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My research has focused on two inter-related questions. First, how do we model the 

impacts of terrorism and earthquake events on electric power systems? Second, how 

might we optimize investments in these systems when there are limited resources?   

For intentional attack we model the interaction between the offender and the operator 

of the network where both parties have limited budgets and behave in their own self-

interest. The problem was formulated as a multi-level mixed-integer programming 

problem and we implemented a Tabu search with an embedded greedy algorithm to 

find the optimum defense strategy. We model the regional earthquake hazard using a 

four step process that included an optimization problem to select a small collection of 

events from a candidate set, including a probability of occurrence for each event that 

matches the hazard. Since electric power systems are spatially distributed, their 

performance is driven by the joint distribution for damage of the components. Hence 

we estimated this distribution by constructing a collection of consequence scenarios 

for each earthquake scenario, where each consequence scenario identifies the level of 

damage to each component. For each consequence scenario, we used an economic 

dispatch model to predict the load shed and repair costs throughout the repair process. 

We expanded the analysis of the power network under the seismic risk by modeling 



 

the additional impact of cascading outages and the consequences on the air passenger 

transportation system due to the interdependency of both networks. We formulated the 

problem of selecting seismic mitigation strategies to increase resilience of electric 

power system to earthquake hazards as a two-stage stochastic program. We develop a 

custom solution procedure which we show to be computationally effective for 

extremely large problem instances. 
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CHAPTER 1 

 

INVESTMENT PLANNING FOR ELECTRIC POWER SYSTEMS UNDER 

TERRORIST THREAT  

 

Nomenclature 

A. Model  Parameters 

𝑇 set of transmission lines and transformers (assumed to be directed to 

facilitate formulation).  

𝐵  set of buses. 

𝐿  set of transformers. 

𝑆  set of substations. 

𝐸  set of generators. 

𝑎𝑖𝑗𝐷   cost of adding 𝑐𝑖𝑗 units to transmission line (𝑖, 𝑗). 

𝑏𝑔𝐷  cost of adding 𝑞𝑔 units to generator 𝑔. 

𝑀𝐴  terrorist’s budget. 

𝑀𝐷  defender’s budget. 

𝑐𝑔𝐸  per-unit cost for generation using generator  𝑔. 

𝑐𝑖𝑗  size of capacity increments that can be added to transmission line (𝑖, 𝑗). 

𝑐𝑙𝐿  cost to replace interdicted transformer 𝑙. 

𝐷𝑖  demand at bus  𝑖. 

𝑒𝑖𝑗𝐴  cost of attacking transmission line (𝑖, 𝑗). 

𝑓𝑠𝐴  cost of attacking substation  𝑠. 

𝑓𝑠𝐷  cost of protecting substation  𝑠. 

𝐺𝑔𝑚  capacity of generator 𝑔. 

ℎ𝑔𝐷  cost of protecting generator  𝑔. 
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ℎ𝑔𝐴  cost of attacking generator  𝑔. 

ℎ𝑙𝐿  unit purchasing cost of transformer 𝑙. 

𝑘  stage of recovery, 𝑘 ∈ {1,2,3,4}. 

𝑚𝑖𝑗  reactance for transmission line (𝑖, 𝑗). 

𝑃𝑖𝑗𝑚  capacity of line  (𝑖, 𝑗). 

𝑞𝑔  increments of capacity that can be added to generator 𝑔. 

𝑟𝑠𝑆  cost of repairing substation 𝑠. 

𝑟𝑖𝑗𝑇  cost of repairing transmission line (𝑖, 𝑗). 

𝑟𝑔𝐸  cost of repairing generator 𝑔. 

𝑠𝑖  the substation where bus  𝑖 is located. 

𝜇𝑖  unit load shedding cost at bus  𝑖. 

𝑡𝑘  time to complete stage 𝑘. 

𝑇𝑖𝑗𝑙 binary parameter, 1 indicates a transformer; otherwise indicates a 

transmission line. 

𝛿+(𝑖)  set of lines that start in bus 𝑖. 

𝛿−(𝑖)  set of lines that end in bus 𝑖. 

𝐼𝑖  set of generators that are connected to bus 𝑖.  

𝑂𝑠  set of buses in substation 𝑠.  
(𝑘, 𝑙)||(𝑖, 𝑗) transmission line (𝑘, 𝑙) is the line sharing right of way with (𝑖, 𝑗)  
 

B. Defender’s Decision Variables 

𝑥𝐷 = (𝑥𝑠𝐷) vector of binary decision variables, 𝑥𝑠𝐷 = 1 if substation 𝑠 is protected 

and 0 otherwise.  

𝑧𝐷 = �𝑧𝑔𝐷� vector of binary decision variables, 𝑧𝑔𝐷 = 1 if generator 𝑔 is protected 

and 0 otherwise. 

𝑤𝐷 = �𝑤𝑔𝐷� vector of integer decision variables, 𝑤𝑔𝐷 indicates that 𝑞𝑔 units of 

capacity are added to generator  𝑔. 
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𝑣𝐷 = �𝑣𝑖𝑗𝐷� vector of integer decision variables, 𝑣𝑖𝑗𝐷 indicates that 𝑐𝑖𝑗 units of 

capacity are added to transmission line (𝑖, 𝑗). 

𝐻𝐷 = (𝐻𝑖𝐷) vector of integer decision variables, 𝐻𝑖𝐷 indicates the number of 

transformers of type 𝑙 purchased. 

 

C. Terrorist’s Decision Variables 

𝑥𝐴 = (𝑥𝑠𝐴) vector of binary decision variables, 𝑥𝑠𝐴 = 1 if substation 𝑠 is attacked 

and 0 otherwise. 

𝑦𝐴 = �𝑦𝑖𝑗𝐴� vector of binary decision variables, 𝑦𝑖𝑗𝐴 = 1 if transmission line (𝑖, 𝑗) is 

attacked and otherwise. 

𝑧𝐴 = �𝑧𝑔𝐴� vector of binary decision variables, 𝑧𝑔𝐴 = 1 if generator 𝑔 is attacked 

and 0 otherwise. 

 

D. Power-link Network Decision Variables 

𝐺 = �𝐺𝑔𝑘� vector of nonnegative continuous decision variables, 𝐺𝑔𝑘 indicates the 

power generated by generator 𝑔 in period 𝑘. 

𝑃 = �𝑃𝑖𝑗𝑘� vector of continuous decision variables, 𝑃𝑖𝑗𝑘  indicates the electric power 

flows in line (𝑖, 𝑗) in period 𝑘. 

𝑈 = �𝑈𝑖𝑘� vector of nonnegative continuous decision variables, 𝑈𝑖𝑘 indicates the 

load shed at bus 𝑖 in stage 𝑘. 

𝜃 = �𝜃𝑖𝑘� vector of continuous decision variables, 𝜃𝑖𝑘 indicates the phase angle at 

bus 𝑖 in period 𝑘. 

𝑅 = �𝑅𝑖𝑗𝑙� vector of binary decision variables, 𝑅𝑖𝑗𝑙 = 1 if spare transformers 𝑙 is 

used in line (𝑖, 𝑗) and 0 otherwise. 
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E. Tabu Search Parameters 

𝛼  indicator of iteration. 

