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The idea of extending and augmenting the capabilities of the human body has

been an enduring area of exploration in fiction, research, and industry alike.

The most concrete realizations of this idea have been in the form of wearable

devices such as prostheses and exoskeletons, that replace or enhance existing

human functions. With recent advances in sensing, actuation, and materials

technology, we are witnessing the advent of a new class of wearable robots: Su-

pernumerary Robotic (SR) devices that provide additional degrees of freedom

to a user, typically in the form of extra limbs or fingers. The development, anal-

ysis, and experimental evaluation of one such SR device, a Wearable Robotic

Forearm (WRF) for close-range collaborative tasks, forms the focus of this dis-

sertation.

We initiated its design process through a basic prototype mounted on a

user’s elbow, and conducted an online survey, a contextual inquiry at a con-

struction site, and an in-person usability study to identify usage contexts and

functions for such a device, and formed guidelines for improving the design.

In the next WRF prototype, we added two more degrees of freedom while re-

maining within acceptable human ergonomic load limits, and expanding its

reachable workspace volume. We then developed the final prototype based on

further feedback from a pilot interaction study, and found an analytical solu-

tion for its inverse kinematics. Going beyond static analyses with predefined



robot trajectories, we further addressed the biomechanical effects of wearing the

WRF using a detailed musculoskeletal model, and developed a motion plan-

ner that minimizes loads on the user’s muscles. Looking at the other side of

the physical interaction between the user and WRF, we applied human motion

prediction and feedback control for stabilizing the robot’s end-effector position

when subjected to disturbances from the wearer’s body movements. Finally,

we conducted a user study involving a collaborative pick-and-place task with

the WRF acting in two conditions: responding to direct speech commands from

the wearer, and predicting human intent using supervised learning models. We

evaluated the quality of interaction in the two conditions through human-robot

fluency metrics.

The WRF, and its associated systems described in this dissertation do have

limitations, particularly in terms of ergonomics, feedback control performance,

and fluency of interaction. However, as a prototype, the WRF shows that SR

devices can be effective agents in human-robot collaboration when they possess

capabilities for mutual adaptation while reducing the cognitive load on the user.
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CHAPTER 1

INTRODUCTION

Humans have long sought to go beyond the boundaries of their natural capa-

bilities, especially in terms of motor and cognitive skills. Wearable devices for

augmenting the human body have formed a part of this endeavor throughout

history, with evidence of prostheses dating back to the Iron Age [1]. Until re-

cently, actuated wearable devices have primarily been realized in the form of

prostheses and exoskeletons, reaching considerable maturity in both research

and commercial applications [20]. These wearable robots serve to replace hu-

man limb capabilities that have been lost, are used as rehabilitative tools, and

can boost human musculoskeletal output [88, 19, 112].

Along with advances in prostheses and exoskeletons, we are witnessing the

advent of another class of wearable robots: Supernumerary Robotic (SR) de-

vices. These do not merely replace or support human limbs, but add degrees of

freedom (DoFs) that are not naturally present in the human body, commonly in

the form of additional limbs or fingers [33, 56].

Figure 1.1: Spectrum of SR devices: ranging from lightweight and low-
power [67], to high-power and large-scale [33] devices.

We explore a new wearable robot design which falls between torso-mounted

arms [33] and wrist-mounted fingers [67, 118, 89] in terms of weight and power
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(Figure 1.1): a lightweight supernumerary forearm attached at the elbow for

close-range human-robot collaboration. This intermediate design can provide

mobility and low weight—like SR fingers—allowing the user to quickly position

it in a desired reference frame. Still, it is capable of increasing the user’s reach

and workspace beyond their natural limits—like torso-mounted SR arms.

We envision this Wearable Robotic Forearm (WRF) to be an autonomous

agent, which the user can dynamically position and then collaborate with in a

variety of ways. This is opposed to a fully user-controlled SR device with a sim-

ilar form factor described in [29] which executes predefined motions selected

through a button-operated interface. The WRF could pick-and-place objects

which are out of the wearer’s reach, aid human-human handovers when the

wearer’s hands are occupied, speed up repetitive tasks through self-handovers,

and stabilize tools and objects within the wearer’s workspace.

We describe the user-centered design process for the WRF in Chapter 2.

Given the novelty of this human-wearable-robot configuration, we set out to

explore the usage contexts and interaction scenarios that such a device may be

deployed in, using an initial prototype (Model I) as a reference point. Through

an online survey, we found that the WRF is seen as a functional tool in pro-

fessional settings. This led to a contextual inquiry at a construction site, where

we obtained need themes for the WRF based on workers’ tasks. An in-person

usability study was also conducted where participants wore the device and per-

formed two open-loop controlled tasks, grounding the design guidelines for fu-

ture prototypes in real-world interaction.

We analyze the design of the next prototype (Model II) in Chapter 3. Us-

ing guidelines obtained from the user-centered inquiries, we made structural
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Figure 1.2: Successive wearable robotic forearm prototypes: Models I, II, and III
(left to right).

changes to the WRF, adding two more degrees of freedom while reducing the

weight from ˜2.0 kg to ˜1.5 kg through the use of lightweight structural com-

ponents. We describe its physical structure, kinematics, and determine that the

enhancement in a user’s reachable workspace volume while wearing Model II

is 246% over the volume spanned by the human arm’s normal range of motion.

A rigid-body analysis of the combined human and robot shows that the forces

and moments experienced by a user at their elbow and shoulder joints lie well

within ergonomic load limits. Following a pilot interaction study, we deter-

mined that another degree of freedom was desirable at the WRF’s wrist joint,

leading to the final prototype (Model III) weighing ˜2.0 kg with five DoFs and a

gripper. The progression in WRF design is shown in Figure 1.2. We describe the

forward and inverse kinematics (IK) for Model III, developing an analytical so-

lution for the IK, which was applied to the real robot along with more common

numerical approaches.

In Chapter 4, we further expand on the initial rigid-body biomechanics anal-

ysis of the WRF’s effects on the wearer’s arm. While we had earlier established

that the robot exerts loads within ergonomic limits based on predetermined tra-

jectories, we now focus on finding robot paths, given a start and end state, that

minimize load on the wearer. Using a high-fidelity musculoskeletal model, we
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determine the forces generated in the human arm muscle fibers due to a partic-

ular WRF trajectory, and construct a cost function for an optimizing stochastic

motion planner. Through this process, we obtain WRF trajectories that mini-

mize load on the user’s arm muscles.

While the above analyses estimate the kinematic and biomechanical effects

of the WRF on the user, there is another aspect of this interaction: the distur-

bance introduced in the robot’s intended pose by virtue of it being mounted on

the human’s arm. In Chapter 5, we model the actuators of the WRF as linear

systems and develop feedback control strategies for stabilizing its end-effector

in light of disturbances due to human motion. Starting with a planar scenario,

we develop a time series model for human arm motion prediction in 2D, and

generate set points for the WRF’s motors that compensate for sensing and ac-

tuation delays, leading to improved stabilization performance. We extend this

approach to full 3D task scenarios, developing another time series model as well

as adapting a recurrent neural network model for human motion prediction and

end-effector stabilization.

Through a user study described in Chapter 6, we experimentally evaluate

the quality of interaction with the device in two modes. As opposed to some

other SR devices where the wearer directly controls the robot [67, 118, 55, 29],

we explored a scenario where the robot would act autonomously in structured

tasks in order to reduce the user’s cognitive load. Users gave direct speech com-

mands to the WRF in a collaborative assembly and pick-and-place task, while

their body movements were recorded. This speech command-annotated move-

ment data was used to train supervised learning models for determining the

user’s intent. Another round of trials was conducted with these trained models
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in which the robot would act autonomously based on user intent prediction. We

compared the objective and subjective fluency of interaction, where the WRF in

its human intention predictive mode was found to improve upon some aspects,

such as reducing the mean trial times and robot idle times, along with exhibiting

positive traits as a teammate. Through the aforementioned studies and analy-

ses, we found the WRF to be a moderately useful augmentation in close-range

collaborative tasks.

Limitations are bound to arise in any novel application area of robotics, with

SR devices in particular presenting additional challenges due to the human be-

ing an intrinsic part of the system. Starting with the physical design, while the

biomechanical loads due to the WRF were theoretically within ergonomic limits,

users found it to be cumbersome in terms of weight, and experienced fatigue on

their upper bodies when worn for extended periods of time. For the biomechan-

ical motion planning framework, major challenges need to be addressed before

it may be deployed in a real SR device, primarily regarding its computational

expense, as well as with guaranteeing its efficacy across human physiologies.

While we achieved some improvement in accounting for the disturbances to

the WRF’s end-effector caused by the user’s movements by using human mo-

tion prediction models in the feedback control loop, these results may not be

satisfactory in a real setting, especially if the robot were holding heavier ob-

jects, or if the task did not involve repetitive human actions. In terms of fluency

during the user study, the WRF was found be less trustworthy in the human

intention predictive mode compared to the direct speech control mode. In some

cases, owing to limitations in the predictive models, users had to expend even

greater cognitive effort to rectify a situation where the robot acted on an incor-

rect prediction.
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While having the human attached to the robot adds uncertainty in the plan-

ning of SR device behaviors and motions, it can also be beneficial in situations

where the human and robot are able to mutually adapt in a manner that does not

add to the user’s cognitive load, and minimizes the physical load. To achieve

this goal, various facets of robotics need to be accounted for: design, kinemat-

ics and biomechanics analysis, motion planning, control, and human intention

prediction. This dissertation explores each of these aspects, and studies their

relative importance in building a truly collaborative wearable robotic augmen-

tation.
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CHAPTER 2

USER-CENTERED DESIGN PROCESS

In this chapter, we describe the design process for the Wearable Robotic Fore-

arm, which took into account inputs from potential users at various stages of

development.

Existing SR designs include robotic arms mounted on the torso or shoulders,

with form factors similar to human arms. They are typically used for support-

ing a worker’s body in settings such as aircraft manufacturing [84] in standing

or crawling-like positions [64], for bracing an object while the user works on

it [71], or for more close-range tasks such as playing the drums [61]. A second

common configuration is wrist-mounted robotic fingers, designed to perform

two-handed tasks with a single hand [118, 56], or providing an eleventh finger

in more precise tasks such as playing the piano [32].

Aside from these human-mimetic approaches, there have also been animal-

inspired designs in the form of robotic tails for balance assistance [74, 78], and

a wearable snake-like robot for assisting daily activities [13]. Advances in soft

robotics have allowed for safer, lightweight SR devices with flexible linkages

and pneumatic actuators [79].

These devices are commonly controlled using force sensing from the human

hand, or by signals from a myoelectric armband [67]. Other interfaces include

direct commands through dials [29], push-buttons [55], foot-control [94, 37, 9],

and gloves with flex-sensors [82, 14].

The torso-mounted SR arms are capable of up to 50–70 Nm of torque, while

the additional fingers typically weigh under 0.5 kg, with torques of up to 2 Nm.
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The WRF is aimed at tasks with lower demands than the torso-mounted robots

above, leading to a smaller footprint. At the same time, its configuration allows

for extended reach and multi-location work capabilities, in contrast to wrist-

worn robots. This is similar in terms of physical design to [29], but with a dif-

ferent paradigm for interaction: the WRF is aimed to be an autonomous assis-

tive agent, as opposed to being directly controlled through a push-button inter-

face. Interaction with SR devices has been automated in task-oriented settings

through demonstration-based control [71], and user intent detection [79, 69].

We describe supervised-learning based approaches for achieving the same in

Chapter 6.

Initial
Prototype

Online
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Usability
Study

Contextual
Inquiry

Design
Guide-
lines

Design
Evalu-
ation

Design
Images,
Taxon-
omy

Initial
Prototype

Usage
Contexts

User
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Need
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Figure 2.1: Steps involved in user-centred design of the wearable robotic fore-
arm, going from initial concepts to an evaluated functional design.

Focusing on the user-centered design process in this chapter, its stages are

shown in Figure 2.1. We followed study designs and methodologies from [21]:

using an initial prototype (Model I) to conduct surveys and usability studies

and generate design guidelines for the next prototype.
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2.1 Model I Prototype

We developed an initial version of the device, in the spirit of low-fidelity (“pa-

per”) prototypes [103], to serve as a starting point for the design process. This

prototype was a fully functional, albeit non-autonomous, wearable robot. The

physical realization conveyed to study participants a functionality that is simi-

lar to that envisioned for the final design, and allowed users to experience the

device in an embodied manner, enabling design backtalk [62].

Figure 2.2: Initial concept sketches for an elbow-mounted third arm robot (from
left): single vertical DoF, one vertical and one prismatic DoF, and one horizontal
and one prismatic DoF (chosen design).

In the development of the prototype, we were not concerned with its formal

appearance, but were focused on the degrees of freedom (DoFs). As a result, we

built a skeletal version of the device which moves in the way we envision, but

whose aesthetic design was rudimentary. Initial sketches exploring the DoFs

replicated the flexion and extension of the human elbow on the robotic arm

(Figure 2.2a). This would allow a user to reach objects below the level of a fully

extended elbow, as well as enable self-handovers. For instance, when stand-

ing on a ladder, the wearable arm could reach down to bring a tool without

requiring the wearer to step down. The addition of a prismatic joint further ex-

tends the wearer’s reach (Figure 2.2b). We also envisioned using the arm around

a workbench or a desk, where its vertical movement might interfere with the
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workspace. We therefore explored a different degree of freedom in the form of a

horizontal panning that is analogous to the horizontal adduction and abduction

of the human shoulder (Figure 2.2c). This side-to-side design, in addition to the

prismatic extension, effectively broadens the wearer’s “wing span.” A gripper

was chosen as the end effector to enable grasping of objects and bracing. This

choice of DoFs is also suitable for two people working side by side, enabling

them to stand further apart from each other during handovers.

Figure 2.3: Structure of the prototype: 1) Mounting Platform, 2) Motor for pan-
ning, 3) Motor, rack and pinion for prismatic length extension, 4) Gripper

The assembled Model I prototype is shown in Figure 2.3. Weighing ˜2kg, its

body was realized out of laser-cut acrylonitrile butadiene styrene (ABS) sheets

(shown in black) and 3D printed ABS components (shown in white). Stain-

less steel rolling slides enabled the prismatic length extension. The horizontal

panning DoF was direct-driven, and the prismatic DoF was actuated using a

rack-and-pinion transmission. The gripper was based on the Yale OpenHand

Model T42 [80], modified to constrain both fingers to move together by attach-

ing their cables to a single motor. It had a compliant structure, with rubber

connectors between finger segments. This design, along with rubberized fin-

gertips allowed for reliable gripping of objects that are primarily prismatic. The

hand itself was 3D printed in ABS, and the elastic components were cast out of
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PMC 780 urethane rubber.

As shown in Figure 2.3, a mounting platform attached the robot to a two-

joint medical support brace. The elbow adduction and abduction DoF (horizon-

tal panning) was actuated by a ROBOTIS Dynamixel MX–64 motor [6] with its

axis pointing downwards, and a range of motion of 120°. The pinion gear in the

length extension DoF was actuated by a Dynamixel MX–28 motor, with ˜160mm

range of extension of the drawer slides.

The initial prototype was tethered, receiving both power and control com-

mands through cables. This design choice was made over powering it through

a battery pack, as it would have added weight without significantly improv-

ing user experience in our trials. The motors were controlled using a Robotis

CM-700 board [6].

2.2 Online Study: Contexts and Functions

After constructing the prototype, we conducted a brainstorming session [108]

with colleagues to produce a large number of possible use cases for a wearable

robotic arm. We also shared pictures of the prototype on social media and col-

lected open-ended responses, through snowball sampling [15], to the question:

“What would you use a wearable robotic third arm for?” We then categorized

the collected responses into a taxonomy of usage contexts and functions (Fig-

ure 2.4).

Usage contexts are groupings of where a wearable robotic arm would be use-

ful. Usage functions are groupings of what such a device would be useful for.

11



Pe
rs

on
al

Functional

C
ar

ry
in

g
B

al
an

ci
ng

St
ab

ili
zi

ng
D

an
ge

ro
us

Pr
of

es
si

on
al

R
ec

re
at

io
na

l

M
ili

ta
ry

 &
 

La
w

 E
nf

or
ce

m
en

t

Pu
tti

ng
 A

w
ay

H
ol

di
ng

 g
ro

ce
ry

 
ba

gs
 w

he
n 

op
en

in
g 

do
or

H
ol

di
ng

 o
n 

to
 

la
dd

er
 w

hi
le

 
ha

ng
in

g 
fra

m
e

S
ta

bi
liz

in
g 

dr
ill

 
du

rin
g 

ho
m

e 
re

pa
ir

Ta
ki

ng
 d

is
h 

ou
t 

of
 th

e 
ov

en
P

ut
tin

g 
aw

ay
 

di
sh

es
 in

to
 h

ig
h 

ca
bi

ne
t

H
ol

di
ng

 a
 c

of
fe

e 
cu

p 
w

hi
le

 ty
pi

ng
H

ol
di

ng
 a

 
sc

af
fo

ld
 d

ur
in

g 
co

ns
tru

ct
io

n

H
ol

di
ng

 a
 c

irc
ui

t 
bo

ar
d 

w
hi

le
 

so
ld

er
in

g

H
an

dl
in

g 
ch

em
ic

al
s 

in
 a

 
la

b

S
ta

ck
in

g 
sh

el
ve

s 
at

 a
 

gr
oc

er
y 

st
or

e

C
ar

ry
in

g 
a 

ce
llp

ho
ne

 w
hi

le
 

ru
nn

in
g

P
ro

vi
di

ng
 

su
pp

or
t w

hi
le

 
ro

ck
 c

lim
bi

ng

A
ss

is
tin

g 
w

hi
le

 
lif

tin
g 

w
ei

gh
ts

B
re

ak
in

g 
fa

lls
 

w
hi

le
 ru

nn
in

g
M

ov
in

g 
as

id
e 

cl
ot

h 
at

 s
ew

in
g

m
ac

hi
ne

 

Te
m

po
ra

ril
y 

ho
ld

in
g 

ex
ce

ss
 

eq
ui

pm
en

t

H
ol

di
ng

 th
e 

ro
pe

 w
hi

le
 

fa
st

-r
op

in
g 

K
ee

pi
ng

 a
 ri

fle
 

st
ea

dy
 w

hi
le

 
ai

m
in

g

H
ol

di
ng

 u
p 

a 
rio

t s
hi

el
d 

R
em

ov
in

g 
a 

w
ea

po
n 

w
hi

le
 

ha
nd

cu
ffi

ng
 

Pe
rs

on
al

Social

Si
gn

al
in

g

Pr
of

es
si

on
al

R
ec

re
at

io
na

l

M
ili

ta
ry

 &
 

La
w

 E
nf

or
ce

m
en

t

W
av

in
g 

at
 a

 
fri

en
d

A
le

rti
ng

 o
f a

 
da

ng
er

ou
s 

si
tu

at
io

n

C
al

lin
g 

fo
r a

 p
as

s 
du

rin
g 

a 
te

am
 

sp
or

t

G
iv

in
g 

th
e 

“a
ll 

cl
ea

r”
 s

ig
na

l 
w

hi
le

 h
ol

di
ng

 g
un

   
   

   
   

   
   

   
 F

un
ct

io
n

   
   

   
   

   
   

   
  F

un
ct

io
n

C
on

te
xt

   
   

   
 

C
on

te
xt

   
   

   
 

Fi
gu

re
2.

4:
A

ta
xo

no
m

y
of

co
nt

ex
ts

an
d

fu
nc

ti
on

s
of

us
e

fo
r

a
w

ea
ra

bl
e

ro
bo

ti
c

ar
m

,d
ev

el
op

ed
th

ro
ug

h
br

ai
ns

to
rm

in
g

se
ss

io
ns

,o
pe

n-
en

de
d

sn
ow

ba
ll

sa
m

pl
ed

su
rv

ey
s,

an
d

af
fin

it
y

di
ag

ra
m

cl
us

te
ri

ng
,a

lo
ng

w
it

h
no

n-
ex

ha
us

ti
ve

ill
us

tr
at

iv
e

ex
am

pl
es

.

12



Clustering the usages via affinity diagrams led to the identification of four

usage contexts:

• Personal: Error-tolerant tasks in environments familiar to the user, sup-

porting daily activities.

• Professional: Tasks performed in office and industrial contexts, requiring

more robustness from the robot.

• Recreational: Hobby or fitness related tasks, possibly outdoors or in un-

familiar environments.

• Military and Law-Enforcement: High-risk tasks in uncertain environ-

ments.

Orthogonal to these contexts, we identified five usage functions:

• Carrying objects and performing human-robot handovers.

• Balancing the user by grasping and bracing using objects in the environ-

ment.

• Stabilizing an object that the user is holding.

• Handling dangerous objects such as chemicals and hot plates.

• Putting away objects to outside the wearer’s reach or while hands are oc-

cupied.

• Signaling, for example, using the robotic arm to gesture to a coworker for

assistance.
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Finally, we noted a high-level distinction between functions that are purely

pragmatic or “functional” and those involving social interactions. This differ-

entiation stems from the fact that beyond its physical assistive function, a third

arm offers additional modalities for expressing non-verbal behavior. We refer

to this functional/social dichotomy as usage “classes”. This is similar to the

distinction made between assistive robots and socially assistive robots [39].

2.2.1 Survey Procedure

To inform the design features and requirements of the device, we collected re-

sponses to an online survey gauging public opinion of potential usage contexts

and functions based on the above taxonomy, in the spirit of [109].

We collected 105 responses from participants recruited using the Amazon

Mechanical Turk platform [25]. The age distribution was: 18–25 (12.4%), 26–35

(45.7%), 36–50 (28.6%), 50 and above (13.3%).

Figure 2.5: Image of Model I shown in the online survey.

The survey showed images of a 3D model of the arm and pictures of the

physical prototype, as in Figures 2.5 and 2.3, followed by the text:

We are building a smart robotic “third arm” that attaches at your elbow.
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Figure 2.6: Trends in the responses to online survey questions about desirable
features for the third arm.

The first prototype shown below has three motors: rotation at the elbow, arm

extension, and gripping. The purpose of this survey is to gauge application

areas and features, which will motivate development of future prototypes.

Then, we presented participants with three sections, one for usage context

and usage class, one for specific functions, and one for desired features, along

with space for open-ended responses and demographic questions.

