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Abstract

The existence of a set of (s - 1)[2(s® - 1)/(s - 1) - 172 orthogonal F-squares
of order n egqual to QSP, s a prime number and p a positive integer, with s symbols
plus one additional orthogonal F-square of order n with two symbols has been proved
by construction. The method of construction utilizes orthogonal arrays with 2sp
assemblies or columns, 2(s® - 1)/(s - 1) - 1 constraints or rows, s symbols, and of
strength two, together with the addition tables, mod s, provided by a couplete set
of orthogonal latin squares of order s. From the set of orthogonal F-squares, we
show how to construct orthogonal arrays of the form (hsap,2,2sp,2) +
(hrsep,(s - [2(s® - 1)/(s - 1) - 113, 5, 2) + (usgp,l,z,e). Thus, the method of
constructing orthogonal F-squares is also a method for constructing orthogonal
arrays. We further demonstrate that for p = 2, a complete set of orthogonal F-
squares is approached as s — ®, and for s constant a complete set is approached as

P~
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OF ORDER n = 2s°, s A PRIME NUMBER
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John P. Mandeli and Walter T. Federer

1. Introduction and Summary

In an effort to conserve space, the reader is referred to Hedayat and Seiden
(1970), Hedayat, Raghavarao, and Seiden (1975), and to Federer (1977) for details
and definitiqns'concerning F-squares, orthogonality of}F-squares design, and of a
complete set of orthogonal F-squares design. The sﬁﬁﬁ&l O0L(n,t) has been used
frequently to deﬁote a set of t mutually orthogonal Létin squaresiof order n; when
t =n - 1, the set of orthogonal latin squares of'order n is comblete. A set of t
mtually orthogonal F-squares of order n and of the form F(n;hl,kg,---,Km), has been

denoted as OF(n;xl,kz,"',xuét), where m is a éonstant and represents the number of

symbols in each F-square of the set. When t = (n - 1)3/(m - 1), an integer, the

sp, s a prime power, a complete set

set is sald to be complete. For m= s and n
has been given by Hedayat, Raghavarao, and Seiden (1975); when m = 2 and n = Lt, g
complete set has been given by Federer (1977). The definition of a complete set of
orthogonal F-squares given by Federer (1977) needs to be extended as follows for i

symbols, i =2, 3, »++, n, in an F(n;hl,kz,-'~,xi)-square design:

DEFINITION 1.1, The number Ni of orthogonal F-squares designs with 1 distinct

i
symbols is denoted as OF(n;A,,\,,***,\ 3N.), vhere <& kh =n, For i a variable
l 2 i 1 h l .xf"‘ L

n
ranging over the values i =2, 3, ***, n, the total set of t = Z Ni orthogonal
i=2
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F-squares with i distinet elenents is denoted by I Oan;x ,xz,---,k.;N.). Wnen
n i=p ay Ty 1 1 1

n
-ZENi(i -1)=(n-1)3, the set of t = % N, orthogonal F-squares designs is said
i= i=2

to be complete.

In the spirit of Definition 1.1, Mandeli (1975) has constructed complete sets

@]
o}

D, . hid :
F(s ,Kl,le,"~,kmi)~squares nnere.mi =s,k=1,2, ¢+, D, Thus, the number
of syrbols in the complete set of ortihogonal F-squares can vary from s, sg, X

Jid )
8, «°+, to sp.

s

n
Note the fact that = Ni(i - 1) = (n ~ 1) in the complete set of orthogonal

' i=2
F-squares designs (CSOFSD) follows directly from factorial design and analysis of

variance theory. There are (n - 1)® row by column interaction degrees of freedom
and these are the only ones availeble for constructing F-squares. Vhen these

(n - 1)% interaction degrees of freedom are completely utilized in the construction
of orthogonal PF-squares, the CSOFSD has been constructed. ‘Also, when i = n,

n
I N = (n - 1)3/(m - 1).

In the present paper, we show how to construct an orthogonal set of
t = (s - 1)[2(s® - 1)/(s - 1) - 112 OF(n = 2s%50 0
?)