𝛼�  iteration limit 

𝜏  indicator of neighbor.  

𝜏̅  number of neighbors to explore 

𝜏̅2  maximum number of neighbors to construct from previous attacks.  

𝜑𝜏  objective value for neighbor 𝜏. 

𝜑𝛼   objective value for initial solution in iteration 𝛼. 

𝜑∗  objective value for best neighbor. 

𝜑∗∗  objective value of best solution for the search. 

∆𝜏  defense strategy for neighbor 𝜏. 

∆𝛼   defense strategy for initial solution in iteration 𝛼. 

∆∗  defense strategy for best neighbor. 

∆∗∗  defense strategy of best solution for the search. 

𝜇𝜏  defense strategy cost neighbor 𝜏. 

𝜇∗  defense strategy cost for best neighbor. 

𝜋 previous number of attack strategies to use when identifying 

components for investment. 

 

Introduction 

Deliberate attacks do not occur frequently but when they do they can be disastrous.  

From 1999 to 2002 there were over 150 attacks on electric power systems across the 

world [Zimmerman et al. 2005]. In the United States there is awareness that it is 

important to make these systems more resilient to terrorist attacks.  For example, the 

National Academies suggests that it is important to consider protection of key 

equipment and whether there should be additional reserve capacity for generation, 
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transmission and distribution to promote resiliency to address these threats [National 

Research Council [2002]. 

This paper presents a formulation for the problem of a strategic defender to a 

carefully crafted attack. We develop a leader-follower model representation of this 

strategic interaction.  The leader determines the protection measures to be adopted 

including specific investments to increase operating margin and the acquisition of 

spare transformers. The follower is the terrorist that selects an attack with full 

knowledge of the defender investments and the understanding that the operator will 

optimize the use of the system after the attack in order to minimize the consequences 

of the attack.  

National Research Council [2008] describes a range of related models across a 

variety of infrastructures focused on a bioterrorist threat.  Bienstock and Mattia [2007] 

develop an investment planning model using a linear dc power flow representation of 

an electric power transmission network.   They include a range of scenarios for the 

disruption and solve for investments in line capacities that minimize the investment 

needed to honor all demands under all scenarios.  Smith et al. [2007] analyze the 

fortification problem for networks. They assume different profiles for the attacker 

behavior: destruction based on capacity of arcs, destruction based on flow, or optimal 

behavior to minimize or maximize the flow in the system. Scaparra and Church [2006] 

use a bilevel mixed-integer program to identify the critical components in a network 

under terrorist threats. They use an implicit enumeration algorithm to solve the 

fortification problem or upper level. The lower level is formulated as an r-interdiction 

median problem. Smith and Lim [2008] study different models and algorithms to solve 

network interdiction games. They also explore the problem from a three level 

perspective including the fortification of the network. 
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Salmeron et al. [2004] and [2009] develop an interdiction model for electric power 

systems, using a set of linear dc power flow models, with the goal of identifying the 

attack that would result in the maximum disruption.  Salmeron et al. [2004] develop a 

heuristic iterative scheme to identify prices which represent the value of each 

component in an attack.  They then select those components which result in the largest 

estimated damage, given the prices developed and that are consistent with the 

terrorist’s budget.  Salmeron et al. [2009] focus on the same formulation but use 

generalized Benders decomposition to create a heuristic solution procedure. Arroyo & 

Galiana [2005] and Motto et al. [2005] develop a bilevel formulation of the 

interdiction problem. In Motto et al. [2005] the terrorist’s objective is to cause a 

maximal amount of load shed with the removal of as few lines as possible and the 

defender wants to minimize load shed. Arroyo & Galiana [2005] and Motto et al. 

[2005] uses the Karush–Kuhn–Tucker conditions to convert the bilevel formulation 

into a single level optimization problem. Bier et al. [2007] employs a simple procedure 

to identify “near-optimal” interdiction strategies for power transmission systems. They 

consider attacks to lines only and implement a greedy algorithm.  At each iteration of 

that algorithm the line with maximum flow is identified. This process continues until 

the budget of the terrorist is exhausted. Additionally, it explores the benefits from 

hardening (protecting) a number of lines that the terrorist would most likely choose.  

Carrion et al. [2007] uses a stochastic programming formulation to reinforce and 

expand a power system with the objective of reducing the impact of a deliberate 

attack. They use a previously defined set of possible attacks and possible expansion 

strategies. The attacks are generated using results from Motto et al. [2005]. Alguacil et 

al. [2009] analyzes the expansion plans proposed in Carrion et al. [2007]  in relation to 

economic and vulnerability issues. Arroyo & Fernandez [2009] evaluates the benefit 

of line switching as a mitigation strategy. They use a genetic algorithm to solve the 
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interdiction problem. Arroyo [2009] analyzes the vulnerability of a power grid to 

unintentional and deliberate outages. The interdiction bilevel mixed-integer problem is 

transformed into a single level problem using two different methods: its Karush–

Kuhn–Tucker conditions, and duality theory. Chen et al. [in press] expands on the 

defender- attacker problem by focusing on the amount of information available to the 

attacker when they form the attack as a mechanism to determine the defenders optimal 

strategy. 

We formulate a multi-level mixed-integer programming problem. The defender’s 

optimization is solved using a Tabu Search similar to that presented by Wen and 

Huang [1996]. The attack is found with a greedy algorithm. It has three different 

variations that correspond to three assumptions as to how the terrorist will craft the 

attack. These assumptions are identified as: capacity based attack (CBA), maximum 

flow based attack (MFA), and greedy attack (GA).  

The defender can allocate a limited budget to protect generators and substations, to 

increase generation and line capacity, or to purchase spare transformers. The terrorist 

can attack any combination of lines, substations, and/or generation units subject to 

their budget constraint.  This paper compares the results for three different 

assumptions of how the terrorist will craft the attack and four budgets each for the 

defender and the terrorist using the one area IEEE Reliability Test System (RTS) – 

1996 [Grigg, 1999]. 

This paper can be viewed as extensions of Bier et al. [2007] in that it extends their 

interdiction problem to consider the performance of the systems during the entire 

repair process, not just in the period right after the attack. It also explores the 

limitations of a CBA attack in comparison to GA and MFA crafted attacks.  Finally 

we significantly broaden the approach to the investment aspect of the problems to 

include opportunities to add operating margin to the systems as well as to stockpile 
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spares.  This paper can also be viewed as an extension of [Salmeron et al. 2004] and 

[Salmeron et al. 2009] in that their focus is on interdiction under the assumption that it 

is known how spare transformers will be used.  This is a key element of this analysis 

however; we also focus on the investment elements of the problem in addition to how 

to optimally use spares after an attack. 

 

Approach 

A. Formulation 

We formulate the defender-attacker-operator problem as a three-level optimization 

problem.   

The upper level corresponds to the defender’s decision to minimize the costs after 

an attack to the power grid through investments (pre-attack). The intermediate and 

lower levels are the interdiction problem. In the interdiction problem, the attacker 

damages a set of components in the system in order to optimize her/his interest. 

