|2f1]2]|3)2]3]|1
w'=3y+ |33 |3]1}1]1)2]2]2

From this table, it is evident. that, every time that u = 3y + 1, one will have

uw =3y +2 and u'' =3y +3.
Similarly, when u = 3y + 2, one will have

u =3y +3 and u'' =3y+1 .
Finally, when u = 3y + 3, one will have

u =3y+1 and ' =3y+2 .

From this one sees that, since u varies through all the values, both the u' and
the u'' must also vary through all the values, and consequently the rule given
above gives us for each function for the superscript 1 two other functions for

the superscripts 2 and 3, from which one can form the functions for the
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superscripts 4, 5, o, by addlng 3 to each term of the first three, and those

for the superscripts T, 8 9, by d01ng the same thlng to the preceding three.

116. In this way, the formation of a ?Qéélete systel: of square-forming
functions from a single progqsed functiop»forﬁ&pe superscript 1 of the fundamental
Latin square will not present the slighﬁeét‘difficulty. Let us take once more,
in order to give an example for the case of n = 9, the function which proceeds

in arithmetic progression

1 3 5 7T 9 2 4k 6 8
and the complete system will be
1 3 5 7T 9 2 4 6 8
2 1 6 8 71 53 5 9
3 2 4 9 8 1 6 5 7
L 6 8 1 3 5 7 9 2
5 4 9 2 1 6 8 T 3
6 5 7 3 2 Lk 9 8 1
7 9 2 4 6 8 1 3 s
8 7 3 5 4 9 2 1 6
9 8 1 6 5 7 3 2 4

and the complete square which results from this systein will have the following

¥*
form:

p) 9 T 3 1
66 32 5 93 72 g7 39 1@ eL
T80 o5 F P 2 B3
88 97 76 55 3u 13 52 gl 19
99 78 8u 36 10 o g3 42 57

# The original edition has erroneously, in the third column, 47 instead of 17.-Ed.
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117. In this square, we have taken the first three square-forming functions,
for the superscripts 1, 2, 3, from the same function. But one might have used .
different functions, provided that their terms followed the same order with respect
to their divisibility by 3. Having thus cited above nine different square-forming
functions which all follow the same law, one can form from them 729 complete
squares, all different. To illustrate this by an example, let us take once more
for the superscript 1 the function 1357 924 6 8
for the superscript 2 the function 1 38 7954 6 2
for the superscript 3 the function 1 68 7354 92

and the complete system of square-forming functions will be:

1 3 5 7T 9 2 L4 6 8
2 1 9 8 71 6 5 4 3
3 5 7 9 2 L4 6 8 1
Ly 6 8 1 3 5 7 9 2
5 4 3 2 1 9 8 7 6
6 8 1 3 5 7 9 2
7 9 2 4 6 8 1 3 5
8 7 6 5 4 3 2 1 9
9 2 4 6 8 1 3 5 7

from which one constructs the following complete square:

11 29 35 I 56 62 b 83 8

7 9
2 gl 6 B T3 g5 b o9
33 TCEPN B ;8 5u 96 73 gl
R R C R R L -
5 ot 10 2% 30 4
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functions cited above; but even while using some other square-forming function,

Here, we have profited from the fine link which exists among the nine

it is not difficult to discover all the other functions which have the same
property with reépect to their divisibility by 3. Let us take for example the
following function, chosen at random:

1 3 8 6 7 9 2 5 Lk
and let us write, for each term, in the form of a superscript, the value for

u=x-1t +w as well as the others of the same type, in this way:

t=1 2 3 L 5 6 7 8 9

x=1 3 8 6 7 9 2 5 4

u=1 2 9 3 6 4 5 T 8

1L 52 g9 3 o~ 94 25 5T )8

PY L ogs 23 39 3 B 2
98 56 96 37 82 24

and now it comes down to taking from this simple function vhere not only all the

terms themselves but also their superscripts are different: conditions fulfilled

by:

o

9 70 9u 82 57

=

from which one can deduce new functions of the same type, which, joined to the

proposed function, can be used to construct 27 complete new squares.