2,---,xs)-squares plus one of

the form F(n;sp,s for s a prime humbér, and thereby prove their existence. To
date, work on this class for n = 2(3) = & has been reported for an OF(6;2,2,2;4)-
squares set [Hedayat et al. (1975)] and for OF(6;2,2,2;8) + OF(6;3,3;1) and

orF(6;1,1,1,1,1,1;1) + OF(6;2,2,2;7) sets [D. A. Anderson, W. T. Federer, and F-C.
H. Lee (unpublished reports)]. To illustrate the nunber N, of orthogonal F(n;kl,
he,---,xs)-squares for all n = 2s® < 100, s an odd prime number and p a positive

integer, and the proportion of the degrees of freedom accounted for by the Ns

F(n;kl,kg,"°,ks) plus one F(n;s®,s?)-squares, the following table was prepared:




n = 2g° s N (Ns(s - 1)+ 1)/(n - 1)2

6 3 2 5/25 = 0.200
10 5 L 17/81 = 0.210
1k 7 6 37/169 = 0.219
18 3 08 197/289 = 0.682
22 11 10 101/441 = 0.229
26 13 12 145/625 = 0.232
3k 17 16 257/1089 = 0,236
38 19 - 18 - 325/1369 = 0.237
L6 23 22 485/2025 = 0.240

1 50 5. b8k 1937/2401 = 0.807 .-
1 s 3 1250 2501/2809 = 0.890
58 29 28 785/3249 = 0.2Lh2
62 31 30 901/3721 = 0.242
Th 37 36 1297/5329 = 0.243
82 L1 Lo 1601/6561 = 0,24k
86 L3 L2 1765/7225 = 0.2k
oh . Ly BT 2117/8649 = 0.245
98 7 1350 8101/9409 = 0.861

The method of construction we use is that of orthogonal arrays (see e.g.,
Raghavarao (1971), Chapter 2, for definition and discussion). [Our method of con-
structing orthogonal F-squares differs from that used in the above cifed paﬁers.]
Since it is known that an orthogonal array forming a k row X ¢ column matrix with
s distinct elements of strength 2 exists for all n = 2sp, s a prime number, our
method of construction is then quite general. Sucih orthogonal arrays have been
denoted as (n,k,s;é) vhere n is the nurber of assemblies (columns), k is the number
of constraints (rows), s is the number of levels (elements or symbols), and 2 is

the strength of the array.
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In addition, we Cemonstrate that the proportion of the (n - 1)2 degrees of
freedom for the row g_;blumn interaction accounted for by the (s - 1)2 x
(2(sP - 1)/(s - 1) Qi35é~+ 1 degrees”of freedom for the set of 6rthogonal F-squares
constructed by;the above method, approaches one as p — ® for s constant. We further
show that thiS'éroporsion approaches l/h for p =1 as s = © and that it approaches
one for n» =2 és 8 =» ®, This means that as p becomes large the CSOFSD is approached

for any s and that For any p 2 2 the method of construction produces a set which

becomes closer and closer to the CSOFSD as s - @,

2. Construction and Existence of a Set of Orthogonal F-squares of Order n = 2sp

Theorem 2.1. There exists a set of (s - 12(s? - 1)/(s -'1) - 112 F(ESP;QSP'I,
ESpil, P

-»~,2sp'l) plus one F(2s%;s

,62) orthogonal F-squares of order n = 25, s a

prime number and p a positive integer.

Proof: The proof is by construction, using the orthogonal arrays (n = 2sp,

x = (2(s® - 1)/(s - 1) - 1), s, 2). These orthogonal arrays (OA) are known to
exist and Addelman and Kempthorne (1961) give a method for constructing them.
Making use of the arrays thus cbnstructed, ve shall show how to construct

(s - 1)(2(s® - 1)/(s - 1) - 1)2 F(n;zsp-l,2sp-l,---,2sp_l)-squares. Then, ve shall

P

show how to construct the additional F(n;s®,sP)-square.

Without loss in generality e ma& write the first two rows (constraints) of
an OA in the order given in the first two columns of Table 2,1, Then, denoting the
k constraints as ¥y, ¥,, ***, ¥ in the (n,k,s,2) OA, we construct an F(n;2sp-l,
ESP—l,"',Esp—l)-square by using constraint 1 as the rows and constraint yl as the

columns of an addition table mod s. The n-row by n-column addition table is an

F(n;QSP'l,Esp'l,--°,25p-l)-square for the following two reasons:
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(1) Each row of the square is an integer y; * e O Scss-1 y, has pre-
cisely s elementd, 0, 1, »+-, s - 1, each replicated 26?1 tines. Adding a value
of ¢, mod s, does not alter this property. Therefore, eacia row of the n X n square

has s elements each replicated 26" times.

