ON THE EXISTENCE AND CONSTRUCTION OF ORTHOGONAL F-SQUARES OF ORDER $n=2 s^{p}$, s A PRIME NUMBER

John P. Mandeli and Walter T. Federer

Abstract

The existence of a set of $(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}$ orthogonal F-squares of order n equal to $2 s^{p}$, s a prime number and p a positive integer, with s symbols plus one additional orthogonal F-square of order n with two symbols has been proved by construction. The method of construction utilizes orthogonal arrays with $2 s^{p}$ assemblies or columns, $2\left(s^{p}-1\right) /(s-1)-1$ constraints or rows, s symbols, and of strength two, together with the addition tables, mod s, provided by a complete set of orthogonal Latin squares of order s. From the set of orthogonal F-squares, we show how to construct orthogonal arrays of the form $\left(4 s^{2 p}, 2,2 s^{p}, 2\right)+$ $\left(4 s^{2 p},(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}, s, 2\right)+\left(4 s^{2 p}, 1,2,2\right)$. Thus, the method of constructing orthogonal F-squares is also a method for constructing orthogonal arrays. We further demonstrate that for $p \geq 2$, a complete set of orthogonal F squares is approached as $s \rightarrow \infty$, and for s constant a complete set is approached as $p \rightarrow \infty$.

Key phrases: Complete sets of orthogonal F-squares; orthogonal arrays; asymptotically complete sets of orthogonal F-squares; Kronecker product construction of orthogonal F-squares.

Paper No. BU-6ृ2-M in the Biometrics Unit Mimeo Series, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York 14853.

ON THE EXISTENCE AND CONSTRUCTION OF ORTHOGONAI F-SQUARES
OF ORDER $n=2 s^{D}$, s A PRIME NUMBER
BU-622-M
by
July, 1977
John P. Mandeli and Walter T. Federer

1. Introduction and Summary

In an effort to conserve space, the reader is referred to Hedayat and Seiden (1970), Hedayat, Raghavarao, and Seiden (1975), and to Federer (1977) for details and definitions concerning F-squares, orthogonality of F-squares design, and of a complete set of orthogonal F-squares design. The symbol $O L(n, t)$ has been used frequently to denote a set of t mutually orthogonal Latin squares of order n; when $t=n-1$, the set of orthogonal Latin squares of order n is complete. A set of t mutually orthogonal F-squares of order n and of the form $F\left(n ; \lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)$, has been denoted as $\operatorname{OF}\left(n ; \lambda_{I}, \lambda_{2}, \cdots, \lambda_{m} ; t\right)$, where m is a constant and represents the number of symbols in each $F-$ square of the set. When $t=(n-I)^{2} /(m-I)$, an integer, the set is said to be complete. For $m=s$ and $n=s^{p}$, s a prime power, a complete set has been given by Hedayat, Raghavarao, and Seiden (1975); when $m=2$ and $n=4 t$, a complete set has been given by Federer (1977). The definition of a complete set of orthogonal F-squares given by Federer (1977) needs to be extended as follows for i symbols, $i=2,3, \cdots, n$, in an $F\left(n ; \lambda_{I}, \lambda_{2}, \cdots, \lambda_{i}\right)$-square design:

DEFINITION 1.I. The number N_{i} of orthogonal F-squares designs with i distinct symbols is denoted as $\operatorname{OF}\left(n ; \lambda_{l}, \lambda_{2}, \cdots, \lambda_{i} ; \mathbb{N}_{i}\right)$, where $\sum_{h=1}^{i} \lambda_{h}=n$. For i a variable ranging over the values $i=2,3, \cdots, n$, the total set of $t=\sum_{i=2}^{n} N_{i}$ orthogonal

[^0]F-squares with i distinct elements is denoted by $\sum_{i=2}^{n} 0 F\left(n_{n} ; N_{1}, \lambda_{2}, \cdots, \lambda_{i} ; N_{i}\right)$. When $\sum_{i=2}^{n} N_{i}(i-1)=(n-1)^{2}$, the set oi $t=\sum_{i=2}^{n} N_{i}$ orthogonal F-squares designs is said to be complete.

In the spirit of Derinition 1.1, Mandeli ($19^{\prime \prime} 5$) has constructed complete sets of $F\left(s^{p} ; \lambda_{1}, \lambda_{2}, \cdots, \lambda_{m_{1}}\right)$-squares where $n_{i}=s^{i}, k=1,2, \cdots, p$. Thus, the number of symbols in the complete set of ortiogonal F-squares can vary from s, s^{2}, \cdots, s^{k}, \ldots, to s^{p}.

Note the fact that $\sum_{i=2}^{n} N_{i}(i-1)=(n-1)^{2}$ in the complete set of orthogonal F-squares designs (CSOFSD) follows directly from factorial design and analysis of variance theory. There are $(n-1)^{2}$ row by column interaction degrees of freedom and these are the only ones available for constructing F-squares. When these $(n-1)^{2}$ interaction degrees of freedom are completely utilized in the construction of orthogonal F-squares, the CSOFSD has been constructed. Also, when $i=m$, $\sum_{i=2}^{n} N_{i}=(n-1)^{2} /(m-1)$.