In each of the first two sections, we presented the context, class or function of

use, alongside two activity examples. For each context, we chose one example

from the functional list of activities, and one from the social list: “PERSONAL

USE (e.g., holding grocery bags while opening a door, or shaking hands with

multiple people).” For each of the use classes and functions, we selected ac-

tivity examples from different contexts: “FUNCTIONAL USE (e.g., holding a

coffee cup while typing, providing support while rock climbing, or stabilizing

a firearm).” The list was preceded by the phrase: “Think about the following
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Table 2.1: Online survey response scores about contexts and classes of use
(mean, standard deviation and mode)

A robotic third arm is useful for..
Usage context x̄ σ mode

Personal 4.80 1.95 6
Professional 5.00 1.61 4
Recreational 4.51 1.70 4
Military/Law Enforcement 5.02 1.68 6

Usage class x̄ σ mode
Functional 5.77 1.41 7
Social 2.82 1.60 1
I can see myself using a robotic third arm for..

Usage context x̄ σ mode
Personal 4.17 2.23 1
Professional 3.30 1.93 1
Recreational 3.63 2.13 1
Military/Law Enforcement 2.38 1.98 1

Usage class x̄ σ mode
Functional 5.08 2.13 7
Social 2.23 1.60 1

contexts [functions] for a robotic third arm.” We asked two questions per con-

text and class, and two questions per function, each on a scale of 1–7 (“Not at

all useful” to “Extremely useful”), shown in Tables 2.1 and 2.2. We also asked

respondents to provide examples of usage contexts and features for the robot

(Figure 2.6).

2.2.2 Results

Table 2.1 shows the means, standard deviations, and modes for each context

and usage class. A wearable robotic third arm was considered more useful as a

functional tool than for social uses by a wide margin. Moreover, people thought

it was more useful in professional and military settings, and least in recreational

contexts. Similarly, respondents could generally see themselves using a third
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Table 2.2: Online survey response scores about functions (mean, standard devi-
ation and mode) in decreasing order of means.

How useful is a robotic third arm for..
Function x̄ σ mode

Handling dangerous objects 5.87 1.58 7
Carrying things 5.47 1.70 7
Stabilizing an object 4.77 1.74 6
Putting things away 4.19 1.91 5
Signaling to others 3.56 1.72 4
Balancing the user 3.41 1.89 4
I can see myself using a robotic third arm for..

Function x̄ σ mode
Handling dangerous objects 5.06 2.14 7
Carrying things 5.02 2.20 7
Stabilizing an object 4.17 2.11 1
Putting things away 3.75 2.14 1
Balancing myself 2.73 1.97 1
Signaling to others 2.66 1.83 1

arm more for functional use, but chose the personal context as more likely for

their own use. Overall, respondents saw themselves less likely to use such a

robot compared to how useful they rated it to be overall.

Table 2.2 shows the means, standard deviations, and modes for each func-

tion. Handling dangerous objects and carrying were the highest rated functions

for a third arm (mode 7 for both questions in Table 2.2), with stabilizing objects

and putting things away being rated as generally useful (if not for own use).

There was a low usage expectation for social functions.

This discrepancy between general usefulness and respondent-use could be

explained by the fact that people thought of the robot more as a professional

tool, and it is unlikely that they would have worked in particular settings in

which a wearable robotic arm would be used. Also, it may be hard to imagine

oneself using a device which is of a category that is unfamiliar to respondents.

While they could see the utility of the robot in general functional use, if not
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their own, a third arm was decidedly not considered useful for social contexts

or signaling functions, either by the users themselves or in general. This is also

reflected in the number of responses for each of the suggested features (Fig-

ure 2.6), where functional aspects such as an enhanced reach were considered

to be more important than understanding social cues.

These results were obtained from a text-based description and images of

Model I displayed online. Discrepancies in perceived utility of the device arose

between the online survey and physical studies, e.g. balancing a user was con-

sidered important in the contextual inquiry described in the next section, while

online survey participants did not consider it to be a useful function. In order

to proceed with the development of future prototypes, the design guidelines

needed to be grounded in insights from a real usage scenario, as well as physi-

cal interaction with the device.

2.3 Contextual Inquiry: Building Construction

The findings from the online survey suggest that a wearable robotic arm can be

a valuable tool in a professional setting, where carrying things, handling hot or

dangerous objects, and stabilizing and putting objects away are key functions.

Informed by these results, we proceeded to conduct a need-finding inquiry [49]

to guide the design of specific capabilities. We chose the domain of building

construction, which includes many of the above-mentioned functions. Impor-

tantly, this trade involves a range of activities that are strenuous, repetitive and

present some degree of hazard to a worker. This is reflected in the fact that,

in the United States, about 40% to 65% of worker’s compensation costs in con-
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struction result from musculoskeletal disorders and soft-tissue injuries which

develop over time [91]. A robotic third arm may be deployed to reduce this risk

from repetitive injuries in tasks classified as handovers, pick-and-place, and sta-

bilization of a worker or tool.

Figure 2.7: Observations from the construction site (left to right): a roof paneling
installer climbing a ladder, plumber welding copper pipes, and collaborative
drywall installtaion.

We conducted the contextual inquiry with a construction crew working

on building renovations at the Cornell University campus. We were guided

through the site by a supervisor who provided a brief description of each task

and offered expert testimony during and after our observations of each worker.

Since we are interested in building a physical augmentation device, we docu-

mented the body motions and ergonomic states of a worker while performing a

task along with the hazards and loads associated with the task. We also elicited

comments from the workers about the cognitive loads and common frustrations

involved in their tasks.

Based on these observations, we identify three usability “need themes” in-

forming promising functional requirements of the robot.
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Reaching and Self-Handovers

We observed multiple instances where a worker would reach for a tool or work

piece in a way that impedes their current task. For example, a worker installing

roof panels while standing on a ladder would frequently bend down and pick

up tools placed on the ladder or in his utility belt. He also had to step down from

the ladder to consult plans. Once finished at a particular location, he would then

carry the ladder after having to place those objects back onto the ladder or in his

pockets.

Another instance involved an electrician who had to modify a control panel

that had been installed in the midst of ventilation piping in the ceiling. To reach

the panel in the tightly enclosed space, he had to climb up a ladder and take off

his safety helmet to be able to unfasten the screws on the panel. He mentioned

that the task would have been much easier if a tool could reach into the enclosed

space and bring the screws to him after removal.

This suggests that a third arm would need to function as a tool for handovers

and as a temporary storage space, while extending the reach of the wearer. De-

pending on the dexterity, it would allow a user to perform complex operations

in constrained workspaces. The ability to bring nearby objects to a user would

reduce the time and effort expended to bend, or to climb up and down to fetch

objects.

Stabilization of Objects and Self

We found numerous tasks where adding another point of support for bracing

a worker would enhance their safety and comfort. The supervisor mentioned
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that safety regulations require a worker to have three points of contact with a

ladder at all times (Figure 2.7a). In practice, this is difficult to achieve, especially

in bi-manual tasks. When both hands of a worker were occupied, we noticed

that they braced against the ladder with their stomach or hip.

A plumber installing copper piping for heating units described a challenge

during soldering operations. He would lay down on the floor and have to hold

his blowtorch in one hand, and attempt to feed more solder to the joint while

also holding the pipe steady with his other hand (Figure 2.7b). Another in-

stance was of a cement-layer who constantly had to brace against the floor while

spreading a layer of cement.

This suggests that a wearable third arm should be able to stabilize objects

and provide for additional contact points for workers when balanced in un-

comfortable positions.

Coordination of Repetitive Actions

In tasks performed in pairs, workers tend to develop coordination strategies

as a result of repetition. For example, one person would cut a gypsum board

for drywall installation, while his colleague would hold it in place and brace

it against a wall frame. The first person would then get up on a ladder and

nail the board into place at positions marked out by the colleague (Figure 2.7c).

They would perform this series of tasks fluently with minimal communication

and acknowledgement from each other, as a result of having done these tasks

together multiple times.

Another example of collaborative activity performed in pairs was by win-
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dow installers: one worker would bring nails and ties from a bin to the worker

installing the window panel. This repeated handover task proceeded with flu-

ency and coordination to the point where the installer was able to anticipate the

handover without even looking at the other worker.

This suggests the need for a robotic device deployed in such scenarios to not

just be physically robust and capable, but also be able to coordinate fluently in

repetitive activities, leading to a reduction in the cognitive load of a worker.

2.4 In-person Usability Study

The two studies described thus far provide us with a selective focus for con-

texts and functions, and with specific user needs in a potential application area.

However, both the online study and the contextual inquiry were conducted on a

purely conceptual basis, with participants imagining the use of a wearable third

arm. To generate actionable design principles grounded in physical interaction

with the device, we also conducted a user study with participants wearing and

using the prototype arm, followed by semi-structured interviews.

2.4.1 Study Design

This usability study had three phases: a preliminary interview, interaction with

the device, and debriefing. In the initial interview, participants began by de-

scribing a typical day in their lives. After identifying some activities at home,

at work, and performed for recreation, we asked them to imagine if having a

third arm attached to their body would affect these activities, following a semi-
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Figure 2.8: Tasks performed by users: moving a cup on a table while seated, and
handing over a cup to the interviewer while standing.

structured approach [17]. We questioned them about the structure, appearance

and capabilities of the hypothetical third arm. In order to narrow down their

thought process towards forearm mounted devices, we showed the participants

images of a 3D model of the prototype. We then repeated the questions about

their daily activities and elicited suggestions for changes or improvements to

the device at this stage.

After responding to the pictures, participants were shown the physical pro-

totype. They proceeded to wear it and perform two scripted tasks: moving a

coffee cup on a table while seated, and handing over the cup to the interviewer

(Figure 2.8). During the tasks, the robot followed preset trajectories in an open-

loop manner, i.e., without feedback, sensing, or adaptation. Finally, participants

were debriefed and asked for improvements and suggestions that they would

like to see in future prototypes, and features they would like to see in a com-
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mercial product.

In debriefing, participants were asked about reactions to the prototype, and

if they could think back now to the their daily activities, and if such a device

might be useful.

The participants were 14 university students at the graduate or undergradu-

ate level. We recruited participants by distributing fliers throughout the univer-

sity campus, and sending out e-mails on a special interest forum for robotics.

Each person received a $10 gift card for participating in the study.

2.4.2 Findings from Interviews

A qualitative analysis of audio and video recordings from the interviews re-

vealed five recurring themes (Figure 2.9):

Weight and Balance

The weight of the robot was a major concern for participants. Users often strug-

gled to perform the task, and in one case, even had to hold up the third arm

with their free hand. Reactions included: “It was very heavy, very cumbersome to

use,” and “I could not imagine holding it up for more than ten minutes.” It was also

felt that the weight would make it difficult to perform activities like typing with

your own hands if the device was attached. Reducing weight was the most cited

concern, and it is a natural requirement of any wearable device. However, even

if material and actuation constraints require a heavier device, designers should

consider distributing the weight along the user’s body. We attached the pro-
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totype using a two-joint medical support brace, intended for an average-sized

adult male. As a result, some participants felt that it tended to slip off if they

had smaller arms, and have their arms twist inside the harness when the robot

swiveled at the elbow. Suggestions for the attachment point to the body highly

depended on the use context: The arm should mount at the “center [of the torso],

to keep it symmetrical while running,” or “On the back, like a crane.” Generally, a

robot directly attached to the forearm was often not considered to be a desirable

location.

Figure 2.9: Number of instances of the five recurring themes in the oral feedback
from user study participants.

Dexterity

Participants desired more dexterity than was presented to them, especially from

the end effector: “wrist rotation would be desirable,” “maybe it should have more

fingers.” Many users commented that it would have been easier if the third arm

were able to “pivot in the vertical direction.”, or have an “axis where it can go up and

down”.
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The particular DoFs desired by participants were strongly tied to the appli-

cation domain. A participant who had worked in chemistry labs said that it

would be helpful if the third arm could “scoop out [small] amounts of powders with

a small spatula.” Another user who worked at a library said that the end effector

should be able to “open the cover of a book.” A longer reach during arm extension

was desirable for a user who had to regularly reach up well above their head to

press buttons on cameras in their lab.

Users desired an added-value of functionality to that goes beyond the ca-

pabilities of their own arms and hands, e.g., dexterous manipulation of objects

that are either too small or too delicate for human hands, higher load capacity,

or a further reach. A longer reach during arm extension was desirable for a

user who had to regularly reach up well above their head to press buttons on

cameras in their lab.

Control and Autonomy

Many participants wanted voice-control of the robotic arm with at least some

autonomy: “I want to be able to tell it to do something, and it should just do it.”

Others suggested implicit control based on movements or just intention: “There

should be some sensing so that I don’t have to adapt to it, it can adapt to my posi-

tion.” Some participants wanted a combination of intention-recognition and

voice-override in case of errors. There was a sentiment that the arm could con-

trol itself better than the user could directly: “I am not very good with remote

controlled cars and helicopters, and would much rather have the arm control itself than

have me crash it while using a joystick.” Another reason given for autonomy was

the difficulty of multitasking: “We can’t really concentrate on that many things at
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once.”

There were some in favor of direct control, “like a joystick or [...] a motorcycle

throttle”, or “small buttons near the fingertips”, along with some kind of proximity

sensor for gripping, allowing the arm to detect if it has successfully gripped the

cup and try again if it has not.

Feedback

In this study, the robot was open-loop controlled, meaning that it went through

a preset trajectory. Most participants commented that the arm’s intentions were

not clear throughout the trajectory: “I had no sense of warning [when it was going]

to pick up or drop objects.” They suggested ways for the robot to show its intention

with a variety of feedback options. One participant suggested “a light that turns

on to indicate closing of the gripper,” another “a sequence of beeping sounds,” and

some suggested speech acknowledgments, such as “I’m moving forward” and

“I’m about to grip.”

Other users said that if they were to use the arm several times over the course

of a few hours, they may be able to better predict its intentions, and “get used to

the distance and angle range”, but adding indicators would be helpful for a new

user.

Appearance

When speaking about the appearance of a wearable third arm device, users’

imaginations were often informed by fictional characters. In a few cases, par-
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ticipants suggested modeling the device on existing prosthetic devices. Most

prominently, however, participants found the idea of another human-like arm

attached to their bodies to be “a bit creepy,” especially “if it were to look like human

skin or flesh.” One participant said that this would be “[...] scary. It would feel

like the arm of another person, but no one’s there.” Another user noted that the arm

is not exactly discreet due to its bulky size, so it might stand out less if it had a

humanoid appearance.

Finally, some users tied their notion of appearance with the capabilities of the

third arm. One participant, who had worked at an oil rig, preferred a robust,

futuristic look in that scenario. This appearance would have assured the user

that the device was “resistant to grease, water and dust”.

2.5 Design Guidelines

The following design guidelines emerged from the online survey, contextual

inquiry, and qualitative laboratory study described above:

• The robotic arm should be designed to work in professional, military, and

law-enforcement contexts, mainly supporting functional rather than so-

cial uses.

• It should enable reaching for, storing, and handing over an object out of

the reach for a worker, relieving them from the repetitive strain of these

actions.

• The arm should also be able to handle hot, toxic, or otherwise dangerous

objects. For this purpose, the materials for the body and end-effector of
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the device should be resilient to electric currents, heat, and chemicals.

• The arm should stabilize and brace a user while they are working in pre-

carious poses in terms of balance and ergonomics. For this purpose, the

actuators and structural elements of the robot should be able to withstand

forces and moments at scales produced by a human body.

• Weight and balance are key considerations for any wearable device. This,

however, poses a trade-off with workspace and payload maximization. If

material and actuation constraints require a heavier device, cable-driven

systems for larger devices can help distribute the weight along the user’s

body by placing the heaviest components closer to the wearer’s torso and

thus reducing moments about the user’s joints.

• Users desire high dexterity from the robot, especially at the end-effector,

to be able to perform everyday tasks efficiently. This requirement for dex-

terous manipulation is at odds with the desired reduction in weight men-

tioned above, and the trade off is a substantial design challenge.

• Dexterity of physical design needs to be coupled with feedback control

through different modalities: speech acknowledgments, visuals such as a

screen or even a simple array of lights, or haptic feedback. The motion

trajectories of the device itself should be designed to convey intent, even

at the cost of task efficiency [38].

• Providing a wearable arm some autonomy, or at least a degreee of ad-

justable autonomy [44], is crucial for useful collaborative activities that re-

duce cognitive load on the user. This is especially important during repet-

itive activities. Given the close operation to the human body, autonomy

must be limited to safe operations. Designers must therefore evaluate the

kinds of autonomous tasks users will trust the device to perform safely.
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For other tasks, they can include an option where the user can toggle to

controlling it themselves, via a joystick or button.

• Finally, designers must take into account the prevailing social norms re-

garding robot and prosthesis appearance. Generally, we conclude from

our interviews that a human-like appearance is undesirable, and might

invoke a sense of the “uncanny valley” [77] and that a machine-like ap-

pearance would be more socially acceptable, as opposed to prostheses,

where mimicking human appearance is more desirable.

2.6 Model II Prototype

Figure 2.10: CAD rendering of the WRF Model II with four DOFs: 1) Horizontal
Panning, 2) Vertical pitching, 3) Length extension, and 4) Wrist Rotation, along
with a gripper (5).

To address the concerns in the design guidelines, two additional degrees of

freedom (DoFs) were added in the redesigned WRF: vertical pitching of the arm,

and wrist rotation before the gripper (Figure 2.10). Additionally, the robot’s

mounting point was shifted closer to the human elbow for improved ergonomic

performance. These design improvements allowed the robot to perform tasks

similar to those found in the contextual inquiry.

The vertical pitching, along with complete 360° panning, resulted in a full 3D
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workspace, and allowed the robot to reach objects placed below as well as be-

hind the user. The horizontal panning and vertical pitching DoFs were primar-

ily responsible for bulk positioning of the WRF, while length extension further

enhanced its reach.

In the design of the wrist and end-effector, the most important trade-off is

between dexterity and ergonomics. Articulated spherical wrists, including se-

rial and parallel mechanisms, have been extensively studied and deployed in

commercial and research robots [93]. A fully articular 6-DoF parallel mecha-

nism, similar to a Gough-Stewart platform [45, 105], was initially considered for

the WRF’s wrist. However, based on the indicative usage scenarios discovered

in the studies, a wrist with a single rotational DoF similar to human wrist prona-

tion and supination was found to suffice, along with rudimentary grasping ca-

pabilities with a two-fingered gripper. This is due to the fact that the WRF’s

dexterity is augmented by the user, as they can adjust its pose in real-time by

moving the arm on which it is attached.

Adding more dexterity to the wrist, in the form of either serial or parallel

mechanisms, would increase the load on a user’s body due to the long moment

arm for any mass added near the end-effector. Additionally, once we have nar-

rowed down on a single actuated DoF for the wrist, a serial mechanism in the

form of a connector directly mounted on the motor horn of the wrist actuator is

preferred over a parallel mechanism such as a four-bar linkage [16]. This is due

to the mechanical simplicity, larger workspace, and lack of singularities within

the workspace of a serial mechanism [104], as well as the fact that the motor

body can itself act as a structural element in the relatively low-load applications

for the WRF.
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Following the design guidelines, we describe the materials, actuators, and

electronics architecture in the WRF Model II prototype’s hardware implementa-

tion.

2.6.1 Materials

Material selection played a major role towards weight reduction in Model II

compared to the initial prototype. The ABS mounting platform was replaced

with a waterjet-machined sheet aluminum structure (Figure 2.11a). Aluminum

sliders were used instead of stainless-steel ones in the length extension mecha-

nism, serving as both actuation and structural elements.

The initial gripper was designed after the Yale OpenHand Model T42 [80]

but adapted to constrain both fingers to move together using a single motor for

weight considerations. The gripper finger sizes in the WRF were reduced, and

the motor housing and adaptor were removed, resulting in the motor body itself

acting as a structural element connecting it to the previous DoF (Figure 2.11b).

The robot was mounted on a medical brace with metal hinges and molded

plastic upper-arm and forearm supports, attached to the human arm using vel-

cro straps. Most of the other structural elements were 3D-printed in ABS.

2.6.2 Actuation

The WRF Model II was actuated with ROBOTIS Dynamixel servo motors [6].

The horizontal panning and vertical pitching DoFs used MX-64T motors weigh-
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(a) Mounting platform

(b) Gripper

(c) Length extension mechanism

Figure 2.11: Design changes in Model II over the initial prototype: (a) ABS
mounting platform (left) replaced with sheet-aluminum (right); (b) Gripper size
reduced and adaptor removed; (c) Direct-driven length extension mechanism
(left) replaced with a belt drive (right).

ing 135 g each, with built-in proportional-integral-derivative (PID) feedback

control for position and velocity, stall torque of 6.0 Nm at 12 V, and maximum

speed of 63 rpm. These two DoFs required the most powerful motors since they

were subject to the bulk of lifting and carrying loads. The length extension and

gripper used smaller MX-28T motors, weighing 77 g with a stall torque of 2.5
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Nm at 12 V, also with PID position and velocity control.

The wrist rotation motor was subject to the least loads during operation,

being at the end of the robot’s serial kinematic chain and not needing to generate

contact forces for gripping. As a result, a lower-end AX-12A motor was used to

actuate this DoF, with 1.5 Nm stall torque at 12 V, weighing 54.6 g, and with

only proportional feedback controllers for position and velocity.

The rack-and-pinion length extension mechanism in the initial prototype

was direct-driven, with the pinion gear mounted directly on the motor horn

(Figure 2.11c, left). This design was updated to a belt-driven mechanism with a

7:1 transmission ratio and separated pinion gear, resulting in a faster extension

speed and lower chance of slippage (Figure 2.11c, right).

Combined with aluminum sliders instead of steel, these design choices re-

sulted in improved ergonomics and weight distribution, along with an overall

reduction in weight by ˜0.5 kg.

2.6.3 Electronics

The motors in the WRF communicate at 1 mbps over a TTL protocol, attached

serially in a daisy-chain fashion (Figure 2.12). The arm was tethered, receiving

control commands from a PC, connected using a Xevelabs USB2AX v3.2a USB

to TTL Dynamixel Servo Interface. It was powered by a 12 V, 5 A DC supply

through an SMPS2Dynamixel Adapter. The MX-64T and MX-28T motors had

onboard Cortex M3 CPUs, while the AX-12A had an Atmega8-16AU CPU.
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Figure 2.12: System architecture of WRF Model II electronics.