(ii): Iet z be an element, 0 S z < 5 - 1, from Yy That is, let z be the
element in the it® position in constraint Y, Then, the element in the it* position
in vy + 1 is simply z + 1, +-+, and the ith poéition in constraint ¥y +s5 -1 ié
z + (8 - 1). Thus, the i*® column, i = 1, 2, +++, 2s°, of the n X n square con-

P-1 yalues of z, 26?71 values of z + 1, *++, and 261 values of z +

sists of 2
s - 1. By the properties of modulo arithmetic, z, z + 1, **+, z + (s - 1), are
merely some cyclic permutation of the elements 0, 1, «+»+, s - 1. Hence, the jth

columm of the square has s elements each replicated 262"% times,

Therefore, putting (i) and (ii) together, results in each of the s elements being

p-1

replicated 2s times in each row and each .column. Consequently, an F(Esp;esp'l,

2Sp-l;'“,QSp_l)-squ_are is obtained.

In a similar manner ve can construct a second F-sguare of this type by forming
the addition table of constraint one as the rows and any other constraint, say Yos
as the columns (see fourth column of Table 2.1.). This second F-square will be

orthogohal to the first F-square constructed above because of the fdlloﬁing: Super-
impose the filrst F-square upon the second, vhich in effect superimposes ¥y on ¥y
That is, y; + 1 is superimposed upon y, + 1, **+, ¥, *+ (s = 1) on Yo + (s - 1),

By the definition of OA, eéch element of y, appears an equal nugper of times,

A= 2sp'l/s = ésp~2, with each element of ¥,- Since the addigiéh of a constant c,
0<cSs -1, to ¥q OF Yo, does not alter-this‘property, eacﬁ element of Yy +c
2sP~2

appears an equal number of times, \ = , with each element of Ys + c. Since
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there are 2s? rows in the F-square, each element of the first F-square appears an

equal number of times, 2sp)\ = 1+s2p'2, with each element of the second F-square. .

This is precisely the definition of orthogonality for two F-squares.

Note that since Yy and Y, vere any two arbitrary constraints of the (n,k,s,2)
OA and that there are k = 2(sP - 1)/(s - 1) - 1 such constraints, 2(s® - 1)/(s - 1)
- 1 orthogonal F-squares can be constructed in the gbove manner. Now, let us con-
struct an additional orthogonal set of [2(s® - 1)/(s - 1) - 1]F(n;2sp'l,2sp‘1,-.-,
Qsp—l)—squares using the constraint two (second column of Table 2.1) with each of
the constraints Vi» Yor **5 Yy Any of these F-squares will be orthogonal to
thosevconstructed gbove for the following reasons. For example, construct an
F-square using constraint two és the rows and constraint y3 as the columns of the
addition table. Now superimposing the first square comnstructed on this square in
effect means superimposing y, on each of Y3r V3 +1, e, Y3 + (s - 1); y, *+1lon

each of V3o V3 +1, ce-, Vs + (s = 1); «v-, vy + (s - 1) on each of V35 Vg + 1, eee, .

y3 + (s - 1). Following the previous discussion and using the definition of OA,
each element of y, @ppears with each element of y3 an equal number A\ of times,

where \ = 2sp-2. Again, the addition of a constant c,, 0 € ¢, = s - 1, to y, and
1

1’ 1

a constant c, to y3, O0Sc,S s - 1, does not alter this property; each element of

3
¥y + ¢, eppears A\ =2s

3

P-2 times with each element of V3 +c

3° Since thgre are 2s¥
rows in the F-squares, each element of the first square appears 2spl = hsep-e times
with each element of the square just constructed. Hence, the two F-squares are
orthogonal. In a similar manner, it can be shown that this square is orthogonal to
any of the other F-squares constructed above. Since constraiats 1 and 2 in Table
2.1 were chosen without any loss in generality from the set Y10 Yoo 0ty o

[2(s® - 1)/(s - 1) - 1)2 orthogonal F-squaféé can be constructed as described

above.
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Up to this point we have used addition mod s in constructing the F(n;QSp-l,

