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ABSTRACT

We present a simple, efficient and unified solution to the problems of synchronizing, ini-
tializing, and integrating clocks, for systems with different types of failures: crash,
omission, and arbitrary failures with and without message authentication. This is the
first known solution that achieves optimal accuracy, i.e., the accuracy of synchronized
clocks (with respect to real time) is as good as that specified for the underlying
hardware clocks. The solution is also optimal with respect to the number of faulty
processes that can be tolerated to achieve this accuracy.

1. Introduction

An important problem in distributed computing is that of synchronizing clocks in spite of
faults. Given “hardware” clocks whose rate of drift from real time is within known bounds,
synchronization consists of maintaining logical clocks that are never too far apart. Processes
maintain these logical clocks by computing periodic adjustments to their hardware clocks.

Although the underlying hardware clocks have a bounded rate of drift from real time,
the drift of logical clocks can exceed this bound. In other words, synchronized logical clocks
can have a lower accuracy (with respect to real time) than that specified for hardware clocks.
This reduction in accuracy might appear to be an inherent consequence of synchronization.
The rate of drift of faulty hardware clocks can be beyond the specified bounds, and correct log-
ical clocks can be forced to drift with them. Furthermore, variation in message delivery times
introduces uncertainty in evaluating values of clocks of other processes. All previous syn-
chronization algorithms exhibit this reduction in accuracy [Lamp85, Halp84, Lund84, Dole84].

In this paper we show that accuracy need not be sacrificed in order to achieve synchroni-
zation. We present the first synchronization algorithm where logical clocks have the same
accuracy as the underlying physical clocks. We show that no synchronization algorithm can
achieve a better accuracy, and therefore our algorithm is optimal in this respect.

+ Partial support for this work was provided by the National Science Foundation under grant MCS 83-03135.



2.

In contrast to previous results, we present a unified solution to the different versions of
the problem: systems that exhibit crash, omission, or arbitrary failures with and without mes-
sage authentication. With simple modifications, the solution also provides for initial clock
synchronization and for the integration of new clocks.

We first present an algorithm for systems with arbitrary failures assuming that the sys-
tem provides authentication. We then develop a broadcast primitive that achieves those pro-
perties of authentication required by the algorithm [Srik84]. Replacing authenticated com-
munication with this primitive results in an equivalent non-authenticated algorithm. This
solution is then simplified for crash and omission failures.

We show that to achieve optimal accuracy, fewer than half the clocks in the system can
be faulty. With arbitrary failures, and in the absence of authentication, synchronization can
be achieved only if fewer than a third of the clocks in the system are faulty [Dole84]. Our
algorithm is optimal with respect to the number of faulty clocks it can tolerate for all the
models of failure that we consider.

The solution presented in this paper is simple and efficient, and its message complexity
is comparable to those previously published. Further comparisons with previous results are
presented in Section 7.

The paper is organized as follows. We describe the system model in Section 2. In Sec-
tion 3, we describe an authenticated synchronization algorithm that achieves optimal accu-
racy, and we derive bounds on the number of faults that can be tolerated to achieve this accu-
racy. In Section 4, we present a broadcast primitive that simulates authenticated broadcasts,
and we use it to get a non-authenticated synchronization algorithm. Initialization and
integration are discussed in Section 5. Crash and omission models of failure are considered in
Section 6. Discussion of the results and concluding remarks are presented in Sections 7 and
8.

2. The model

We consider a system of distributed processes that communicate through a reliable,
error-free and fully connected message system (the connectivity condition is relaxed later).
Each process has a physical “hardware” clock and computes its logical time by adding a
locally determined adjustment to this physical clock.

The notation used here closely follows that in [Halp84]. Variables and constants associ-
ated with real time are in lower case and those corresponding to the logical time of a process
are in upper case. The following assumptions are made about the system:
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Al. The rate of drift of physical clocks from real time is bounded by a known constant p >0.
That is, if R;(¢t) is the reading of the physical clock of process i at time ¢, then for all
ty = ¢y,

(1+P)—1(t2—t1) =R;(ty)—R;(ty) = (1+p)ty—ty)

Thus, correct physical clocks are within a linear envelope of real time. We also see that
the rate of drift between clocks is bounded by dr=p(2+p)/(1 + p).

A2. There is a known upper bound ¢;,; on the time required for a message to be prepared by
a process, sent to all processes and processed by the correct processes receiving it.

A process is faulty if it deviates from its algorithm or if its physical clock violates
assumption Al, otherwise it is said to be correct. Faulty processes may also collude to
prevent correct processes from achieving synchronization. We use the term “correct clock” to
refer to the logical clock of a correct process.

Resynchronization proceeds in rounds, a period of time in which processes exchange mes-
sages and reset their clocks. A process i starts a new logical clock C* after the k‘* resyn-
chronization. Define beg” and end” to be the real time at which the first and last correct pro-
cess respectively start their " clocks. The period [beg”,end®] is the k** resynchronization
period.

Given the above assumptions, a synchronization algorithm is one that satisfies the follow-
ing conditions for all correct clocks i and j, all £ =1, and ¢t€[end*, end**1]:

1. Agreement: There exists a constant D ,, such that

CHt) — CH(t)| = Dy

2. Accuracy: There exists a constant y such that for any execution of the algorithm,
A+ 7y U+tasCH)=A + Vt+b
for some constants a and b which depend on the initial conditions of this execution.

The agreement condition asserts that the maximum deviation between correct logical clocks is
bounded. The accuracy condition states that correct logical clocks are within a linear envelope

of real time.

Note that y is a bound on the rate of drift of logical clocks from real time and hence is a
measure of their accuracy with respect to real time. We are interested in synchronization
algorithms that minimize y. In Theorem 2, we show that y cannot be smaller than p, the
bound on the accuracy of physical clocks. Therefore, we are interested in algorithms satisfy-

ing:
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3. Optimal accuracy: For any execution of the algorithm, for all correct clocks i, all £ =1,
and t€[end®, end**]

1+ p) t+tasClt)y=Q1Q + p)t+b

for some constants a and b which depend on the initial conditions of this execution.