119. Before finishing this section, I will add still one more proof of
the first rule of reversal, supposed until now to be true without having been
proved. This proof is all the more necessary since there is a large number
of Latin squares where this reversal is in reality unable to produce square-

forming functionse. It is thus a matter of showing that, when the number v,



-87-

which is = x - t + w, varies through all the wvalues, while t and x undergo their ‘
appropriate variations, the formula t - x + w, which I will call v, will also
receive all the different values.
In order to do this, it is necessary to take into account all the different
types which the two numbers t and x can include, as we have shown in the proof
of the preceding theorem (sections 114 and 115), with regard to the functions
which correspond to the superscripts 2 and 3 and as this table explains:

t=38+}1]2)13}112]3]1]2]3

X 1] 2

Il

X+§lji2 321311

3
u=3y+f1l1|r)af2a]af{3]{3]3
2

v 2 2

3y+ 11171131313

from which it is clear that, when u has the form 3y + 1, v will have the form

- 3y + 1, and consequently the sum will be 2; that is, in the case of u = 3y + 1, .

the number v will be the difference between u and 2 or rather between u and n + 2,

n being the root of the square in question. DNow in the two other cases, u = 3y + 2

il

or u = 3y + 3, one will have v = - 3y + 3 or v = - 3y + 2, and consequently in

either one u + v = 5 or rather = n + 5; that is, in these two cases v is the
difference between u and 5 or rather between u and n + 5. It is thus decided
that when u is varied, the number v will also pass through all the values.

For the case where n = 9, let us write the u's in their natural order,

namely

and the v's will be according to the rules
v=1 3 2 7 9 8 L4 6 5

from which one sees even more obviously how all the values of v vary according

to the variations of the letter u. ‘ .

End of third section.



POURTH SECTION

ON IATIN SQUARES A QUADRUPLE MARCHE OF THE GENERAL FORM

1 2 3 & 5
2 - - - 6
3 - - - 7
L - - - 8
5 6 7 8 9
6 - - - 10
7 - - - 1
8 - - - 12
etce. etic,

120, Since, as it is evident by the
only to squares whose root n is divisible
indicate the number of "members" of which
contain four terms in each row and column

if we represent, in the manner introduced

6

8

etce

etce.

etc.
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general form, this section can pertain

by 4, we will put n = bm, and m will

the square is composed, which will

or rather a total of 16 terms. Then

at the beginning of the

section, these members by the letters A, B, C etc., so that

/ /
1 2 3 4 5 6
SR
A= B =
3 - - - 7 -
Yoo - - 8 -
\ \

7

.

c

4

\

9

10
11

12

etce.

10

preceding

the different cases which we will have to consider will be included in the

following forms:



A B C
A B B C D A
A B C A ;
B A C D A B
C A B

D A B C

etc,
121. If we were to treat these squares on the same footing as in the
preceding sections, we would fall into some very laborious calculationse. It
will thus be necessary to use another method, which will also be able to be

used when the proposed squares are de tout autre marche au - dela de la

%
quadruples It is for this reason that I will propose here a method vwhich will

make these investigations considerably easier, and by which all the objects will

be represented in a manner which is as clear as it is easy:

122, First, in considering some term of the proposed square, which we
will indicate by the letter x, it 1s a question of discovering the relation
which this term has with the indices, the vertical = t and the horizontal = u;
from which it is clear that one must take into account four terms, for which
the formulas will be 4y + 1, ) + 2, ) + 3, 4 + 4, In confornity with these
four types, we will always put

t =bp+f, u=4g+g, x =Ubs +h,
where the numbers p, q, and s will always be smaller than m and the other
letters, f, g, and h, will always represent one of the four numbers 1, 2, 3, k.
Besides that, in considering the proposed square, it will be easily perceived
that one will always have

s =p+4q,

+# That is to say, when the proposed squares permute their rows and columns by
groups, or ''members," larger than four terms. -M. L. Barr




-90-

by observing that, when the number x becomes larger than n = im, one must sub-
tract from it the number n, and the remainder will indicate the correct value

for the letter s.

123. We have already noted above that, in this case of squares & quadruple
marche, the first member A can be of four different forms (see section 16) which

it will be good to set forth here.
I 1T I11 Iv
1 2 3 431 2 3 4} 1 2 3 i1 2 3 4

2 3 & 12 1 & 312 1 k¥ 312 L 1 3
3 0k 1 2|3 & 1 2|3 & 2 1|3 1 & 2

L 1 2 31% 3 2 14 3 1 214 3 2 1
From these forms for the first member, it will be easy to obtain those for the
. following members B, C, and D, etc., by increasing all the terms; for the second,

B, by 4; for the third, C, by 8; for the fourth, D, by 12; and so forth.