However, we assumed that the attacker knows what the operating strategy would be to 

minimize the costs after the attack. The third level corresponds to operator’s 

minimization of operating costs after the attack. 

The repair process consists of four stages. During the first stage, all attacked 

components and those in proximity to attacked components can not have any flow.  

During the second stage, the only lines that are not repaired are those connected to 

attacked substations. During the third stage, all substations components have been 

repaired except damaged transformers.  In the fourth and final stage, spare 

transformers are assumed to be in place.   

The linear dc power flow network model is used to estimate the power flows in the 

network at each stage during the repair process and the demands not satisfied. The 

defender’s objective is to minimize the sum of the power generation costs, load shed 
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costs and the repair costs by implementing an effective pre-attack investment strategy. 

The objective of the terrorist is to maximize the sum of the power generating costs, 

load shed costs, and repair costs. Both players have limited resources. The objective of 

the operator is to minimize the sum of the generation costs, the load shed costs and the 

repair costs for transformers which are attacked and for which there is not a spare. 

 

B. Power-Flow Optimization Model 

The linear dc power flow model formulated below represents the optimal response 

of the operator during the recovery period. In this model, the investment strategy of 

the defender is assumed known to the terrorist. We assume that the operator observes 

the defender’s and attacker’s decisions and makes his decision during these four time 

periods by minimizing the total operational cost during the four-stage repair process. 

Mathematically, for the given(𝑥𝐴,𝑦𝐴, 𝑧𝐴,𝑤𝐷 , 𝑣𝐷 ,𝐻𝐷), this network optimization 

problem is to choose (𝜃,𝐺,𝑃,𝑈,𝑅) that minimizes 
 

� ��𝜇𝑖𝑈𝑖𝑘

𝑖∈𝐵

+ �𝑐𝑔𝐸𝐺𝑔𝑘
𝑔∈𝐸

�
𝑘=1,2,3,4

(𝑡𝑘 − 𝑡𝑘−1) + �� � �𝑐𝑙𝑇�1 − 𝑅𝑖𝑗𝑙�𝑇𝑖𝑗𝑙
𝑙∈𝐿(𝑖,𝑗)∈𝐴

𝑥𝑠𝐴
𝑖∈𝑂𝑠𝑠∈𝑆

        (1) 

 

subject to 

�𝜃𝑖1 − 𝜃𝑗1��1 − 𝑦𝑖𝑗𝐴��1 − 𝑥𝑠𝑖
𝐴� �1 − 𝑥𝑠𝑗

𝐴� � �1 − 𝑦𝑘𝑙𝐴 �
(𝑘,𝑙)||(𝑖,𝑗)

= 𝑚𝑖𝑗𝑃𝑖𝑗1 ∗
𝑃𝑖𝑗𝑚

1 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷
� , 

  (𝑖, 𝑗) ∈ 𝑇            (2) 
 

�𝜃𝑖2 − 𝜃𝑗2��1 − 𝑥𝑠𝑖
𝐴� �1 − 𝑥𝑠𝑗

𝐴� = 𝑚𝑖𝑗𝑃𝑖𝑗2 ∗
𝑃𝑖𝑗𝑚

1 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷
� ,             (𝑖, 𝑗) ∈ 𝑇                (3) 

 

�𝜃𝑖3 − 𝜃𝑗3� �1 − 𝑥𝑠𝑖
𝐴�𝑇𝑖𝑗𝑙
𝑙∈𝐿

� = 𝑚𝑖𝑗𝑃𝑖𝑗3 ∗
𝑃𝑖𝑗𝑚

1 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷
� ,           (𝑖, 𝑗) ∈ 𝑇                (4) 
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�𝜃𝑖4 − 𝜃𝑗4��1 − 𝑥𝑠𝑖
𝐴��1 − 𝑅𝑖𝑗𝑙�𝑇𝑖𝑗𝑙
𝑙∈𝐿

� = 𝑚𝑖𝑗𝑃𝑖𝑗4 ∗
𝑃𝑖𝑗𝑚

1 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷
� ,         (𝑖, 𝑗) ∈ 𝑇               (5) 

 
� 𝐺𝑔𝑘
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗𝑘

(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑗𝑖𝑘
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖𝑘 , 𝑖 ∈ 𝐵,𝑘 = 1,2,3,4                 (6) 

 
0 ≤ 𝑈𝑖𝑘 ≤ 𝐷𝑖,         𝑖 ∈ 𝐵,𝑘 = 1,2,3,4                                            (7) 

 
0 ≤ 𝐺𝑔𝑘 ≤ �𝐺𝑔𝑚 + 𝑞𝑔𝑤𝑔𝐷��1 − 𝑧𝑔𝐴�,        𝑔 ∈ 𝐸,𝑘 = 1,2,3,4                            (8) 

 
�𝑃𝑖𝑗1 � ≤ �𝑃𝑖𝑗𝑚 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷��1 − 𝑦𝑖𝑗𝐴��1 − 𝑥𝑠𝑖

𝐴� �1 − 𝑥𝑠𝑗
𝐴� � �1 − 𝑦𝑘𝑙𝐴 �

(𝑘,𝑗)||(𝑖,𝑗)

,   (𝑖, 𝑗) ∈ 𝑇,       (9) 

 
�𝑃𝑖𝑗2� ≤ �𝑃𝑖𝑗𝑚 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷��1 − 𝑥𝑠𝑖

𝐴� �1 − 𝑥𝑠𝑗
𝐴� ,        (𝑖, 𝑗) ∈ 𝑇 ,                         (10) 

 

�𝑃𝑖𝑗3 � ≤ �𝑃𝑖𝑗𝑚 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷� �1 − 𝑥𝑠𝑖
𝐴�𝑇𝑖𝑗𝑙
𝑙∈𝐿

� , (𝑖, 𝑗) ∈ 𝑇,                          (11) 

 

�𝑃𝑖𝑗4 � ≤ �𝑃𝑖𝑗𝑚 + 𝑐𝑖𝑗𝑣𝑖𝑗𝐷� �1 − 𝑥𝑠𝑖
𝐴��1 − 𝑅𝑖𝑗𝑙�𝑇𝑖𝑗𝑙
𝑙∈𝐿

� , (𝑖, 𝑗) ∈ 𝑇,                (12) 

 
� 𝑅𝑖𝑗𝑙

(𝑖,𝑗)∈𝑇

≤ 𝐻𝑙 ,                   𝑙 ∈ 𝐿                                                  (13) 

 
𝑅𝑖𝑗𝑙 = 0,1                  (𝑖, 𝑗) ∈ 𝑇, 𝑙 ∈ 𝐿                                        (14) 

 