3. The authenticated algorithm

The following is an informal description of a synchronization algorithm for systems with
n processes of which at most f are faulty. The algorithm requires that » = 2f+1 and that
messages are authenticated. Informally, authentication prevents a faulty process from chang-
ing a message it relays, or introducing a new message into the system and claiming to have
received it from some other process.

" Let P be the logical time between resynchronizations. A process expects the k* resyn-
chronization, for & =1, at time kP on its logical clock. When C*~1(¢t)=kP, it broadcasts a
signed message of the form (round k), indicating that it is ready to resynchronize. When a
process receives such a message from f+1 distinct processes, it knows that at least one
correct process is ready to resynchronize. It is then said to accept the message, and decides to
resynchronize, even if its logical clock has not yet reached #P. A process resynchronizes by
starting its k™ clock, setting it to kP +a, where a is a constant. To ensure that clocks are
never set back, a is chosen to be greater than the increase in C*~! since the process sent a
(round k) message. After resynchronizing, the process also relays the f+1 signed (round k)
messages to all other processes to ensure that they also resynchronize. The algorithm is
described in Figure 1. We show that it achieves agreement and accuracy. We later modify it
to achieve optimal accuracy.

cobegin
if CE~1(¢t)=kP /* ready to start C* */
— gign and broadcast (round k) fi
I
if accepted the message (round k) /* received f+1 signed (round k) messages */
— C*(t):= kP +a; I* start C* */
relay all f+1 signed messages to all fi
coend

Figure 1. An authenticated algorithm for clock synchronization
for process p for round k.




3.1. Proof of correctness: Agreement

We first show that the algorithm achieves the agreement property. Define ready”® to be
the earliest (real) time at which any correct process sends a (round k) message. We assume
that the clocks C° of correct processes are synchronized, i.e., at ready! all correct processes

are using clock C° and for all correct processes i and j, [C(ready')—C?(ready’)| < Dppp. In

Section 5, we describe an algorithm for achieving this initial synchronization. For ease of
presentation we assume that the maximum permitted deviation between correct logical
clocks, D .4, i8 @ given constraint.

Lemma 1: The k% resynchronization period is bounded in size. That is, there exists a con-
stant d;, such that for £ =1, end® — beg* = d,.

Proof: Let p be the first correct process to start its k" clock. By definition, this occurs at beg*.
Process p must have received f+1 signed (round k) messages. Since it relays all these mes-
sages, every correct process receives them and accepts the message (round k) by time
beg® + t4, . Hence, every correct process starts its k™ clock by time beg” + tg4,; . By setting
d min =tde , We get end® = beg® + dpn. O
Lemma 2: At the end of the k‘* resynchronization period, correct clocks differ by at most
dyin(l + p). That is, for k=1, and for all correct processes i and j,

Chend*)—Ckend®)| = dpia(1 + p).
Proof. By Lemma 1, end*—beg® =< dp;,. Therefore the last correct process to start its k*
clock does so within dp;, of the first correct clock doing so, and in this period, the first clock

could have drifted by at most pd,;,. Thus, at end*, the difference between correct clocks is at
most d (1 + p). ]

Lemma 3: No correct process starts its k% clock until at least one correct process is ready to
do so, i.e., beg® = ready®, for k = 1.

Proof: The first correct process to start its k* clock does so only when it accepts a (round k)
message, i.e., only when it receives (round k) messages from at least f+1 processes. Since at

least one correct process must have sent a (round k) message, beg” = ready”. n
Assume that the following conditions hold for some £ = 1:

S1. At ready” all correct processes are using C* 1,
S2. For correct processes i and j, [CF~!(ready*) —C}~!(ready®)| = D .

With these assumptions, we prove the following lemmas.

Lemma 4: All correct processes start their k™ clocks soon after one correct process is ready to
do so. Specifically, end® — ready® = (1 + p)Dpax+tge.
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Proof: The first correct process to send a (round k) message does so at ready®. By S2, the
slowest correct clock is no more than D_,, behind. Hence, every correct process sends a
(round k) message no later than (1 + p)D,,, after ready”, and therefore every correct process
starts its k% clock within a further ¢4,,. Thus, end* — ready® = (1 + p)Dpay + tgu . Od

By Lemma 4, the real time that elapses from the time a correct process sends a
(round k) message (when C*~! reads kP) to the time it starts C* (setting it to kP +a) is at
most (1 + p)D g, +t4. Therefore, if a = [(1 + p)Dpax tt4|(1 + p) then no correct process

sets its logical clock backwards. Henceforth, we assume that a satisfies this relation.

Lemma 5: There is a bound on the period for which the £ logical clock is used. That is,
end* ' —end* = P—a)1 + p) + tgu.

Proof: Every correct process that sends a (round k+1) message does so no later than the time
(k+1)P on its clock, i.e., no later than (P—a)(1 + p) after end®. Every process starts its
k +1% clock within a further ¢4, thus proving the lemma. 0O

Lemma 6: The maximum deviation between the k* logical clocks of correct processes i and j
is bounded. That is, for t€[end*,end**1], |cf(t)—cf(t)| <D,

Proof: By Lemma 2, correct logical clocks are at most dp;,(1 + p) apart at end*. By Lemma
5, end**!—end* = (P—a)(1 + p)+ty,, and clocks of correct processes can drift apart at a
rate dr in this interval. Thus, in the interval [end”, end®*!],

[cto-cko)

<[(P-a)1 + p)+tz)dr + dpn(1 + p)

<[P(1 + p)+tgldr + dyin(1 + p)
P is chosen to satisfy the relation D,, = [P(1 + p)+¢g4,ldr + d,in(1 + p). O
Lemma 7: Synchronization periods do not overlap. That is, end” <ready**! < beg**!.