In the present paper, we show how to construct an orthogonal set of $t=(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2} O F\left(n=2 s^{p} ; \lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$-squares plus one of the form $F\left(n ; s^{p}, s^{p}\right)$ for s a prime number, and thereby prove their existence. To date, work on this class for $n=2(3)=5$ has been reported for an $0 F(6 ; 2,2,2 ; 4)$ squares set [Hedayat et al. (1975)] and for $\operatorname{OF}(6 ; 2,2,2 ; 8)+\operatorname{OF}(6 ; 3,3 ; 1)$ and $\operatorname{OF}(6 ; 1,1,1,1,1,1 ; 1)+O F(6 ; 2,2,2 ; 7)$ sets [D. A. Anderson, W. T. Federer, and F-C. H. Lee (unpublished reports)]. To illustrate the number N_{s} of orthogonal $F\left(n ; \lambda_{1}\right.$, $\lambda_{2}, \cdots, \lambda_{s}$)-squares for all $n=2 s^{p}<100$, s an odd prime number and p a positive integer, and the proportion of the degrees of freedom accounted for by the \mathbb{N}_{S} $F\left(n ; \lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right)$ plus one $F\left(n ; s^{p}, s^{p}\right)$-squares, the following table was prepared:

$n=2 s^{p}$	s	N_{s}	$\left(N_{s}(s-1)+1\right) /(n-1)^{2}$
6	3	2	$5 / 25=0.200$
10	5	4	$17 / 81=0.210$
14	7	6	$37 / 169=0.219$
18	3	98	$197 / 289=0.682$
22	11	10	$101 / 441=0.229$
26	13	12	$145 / 625=0.232$
34	17	16	$257 / 1089=0.236$
38	19	18	$325 / 1369=0.237$
46	23	22	$485 / 2025=0.240$
50	5	484	$1937 / 2401=0.807$
54	3	1250	$2501 / 2809=0.890$
58	29	28	$785 / 3249=0.242$
62	31	30	$901 / 3721=0.242$
74	37	36	$1297 / 5329=0.243$
82	41	40	$1601 / 6561=0.244$
86	43	42	$1 / 765 / 7225=0.244$
94	47	46	$2117 / 8649=0.245$
98	7	1350	$8101 / 9409=0.861$

The method of construction we use is that of orthogonal arrays (see e.g., Raghavarao (19 1), Chapter 2, for definition and discussion). [Our method of constructing orthogonal F-squares differs from that used in the above cited papers.] Since it is known that an orthogonal array forming a k row x e column matrix with s distinct elements of strength 2 exists for all $n=2 s^{p}$, s a prime number, our method of construction is then quite general. Such orthogonal arrays have been denoted as ($n, k, s, 2$) where n is the number of assemblies (columns), k is the number of constraints (rovs), s is the number oi levels (elements or symbols), and 2 is the strength of the array.

In addition, we denonstrate that the proportion of the $(n-1)^{2}$ degrees of freedom for the row \times eolumn interaction accounted for by the $(s-1)^{2} x$ $\left(2\left(s^{p}-1\right) /(s-1)-3\right)^{2}+1$ degrees of freedom for the set of orthogonal F-squares constructed by the above method, approaches one as $p \rightarrow \infty$ for s constant. We further show that this propor ;ion approaches $1 / 4$ for $p=1$ as $s \rightarrow \infty$ and that it approaches one for $p \geq 2$ as $s \rightarrow \infty$. This means that as p becomes large the CSOFSD is approached for any s and that for any $p \geq 2$ the metiod of construction produces a set which becomes closer and closer to the CSOFSD as $s \rightarrow \infty$.
2. Construction and Existence or a Set of Orthogonal F-squares of Order $n=2 s^{p}$

Theorem 2.1. There exists a set of $(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2} F\left(2 s^{p} ; 2 s^{p-1}\right.$, $\left.2 s^{p-1}, \cdots, 2 s^{p-1}\right)$ plus one $F\left(2 s^{p} ; s^{p}, s^{p}\right)$ ortinogonal F-squares of order $n=2 s^{p}$, s a prime number and p a positive integer.

Proof: The proof is by construction, using the orthogonal arrays ($n=2 s^{p}$, $\left.k=\left(2\left(s^{p}-1\right) /(s-1)-1\right), s, 2\right)$. These orthogonal arrays (OA) are known to exist and Addelman and Kempthorne (190́I) give a method for constructing them. Making use of the arrays thus constructed, we shall show how to construct $(s-1)\left(2\left(s^{p}-1\right) /(s-1)-1\right)^{2} F\left(n ; 2 s^{p-1}, 2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-squares. Then, we shall show how to construct the additional $F\left(n ; s^{p}, s^{p}\right)$-square.