Esp-l,"°,23p-l)~squares, which consisted of the following rule:
00 - O 110 1 - s-1 s-1 *+* s-1
+01-r+ 81 +01-ees-1 oo + O 1 ... s-1

01l ¢+ s-1 12+« 0 s-1 O eos 5-2

Note that the + rule is nothing but 0, 1, ¢++, 5 = i and all of its cyclic permu-
tations. This, then, is an array.of s® assemblies (columns), with s symbols each
replicated s times. The OA'(sg, s +1, s, 2) can be constructed following Rao
(1946). The sbove can be used as the first three rows (constraints) of the

(s, s + 1, s, 2) OA and constraints Vs Yss ***s Ygyp can de added.

Alternatively, one could represent the addition mod s by the following table:

+ 0 1 2 s-1
0 0 1 2 eee 5=1
1 1 2 3 ees O

2 2 3 4.0 1
s-1 s=-1 0 1 e 5=2

The above is a cyclic Latin square of order s. A set of s - 1 orthogonal Latin
squares exists for all prime numbers with the above cyclic Latin square being a
member of the set. Using each of the s - 1 Latin squares from the set, we have
s - 1 addition tables. Using all of the s - 1 addition tablcs instead of just the

single one used so far, we can construct (s - 1)[2(s® - 1)/(s - 1) - 112 orthogonal

F(2sp;2sp-l,23p-l,"',259-1)-squares.

We now show how to construct the additional F(2sp;sp,sp)-square using the addi-

D D

tlonal constraint having zero s times and one s* times, which can be added to the
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(257, 2(s® - 1)/ (= - 1), s, 2) OA. The fféquare that this constraint fcrms is:

+ O 000¢ 0 l loop l
O] 0 O0+eO - 1 +ee 1}
010 O o 1 1 1
010 O 1 1
111 1 1 0 O 0
1711 1 0 0
11 1.1 0 0:e0

‘using addition mod 2. This is an F(2sp;sp,sp)-square, and it can be shown to be
orthogonal to all of the above constructed F-squares. Thus, we have obtained the

following set of F-squares:

oF(2s®;26P7 1, 261 o ov 26 (s - 1)[2(sP - 1)/(s - 1) - 172)

+ oF(2sP;sP,sF;1),

and the theorem is proved.
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~ Constraint (row of (n,k,s,2))

1 2 v Yo Y3 e Vi
0 0 vy Yo Yq

0 1 vy Yo Y3 +1

0 s-1 | ¥ 'yé v3 + s-1

1 yp v 1 o t 1 Y3

1 y, *1 yo * 1 vy ¥ 1

1 s-1 ¥y + 1 Yo + 1 y3 + s-1
s-1

0
s-1 1 Yy + s~1 Yo + s-1 y3 + 1

s=1 | s-1 ¥y + s-1 Y5 + s-1 y3 + s-1

0 O Iy Yo Y3

0 1|y Yo y3+ 1

0 s-1 Yy Yo y3 + s-1
1 yl 1 Y5 1 y3

1

1 s-1 vy + 1 Yo + 1 y3 + s-1
s-1 0 Yy + s-1 Yo + s-1 y3

s=1 1 MY + s- Yo + s- y3 + 1
s-1 | s-1 Yy + s-1 Yo + s-1 y3 + s-1

Teble 2.1: Constraints of an (n = 2s°, k = 2(s® - 1)/(s - 1) - 1, s, 2)

orthogonal array.
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3. Example Demonstrating the Construction of 99 Crthogonal

F-squares of Order n = 18

FOR

The number 18 is the smallest nontrivial case of (n,k,s,2) OA's since when
P = 1 a single constraint represents this OA. We shall first demonstrate this

point by constructing the OF(6;2,2,2;2) + OF(6;3,3;1) end the CA(6,1,3,2).

We know that there exists an (2(3), 2(3 - 1)/(3 - 1) - 1, 3, 2) OA, that is,

an (6,1,3,2) orthogonal array, it being simply

‘"012012.