Proof. The first correct process to send a (round k+1) message does so no earlier than at real
time beg*+(P—a)/(1 + p). Therefore, ready**! = beg*+(P—a)/(1 + p). Hence, by
Lemma 1, ready**! = end*—d_,+(P—a)/(1 + p). By Lemma 3, ready**! < beght+!l.
Thus, end® <ready**! < beg*!, if P satisfies the relation P>d ,;,(1 + p)+a. O

From the proof of Lemmas 6 and 7, we see that D ,, cannot be made arbitrarily small.
The proof of Lemma 6 shows that D, ., =[(P—a)1 + p)+tg4ldr + dpin(1 + p). From
Lemma 7, we see that P—a = d;,(1 + p). Therefore, the smallest possible D,, that this
algorithm can achieve is given by D, = dpin(1 + p)3+t,,dr. It has been shown that, for
any algorithm, D .. must be at least ¢,,/2 [Dole84].

Lemma 8: The algorithm in Figure 1 achieves agreement.
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Proof: If assumptions S1 and S2 hold for some k2 =1, then Lemma 6 states that the agreement
condition is satisfied for 2. We now show, by induction on %, that S1 and S2 hold for all £ =1
and therefore agreement is satisfied for all £ = 1. As stated earlier, our initialization algo-
rithm will guarantee that S1 and S2 are true for the base case, & =1.

Assume that S1 and S2 are true for some k. By Lemma 7, end*<ready**! < beg**!.

k+1

Thus, at ready®*!, all correct processes use their k™ clocks. From Lemma 6 it follows that at

t=ready**!

true for £ +1. 0

, and for correct processes i and j, |Cf‘(t)—CJ’-e(t)| < D.x- Thus S1 and S2 are

3.2. Proof of correctness: Accuracy
We now show that the algorithm achieves accuracy.

Lemma 9: For any execution of the algorithm of Figure 1, there exists a constant b, such that
for all correct processes i, all £ =1 and for t€[end*,end*+!] :

Ck(t) = P—f:(l + p)t+b

Proof: Let E(ty) be the set of executions of the algorithm in which ready!=t,. Consider an
execution e€E(¢y) in which for all £ =1, ready® =beg*, and the clock of correct process j, CJ’-’,
is started at beg”. In execution e, the physical clock of process j runs at the maximum possi-
ble rate, i.e.,, (1 + p) with respect to real time. It is clear that execution e is possible.

Since CJ’-c is started at beg” for each £, it is started at least as early as any other correct

k*1  CF increases at the maximum

Ck in execution e. Furthermore, between beg* and beg
possible rate. Hence, Cf is an upper bound on the k£* logical clocks of all correct processes in

execution e. That is, for t€[end®,end®*!], C¥(t) = C}(), for any other correct process i.

We now show that Cj'-z is an upper bound on the k£ logical clock of any correct process in
any execution in E(ty). To prove this, we first show that for any & = 1, ready” in execution e
is at least as early as ready”® in any other execution e'€E(¢y). The proof is by induction on k.

For k=1, ready! =t for all executions in E(¢;). Assume, for some k>1, that ready” in
execution e is no later than ready” in execution e’. In execution e, beg”=ready*, the k® log-
ical clock of process j is started at beg”, and process j runs at the maximum possible rate.
Therefore, ready**!=ready*+(P—a)/(1 + p). It is easy to show that in any execution,
ready®*! = ready®*+(P—a)/(1 + p). Therefore, ready**! in execution e is at least as early

as that in execution e’'.

In execution e, beg” =ready” for all £ = 1. By Lemma 3, in any execution, beg® = ready*”
for all k = 1. Therefore, the & logical clock of process j is started no later than that of any
other correct process in any execution in E(¢j). Since process j also runs at the maximum
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possible rate, C}‘ is an upper bound on the %** logical clocks of all correct processes in all exe-
cutions in E(¢y).

We now estimate an upper bound for C f. For process j, the interval of real time between
consecutive resynchronizations is (P—a)/(1 + p). In this period its logical time increases by
P. Therefore, for all © =1, and for t€[end®,end**!]:

kpy—c!
Ci(t)—Cj(¢o) < P
t—to P-

a(1+p)

Since C}(to)=P+a, a constant, CJk(t) = }E—a(l + p)t+b, where b is a constant that depends
on to.

O

Lemma 10: For any execution of the algorithm of Figure 1, there exists a constant a, such
that for all correct processes i, all 2 =1 and for t€lend®, end®*1]:

P

Ldel
1+ p)

A+ p) lt+a = CFp)

—a+

Proof: Let E(t,) be the set of executions of the algorithm in which end!=t,. Consider an exe-
cution e€E(ty) where, for all £ =1, correct process j accepts the (round k) message ¢4, in real
time after C}“l reads kP. Also, Cf is started at end” for all £ = 1. In e, the physical clock of
process j runs at the minimum possible rate, i.e., at (1 + p)~! with respect to real time.
Such an execution is clearly possible. It is easy to show that C/ is a lower bound on the k*
logical clocks of all correct processes in execution e. That is, for t€[end”, end**1],
CH¢) = CH), for any other correct process i.

C]’-’ is also a lower bound on the k% logical clocks of all correct processes in any execution
in E(¢y). In execution e we have end**!=end*+(P—-a)(1 + p)+ty,. The proof follows by

Lemma 5 and an easy induction on k.

We now estimate a lower bound for Cjk. For process j, (P—a)(1 + p)+t4, is the interval
of real time between consecutive resynchronizations. In this period, its logical time increases
by P. Therefore, as in Lemma 9, for all £ =1 and t€lend®, end®*1]

P

k) =
CGO=Faa + oty e

for some constant a which depends on ¢,. O

Theorem 1: The algorithm in Figure 1 is a synchronization algorithm. With this algorithm,
correct processes send a total of O(n?%f) signed messages per resynchronization.
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Proof: By Lemma 8, the algorithm achieves agreement. Lemmas 9 and 10 imply that accuracy
is achieved with (1 + 7)=F{;a(1 + p). In each resynchronization round, each correct pro-

cess broadcasts at most one signed message and relays at most f+1 signed messages to every
other process. Thus, correct processes send a total of O(n?f) signed messages per resynchroni-
zation. 0

The number of bits exchanged for each resynchronization is comparable to that in [Halp84].
3.3. Achieving optimal accuracy

3.3.1. A bound on accuracy

We first show that for any synchronization algorithm, the accuracy of synchronized logi-
cal -clocks cannot exceed that of the underlying hardware clocks. In what follows, define
Ci(t)=Ck(t) for t€[end®,end**1) and all £ = 1.