Without loss in generality we may write the first two rows (constraints) of an $O A$ in the order given in the first two columns of Table 2.1. Then, denoting the k constraints as $y_{1}, y_{2}, \cdots, y_{k}$ in the $(n, k, s, 2) O A$, we construct an $F\left(n ; 2 s^{p-1}\right.$, $\left.2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-square by using constraint 1 as the rows and constraint y_{1} as the colunns of an addition table mod s . The n-row by n-colunn addition table is an $F\left(n ; 2 s^{p-1}, 2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-square for the following two reasons:
(i) Each row of the square is an integer $y_{1}+c, 0 \leq c \leq s-1$; y_{1} has precisely s elements', $0, I, \cdots, s-1$, each replicated $2 s^{p-1}$ tines. Adding a value of c, mod s, does not alter this property. Therefore, each row of the $n \times n$ square has s elements each replicated $2 s^{p-1}$ times.
(ii) Let z be an element, $0 \leq z \leq s-1$, Prom y_{1}. That is, let z be the element in the $i^{t h}$ position in constraint y_{1}. Then, the element in the $i^{\text {th }}$ position in $y_{1}+1$ is simply $z+1, \cdots$, and the $i^{\text {th }}$ position in constraint $y_{1}+s-1$ is $z+(s-1)$. Thus, the $i^{t n}$ column, $i=1,2, \cdots, 2 s^{p}$, of the $n \times n$ square consists of $2 s^{p-1}$ values of $z, 2 s^{p-1}$ values of $z+1, \cdots$, and $2 s^{p-1}$ values of $z+$ $s-1$. By the properties of modulo arithmetic, $z, z+1, \cdots, z+(s-1)$, are merely some cyclic permutation of the elements $0,1, \cdots$, s-1. Hence, the $i^{\text {th }}$ colum of the square has s elements each replicated $2 s^{p-1}$ times.

Therefore, putting (i) and (ii) together, results in each of the s elements being replicated $2 s^{p-1}$ times in each row and each column. Consequently, an $F\left(2 s^{p} ; 2 s^{p-1}\right.$, $\left.2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-square is obtained.

In a similar manner we can construct a second F-square of this type by forming the addition table of constraint one as the rows and any other constraint, say y_{2}, as the columns (see fourth column of Table 2.1.). This second F-square will be orthogonal to the first F-square constructed above because of the following: Superimpose the first F-square upon the second, which in effect superimposes y_{1} on y_{2}. That is, $y_{1}+1$ is superimposed upon $y_{2}+1, \cdots, y_{1}+(s-l)$ on $y_{2}+(s-I)$. By the definition of $O A$, each element of y_{1} appears an equal number of times, $\lambda=2 s^{p-1} / s=2 s^{p-2}$, with each element of y_{2}. Since the addition of a constant c, $0 \leq c \leq s-1$, to y_{1} or y_{2}, does not alter this property, each element of $y_{1}+c$ appears an equal number of times, $\lambda=2 s^{p-2}$, with each element of $y_{2}+c$. Since
there are $2 s^{p}$ rows in the F-square, each element of the first F-square appears an equal number of times, $2 s^{p} \lambda=4 s^{2 p-2}$, with each element of the second F-square. This is precisely the definition of orthogonality for two F-squares.

Note that since y_{1} and y_{2} were any two arbitrary constraints of the ($n, k, s, 2$) $O A$ and that there are $k=2\left(s^{p}-1\right) /(s-1)-1$ such constraints, $2\left(s^{p}-1\right) /(s-1)$ - I orthogonal F-squares can be constructed in the above manner. Now, let us construct an additional orthogonal set of $\left[2\left(s^{p}-1\right) /(s-1)-1\right] F\left(n ; 2 s^{p-1}, 2 s^{p-1}, \cdots\right.$, $2 s^{p-1}$)-squares using the constraint two (second column of Table 2.1) with each of the constraints $y_{1}, y_{2}, \cdots, y_{k}$. Any of these F-squares will be orthogonal to those constructed above for the following reasons. For example, construct an F-square using constraint two as the rows and constraint y_{3} as the columns of the addition table. Now superimposing the first square constructed on this square in effect means superimposing y_{1} on each of $y_{3}, y_{3}+1, \cdots, y_{3}+(s-1) ; y_{1}+1$ on each of $y_{3}, y_{3}+1, \cdots, y_{3}+(s-1) ; \cdots, y_{1}+(s-1)$ on each of $y_{3}, y_{3}+1, \cdots$, $y_{3}+(s-1)$. Following the previous discussion and using the definition of $O A$, each element of y_{1} appears with each element of y_{3} an equal number λ of times, where $\lambda=2 s^{p-2}$. Again, the addition of a constant $c_{1}, 0 \leq c_{1} \leq s-1$, to y_{1} and a constant c_{3} to $y_{3}, 0 \leq c_{3} \leq s-1$, does not alter this property; each element of $y_{1}+c_{1}$ appears $\lambda=2 s^{p-2}$ times with each element of $y_{3}+c_{3}$. Since there are $2 s^{p}$ rows in the F-squares, each element of the first square appears $2 s^{p} \lambda=4 s^{2 p-2}$ times with each element of the square just constructed. Hence, the two F-squares are orthogonal. In a similar manner, it can be shown that this square is orthogonal to any of the other F-squares constructed above. Since constraiats 1 and 2 in Table 2.1 were chosen without any loss in generality from the set $y_{1}, y_{2}, \cdots, y_{k}$, $\left[2\left(s^{p}-1\right) /(s-1)-I\right]^{2}$ orthogonal F-squares can be constructed as described above.