The objective function given in equation (1) is the sum of the power generation, 

load shed, and replacement costs (for spare transformers for which there are no 

spares). Constraints (2), (3), (4), and (5) approximate the active power flows on the 

transmission lines in the four stages of the repair process. It is important to notice that 

some forms of line capacity upgrades, such as reconductoring or adding parallel lines 

may reduce line reactance.  We model this by reducing the line’s reactance in 

proportion to the capacity increase due to the enhancement. Constraints (6) preserve 

the power balance at the buses in the four-stage repair process. Constraints (7) state 

that the load shedding at a bus cannot exceed the demand at the bus. Constraints (8) 
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bounds the power produced at each generator. If a generator is not attacked, the 

generator has the full capacity, which is its original capacity plus any capacity added 

by the defender. Otherwise the generator does not function during the four time 

periods. Note that the power flow in each transmission line can go in either direction 

therefore the flow load on each transmission line can take either a negative or positive 

value. Constraints (9), (10), (11), and (12) set the maximum absolute values of the 

flows for transmission lines in each stage. A line is not available in the first stage if it 

is attacked, if a substation to which is connected is attacked, and/or if a line in close 

proximity is attacked. Otherwise, the line has full transmission capacity.  For the 

second stage, lines that are connected to attacked substations are the only ones with no 

transmission capacity. Substations without transformers can be repaired by the third 

stage; thus, during the third stage only lines that represent transformers damaged 

during a substation attacked are not available. In the final stage, the interdicted 

transformers, for which there is a spare, are back in operation. Constraints (13) state 

that the number of transformers of each type used to replace the interdicted 

transformers of that same type cannot exceed the number available. Constraints (14) 

impose binary restrictions. It is important to notice that this formulation includes the 

length of time each component attacked will be out of service.  It is these durations 

that drive the definition of the stages, indexed by k, in the model. We assume, as in 

[Gomberg and Schweig 2007], that lines, transformers for which there are available 

spares and substations are repaired within 72h, 360h, 768h, respectively. 

Recall that mathematical program (1) – (14) depends on the defender and 

terrorist’s decisions (𝑥2,𝑦2, 𝑧2,𝑤1, 𝑣1,𝐻1). Let 𝐹𝐿(𝑥2,𝑦2, 𝑧2,𝑤1, 𝑣1,𝐻1) be the 

minimum value in (1). 
 



12 

C. Terrorist’s Optimization Problem 

The terrorist is assumed to have perfect information on network protection, network 

capacity, and number of stored spare transformers. The terrorist also understands that 

the operator will strive to mitigate the impact of the attack to the extent possible 

including identifying how to use the spare transformers effectively. Based all 

information, the terrorist chooses its attack strategy under a budget constraint. 

Mathematically, for the given (𝑥𝐷 , 𝑧𝐷 , 𝑣𝐷 ,𝑤𝐷 ,𝐻𝐷), the terrorist’s optimization 

problem is to choose (𝑥𝐴,𝑦𝐴, 𝑧𝐴) that maximizes 
 

𝐹𝐿(𝑥𝐴,𝑦𝐴, 𝑧𝐴,𝑤𝐷,𝑣𝐷 ,𝐻𝐷) + � 𝑟𝑖𝑗𝑇𝑦𝑖𝑗𝐴

(𝑖,𝑗)∈𝑇

+ �𝑟𝑔𝐺𝑧𝑔𝐴
𝑔∈𝐸

+ �𝑟𝑠𝑆𝑥𝑠𝐴
𝑠∈𝑆

                                  (15) 

 
subject to 

𝑥𝑠𝐴 ≤ 1 − 𝑥𝑠𝐷 ,        𝑠 ∈ 𝑆,                                                               (16)  
 
 

𝑧𝑔𝐴 ≤ 1 − 𝑧𝑔𝐷 ,          𝑔 ∈ 𝐸,                                                             (17) 
 
 

𝑦𝑖𝑗𝐴 ≤ 1 −�𝑇𝑖𝑗𝑙
𝑙∈𝐿

,     (𝑖, 𝑗) ∈ 𝑇 ,                                                      (18) 

 
 

�𝑓𝑠𝐴𝑥𝑠𝐴
𝑠∈𝑆

+ � 𝑒𝑖𝑗𝐴𝑦𝑖𝑗𝐴
(𝑖,𝑗)∈𝑇

+ �ℎ𝑔𝐴𝑧𝑔𝐴
𝑔∈𝐸

≤ 𝑀𝐴,                                          (19) 

 
 

𝑥𝑠𝐴, 𝑧𝑔𝐴,𝑦𝑖𝑗𝐴 = 0,1,      𝑠 ∈ 𝑆,𝑔 ∈ 𝐸, (𝑖, 𝑗) ∈ 𝑇                                         (20) 
 

The objective function (15) is the sum of the power generation costs and load shed 

costs during the four stages, and the repair costs. Constraints (16) and (17) enforce the 

rule that only the unprotected generators and substations can be attacked. Constraints 

(18) prohibit attacks on single transformers; these can only be damaged through 

attacks to substations. Constraint (19) states that the total cost of attacking the 
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generators, lines, and substations cannot exceed the available budget. Constraints (20) 

require the decision variables are binary. 

Recall that mathematical program (15) – (20) depends on the defender’s 

decisions(𝑥𝐷 , 𝑧𝑆, 𝑣𝐷 ,𝑤𝐷 ,𝐻𝐷). Then let 𝐹𝐴(𝑥𝐷 , 𝑧𝑆 , 𝑣𝐷 ,𝑤𝐷 ,𝐻𝐷) be the maximum 

value. 
 

D. Defender’s Optimization Problem. 

The defender understands that the terrorist has perfect information and will 

optimize his attack to further his objectives. Therefore the defender chooses a 

protection strategy to minimize their objective function subject to a limited budget. 

Mathematically, we formulate this optimization problem as a static transmission and 

generation planning problem [Latorre et al. 2003] to choose (𝑥𝐷 , 𝑧𝑆, 𝑣𝐷 ,𝑤𝐷 ,𝐻𝐷) that 

minimizes 

 

𝐹𝐴�𝑥𝐷, 𝑧𝑆,𝑣𝐷,𝑤𝐷,𝐻𝐷�                                                                (21) 

subject to  

�𝑓𝑠𝐷𝑥𝑠𝐷
𝑠∈𝑆

+ �ℎ𝑔𝐷𝑧𝑔𝐷
𝑔∈𝐸

+ � 𝑎𝑖𝑗𝐷𝑣𝑖𝑗𝐷
(𝑖,𝑗)∈𝑇

+ �𝑏𝑔𝐷𝑤𝑔𝐷
𝑔∈𝐸

+ �ℎ𝑙𝐿𝐻𝑙𝐷

𝑙∈𝐿

≤ 𝑀𝐷 ,                    (22) 

 
𝑥𝑠𝐷 , 𝑧𝑔𝐷 ,𝑣𝑖𝑗𝐷 ,𝑤𝑔𝐷 = 0,1,    𝑠 ∈ 𝑆,𝑔 ∈ 𝐸, (𝑖, 𝑗) ∈ 𝑇, 𝐻𝑙𝐷 = non-negative integer 𝑙 ∈ 𝐿        (23) 

 

The treatment of investment costs is parallel to [Alguacil et al. 2003] and 

[Bienstock and Mattia 2007] . 
 