Theorem 2: For any synchronization algorithm, the bound on the rate of drift of logical
clocks from real time is at least as large as the bound on the rate of drift of physical clocks.

Proof: Consider an algorithm that satisfies agreement and accuracy. For simplicity, assume
that all physical clocks are set to 0 at time ¢=0, i.e., R;(0)=0 for all ;. Then, all correct phy-
sical clocks satisfy the relation

A+p) =R =<QA + p)

Consider an execution of the algorithm in which all processes in the system are correct
and the physical clock of each process runs at the maximum possible rate. That is, for all
processes i, RV(t)=(1 + p)t, where superscripts denote execution numbers. Further, assume
the transmission delay for each message is exactly d, with d < t,,/(1 + p)%. By accuracy, in
this execution, for all correct processes i and for some constant bV:

CP) =1 + yet+p? (1)

Now consider a second execution in which all processes are still correct, but have their
physical clocks running at the minimum possible rate. That is, for all processes j,
RP(t)=(1 + p)~t. Let the transmission delay for each message be d(1 + p)%. Again, by

accuracy, in this execution for all correct processes i and for some constant a'®:

1+ v t+a@ =CcP@) (2)

Assume that for each process i, the initial state is the same in both executions. That is,
in both executions, a process starts executing the algorithm at the same reading of its physi-
cal clock. In the second execution, physical clocks and the speed at which messages are
delivered are slowed down by the same factor, (1 + p)?, with respect to the first execution.
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Therefore, from within the system both executions appear identical to every process. Hence,
considering a particular process i, the rate at which its logical time advances with respect to
its physical time must be the same in both executions. In particular, if R{V(¢,)=R?(¢t,) for
some ¢; and ¢y, then CV(¢)=C2(¢y).

Since RV (t)=(1 + p)t and RP(t)=(1 + p)~ ¢, it follows that if t,=(1 + p)%,, then
RY(¢)=RP(t;) and therefore C(¢;)=C?(¢ty). Therefore, from equations (1) and (2),
A+ Pa+6P = 1 + v + p)%t,+a® for all ¢;. This implies that y = p. 0

3.3.2. An algorithm for optimal accuracy

We now describe a modification to our algorithm to achieve optimal accuracy. In the
algorithm of Figure 1, correct processes start their & clocks as soon as they accept a
(round k) message. However, there is an uncertainty of ¢;,; in the time it takes for correct
processes to accept a message. It is this uncertainty that introduces a difference in the logical
time between resynchronizations. For the fastest clock, the logical time between resynchroni-

Ldel
T+ p (Lemma

10). Informally, we can compensate for this as follows: if a process accepts a (round k) mes-

zations is P —a (Lemma 9), and for the slowest clock, this interval is P—a+

t
sage early, it delays the starting of the kt* clock by ﬁ)-. If it accepts the message late,
t
it advances the starting of the kth clock by 2(—1%—‘—5. Thus, in the cases described in both
t
Lemmas 9 and 10, the logical time between resynchronizations becomes P —a+ .‘Z(l—d-:la’ as

will be shown later. This will then be used to achieve optimal accuracy.

More precisely, suppose process i accepts (round k) at time ¢, and let T=C#~1(¢). Define
Ldel
B= 21 + p)’
If T <kP+pB, we say the (round k) message was accepted early. Process i delays the
starting of C* by setting it to kP+a when C!~! reads min(T+8, kP+p). In this case, the
start of C* is delayed by at most 8 but never beyond the time when C*~! reads kP +B.

If T>kP+pB, we say (round k) was accepted late. Process i advances the starting of C¥,
by setting it to kP+a when C?~! reads max(T —B, kP+p). Note that C* must be started
when C!~! reads T'<T, that is, “in the past”. This is achieved by setting C* to
kP+a+(T—T') when C%~! reads T. That is, C¥ is set to min(C*~!(t)+a—B, kP+a+p) at
time ¢. In this case, the start of C* is advanced by at most B8, but is never started before C*~!
reads kP + 8.
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The definitions of ready®, beg® and end”* are the same as before: ready” is the earliest
time at which a correct process sends a (round k) message; beg® and end” are the earliest and
latest times at which some correct process starts its £ clock (setting it to kP +a).

We first show that this modified algorithm achieves agreement by showing that Lemmas
1 to 8 still hold.

Proof of Lemma 1: The first correct process to start its £ clock can start it 8 in logical time
(or B(1 + p) in real time) before it accepts a (round k) message. Every correct process accepts
(round k) within ¢4, of the first correct process accepting it, and starts its k% clock within a
further B(1 + p). Therefore, end* —beg* <ty,+2B(1 + p)=2t,,. Therefore, Lemma 1 is
satisfied with d;, =2¢4,.

Proof of Lemma 2: As in Section 3.

Proof of Lemma 3: Consider any correct process i. By definition, Ct~l(ready®) < kP. Let pro-
cess i accept the (round k) message at real time ¢. Note that t = ready®. If Ck~1(t) < kP+8,
then process i delays the starting of the k** clock. If C¥~1(t)>kP+B, process i starts its k"
clock no earlier than at real time ¢’ such that C*~1(¢')=kP+pB. Clearly, t' = ready*. Hence,
no correct process starts its k** clock before ready*.