We may append the constraint O O 011 1, to obtain the génerhlized orthogonal

array

012012
A= .

000111

We can check to see that A indeed has the property of an orthogonal array, namely
that the 2 X 6 matrix A contains all possible 2 X 1 column vectors with the same
frequency. Now our first F-square of order 6 can be obtained by forming the

addition taeble of constraint 0 0 0 1 1 1 with itself, mod 2:

+
(@)
o
o
=
-

O 0o r P H|BH
© 0 O F K M

H M O O O
H M P O O O
e ;d F;‘CJ o o
L H K O O O
S © O KH K K

The above is an F(6;3,3)—square which we shall call Fl‘ Our second F-square can

be obtained by forming the addition table of constraint 0 1 2 0 1 2 with itself, ‘
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mod 3. Mod 3 consists of:

and so the addition of 0 1 2 O 1 2 with itself is:

<+
o
=~
o
)
-
N

N H O N H O
O M H O M H
H O N H O
O N H O N M
H O M KR O N

M H O P O
M H O M O

This is an F(6;2,2,2)-square, which we will call F One can check to see that

2'
Now addition, mod 3, is defined by the above 3 X 3 table

F, 1s orthogonal to F

2 1’
vwhich is really a Latin square of order 3,

n
O

But, there exists a second 3 X 3 Iatin square orthogonal to this, namely

We thus have the following "addition" table, orthogonal to the preceding one:

"+" } o l 2

| V)
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A third F-square can be obtained by forﬁing the "addition" table of constraint

-

01201 2with itself, by using the above "addition" table,

"o 1 F o0 1 2
ojo 1 2 o 1 2
12 o 1 2 o 1
21 2 o 1 2 o0
ojo 1 2 o 1 2
1{2 o 1 2 o 1
2 {1 2 o 1 2 o.

This is another F(6;2,2,2)-square, which we will call F One can check to see

-3
that F3 is orthogonal to Fl and F2. Thus the set {F,, F2, F3} forms an orthogonal

set of F-squares of order 6.

We now use Theorem 2.1 and its proof to construct 98 F(18;6,6,6) and 1

F(18;9,9) orthogonal F-squares of order n = 18. Since n = 18 = 2(3%) we have, by

Theorem 2.1, that there exisfs
(3 - 1)[2(3% - 1)/(3 - 1) - 113r(2(3%);2(3),2(3),2(3))

and 1 F(2(3%);3%,32) orthogonal F-squares; i.e., 98 F(18;6,6,6) + 1 F(18;9,9)
orthogonal F-squares of order 18. To construct them ve use the procedure given in
the proof of Theorem 2.1l. We show the simplicity of the method of construction by
making use of the analysis of variance in Table 3.1. For our construction we need
the (2(3%), 2(3% - 1)/(3 - 1) -1, 3, 2); i.e., the (18,7,3,2) orthogonal array.
This OA was first constructed by Bose and Bush (1952), and later by Addelman and
Kempthorne (1961), and was reproduced in Raghavarao (1971). It is:

0

1 1l

©O 0 0 0o 0o o
H o H D F B O
(SR VI S VI o)
©O M K H FH O K
H O N O N M
M H O MO N K
N O FHF DD O
O H M H O K P
H D O O +H NP
F P O M O O
M N O O H O
O O MM K N O
H DD DO O

N O O K R P
O F K O MDD

M H DO KF O
O MO NN D
H O R K O M D
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Let constraints 1 through 7 be labeled Bl, 32, cee, B7 respectively and

Cl, 02, e, C. respectlvely. We use these constraints in our:analysis of variance

T,
taﬁle. The (18)2 observatlons forming an 18 row by 18 column square may be par-

titloned in such a manner as to have orthogonal sums of squares with one and two
degrees of freedom, "The orthogonai sums of squares with two degrees of freedom are
precisely those sums of squares attributed from constraints R . R7 Cl’ cee, 07,
and their interactions from the orthogonal array (18,7,3,2). The orthogonal sums of
squares'With o£e degree of .freedom areéthose sums of squares attributed frém con-
straints R8 = 08 = OOOOOOOOOlllllllll and their interaction. We may now construct
the analysis of variance in Table 3.1 for the n® = (18)2 obser&ations. Now by the
proof of the»tpeorem each ;f the Ricj interactlons‘for i,J = l; 2, *°°°, 7,:con-
structs two (= s ~ 1) orthogonal F(18;6,6,6) squares and the RgCg interaction con-
structs an F(l?;9,9) square. This givés us a total of [(7)2(2) = 98)F(18;6,6,6)]

+ 1 F(18;9,9) Erthoébnal Fésquares of 6rder 18 as we expect. For illustration let
us construct’ the two*orthogonal F(18;6,6,6) squares corresponding to the R;C, inter-
action. The first F-square is simply obtained by forming the addltion table mod 3

of Rl with 02.: We have as follows:
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To construct it we used the addition mod 3

This is clearly an F(18;6,6,6)-square.

table:

.