124, Let us begin with the first form whose first row will represent the
values of f for the form t = 4p + f, while the first column gives the values of
g for the form u = 4q + g; and the terms of this form themselves will represent
the values of ‘;:'he letter h for the form x = ks + h, if it is observed that

s =p + d¢ This can be represented in the following way:

f

L o4y 1 2 3

. where the terms of the square indicate the numbers h for all the values of f and

e
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125. From that, one will be able easily to construct another square

which will represent the values of the letter g which correspond to the values

of g and h.
f g%r
e e e mar——
1 2 3 4 1. 2 3 4
L v 3 2 (1 L 4+ 3 2
22 1 L4 3 212 1 4 3

hﬁ3321h hﬂ<3321u.

Yy 3 2 1 b b 3 2 1

\
g

These diagrams can very conveniently be applied to judge square-forming functions,
whose nature requires that there correspond to all the values of t = 4p + f an
equal number of different values for the letter x =l4s + h; and second, that the

values of the index u = 4bq + g also all differ.

126, After expressing the values of the numbers t, u, x by two members,
it will be good to note, for the sake of convenience in the following explanation,
that the first is so to speak the "characteristic," which indicates the closest
smaller multiple of four, and the other is the "mantissa," which indicates the
remainder of a proposed number with respect to divisibility by h?* Thus for the
numbers of the first member, A, which are 1, 2, 3, 4, the "characteristic" will
be 0; for those of the second member, B, which are 5, 6, 7, 8, the "characteristic"”
will be 4; for those of the third, C, namely 9, 10, 11, 12, it will be 8; and so
forth. Moreover, it is evident that the "characteristic" of x is always equal
to the sum of the "characteristics" of t and u, so that, if one takes into account

only the "characteristics,”" one will always have x =t + u and consequently

u=x - te

* Tn the original edition, the letters g and h are erroneously interchanged.-Ed.

##In other words, this "mantissa’ is the residue modulo 4. M. L. B.
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127. Then, since in all cases the '"characteristics” are subject to no
difficulty, we can dispense with them entirely, and consequently we need only
look at the residues of f, g, h, which form the remainders of t, u, x, that is,
what remains after division by four; and because of this, we can also dispense
with the letters f, g, h, in place of which we will use only t, u, and x, as we
have done in the preceding sections, which will make our investigation consider-
ably easier,

However, we will add to these three letters t, u, x, a fourth, v, which is

related in the same way to the letters x and t, as u is related to the letters

t and x, so that looking only at the "characteristics,”" one will have
v=1%t-x,
in the place where we had u = x - t, from which one sees that the "characteristic"
‘ of v will always be the negative of the "characteristic” of u or rather its
difference from the number n = 4m; and the sum of the "characteristics” of these

two letters will always be either O or n.

128, ©Now, it will be easy to represent by suitable diagrams how each of
these four letters is determined by two others. For first, if one regards the
letters t and u as known, the form of the number x will be determined by the
first diagram, from which one can easily form the second, for the values of u

when t and x are known.



Diagram 1 Diagram 2
for the values of x for the values of u
t t

’.—_/\.__“ f""-__/\.“'—"\
1L 2 3 L 1 2 3 4

~ a

11 2 3 & 11 & 3 2
!

22 3 L4 1 2 2 1 4 3

u§33u12XS3321h

L 1 2 3 d*i”321

From this diagram one next easily obtains the third, for the values of v by t
and x; since one need only exchange the indices t and x; or rather, leaving then,

one need only exchange the rows and columns, as one can see from this diagram:

Diagram 3
for the values of v
t
U, SR
.l 2 3 4
ﬂ1i12 L
|
el 1 2 3
x|
33 4 1 2
b3 w1

129, From the first of these three diagrams, it is immediately clear that
when the letters t and u are transposed, the figure stays the same. Thus, when
one has found some square-forming function, in which the term x corresponds to
the vertical index t, one can immediately deduce from it another in which,
indicating by X the term which corresponds to the vertical index T, one has
only to take T = u and X = x, and then, calling the horizontal index of this new
function U, one will have U = t., For it is clear that, while the two letters

T and X vary through all the values, the letter U will also range over the same

variations. It thus is only a matter of arranging the different wvalues of

u = T according to their natural order.
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130, Second, it will not be d{ffiéult to prove that having found a
square-forming function from the lettefs t and x, one can always deduce another
from T and X, by taking

T=x and X =+t.
For one sees from the third diagram that the horizontal index u will be in this
case = v, and consequently it is a question only of showing that, while the
values of u pass through all the numbers from 1 to 4, those of v also undergo
the same changes.