Proof of Lemma 4: Every correct process that broadcasts a (round k) message does so by real
time ¢;=ready*+(1 + p)D,.,. Therefore, every correct process accepts (round k) by
to=t+tge. For any correct process i Ct=1(ty) = kP and hence
CF1l(ty)) = kP+t4,/(1 + p)=kP+2B. Thus, with the modified algorithm, every correct pro-
cess starts its ‘" clock at real time ¢ <¢t,. Therefore, end* —ready* < (1 + p)D oy +t 4.

Proof of Lemma 5: Consider any correct process i. Process i accepts a (round k+1) message
by real time t=end*+(P—a)(1 + p)+t4,. Also, CE(t) = kP+t4,/(1 + p). Therefore, process i
starts its £+ 1% clock by real time ¢, proving the lemma.

Proofs of Lemmas 6, 7 and 8: As in Section 3.

Thus, the modified algorithm achieves agreement. To show that the modified algorithm
achieves optimal accuracy, we first evaluate the bounds on the drift of logical clocks from real
time.

Lemma 9': For any execution of the modified algorithm, there exists a constant d, such that
for all correct processes i, all £ =1 and t€[end”,end**11:

CHt) = P_—ST(I + p)t+d

B

Proof: Let E(ty) be the set of executions of the algorithm in which ready!=¢t,. Consider an
execution e¢€E(ty) in which for all 2 = 1, correct process j broadcasts and accepts (round k) at
ready®. In execution e, the physical clock of process j runs at the maximum possible rate,
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i.e., (1 + p) with respect to real time.

Process j accepts (round k) at ready”, when C}~! reads kP (i.e., early). Therefore, C* is
started at real time ¢ such that C*~1(£)=kP+p, i.e, when t=ready*+B/(1 + p). Note that
no correct physical clock increases by more than 8 between ready”* and ¢.

Consider another correct process i. By definition of ready”, C!~!(ready*) <EkP, and
therefore, C*~1(t) = kP+B. Suppose process i accepts (round k) when C*~! reads 7,. This
must occur after ready”, and therefore, at time ¢, C*~1(t) < T, +B. We consider two cases:

1. If T; < kP+B, then process i starts C¥ at real time ¢’ when C!~1(t')=min(T;+8, kP +B).
Since both C*~1(t) <= T,+B and C¥~1(t) < kP+8, then ¢t < ¢'.

2. If T,>kP+pB, process i starts C’ at real time ¢' when C!~(t')=max(T,—B, kP +p).
Therefore, C*~1(t') = kP+B = Ct~1(¢) and ¢' = ¢.

‘Thus, in execution e, for any k£ =1, the k** clock of process i is started no earlier than
that of process j. Between resynchronizations, Cf runs at the maximum possible rate. There-
fore, Cf is an upper bound on the k£* logical clock of all correct processes in execution e. As in
Lemma 9, we can also show that CJ’-Z is an upper bound on the %** clock of all correct processes
in any execution in E(¢).

Between every two successive resynchronizations, the logical clock of process j is
advanced by P, and the time that elapses on the logical clock of j is P—a+pf. (For example,
at the k™ resynchronization, the clock is set to kP+a, the k+1% resynchronization occurs
when this clock reads (¢ +1)P+f, and the new clock is set to (k+1)P+a.) Since the clock of
process j runs at (1 + p) with respect to real time, the real time that elapses between two
resynchronizations is (P—a+8)/(1 + p). Hence, for all # =1 and t€[end*, end®*1]:

P
Ckt) s ————
50 P—a+p

for some constant d that depends on ¢,. 0O

1+ p)t+d

Lemma 10" For any execution of the modified algorithm, there exists a constant c, such that
for all correct processes i, all £ =1 and for t€[end*, end®11;

P

-1 k
Paig Lt P it = Cto)

Proof: Let E(tg) be the set of executions of the algorithm in which end! =¢t,. Define last* to be
the latest real time at which a correct process accepts (round k). Consider an execution
e€E(ty) in which the first logical clock of a correct process j, C j-l is started at end?, and for all
k =1, process j accepts (round k) at last®, and ¢4, (in real time) after its logical clock reads
kP. The physical clock of process j runs at the minimum possible rate, i.e., at (1 + p)~! with
respect to real time. In the modified algorithm, since C¥~1(last*)=kP +28, process j sets its
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kt* clock to kP+a+pB at last”.

We now show that the logical clock of process j is as slow as that of any other correct
process in any execution in E(ty). That is, we show that for all ¢ =1 and t€[last*, last®*1],
C}’(t) < CK(t) for any correct process i in any execution in E(¢y). The proof is by induction on
k.

For k=1, note that C} is started at end'=¢, and process j runs at the minimum possible
rate. In any execution in E(¢,), for any other correct process i, C! is started no later than at
end!. Therefore, for ¢ = end', and specifically for t€[last!,last®], we see that C}(t) = C}().
For the inductive step, assume that for some k>1 and t€[last*~!, last*], we have
Ct &)=< CF (1) for any correct process i. Define s; to be the real time such that
Ck~Y(s;)=kP+B, for any process i. Let ¢; and T, be the real and the corresponding logical
time at which a process i accepts (round k).

Consider any correct process i in any execution in E(¢y;). From the induction hypothesis,
it follows that s, =s; for all correct i. Since sj=lastk—,3(1 + p), last*—s; = B(1 + p). By
assumption, ¢;=last* and T;=kP+2B. We consider two cases:

1. If T, <kP+B (e, t;=s;=<s)), then CF is set to kP+a no later than s, Since
last*—s; = B(1 + p), C* increases by at least B between s; and last®. Therefore,
Ck(last*) = kP+a+B=C F(ast®).

2. If T;>kP+p, then process i sets its k™ clock to CX(t,)=min(Ct~1(t;)+a—pB, kP +a+p).
Since C! and C!~! increase by the same amount between f; and last®*, Ck(last®)=
min(C¥~1(¢t)+a—B, kP+a+B)+CLE Llast?) —Ct (). Since Ct l(last*) = kP +28,
Ck(last*) = kP+a+B=C F(last").

Thus, C¥(last*) < Ck(last*). The physical clock of process j runs at the minimum possi-
ble rate. Therefore, for ¢t€[last”,last**1], CX(t) = CK(¢) for any correct process i in any execu-
tion in E(t,).