Since this is a 3 X 3 latin square, we can find a second 3 X 3 Latin square

orthogonal to it, namely
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Hence, we have the following "addition" table which is orthogonal to addition mod 3:

Il+ll O l 2

Using this "addition" table on R, and C, instead of the ordinary addition table

mod 3, we get our second F(18;6,6,6)-square:

Ca
"+t o 1 2}0 -1 240 1 2}0 1 20 1 20 1 2
olo 1 0 1 0o 1 2 1 0 1
1 0 1 0 1 1 1
0 1 0o 1 o 1 2 1 1
1{2 o 1l2 o 1]l2 o 1 0 0o 1 0
‘ 1 0 ) 0 1 0 0 0
1 0 2 0 1 0 0 2 0 1
211 2 ol1 2 1 2 > 011 2 0 2
ol]1 1 2 0 2 0
1 o1 2 2 0 2 0 ol1 2
Ry
olo 1 1 1 1 2 1
0 1 1 1
0 1 0 1 0 1 1 1 20 1
1{2 o 1}l2 o 112 o 1 0 1 0 1 0 1
1 0o 1 0
1 o 1l2 o 0 1 0 1 0 1
1 0 2
5 .
2 0 0 0

. One can check to see that this F(18;6,6,6)-square is indeed orthogonal to the
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previous F(18;6,6,6)-square. We therefore have obtained the two orthogonal
F(18;6,6,6)-squares corresponding to the Rlbe interaction. Similarly, we can ob-
tain two orthogonal F(18;6,6,6)—sqﬁaz§§J§gdm each of the RiCj interactions for
i,j = 1, 2, «++, 7 and so we have h9(é) =h98 F(18; 6,6,6)-squares, since there are
(7)(7) = 49 interactions. By the proof of Theorem 2.1 these 98 F-squares are
mitually orthogonal, so we see how to construct 98 orthogonal F(18;6,6,6)-squares.
To obtain the F(18;9,9)-$quére from the R808 interaction, we form the addition'

table mod 2 of RB vith 08 as follows:

+] o o o o 0o 0 0 0o of1 1 1 1 1 1 1 1 1
olo o o o o 0 0 o of1 1 1.1 1 1 1 1 1
ol o o o o o o 0 o ofl1 1 1 1 21 1 1 1 1
ol o o 0o o0 0o o 0 0 of1 1 1 1 1 1 1 1 1
oflo .0 o0 0o 0o 0o 0 0 0f1 1 1 1 1 1 1 ;1 1
olo o o o o o o o of1 1 1 1 1 1 1 /1 1
olo o o o o o 0 0 o1 1 1 1 1 1 1 1 1
oflo o o o o0 0 0 o of1 1 1 1 1 1 1 1 1
olo o o o o 0 0 0 o/l1 1 1 1 1 1 1 1 1
olo o o o o 0 o 0o o1 1 1 1 1 1 1 1 1
1{1 1 1 1 1 1 1 1 1/0 0o o 0 0 0 0 0 O
111 1 1 11 1 1 1 1]lo 0 0o 0o 0o 0o 0 0 O
11 1 1 1 1 1 1 1 1{0 O O O O O O O O
11 1 1 1 1 1 1 1 1/l0 0 0 0 0 0 0 0 O
1{1 1 1 1.1 1 1 1 1{0 0 0o O O O O 0 O
11 1 1 1 1 1 1 1 2{0 0 0 0 0 0 0 0 O
11 1 1 1 1 1 11 1l0 0 0 0 0 0 0 0 O
11 1121 12 111 1/0 0 0 0 0 0 0 0 0
11 1 1 1 1 111 10 0 0 0 0 0 0 0 0

We have therefore shown how to construct the set of 98 F(18;6,6,6) + 1 F(18;9,9)

orthogonal P-squares of order 18,
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Note that the interaction; of R8 with Cl’ C2, '.'f gy,and of 08 Y?th Rl’ R2,
cee, R7 yields 28 dégreeS"of;f§3é&ong the irteraction sum of squares of the row

and column remainders with each other and with Ri and CJ, i,j=1, 2, -, 8, is

associated with 4 + (2)(15 + 15) = 64 degrees. Thus, 28 + 64 = 92 which is the
remainder of-the row by column interaction degrees of freedom not used to construct
F-squares, It is not yet known how to construct F-squares from these remaining

interaction. contrasts.