Up to this point we have used addition mod s in constructing the $F\left(n ; 2 s^{p-1}\right.$, $\left.2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-squares, which consisted of the following rule:

Note that the + rule is nothing but 0, l, \cdot, s - 1 and all of its cyclic permutations. This, then, is an array of s^{2} assemblies (columns), with s symbols each replicated s times. The $O A\left(s^{2}, s+1, s, 2\right)$ can be constructed following Rao (1946). The above can be used as the first three rows (constraints) of the $\left(s^{2}, s+1, s, 2\right) O A$ and constraints $y_{4}, y_{5}, \cdots, y_{s+1}$ can be added.

Alternatively, one could represent the addition mod s by the following table:

+	0	1	2	$s-1$	
0	0	1	2	\cdots	$s-1$
1	1	2	3	\cdots	0
2	2	3	4	\cdots	1
\vdots	\vdots			\vdots	
$s-1$	$s-1$	0	1	\cdots	$s-2$

The above is a cyclic Latin square of order s. A set of s - l orthogonal Latin squares exists for all prime numbers with the above cyclic Latin square being a member of the set. Using each of the s-1 Latin squares from the set, we have s - 1 addition tables. Using all of the s-l addition tablus instead of just the single one used so far, we can construct (s - 1) $\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}$ orthogonal $F\left(2 s^{p} ; 2 s^{p-1}, 2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-squares.

We now show how to construct the additional $F\left(2 s^{p} ; s^{p}, s^{p}\right)$-square using the additional constraint having zero s^{p} times and one s^{p} times, which can be added to the
$\left(2 s^{p}, 2\left(s^{p}-1\right) /(s-1), s, 2\right) O A$. The F-square that this constraint forms is:

+	0	0	\cdots	0	1	1	\cdots	1
0	0	0	\cdots	0	1	1	\cdots	1
0	0	0		0	1	1		1
\vdots	\vdots							\vdots
0	0	0		0	1	1		1
1	1	1		1	0	0	0	
1	1	1		1	0	0		0
\vdots	\vdots							\vdots
1	1	1	\cdots	1	0	0	\cdots	0

using addition \bmod 2. This is an $F\left(2 s^{p} ; s^{p}, s^{p}\right)$-square, and it can be shown to be orthogonal to all of the above constructed F-squares. Thus, we have obtained the following set of F -squares:

$$
\begin{aligned}
& O F\left(2 s^{p} ; 2 s^{p-1}, 2 s^{p-1}, \cdots, 2 s^{p-1} ;(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}\right) \\
+ & O F\left(2 s^{p} ; s^{p}, s^{p} ; 1\right)
\end{aligned}
$$

and the theorem is proved.

Constraint (row of ($n, k, s, 2$))

1	2	y_{1}	y_{2}	y_{3}	\cdots	y_{k}
0	0	y_{1}	y_{2}	y_{3}		
0	1	y_{1}	y_{2}	$\mathrm{y}_{3}+1$		
:	:	:	:			
0	s-1	y_{1}	y_{2}	$\mathrm{y}_{3}+\mathrm{s}-1$		
1	0	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	y_{3}		
1	1	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	$\mathrm{y}_{3}+1$		
:	:	:				
1	s-1	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	$\mathrm{y}_{3}+\mathrm{s}-1$		
:	:	\vdots				
s-1	0	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	y_{3}		
s-1	1	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	$y_{3}+1$		
:	:					
s-1	s-1	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	$y_{3}+s-1$		
0	0	y_{1}	y_{2}	y_{3}		
0	1	y_{1}	y_{2}	$\mathrm{y}_{3}+1$		
:	:	:	\vdots			
0	s-1	y_{1}	y_{2}	$y_{3}+s-1$		
1	0	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	y_{3}		
1	1	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	$\mathrm{y}_{3}+1$		
:	:	\vdots				
1	s-1	$\mathrm{y}_{1}+1$	$\mathrm{y}_{2}+1$	$\mathrm{y}_{3}+\mathrm{s}-1$		
	:			$:^{3}$		
s-1	0	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	y_{3}		
s-1	1	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	$\mathrm{y}_{3}+1$		
:	:					
s-1	s-1	$\mathrm{y}_{1}+\mathrm{s}-1$	$\mathrm{y}_{2}+\mathrm{s}-1$	$y_{3}+s-1$		

Table 2.1: Constraints of an $\left(n=2 s^{p}, k=2\left(s^{p}-1\right) /(s-1)-1, s, 2\right)$ orthogonal array.

3. Example Demonstrating the Construction of 99 Orthogonal

F-squares of Order $n=18$

The number 18 is the smallest nontrivial case of ($n, k, s, 2$) OA's since when $p=1$ a single constraint represents this $O A$. We shall first demonstrate this point by constructing the $\operatorname{OF}(6 ; 2,2,2 ; 2)+O F(6 ; 3,3 ; 1)$ and the $O A(6,1,3,2)$.