E. Solution Procedure 

It is known that this three-level optimization problem is NP-hard [Bard, 1988]. We 

used a Tabu Search to solve the defender’s problem and greedy algorithms to address 

the attacker’s problem. For the Tabu Search, the first neighbors are generated based on 

attacks generated from past neighborhoods. All the substations and generators attacked 
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on these previous iterations are likely critical components; thus, in these first 

iterations, we explore the benefit from protecting them. However, if these protection 

strategies are infeasible, the neighbors are generated randomly. The other neighbors 

are randomly generated. The attack is estimated using a greedy algorithm, which 

represent different assumptions about how the terrorist will craft their attack.  Those 

algorithms are: CBA, MFA, or GA. CBA is an algorithm which iteratively removes 

the component with the largest capacity until the attacker’s budget is exhausted [Smith 

et al., 2007].  MFA iteratively removes components with the largest weighted flow 

across the four repair periods as computed by the dc power flow model. This 

algorithm is an extension to that given in Bier et al. [2007]. In each iteration, the GA 

algorithm removes the component which causes the greatest increase in the terrorist’s 

objective function until the terrorist’s budget is exhausted. 

For the case study developed based on the One Area IEEE RTS-96 [Grigg 1999]. 

The system described in the next section, the algorithm was implemented and 

executed using IBM ILOG OPL 6.3 in a Dell Optiplex 755, Intel® Core™ 2 Quad, 

with 2.83 GHz and 3.25 GB of RAM memory (though the code was not parallelized). 

For 20 iterations, 10 neighbors per iteration, keeping solutions as tabu for 5 iterations, 

an attack budget of 6 units, and a defense budget of US$ 25 million, the execution 

times was approximately: 3 and a half minutes for CBA, 22 minutes for MFA, and 

about 12 hours for GA.  For a dc model of the Eastern Interconnect which has about 

23,000 links and 15,000 nodes for a defense budget of US$ 100 million, an attack 

budget of 10, and an attack strategy of CBA, about 14 hours was required.  In this 

case, CPLEX 12.1 C++ concert technology was used. Computation time can be 

reduced if the problem is parallelized using CPLEX 12.2. 

 

Case Study 
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We applied our method to the IEEE One Area RTS - 1996. It has 24 nodes and 38 

links that correspond to 24 buses and 38 transmission lines. We included generation 

units and substations as independent sets of components that can be related to the 

buses. Substations were defined as combinations of one or more buses.  With the 

exception of buses 3, 9, 10, 11, 12, 13, and 24, each bus represents a substation. Buses 

3 and 24 are connected by a transmission line identified as a transformer; thus, these 

two buses are part of the same substation. Likewise, buses 9, 10, 11, and 12 are part of 

a single substation. With these considerations, the model has 20 substations. The IEEE 

RTS document has a comprehensive description of the location of generation units 

among the buses [Grigg 1999]. The 5 transformers on the one area RTS-96 were 

modeled as links for the load-flow model.  

Salmeron et al. [2004] identify the average outage time when certain components 

of a power system are disrupted. Overhead lines, transformers for which there are 

available spares, single busses and substations are assumed to take 72 h, 360 h, and 

768 h, respectively. In addition to this data, we assume that replacing transformers and 

generation units can take on the order of 4320 h (6 months). These outage lengths are 

the basis for the four time period considered in this model. 

The costs to attack a component can vary based on a variety of factors including 

the type of attack and the location of the component.  Therefore, we assigned a relative 

cost to attack each type of element. Attacking a line costs one unit, attacking a 

substation, three units, and attacking a generator four units. An attack to a line 

damages the line and any line with common right of way (See ovals identified with 

letters from A to G in One-area IEEE RTS-96 [Grigg 1999]). An attack to a substation 

damages the buses and transformers within the substation and all the lines coming 

connected to the substation. The attack to a generation unit exclusively damages the 

generation plant; it does not affect the bus where it is located. The costs to protect 
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substations and generators, increase capacity of lines and generation units, and replace 

components were obtained from a variety of sources. Billington et al. [1989] provides 

the generation unit costs for hydro and coal plants; they include capital costs and 

operational costs. Balducci et al. [2005] classifies costs for several power system 

capacity enhancement projects; it was a source for repair costs and lines capacity 

enhancement strategies. Vaziri et al. [2004] presents data for line upgrades and new 

transformers costs.  New generation unit capital costs and generating cost were 

obtained from Wald [2007], the Energy Information Administration [2009], and 

Secretary-General of the OECD [2005]. All the costs were converted to 2002 U.S. 

dollars and adjusted to make them consistent among sources.  

Table 1 shows how the defender’s budget is allocated under each scenario. 

Protection (Pro.) corresponds to protecting substations and generators. Protecting the 

nuclear generators and the coal/steam generator (U350) is very expensive but these 

generators are the most attractive for the terrorist. Since it is not possible for the 

defender to protect these components with any of the explored budgets, protection of 

generators is not considered. Therefore, protection, in these experiments is focused on 

substation security. Enhancement (Enh.) refers to investments in operating capacity 

for transmission lines and generators. In this analysis, the largest benefits are the result 

of investments in generation capacity. It is useful to notice that the model tends to 

generally recommend a relatively equal investment in protection and enhancement 

and, because of the cost of transformers, no investment in spares. 
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Table 1. Defender’s resources allocation 

  

Attack Defender's Budget [Millions of U.S. dollars] 
25.0 50.0 75.0 

Type Budget Defense resource allocation 
Pro. Enh. Spares Pro. Enh. Spares Pro. Enh. Spares 

 

GA 

2 0.0 23.7 0.0 0.0 47.4 0.0 0.0 74.8 0.0 
3 21.6 0.0 0.0 43.2 4.8 0.0 64.7 9.6 0.0 
6 21.6 0.0 0.0 21.6 27.2 0.0 21.6 52.5 0.0 
7 21.6 0.0 0.0 43.2 4.8 0.0 64.7 8.3 0.0 

MFA 

2 0.0 23.7 0.0 0.0 47.0 0.0 0.0 74.8 0.0 
3 0.0 25.0 0.0 3.8 28.5 0.0 2.4 71.1 0.0 
6 0.0 23.7 0.0 0.0 45.8 0.0 0.0 74.8 0.0 
7 21.6 0.0 0.0 21.6 25.0 0.0 21.6 52.7 0.0 

CBA 

2 0.0 25.0 0.0 0.0 49.9 0.0 0.0 71.3 0.0 

3 21.6 0.0 0.0 21.6 0.0 0.0 28.9 43.7 0.0 

6 10.8 13.1 0.0 10.8 38.0 0.0 10.8 61.8 0.0 

7 10.8 11.7 0.0 21.6 21.6 0.0 21.6 47.0 0.0 
 
 

Table 2 shows the components that the defender decides to protect or enhance. As 

in Table 1, this table has an entry for each attack rule and defender and attacker 

budgets. Substations are identified with an S and with the number of the bus (B) within 

them. Enhancements to generators, G are referenced using the corresponding bus and 

the total generating MW added to generators at the bus. Notice how protecting 

substations 3 and 9 is a key element of many defense strategies. In addition, notice the 

recurrence of enhancements to the capacity of generators in bus 1, 2, and 15. 