Source of Variation Degrees of Freedom

Correction: for the mean 1
Rows 17

By

R

.
L d
.

Rg
Remainder

sese N N

n P

Colums - . 17

cee OO

Q
o]
OIS (V)

Remainder
Row X Column interaction (17)2 = 289

R,Cy

Rlcz

= =
—~——r

RC
!

(197

BCq

RgCq

Remainder
Total (18)2 = 324

o F eese P B eee

\0
n

Table 3.1: Analysis of variance for 99 orthogonal F-squares of order 18.
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4, The Number of Orthogonal F~squares When p - ® and 58 - @

From Definition 1.1 and the‘discﬁSSion after it, we see that we have a
complete set of orthogonal F-squares of order n if we have enough F-squares to
account for the (n - 1)® degrees of freedom in the row X column interaction in
the analysis of variance table. In section 3 we have (17)% = 289 degrees of
freedom in the row X column interaction; hence to have a complete set of orthogonal
for the entire 289 degrees of freedom. We were able to obtain 98 F(18;6,6,6) + 1
F(18;9,9) orthogonal F-squares of order 18. This accounts for 98(3 - 1) +1(2 - 1)
= 98(2) + 1(1) = 197 degrees of freedom in the row X column interaction. We there-
fore have 197/289 x 100% = 68.2% of a complete set of orthogonal F-squares of order

18.

From the table in the introduction we note that holding s constant and letting
p become larger increases the proportion of the degrees of freedom associated with
the set of orthogonal F-squares obtained by this method. Idkewise, setting p = 1
and letting s increase, the proportion of the interaction deérees of freedom
associated with F;squares appears to approach 1/4 and for p = 2 and letting s in-
crease, the proportion appears to approach unity. The following theorem is in

this spirit:

Theorem 4.1. — ® (s - 1)2[g(sp - 1)/(s - 1) - 1P+ 1 =1,
g ; constant (- 1)% = (2s® - 1)
iim (s - 1)2[2(s® - 1)/(s - 1) - 12 + 1 _1
P2 (2s® - 1)2 Y
and
(s - 1)%[2(s® - 1)/(s - 1) -1 +1

L vE
8

(2sP - 1)

[/, 9o B
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The proof of the theorem is straightforward. Thus, we have shown how to construct

an asymptotically complete set of orthogonal F-squares.

5. Alternative Construction Method for Orthogonal F-squares of Order n = 2s

In constructing orthogonal F-squares of order n = 25p, we have a simpler
method than that used previously for the special case when p = 1, i.e. n = 2s,

namely the Kronecker product method.

Construction Method: ILet n = 2s, where s is a prime number. Let Ll(s), Lz(s),
ses, L(s—l)(s) be a complete set of orthogonal Iatin squares of order s. We may

construct (s - 1) orthogonal F-square3~bf order n as follows:

s-t 11 11 (1 1
), L (s) ® = L (s) @ + Ly(s) ®
= 111 11 '.1 1
i=1
' 11
$eee L, \(s) ®
(s-1) 11

where ® denotes Kronecker product. In addition, the F-square obtained by

where J“XS is the s X s matrix whose elements are all ones, is orthogonal to the

above (s - 1) F-squares.

Example 5.1: Ietn = 10 = 2(5). Thus s = 5. We may construct 5 orthogonal F-

squares of order 10, Using the above we have:
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)4--
L) e =13
i:l ‘ l . '.4.;. .I.Llf. .