We know that there exists an $(2(3), 2(3-1) /(3-1)-1,3,2) \mathrm{OA}$, that is, an ($6,1,3,2$) orthogonal array, it being simply

$$
012012 \text {. }
$$

We may append the constraint 000111 , to obtain the generalized orthogonal array

$$
A=\begin{aligned}
& 012012 \\
& 0.00111
\end{aligned} .
$$

We can check to see that A indeed has the property of an orthogonal array, namely that the 2×6 matrix A contains all possible 2×1 column vectors with the same frequency. Now our first F-square of order 6 can be obtained by forming the addition table of constraint 000111 with itself, mod. 2:

+	0	0	0	1	1	1
0	0	0	0	1	1	1
0	0	0	0	1	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0
1	1	1	1	0	0	0

The above is an $F(6 ; 3,3)$-square which we shall call F_{1}. Our second F-square can be obtained by forming the addition table of constraint 012012 with itself,
mod 3. Mod 3 consists of:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

and so the addition of 012012 with itself is:

+	0	1	2	0	1	2
0	0	1	2	0	1	2
1	1	2	0	1	2	0
2	2	0	1	2	0	1
0	0	1	2	0	1	2
1	1	2	0	1	2	0
2	2	0	1	2	0	1

This is an $F(6 ; 2,2,2)$-square, which we will call F_{2}. One can check to see that F_{2} is orthogonal to F_{1}. Now addition, mod 3, is defined by the above 3×3 table which is really a Latin square of order 3,

$$
\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1 .
\end{array}
$$

But, there exists a second 3×3 Latin square orthogonal to this, namely

0	1	2
2	0	1
1	2	0

We thus have the following "addition" table, orthogonal to the preceding one:

$"+"$	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0.

A third F-square can be obtained by forming the "addition" table of constraint 012012 with itself, by using the above "addition" table,

$"+"$	0	1	2	0	1	2
0	0	1	2	0	1	2
1	2	0	1	2	0	1
2	1	2	0	1	2	0
0	0	1	2	0	1	2
1	2	0	1	2	0	1
2	1	2	0	1	2	0.

This is another $F(6 ; 2,2,2)$-square, which we will call F_{3}. One can check to see that F_{3} is orthogonal to F_{1} and F_{2}. Thus the set $\left\{F_{1}, F_{2}, F_{3}\right\}$ forms an orthogonal set of F -squares of order 6 .

We now use Theorem 2.1 and its proof to construct $98 F(18 ; 6,6,6)$ and 1 $F(18 ; 9,9)$ orthogonal F-squares of order $n=18$. Since $n=18=2\left(3^{2}\right)$ we have, by Theorem 2.1, that there exists

$$
(3-1)\left[2\left(3^{2}-1\right) /(3-1)-1\right]^{2} F\left(2\left(3^{2}\right) ; 2(3), 2(3), 2(3)\right)
$$

and $1 \mathrm{~F}\left(2\left(3^{2}\right) ; 3^{2}, 3^{2}\right)$ orthogonal F-squares; i.e., $98 \mathrm{~F}(18 ; 6,6,6)+1 F(18 ; 9,9)$ orthogonal F-squares of order 18. To construct them we use the procedure given in the proof of Theorem 2.1. We show the simplicity of the method of construction by making use of the analysis of variance in Table 3.1. For our construction we need the $\left(2\left(3^{2}\right), 2\left(3^{2}-1\right) /(3-1)-1,3,2\right) ;$ i.e., the $(18,7,3,2)$ orthogonal array. This OA was first constructed by Bose and Bush (1952), and later by Addelman and Kempthorne (1961), and was reproduced in Raghavarao (1971). It is:

0	0	0	1	1	1	2	2	2	0	0	0	1	1	1	2	2	2
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
0	1	2	1	2	0	2	0	1	2	0	1	0	1	2	1	2	0
0	2	1	1	0	2	2	1	0	1	0	2	2	1	0	0	2	1
0	1	2	1	2	0	1	2	0	0	1	2	2	0	1	2	0	1
0	1	2	2	0	1	0	1	2	1	2	0	2	0	1	1	2	0
0	1	2	0	1	2	2	0	1	1	2	0	1	2	0	2	0	1.