Increasing generation capacity in these three buses is cheaper than in most of the other 

buses. In addition, buses 1 and 2 are located in an area of the system with less 

generating capacity and there is a risk of isolation from other sources of generation 

depending on the character of the attack.  
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Table 2. Defense strategy critical components 

Attack Defender's Budget [Millions of U.S. dollars] 
25.0 50.0 75.0 

Type Budget Defense resource allocation 
Protection Enhancement Protection Enhancement Protection Enhancement 

 

GA 

2   G:(B:1(4MW), B:2(12MW), 
B:15(4.8MW))    L:(3),G:(B:1(4MW), 

B:2(15.2MW), B:15(2.4MW))   L:(11)G:(B:1(4MW), B:2(8MW), 
B:22(10MW)) 

3 S:3**,9*  
S:3**,9*, 

(B:13), (B:23) G:(B:15(2.4MW)) 
S:3**,9*,(B:13), 
(B:15),(B:16), 

(B:23) 
G:(B:15(4.8MW)) 

6 S:3**,9*  S:3**,9* G(B:1(8MW),B:2(12MW), 
B:15(4.8MW)) S:3**,9* L:(7),G:(B:1(8MW), 

B:2(8MW),B:15(9.6MW)) 

7 S:3**,9*   S:3**,9*, 
(B:23) G:(B:15(2.4MW)) 

S:3**,9*,(B:13), 
(B:17),(B:21), 

(B:23) 
G:(B:1(4MW),B:15(2.4MW)) 

MFA 

2   G:(B:1(8MW),B:2(8MW), 
B:15(4.8MW))    G:(B:1(4MW),B:2(19.2MW), 

B:15(4.8MW))    L:(10),G:(B:1(8MW), 
B:2(4MW),B:22(10MW)) 

3  
L:(28),G:(B:1(4MW), 

B:2(4MW)) (B:2) L:(28),G:(B:1(4MW), 
B:2(8MW)) G(B:15(2.4MW))  L:(3,28),G:(B:1(12MW), 

B:2(19.2MW)) 

6   G:(B:1(8MW),B:2(8MW), 
B:15(4.8MW))   G:(B:1(8MW),B:2(19.2MW), 

B:15(2.4MW))   L:(11),G:(B:1(4MW), 
B:2(8MW),B:22(10MW)) 

7 S:3**,9*   S:3**,9* G:(B:1(8MW),B:2(4MW), 
B:15(7.2MW)) S:3**,9* L:(10),G:(B:1(8MW),B:2(12MW), 

B:15(14.4MW)) 

CBA 

2   L:(28),G:(B:1(4MW), 
B:2(4MW))   L:(1,25-1), 

G:(B:1(4MW),B:2(8MW))  
L:(1,25-1),G:(B:1(12MW), 
B:2(8MW),B:15(7.2MW)) 

3 S:3**,9*  S:3**,9*  

S:3**,9*,(B:8), 
G:(B:1(4MW), 

B:2(4MW)) 

L:(10),G:(B:1(4MW), 
B:2(19.2MW)) 

6 S:9* G:(B:2(4MW),          
B:15(4.8MW)) S:9* L:(1,27),G:(B:1(4MW), 

B:2(4MW),B:15(4.8MW)) S:9* L:(29,31-2),G:(B:2(15.2MW)) 

7 S:3**,9* L:(1),G:(B:1(4MW), 
B:2(8MW)) S:3**,9* L:(33-2), G:(B:15(2.4MW)) 

S:3**,9*,(B:8), 
G:(B:1(4MW), 

B:2(4MW)) 
G:(B:1(4MW), B:2(19.2MW)) 

*    S:9 Corresponds to bus 9, 10, 11, and 12 
  ** S:3 corresponds to bus 3, and 24 
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Table 3. Cost after attack 

Attack Defender's Budget [Millions of U.S. dollars] 

0.0 25.0 50.0 75.0 

Type Budget Cost after attack [Billions of U.S. dollars] 

Repairs Gen. L.shed Repairs Gen. L.shed Repairs Gen. L.shed Repairs Gen. L.shed 

GA 

2 0.00 0.23 0.05 0.29 0.00 0.23 0.29 0.00 0.23 0.29 0.00 0.23 

3 0.37 0.19 2.81 0.59 0.11 0.23 0.54 0.11 0.23 0.45 0.11 0.23 

6 0.55 0.17 4.02 1.58 1.22 0.24 1.57 1.22 0.24 1.55 1.22 0.24 

7 1.59 0.18 3.86 1.90 1.30 0.23 1.82 1.32 0.24 1.76 1.32 0.24 

MFA 

2 0.00 0.23 0.07 0.31 0.00 0.23 0.31 0.00 0.23 0.31 0.00 0.23 

3 0.37 0.19 2.81 1.72 0.17 0.23 1.71 0.17 0.23 1.61 0.17 0.23 

6 1.22 0.24 0.07 1.52 1.22 0.24 1.52 1.22 0.24 1.52 1.22 0.24 

7 1.59 0.18 3.86 1.67 1.32 0.24 1.66 1.32 0.24 1.66 1.32 0.24 

CBA 

2 0.00 0.23 0.06 0.26 0.00 0.24 0.26 0.01 0.24 0.26 0.01 0.24 

3 0.37 0.19 2.81 0.34 0.11 0.24 0.34 0.11 0.24 0.34 0.11 0.24 

6 0.55 0.17 4.02 1.52 1.22 0.24 1.48 1.22 0.24 1.46 1.22 0.24 

7 1.59 0.18 3.86 1.56 1.32 0.24 1.56 1.32 0.24 1.56 1.32 0.24 
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For the different attack budgets and strategies and different defense budgets, the 

attack decision follows a simple behavior. When the terrorist’s budget is low, lines are 

the target of attacks. As their budget grows, substations become attractive and finally, 

when there are sufficient funds, generators. The nuclear power plant is frequently 

targeted when the terrorist has sufficient resources, regardless of the rule the terrorist 

uses in crafting the attack.  

Table 3 shows the incurred costs after an attack. Each row corresponds to a unique 

combination of attack rule and budget. There are three types of costs: repair, 

generation (Gen.), and load-shed (L.shed). Note that the after-attack generation costs 

vary based on costs of available generation units, and connectivity between power 

sources and demand. When there is no defense budget and the terrorist has 2 units, 

each decision rule for the terrorist selects different lines to attack. All the selected lines 

are among lines with greater transmission capacity. For 3 units, the terrorist can attack 

substations and lines; the best attack will include damaging substation 9. Substation 9 

has 4 transformers and corresponds to 80% of the connectivity between high voltage 

transmission and low voltage transmission areas. The low voltage area does not have 

enough generation capacity to cope with the local demand. The logic behind MFA 

leads the attacker to target substation 3. This situation highlights a weakness in the 

MFA rule. MFA depends on the solution to the dc power flow model which is often 

not unique. Therefore, it may be possible for the operator to effectively compensate 

for the loss as understood through this model. 

When the attacker has 6 units, there are sufficient funds to attack two substations. 