N 2 VT F oW
F W, NN =W
X

RV F W D
w N =

Vi w o+ E

H F N VW

M UV w R

w = F P oW
®

FoH w owo

Vo FE R W

= w v o

v OF R W W
®

E= N T N Y
M w &,
®

w F U1 =2 N
Vi HDw

One can check to see that the above form 4 orthogonal F(10;2,2,2,2,2)-squares;
the following F-square with two symbols, i.e., F(10;5,5)-square, is orthogonal to

the above 4 F-squares,

11111
11111 1 0

F(10;5,5) =]1 1 1 1 1|®
1111 1) {°%
1:1.113.J
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The above procedure of constructing F-squares may be extended to the case
where n = gk. If t orthogonal Iatin squares of order k exist, then a set of %

orthogonal F-squares of order n may be constructed as follows:

t
Z Li(k) ® quq .
i=1

Further, suppose that £ Latin squares of order q exist. Then, the following F-

N

squares are orthogonal to the above F—squares and to each other:

)
i=1

6. Discussion

The method of constructing orthogonal F-squares for order n = 2$p can be used
in general for any order n proviggg,agm(n,k,p{Z) orthogonal array exists for some
k and some t a power of a prime. These orthogonal arrays are known to exist for

s® and n = 2sP. The case n = 2s®? has just been considered. For n = sp, com-

n =
plete sets of orthogonal F-squares of order n have been constructed previously by
Hedayat, Raghavarao, and Seiden (1975). The following then presents an alternative,

perhaps easier, method ofvéonstructing these F-squares. We first give the theorem

due to Bose and Bush (1952) on the existence of (n = sp,k,t,z) orthogonal arrays:

Theorem 6.1. Given t = sv, A= s (where s is a prime), then vwe can construct an

orthogonal array (Mt®,k;t,2) of strength 2, in which the number of constraints k

is given by

c+l
_ xgt - 1)
k= T * 1o

£t - ¢

vhere ¢ = [u/v].
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We therefore have the following theorem: — -

Theorem 6.2, We can use thé (\t2,k,t,2) orthogonal array, with A, t, and k defined

above, to construct a set, and when [u/v] = u/% a complete set, of (t - 1)k® or-

thogonal F(AtZ;\t,\t,-«,At)-squares.

The proof is similar to the proof of Theorem 2.1 and so is omitted here.

Since there is a one-to-one correspondence between orthogonal{F—squares and
orthogonal arrays, we may restate Theorem 2.1 ip.terms gf o;tpogonal arrays. First
note that a set of r F(n;y,v,-'v,y)-squares correspondskto ;n orthogonal array
(n2,r,n/y,2). Hence the set of (s - 1)[2(s? - 1)/(s - 1) - 1]2 orthogonal F(2s’;

2sp_l,2ép'l,-°°,2spnl)-squares in Theorem 2.1 corresponds to an orthogonal array
(457, (s - 1)[2(s® - 1)/(s - 1) - 112, s, 2).

The F(2sp;sp,sp)-square also in Theorem 2.1 can be written as the orthogonal array

(hs2p,l,2,2). Since the %(2sp;sp,sp)-squéfe is orthogonal to the F(2sp;2sp'l,
esp'l,-'-,2sp'l)-squares we have that the 6rthogonal array (hsep,l,2,2) is or-
thogonal to the orthogonal array (lhsgp,(.s‘-ul)[2(sp -1)/(s - 1) -1, s, 2) and
s0 we may put both airays together and denote it asva single orthogonal array

(4s®P, (s - 1)[2(s® - 1)/(s - 1) - 112, s, 2) + (4s,1,2,2).

Finally, consider the following orthogonal array (hsep,2,2sp,2):

OO:.- O ll"’ l svs0s e 2Sp 25p e Qsp

01 -2 01 ¢ve 26 veeves 0 1 ees 2P,

This orthogonal array corresponds to the sources of variation due to rows and
columns in the analysis of variance; when written in square form the two con-

straints look like:
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0O 0 ++¢ 0 0 1 -+ 26F
1 01 eee 1 0 1 v+ 28°
. and .

2s? 25 +.0 28P 0 1 ++0 287 .

One can check to see that the above orthogonal array (hszp,2,2SP,2) is orthogonal
to the afore-mentioned orthogonal array. We may thus write the orthogonal arrays
as a single orthogonal array denoted as (usgp,2,25p,2) + (hsgp,(s - 12 - 1)/

(s - 1) - 113, s, 2) + (hszp,l,2,2).

We thus see that our method of constructing F-squares of order n = 2sp, is
also a method for constructing orthogonal arrays of size n = (2sP)2 = 4s?P with

2, s, and 2sP elements.
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