Let us take for this purpose a new diagram, which indicates to us the sum

of the two letters u and v, t and x being given.

t
I
1 2 3 4
1 2 6 6 6
2 6 2 6 6
« {
3 6 6 2 6
v 6 6 6 2

from which it is clear that, since the "characteristics" of u and v cancel each
other’out, one will always have u + v = 2 or u + v = 6; the first will occur
whenever u = 1 or u = 4\ + 1; in all the other cases, there will be u + v = 6

oru+v=n+6,

131. Let us develop these different cases. First, taking u = by + 1,
one will have v = - 4\ + 1 or, after adding n to it, one will have v = k(m-)\) + 1;
from this it is seen that, while the letter u assumes all the values of type 1,
the letter v will also take on all these values. Second, taking u = b\ + 2,
one will have v = L(m-\) + 4; or rather v will be the difference between u and 6

or between u and n + 6; thus, while u varies over all the values of type 2, the
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letter v will range over those of type_h. And if u ranges over those of type 3,
v will take on the values of the same type. Finally, while u éssumes all the
values of type 4, v will take on-those of type 2. From this it is clear that in
general, if u ranges over all the variations, v = U undergoes them also; conse-
quently "reversal" of the squaie-forming functions takes place in all cases

without the least restriction.

132. From this double transformation of each square-forming function, one

can deduce several others. For having arrived at the values

T=x, X=1t, U=,
one will have, by exchanging the letters T and U by following the first trans-
formation, this new transformed formula for a function

T=v, X-=1t, U=x,
and from that, by exchanging the letters T and X by following the other trans-
formation, one will have this new one

T=t, X=v, U-=nu,
which corresponds to the one which we have found in the preceding sections by

our second rule.

133. Although we have found still other transformations, it will suffice
to use the two which correspond to those in the other sections, in view of the
fact that by the combination of these two rules, one can deduce as many as twelve
new functions from each proposed square-forming function. This is why we will
.set them forth here:

If one has some square-forming function, in which the term x corresponds to

the vertical index t, and one calls the vertical index for the new function T,

and the term which corresponds to it X, one will always have




by the first. rule T

X and X

£,

I
[}

by the second rule T=%t and X =v,

where the number v must be determined by the third diagram given above, which we
will repeat here, since all the transformafions which one will wish to perform
depend on this form alone.

Diagram 3
for the values of v
t
—N—
1 2 3 4

1 2 3 4
2 1 2
S
313 4 1 2
L2 3 L4 1

134, After finding all the functions for the superscript 1, or at least a
large part of them, it is clear that by adding to each term of a given function
either 4, 8, or 12, etc., one will have the functions for the superscripts 5,
9, 13, etc.; and consequently, there remains only to show how one can find
functions for the superscripts 2, 3, 4, 6, 7, etc., so that one can extract a
complete system of functions; after which, as has been already seen, it is no

longer difficult to construct the complete square.

135. For the term x in the function for the superscript 1, let the
horizontal index = ue. In the function for the superscript 2, let the horizontal
index for the term x' = u'; in the function for the superscript 3, let the temm
be x'' and the index = u'', and thus for the others, x''' and u''', x'''' and u''"!
etcs This being granted, the first "member," A, shows us the following relation-

ships among these different values for x:



xl

xl'l

=2, 3 hr
= 3, )“'y 1,
= )‘l': 1, 2,

2

3

It will then be necessary to prove that, while the letter u varies through all

the values, the letters u', u'',

u''!' will also undergo the same variations.

136. For this purpose let us consider the diagrams taken from the second

one given above, which express the values of u by t and x; they will be repre-

sented in the following manner:

o

for u for u'
t t
. Y P
1 2 3 4 1 3 4
(1 h v 3 2 (1 |2 b3
212 1 L4 3 2 13 1 k4
X 4 x'
313 2 1 &4 3 I 2 1
b b 3 2 1 L b 4 3 2
-~/ v
for u'' for u'"!
t t
P Y U, S
1 2 3 L4 1 3 4
(113 2 1 & 1 3 2 1
2 3 2 1 421h32
X"4 xtre
311 4 3 2 312 1 4 3
Jh21h3 Ju321u
% In the diagram for u', the original edition has (2 1
vl 3. 2
X L instead of x!' 3
1 4y -Ra.
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Comparing the second of these diagrams with the first, one sees that throughout

there is u' =u + 1 or u' = u - 3, the second of which occurs when u = 4; in all
the other cases, there is u' = u + 1. Next, comparing the third diagram with the
first, one will have either w'' = u + 2, or u'' = u - 2, wvhere the second case
occurs when u' = 3 or =4, Finally, the comparison of the fourth diagram asserts
that one will have u''' =u - 1 in all cases except that of uw =1, for which it
becomes u''' = u + 3, It is thus decided that while u receives all the suit-

able values, the letters u', u'', u''' will pass through the same variations.