The logical clock of process j is incremented by P over successive resynchronizations. The
real time that elapses between successive resynchronizations of process j is (P—a+8)(1 + p).
Thus, for any execution of the modified algorithm, there exists a constant ¢ (that depends on

to ), such that for all correct processes i, all £ =1 and t€llast®, last®+1],

P -1 A
P—aif (1 + p)lt+e =CH)
Since for t€[end*, last*] C¥(t) = C#~1(¢), the above inequality also holds for ¢€[end*,end”*!].

a

By Lemmas 9' and 10', in any execution of the algorithm, for £ =1 and for
t€lend®,end**1], the logical clock of any correct process i is within the envelope
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pd + p)~lt+c = CEe) = pu( + p)t+d
_ P
P—a+B’
tion. Therefore,

where p = ¢ and d are constants depending on the initial conditions of this execu-

A+ p) U+c/p=Cit)/p=(Q1 + p)t+d/p

Hence, if correct processes slow down their logical clocks by this factor of p, i.e., process i uses
L,(¢)=C(t)/p as its logical time, optimal accuracy is achieved. Also, since p>1, agreement is
still guaranteed. Process i continues to use C; for the synchronization algorithm.

Theorem 3: With the modification described above, the algorithm of Figure 1 achieves

optimal accuracy.

Proof: Follows from the above discussion. |

3.4. Bounds on faults tolerated

We now consider the maximum number of faults that can be overcome by a synchroniza-
tion algorithm that achieves optimal accuracy.

Theorem 4: Any synchronization algorithm that achieves optimal accuracy must have a
majority of correct clocks.

Proof: Assume that there exists a synchronization algorithm that achieves optimal accuracy
for systems with n < 2f. We show that this is impossible by first considering a system with
two processors p; and pj, one of which can be faulty (i.e,, n=2 and f=1).

Since the algorithm achieves optimal accuracy, in any execution of the algorithm, the
logical clock of correct process i satisfies the following relation for all ¢ = end®:

A+ p U+ta=sCt)<=1 + p)t+b

where a and b are constants. Also, since the algorithm achieves agreement, there exists a
constant D, such that if p, and p, are correct, then |C(¢t) —Cy(t)| < D, for all t = end®.

We now consider three possible executions of the algorithm. In what follows, super-
scripts correspond to execution numbers. For simplicity, we assume that all physical clocks
start at 0 at real time 0. Assume that the initial state of a given process is the same in all
executions. That is, a given process starts executing the algorithm at the same reading of its
physical clock.

Execution e,: Both processes are correct. The physical clock of p; runs at the maximum rate
possible and that of p, at the minimum rate possible. That is, R{¥(t)=(1 + p)t and
RP@®=Q1 + p)~'t. The transmission time for each message is exactly d, where
d <tz,/(1 + p)2.
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Execution eg: Process p; is correct and the rate of its physical clock is given by
R{®(#)=@1 + p)~!t. The clock of p, is faulty and runs at R$2(t)=(1 + p)~3t, but p, is other-
wise correct and follows the algorithm. The transmission time of each message is d(1 + p)2.

Execution es: Process pj is correct and its physical clock is given by R (¢£)=(1 + p)t. The
clock of p, is faulty and runs at R{®(t)=(1 + p)3, but p, is otherwise correct. All messages
now take d/(1 + p)? to be delivered.

We see that all three executions are possible. Since optimal accuracy is achieved, and
since p; is correct in ey, its logical clock satisfies the relation C{V(t) =(1 + p)t+bY. Since
R{P@#)=@1 + p)t, we see that C{V(t) = R{P()+bY. Similarly, in execution ey, we see that
RP@®)+a® = C{®(t). But the two executions look identical to p;, and hence the relation
between its logical and physical clocks must be the same in both executions. Therefore, to
satisfy the two relations above, we see that for £ =1, 2,

RP@)+a® <CP ) < RP )+
Therefore, in execution e;, there exists a time 7 such that for all ¢t = 7

1+ pt+a@=CcP@)=1 + pt+b?

Similarly, by considering executions e; and e3, in both of which p, is correct, we see that
there exists a time 7’ such that for all ¢t = 7'

A+ p) +aP=CcPW)=A + p)~t+b®

From these two relations it follows that in execution e;, for any given D,., there is some
time ¢’ such that for all ¢ = ¢', the deviation between the two correct logical clocks is greater
than D_,,, which violates the agreement condition.

This can be generalized to any system of n = 2 processes, where n < 2f. Partition the
processes into two sets P, and Py, with not more than f processes in either set. By construct-
ing executions similar to those above, we can prove that no synchronization algorithm can
achieve optimal accuracy if n = 2f. |

The authenticated algorithm of Figure 1 requires n>2f processes. By Theorem 3, this
algorithm can be modified to achieve optimal accuracy. From Theorem 4, it follows that the
modified algorithm is also optimal in the number of faults tolerated.

4. Synchronization without authentication

4.1. Simulating authenticated broadcasts

The proof of correctness and the analysis of the authenticated algorithm rely on the fol-
lowing properties of the message system:
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P1. (Correctness) If at least f+1 correct processes broadcast (round k) messages by time ¢,
then every correct process accepts the message by time ¢ + ¢4,.

P2. (Unforgeability) If no correct process broadcasts a (round k) message by time ¢, then no
correct process accepts the message by time ¢ or earlier.

P3. (Relay) If a correct process accepts the message (round k) at time ¢, then every correct
process does so by time ¢ + ¢4,

As seen earlier, implementing authentication using digital signatures provides these
three properties. However, the correctness of the algorithm does not depend on this particular
implementation, and any other implementation providing these properties can be used
instead. A broadcast primitive to simulate authentication is described in [Srik84]. By replac-
ing authenticated broadcasts in the algorithm of Figure 1 with this primitive, we get a logi-
cally equivalent non-authenticated algorithm having the properties of the authenticated algo-
rithm. However, the number of messages sent by correct processes is O(n3) per resynchroni-
zation.