2.7 Conclusion

This chapter described the process of going from a rudimentary initial prototype

(Model I) of the WRF to a lighter, more articular, and structurally stronger ver-

sion (Model II) by following a user-centered approach, identifying need themes

and design guidelines based on feedback from study participants.1

While the user-centered design process revealed multiple dimensions for im-

proving successive prototypes, at this point in the project, we were still in the

early stages of physical design. As a result, we prioritized the weight, balance,

and dexterity for Model II as opposed to the feedback control, or autonomy of

the robot. Also, modifying the appearance was not considered to be a priority

at this stage.

In the next chapter, we analyze Model II in terms of its kinematics, enhance-

ment in reachable workspace volume it affords, and the loads it exerts on the

user’s arm joints, and describe the design and kinematics of the final prototype,

Model III.

1Portions of this chapter have been published in [113].
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CHAPTER 3

DESIGN ANALYSIS: KINEMATICS, BIOMECHANICS, AND

WORKSPACE VOLUME

Having realized an improved Model II WRF prototype based on an iterative

user-centered process, in this chapter we present an analysis of its design.

Starting with the kinematic structure of the human arm with Model I at-

tached, having a planar reachable workspace envelope, we showed that the

structure of Model II allows for reaching in full 3D. We then analyzed the en-

hancement in reachable workspace volume when the combined human arm and

WRF system simultaneously undergoes its full range of motion (RoM). Using a

rigid body model of the human arm, we determined that while Model II in-

cludes two additional degrees of freedom (DoFs), the forces and moments it

exerts on the user’s elbow and shoulder joints while performing close-range as-

sistive tasks are well within the acceptable limits for ergonomic use, and within

motor torque limits.

Finally, we report on a pilot interaction study with the WRF Model II which

informed the final prototype (Model III), and led to the development of a more

detailed interaction scenario, described in Chapter 6.

3.1 Kinematic Structure

The WRF is a serial kinematic chain attached to the human forearm (Figure 3.1).

Generally, the human arm can be represented as a 7-DoF chain [88]. However,

since the robot’s motion is unaffected by human wrist movements, we used a
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Figure 3.1: Kinematic architecture of the WRF attached to the human arm.

reduced 5-DoF model, with three joints at the shoulder and two at the elbow.

Table 3.1: D-H parameters for the 5-DoF human arm model

Degree of Freedom αi ai(m) di(m) θi

1) Shoulder circumduction -90° 0 0 [0°, 180°]
2) Shoulder adduction +90° 0 0 [-90°, 140°]
3) Shoulder flexion 0° 0.335 0 [-90°, 170°]
4) Elbow flexion +90° 0 0 [80°, 235°]
5) Elbow pronation +90° 0 0.263 [0°, 180°]

The forward kinematics of each of these serial chains was described with

coordinate frames derived using the Denavit-Hartenberg (D-H) convention [47],

resulting in a homogeneous transformation matrix T n
0 between the frame H0 at

the origin (human shoulder joint) and the frame H5 at the human’s hand:

T n
0 =

n∏
i=1

T i
i−1(αi, ai, di, θi) (3.1)

Here n = 5 is the number of joints, and (αi, ai, di, θi) are the D-H parameters for

human arms. In Table 3.1, the anthropometric parameters and ranges of motion
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have been adapted from the model described in [88] and the NASA Man-System

Integration Standards [4].

3.1.1 Model I

Figure 3.2: CAD model, kinematic diagram and physical realization of Model I
with three DoFs: 1) Horizontal panning, 2) Length extension, 3) Gripping.

The initial prototype, Model I, had a DoF at the elbow for horizontal pan-

ning, a prismatic joint for length extension, and a two-fingered gripper as the

end effector, shown in Figure 3.2. Its D-H parameters are listed in Table 3.2.

This first prototype was designed with workbench operation in mind, broaden-

ing the wearer’s effective “wing span” through planar movement with respect

to a fixed human pose.

Table 3.2: D-H parameters for WRF Model I

Degree of Freedom αi ai(m) di(m) θi

1) Horizontal panning -90° 0.254 0 [-60°, 60°]
2) Length extension 0 0 [0.07, 0.23] 0
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3.1.2 Model II

As described in the Chapter 2, the main design shortcomings of Model I were

its weight, limited dexterity with respect to grasping angle, and the speed of

the prismatic joint. For example, in handover tasks, particularly involving two

people, it was desirable for the workpiece to be oriented by the WRF in a manner

that facilitated an easy grasping position for the receiver.

Figure 3.3: CAD model and physical implementation of Model II, allowing for
reach below and behind the user.

Table 3.3: D-H parameters for WRF Model II

Degree of Freedom αi ai(m) di(m) θi

1) Horizontal panning +90° -0.112 0 [-180°, 180°]
2) Vertical pitching +90° 0 0 [-180°, 30°]
3) Length extension 0° 0 [0.28, 0.44] 180°
4) Wrist rotation 0° 0 0.106 [-180°, 180°]

To address these concerns, we added two additional DoFs in Model II: a

vertical pitching of the arm and a wrist rotation before the gripper (Figure 3.3).
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(a) Model II kinematic diagram

(b) D-H coordinate frames.

Figure 3.4: (a) Kinematic diagram of the WRF with the human arm attachment
point as the base link, (b) Coordinate frames based on the D-H convention.

Figure 3.4 shows its kinematic structure and associated frames for its D-H pa-

rameters listed in Table 3.3.

The vertical pitching, along with complete 360° panning, resulted in a full 3D

workspace (Figure 3.5), and allowed the user to reach objects placed below as

well as behind the user. In contrast, the workspace in Model I was constrained

to a planar region with respect to the wearer’s arm.
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Figure 3.5: Model II offers a larger, full 3D workspace (yellow) compared to
Model I (red) for the same fixed body configuration of the human.

3.2 Workspace Analysis

When the DoFs of the human arm and WRF are allowed to undergo their full

range of motion (RoM), the resulting volume spanned by the set of end-effector

positions in 3D forms the total reachable workspace. We computed these vol-

umes for the human hand as end-effector, as well as for the WRF’s end-effector

while wearing Model I and Model II, and found that the robot enhanced the

user’s reach compared to the normal human range.

Figure 3.6: Schematic used in the workspace analysis of a human arm with the
robotic arm attached at the elbow, illustrating the DoFs in Tables 3.1 and 3.3.
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S n+m
0 =

n∏
i=1

T i
i−1

m∏
j=1

P j
j−1 (3.2)

To quantify this workspace enhancement, we employed a combined human-

robot model (Figure 3.6). Similar to (3.1), we constructed transformation matri-

ces Pm
0 using the D-H parameters for the WRF (Tables 3.2 and 3.3), and con-

catenate them with T n
0 to get the transformation matrix S n+m

0 for the combined

human-robot model. To account for the attachment point offset between the

human and robot, parameters for the fifth DoF in T n
0 in Table 3.1 needed to be

modified with a5 = 0.093 m, d5 = 0.085 m for Model I, and a5 = 0.075 m, d5 = 0.016

m for Model II.

3.2.1 Workspace Computation Results

Figure 3.7: Sampling of end-effector positions for workspace volume computa-
tion.

The total reachable workspace volume is the union of workspaces generated

by the end-effector when a mechanism undergoes its full RoM. The three mech-

anisms in this case were the combined human-robot systems for Model I and

Model II, and the human arm alone. This set of end-effector positions was esti-

mated using a Monte-Carlo sampling procedure as proposed in [28], illustrated
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Figure 3.8: Generation of 2D slices from the workspace volume point cloud for
Model II.

in Figure 3.7. Each joint variable, θi (or di for the prismatic joint) was drawn

from a Beta random distribution, θi ∼ Beta(α, β), where the distribution parame-

ters α and β were determined based on the RoM for each DoF. This reduced the

sparsity of points at the ends of the joint space range. The resulting point clouds

were sectioned into 2D slices along the Z-axis (Figure 3.8), and numerically in-

tegrated using a trapezoidal method.

V = h [
s∑

i=1

Ai −
1
2

(A1 − As)] (3.3)

Here h = [zmax − zmin]/s is the step size with s steps, and Ai is the area of

the ith slice used to compute the Volume V . The simulations were performed

using a Unified Robot Description Format (URDF) [7] model of the WRF and an

articular 34-DoF model of the human body, adapted from [8]. The 3D convex

hulls of the workspace for the human arm and combined human-robot systems

were constructed by tessellating the outer boundary curves of the 2D slices.
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Figure 3.9: Convex hulls of end-effector point clouds showing total reachable
workspace volume afforded by Model II (yellow), compared to Model I (blue),
and the natural human arm range (red).

The total reachable workspace volume for the human arm alone was found

to be 1.003 m3. This was enhanced to 2.389 m3 while wearing Model I, an im-

provement of 138%. Wearing Model II further increased the total reachable

workspace volume to 3.467 m3, an improvement of 246%, as illustrated in Fig-

ure 3.9.

3.3 Evaluation: Operating Loads, Interaction Modes

While the WRF enhances a user’s reach, for a person to wear the robot for pro-

longed periods of time, we need to consider the biomechanical loads experi-

enced by them. In this section, we evaluate these loads for the Model II proto-

type and compare with Model I. There is a direct trade-off between a low biome-

chanical load, and adequate power density in the actuators for rapid collabora-

tive action. We ensured that the robot’s motors were capable of performing rel-
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evant tasks by measuring the torque loads in these tasks. We also conducted a

pilot in-person study to compare interaction with the robot under direct speech

control, and remote control presented as an “autonomous” mode to the partici-

pants.

(a) Fetching an object with user’s hands oc-
cupied. (b) Self-handover.

(c) Assisted two-person handover.
(d) Stabilizing and object for bi-manual
manipulation.

Figure 3.10: Illustrative usage scenarios for the WRF.

To analyze the biomechanial and actuator loads, we considered three indica-

tive collaboration scenarios based on the design goals and user study findings

from Chapter 2: fetching an object from below the human’s workspace for self-

handover; human-to-human handover assisted by the robotic arm; and fixing

an object in position while the human is operating on it. The WRF’s trajectory

was predefined and executed in an open-loop manner.
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a) Fetching from Below This task involves a combination of horizontal pan-

ning, pitching down, and length extension to reach the object to be fetched.

Once the object is grasped, it is brought over to the user’s own hands (Fig-

ure 3.10a). Therefore it is equivalent to a traditional human-robot handover,

with the added kinematic constraint between the robot and the arm it is worn

on.

b) Assisted Human-Human Handover In this scenario, two humans are

working back to back. The wearer has an object within their workspace that

they want to transfer to another person while their own hands or attention is

occupied. The robot grasps the object and hands it over to a person standing

behind the user by panning outwards (Figure 3.10c). Thus the WRF acts as a

functional tool to facilitate human-human collaboration. This two-person han-

dover performed using a third arm robot is particularly interesting, because it

adds another degree of uncertainty to a traditional human-robot handover, in

the way that the robot is not an independent agent. It is guided by the pose of

the wearer, whose actions are non-deterministic and based on their belief of the

intentions of the receiver.

c) Fixing an Object in Position This scenario does not involve moving an ob-

ject, but focuses on the robot stabilizing both itself and an object, for example

holding a block of wood in place while the user drills into it (Figure 3.10d). This

type of assistance in immobilizing an object is common in manufacturing or as-

sembly settings [85], or in situations where the human body is not capable of

providing the necessary force or moment.
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3.3.1 Biomechanical Load Analysis

Figure 3.11: Free-body diagram of the human arm with the WRF as a point load
and moment.

To evaluate the biomechanical load on the user in these scenarios, we mod-

eled the human-robot system as two distinct bodies, as shown in Figure 3.11.

The interaction between the robot and the human arm took the form of the sup-

port force ~FR and moment ~MR.

For each usage scenario trajectory, ~FR and ~MR were computed using the it-

erative Newton-Euler dynamics algorithm [72] applied to the robot. As shown

in Figure 3.6, the robot was considered to be a 4-DoF model with 5 links, based

on the structure of Model II. For each task trajectory, the motors were assumed

to rotate at constant angular speeds. The ramping up and down of angular ve-

locities during the start and end of a trajectory, as well as sign changes during

a trajectory, were assumed to be nearly instantaneous, taking between two and

five time steps. The resulting accelerations of the links, and forces and moments

at the joints were computed iteratively, going from link 1 to link 5, with a dif-

ferent reference frame attached to each link. The outward iteration equations

below provide the linear acceleration v̇ and angular acceleration ω̇ of link i + 1,

given these quantities for link i. The matrix Ri+1
i ∈ S O(3) is the rigid-body trans-
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formation between frames attached to link i + 1 and link i. θi is the joint angle

for each motor, di is the length of the prismatic joint, and ẑi
i is the joint axis for

joint i in frame i. Pi+1
i is the position vector going from the origin of frame i to

the origin of frame i + 1. The initial conditions for the outward iterations were

specified at the ground link (link zero) of the serial chain as in [31]: ω0
0 = 0,

v0
0 = 0, ω̇0

0 = 0 and v̇0
0 = ~g, where ~g is acceleration due to gravity.

ωi+1
i+1 = Ri+1

i ωi
i + θ̇i+1ẑi+1

i+1 (3.4)

For rotary joints (all except DoF 3 in Model II):

ω̇i+1
i+1 = Ri+1

i ω̇i
i + Ri+1

i ωi
i × θ̇i+1ẑi+1

i+1 + θ̈i+1ẑi+1
i+1 (3.5)

v̇i+1
i+1 = Ri+1

i [ω̇i
i × Pi+1

i + ωi
i × (ωi

i × Pi+1
i ) + v̇i

i] (3.6)

For DoF 3, which is prismatic:

ω̇i+1
i+1 = Ri+1

i ω̇i
i (3.7)

v̇i+1
i+1 = Ri+1

i [ω̇i
i × Pi+1

i + ωi
i × (ωi

i × Pi+1
i ) + v̇i

i]

+2ωi+1
i+1 × ḋi+1ẑi+1

i+1 + d̈i+1ẑi+1
i+1

(3.8)

The linear accelerations v̇c,i of the centers of mass (CoMs) of each link were

computed as follows, along with the inertial forces Fi and moments Mi on each

link. Pi
c,i is the position of the CoM of link i in frame i, and Ic,i is the moment of

inertia about the CoM.

v̇c,i = ω̇i
i × Pi

c,i + ωi
i × (ωi

i × Pi
c,i) + v̇i

i] (3.9)
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Fi = miv̇c,i (3.10)

Mi = Ic,iω̇
i
i + ωi

i × (Ic,iω
i
i) (3.11)

The inward iterations, going from link 5 to link 1 in Model II, used the above

quantities to compute the forces f i
i and moments ni

i exerted on link i by link i + 1

as seen in frame i.

f i
i = Ri

i+1 f i+1
i+1 + F i

i (3.12)

ni
i = Mi

i + Ri
i+1ni+1

i+1 + Pi
c,i × F i

i + Pi+1
i × (Ri

i+1 f i+1
i+1 ) (3.13)

The initial condition for inward iterations is the external loading at the end-

effector of the robot. For the usage scenarios, we considered the gripper to be

holding a plastic cup weighing ˜30g, so that f 6
6 = −0.29k̂ N, n6

6 = ~0. The required

interaction loads between the robot and human arm are given by ~FR = f 0
0 and

~MR = n0
0.

The human arm was assumed to remain stationary during the trajectories

in scenarios (a) and (b) of the robot, as in [33]. This allowed us to use a sim-

plified static arm model to estimate the biomechanical load, consisting of the

force norms at the human shoulder and elbow: ‖ ~FA‖, ‖ ~FB‖, and corresponding

moment norms: ‖ ~MA‖, ‖ ~MB‖.

These quantities can be computed for each scenario assuming static equilib-
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rium. Using the notation in Figure 3.11,

~FA = ~FR + m1~g + m2~g (3.14)

~MA = ~MR + ~rG1/A × m1~g + ~rG2/A × m2~g + ~rD/A × ~FR (3.15)

~FB = ~FR + m2~g (3.16)

~MB = ~MR + ~rG2/B × m2~g + ~rD/B × ~FR (3.17)

Comparison Between Models

We evaluated the improvement in Model II compared with Model I in a sce-

nario that can be performed by both devices, using the load analysis method

discussed above. The scenario was to grasp an object that is just out of human

reach while seated at a desk (Figure 3.12 left), with the following steps: Pan out-

wards to +60°→ Fully extend arm → Grip → Pan inwards to –60° → Open gripper.

We find that the magnitudes of moments experienced by the wearer at their el-

bow and shoulder were reduced by 18 to 35% for Model II compared to Model

I (Figure 3.12).
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Figure 3.12: In moving an object across a table, Model II exerts a moment load
at the user’s shoulder and elbow that is 18–35% lower than Model I.

Model II Loads

For the scenarios shown in Figure 3.10, the magnitudes of biomechanical forces

at the human shoulder and elbow, ‖ ~FA‖, and ‖ ~FB‖ remained almost constant, as

the cetrifugal and Coriolis effects were negligible compared to the weights of the

links. The peak force loads were ˜55.8 N and ˜31.3 N, at the shoulder and elbow

respectively. For comparison, the peak force loads that a human can withstand

are ˜100 to 500 N at the shoulder, and ˜50 to 400 N at the elbow, depending on

the arm configuration [63].

Figure 3.13 shows the biomechanical moment loads ‖ ~MA‖ and ‖ ~MB‖ during

scenarios (a) Fetching an object from below, and (b) Assisted human-human

handover. In both tasks, the object being manipulated was a plastic cup weigh-

ing ˜30 g. The peak moment loads on the wearer’s shoulder and elbow during

these tasks were ˜24.8 Nm and ˜11.6 Nm respectively. For comparison, the hu-
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Figure 3.13: The biomechanical moment loads during the fetching and han-
dover tasks were well within human ergonomic limits for the elbow and shoul-
der.

man shoulder can withstand moments of magnitude ˜85 to 130 Nm, while the

elbow can withstand ˜40 to 80 Nm [63, 83]. Biomechanical load evaluations

were omitted for scenario (c) Fixing and object in position, due to its statically

indeterminate nature.

3.3.2 Motor Torque Loads

We measured motor torque loads directly from the built-in sensors on the Dy-

namixel servo motors used in the WRF. In all three scenarios, non-negligible

torque loads were present in DoFs 1 and 2. In the bracing operation, the wrist

and gripper were isolated from the vibration loads of the power screwdriver

due to the compliant finger structure.

Figure 3.14 shows motor torque loads for all three scenarios. These loads

remained below 50% of the motor’s peak rating of 6.0 Nm for the first two sce-

narios, and below 20% for bracing.
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Figure 3.14: The torque loads on the servo motors used for the horizontal pan-
ning and vertical pitching DoFs never exceeded 50% of their peak rating of 6.0
Nm

3.3.3 Pilot Interaction Study

We found our design to be ergonomic enough to stay within human biome-

chanical force and moment limits throughout the above-mentioned scenarios.

In addition, the low motor torque loads we measured suggest the possibility

of using even more lightweight motors in subsequent design iterations, further

reducing loads.

Apart from the physical design aspect, an important area of exploration is
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the level of autonomy, and desired mode of interaction between the user and

the robot. In the design studies in Chapter 2, participants had expressed the

following insights regarding control and autonomy:

• There should be some mode of communication between the human and

robot, in the form of visual, haptic, or verbal cues.

• At the same time, the kind of autonomy provided to the robot should re-

duce cognitive load on the user. The user should not be confused by the

robot’s actions.

• Participants expressed interest in being able to give high-level commands

verbally, and the robot being able to handle the implementation of those

commands autonomously.

These present a well-known interaction trade-off or gradient between full

autonomy of the robot, and the user giving commands to the robot to complete

a given task [44]. To explore this, we conducted a pilot study for a pick-and-

place task with the WRF Model II.

Figure 3.15: Setup of the pilot study: the robot brings the orange objects on the
table to the user’s other arm (left). “Autonomous” WoZ behavior of the robotic
arm resulted in shorter task times than direct voice control (right), as well as
being preferred by users.
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In the study, participants wore the robot and used both of their hands, and

the WRF for a self-handover task involving two objects, one of which was out

of reach (Figure 3.15). They performed the task under two conditions. In one,

participants used voice commands (e.g. “left”, “right”, “grasp”) to directly steer

the robot. The second interface was presented as an autonomous arm, but was

in fact a Wizard-of-Oz (“WoZ”) setup [60] where a remote operator directly con-

trolled the robot’s motion, unbeknownst to the user. Eight participants wore the

WRF and completed the same task three times with each interface, counterbal-

anced for order effects.

The mean completion time was faster and less variable using WoZ (mean

Mw = 12.97s, std. dev. S w = 3.31) compared to the voice interface (mean

Mv = 24.60s, std. dev. S v = 8.79; Mv − Mw = 11.64s; t(7) = 4.39, p < 0.01, d = 1.55,

Figure 3.15). This suggests that even though participants had no control over

the arm’s movement, they were able to complete the task faster. In question-

naires, users also rated the desirability of the “autonomous” movement higher

than the direct voice control. While these were only preliminary results and

required more rigorous testing, they indicated that providing a wearable robot

with autonomy could reap task efficiency and usability benefits.

3.4 Model III Prototype

While the pilot interaction study shed some light onto the performance of the

WRF in the two control modes, users also mentioned that a more dexterous

wrist would be desirable, especially in pick-and-place tasks. For instance, while

reaching for an object placed on a tabletop, rotating the gripper to align the fin-
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(a) WRF design with six actuators (b) Kinematic structure

(c) Coordinate frames in D-H parameterization

Figure 3.16: The final design of the WRF has five degrees-of-freedom (DoFs)
including prismatic length extension, along with a two-fingered gripper.

gers parallel to the surface would lead to a more stable grasp. A more articulate

wrist would also be advantageous in self handovers and assisted human-human

handovers, for orienting the grasped object to a pose more amenable to the re-

ceiver.

This led to the development of the final WRF prototype: Model III, which

has an added degree of freedom at the wrist (vertical pitching) before the grip-

per (Figure 3.16a). It has a total of five articular degrees-of-freedom (DoFs) in-

cluding prismatic length extension along with a gripper,and has a maximum

reach of 0.63 m from the base of the first DoF (Figure 3.16b). While this version
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is heavier than Model II, weighing ˜2 kg due to the addition of wrist pitching,

it has has carbon-fiber reinforced plastic components to replace the aluminum

connectors between DoFs 2 and 3, as well as a lighter connection between DoF

1 and 2, reducing the length of the effective moment arm about the human’s

forearm due to the WRF’s weight.