137. Thus one clearly sees in what way, from some square-forming function
for the superscript 1, one can form a complete system of functions and a comﬁlete
square. But from what we have said in the preceding sections, one easily under-
stands that, to form the functions for the superscripts 2, 3, 4, one can use
different functions for the superscript 1, provided that their terms follow the
same order with respect to divisibility by 4, which is a very fertile source
which multiplies considerably the number of all the complete squares in comparison

with all the different functions found for the superscript 1.

138. After these general investigations for all squares divisible by four,
we will consider some particular cases. Now first, when the proposed square

contains only one member, A, which is a square 3 simple marche, we have shown,

in the first section;, that it can have no square-forming functionse. For this
reason we will confine ourselves to citing the case of n = 8, where the square

contains two members, A and B, whose form is:



1 2 3 4 5 6 7 8
2 3 kL 1 €6 71 8 5
3 0k 1 2 7 8 5 6
L 1 2 3 8 5 6 7
5 6 7 8 1 2 3 Lk
6 7 8 5 2 3 Lk 1
7T 8 5 6 3 k 1 2
8 5 6 7 Lk 1 2 3

This square apparently furnishes 48 functions for the superscript 1, when one
examines it according to the rules given above; I will cite those of them which

I have found by the first method, shown in section 11 etc., which are:

1 3 7T 5 8 4% 2 6 1 4 7 6 8 L4 2 5
1 3 7 5 4% 8 6 2 1+ 7 6 2 5 8 3
1L 3 8 6 4 2 5 71 1 & 8 7 3 5 6 2
1 3 8 6 7 5 2 k4 1 4+ 8 7 3 2 6 5
1 3 5 7 8 Lk 2 6 1 ¥ 5 8 6 3 2 7
1 3 5 7 2 8 6 4 1 ¥ 5 8 2 7 6 3
1 3 6 8 7 L 2 1 4+ 6 5 8 7 3 2
1 3 6 8 2 4 5 7 1 4+ 6 5 3 2 8 3

from which one can easily find the rest, by applying the rules which have been

so often repeated.

139. We will not stop to develop the magic squares which this case can

furnish since all the principles have been sufficiently explained and proved;



-100-

and since the three other cases of the form of the first member, A, give not
the least difficulty when treated in the same way as the first form, it would be
superfluous to carry this investigation any further. We will thus end this
section with the remark that the case which we have Jjust examined can not occur

when the number of members A, B, C etc. is 3 or 5 or perhaps any other odd number.

End of fourth sectione.
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FIFTH SECTION

O THE TRANSFORMATION OF BOTH SIMPLE AND COMPLETE SQUARES

140. after seeing that all the methods which we have presented up to this
point can not furnish any magic square for the case of n = 6 and that the same
conclusion seems to hold true for all oddly even values of n, one might think
that, if such squares are possible, the Latin squares which serve as their bases,
since they do not follow any of the orders which we have just considered, would
be totally irregular. It would then be necessary to examine all the possible
cases of such Latin squares for the case of n = 6, whose number is doubtless
very large., And since besides that the formation of irregulafisquares is not so
easy, I am going to state a method by means of which one can easily‘transform, in
several different forms, all the regular squares and then examine whether they

admit of square-forming functions or not.

141. This method depends on this principle: that if, in a proposed Latin

square, two numbers a and b are found in the corners of a rectangle, in the way

shown by the following diagram

& o o o o« o b
[ ] L]
. .

b . © . . o« 4

one can exchange these two letters, writing & in place of b and b in place of a;

the reason for this is obvious, for it is easily seen that, notwithstanding this
transposition, all the rows and columns will still include the same numbers. It
is thus evident that by this principle one will be able to transform each proposed

square into several other different forms which will have, with regard to the



square-forming functions, quite special properties.
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142. Let us consider for example the following Latin square ¥ simple marche

of 36 entries

P
6

tw

i

6

1

1

2

2

3

1on

3
b

In
p)

which, as we have demonstrated in section I, section 20, admits of no square-

forming function. Let us transpose in the way which we have stated the two

indicated numbers, 3 and 6, which are arranged in a rectangle, and we will

obtain the following square

U

6

;0N N

+ w.