It is important to remember that attacks to substations with transformers and to any 

generator last for all four periods. It is also important to notice that example network 

has a total of 3405 MW of generation capacity and 2850 MW of demand. Therefore, 

capacity exceeds demand by about 20%. The three larger generators are the two 
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nuclear plants, that can produce 400MW, and one coal/steam plant that can produce 

350 MW. If one of these generators were attacked, the system would still have 5% 

excess capacity. On the other hand, attacking substations 3 and 9 would split the 

system into two areas. The lower voltage area includes the first 10 buses of the RTS; it 

has a total demand of 1332 MW and a local generation capacity of 684 MW. In 

addition to the limitations in local generation capacity in this area, it is important to 

highlight that 370 MW of the demand are located in buses 9 and 10 which are part of 

substation 9.  If attacked, the lines connected to this substation would remain disrupted 

for the first two time periods cutting off any energy supply to these two buses. The 

second area has enough local generation capacity; it only has load-shed problems due 

to connectivity. Consequently, the system would have a total load-shed of 35% during 

the first two time periods and 25% in the third and fourth periods. The costs of the 

load-shed are more significant than the difference between the repair costs of the 

nuclear plant versus the 5 transformers. Therefore, the optimal attack with a budget of 

6 units corresponds to damaging substations 3 and 9. The system has enough 

redundancy to cope with losing 400 MW and with part of the new limitations of 

connectivity. CBA and GA decision rules choose to attack substations 9 and 3; but the 

MFA rule results in an attack on one of the nuclear plants and two lines and therefore 

a much lower post-event consequence for the operator. 

When the terrorist has 7 units and the defender zero budget, effective attacks 

include a high capacity generator and substation 9. All three rules identify the same 

generator and substation. Investing in protection reduces losses in connectivity and 

investing in generation capacity provides redundancy. This explains the slight 

increment in generation costs with larger defense budgets. Notice the reductions in 

load-shed costs, for GA and CBA, when the attacker has 3 or more units and the 

defense budget increases to US$25 million. In the later case, the defender protects 
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substations 3 and 9. With only 3 units a secondary substation is attacked. With 6 units 

the attack focuses on a nuclear plant and two lines. With 7 units, the nuclear plant and 

a secondary substation are targeted.  

It is useful to understand what the impacts might be if a defensive strategy is 

crafted based on an incorrect estimate of how the terrorist will craft their strategy. We 

explored this question when the investment budget is US$25 million and the terrorist’s 

budget is 6 units. If the defender assumes that the terrorist will use an MFA based 

strategy but they use GA or CBA instead, the post-event costs would be about US$4.7 

billion in contrast the US$1.5 billion the defender might have anticipated. In this 

example, planning for a GA attack is the most conservative. However, examples can 

be constructed for which GA does not lead to favorable post-event consequences when 

the original defense was based on a different attack strategy. 

 

Conclusions 

This paper presents a formulation for the problem of a strategic defender of an 

electric power system to a carefully crafted attack. We develop a leader-follower 

model representation of this strategic interaction.  We then apply this model to the One 

Area RTS-96 [Grigg 1999] with several different budgets for the terrorist and defender 

and three different rules for how the terrorist might craft the attack.  Based on those 

experiments, we identify four important ideas for investment in these types of 

networks.  First, MFA as a decision rule for the attacker is often inferior to GA and 

CBA.  A key reason for this is that there are often alternative optimums to the network 

flow problem.  This makes the connection between high flow and criticality fragile. 

Second, when protecting electric power systems against these types of attacks, 

investments in operating margin are important to consider in addition to more 

traditional protection measures.  Operating margin can make the systems more 
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resilient to attacks and alleviate the need for some types of traditional protection 

measures. Third, as the defender’s budget increases many of the investments 

recommended by smaller budgets remain useful.  This is important because these 

types of investments are often done incrementally. Fourth, if the defensive strategy is 

developed assuming a different strategy will be used to craft the attack than that which 

is actually used, the post-event costs may be significantly higher than anticipated.  

This implies that it is important to look for investment strategies that are robust against 

different methods which might be used to craft the attack. 

This research points to several different avenues for future research. First, the 

probability of an attack is not considered as part of this analysis hence extensions 

which would include this element is important. This analysis assumes that the user of 

the model’s results subjectively incorporates what “soft” information about the 

likelihood of an attack might be available to support decision-making. In some 

countries, terrorism has been a long-term problem that persists on a time scale of 

decades.  A country that has already suffered from persistent attacks would have data 

to construct an analysis estimating the probability of attack and could weigh the costs 

of an attack accordingly. A country with rare attacks or no previous attacks might need 

to develop a more subjective approach and integrate this approach with the estimation 

of a trade-off frontier of the reduction in attack consequences vs. costs.   This trade-off 

frontier might be somewhat similar to the results given in Tables 1-3 in the case study.  

Second, we formulate a static defender-attacker-operator model.  There is 

significant value in the creation of a dynamic representation of this strategic 

interaction over a longer time scale.  For example, we consider the initial investment 

costs for capacity expansion and protection as well as the costs incurred during a 6 

month recovery period.  A dynamic representation would allow explicit treatment of 

operating and maintenance costs, return on investment constraints, environmental 
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constraints, etc. It would also allow for the simultaneous consideration of traditional 

issues like changes in demand over time. Further, improvements in generation and 

transmission capacity would provide economic and reliability benefits (in addition to 

benefits of protection from attack) and quantifying these is useful.  Third, the attack 

strategy actually used is difficult to determine a prior therefore developing a method 

which identifies robust investments against a range of rules is important. Fourth, 

infrastructure networks are interdependent; therefore it is possible that investments in 

other networks on which the electric power system relies could be as important as 

investments in the electric power systems itself. Therefore, research to extend the 

modeling to consider interdependencies is important. Fifth, there are a range of targets 

available, should an entity be interested in engaging in terrorist activities. In order to 

defend infrastructures it is useful to consider the broad range of actions that can be 

taken to reduce the attractiveness of targets or to increase the difficulty of mounting a 

successful attack. It is also important that the costs and benefits of these measures be 

fully assessed. For example, [Murray-Tuite 2007] focuses on the costs of pre-event 

and post-event security measures in transportation systems.  [Prentice 2008] focuses 

on estimating tangible and intangible benefits of security measures.  Therefore, 

research to look across the range of targets available and the range of mitigation 

measures, including costs incurred and benefits accrued, is critical.  Sixth, and finally, 

electric power systems are subject to a range of hazards therefore it is important to 

think about investment strategies in a multi-hazard context.  Some investments, which 

could be made, improve post-event performance after multiple types of events (e.g. 

earthquakes, hurricanes, cascading from a small initial failure etc.) while others are 

only helpful for one type of event. A multi-hazard approach is likely to create the most 

effective investment strategy for the total funds expended. 
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CHAPTER 2 

 

MODELING VULNERABILITY OF ELECTRIC POWER SYSTEMS TO 

EARTHQUAKE EVENTS  

 

Introduction 

Our nation’s security as well as the quality of life of its citizenry depends on the 

continuous reliable operation of a collection of complicated interdependent 

infrastructures including electric power and more generally energy supply, water, 

transportation and emergency services. As demonstrated in the 2003 Northeast 

blackout, a disruption in energy infrastructure can quickly and significantly disrupt 

others, causing ripples across the nation.  