In a real setting, for the WRF to be able to perform tasks such as the ones

shown in Figure 3.10, we need sensing, motion planning, and motor control. For

the WRF, sensing was achieved through off-board cameras, as described in the

following chapters. Motion planning generally involved finding linear paths in

the WRF’s configuration space, or through an optimizing planner described in

Chapter 4. The final aspect, motor control, involves converting the Cartesian

paths generated by a motion planner into reference signals given as inputs to a

robot’s actuators. Achieving this for the WRF requires an analysis of its forward

and inverse kinematics.

3.4.1 Forward Kinematics

The kinematics for Model III are described using the D-H convention, with the

parameters listed in Table 3.4 for the coordinate frames shown in Figure 3.16c.

Table 3.4: D-H parameters for WRF Model III

Degree of Freedom αi ai(m) di(m) θi

(1) Horizontal panning π/2 0 -0.08 (−π, π)
(2) Vertical pitching π/2 0 0 (0, π/2)
(3) Length extension 0 0 [0.33, 0.45] π
(4) Wrist rotation π/2 0 0.045 (−π, π)
(5) Wrist pitching π/2 0 0 (0, π)
(6) End-effector 0 0.135 0 0
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Forward Kinematics (FK) provides the mapping from a robot’s joint vari-

ables to the pose of the end-effector. As shown in Figure 3.16c, the base frame

O0 of the WRF lies at the top of horizontal panning DoF, and the final frame O6

is attached to the end-effector, lying at the mid point of the gripper’s fingers.

Using the D-H parameters (α, a, d and θ), we specify the relationship between

frames through homogeneous transformation matrices T i+1
i , defined for the pose

of frame i + 1 as seen in frame i:

T i+1
i =



cosθi −sinθicosαi sinθisinαi aicosθi

sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di

0 0 0 1


(3.18)

The joint variables (~θ) for the WRF are θi for the four revolute joints, and d3

for the prismatic joint. The end-effector is fixed with respect the wrist pitching

DoF. However, it is listed separately in order to decouple it from wrist pitching

for ease of solution of the analytical inverse kinematics, as in [119]. The trans-

formation T 6
0 , between the base frame O0 and the end-effector frame O6 can be

found by through the following product with successive terms right-multiplied:

T 6
0 =

5∏
i=0

T i+1
i (3.19)

Expanded out in terms of individual elements:

T 6
0 =



R1x R2x R3x Px

R1y R2y R3y Py

R1z R2z R3z Pz

0 0 0 1


(3.20)
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The rotation between these frames is described by R = [~R1, ~R2, ~R3] ∈ S O(3),

where S O(3) is the 3D rotation group consisting of 3×3 orthogonal matrices with

unit positive determinant. ~P = [Px, Py, Pz]T ∈ R3 describes the translation be-

tween these frames. We denote cosθi as ci and sinθi as si for ease of notation. The

length parameters for the WRF are l1, l2 and l3, which correspond to d1, d4 and

a6 respectively from Table 3.4. There are twelve equations that constitute the

forward kinematics:

R1x = c1s2s5 − c5(s1s4 + c1c2c4) (3.21)

R1y = c5(c1s4 − c2c4s1) + s1s2s5 (3.22)

R1z = −c2s5 − c4c5s2 (3.23)

R2x = −c4s1 − c1c2s4 (3.24)

R2y = −c1c4 − c2s1s4 (3.25)

R2z = −s2s4 (3.26)

R3x = −c1s2c5 − s5(s1s4 + c1c2c4) (3.27)

R3y = s5(c1s4 − c2c4s1) − s1s2c5 (3.28)

R3z = c2c5 − s2c4s5 (3.29)
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Px = l2c1s2 − l3(c5s1s4 + c5c1c2c4) + l3c1s2s5 + d3c1s2 (3.30)

Py = l2s1s2 + l3(c5c1s4 + c5s1c2c4) + l3s1s2s5 + d3s1s2 (3.31)

Pz = l1 − l2c2 − l3c2s5 − l3c4c5s2 − d3c2 (3.32)

3.4.2 Inverse Kinematics

The inverse kinematics (IK) problem involves finding the values of the joint

variables for a desired position and orientation (pose) of the end-effector. The

robot is over-constrained, having five articulated DoFs instead of six, result-

ing in no guaranteed solutions to the general position and orientation IK prob-

lem [111]. Here, we describe first an analytical approach for finding IK solutions

for a fixed orientation of the WRF wrist, followed by a general solution strategy

that involves certain constraints.

Position-only IK

Most close-range tasks with the WRF can be performed with its wrist in the

upright orientation shown in Figure 3.16a, corresponding to fixing θ4 = 0, and

θ5 = π/2. An object grasped by the WRF with this wrist configuration remains

fairly accessible even with slight tilts of the gripper due to the motions of the

other DoFs. In this situation, it is sufficient to determine the values for joint

variables that specify just the position of the end-effector. The position-only IK
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problem has an analytical solution in the first three DoFs. Using the forward

kinematics equations,

~p =


Px

Py

Pz

 =


(l2 + l3 + d3)cosθ1sinθ2

(l2 + l3 + d3)sinθ1sinθ2

l1 − (l2 + l3 + d3)cosθ2

 (3.33)

The joint variables for the first three DoFs can be computed for a given posi-

tion ~P in terms of these parameters for the fixed straight wrist orientation:


θ1

d3

θ2

 =


tan−1(Py/Px)√

Px
2 + Py

2 + (Pz − l1)2 − (l2 + l3)

cos−1((l1 − Pz)/(l2 + l3 + d3))

 (3.34)

Approximate method: Jacobian Pseudoinverse

One approach to solve the position-only IK problem with variable wrist orien-

tation involves approximating the change in joint variables (∆~θ) required for a

small change in end-effector position (∆~P). This involves determining the Ja-

cobian matrix, J for the transformation between ~P and ~θ, following by com-

puting its Moore-Penrose inverse (pseudoinverse) to find the change in joint

angles [31]. Each element of the Jacobian matrix J is defined as:

Ji, j =
∂Pi

∂θ j
(3.35)

For the WRF, J is a 3×5 matrix such that:

∆~P ≈ J∆~θ (3.36)
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This leads to the following approximate solution for ∆~θ, involving J+, the

pseudoinverse of J:

∆~θ = (JT J)−1JT ∆~P = (J+)∆~P (3.37)

This approach can also be extended to find approximate solutions for both

variable position and orientation, for instance by using Euler angles for the ori-

entation, leading to a 6×5 Jacobian. It results in a fast computational method to

implement IK for the WRF, used in Chapter 6 for the human-robot collaboration

task.

General Analytical Solution

We now describe an analytical approach for solving the general IK problem,

with some constraints to check if a solution is within the subspace of the WRF.

We started with the solution to the horizontal panning angle θ1 using the geo-

metric projection method described in [119] and [43]. As shown in Figure 3.17,

θ1 is the angle between the projection of ~P′ = ~O0O5 onto the XY-plane, and the

X-axis of the base frame O0. ~P′ can be obtained by using the transformation

between O5 and O0:

Figure 3.17: Projecting the position of O5 onto the XY-plane of the base frame O0

to solve for θ1.
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T 5
0 = T 6

0 [T 6
5 ]−1 =

~R
′
1 ~R′2 ~R′3 ~P′

0 0 0 1

 (3.38)

The components P′y and P′x of ~P′ can be found from the corresponding com-

ponents in the last column of T 5
0 . The relation between θ1 and the projections of

~P′ is as follows:

tanθ1 =
P′y
P′x

=
−l3R1y + Py

−l3R1x + Px
(3.39)

θ1 can be found using the four-quadrant inverse tangent function, as it lies in

the desired range of (-180°, 180°). Also note that θ2 is never fully vertical, since

we have restricted the range of DoF-2 in the open interval (0°, 90°). This ensures

that a solution for θ1 always exists, since O0, O1, O2 and O5 are never collinear.

The solution strategies for the other joint variables can be grouped into two

cases, depending on whether R2z , 0 or R2z = 0, which correspond to whether

the links of the robot become coplanar.

Case 1: R2z , 0 From the forward kinematics, we know that:

R2z = −s2s4 (3.40)

R2z , 0 implies that both s2 , 0 and s4 , 0. Then we can perform the follow-

ing substitutions:

s4 =
−R2z

s2
(3.41)
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This results in a pair of linear equations in cosθ4 and cotθ2:

 s1 c1R2z

−c1 s1R2z


cosθ4

cotθ2

 =

R2x

R2y

 (3.42)

We can find tanθ2 by solving this pair of linear equations, and constrain the

solution to lie in the range (0°, 90°). These equations also give us cosθ4, with

which we can find tanθ4:

tanθ4 =
−R2z

s2 cosθ4
(3.43)

θ4 is computed using the four-quadrant inverse tangent function atan2(x, y)

as it lies in the range (-180°, 180°). An inverse tangent function is preferred over

an inverse cosine function due to greater numerical stability. Once θ1, θ2 and θ4

are known, equations (3.23) and (3.29) reduce to linear expressions in terms of

sinθ5 and cosθ5:

 −c2 −c4s2

−c4s2 c2


 sinθ5

cosθ5

 =

R1z

R3z

 (3.44)

θ5 can be obtained using the inverse tangent function atan2(x, y), and con-

strained to lie in the range (0°, 180°). Once all joint angles are known, equations

(3.30-3.32) yield three candidate solutions for the length of the prismatic joint d3:

d1
3 = (Px − l2c1s2 + l3(c5s1s4 + c5c1c2c4) − l3c1s2s5)/c1s2 (3.45)

d2
3 = (Py − l2s1s2 − l3(c5c1s4 + c5s1c2c4) − l3s1s2s5)/s1s2 (3.46)
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d3
3 = (Pz − l1 + l2c2 + l3c2s5 + l3c4c5s2)/c2 (3.47)

The candidate for d3 that lies within the range [0.33 m, 0.45 m] is chosen as

the solution.

Case 2: R2z = 0 A different strategy must be employed in situations when R2z

is zero. Since R2z = s2s4, and we have restricted θ2 to lie in the open interval (0°,

90°), R2z = 0 ⇒ s4 = 0. Additionally, since θ4 is also restricted to be in the open

interval (-180°, 180°), we obtain θ4 = 0.

Figure 3.18: All links of the robotic arm become co-planar when θ4 = 0.

This places the robot in a configuration similar to the one shown in Fig-

ure 3.18, where all the links of the arm become co-planar. With θ4 = 0, equations

(3.21, 3.22) and (3.27 - 3.29) simplify to:

R1x = −c1cos(θ2 + θ5) (3.48)

R1y = −s1cos(θ2 + θ5) (3.49)
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R3x = −c1sin(θ2 + θ5) (3.50)

R3y = −s1sin(θ2 + θ5) (3.51)

R3z = cos(θ2 + θ5) (3.52)

This gives us the sum (θ2 + θ5):

tan(θ2 + θ5) =
R3x

R1x
=

R3y

R1y
(3.53)

To find the the joint angle θ2 separately, we look at the triangle formed by the

points O0, O2 and O5, as shown in Figure 3.19.

The edge lengths t1, t2 and t3 of this triangle are known quantities, since the

vector ~O0O2 is fixed, and the vector ~O0O5 can be found using the last column

of the matrix T 5
0 in equation (3.38). We can apply the cosine formula to this

triangle:

t1 =
∥∥∥∥ ~O0O2

∥∥∥∥ (3.54)

t2 =
∥∥∥∥ ~O0O5

∥∥∥∥ (3.55)

t3 =
∥∥∥∥ ~O0O2 − ~O0O5

∥∥∥∥ (3.56)
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Figure 3.19: O0, O2 and O5 are coplanar. The triangle formed by these points is
used to find θ2.

cos(π − θ2) =
t2
1 + t2

3 − t2
2

2t1t3
(3.57)

We can now solve for θ2:

θ2 = π − acos([
t2
1 + t2

3 − t2
2

2t1t3
]) (3.58)
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Once θ2 is known, we get two possible candidates for θ5:

θ5 = tan−1 R3x

R1x
− θ2 = tan−1 R3y

R1y
− θ2 (3.59)

Having found all the joint angles, we can proceed as earlier, using equations

(3.45 - 3.47) to find d3, the length of the prismatic joint.

Constraints on Solutions We chose between multiple candidate solutions by

applying the condition that the variables must lie within the intervals specified

in Table 3.4. Apart from these, there are also conditions on the revolute joint

angles θ1 - θ5 that arise from the forward kinematic equations. These condi-

tions make use of the individual transformation matrices T i+1
i for each row of

Table 3.4.

Let us consider the product T 1
0 T 2

1 T 3
2 :

T 1
0 T 2

1 T 3
2 =



−c1c2 −s1 c1s2 d3c1s2

−c2s1 c1 s1s2 d3s1s2

−s2 0 −c2 l1 − d3c2

0 0 0 1


(3.60)

The entry in row 3, column 2 of this matrix is zero. Using equation (3.19), we

can compute this matrix in terms of the final transformation T 6
0 :

T 1
0 T 2

1 T 3
2 = T 6

0 [T 4
3 T 5

4 T 6
5 ]−1 (3.61)

Equating corresponding matrix entries at row 3, column 2 on both sides, we
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obtain the following condition on θ4 and θ5:

R1zc5s4 − R2zc4 + R3zs4s5 = 0 (3.62)

Similarly, in the product T 4
3 T 5

4 T 6
5 , the element at row 3, column 2 is also zero:

T 4
3 T 5

4 T 6
5 =



c4c5 s4 c4s5 l3c4c5

s4c5 −c4 s4s5 l3s4c5

s5 0 −c5 l2 + l3s5

0 0 0 1


(3.63)

This can also be written in terms of the final transformation matrix:

T 4
3 T 5

4 T 6
5 = [T 1

0 T 2
1 T 3

2 ]−1T 6
0 (3.64)

Similar to equation (3.62), we obtain the following condition on θ1 and θ2:

R2xc1s2 − R2zc2 + R2ys1s2 = 0 (3.65)

Candidate IK solutions that do not satisfy conditions (3.62) and (3.65) are re-

jected.

3.5 Conclusion

This chapter addresses the analysis and evaluation of successive prototypes

(Models I and II) of the WRF in terms of kinematics, enhancement in total

reachable workspace volume, and biomechanical loads on the user’s elbow and

shoulder joints.1 We also ensured that the actuators used to build the WRF were

1Portions of this chapter have been published in [114].
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up to the task in illustrative usage scenarios, by measuring the motor torques at

the most loaded DoFs.

Some of the major design guidelines from Chapter 2 were regarding the

weight, balance, and dexterity of the WRF. Along with these factors, we ex-

plored the types of control modes and levels of robot autonomy desirable by

users through a pilot interaction study. While adding more dexterity to the

robot through an additional wrist pitching DoF increased the weight, we offset

some of the loads by reducing the distance between the first two motors. This

led to the final WRF prototype: Model III, whose kinematics were described in

detail, including an analytical solution for its inverse kinematics.

While the static analysis of biomechanical loads showed the loads to be

within ergonomic limits, it was performed purely in simulation with simpli-

fying assumptions. The real forces in the human shoulder and elbow joints

were not measured directly using orthopedic sensors. Also, the skin effects of

the interface between the human and robot system (through the medical brace),

which play a role in the subjective ergonomic experience, were not accounted

for. These limitations were reflected in users’ reactions of feeling fatigued after

wearing the WRF for longer than 40-45 minutes. One strategy for improving

ergonomics by reducing the worn weight while maintaining functionality, is to

place the control and actuation systems off-board with cable-driven [33] or hy-

draulic [116] mechanisms. These designs present another trade-off, this time

between the functionality and overall footprint of the device.

The reachable workspace volume analysis performed here included point

clouds of the end-effector’s reachable positions. When executing tasks, it may

also be important to determine if a point in the workspace is reachable with a
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specific orientation of the gripper, for instance when holding an object that must

not be tilted. While an approximate solution to a desired position and orienta-

tion of the gripper may be found using numerical IK methods, owing to the

dimension subspace mismatch between the WRF (5-DoF) and Cartesian space

(6-DoF), a specific desired pose may be unreachable. However, for the tasks de-

scribed in this dissertation, we considered the trade-off of adding another DoF

to be too large against the additional weight it would impose on the user.

Through the interaction pilot, we found that while giving the robot direct

speech commands was intuitive, users were quickly able to adapt to and per-

form well with an “autonomous” robot (controlled here through WoZ). This led

to the formulation of a more extensive user study, described in Chapter 6, where

the robot was truly autonomous in a collaborative pick-and-place scenario, op-

erating with supervised learning models trained using data from speech con-

trolled trials.

In the next chapter, we take a more detailed look at the impact of the robot’s

motion on a user’s musculoskeletal system, and describe a framework for mo-

tion planning that minimizes these biomechanical loads.
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CHAPTER 4

BIOMECHANICS-AWARE MOTION PLANNING

As a user must support a Supernumerary Robotic (SR) device with their own

body, one of the major challenges in their design is to reduce the ergonomic

load on the human while maintaining functionality. For the WRF, we showed

in Chapter 3 that the force and moment loads on a user’s shoulder and elbow

joints were within the human ergonomic ranges in scenarios involving fetching

and assisted handovers. This analysis assumed rigid body models for both the

human arm and robot, and considered the robot’s effect on the user during pre-

specified trajectories.

In this chapter, we extend the biomechanics analysis by incorporating, in

simulation, a detailed muscle model of the human arm into a motion planning

framework that finds robot trajectories given a start and goal state, while min-

imizing human muscle loads (Figure 4.1). Henceforth, all studies and analyses

described in this work refer to the final WRF Model III prototype.

SR devices span a wide range of sizes, functions, and mounting styles on the

user. Larger devices in the form of additional arms are typically supported by

the user’s shoulders [85], mounted as a backpack [94], or at the hip [79]. The

WRF is mounted on a user’s arm through a medical brace, with the first motor

vertically aligned with their elbow (Fig. 4.1a). For the purpose of generating tra-

jectories with low biomechanical loads for the WRF, we drew upon two bodies

of work:
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(a) WRF mounted on a user (b) Illustrative robot path

(c) OpenSim muscle model

Figure 4.1: Trajectories are generated for the Wearable Robotic Forearm (WRF)
that minimize human muscle loads determined from the model shown in (c).

Biomechanics Simulation

OpenSim [35] has been widely used in the biomechanics community for dy-

namic simulations of human motion, with an API accessible through MAT-

LAB [66]. Specifically for wearable robotics, combined human-robot models

in OpenSim have been used for rehabilitation exoskeletons, to study their effect

on the user [34], as well as to parameterically improve robot designs [11]. We

addressed the biomechanics of interaction between the human and robot after

the design phase, during usage in close-range tasks.
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Manipulator Motion Planning

The motion planning problem for robotic arms has been studied extensively,

with sampling-based planners being the most common approach [65]. In mo-

tion planning for the WRF, a feasible trajectory may often be found by direct

interpolation in the configuration space between the start and goal states (Fig-

ure 4.1b). To improve upon this initial guess and minimize muscle loads, we

used Stochastic Trajectory Optimization for Motion Planning (STOMP) [59], a

planner that does not require gradients for its cost function. In each iteration,

STOMP samples noisy trajectories drawn from a Gaussian distribution around

an initial guess, and updates the result by minimizing the expected value of a

state-dependent cost function. To further improve the performance of STOMP,

we applied a computationally inexpensive local search approach to generate

better initial trajectories than the linear interpolations in configuration space.

We developed a full simulation pipeline for determining the effects of a

wearable robot’s trajectory on the human arm, as well as a muscle force-based

approach for planning optimal robot trajectories. We then applied this frame-

work to ten start and goal state pairs. The combined OpenSim and STOMP

model, on initialization with locally optimal paths, resulted in trajectories with

up to 23.47% lower mean muscle fiber forces compared to interpolated shortest

paths in the robot’s configuration space.
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4.1 Biomechanics Model

4.1.1 WRF Dynamics

The kinematics of the WRF can be described using the Denavit-Hartenberg (D-

H) parameters [α, a, d, θ], listed in Table 3.4 for each DoF. In all trajectories con-

sidered for optimization, the wrist joint and gripper were assumed to be fixed

in the pose shown in Figure 4.1a, with joint angles θ4 = 0 and θ5 = π/2.

The start and goal states for the WRF were specified in terms of a config-

uration space vector θ = [θ1, θ2, d3]T , where θ1 and θ2 are the joint angles for

horizontal panning (DoF-1) and vertical pitching (DoF-2), and d3 is the length

of the prismatic joint (DoF-3).

A trajectory Θ = [θ1, θ2, ..., θN] is a set of N poses, going from the start state θ1

to the goal state θN.

Figure 4.2: The reaction force FR and moment MR are assumed to act on the
human forearm near the elbow joint.

For a given trajectory Θ of the WRF, we can compute the force FR and mo-

ment MR applied at the base of the first DoF due to the robot’s motion. The WRF

has five links, one between between each pair of successive DoFs. As a simpli-
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fying assumption, they were considered to be cylinders with masses, lengths,

and diameters as listed in Table 4.1.

Table 4.1: Inertial parameters for the WRF

Link Mass (kg) Length (mm) Diameter (mm)
(1) 0.470 150 55
(2) 0.425 300 68
(3) 0.457 50 35
(4) 0.248 45 25
(5) 0.350 50 35

Since most of the structural components were mounted on the user’s fore-

arm, we assumed that the corresponding reaction loads FR and MR were applied

on the radius and ulna bones near the elbow joint, as shown in Figure 4.2.

An iterative Newton-Euler algorithm [72] was applied to compute FR and

MR, as described in Chapter 3, with zero external forces and moments at the

end-effector as boundary conditions.

In each trajectory, the speeds of the DoFs were held constant at θ̇1 = 1.5

rad/s, θ̇2 = 1.0 rad/s, ḋ3 = 0.1 m/s. These values were found to be the upper

limits for comfortable operation of the WRF during the pilot interaction study.

For simplicity, the velocities were considered to start and stop instantaneously

at the initial and goal poses. Keeping velocities constant reduced the trajectory

optimization problem to search only within the robot’s configuration space.