\n

3,

1

%

2

3

"

>

which, despite its apparent likeness, differs so essentially from the proposed

square that one can deduce from it a large nurber of square-forming functions

for all six superscripts, although the other didn't furnish any at all. Here

they are:
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1 6 5 2 L 3 L 3 2 5 1 ¢
1 6 5 3 2 Lk b 3 2 6 5 1
1 4 6 2 3 5 L1 3 5 6 2
1 4+ 2 5 €6 3 L 1 5 2 3 6
1 5 4 3 6 2 L 2 1 6 3 5
1 5 2 3 6 k4 L 2 5 3 6 1
1 3 4 6 2 5 L 6 1 3 5 2
i 3 6 5 Lk 2 L 6 3 2 1 5
24 31 6 5 116 4 3 2
2 5 1 4 6 5 6 2 L 1 3
2 3 6 4 1 5 5 6 1 b 2
2 1 5 & 6 3 5 4 2 1 3 6
3 02 4 1 6 5 & 5 1 4 3 2
3 6 2 1 5 L4 6 3 5 L 2 1
36 1 4 2 5 & 3 4 1 5 2
3 5 2 4 6 1 6 2 5 1 3 L

143. After finding all these functions, there remains only to examine if one
can form a complete—éystem from them, by means of which one can complete the
simple square proposed. Now, considering carefully the functions for thé super-
scripﬁé 2;'3, 5; 6, one will see that, no matter in what way one wants to combine
them;'they furnish in the fourth column only the two numbers 1 and 4 so that
these two numbers would neCéésarily be found twice in the same column of the
complete system, whose abébluﬁe impossibility leaps to the eye. We can thus
boldly assure that the simple square proposed cannot furnish a solution to the

problem.

# The Comm. Alge here erroneously has 7. M. L. B.
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144, I have examined by this method a large number of similar transformed
squares without encountering a single one which didn't present the same difficulty
of furnishing no system of functions in which some column didn't include one
number twice, and I have not hesitated to conclude that one can not produce a
complete square of 36 entries, and that the same impossibility extends to the
cases of n = 10, n = 14, and in general to all oddly even numbers, For, once a
method is found of transforming some magic square into several (as many as 24)
different forms, if there existed a single complete square for the case of n = 6,
there would certainly be several othé;é whose fundamental Latin squares would
all be different. Now since I have examined a very considerable number of such

squares, 1t seems impossible to me that all the possible cases have eluded me.

145, This reasoning can be carried to a much greater degree of certainty
by the general transformation which we are going to present, by means of which
each proposed Latin square can be transformed into several others which all have
the same property with respect to the square-forming functions, so that, if the
proposed square admits of no square-forming functions, all the transformed squares
will also be of the same nature, and ;n the case where the proposed square admits
of a complete system, all those which have been derived from it will also fur-

nish complete magic squares.

146, For this general transformation, one need only change the value of

the numbers of which the Latin square is composed, by substituting in their place
other numbers in some order and by then reducing the new square according to the
order which we have observed up to this point, that is, that the numbers of the
first row and the first column follow in their natural order. In this way one
will always obtain a new square which has the same properties with respect to the

square~-forming functions, because one has only to transfer the same changes to the



-105-

functions of the proposed square. By this one sees that this method ought to be
all the more fertile in the production of new squares in proportion as the
number n is large. TFor, for the cases of n = 2, 3, 4, no change can be expected.
For the case of n = 5, the number of variations can go as high as 3 and for the
case of n = 6 the number must be that much more considerable in that the order

of six numbers can receive up to 720 variations, of which several, however, will

come down to the same form.

147. In order better to clarify the manner and use of thgse transformations,
we are going to take as an example the last square of 6, which:was so fertile
in functions; from this, by exchanging the numbers at will in some way, for

examnple by writing

iristead of
1 2 3 L4 5 g,
we will obtain the following square

Yy 6 1 3 2

i

6 5 3 2 1 L4
1 3 2 5 L 6
3 2 5 L 6 1
2 1 & 6 5 3
5 4 6 1 3 2

which, when the rows and columns are reduced in order, will receive this

ordinary form:
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1 2 3 Lk 5 &
o Ly 1 5 € 3
3 5 2 6 Lk 1
L 1 6 2 3 5
5 & L4 3 1 2
6 3 5 1 2

If we treated in the same way all the Latin squares of 36 entries, & simple,

double or triple marche, which, as we have shown, do not admit of any square-

forming function, we will obtain a great number of other similar squares which
will not admit of such functions-either; so that it will suffice to have examined

a single one in order to pass judgment on all the others.