Let constraints 1 through 7 be labeled $R_{1}, B_{2}, \cdots, P_{7}$ respectively and $C_{1}, C_{2}, \cdots, C_{7}$ respectively. We use these constraints in our: analysis of variance table. The $(18)^{2}$ observations forming an 18 row by 18 column square may be partitioned in such a manner as to have orthogonal sums of squares with one and two degrees of freedom. The orthogonal sums of squares with two degrees of freedom are precisely those sums of squares attributed from constraints $R_{1}, \cdots, R_{7}, C_{1}, \cdots, C_{7}$, and their interactions from the orthogonal array ($18,7,3,2$). The orthogonal sums of squares with one degree of freedom are those sums of squares attributed from constraints $R_{8}=C_{8}=000000000111111111$ and their interaction. We may now construct the analysis of variance in Table 3.1 for the $n^{2}=(18)^{2}$ observations. Now by the proof of the theorem each of the $R_{i} C_{j}$ interactions for $i, j=1,2, \cdots, 7$, constructs two ($=s-1$) orthogonal $F(18 ; 6,6,6)$ squares and the $R_{8} C_{8}$ interaction constructs an $F(18 ; 9,9)$ square. This gives us a total of $\left.\left[(7)^{2}(2)=98\right) F(18 ; 6,6,6)\right]$ $+1 F(18 ; 9,9)$ brthogonal F-squares of order 18 as we expect. For illustration let us construct the two orthogonal $F(18 ; 6,6,6)$ squares corresponding to the $R_{1} C_{2}$ interaction. The first F-square is simply obtained by forming the addition table mod 3 of R_{1} with C_{2}. We have as follows:

This is clearly an $F(18 ; 6,6,6)$-square. To construct it we used the addition mod 3 table:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1.

Since this is a 3×3 Latin square, we can find a second 3×3 Latin square orthogonal to it, namely

$$
\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0 .
\end{array}
$$

Hence, we have the following "addition" table which is orthogonal to addition mod 3:

$"+"$	0	1	2
0	0	1	2
1	2	0	1
2	1	2	0.

Using this "addition" table on R_{1} and C_{2} instead of the ordinary addition table mod 3 , we get our second $F(18 ; 6,6,6)$-square:

$1 "$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
0	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
0	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
0	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1
R_{1}	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0

One can check to see that this $F(18 ; 6,6,6)$-square is indeed orthogonal to the
previous $F(18 ; 6,6,6)$-square. We therefore have obtained the two orthogonal $F(18 ; 6,6,6)$-squares corresponding to the $R_{1} C_{2}$ interaction. Similarly, we can obtain two orthogonal $F(18 ; 6,6,6)$-squares from each of the $R_{i} C_{j}$ interactions for $i, j=1,2, \cdots, 7$ and so we have $49(2)=98 F(18 ; 6,6,6)$-squares, since there are $(7)(7)=49$ interactions. By the proof of. Theorem 2.1 these 98 F-squares are matually orthogonal, so we see how to construct 98 orthogonal $F(18 ; 6,6,6)$-squares. To obtain the $F(18 ; 9,9)$-square from the $R_{8} C_{8}$ interaction, we form the addition table mod 2 of R_{8} with C_{8} as follows:

+	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0

We have therefore shown how to construct the set of $98 \mathrm{~F}(18 ; 6,6,6)+1 F(18 ; 9,9)$ orthogonal F-squares of order 18.

Note that the interactions of R_{8} with $\mathrm{C}_{1}, \mathrm{C}_{2}, \cdots, \mathrm{C}_{7}$, and of C_{8} with $\mathrm{R}_{1}, \mathrm{R}_{2}$, \cdots, R_{7} yields 28 degrees of freedom; the interaction sum of squares of the row and column remainders with each other and with R_{i} and $C_{j}, i, j=1,2, \cdots, 8$, is associated with $4+(2)(15+15)=64$ degrees. Thus, $28+64=92$ which is the remainder of the row by column interaction degrees of freedom not used to construct F-squares. It is not yet known how to construct F-squares from these remaining interaction contrasts.

Source of Variation	Degrees of Freedom
Correction for the mean	1
Rovs	17
R_{1}	
R_{2}	
\vdots	
R_{7}	
R_{8}	
Remainder	
Columns	
C_{1}	
C_{2}	
\vdots	
C_{7}	
C_{8}	
$R_{\text {Remainder }}$	
Row \times Column interaction	$(17)^{2}=289$
$R_{1} C_{1}$	
$R_{1} C_{2}$	
\vdots	
$R_{1} C_{7}$	
$R_{2} C_{1}$	
\vdots	
$R_{7} C_{7}$	
$R_{8} C_{8}$	
Remainder $^{\text {Total }}$	

Table 3.1: Analysis of variance for 99 orthogonal F-squares of order 18.

4. The Number of Orthogonal F -squares When $\mathrm{p} \rightarrow^{\infty}$ and $s \rightarrow^{\infty}$

From Definition 1.1 and the discussion after it, we see that we have a complete set of orthogonal F-squares of order n if we have enough F-squares to account for the $(n-1)^{2}$ degrees of freedom in the row x column interaction in the analysis of variance table. In section 3 we have $(17)^{2}=289$ degrees of freedom in the row x colum interaction; hence to have a complete set of orthogonal F-squares of order 18 we would need a set of orthogonal F-squares that accounts for the entire 289 degrees of freedom. We were able to obtain $98 F(18 ; 6,6,6)+1$ $F(18 ; 9,9)$ orthogonal F-squares of order 18. This accounts for $98(3-1)+1(2-1)$ $=98(2)+1(1)=197$ degrees of freedom in the row \times column interaction. We therefore have $197 / 289 \times 100 \%=68.2 \%$ of a complete set of orthogonal F -squares of order 18.