We now modify this broadcast primitive to achieve the three properties described above
at a cost of only O(n?) messages per resynchronization. The primitive is presented in Figure
2, and requires n = 3f+1. With this primitive, each broadcast now requires two phases of
communication. Therefore, t;,;, the upper bound on the time required for a message to be
prepared by a process, sent to all processes and processed by the correct processes accepting it,
must be re-evaluated. Let 7 be the maximum transmission delay between any two processes.
Then, ¢;4,; = 271.

Theorem 5: The broadcast primitive achieves properties of correctness, unforgeability and
relay. The number of messages sent by correct processes is O(n2) per resynchronization.

To broadcast a (round k) message, a correct process sends (init, round k) to all.

for each correct process:

if received (init,round k) from at least f+1 distinct processes
— send (echo, round k) to all;

0 received (echo, round k) from at least f+1 distinct processes
— send (echo, round k) to all;
fi

if received (echo, round k) from at least 2f+1 distinct processes
— accept (round k) fi

Figure 2. A broadcast primitive to achieve properties P1, P2 and P3.
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Proof:

(Correctness): Since at least f+1 correct processes broadcast (round k) by time ¢, every
correct process receives at least f+1 (init,round k) messages by time ¢+ and sends
(echo,round k). Hence, by time ¢+27, every correct process receives at least 2f+1
(echo, round k) messages. That is, every correct process accepts (round k) by time ¢+t 4,.

(Unforgeability): Since no correct process sends an (init, round k) message by time ¢, a correct
process could have received (init,round k) messages from at most [ processes and
(echo, round k) messages from at most [ processes. Thus, no correct process sends an
(echo, round k) message by time ¢. Hence, no correct process accepts (round k) by time ¢.

(Relay): Since a correct process accepts (round k) at time ¢, it must have received at least
2f+1 (echo, round k) messages. Every correct process receives at least f+1 of these within
another 7 and sends an (echo, round k) if it has not already done so. Hence, by ¢t+27 (i.e. by
t+t,4,), every correct process accepts a (round k) message. |

Since each correct process sends at most 2 messages for each resynchronization round (an
init and an echo), the total number of messages sent by correct processes is O(n?2) per round.

O

4.2. A non-authenticated algorithm for clock synchronization

Replacing signed communication with our broadcast primitive extends the synchroniza-
tion algorithm of Figure 1 to one for systems without authentication. The relay property of
the primitive implies that we need not explicitly relay messages since the primitive does this
automatically. Since the primitive requires n>3f, the non-authenticated algorithm also has
this limit on the number of faulty processes. It has been shown in [Dole84] that if authentica-
tion is not available, and if there are no bounds on the rate at which faulty processes can gen-
erate messages, then synchronization is impossible unless n >3f.

As in Section 2, we assume that clocks are initially synchronized such that at ready!, all
correct processes are using C°, and these clocks are at most D,,, apart. The non-
authenticated algorithm is described in Figure 3.

Theorem 6: The non-authenticated algorithm in Figure 3 achieves agreement and accuracy.
Correct processes send O(n?) messages per resynchronization.

Proof: By properties P1 to P3 of the primitive of Figure 2, it is easy to see that the proofs of
Lemmas 1 to 10 and Theorem 1 hold. Also, by Theorem 5, correct processes send O(n?%) mes-
sages for each resynchronization round. O

Thus, the number of messages sent by correct processes for each resynchronization is
comparable to that in [Lund84].
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cobegin
if CE~1(t)=kP /* ready to start C* */
— broadcast (round k) fi /* using the primitive in Figure 2 */
"
if accepted the message (round k) /* according to the primitive */
- Ck(t):= kP+a fi /* start C* */
coend

Figure 3. A non-authenticated algorithm for clock synchronization
for process p for round k.

In Section 3.3, we showed how the authenticated algorithm could be modified to achieve
optimal accuracy. Translating this modified algorithm with our broadcast primitive results in
a non-authenticated algorithm that achieves optimal accuracy.

5. Inmitialization and integration

The algorithms presented in the previous sections can be used, with simple modifications,
to achieve initial synchronization and to integrate new processes into the network.

Here we show how processes start their 0? clocks close to each other. A process decides,
independently, that it is time to start clock C° and broadcasts a round 0 message. On accept-
ing a (round 0) message at real time ¢, it starts C® by setting C°(¢)=a. The number of
processes required, and the rules for accepting messages are as described in Sections 2 and 4,
for the authenticated and non-authenticated systems, respectively. Since the authenticated
and non-authenticated algorithms are equivalent, we illustrate only the non-authenticated
version here (Figure 4).

It is easy to see that all processes start C° within ¢4, of each other. Also no correct pro-
cess starts C° until at least one correct process is ready to do so. Once they have started C?,
processes run the resynchronization algorithm. At ready!, which by definition is the time
when a correct process first sends a (round 1) message, every correct logical clock reads P or

broadcast (round 0); /* using the primitive in Figure 2 */

if accepted the message (round 0) /* according to the primitive */
> C%t)=a fi /* start CO */

Figure 4. A non-authenticated algorithm for achieving initial synchronization.
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less. That is, every correct process is using C°. By proofs similar to those in Lemmas 2 and 6,
it can be seen that at readyl, correct clocks are no more than D.,, apart. Thus, this algo-
rithm justifies assumptions S1 and S2 for £ =1 in the proof of Lemma 8.

We now describe how a process joins a system of synchronized clocks. This could be used
by new processes to enter the system, or by processes which have become unsynchronized
(possibly due to failures) to re-establish synchronization with the rest of the system. The
algorithms are based on the idea in [Lund84], modified to the context of our algorithms.