Figure 4.3: OpenSim model of the human right arm from [95].
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4.1.2 Human Arm Model

Along each trajectory Θ, the WRF applies reaction forces FR and moments MR

on the user’s forearm. The muscle fibers in their arm are activated in response to

the external loads. We aimed to generate trajectories for the WRF that minimize

the active forces in these muscle fibers.

An OpenSim-based human upper limb musculoskeletal model from [95]

was used for this purpose (Figure 4.3). It contains fifty Hill-type muscle-tendon

actuators [50] with their dynamic properties as described in [97]. This model

includes seven articular DoFs for the human shoulder, elbow, and wrist.

Robot tra-
jectory Θ

External
loads

FR, MR

Desired
human
kine-

matics

OpenSim
model

Computed
Muscle
Control

Muscle
forces

Figure 4.4: Schematic of biomechanics simulation.

We followed a procedure similar to [11], using the MATLAB-OpenSim inter-

face for conducting the biomechanics simulations, as shown in Figure 4.4. For a

given robot trajectory, the computed external loads FR and MR were applied to

the human radius and ulna bones (Fig 4.2).

In the OpenSim model, these external loads were considered to act on the

user’s joints, necessitating appropriate muscle reactions to track a desired hu-

man kinematic trajectory. For all robot trajectories in this chapter, the muscle ef-

forts for the human arm aimed to keep it static in the pose shown in Figure 4.3.

The human joints of interest in this case were the three DoFs at the shoulder,
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and two at the elbow. The muscles controlling wrist flexion and deviation were

considered to be unaffected by the WRF’s motion.

The desired joint angles for the shoulder and elbow are listed in Table 4.2.

The desired velocities and accelerations for all human arm joints were zero

throughout.

Table 4.2: Desired human kinematics

Degree of Freedom Joint Angle (rad)
(1) Shoulder Plane Elevation 1.0
(2) Shoulder Elevation 1.2
(3) Shoulder Rotation 0.3
(4) Elbow Flexion 0.7
(5) Elbow Pronation/Supination 0.0

These desired kinematics were tracked using Computed Muscle Control

(CMC) [110], a simulation technique that combines static optimization with

feedforward control and proportional-derivative (PD) feedback control to de-

termine the necessary muscle excitations to generate a human trajectory. The

forward dynamics model described in [97] was used to determine the active

muscle fiber lengths and active fiber forces based on these excitations.

To illustrate this simulation process, consider a trajectoryΘr , going from θ1 =

[−1.42, 0.77, 0.43] to θN = [1.0, 1.57, 0.40] with N = 25. This trajectory represents

the WRF lifting an object placed below and to the right of the user, and bringing

it to their left hand, as shown in Figure 4.1b. The intermediate poses θi, i ∈

[2,N − 1], are linearly interpolated between θ1 and θN.

The OpenSim model is initialized with the human kinematics listed in Ta-

ble 4.2, and external loads FR and MR are computed for Θr using the WRF’s dy-

namics model. The CMC simulation divides this trajectory into 20 time steps for
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(a)

(b)

Figure 4.5: Illustrative CMC results for the trajectory Θr: (a) tracking errors in
human joint angles are below 0.25 rad, (b) active muscle forces in four fibers.

which the kinematic errors are determined after each iteration. The PD feedback

control gains for tracking each human joint are set to Kp = 400 and Kv = 40, in or-

der to achieve critically-damped error dynamics [110] with Kv = 2
√

Kp. The re-

sulting muscle excitations were interpolated, in this case to 335 steps, and used
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to determine the corresponding active human muscle fiber forces fh,i, i ∈ [1, 50]

along the trajectory.

Fig 4.5 illustrates the results of this CMC simulation for Θr. The joint an-

gle errors were below 0.25 radians in the five human kinematic DoFs of interest.

Fig 4.5b shows the estimated active fiber forces in the first four shoulder muscles

as listed in [95]: three muscles forming the deltoid group, and the supraspina-

tus.

We considered the first 32 muscles listed in [95], corresponding to the human

shoulder and elbow joints to be relevant, and assumed that the WRF’s motion

has no effect on the wrist and hand muscles. The fiber forces generated in these

muscles formed the basis of trajectory optimization and planning described in

the next section.

4.2 Trajectory Optimization

The planning framework uses the biomechanics model described above to gen-

erate ergonomic WRF trajectories. While the overall goal is to plan trajecto-

ries that minimize the muscle fiber forces in the user’s arm, in the interest of

faster convergence, the cost function for the planner also includes other factors

that positively correlate with this muscle force, e.g. reaction force and moment

norms, and smoothness of the trajectory. We also describe an approach for im-

proving the initialization of the planner.
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4.2.1 STOMP with CMC

The backbone for planning WRF trajectories in this chapter is STOMP, chosen

since it allows for the specification of a customized state-dependent cost func-

tion without the requirement of gradients for the costs [59]. The optimization

objective is specified as follows:

Q(Θ) = wT
a Θ

T RΘ + wT
q q(Θ)

Θ∗ = arg min
Θ

Q(Θ)
(4.1)

Starting with an initial trajectoryΘ0, the optimal trajectoryΘ∗ minimizes the

weighted sum of squared accelerations ΘT RΘ and state-dependent costs q(Θ).

The matrix R = AT A is derived from a second-order finite differencing matrix

A, such that AΘ = Θ̈ gives the accelerations of the joints. This term incentivizes

the generation of smooth trajectories.

The STOMP algorithm generates K noisy trajectories drawn from a Gaussian

distribution around the initial guess Θ0, and weighs them based on the cost

Q(ΘK) to estimate a stochastic gradient update, and repeats this process over

successive iterations.

The state-dependent trajectory cost function contained five individual terms,

q(Θ) = [qh , q f , qm , qd f , qdm]T , defined as follows:

Human Muscle Cost qh

For each noisy trajectory ΘK, a CMC simulation was performed to obtain the

muscle fiber forces generated in the user’s right arm due to the WRF’s motion
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along ΘK.

qh =

M∑
j=1

Fh, j(ΘK) (4.2)

The total fiber force Fh, j for muscle j is the L1 norm of the force vector fh, j

(Figure 4.5b) interpolated for that muscle along ΘK. qh was computed for the

first M = 32 out of 50 muscles in the OpenSim model, with the wrist and hand

muscles excluded.

Reaction Load Costs q f and qm

The costs q f and qm accounted for the total reaction force FR, and reaction mo-

ment MR experienced by the user. The norms of FR and MR were summed for

each pose θi, i ∈ [1,N] along a noisy trajectory ΘK:

q f =

N∑
i=1

‖FR(θi)‖ , qm =

N∑
i=1

‖MR(θi)‖ (4.3)

Load Deviation Costs qd f and qdm

In addition to direct costs q f and qm for the reaction loads, qd f and qdm penalized

positive deviations in the reaction loads compared to the initial trajectory Θ0,

and reward negative deviations. This allowed for a more aggressive optimiza-

tion towards a low-cost path.

The deviations were computed based on the relative difference in force and

moment norms at each pose between a candidate trajectory ΘK and the initial
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trajectory Θ0. The relative difference in force ∆Fi at step i was defined as:

∆Fi =
‖FR(θi)‖ −

∥∥∥∥FR(θ0
i
)
∥∥∥∥∥∥∥∥FR(θ0

i
)
∥∥∥∥ (4.4)

Depending on the sign of ∆Fi , a corresponding deviation metric d f ,i was

obtained as follows:

d f ,i =


e(λ1∆Fi) − 1, ∆Fi ≤ 0

e(λ2∆Fi) − 1, ∆Fi > 0
(4.5)

where λ1 < λ2, resulting in a higher positive penalty for large increases in the

reaction force norm (Figure 4.6). A similar procedure was applied to compute

the deviation metric dm,i for the reaction moment norm.

∆Mi =
‖MR(θi)‖ −

∥∥∥∥MR(θ0
i
)
∥∥∥∥∥∥∥∥MR(θ0

i
)
∥∥∥∥ (4.6)

dm,i =


e(λ1∆Mi) − 1, ∆Mi ≤ 0

e(λ2∆Mi) − 1, ∆Mi > 0
(4.7)

Using these metrics, the total deviation costs for a trajectory were defined as

follows:

qd f =

N∑
i=1

d f ,i , qdm =

N∑
i=1

dm,i (4.8)
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Figure 4.6: Deviation metric d f ,i as a function of ∆Fi, with higher penalties for
positive deviations.

There is a trade-off between the range of exploration for the noisy trajectories

and the rate of convergence. We set the number of noisy trajectories sampled

in each iteration, K = 8, and found that STOMP converged at around 25 itera-

tions for each of the ten pairs of start and goal states considered in this work.

However, even with a relatively small number of iterations, the task of finding

a trajectory with low muscle fiber forces was computationally expensive due to

the CMC simulations.

4.2.2 Local Search for Initialization

Within the constraint of computational costs for CMC, we improved the con-

vergence of STOMP by generating better trajectories for its initialization while

keeping the number of iterations fixed at 25.

Starting with the linearly interpolated shortest paths in configuration space

between the start and goal states, we found a trajectory that minimizes the norm
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of the reaction moment MR. This results in the trajectoryΘ∗
M

, consisting of poses

θ∗
i
, determined by local minimization in a greedy manner along successive steps

from the start state to the goal state.

(a)

(b)

Figure 4.7: (a) Reaction force norms ‖FR‖, varied much less than (b) moment
norms ‖MR‖, along the linearly interpolated configuration space paths for the
ten example start and goal states.
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This strategy emerged from an observation of the trends for reaction forces

and moments. Given a trajectory Θ consisting of N steps θi, i ∈ [1,N], the cor-

responding reaction forces FR and moments MR on the human arm were com-

puted using the WRF’s dynamics model. Across all linearly interpolated con-

figuration space trajectories considered here, relatively little variation was seen

in ‖FR‖ (between ˜19 and ˜21 N) compared to the variation in ‖MR‖ (between

˜2 and ˜9 Nm), as shown in Figure 4.7. This suggests that minimizing ‖MR‖

alone would be a more suitable objective, leading to the following constrained

nonlinear optimization problem:

θ∗i = arg min
θi

‖MR(θi)‖2 (4.9)

Figure 4.8: On average, local search (red) leads to a relative improvement in the
STOMP cost function over linearly interpolated initial trajectories (black).

An interior-point algorithm [27] was used to compute θ∗
i
. The lower and

upper bounds for feasible configurations were determined by the speeds of each

DoF, θ̇1, θ̇2, and ḋ3, considered to be constant as described in the WRF dynamics
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model. For instance, the horizontal panning joint angle θ1 was bounded by

[θ1 − θ̇1∆t, θ1 + θ̇1∆t], where ∆t is the maximum trajectory time ∆T (taken to be

3s), divided by the number of steps N. The algorithm was initialized with the

trajectory Θ0, consisting of linearly interpolated poses between θ0
1

and θ0
N

.

Although the STOMP cost function Q(Θ) already contains a term for ‖MR‖,

explicitly optimizing for it in the local search before starting the STOMP iter-

ations led to an improvement over initial trajectories obtained through linear

interpolation. Figure 4.8 shows the means and standard errors for the cost func-

tions, normalized by the cost of the first iteration, for each of the ten start and

goal state pairs, resulting from STOMP performed on the linearly interpolated

configuration space trajectories, and on the results from the local search. As dis-

cussed in the next section, this approach consistently generated trajectories with

reduced muscle fiber forces compared to the other methods.

4.3 Results

In this section, we compare WRF trajectories computed using all four ap-

proaches described in this chapter, for ten start and goal state pairs.

The biomechanical STOMP-based optimization was performed twice for

each pair, first using an initial guess for the trajectory, and then using the re-

sult from the local search. The initial guess for a valid trajectory was the linear

interpolation between the start and goal states in configuration space. The local

search-based approach found a trajectory around this initial guess that mini-

mized the reaction moment norm ‖MR‖.
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The results for mean total muscle fiber forces from CMC simulations on the

outputs from each of these four approaches are listed in Table 4.3. Trajecto-

ries (1) and (2) correspond to the two stages of the task shown in Figure 3.10b:

a self-handover (SH-1 & 2), and (3) represents the assisted two-person han-

dover (A2PH) shown in Figure 3.10c. The other start and goal state pairs were

randomly generated in the WRF’s configuration space (R-1 to R-7) with path

lengths of at least 0.8 m.

Figure 4.9: Violin plots (box plots with kernel density estimates) of mean total
muscle fiber force data from Table 4.3 for all trajectories.

As listed in Table 4.3, STOMP performed on the local search output consis-

tently resulted in WRF trajectories with lower mean total muscle fiber forces in

the human arm compared to the other approaches.

The median improvement for STOMP on local search, compared to the ini-

tial interpolated paths is by 11.00 %, compared to STOMP on the initial trajec-

tories by 2.61 %, and compared to local search alone by 5.26 %. The degree of

improvement varies with the start and goal state pairs (Table 4.4). Among all
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Table 4.4: Percentage reductions in mean qh for STOMP initialized with local
search (LS) compared to other methods

Trajectory Percentage reduction for STOMP+LS versus: (%)
Initial Path STOMP on Initial Local Search

(1) SH-1 11.03 1.83 3.57
(2) SH-2 9.15 1.36 3.05
(3) A2PH 8.90 1.96 3.91
(4) R-1 10.97 10.02 1.93
(5) R-2 6.01 3.67 6.60
(6) R-3 23.47 9.50 7.93
(7) R-4 1.68 0.34 1.38
(8) R-5 14.41 0.87 13.43
(9) R-6 14.26 3.26 11.65
(10) R-7 18.08 8.69 14.98

approaches, the maximum improvement for STOMP on local search is over the

initial trajectory (23.47 % for R-3), followed by over local search alone (14.98 %

for R-7), and finally over STOMP on the initial trajectory (10.02 % for R-1).

These results are also illustrated in Figure 4.9, with the local search outputs

improving upon the initial linearly interpolated paths, but not consistently out-

performing STOMP on the linear interpolation. The local search tended to out-

perform STOMP on the linear interpolation in cases where the noisy trajectories

generated by STOMP were unable to explore the configuration space widely

enough. Box plots and kernel density estimates on the data from Table 4.3 show

that STOMP with either initialization has a lower variance than the local search

output alone, and skews towards lower mean total muscle fiber forces.

Looking at a specific start and goal state pair, we illustrate the effects of

each of the trajectory generation approaches. Consider the start state θ1 =

[3.08, 1.08, 0.43] and goal state θN = [0.32, 1.52, 0.40], with N = 25 (Trajectory
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Figure 4.10: End-effector positions in 3D for trajectory R-1 from Table 4.3 show-
ing the initial path (black), STOMP optimized on initial path (red), local search
optimum (blue), and STOMP optimized on local search (magenta).

(4) R-1, from Table 4.3). Figure 4.10 shows the 3D Cartesian position of the end-

effector along trajectories from each of the four approaches.

The STOMP cost component qh, the total muscle fiber force along a trajectory,

is shown in Figure 4.12 for each of these approaches, interpolated to 300 steps

during CMC simulations. The STOMP optimal trajectory initialized on the lin-

early interpolated configuration space results in a lower mean total muscle load,

but does not explore far enough to reduce it significantly (from ˜6.42 kN to ˜6.36

kN). The local search is able to quickly find a trajectory that pitches lower in

the Z-direction than the initial (Figure 4.11b), reducing the WRF’s moment arm

about the user’s elbow. In this case, local search outperforms STOMP on the

initial guess, with a result of ˜5.83 kN. The final STOMP iterations performed on

the local search result further reduce this load to ˜5.72 kN.
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(a)

(b)

(c)

Figure 4.11: DoFs 1–3 along all approaches for trajectory R-1.
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Figure 4.12: Comparison of total muscle fiber force qh for trajectory R-1.

4.3.1 STOMP Ablation Study

We performed an ablation study to determine the effect that each component

of the state-dependent cost q(Θ) has on the overall performance of STOMP.

We computed the total cost, Q(Θ) with STOMP performed using subsets of the

terms in q(Θ), initialized on linearly interpolated configuration-space trajecto-

riesΘ0 for 25 iterations. To compare the effects of the components, the total costs

were normalized, dividing them by Q(Θ0) to provide the relative improvements

in performance, as shown in Figure 4.13.

For all ten start and goal state pairs, we first considered only the effect of

the direct reaction load costs q f and qm. This resulted in a marginal relative

improvement over Q(Θ0) (mean reduction by ˜6%) . Adding the load deviation

costs qd f and qdm improved this performance to a ˜16% mean reduction. Finally,

adding the cost term qh from the muscle fiber forces computed through CMC
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Figure 4.13: Mean normalized STOMP cost functions with standard errors for
subsets of the cost terms (red, blue), and for the full cost function (black).

resulted in a ˜61% mean reduction over Q(Θ0).

Including all of the components in the cost function for STOMP helped gen-

erate trajectories with reduced biomechanical loads even with a relatively small

number of iterations.

4.4 Conclusion

We presented a simulation framework based on OpenSim for determining the

effect of a supernumerary wearable robot’s motion on the user, and finding tra-

jectories that minimize human muscle loads. Aside from motion planning, this

framework can also be used for improving the design of a wearable robot, as

in [11], by accounting for biomechanical effects.
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We described a STOMP-based approach for finding optimal trajectories that

include human muscle forces determined by CMC in their cost. They were ini-

tialized with paths that linearly interpolate between the start and goal states

in the configuration space, as well as with a locally-optimal paths, consistently

finding trajectories that reduce human muscle loads.

While these are promising results, our analysis included key assumptions:

• Keeping the speeds of the motors constant simplified the dynamics anal-

ysis and allowed the local search to be performed rapidly. However, this

would prevent dynamic obstacle avoidance.

• We assumed that the human keeps their arm static as the robot moves.

While local search is independent of the human’s motion aside from kine-

matic constraints, this assumption sped up the OpenSim CMC simula-

tions.

• The assumption of absence of collisions between the human and robot was

justified based on the human’s static pose considered here, chosen such

that most WRF motions remained away from the human, resulting in a

simplified STOMP algorithm, which would otherwise require an explicit

obstacle cost as described in [59].

As the STOMP iterations with CMC simulations are far from real-time, re-

quiring several hours to compute on typical hardware associated with robotic

arms, approximate methods are needed for addressing some of the above as-

sumptions and deploying this framework on a physical system. The local

search, which can be optimized for real-time performance, would be viable in

applications where a coarse level of improvement over an initial guess is accept-
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able. One approach for further incorporating human muscle loads could be a

supervised learning model, trained on a large database of combined human and

robot motions, and used to augment a local search-based planner, or one of the

more common sampling-based planners.

As further limitations, these results were obtained from numerical simula-

tions that do not capture the full objective and subjective experience of wear-

ing the WRF, which includes factors such as shear on the human skin from the

mounting interface, and jerks due to accelerations of the motors. We also do not

account for musculoskeletal fatigue after wearing the device for extended peri-

ods of time, an aspect of interaction that was often cited by study participants

to be a limiting factor in its usability. Within the simulations themselves, the

improvement afforded by STOMP over the initial linear interpolation or local

search output, while consistent, did not have large effects for every start and

goal state considered here.

Despite these limitations, the framework presented in this chapter could as-

sist in the design, biomechanical analysis, and motion planning for SR devices,

allowing them to be effective agents in human-robot collaboration tasks.

Having analyzed the effects of the WRF on the human’s arm, in the next

chapter we look at the reverse side of this two-way interaction, and study

how the user affects the WRF’s motion. We discuss the WRF’s control systems

through linear analysis, and apply human motion prediction to improve the

feedback control of the end-effector when subject to disturbances due to the

user’s arm movements.
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CHAPTER 5

STABILIZATION AND CONTROL

In order for the WRF to be an effective augmentation, it needs to be able to

counteract the disturbances introduced in its motion plan due to the user’s in-

dependent activities. In this chapter, we present a method for stabilizing the

end-effector of the WRF, which is subject to disturbances arising from move-

ments of the user’s arm to which it is attached.

We initially consider stabilizing the end-effector in the simplified case of

small, planar movements using time series forecasting of human arm motion.

This approach is extended to include a recurrent neural network (RNN) model

for human motion prediction, and applied for 3-D stabilization in five common

tasks such as wiping a desk and stowing items into drawers. The goal in all of

these approaches is to keep the WRF’s end-effector static at an initial position.

The challenge of wearable arm compensation and stabilization can be

viewed as a PID control problem. The direct feedback control strategy is out-

lined in Figure 5.1a. The joint angle reference signals for each motor are deter-

mined from the poses of the human and WRF detected by an optical motion

capture system, as well as the desired pose of the end-effector. However, the

performance of this approach is affected by delays in sensing and actuation,

where the reception of joint angle reference signals lags the real state of the sys-

tem. This drop in performance can be accounted for, even with stock motors, by

adding a predictive model of human motion before set point generation (Fig-

ure 5.1b).
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(a) Overview of direct feedback control.

(b) Feedback control with prediction model incorporated.

Figure 5.1: The predictive models generate motor joint angle references over a
finite horizon. We compared the end-effector stabilization (b) without human
motion prediction, and (c) with human motion prediction.

5.1 Related Work

This challenge of stabilizing a wearable robotic arm is somewhat similar to that

of manipulators rigidly mounted onto a mobile base. In typical mobile manipu-

lators, however, both robotic components are controllable and as a result exter-

nal disturbances from loads on either of them can be compensated for by gener-

ating combined cooperative motion plans for a specified task [99]. Force-based

approaches, such as potential functions tracking the projection of the robot’s

equilibrium point on the ground (Zero Moment Point) [53], and frequency-

domain methods for vibration suppression [10] have been used to stabilize the

mobile base and manipulator end-effector. A PID feedback controller with ex-

ponential position error weighting for the manipulator arm has been applied in

scenarios where the mobile base is considered to be an independent system [90].
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In our case, since the wearable robot is attached to a human arm which has

structured but uncontrollable movements, the stabilization of the end-effector’s

position needs to be performed by the manipulator alone.

This situation bears some similarity to the domain of hand-held robotic

surgery devices, where physiological hand tremors have to be compensated for.

One approach estimates tremors online by modeling them as truncated Fourier

series, which are fed as an input to an open-loop controller for tool-tip posi-

tion compensation [92]. Another approach involves modeling hand tremors as

linear dynamic systems, with Kalman filtering for state estimation [18]. The

hand tremor velocity estimate is considered to be a load disturbance, leading

to a feed-forward control term added to a standard PID feedback controller. In

our case, the actuators do no have feed-forward control capability, motivating a

set-point prediction strategy to compensate for latency in sensing and actuation.