148, From that it is clear that, if there existed a single complete magic
square of 36 entries, one could deduce from it several others by means of these
transformations, which would equally well satisfy the conditions of the problem.
Now, having examined a large number of such squares without having encountered
even one, I find it more than probable that there are none. For the number of
Latin squares could not be so enormous that the quantity of those which I have
examined should not have furnished one which admits of square-forming functions,
if any existed; in view of the fact that the cases of n = 2 and n = 3 furnish
only one; the case of n =4, four, the case of n = 5 fifty-six, by exact count,
one can see that the number of variations for the case of n = 6 could not be so
prodigious that the number of 50 or 60 which I might have examined would be only
a small part of them, I observé}again, on this occasion, that the exact count of
all the possible cases of similar variations would be an object worthy of the
attention of geometers, all the more since all the principles which are known

in the theory of combinations cannot lend the slightest help.
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149. While examining several such squares formed at randor, I noticed an
astounding difference with respect to square-forming functicns; I encountered
some which didn't furnish any, some which gave none for two superscripts but
two for each of the others. Among other things, I happened also upon a square
which seems to me to deserve particular attention, since it gave me four functions
for each superscript, and even some which seemed to give promise of a complete

system; for this reason I am going to set down here the square which produced

them
Square
1 2 3 Lk 5 6
2 1 5 6 3 4
3k 1 2 6 5
L 5 6 1 2 3
5 6 & 3 1 2

Square-forming functions
1 4 6 5 3 2 3 2 6 5 1 4 5 1 2 4 6 3
1 5 2 3 6 4 3 1 &4 5 2 6 5 2 1 6 4 3

1 6 5 2 4 3 3 6 5 4 2 1 5 b 2 1 3 6
1 3 4 6 2 5 3 6 2 1 5 L4 5 4 3 6 2 1
2 1+ 6 3 5 1 Y 1 3 5 6 2 6 1 4 2 5 3
2 5 1 3 4 6 L 3 1 6 5 2 6 5 1 & 3 2
2 6 3 1 Lk 5 b2 5 3 6 1 6 2 L4 1 3 5
2 3 6 4k 1 5 L 3 5 2 1 6 6 5 3 2 1 4
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All of these functions have the nice property that each of them has its "reversal"
among the others, But in ordéf to form a comélete System, one could combine only
four of them, and those in the two following ways
1 5 2 3 6 L4 1 3 4 6 2
2 6 3 1 4 5 2 5 1 3 L

= O W

3 1 4% 5 2 6 3 6 2 1 5
L 3 1 6 5 2 L 1 3 5 6 2
and it is clear that as far as functions for the éuperscripts 5 and 6 are con-

cerned, there are none which fit in to complete the system.

150. One could apply similar transformations to true magic or complete
squares; but it would be superfluous to construct others by exchanging numbers.
There is, on the other hand, another type of transformation which is peculiar
to them, since in any magic square the Latin and Greek numbers can be exchanged,
and from this one always obtains a new square which is entirely different. Thus,

taking as an example the following complete square of 25 entries

1l 25 3’+ h3 52

2°. 3 u5 5 13

5 1 2 3
55 1% 23 32l

one will get, by the exchanging of numbers which we have mentioned, the following

square
X523 34 55
22 3 5 gt
B 1P 2
W35 b 2 53
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which, being put:-in order, will reassume ;ts Qriginal form; but this change is
thus only a very particular case of the general transformation which we are going

to propose.

151. Let us note that, as each term of a compléte square contains two

numbers, one of which has been called the Latin number, and the other the Greek
number, the position which this term occupies is also determined by two numbers,
one of which is the horizontal index and the other the vertical index. Each
term with the position that it occupies is thus determined by four numbers, a, b,
¢, d: the first of these, a, is the horizontal index; b, the vertical index; c,
the Latin number, and d, the Greek number; and all of these four numbers, a, b,
¢, 4 will be permutable. In this way, the terms of the last square of 25 entries

can be represented as follows:

1111 1 2 2 5 1 3 3 &4 1 b 4 3 1 5 5 2
2 1 2 2 2 2 3 1 2 3 k 5 2 b 5 Lk 2 5 1 3
313 3 3 24 2 33 51 3k 15 3524
L1 4 & L 2 5 3 L 3 1 2 L 4 2 1 L 5 3 5
5 1 5 5 5 2 1 4 5 3 2 3 5 4 3 2 5 5 k1

If one thinks at all about these quaternaries, one will easily perceive that all
four numbers can be interchanged in all possible manners, and I need not add that
the number of variations is 24, which in truth will not all produce new squares,

but nonetheless a fair quantity, all the larger in proportion as n is large.