From the table in the introduction ve note that holding s constant and letting p become larger increases the proportion of the degrees of freedom associated with the set of orthogonal F-squares obtained by this method. Likewise, setting $p=1$ and letting s increase, the proportion of the interaction degrees of freedom associated with F-squares appears to approach $1 / 4$ and for $p \geq 2$ and letting s increase, the proportion appears to approach unity. The following theorem is in this spirit:

Theorem 4.1. $\lim _{\substack{\mathrm{p} \rightarrow \infty \\ \mathrm{s} a \text { constant }}} \frac{(s-1)^{2}\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}+1}{(n-1)^{2}=\left(2 s^{p}-1\right)^{2}}=1$,

$$
\lim _{p \rightarrow \infty} \quad \frac{(s-1)^{2}\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}+1}{\left(2 s^{p}-1\right)^{2}}=\frac{1}{4}
$$

and

$$
\begin{aligned}
& \lim _{p \geq 2} \\
& s \rightarrow \infty
\end{aligned}
$$

$$
\frac{(s-1)^{2}\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}+1}{\left(2 s^{p}-1\right)^{2}}=1
$$

The proof of the theorem is straightforvard. Thus, we have shown how to construct an asymptotically complete set of orthogonal F-squares.
5. Alternative Construction Method for Orthogonal F-squares of Order $n=2 \mathrm{~s}$

In constructing orthogonal F-squares of order $n=2 s^{p}$, we have a simpler method than that used previously for the special case when $p=1$, i.e. $n=2 s$, namely the Kronecker product method.

Construction Method: Let $n=2 s$, where s is a prime number. Let $I_{1}(s), L_{2}(s)$, $\cdots, I_{(s-I)}(s)$ be a complete set of orthogonal Latin squares of order s. We may construct (s - 1) orthogonal F-squares of order n as follows:

$$
\begin{array}{r}
\sum_{i=1}^{s-1} L_{i}(s) \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=L_{1}(s) \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]+L_{2}(s) \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
+\cdots+L_{(s-1)}(s) \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{array}
$$

where \otimes denotes Kronecker product. In addition, the F-square obtained by

$$
J_{S \times S} \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

where $J_{s X s}$ is the $s \times s$ matrix whose elements are all ones, is orthogonal to the above (s - l) F-squares.

Example 5.1: Let $n=10=2(5)$. Thus $s=5$. We may construct 5 orthogonal F squares of order 10. Using the above we have:

$$
\begin{aligned}
& \sum_{i=1}^{4} L_{i}(5) \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1 \\
3 & 4 & 5 & 1 & 2 \\
4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
&+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2 \\
5 & 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 & 1 \\
4 & 5 & 1 & 2 & 3
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
&+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3 \\
2 & 3 & 4 & 5 & 1 \\
5 & 1 & 2 & 3 & 4 \\
3 & 4 & 5 & 1 & 2
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
&+\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4 \\
4 & 5 & 1 & 2 & 3 \\
3 & 4 & 5 & 1 & 2 \\
2 & 3 & 4 & 5 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

One can check to see that the above form 4 orthogonal $F(10 ; 2,2,2,2,2)$-squares; the following F-square with two symbols, i.e., $F(10 ; 5,5)$-square, is orthogonal to the above 4 F-squares,

$$
F(10 ; 5,5)=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right] \otimes\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The above procedure of constructing F-squares may be extended to the case where $n=q k$. If t orthogonal Latin squares of order k exist, then a set of t orthogonal F-squares of order n may be constructed as follows:

$$
\sum_{i=1}^{t} I_{i}(k) \otimes J_{q \times q}
$$

Further, suppose that 2 Latin squares of order q exist. Then, the following $F-$ squares are orthogonal to the above F-squares and to each other:

$$
\sum_{i=1}^{\ell} L_{i}(q) \otimes J_{k \times k}
$$

6. Discussion

The method of constructing orthogonal F-squares for order $n=2 s^{p}$ can be used in general for any order n provided an $(n, k, t, 2)$ orthogonal array exists for some k and some t a power of a prime. These orthogonal arrays are known to exist for $n=s^{p}$ and $n=2 s^{p}$. The case $n=2 s^{p}$ has just been considered. For $n=s^{p}$, complete sets of orthogonal F-squares of order n have been constructed previously by Hedayat, Raghavarao, and Seiden (1975). The following then presents an alternative, perhaps easier, method of constructing these F-squares. We first give the theorem due to Bose and Bush (1952) on the existence of ($n=s^{p}, k, t, 2$) orthogonal arrays:

Theorem 6.1. Given $t=s^{v}, \lambda=s^{u}$ (where s is a prime), then we can construct an orthogonal array $\left(\lambda t^{2}, k, t, 2\right)$ of strength 2 , in which the number of constraints k is given by

$$
k=\frac{\lambda\left(t^{c+1}-1\right)}{t^{c}-t^{c-1}}+1
$$

where $c=[u / v]$.

We therefore have the following theorem:

Theorem 6.2. We can use the ($\lambda t^{2}, k, t, 2$) orthogonal array, with λ, t, and k defined above, to construct a set, and when $[u / v]=u / v$ a complete set, of $(t-1) k^{2}$ orthogonal $F\left(\lambda t^{2} ; \lambda t, \lambda t, \cdots, \lambda t\right)$-squares.