The most closely related work was presented in backpack mounted Super-

numerary Robotic Limbs (SRL) involving human disturbance rejection through

bracing [86]. Bracing involves the SRL grasping a structure in the environment

to stabilize its user in a standing position. Human disturbances, in the form of

postural sway, are modeled as external forces and torques acting on the SRL’s

base. The pose estimation of the SRL base is improved using a bracing strat-

egy generated by shaping the stiffness of the manipulator. Another scenario

involves a force sensing-based drilling task in which the SRL holds a wooden

piece steady while the wearer drills into it [71]. This approach used human-

human demonstrations of the task, where the effects of the robot’s motions were

condensed into force inputs, and the humans’s motions into tool-tip positions.

An autoregressive moving-average process with exogenous inputs (ARMAX)
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model was used to predict the force required by the SRL to hold the work-

piece stable during the task. Our scenario involves human arm movements

on a similar scale as the leader’s hand motion with the SRL. However, instead

of applying grasping forces to a static workpiece or the environment, the end-

effector is stabilized in free space. We adopted a hybrid approach, combining

prediction models (autoregressive time series and recurrent neural network) for

the motion of the human arm, with its effects on the end-effector compensated

through feedback control.

5.2 System Identification of Motors

In order to better understand the WRF’s assistive capabilities and develop ap-

propriate controllers, we first performed system identification tests to recover

the in-situ motor parameters.

Each of the Dynamixel motors used in the WRF have built-in PID controllers,

apart from the AX-12A motor for wrist rotation that only has P control. Each

motor receives a reference angle θR as input from the PC, driving a DC motor

plant, with output angle θ measured using built-in encoders (Figure 5.2a).

The plant transfer function G(s) between voltage V and output angle θ is

based on an L-R circuit DC motor model [22], resulting in a third order system

in terms of parameters α0, γ0 and γ1:

G(s) =
θ(s)
V(s)

=
α0

s3 + γ0s2 + γ1s
(5.1)
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(a)

(b)

Figure 5.2: (a) Control system schematic for the Dynamixel motors used in the
WRF. (b) The responses of identified system models (green) are compared with
measured motor responses (black) to the same reference signal (blue), shown
here for the horizontal panning motor.

C(s) = Kp +
Ki

s
+ Kd s (5.2)

During system identification, the PID controller’s transfer function C(s) uses

manufacturer supplied values for the gains Kp = 4, Ki = 0, and Kd = 0
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The closed-loop transfer function P(s) between the motor output angle θ and

reference signal θR is a third-order system with no zeros:

P(s) =
θ(s)
θR(s)

=
G(s)C(s)

1 + G(s)C(s)
=

B0

A0 + A1s + A2s2 + s3 (5.3)

We fit the closed-loop model parameters A0−2 and B0 to the measured out-

put signals using the Simplified Refined Instrumental Variable method for

Continuous-time model identification (SRIVC) [117, 120]. The plant parame-

ters α0, γ0 and γ1 were then obtained from A0−2 and B0. Each DoF was identified

individually, keeping all other motors fixed, and the magnitudes of the step ref-

erence input signals were determined from the usage scenarios (e.g. steps of 0.7

rad over 2 seconds for DoF-1 as shown in Figure 5.2b).

The accuracy of the identified system models was evaluated by computing

the Normalized Root Mean Squared Error (NRMSE) goodness of fit between

the output signals measured by the encoders and the simulated motor model

outputs, for the same reference input signals. The plant parameters and model

fitting metrics for each DoF are listed in Table 5.1.

Table 5.1: Identified motor model parameters

DoF Motor α0 γ0 γ1 Fit (1-NRMSE)

1) Horizontal Panning MX-64T 1078.49 572.86 48.38 0.961
2) Vertical Pitching MX-64T 463.53 408.31 31.31 0.909
3) Length Extension MX-28T 1134.06 674.49 29.88 0.899
4) Wrist Rotation AX-12A 1098.43 733.68 98.76 0.919
5) Wrist Pitching AX-12A 4041.57 1439.19 64.49 0.869
6) Gripper MX-28T 173.35 1633.97 272.87 0.926
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5.3 Planar End-Effector Stabilization

In this section, we consider a planar collaborative usage scenario (Figure 5.3),

where the wearable robotic arm would retrieve workpieces and bring them to

the user’s workspace, assist the user in an assembly task, and stow workpieces

at a desired location. The robotic arm would grasp objects that are either handed

over by the human in free space or under-constrained on a surface, preventing

the adoption of a bracing strategy that requires a rigid connection with the en-

vironment. Once the object is grasped, if the user were to then perform other

tasks with their hands, it would lead to disturbances in the position of the end-

effector, and consequently the object. We aim to reduce these disturbance, lead-

ing to more stable grasp for objects such as cup filled with a liquid, or a camera.

Figure 5.3: Planar collaborative usage scenario.

In order to study the stabilization of the end-effector in the planar (2D) do-

main, we used the setup shown in Figure 5.4. AprilTag fiducial markers [81]

were placed on the robot’s end-effector, and above the axis of DoF-1 (robot base)

on the attachment point between the robot and the human arm. They were
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Figure 5.4: Planar system setup: the robot’s base and end-effector positions are
tracked using visual fiducial markers sensed by a stereo camera.

sensed with an Orbbec Astra stereo camera for vision-based position tracking

of these two points. Figure 5.4 shows the camera coordinate system O = (x, y),

with base coordinates PB = (xB, yB), and end-effector coordinates PE = (xE, yE).

Given a detected deviation in the base position (∆xB,∆yB), the new joint refer-

ence angle Θ1 for DoF 1, and length reference L3 for DoF-3, are computed using

the 2-D Inverse Kinematics (IK) equation:

Θ1

L3

 =

tan−1((yE − y′B)/(xE − x′B)√
(xE − x′B)2 + (yE − y′B)2

 (5.4)

where (x′B, y
′
B) = (xB + ∆xB, yB + ∆yB).

In the WRF, length extension is achieved with a rack-and-pinion mechanism,

so that L3 is linearly related to Θ3, the motor joint angle for DoF-3. Given the
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current robot morphology, deviations in L3 can be compensated to within ˜12

cm. This also served as a decision variable for whether or not a compensatory

motion should be attempted.

Joint angle set points for each motor are generated from the fiducial marker

positions after applying equation (5.4), which were then tracked by built-in

closed loop controllers in the servo motor hardware. Deviations in x and y coor-

dinates of the end-effector were considered separately, since for the initial pose

shown in Figure 5.4, the x coordinate was predominantly affected by DoF-1, and

y coordinate by DoF-3, and there was a marked difference in the performance

characteristics of the two motors.

Table 5.2: Motor step response characteristics

Parameter DoF 1 DoF 3
Rise time (s) 0.133 0.294
Settling time (s) 0.539 0.489
Overshoot (%) 10.79 0.487
Peak time (s) 0.293 0.650
Bandwidth (Hz) 2.726 1.174

Following the system identification procedure described earlier, the step re-

sponse characteristics for these motors were estimated (Table 5.2). The motors

had reasonably fast responses, with bandwidths of ˜2.7 Hz and ˜1.2 Hz respec-

tively, and settling within ˜0.5 s to the maximum joint angle deviations likely

to be encountered in our scenario. The difference in performance was due to

a higher-end Dynamixel MX-64 motor used for DoF-1, compared to a lower

power MX-28 motor for DoF-3.

105



5.3.1 Human Arm Motion Data

Given the characterization of the motors, we now turn to the human arm mo-

tions that need to be compensated for, analyzing the spectral properties of a

sample motion dataset.

Using the setup shown in Figure 5.4, a dataset of N = 3604 points (xB, yB)

was collected, of a wearer moving their arm about a mean position within an

amplitude of ˜15 cm, with the motors of the robotic arm held static. The camera

in our setup had a frame rate of ˜26 Hz. Figure 5.5 shows an illustrative data

sample.

Figure 5.5: Illustrative plots of the planar human arm movement dataset: most
motions were restricted to within ˜15 cm from the starting position.

The Fourier transforms of the x and y coordinates from the dataset show

that the human arm motion while wearing the robotic arm was composed of

frequencies largely below 1 Hz (Figure 5.6). The bandwidth of the robot’s actu-
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Figure 5.6: Fourier transform plots of robot base position (xB, yB) data.

ators is greater than 1 Hz (Table 5.2). This indicates that the actuators should be

able to compensate for most of the disturbances introduced at the robot’s base

by the human arm in a feedback control system as shown in Figure 5.1a. The ef-

fect of physiological tremors with frequencies of 10 Hz and higher is negligible,

since their typical amplitudes are of the order of 0.1 mm [92].
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5.3.2 Delay Estimation

While the above characterization of the planar human movement and motor

properties suggests that a feedback control system would be able to compensate

for human-generated disturbances, in practice the system had a mean error of

about 5.9 cm in x and 3.7 cm in y using feedback control alone (Table 5.3).

This performance degradation is affected by delays stemming from a com-

bination of latency in communication with the motors (rate of ˜50 Hz), vision

tracking system (rate of ˜26 Hz), mechanical transmission delays, as well as

nonlinear effects in the motors due to Coulomb and viscous friction [98]. Im-

proving stabilization performance requires a predictive approach to account for

these delays.

The aggregate effect of these delays can be identified using a closed-loop

step response procedure. Since the motor response for DoF-3 has higher rise

time and settling time, as well as lower bandwidth (Table 5.2), it will act as the

limiting factor in terms of time delay. Therefore the third-order system for DoF-

3 was augmented with a time delay term:

P(s) =
θ(s)
θR(s)

=
e−τd sB0

A0 + A1s + A2s2 + s3 (5.5)

The step response was determined by tracking the visual markers for the

same reference inputs given in Figure 5.7, and computing the joint angle Θ3 by

applying the IK equation (5.4). This allowed for the estimation of the time delay

τd between the motor’s internal response and detection of the same movement

by the camera. As before, the SRIVC system identification procedure was ap-

plied to step response tests for DoF-3 (Figure 5.7), and the delay τd was found to
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be 76.48 ms, with an NRMSE model fit of 0.8479. Compensating for this delay

required a prediction of two time steps into the future for a sampling rate of ˜26

Hz of the camera (sampling period of ˜38.5 ms).

Figure 5.7: Closed-loop step response of DoF-3 measured by applying IK equa-
tions to data from the stereo camera. The delay τd is estimated by fitting a linear
model to this data.

5.3.3 Autoregressive Model

After estimating the delay present in our system, we aimed to improve end-

effector stabilization performance by predicting the robot’s base position move-

ments over the time horizon equal to the delay. We did so by learning an au-

toregressive predictive model for the human arm motion.

As a first assumption, similar to [71], the deviations in the x and y coordinates

of the human arm movement were modeled as discrete univariate time series

composed of a combination of Auto Regressive (AR) and Moving Average (MA)
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Figure 5.8: Sample autocorrelation and partial autocorrelation functions, ρk and
rk, for x and y coordinate data with lags k ∈ [1, 20] and confidence bounds of
twice the standard error. rk drops off much faster than ρk, indicating a predomi-
nance of AR terms.

terms (“ARMA”), with no exogenous inputs:

xt = C +

p∑
i=1

Aixt−i +

q∑
j=1

B jεt− j (5.6)
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Here xt is either the x or y position coordinate error, εt is a white noise series

with zero mean and σ2 variance, assumed to be normally distributed. Past co-

ordinates are included in this model up to p time steps, which is the order of

the autoregression (AR) part, with coefficients Ai. Past white noise terms in the

moving average (MA) part are included up to an order q, with coefficients B j.

The constant term C is assumed to be zero, since deviations are measured from

an initial position. This model makes the assumption that xt is stationary, i.e. its

expected value and variance are independent of time. This property was veri-

fied to hold true for our dataset using the augmented Dickey-Fuller hypothesis

test [36].

In the next step, we investigated which of the terms, AR or MA, were domi-

nant in the data. The dominance of either term would indicate that a simplified

model could be adopted instead of a full ARMA model. For this, we compared

the sample autocorrelation function, ρk with the sample partial autocorrelation

function, rk. ρk is the correlation between sample points xt and xt−k:

ρk = Corr(xt, xt−k) =
Cov(xt, xt−k)

Var(xt)
(5.7)

The partial autocorrelation rk measures the correlation between xt and xt−k

after discounting for the effects of all intermediate lags xt−1, ..., xt−k+1. This mea-

sures the direct dependence between a data point and its lagged value, as op-

posed to ρk, which encodes the dependence of intermediate terms as well.

rk = Corr(xt − x̂t, xt−k − x̂t−k) (5.8)

Here x̂t and x̂t−k are the best linear projections of xt and xt−k onto the interme-
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diate terms using least-squares regression.

Figure 5.8 shows that ρk decays at a much lower rate than rk for both coor-

dinates, indicating that a data point xt depends more heavily on past points xt−k

rather than past white noise terms εt−k [23]. This allowed for the simplification

of the ARMA(p,q) model into a purely autoregressive AR(p) model:

xt =

p∑
i=1

Aixt−i + εt (5.9)

To find the order p of this AR(p) model, we applied the Bayesian Information

Criteria (BIC), which optimizes a log-likelihood goodness of fit while penalizing

more complex models [23]:

BIC = −2log(L) + (p + 1)log(N) (5.10)

Here L is the likelihood function, p is the order of the AR process, and N

is the number of samples. The order p = 11 is found to have minimum BIC

for both coordinates. The model parameters Ai and white noise variance σ2 for

these AR(p=11) processes were estimated using the Yule-Walker method [42].

This model was tested on a validation dataset of N=1050 points collected

in the same setup (Figure 5.4), for predictions k=2 time steps into the future,

which should compensate for system delays of ˜77 ms. This two-step prediction

matched the ground truth data well (Figure 5.9), having mean absolute errors

of 1.53 cm and 0.73 cm respectively in x and y coordinates, with standard devi-

ations of 1.87 cm and 0.89 cm.

112



Figure 5.9: Sample of human arm motion prediction data (red), aligned with
ground truth (black).

5.3.4 Results

Having obtained an autoregressive predictive model for planar human arm mo-

tion, its performance was compared to the case without prediction when ap-

plied to end-effector stabilization, as per the approaches shown in Figure 5.1.

Table 5.3: Deviation of end-effector with and without prediction in 2D

Quantity Mean (cm) Std. Dev. (cm)
|∆x|nopred 5.921 3.732
|∆x|pred 4.765 3.398
|∆y|nopred 3.706 2.402
|∆y|pred 2.959 2.768

Both these strategies were implemented independently, collecting N=2312

data points without prediction, and N=2750 points with the AR predictive

model in use. The resulting scatter plots of end-effector pose along with their
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(a) Scatter plots and Gaussian kernel density estimates of 2D end-effector
position error

(b) Without prediction (c) With prediction

Figure 5.10: Comparison of planar end-effector position errors with (orange)
and without (blue) the predictive AR model. (a) The predictive model results
in lower mean position error in x and y coordinates; (b), (c) show the individual
error scatter plots with 95% confidence regions.

114



kernel density estimates are shown in Figure 5.10. Table 5.3 reports mean and

standard deviations of the absolute errors in displacement from the starting

pose with only feedback control (|∆x|nopred and |∆y|nopred), and feedback control

along with the predictive AR model (|∆x|pred and |∆y|pred). Position errors were

reduced by about 1.15 cm (19.4%) in the x coordinate and 0.75 cm (20.1%) in the

y coordinate.

5.4 End-Effector Stabilization in 3D

Having obtained improvements in end-effector stabilization in the planar setup,

we extend this approach to more general tasks in full 3D space. As before, lin-

ear system identification techniques were applied to estimate the delays and

determine the prediction horizon for human motion.

Two approaches were considered for predicting human motion over this

horizon: an autoregressive (AR) time series model as before, and a recurrent

neural network (RNN) model adapted from [76]. These models take in pose

data for the WRF and human, and generate a sequence of joint angle references

over a specified time horizon. Owing to the requirement of large datasets for

RNNs, both of these approaches were trained offline using the KIT Whole-Body

Human Motion Database [75] and adapted for online predictive control through

the framework shown in Figure 5.1b. The performance of these offline models

transferred well to the real 3D tasks, which were slightly different from the train-

ing examples in the database. Common training data also allowed for a more

direct comparison between the two approaches.
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5.4.1 Human Motion Prediction

The criteria for human motion prediction models for end-effector stabilization

were real-time (or close to real-time) prediction with optical motion capture

data, and good performance over the required controller time horizon in close-

range tasks.

(a) Marker set for the entire skeleton.
(b) Relevant positions for human motion
prediction.

Figure 5.11: Of the full set of (a) 56 markers from the KIT Whole-Body Human
Motion Database, (b) we extract the relevant points on the human right arm—C:
clavicle, S: shoulder, E: elbow, W: wrist.

Table 5.4: Relevant task motions from KIT Whole-Body Motion Database

Task No. of trials Total no. of data points

1) Drying right arm 15 7918
2) Washing right arm 6 4034
3) Taking a book from a shelf 6 825
4) Opening pants 6 672
5) Bringing hand to mouth 5 586
6) Pouring from a cup 7 2758
7) Wiping a table 6 2411
8) Stirring a bowl 7 2157
9) Pouring from a bottle 5 1421

Two predictive models were developed: an autoregressive (AR) time series

116



as before, and a single-layered gated recurrent unit (GRU) adapted from [76]

and modified for real-time performance.

Both of these models were trained offline using the KIT Whole-Body Human

Motion Database [75], available at [3]. It consists of a wide selection of task

and motion scenarios, with annotated recordings from optical motion capture

systems, raw video, as well as auxiliary sensors (e.g. force plates). For this work,

we utilized labeled human skeleton marker data (Figure 5.11) from nine tasks in

the database that involved periodic movement of the right arm. They are listed

in Table 5.4 along with the number of trials performed for each task, and the

total number of data points with human right arm movements extracted from

all trials.

The full-body skeleton marker set consists of 56 points, out of which 10 are

relevant for prediction of human right arm motion, with the positions on the

body determined by a weighted sum of the individual 3-D positions of the

markers (Figure 5.11b): 3 for the clavicle (C), 3 for the shoulder (S ), 3 for the

elbow (E), and 4 for the wrist (W).

We generated three relative position vectors from the four body points: ~v1 =

~CS , ~v2 = ~S E, and ~v3 = ~EW. This allowed for prediction of movements of a

particular body segment independent of its previous neighbor, and improved

the training accuracy of the models.

Delay Estimation

The first step in developing these models was to estimate the time horizon for

predictions over which the WRF’s motors need to be controlled to compensate
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(a) Joint angle references need to be predicted over a finite horizon h.

(b) Response of DoF-3 measured using motor encoders (blue) and IK from op-
tical tracking (orange) to a reference step signal (black).

Figure 5.12: Estimating sensing and actuation delays for determining the time
horizon for human motion prediction.

for sensing and actuation delays. As earlier, the time horizon h (Figure 5.12a)

was determined by system identification of a linear model with a delay of τd
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included:

P̂(s) =
θ̂(s)
θR(s)

=
e−τd sB0

A0 + A1s + A2s2 + s3 (5.11)

θ̂ is the motor response to an input step signal θR, reconstructed though in-

verse kinematics using data from the motion capture system (Figure 5.12b). The

other parameters in the transfer function, A0−2 and B0, were obtained from the

system identification performed earlier.

The delay τd was estimated to be ˜86 ms using the same SRIVC method as

earlier, averaged across DoFs 1-3 which showed relatively slower responses due

to larger loads. This corresponds to a prediction time horizon h of about 10 time

steps for the OptiTrack motion capture system with frame rate 120 Hz [5] used

for 3D stabilization.

Autoregressive Time Series Model

As before, for the prediction model, we started with the initial assumption of an

Autoregressive Moving-Average (ARMA) process:

xt = C +

p∑
k=1

Akxt−k +

q∑
j=1

B jεt− j (5.12)

Here xt is a discrete univariate series, composed of a constant term C, past

terms xt−k weighted by coefficients Ak for lag k (AR term), and past white noise

terms εt− j weighted by the coefficients B j. The number of past terms, p and q

determine the orders of the AR and MA parts, respectively.
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Figure 5.13: Sample autocorrelation and partial autocorrelation functions for the
component v2,x from relevant motions in the KIT Database for lags k ∈ [1, 30].

Each component of the relevant body vectors v1, v2 and v3, was considered to

be an independent univariate series. The stationarity of these series was verified

with augmented Dickey-Fuller hypothesis tests [36].

As before, we analyzed the autocorrelation (ρk) and partial autocorrelation

(rk) functions at lags k for these series. There were sharp drop-offs in rk com-
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pared to ρk over successive lags for each component of the body vectors, illus-

trated Figure 5.13 for the X component of v2. This indicated that the ARMA

processes could be simplified into purely autoregressive (AR) models [23]:

xt = C +

p∑
k=1

Akxt−k + εt (5.13)

The model order p for each of the nine components in the body vectors

was determined using the Akaike Information Criterion (AIC), a maximum-

likelihood measure of the goodness of fit [12]. The AIC was computed for model

orders up to 30 for each of the nine series, and the one with minimum AIC was

selected as p for that series. The minimum AIC values were obtained at different

model orders for each series, ranging from p=18 to p=25. The model parameters

Ak, C, and εt were determined using the Yule-Walker method [42], trained on the

task motions listed in Table 5.4.

Recurrent Neural Network Model

While an AR model is able to forecast human motions through local predictions,

it does not capture dependencies over a longer time period, or encode structural

information about the correlations between body components over time. To ac-

count for these factors and improve on the predictions from the AR models, we

used a recurrent neural network (RNN) model for human arm motion predic-

tion, and compared the performance between the methods.

Independent of robotics, RNNs have been applied extensively for human

motion prediction, including architectures with Long-Short Term Memory

(LSTM) cells [40], and structural RNNs that encapsulate semantic knowledge
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through a spatio-temporal graph [57]. These approaches include multiple re-

current layers as they are aimed at offline prediction of the entire human skele-

ton, and task classification in general motion scenarios. As the task scenarios for

WRF stabilization involve periodic motions and require prediction of only the

wearer’s arm, we used a simpler model with a sequence-to-sequence architec-

ture [107] and a single gated recurrent unit (GRU), as proposed in [76], which

also includes a residual connection for modeling velocities. Compared to an AR

model, this resulted in higher prediction accuracy of human arm motion, and

improved the end-effector stabilization in most task scenarios.