152, I had observed above [section 148] that an exact count of all the
possible variations of the Latin squares would be a very important question, but
which appeared to me to be extremely difficult and almost impossible once the
number n exceeded 5. To approach this count, it is necessary to begin by this

question:
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In how many different ways, if the first row is'given, can one vary the

second row for each proposed number n?

The solution is contained in the following table:

n ] number of variations

1 0

2 1

3 1=1(1) +0(0)
4 3 = 2(1) +1(1)

5 11 = 3(3) +2(1)
6 53 = k(11) + 3(3)
T 309 = 5(53) + b (11)
8 2119 = 6(309) + 5(53)
9 16687 = 7(2119)  + 6(309)
10 148329 = 8(16687) + 7(2119)
etc. etc.

From that it 1s clear that these numbers make up a logical progression or a sort
of recurrent series in which each term is determined by the two preceding ones,
but whose scale of rélation is variable. Thus if one calls P, Q, R, S the
numbers of the variations which correspond to the numbers n, n + 1, n + 2, n + 3,

one will always have

oo}
1]

nQ + (n-1) P

and

4]
il

(n-l) R + nQ, .

One can find from that an independent formula for n, by which each term S can be

expressed by the three preceding ones, P, Q, R. For, the next to the last equation .

giving
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R-Q=(n-1) (@ +2),

there will be

from which one sees that R - Q is always divisible by P + *« In the same way

one will have

S-R=n (Q +R)

and consequently

from which one gets

PS - PR +QS - QR - RR = PQ + PR + QR

and consequently

_PQ - 2PR + 20R + RR
P+Q

or rather

9]
]

RR + PQ
2R + Q + 57 Q" Q

(R+9)(R -q)
2R + Q + P+ .



Thus, taking
P= 53) Q = 309)

one will have

R = 2119

2R +Q = 4547, R-Q =1810, R + 2 = 2428, P + Q = 362;

from that

and consequently

S = 4oh7 + 5(2k28) =
Or else, taking
P = 309, 91§.2119,

there will be

16687.

R = 16687,

2R + Q = 35493, R - Q = 14568, R + Q = 18806, P + Q = 2428;

from that

and consequently

S = 35493 + 6 (18806)= 148329,

The series of the numbers of variations has again a very nice property,

whose truth is nothing less than evident: it is that one can even determine each

term by the one which precedes it. Thus, when

number of the terms of the second row, n, is
*
there will always be

Q =nP +

the number of variations for the

P and for the number n + 1 = Q,

1
n

3

3
Original edition (three times): Q

|
|

See the editor's preface. -Ed.
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€

where the + occurs if n is an odd number and the - if n is even. Besides that,

taking R as the number of variations for the case of n = 2, since we have found

R = nQ + (n-1) P,

if we put in place of Q the value which we have found, Q = nP +

=P ﬁ l, we will

have a formula which determines the term R by the term before the preceding one,

P, alone, that is
R=n°P -P+1+ (n-1) P = (n-1) (n+2) P + 1.
Thus, taking
n=6 and P =53,

one will have

=
il

5(8)(53) -1 = 2119;

and taking

]
]

T where P = 309,
there will be
R = 6(9)(309) + 1 = 16687.

But I must admit that I have not found the property of determining each
number by the preceding number alone by anything except pure induction, and I
don't see particularly wg;; how one could deduce it from the nature of the series.

However, there is a means of deducing it immediately from the series, at

least the following thoughts bring us closer still to the truth of the assertion
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that Q = nP +-:EL§—} o« Por, if Q is the number of variations for some case n,

either odd or even, and R the number of variatiéﬁg for the following case, where

the number of terms is n + 1, tﬁere would bé; by‘virtue of the equation cited,
nQ = (n3-1) P £ 1
and
(n+l) R = (n® + 2n) Q ¥ 1,

where the upper sign occurs if n is odd, the lower if n is even. Now the sum

of these two equations gives this equation
(n+1) R = (n®#n) Q + (n3-1) P,
from which one gets, by dividing by n + 1, the value
R =nQ + (n-1) P,

which agrees perfectly with the one which we deduced above from the nature of
the series.

That is what I have thought that I should add with respect to counting the
variations which can occur in the simple fundamental squares, leaving to the
Geometers to see if there are means of achieving the enumeration of all the
possible cases, which appears to furnish a vast field for new and interesting
investigations. I end mine here, on a question which, although it is in itself
not very useful, has led us to rather important observations for both the theory

of combinations and for the general theory of magic squares.

End
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