When a process p wishes to join the system, it sends a message (joining) to the processes
already in the system. It then receives messages from these processes and determines the
number i of the round being executed. Since p could have started this algorithm in the mid-
dle of a resynchronization period, it waits for resynchronization period i +1 and starts its logi-
cal clock C**! when it accepts a (round i+1) message. It is easy to prove that its clock is now
synchronized with respect to the clocks already in the system. Process p now begins to run
the resynchronization algorithm described earlier. We present only the non-authenticated
version in Figure 5. This algorithm can also be modified as described in Section 3.3 to ensure
that optimal accuracy is achieved.

This integration scheme prevents a (possibly faulty) process joining the system from
affecting the correct processes already in the system. Hence, we prefer this “passive” scheme
to that presented in [Halp841].

6. Restricted models of failure

In the preceding sections, we have assumed that faulty processes can exhibit arbitrary
behavior. Fault-tolerant algorithms have also been studied under simpler, more restrictive
models of failure. It is likely that in certain applications, faults are not as arbitrary as we
have assumed so far. In such cases, developing algorithms for the simpler model of failure
could result in easier and less expensive solutions.

The most benign type of failure is that of crash faults, where processes fail by just stop-
ping [Lamp82, Hadz84]. Less restrictive models are omission, where faulty processes

send (joining) to all processes;
accept a (round i) message for some i;

if accepted the message (round :+1) /* wait for round i+1 *
- CitY¢t):= (i+1)P+a fi /* start C**1 %/

Figure 5. A non-authenticated algorithm used by a process to join the system.
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occasionally fail to send messages [Hadz84], or sr-omission, where faulty processes fail to send
or receive messages [Perr84]. In this section, we show how the algorithms developed so far
can be adapted to these models.

The algorithm of Figure 1 was shown to overcome arbitrary failures. The proof relied on
an authenticated message system providing the properties P1 to P3. Consider systems with
sr-omission failures, where a process is faulty either because it occasionally fails to send or
receive messages, or because its physical clock does not satisfy assumption Al. For such sys-
tems, we can achieve properties P1 to P3 without authentication, using the broadcast primi-
tive of Figure 6. With this broadcast primitive, the algorithm of Figure 3 is a synchronization
algorithm for systems with sr-omission faults. Since crash faults and omission faults are a
proper subset of sr-omission faults, the algorithm of Figure 3 can also tolerate these faults.
As explained in Section 3.3, this algorithm is easily modified to achieve optimal accuracy.
The primitive in Figure 6 requires n>2f processes and ¢z, =7. In contrast, the primitive of
Figure 2 requires n>3f processes and t,,; =27, but it overcomes arbitrary failures.

The lower bound proofs of Theorem 2 and Theorem 4 do not make any assumptions on
the behavior of faulty processes. In fact, we only required that the clocks of faulty processes
run at arbitrary rates with respect to real time. Therefore, both lower bounds hold even for
crash faults. Thus, our synchronization algorithm is optimal in the number of faults that can
be tolerated for all the models of failure we consider.

Initial synchronization and integration of new clocks are achieved as in previous sec-

tions.

To broadcast a (round k) message, a correct process sends (init, round k) to all.

for each correct process:

if received (init, round k) from at least f+1 distinct processes
— accept (round k);
send (echo, round k) to all;

0 received (echo, round k) from any process
— accept (round k);
send (echo, round k) to all;
fi

Figure 6. A broadcast primitive to achieve properties P1, P2 and P3
for a system with sr-omission failures.




7. Discussion

The requirements of synchronization can also be stated as follows [Halp84, Dole84]: there
exist constants d,;,, P, Dmax @and ADJ, such that clocks are resynchronized at logical times
that are multiples of P, and for all correct clocks i and j and for all £ = 1:

Cl. Vt€[end*, end®*1]

CHE) — CHE)| = D oy

C2. If C! is started at time ¢, then
0<CHt)—-CF1(t) = ADJ

C3. 0 <end*—beg® <dpn

Theée conditions assert that the maximum deviation between correct clocks is bounded, the
amount by which clocks are re-adjusted is bounded, and the size of a resynchronization period
is small. Our algorithms satisfy these conditions. Lemmas 1 and 6 show that conditions C1
and C3 are satisfied. From Lemma 4, we see that clocks are never set back. It is easy to show
that the maximum adjustment made is a+D,,. Hence, by setting ADJ =a+D p,,, condition
C2 is also met.

A feature of our algorithm is that d_;,,P, and ADJ depend only on the system parame-
ters p and ty, , and on the constraint D,,. In the authenticated algorithm in [Halp84], the
adjustment AD¢J is proportional to the number of faulty processors. Our solution does not use
averaging, and for the non-authenticated case, given D ,,, the maximum permitted deviation
between correct clocks, our algorithm needs about half as many resynchronizations as in the
best previous result [Lund84]. The minimum value of D,, that our algorithm can achieve
depends only on p and t4,;. In [Lamp85], the minimum D ,,, possible is proportional to the
number of processes in the system.

In the preceding sections, we have assumed a completely connected network. This
assumption can be relaxed using well-known techniques. For an authenticated system, node
connectivity of f+1 is sufficient. This ensures that there is at least one fault-free path
between every pair of correct processes. As in [Halp84], by defining ¢4, to be the maximum
time to transmit a message between correct processes along at least one fault-free path in the
network, the results of Section 2 hold.

Similarly, a non-authenticated system with node connectivity of 2f+1 provides at least
f+1 distinct fault-free paths between each pair of correct processes. Define ¢;, to be twice
the maximum time taken for a message to be relayed along f+1 fault-free paths. Again, the
results proved earlier for the non-authenticated system hold.
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8. Conclusion

In this paper, we have presented a simple, efficient and unified solution to the problems
of synchronizing clocks, initializing these clocks, and integrating new clocks, for systems with
different types of failures: crash, omission, and arbitrary failures, with and without message
authentication. This solution was derived with the help of the methodology described in
[Srik84].

This is the first known solution that achieves optimal accuracy, i.e., the accuracy of syn-
chronized clocks (with respect to real time) is as good as that specified for the underlying
hardware clocks. The algorithms presented are also optimal with respect to the number of
faulty processes that can be tolerated to achieve this accuracy.
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