(a) Structure of RNN
model.

(b) Training and validation losses for the RNN
model.

Figure 5.14: (a) The RNN model consists of an encoder, GRU cell, and spatial
decoder. (b) It was trained for 5000 iterations on the KIT Database motions.

The schematic of the RNN model is shown in Figure 5.14a. It consists of an

encoder network that takes in a 9-dimensional input of the body vectors, [~v1,

~v2, ~v3], 50 frames at a time from the KIT database or motion capture system,

and a decoder network that converts the output from a single GRU cell with

1024 units into 9-dimensional predictions over k steps. Based on the estimated

system delay, we set k=10, and the learning rate to be 0.05 for batch sizes of 16,
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as specified in [76] for predictions up to 400 ms. This RNN model was trained

on the KIT Database motions listed in Table 5.4, and converged at about 5000

iterations, as shown in Figure 5.14b with mean-squared error (MSE) loss.

Model Evaluation

Both predictive models were evaluated on the relevant motions from the KIT

Database listed in Table 5.4. They were trained offline using all but two trials

for each task, with the one of remaining trials serving as the validation set, and

the other as the test set. The training set was expanded to four times its original

size by adding Gaussian white noise with standard deviation 1 cm to each of the

nine components of the body vectors, leading to 89864 data points for training.

The test and validation sets had 18922 and 15042 data points respectively.

Table 5.5: Predicting human body vectors from KIT Database, RMS Errors (cm)

Shoulder Elbow Wrist
v1,x v1,y v1,z v2,x v2,y v2,z v3,x v3,y v3,z

AR Model 0.16 0.23 0.37 1.47 2.61 0.36 3.38 2.02 0.64
RNN Model 0.53 0.42 0.43 0.90 1.42 1.41 2.08 0.57 0.31

The Root-Mean-Square (RMS) prediction errors were computed on the test

set for both models, and are listed in Table 5.5. While the RNN model did not

improve upon the AR model for every component, it reduced the prediction

errors in the components with the worst performance using AR (Figure 5.16).

The RNN model also performed better overall, with an average RMS error of

˜0.90 cm, compared to ˜1.25 cm for the AR model. Figure 5.15 shows that while

the RNN model tended to overshoot the ground truth, and be offset from it, the
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(a) v2 : X-component

(b) v2 : Y-component

(c) v2 : Z-component

Figure 5.15: Predictions from the AR model (red) and RNN model (yellow),
k=10 time steps ahead for body vector v2, realigned with ground truth (blue).
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Figure 5.16: RMS errors in the AR and RNN models for prediction on the KIT
Database motions.

tracking of overall motion trends was better than the AR model.

5.4.2 Implementation on the WRF

Having obtained two predictive models for human arm motion that performed

well on the KIT Database, we applied them for stabilization of the WRF’s end-

effector at an initial pose when subjected to disturbances due to movement of

the user’s right arm. We considered five task scenarios, shown in Figure 5.17,

that involved periodic arm movements of relatively small magnitude—(a) trac-

ing a line of length 10 cm, (b) tracing a circle of diameter 10 cm, (c) wiping a

desk top, (d) painting with small brush strokes on a canvas, and (e) placing ten

objects into shelves of a table-top drawer unit. Each task was performed for ˜5

minutes. The initial end-effector pose was selected to be on the right of the user

and below them, so as to not impede the task.

125



(a) Tracing a line. (b) Tracing a circle.

(c) Wiping a desk. (d) Painting on a canvas.

(e) Setup for stowing ten items into a
drawer unit. (f) Stowing items into the drawers.

Figure 5.17: Scenarios in which the WRF’s end-effector was stabilized while the
user performed a task.
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Figure 5.18: Tracked markers and positions for determining the WRF’s motor
joint angles.

Optical markers were placed on the user’s right hand and elbow, as well

as on the WRF’s end-effector and near the DoF-1 motor (Figure 5.18). These

markers were tracked at 120 Hz using an OptiTrack motion capture system [5].

The raw marker position data was smoothed and filtered using an IIR low-pass

digital filter with transfer function coefficients for 6 Hz normalized cutoff fre-

quency [2], following the techniques discussed in [102, 101].

In all the scenarios shown in Figure 5.17, we assumed the body vector v1

to be constant in each task, as the human shoulder and torso remained almost

stationary at their initial positions. The other relevant points, B (base position

of the WRF), and R (position of the end-effector), to be tracked are shown in

Figure 5.18, We aimed to keep the end-effector static at the initial point R = R0 at

the start of each task. If the user’s arm were to move, the end-effector would also

move by an amount ∆~P = Rt −R0 at time t. To generate appropriate setpoints for

the WRF’s motors, ∆~P is converted from the a global frame G (fixed lab frame)
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to the robot’s base frame B. In terms of homogeneous transformation matrices,

we need to convert T R
G into T R

B using the same notation as Chapter 3. Using the

elbow frame E as an intermediate,

T R
G = T E

G T B
E T R

B (5.14)

∴ T R
B = (T B

E )−1(T E
G )−1T R

G (5.15)

The transformation between the robot base B and elbow E is constant, while

the transformation T E
G consists of two variable parts: the rotation matrix RE

G be-

tween the elbow and ground frames, and the position of the elbow, ~PE which

is tracked directly by the motion capture system. RE
G is the rotation matrix that

takes the unit vector along the local X-axis, î = [0, 0, 1]T , and aligns it with the

unit vector along the human forearm, v̂3, in the ground frame. Using the ap-

proximate method for inverse kinematics (Jacobian pseudoinverse) discussed

in Chapter 3, we can determine the change in WRF joint variables:

∆θ = J+(−RR
B∆~P) (5.16)

At time t, this gives the desired setpoint reference for each motor used for

direct feedback control:

θ̂d[t] = θd[t = 0] + ∆θ (5.17)

Following the procedure shown in Figure 5.1b, the predictive models were used

to generate setpoint references over a time horizon of ˜83 ms for each motor in
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the WRF:

θd[t + ∆ti] = θ̂d[t] + ∆θ̃i , i ∈ [1, k] (5.18)

For a stereo camera frame received at time t, a sequence of k=10 joint an-

gle references θd were sent to each motor, with ∆ti ∈ [0, 83] ms, i ∈ [1, k]. As

described above, θ̂d[t] is the desired joint angle in direct feedback control, com-

puted using inverse kinematics for the detected human and robot poses at time

t. The predictions from the AR and RNN models are represented as residuals

∆θ̃i added to θ̂d[t].

Table 5.6: End-Effector position errors in 3D

Task Mean error in end-effector position (cm)
Direct Control AR Prediction RNN+AR Prediction

Line Tracing 5.02 4.32 (-13.94 %) 4.54 (-9.56 %)
Circle Tracing 6.92 5.87 (-15.17 %) 5.09 (-26.44 %)
Wiping 11.01 8.91 (-19.07 %) 8.74 (-20.62 %)
Painting 14.30 12.04 (-15.82 %) 11.45 (-19.95 %)
Stowing 15.87 14.74 (-7.12 %) 12.65 (-20.28 %)

During implementation, it was found that while the AR model could gen-

erate predictions nearly in real time, the RNN model had lags of up to ˜50 ms

when predicting over the specified time horizon. To account for these lags, the

RNN model was executed in parallel with the AR model. Until a prediction

was received from the RNN model, the AR prediction was used for computing

θd. Depending on the amount of lag, determined through time stamps, a cor-

responding number of RNN predictions were discarded (typically the first 5–6

terms), and the remaining ones were added to the sequence ∆θ̃i to be sent to the
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Figure 5.19: Summary of end-effector stabilization position errors.

motors.

This implementation of human motion prediction (RNN + AR) reduced the

mean error in end-effector position by up to ˜26 % over direct feedback control,

while the AR model alone was able to improve upon direct feedback control by

up to ˜19 %, as listed in Table 5.6. Figure 5.19 shows that the performance of all

three control methods varied according to the task, with more structured and

mostly planar motions such as tracing a line and circle showing better stabiliza-

tion performance compared to full 3D motions with less structured or periodic

behavior such as stowing items into a drawer.
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5.5 Conclusion

We presented an approach involving human motion prediction for stabilizing

the WRF’s end-effector, first in a planar scenario1, and then in full 3D tasks. We

performed linear system identification, both to determine the characteristics of

the actuators, and to estimate the delays in both these scenarios. The predic-

tive models took the form of autoregessive time series in planar and 3D, and a

recurrent neural network in the 3D case.

While these methods resulted in lower mean position errors of the end-

effector compared to direct feedback control, the improvements in performance

were marginal for the tasks described in this chapter. Stabilizing over a trajec-

tory in free space, and over bulk human motions such as walking, would be

even more challenging. Aside from the uncertainties in human motion, these

scenarios would also require sensing and actuation with minimal delay. Along

with vision-based sensing, systems with wearable sensors such as Inertial Mea-

surement Units mounted on the human and robot might help improve perfor-

mance. Having the actuation and control systems off-board [116] would, for a

limited workspace, sidestep the trade-off between the motor power and weight

of an SR device.

Thus far we have addressed the WRF’s impact on the user, and seen how the

user can affect and disturb the WRF, along with methods for mitigating both.

In the next chapter, we analyze how users interacted with the WRF while it

assisted them in a close-range collaborative pick-and-place task.

1Portions of this chapter have been published in [115].
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CHAPTER 6

HUMAN-ROBOT COLLABORATION STUDY

Thus far, we have described the design process, biomechanics, and control of the

WRF. In this chapter, we present an interaction study where the WRF predicts

the user’s intention and autonomously assists them in a collaborative pick-and-

place task.

Other SR devices have generally included modes of controlling the robot di-

rectly and intentionally by the user, such as a sixth finger with switch-operated

grasping [55], control based on muscle electromyography (EMG) [67], hand-

pose synergies by measuring finger joint angles [118], foot-based control of SR

arms [94, 37], and a brain-machine interface [87].

These interaction modes allow for fine-grained command over an SR device,

and may eventually also lead to the incorporation of the device into a user’s

body schema [96]. At the same time, these modes require the user to concentrate

on the robot’s state and motion, adding to their cognitive load while performing

tasks with the robot. In more general human-robot collaboration scenarios, not

necessarily with wearable robots, there have been efforts to ease some of this

cognitive load by predicting the user’s intent and acting appropriately, through

approaches such as Bayesian filtering [58], recurrent neural networks [26], and

changing the robot’s strategy based on a Partially Observable Markov Decision

Process (POMDP) model of the mutual trust between the human and robot [30].

Among wearable robots, learning-from-demonstration (LfD) approaches have

been applied, for instance with shoulder-mounted SR limbs using Colored Petri

Nets [70] for collaborative action in a structured assembly task. Another ex-

ample of LfD applied to wearable robots was a supervised learning model (K-
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nearest neighbors) used to map surface EMG signals to desired poses of a hand

exoskeleton to provide assistance in grasping tasks [100].

From the pilot study described in Chapter 3, we found that a wearable robot

with some level of autonomy was desirable to users. In the study described in

this chapter, we applied supervised learning approaches to provide these au-

tonomous capabilities to a mid-scale SR device that can be re-positioned much

more readily than large-scale SR arms, with the user’s body movements serving

as the input. As with the pilot, there was also a direct speech-based interaction

condition. We explored the relative performance and user preferences in both

of these broad cognitive frameworks: direct, intentional control of the WRF, and

the robot acting after predicting human intent.

The study involved a planar task, without vertical pitching of the arm, and

a static wrist orientation. The user performed an assembly sub-task with a rela-

tively higher cognitive load, and handed over the assembled object to the WRF

for stowing into bins. Users familiarized themselves with the system in the

initial trials, and provided direct speech commands to the robot. Human and

robot motion data was annotated with the speech commands from these trials

to train supervised learning models for predicting the user’s intention. This was

followed by two test conditions, counterbalanced across users—another round

with direct speech control, and a predictive robot mode.

In the latter test condition, we aimed to predict both the user’s intended

commands, as well as the intended target bin for placing the assembled object.

This was expected to reduce the cognitive load on the user compared to direct

speech commands. The user study procedure is illustrated in Figure 6.1. We

evaluated the performance of the human-robot team in these two conditions
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using objective and subjective human-robot fluency metrics.

Figure 6.1: Flow diagram for the user study. The robot control modes in the first
and second test conditions were counterbalanced across users.
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(a) Planar collaboration task.

(b) Physical system setup. (c) View from stereo camera.

Figure 6.2: Schematic of the human-robot collaboration task: the human hands
over a cup to the robot, which places it in color-coded bins.

6.1 Human-Robot Collaboration Task

The collaboration task in this study involved a seated user performing an as-

sembly activity close to their laps, with the WRF mounted on their left arm

operating between the user’s working region and drop-off locations on one side

(Figure 6.2). It included three sub-tasks: assembly of an object, handover to the

robot, and placing the object in a target bin. The objects in this case were red
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and blue color-coded cups, with the user assembling a lid onto a cup as the first

sub-task.

Figure 6.3: Overview of training stage: user provides speech commands to the
WRF.

The user provided the following speech commands to the WRF related to

each sub-task (Figure 6.3):

• Go: The user gives this command to bring the robot close to their working

region, and prepare for the handover. Users can provide this command at

any stage of completion of the lid assembly sub-task.

• Close: After assembling the lid, the user places the cup in the robot’s grip-

per, and gives this command to close the gripper and complete the han-

dover.

• Put: This command sends the robot towards the color-coded target bins.

The exact locations of the bins is not known a-priori, only their general

direction from the user (in this case towards their left side). The user then

guides the WRF with their left arm and places the end-effector above the

correct target bin.

• Open: This command opens the WRF’s gripper and drops the cup into the

bin.

During trials, the user’s speech commands were recognized using the Pock-
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etsphinx system [54], and the user’s arm motions, as well as motion of the

robot’s base and end-effector were tracked using AprilTag markers [81] through

an Orbbec Astra stereo camera mounted overhead (Figure 6.2c).

The tracked poses of interest were the x and y coordinates of markers placed

on the human and robot, with the human’s wrist markers denoted collectively

by the vector XH = [xlw, ylw, xrw, yrw], with subscripts lw denoting the left wrist,

and rw for the right wrist. The robot’s pose is tracked by two markers: one

placed on the human’s elbow directly above the robot’s base (DoF-1), and the

other on the robot’s end-effector, collectively denoted as XR = [xb, yb, xee, yee],

with subscripts b for the coordinates of the base, and ee for the end-effector.

Each user performed 20 trials in the initial stage, with the collected data used

for training two predictive models for the human-robot team—one for predict-

ing the sub-task, and the other for predicting the intended target for drop-off.

This was followed by two test stages—with the robot first in the predictive

mode, or direct speech control mode, counterbalanced for order effects. Each

set of models was trained and applied independently to every user, allowing

for customized predictions based on individual interaction patterns.

6.1.1 Sub-task Prediction

Using the speech commands and motion data of the human-robot team dur-

ing the initial 20 trials, we trained K-Nearest Neighbors (KNN) classifiers [48]

to predict the human’s intended speech command based on their pose. As

seen in [100], KNNs provide a computationally inexpensive and non-parametric

method for determining intent based on body movement alone. As the tasks in
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this study were fairly repetitive, the motion data was expected to be sufficiently

distinct for each voice command. Also, as a KNN model is trained individually

for each user, it was expected that repetitions of similar motion patterns would

lead to good prediction performance.

(a) Motion data annotated with speech commands.

(b) Schematic of KNN classifier.

Figure 6.4: KNN classifier for predicting the intended speech command for a
sub-task.

As shown in Figure 6.4, the input to the KNN model was a sequence of

8-dimensional vectors X, a collection of human and robot poses, X = [XR, XH],

that preceded each speech command by 1.5 seconds. Every such input sequence

was annotated with the corresponding speech command as the target label. This

predictive model was built for the “Go”, “Close”, and “Put” commands. During
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training, for each of these commands, a set of 39 or 40 vectors X (number of

frames in 1.5 seconds for a camera frame rate of ˜26 Hz) were annotated with

the command (Figure 6.4a).

Figure 6.5: Confusion matrix of KNN performance for one participant (P13)
based on their first 20 training trials.

We set the number of neighbors (K) to be 20 in the KNN classification model,

with Euclidean distance weighting for each label. During predictive robot mode

stage, the intended speech command was determined at each instant of detected

human and robot poses X, with the transition between commands constrained

to follow the sequence shown in Figure 6.3. The “Open” command was trig-

gered when the WRF’s end-effector came within 10 cm of a target location.

The performance of the KNN classifiers varied with the participants depend-

ing on their initial 20 training trials, e.g. as shown in Figure 6.5, the classifier

for Participant-13 had good predictions for “Go” and “Close”, while “Put” was

confused with “Close”.
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6.1.2 Target Prediction

During the sub-task of placing a cup into a bin, neither the number of target

bins nor the color of the cup were known to the system a-priori. We applied a

target prediction model that determined the number of target bins, then formed

clusters of target bins, and finally predicted the user’s intended target based

on classification of human and robot pose data. Although in the present study

we had two classes of cups (red and blue), this made the system robust to the

addition of more classes and more target bins at unspecified locations. For these

models, the human and robot pose sequence, X = [XR, XH], was recorded from

the utterance of the “Put” command spoken by the user until the “Open”.

Determining the number of target bins is analogous to determining the num-

ber of clusters in two-dimensional data. The pose of the robot’s end-effector

[xee, yee] relative to its base [xb, yb] was recorded at the utterance of every “Open”

command during the first 20 trials of the training stage. An information-

theoretic approach was used to find the number of clusters, based on a rate-

distortion “jump” metric [106].

The distortion d̂K determines the amount of dispersion within a cluster, de-

fined in this case as the mean-squared error between a cluster center cK and the

sample vector P = [xee, yee]T − [xb, yb]T . K-means clustering [73] is used to deter-

mine the cluster centers cK , for a variable number of clusters K. The the “jump”

metric JK is computed as follows:

JK = d̂Y
K − d̂Y

K−1 (6.1)

We considered K to be between 1 and 8, with the transformation exponent Y =

0.4. The target number determination was performed at the end of every trial
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Figure 6.6: Jump metric for determining number of clusters in data.

in the training stage. Figure 6.6 shows an example of this method after 20 trials,

with K = 2 having the largest jump metric.

Figure 6.7: K-means target clustering with K=2. During predictive mode, the
gripper opens when it reaches within 10 cm of a cluster centroid.
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The number of clusters K with the largest jump were then chosen for K-

means clustering of the target positions, labeling them from 1 to K (Figure 6.7).

For each target in a particular cluster, the human-robot pose sequences X be-

tween the “Put” and “Open” commands that led to the drop locations in that

cluster were annotated with the target label number. Finally, a logistic regres-

sion classifier was trained with the pose sequences X as input and cluster label

number as the target (Figure 6.8a).

(a) Schematic of Logistic Regression classifier.

(b) Predicted probability of a target bin during testing.

Figure 6.8: Logistic regression classifier for predicting the intended target bin.

During the predictive robot mode stage, we assumed that the number of tar-

get bins, object classes, and target bin locations remained unchanged from the

training stage. When the “Put” command was predicted during a trial, the lo-
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gistic regression model began predicting the intended target bin based on the

instantaneous pose X of the human-robot system. Once the predicted proba-

bility of a particular target exceeded 0.8, it was considered to be the intended

target (Figure 6.8b). A closed-loop control sequence then placed the WRF’s end-

effector at the mean pose for that target cluster. The “Open” command was

triggered when the end-effector was within 10 cm of the target cluster centroid.

6.2 User Study

In the user study, we recruited N=24 participants, consisting of graduate and

undergraduate University students. They were vetted to preclude neuromus-

cular conditions that could have led to adverse effects from the task involving

wearing the WRF for over 30 minutes. Each participant was given a $ 20 gift

card on successful completion. This study was approved by the Cornell Univer-

sity Institutional Review Board for Human Participant Research, under protocol

number 1706007253.

We analyzed objective and subjective human-robot fluency metrics, as de-

scribed in [51], for both conditions of robot control in this study.

The objective metrics were defined on the basis of the durations of human ac-

tivity (H-ACT) and robot activity (R-ACT) during each trial. The video record-

ings from these trials were coded using BORIS [41], with time-stamp triggers set

up for the start and end of a human activity—defined as intentional body move-

ments made by participants which would aid in the completion of the task. For

instance, the time from when a participant would begin reaching for a cup, un-

til they finished assembling it, would count as valid human activity. After as-
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Figure 6.9: Illustrative plot showing times of human activity (H-ACT) and robot
activity (R-ACT) during each trial.

sembly, the time spent waiting for the robot to approach the handover location

was not considered human activity, even if there were small movements of the

participant’s arms. Robot activity was determined using data from the motor

encoders.

Objective Metrics As illustrated in Figure 6.9, ∆Tt is the time taken for a trial

starting from a cup assembly to placing it in a bin. Let ∆Tt,i be the time taken

for the ith trial by a participant. Similarly, define ∆Th,i as the period of human

activity, and ∆Tr,i as the period of robot activity. ∆T f ,i is the gap between when

the human finishes their subtask and when the robot starts acting. ∆Tc,i is the

duration for which both the human and robot are active. With this data we

determined the following objective metrics:

• Mean Trial Time (TM): the mean time taken, over n = 20 trials, of complet-
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ing the full assembly and pick-place task:

TM =
1
n

n∑
i=1

∆Tt,i (6.2)

• Human Idle Time (THI): the ratio of time for which the human either re-

mained static or did not move in a way beneficial for performing the task,

to the total time spent in each condition.

THI = 1 −
∑n

i=1 ∆Th,i∑n
i=1 ∆Tt,i

(6.3)

• Robot Idle Time (TRI): the ratio of the time for which the robot remained

static (zero motor velocities), divided by the total time spent in each condi-

tion. Any agent spending too much time idle is indicative of poor fluency.

TRI = 1 −
∑n

i=1 ∆Tr,i∑n
i=1 ∆Tt,i

(6.4)

• Functional Delay (TFD): this is the delay experienced by the user imme-

diately after completing their part of the sub-task, while waiting for the

robot to act, ideally to be minimized for fluent interactions. It is the ratio

of the sum of durations after human actions are completed and prior to

the beginning of robot actions, to the total time per condition.