The proof is similar to the proof of Theorem 2.1 and so is omitted here.

Since there is a one-to-one correspondence between orthogonal F-squares and orthogonal arrays, we may restate Theorem 2.1 in terms of orthogonal arrays. First note that a set of $r F(n ; \gamma, \gamma, \cdots, \gamma)$-squares corresponds to an orthogonal array $\left(n^{2}, r, n / \gamma, 2\right)$. Hence the set of $(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}$ orthogonal $F\left(2 s^{p}\right.$; $\left.2 s^{p-1}, 2 s^{p-1}, \cdots, 2 s^{p-1}\right)$-squares in Theorem 2.1 corresponds to an orthogonal array

$$
\left(4 s^{2 p},(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}, s, 2\right)
$$

The $F\left(2 s^{p} ; s^{p}, s^{p}\right)$-square also in Theorem 2.1 can be written as the orthogonal array ($\left.4 s^{2 p}, 1,2,2\right)$. Since the $F\left(2 s^{p} ; s^{p}, s^{p}\right)$-square is orthogonal to the $F\left(2 s^{p} ; 2 s^{p-1}\right.$, $2 s^{p-1}, \cdots, 2 s^{p-1}$)-squares we have that the orthogonal array ($4 s^{2 p}, 1,2,2$) is orthogonal to the orthogonal array $\left(4 s^{2 p},(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}, s, 2\right)$ and so we may put both arrays together and denote it as a single orthogonal array $\left(4 s^{2 p},(s-1)\left[2\left(s^{p}-1\right) /(s-1)-1\right]^{2}, s, 2\right)+\left(4 s^{2 p}, 1,2,2\right)$.

Finally, consider the following orthogonal array ($4 s^{2 p}, 2,2 s^{p}, 2$):

$$
\begin{aligned}
& 00 \cdots 011 \cdots 1 \quad \cdots \cdot . \cdot 2 s^{p} 2 s^{p} \ldots s^{p} \\
& 01 \cdots 2 s^{p} 01 \cdots 2 s^{p} \cdots \cdots \cdot 0 \quad 1 \cdots 2 s^{p} \text {. }
\end{aligned}
$$

This orthogonal array corresponds to the sources of variation due to rows and columns in the analysis of variance; when written in square form the two constraints look like:

$$
\begin{array}{ccccccccc}
0 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 \\
\vdots & & & & 0 & 1 & \cdots & 2 s^{p} \\
0 & 1 & \cdots & 2 s^{p} \\
2 s^{p} & 2 s^{p} & \cdots & 2 s^{p} & & 0 & & & \\
& 0 & 1 & \cdots & 2 s^{p} & .
\end{array}
$$

One can check to see that the above orthogonal array ($4 s^{2 p}, 2,2 s^{p}, 2$) is orthogonal to the afore-mentioned orthogonal array. We may thus write the orthogonal arrays as a single orthogonal array denoted as $\left(4 s^{2 p}, 2,2 s^{p}, 2\right)+\left(4 s^{2 p},(s-1)\left[2\left(s^{p}-1\right) /\right.\right.$ $\left.(s-1)-1]^{2}, s, 2\right)+\left(4 s^{2 p}, 1,2,2\right)$.

We thus see that our method of constructing F-squares of order $n=2 s^{p}$, is also a method for constructing orthogonal arrays of size $n=\left(2 s^{p}\right)^{2}=4 s^{2 p}$ with $2, s$, and $2 s^{p}$ elements.

Literature Cited

Addelman, S. and Kempthorne, 0. (1961). Some main effect plans and orthogonal arrays of strength two. The Annals of Mathematical Statistics 32:1167-1176.

Bose, R. C. and Bush, K. A. (1952). Orthogonal arrays. Annals of Mathematical Statistics 23:508-524.

Federer, W. T. (1977). On the existence and construction of a complete set of orthogonal $F(4 t ; 2 t, 2 t)$-squares design. Annals of Statistics 3:561-564.

Hedayat, A. (1969). On the theory of the existence, non-existence and the construction of mutually orthogonal F-squares and latin squares. Ph.D. dissertation, Cornell University, June.

Hedayat, A., Raghavarao, D., and Seiden, E. (1975). Further contributions to the theory of F -squares design. Annals of Statistics 3:712-716.

Hedayat, A. and Seiden, E. (19\%0). F-square and orthogonal F-squares design: A generalization of Latin square and orthogonal Latin squares design. Annals of Mathematical Statistics 41: 2035-2044.

Mandeli, J. P. (1975). Complete sets of orthogonal F-squares. M.S. Thesis, Cornell University, August.

Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. John Wiley and Sons, Inc., New York, Iondon, Sydney, Toronto.

Rao, C. R. (1946). Hypercubes of strength "d" leading to confounded designs in factorial experiments. Bulletin of the Calcutta Mathematical Society 38:67-78.

[^0]: Paper No. BU-6i22-M in the Biometrics Unit Mimeo Series, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New Yorix 14853.