TFD =

∑n
i=1 ∆T f ,i∑n
i=1 ∆Tt,i

(6.5)

• Concurrent Acitivity( TFD): this is the proportion of the task for which

both the human and robot are acting simultaneously. A high concurrent

activity is indicative of better fluency [51].

TCA =

∑n
i=1 ∆Tc,i∑n
i=1 ∆Tt,i

(6.6)
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Table 6.1: Human-robot fluency questionnaire

1. The human-robot team worked
fluently together

15. The robot and I understand
each other.

2. The human-robot team’s
fluency improved over time. 16. I believe the robot likes me.

3. The robot contributed to the
fluency of the interaction.

17. The robot and I respect each
other.

4. I had to carry the weight to
make the human-robot team
better. (R)

18. I am confident in the robot’s
ability to help me.

5. The robot contributed equally
to the team performance.

19. I feel that the robot
appreciates me.

6. I was the most important team
member on the team. (R)

20. The robot and I trust each
other.

7. The robot was the most
important team member on the
team.

21. The robot perceives accurately
what my goals are.

8. I trusted the robot to do the
right thing at the right time.

22. The robot does not
understand what I am trying to
accomplish. (R)

9. The robot was trustworthy.
23. The robot and I are working
towards mutually agreed upon
goals.

10. The robot was intelligent. 24. I find what I am doing with
the robot confusing. (R)

11. The robot was committed to
the task.

25. The robot’s had an important
contribution to the success of the
team.

12. The human-robot team
improved over time.

26. The robot was committed to
the success of the team.

13. The robot’s performance
improved over time.

27. I was committed to the
success of the team.

14. I feel uncomfortable with the
robot. 28. The robot was cooperative.

Subjective Metrics Through the questionnaire listed in Table 6.1, we also mea-

sured subjective fluency metrics. Each question was rated by the participants on

a 7-point Likert item [68] going from “Strongly disagree (1)” to “Strongly agree

(7)”. Questions marked with (R) indicate a reversed scale where a lower score is
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better. This questionnaire resulted in seven scales comprising of multiple ques-

tions, as well as five single-item measures from individual questions:

• Human-robot Fluency: This scale consisted of questions 1, 2, and 3 from

Table 6.1. It measured the perceived fluency of the robot, and its evolution

over time.

• Robot Relative Contribution: This scale, consisting of questions 4, 5, 6, and

7 measured the levels of perceived contribution that the user felt while

performing the trials.

• Trust in Robot: This scale measured the level of trust the human reported

to have in the robot in terms of its abilities and effectiveness (questions 8

and 9).

• Positive Teammate Traits: This scale asked the user if they thought of the

robot as an effective teammate (questions 9, 10, and 11).

• Improvement: This scale measured the temporal aspect the task, in terms

of perceived improvement (questions 2, 12, and 13).

• Working Alliance, Bond: This scale was adapted to human-robot teams

in [51] from the Working Alliance Inventory [52], a measure of the effec-

tiveness of an agent providing an intervention or treatment to another

agent. Covering questions 14–20, the Bond subscale looked at the level

of comfort that the user had with the WRF.

• Working Alliance, Goal: Another subscale of the Working Alliance, the

Goal measure (questions 21, 22, and 23) looked at the user’s perception of

consensus between them and the robot regarding the task.

• Single-item Measures:
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– Working Alliance, Confusion: This subscale (question 24) asked the

user how confusing they found the shared task.

– Robot’s Contribution: Question 25 examined whether the user con-

sidered the robot to have contributed, in absolute terms, to the task.

– Robot’s Commitment: Question 26 asked how much the user per-

ceived the robot to be committed to the task.

– Human’s Commitment: Question 27 asked the user for their level of

commitment, to gauge whether they may have found the task un-

pleasant or cumbersome.

– Robot’s Cooperation: Question 28 asked the user to rate the how co-

operative they found the robot to be during the shared collaborative

task.

We also collected NASA-TLX questionnaires from each participant [46], after

each of the direct speech control and robot predictive modes, along with an

overall System Usability Scale (SUS) [24] at the end of the study.

Hypotheses For these metrics, we formulated the following hypotheses:

• H1: The means of the following objective metrics would be lower in the

predictive robot condition compared to the speech-controlled condition:

– H1a: Total Task Time

– H1b: Human Idle Time

– H1c: Robot Idle Time

– H1d: Robot Functional Delay
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• H2: The mean of the Concurrent Activity metric would be higher in the

predictive robot condition compared to the speech-controlled condition.

• H3: For subjective metrics, the mean Likert scale scores would be higher

for each metric in the predictive robot condition compared to the speech-

controlled condition, indicating greater perceived fluency.

6.2.1 Results: Objective Metrics

(a) Mean Trial Time (b) Human Idle Time (c) Robot Idle Time

(d) Concurrent Activity (e) Functional Delay

Figure 6.10: Means and standard errors for the objective fluency metrics in the
two conditions
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The means and standard errors for objective fluency metrics are summarized

in Figure 6.10. The distribution of this data is shown in Figure 6.11, with large

variances observed across participants. Each sub-hypothesis in H1 was tested

using left-tailed paired t-tests, to determine whether the metric for predictive

mode had a lower value than speech control. For H2, concurrent activity was

tested using a right-tailed paired t-test, to determine whether the metric for pre-

dictive mode had a higher value than speech control.

(a) Mean Trial Time (b) Human Idle Time (c) Robot Idle Time

(d) Concurrent Activity (e) Functional Delay

Figure 6.11: Box plots for the objective fluency metrics.

The mean time taken to complete one trial was reduced in predictive mode
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Table 6.2: Summary of objective fluency metrics

Metric Speech Predictive Paired
t-test, p

Effect size,
Cohen’s dMean Std. Dev. Mean Std. Dev.

TM (s) 16.64 2.88 15.36 3.32 0.066 0.41
THI 0.33 0.14 0.31 0.11 0.183 0.16
TRI 0.62 0.11 0.58 0.09 0.013 0.37
TFD 0.18 0.07 0.23 0.07 >0.5 -0.64
TCA 0.28 0.16 0.30 0.12 0.087 0.19

(M = 15.36 s, SD = 3.32 s) compared to speech mode (M = 16.64 s, SD = 2.88 s),

with t(23) = -2.08, p = .025, and a moderate effect size of Cohen’s d = .41.

There was a marginal reduction in human idle time for predictive mode (M

= 0.31, SD = 0.11) compared to speech mode (M = 0.33, SD = 0.14), however not

significant enough to reject the null hypothesis with t(23) = -0.92, p >.05.

The idle time for the robot was lower in predictive mode (M = 0.58, SD =

0.09) compared to speech mode (M = 0.62, SD = 0.11), with t(23) = -2.38, p =

0.013, and a moderate effect size of Cohen’s d = .37.

Functional delay showed an opposite effect in predictive mode (M = 0.07, SD

= 0.11) compared to speech mode (M = 0.18, SD = 0.07), with t(23) = 3.76, and

Cohen’s d = -0.64. This suggests that functional delay may increase in predictive

mode since the human is not directly giving commands to the WRF, and must

instead wait for the predictive model to respond and actuate the robot.

There was marginal improvement in concurrent activity for predictive mode

(M = 0.30, SD = 0.12) compared to speech mode (M = 0.28, SD = 0.16), with t(23)

= 1.40, p = .087, and Cohen’s d = 0.19.
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6.2.2 Results: Subjective Metrics

For subjective fluency, we summed up the items in the seven Likert scales, and

compared them using right-tailed paired sample t-tests for the hypothesis H3—

that the predictive robot mode would be perceived as more fluent than direct

speech control.

The results from these scales are summarized in Table 6.3. Six of the seven

grouped subjective fluency metrics were not significantly higher for the predic-

tive mode compared to the speech mode at the p <.05 level. Only the Working

Alliance, Goal metric was higher in the predictive mode, with p = .045, and a

moderate effect size of Cohen’s d = 0.40. Trust in the robot showed a moderate

opposite effect, with Cohen’s d = -0.61, indicating that a user may trust the robot

more in speech mode due to a sense of enhanced agency and control over it.

Table 6.3: Summary of subjective fluency metric scales

Subjective Scale Speech Predictive Paired
t-test, p d

Mean Std. D. Mean Std. D.
Human-robot Fluency 16.21 3.06 16.21 4.05 0.500 0.0
Robot Rel. Contribution 12.79 3.97 13.67 3.93 0.133 0.22
Trust in Robot 10.54 2.67 8.75 3.15 >0.5 -0.61
Positive Team Traits 15.21 3.73 15.46 4.16 0.305 0.06
Improvement 16.04 3.60 16.83 4.29 0.096 0.20
Working Alliance, Bond 30.25 7.68 29.96 7.91 >0.5 -0.04
Working Alliance, Goal 13.71 4.70 15.38 3.46 0.045 0.40

Non-parametric tests were performed for the single-item measures, consid-

ered to be ordinal. We used right-tailed Wilcoxon signed-rank tests for this part

of H3, to see if the predictive robot mode was more fluent than the speech con-

trol mode in each individual item. Table 6.4 lists the median, mode, range, and
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skewness for each item.

Table 6.4: Summary of individual subjective fluency metric items

Subjective Item [Median, Mode, Range] Skewness
Speech Predictive Speech Predictive

Confusion [6 , 7, 4] [6, 7, 6] -0.91 -1.83
Robot’s Contribution [6, 6, 5] [6, 6, 6] -1.20 -1.45
Robot’s Commitment [5.5, 6, 6] [6, 6, 6] -0.89 -1.10
Human’s Commitment [7, 7, 5] [7, 7, 5] -2.51 -2.40
Robot’s Cooperation [6, 6, 5] [6, 6, 5] -2.30 -1.40

The Working Alliance item for human-robot teams measuring confusion had

a median = 6 for speech and median = 6 for predictive, with p=.576, W = 37

using a right-tailed Wilcoxon signed-rank test, with effect size of rank-biserial

correlation r=0.03.

The item measuring the robot’s level of contribution had a median = 6 for

speech and median = 6 for predictive, with p=.426, W = 19.5 using a right-tailed

Wilcoxon signed-rank test, with effect size of rank-biserial correlation r=0.04.

The item measuring the robot’s level of commitment had a median = 5.5 for

speech and median = 6 for predictive, with p=.088, W = 35 using a right-tailed

Wilcoxon signed-rank test, with effect size of rank-biserial correlation r=0.11.

The item measuring the human’s level of commitment had a median = 7 for

speech and median = 7 for predictive, with p=.500, W = 16 using a right-tailed

Wilcoxon signed-rank test, with effect size of rank-biserial correlation r=0.06.

The item measuring the robot’s level of cooperation had a median = 6 for

speech and median = 7 for predictive, with p=.742, W = 18 using a right-tailed

Wilcoxon signed-rank test, with effect size of rank-biserial correlation r=0.04.
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(a) (b)

Figure 6.12: Raw NASA-TLX scores for the two interaction conditions.

Table 6.5: Summary of raw NASA-TLX scores

Subscale Speech Predictive
Mean Std. Dev. Mean Std. Dev.

Mental Demand 25.21 19.31 24.79 17.35
Physical Demand 63.96 21.77 62.08 21.56
Temporal Demand 40.00 18.12 44.38 21.08
Performance 23.75 25.80 22.92 18.99
Effort 50.21 21.74 46.25 20.44
Frustration 21.46 16.71 23.12 19.10

The raw NASA-TLX scores for the the predictive robot mode and direct

speech control modes were quite similar, as shown in Figure 6.12, and sum-

marized in Table 6.5.

6.2.3 Post-study Semi-structured Interviews

After completing all trials with the WRF, each participant was debriefed

through a short semi-structured interview [17] with the follow questions as

prompts:
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• Do you feel like you were able to do the task well?

• How easy or difficult was the robot to use?

• Did you have a preference between the two conditions?

• Did the robot seem like a competent teammate/augmentation?

• What changes or improvements would you suggest to this system?

• Do you see it being useful in a real setting?

Most participants reported that they were able to perform the task moder-

ately well with minimal errors on their part. Some shortcomings of the WRF,

such as “the robot didn’t understand me at times”, and “[the task] was a little too

rushed when automatically closing [the gripper]”, were cited as reasons for lower

performance.

Nearly every participant reported that the weight the robot was a challenge,

with reactions ranging from “[the robot] got a little heavy to use by the end”, to

“[the robot] is extremely heavy and very difficult to use”, “[the robot] was very easy

to use mentally, but physically cumbersome”. Other factors affecting usability were

inconsistencies in the predictive mode for some participants, where they had to

expend cognitive effort to correct the robot while also assembling the cup.

These shortcomings were also reflected in the WRF’s score on the SUS [24]

questionnaire (M = 60.52, SD = 12.16), indicating average perceived usability.
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6.3 Conclusion

In this chapter, we described an interaction study between the WRF and a user

in a planar, collaborative task involving assembly and pick-and-place. We con-

sidered two interaction modes: the user providing direct speech commands to

the robot; and trained sub-task and target prediction models for the other mode:

the robot predicting the user’s intentions and acting accordingly in this struc-

tured task.

We measured the performance and preferences of the study participants us-

ing objective and subjective human-robot fluency metrics, and found that users

performed the task marginally faster, and with more concurrent activity and

lower robot idle times in the predictive mode. However, users had to wait

longer in the predictive mode for the robot to act once they had done their part.

In terms of subjective metrics, we found the users to perceive the robot as being

less ambiguous in terms of mutual understanding of the task in the predictive

mode, while having less trust in the robot due to loss of direct control over it in

this condition.

Even for the metrics that showed improvements in predictive mode, the in-

crease in performance was not consistent across users, as evidenced by small

to moderate differences in the statistics. Aside from the limitations of the pre-

dictive models themselves, this may stem from strong personal preferences of

wanting to retain intentional control over a device.

The task chosen for this study, a planar interaction where the user remains

seated in one position, is well-structured, with successful predictions relying

on the repeatability of the human motions involved. As seen in the previous
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chapter, real-world deployments, say in a factory or warehouse setting, would

involve more uncertainty in human motion, such as those induced by walking.

These scenarios would also require the robot to be able to assist in a wider range

of tasks, necessitating more robust and scalable prediction models.

In summary, despite these limitations, the user study described in this chap-

ter represents an important step towards exploring the design of autonomous

interactions with SR devices, and uncovers some of the challenges involved.

The following chapter discusses the considerations that future developers of

autonomous SR devices need to tackle for their wider adoption, and reflects

on insights for their development obtained from the studies and analyses per-

formed with the WRF.
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CHAPTER 7

DISCUSSION

Supernumerary Robotic (SR) devices are emerging as a new class of wearable

robots, owing to advances in lightweight materials, sensing, and actuation tech-

nologies. They have taken various forms, ranging from human-mimetic large-

scale additional limbs and low-powered extra fingers, to snake-like robots and

prehensile tails. We studied one such device, the Wearable Robotic Forearm

(WRF), aimed for a novel paradigm—possessing sufficient power to assist in

close-range collaborative tasks, while being lightweight enough to be freely

readjusted by the user without placing too much strain on them. In this chap-

ter, we reflect on the design, control, and interaction with the WRF, and aim to

extrapolate our findings to make a broader comment on SR devices.

Design Analysis We started by looking at possible use cases and interac-

tion scenarios, leading to the development of an initial prototype of the WRF

mounted on the user’s arm, with the base of the robot supported near their el-

bow joint. This mounting position was chosen so that the user would be able to

perform fine corrections in the robot’s trajectory.

For the WRF, while being mounted on the forearm helped perform close-

range tasks, it affected the usability of the device due to physical strain on the

wearer’s arm—a factor that we were unable to fully mitigate through design

iterations. Selection of a mounting position is largely determined by the in-

tended usage of an SR device. As far as possible, designers should select posi-

tions closer to the core of the human body—the torso, back, shoulders, or hips.

Even in the case of devices placed at the extremities, such as additional fingers,
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they should aim to move the control and actuation modules closer to the core

through the use of transmission systems (cable-based, pneumatic, or hydraulic).

The methods described in Chapter 2 stress upon the importance of includ-

ing potential users in the design process, to find the right balance between er-

gonomics and usability. Each successive prototype of the WRF improved along

both fronts, with the theoretical static loads on the human body remaining

within prescribed limits, and an enhancement in a user’s reachable workspace,

as seen in Chapter 3. However, there were discrepancies between these analyses

and the subjective experiences of users. Even after three design iterations, the

WRF was restricted to short-term interactions due to ergonomics and robust-

ness limitations. A commercially viable SR device would require mitigation

of these discrepancies in design and user experience through numerous proto-

types tested in wider in-situ studies.

Biomechanics After the design, through a simulation framework described in

Chapter 4, we determined the detailed biomechanical effects of the WRF’s mo-

tion on the user’s arm muscles, and developed a strategy for finding trajectories

that minimize these muscle loads. Aside from motion planning, accounting for

biomechanical effects plays a large role in improving the design of a wearable

robot, and is closely related with its ergonomics.

Care must also be taken in extrapolating laboratory results such as these to

real-world interactions. Even if the simulation outcomes positively correlate

with the subjective experiences of some users, this trend may not generalize

well to all users, since the biomechanics model was based on a specific aver-

age human physiology, applied in the reduced scenario of a static human pose.
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These limitations may be mitigated by accounting for the physiologies of indi-

vidual users in the biomechanics analysis, along with ergonomic factors such as

skin interface effects and muscle fatigue.

Robot Control and Stabilization Following the biomechanics analysis, we

considered the other end of the consequences of wearing an SR device—how

the human affects the robot’s motion, and how these disturbances may be com-

pensated for.

Human motion prediction approaches applied to robot control can be used

to improve the performance of low-power SR devices with minimal off-board

sensing. We describe methods for achieving end-effector stabilization in Chap-

ter 5, first in a reduced 2D setting, and then in full 3D tasks. Although such

predictions may not be necessary in mobile manipulation settings with power-

ful actuators and high-speed cameras, the performance of the WRF was limited

due to the trade-off between motor power and weight, as described in Chap-

ter 2. However, replacing the WRF’s actuators with more powerful ones would

lead to a significant increase in the overall weight of the device, considering the

power densities of presently available motors. This trade-off between power

and weight is ubiquitous in SR devices, and motivates the wider adoption of

predictive models in their deployment.

While a high power density may be the most important factor in the choice of

actuators, aside from weight, they present another trade-off—between perfor-

mance and safety. In situations where there is clarity on the expected loads that

would be applied on the robot, choosing actuators with much higher power rat-

ings than necessary could adversely affect user experience, for instance through
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increased jerks on the wearer’s body. Typical commercial motors should also be

augmented with compliant structures to mitigate the impacts of possible colli-

sions with the wearer. Soft robotic structural elements and actuators may play a

significant role in boosting the wider adoption of SR devices through enhanced

safety, and should be incorporated in their design whenever possible.

Another factor restricting the improvement in stabilization performance of

the WRF, aside from motor power, could also be the limitations imposed by the

prediction models themselves. In this work, we did not aim to extend the state-

of-the-art in terms of machine learning applied to human motion prediction, nor

can we claim to have implemented the temporal models used for this purpose

in the most efficient way possible. Even so, advances in motion prediction, oc-

curring alongside improvements in other aspects of SR devices, would greatly

enhance their usability. The designers of SR devices should remain informed of

the latest developments in this research area, especially if they aim to extend the

stabilization over robot trajectories, and across a range of task scenarios.

Usage in Collaborative Tasks Estimation of the real-world efficacy of an SR

device during development is challenging, and design limitations impose re-

strictions on the range of tasks that can be used for testing. In Chapter 6, we

examined how well a user performed with the WRF in a close-range collabora-

tive task consisting of assembly and pick-and-place operations.

Users interacted with the WRF in two conditions: a direct speech control

mode where they gave commands to the robot at each stage, and a predic-

tive robot mode where the WRF acted autonomously after inferring their in-

tent. Based on an analysis of human-robot fluency and interview responses, we
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found that that while users were able to perform better in the predictive mode

for some metrics, they were not unanimous in their preference for it. Some

users trusted the robot more in the direct control mode, as it afforded a greater

sense of agency. This lack of trust is to be expected when interacting with SR

devices in general, since they are not as ubiquitous as other forms of wearable

devices, such as prostheses. As with social robots, long-term interaction stud-

ies need to be conducted with SR devices, especially those with some degree of

autonomous capability. This would help in finding ways to accustom potential

users to these devices, while also mitigating novelty effects.

The study task emulated a factory or warehouse setting, with the application

space determined through the user-centered design process. While the WRF

was found to be moderately useful in this situation, the study was conducted

in a highly structured laboratory environment, for a task with relatively low

inherent physical and cognitive demands. As a result, its conclusions may not

generalize to real settings involving greater uncertainties in every aspect. With

SR devices, it is important to both, apply the device in an appropriate task sce-

nario, and to continuously iterate on its design through in-situ studies. This is

especially true for devices with autonomy, as aspects other than physical de-

sign, such as predictive controllers, also need to to be updated according to the

task. For instance, a follow up study with a device such as the WRF could be

conducted in a more unstructured environment, e.g. a warehouse, where the

user would walk between various stations and perform tasks together with the

robot.

The larger goal in adding autonomy to the WRF was reducing the cognitive

load on a user. While a human is generally able to adapt in interactions with
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an autonomous robot, we aimed for the robot to be able to mutually adapt to

the human as well. It was expected that this teaming would lead to a situation

where the human would not need to think intentionally while performing struc-

tured tasks with the robot, or at least not expend as much effort as is needed for

direct control. The process of predicting human intent for deciding robot actions

was based on users’ body movements during a task. Aside from improving

the predictive models, sensing additional information, such as gaze tracking,

would help in determining user intent. Advances in brain-computer interfaces

may also play a role in allowing for seamless interaction with SR devices, and

allow for their wider adoption.

Conclusion Through the process of designing the WRF, and formulating the

associated systems for control and interaction, we identified various aspects of

general robotics that need to be considered in the development of such devices.

Findings from the studies and analyses with the WRF motivate future re-

search efforts that would also be applicable to other SR devices—system design

that allows for rapid compensatory robot motion, improved real-time human

motion prediction models, adaptive user intent prediction, and the eventual in-

corporation of a robotic augmentation into the user’s body schema.

While these are some of the long-term goals in this area of research, we may

also draw recommendations from the WRF for designers of SR devices within

the purview of currently available technology—the focus needs to be on er-

gonomics, usability, and providing the most appropriate and desirable levels

of autonomy for the robot, in a way that attempts to reduce both, physical, and

cognitive loads on a user.
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