Natural hazards including earthquakes pose a significant hazard to electric power 

systems.  On January 17, 1994 the Northridge earthquake struck the city of Los 

Angeles and surrounding areas. 2.5 million customers lost power [Dong et al. 2004]. 

The Great Hanshin earthquake occurred a year later affecting the city of Kobe, Japan. 

Twenty fossil-fire power generation units, six 275 kV substations, and two 154 kV 

substations were damaged. Approximately, 2.6 million customers were affected by 

outages [Noda 2001]. On May 18, 2008, the Wenchuan earthquake caused extensive 

damage to the local power transmission, and distributions systems in the Sinchuan 

province, China. Approximately 900 substations and 270 transmission lines of the 

State Power Grid were damaged. At least 90% of the damages could have been 

avoided by adopting new guidelines of seismic design [Eidinger 2009]. 90% of 

Chileans did not have electricity immediately following the February 27, 2010 8.8 MW 

earthquake. The largest power transmission company in the country had direct losses 

of about US $ 6.5 billion [Long 2010]. The devastating Tohoku Chiho – Taiheiyo-Oki 
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earthquake on March 11, 2011 and its aftershocks damaged 14 power plants, 70 

transformers, and 42 transmission towers, among other failures. Outage stemming 

from the event affected 4.6 million residences and the April 7 aftershock affected an 

additional 4 million [Shumuta 2011]. 

Seismic risk in the Western region of the United States has been extensively 

studied. However, there has been relatively less attention expended on seismic risk in 

the Central and Eastern United States.  These regions do contain seismic zones that 

have been the source of strong earthquakes. In 1886 a 6.6 to 7.1 mb earthquake 

occurred in Charleston, South Carolina [Obermeier et al. 1985]. In the winter of 1811-

1812 a 3 intraplate earthquakes, including one with an estimated 7.8 MW, centered in 

the New Madrid Seismic Zone (NMSZ) struck the central United States inducing 

liquefaction and permanent ground motion [Tuttle 2002]. For the purpose of this 

study, we focus on the NMSZ.  

There are three key characteristics which make understanding and representing the 

hazard in the NMSZ important. First, studies of historic records of large earthquakes 

in the area suggest that the time between large events is somewhere between 200 to 

800 years with an average of about 500 years. Considering that the last recorded high 

magnitude earthquake was in 1811-1812, we might be close to an event based on the 

low estimate of the recurrence relationship [Tuttle 2002]. Gomberg and Schweig 

estimate that the probability of a 7.5 – 8.0 MW earthquake occurring in the next 45 – 

years is between 7% to 10%, and the probability of a 6.0 MW or larger is between 25 

and 40% [2007]. Second, due to soil conditions, ground shaking in this area is 

expected to affect a greater area than would be expected in California for a similar 

magnitude earthquake [Gomberg and Schweig 2007]. Third, since earthquakes in the 

NMSZ are not as frequent as those on other faults, like San Andreas, there is an 
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insufficient understanding of the earthquake risk in the area and therefore mitigation 

strategies in use may not be adequate. 

This paper presents a seismic risk analysis of the performance of a U. S. Eastern 

Interconnect power grid (EI). The representation of the EI was developed in 1998 by 

the Multi-Area Modeling Working Group. It is a representation of the system as of 

1998 with demands reflective of a prediction of summer 2003. This case includes 

direct representation of every region in the EI. Detailed representation is only provided 

for voltages greater than 100 kV. It includes information for 23,416 transmission lines 

and 14,957 buses. These buses are grouped in 2,765 substations with two or more 

buses and 6,448 single buses. Table 4 lists the voltages of the buses. 

 

Table 4. EI buses information. 

Total Number of Buses 14,957 

>= 765 kV 82 

>= 500 kV 192 

>= 345 kV 544 

>= 230 kV 1126 

>= 115 kV 6956 

>= 69 kV 2386 

>= 34.5 kV 742 

< 34.5 kV 2929 

Active Generation Buses 2,316 

 

Similar studies of power grid performance have been previously published. 

Shinozuka et al. [2003] examine the performance of the LADWP power system under 

47 earthquake scenarios that collectively represent the seismic hazard of the Los 

Angeles area. Shinozuka et al. [2007] identify the sequential failure of components in 
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Los Angeles electric transmission system under a severe earthquake. They use Monte 

Carlo simulation to create the consequence scenarios. They run IPFLOW for each of 

the consequence scenarios; all the components with too high or too low voltages are 

eliminated. The procedure iterates between IPFLOW and the elimination of 

components with extreme voltages until reaching convergence. Elnashai et al. [2008] 

use seismic events developed by USGS to estimate the overall seismic risk in NMSZ 

and Wabash Valley Seismic Zone. They use HAZUS fragility curves to evaluate the 

impact on the power grid as well as other vulnerable infrastructure systems. The 

damage of components is determined using a threshold value. A similar analysis is 

presented in Elnashai et al. [2009]; the seismic hazard is defined by a deterministic 

scenario of magnitude 7.7 MW over an artificial fault created by USGS. Portante et al. 

[2012] analyze the response of the EI to a strong earthquake scenario; they use a 

magnitude 7.7 MW earthquake scenario in the north arm of the USGS artificial fault. 

Similar to Shinozuka et al. [2007], they not only analyze the performance of the grid 

from the initial damage, but they also consider the downstream impacts due to extreme 

voltages. Portante et al. [2010] consider component’s repair and replacement times. 

The analysis in this paper innovates beyond the previous studies in four main 

aspects. First, as in Shinozuka et al. [2003], the natural hazard is modeled with a set of 

earthquake scenarios that collectively represents the seismic hazard of the region of 

interest; however, we use an optimization method that enables modeling the seismic 

hazard by a smaller subset of scenarios with adjusted occurrence probabilities. We 

also extend that optimization method to include a constraint on the number of events 

that can be used to describe the hazard.  Second, the consequence scenarios are not 

generated using Monte Carlo Simulation, but an optimization algorithm. With this 

algorithm the number of consequence scenarios can be reduced considerably and we 

can demonstrate how well those scenarios match the marginal distribution of damage 
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for each component. Third, we extend the optimization to construct consequence 

scenarios to include damage state information for each component and scenario based 

on mitigation performed. This allows us to consider mitigation opportunities.  Finally, 

the risk of cascading failure is considered with a new statistical method that is based 

on observed data and simple assumptions about the blackout area and does not depend 

on modeling and simulating a selected subset of cascading mechanisms. 

The next section provides an overview of each of the four modeling steps needed to 

understand the seismic vulnerability of an electric power system and to provide an 

estimate of the benefit of a set of specific mitigation actions across the entire 

restoration period. The third section provides a detailed discussion of modeling the 

seismic hazard of a geographic area in a manner that is consistent with understanding 

the seismic vulnerability of an electric power system.   These ideas are then applied to 

an analysis of the EI.  The fourth section focuses on providing an understanding of 

how to estimate the distribution of damage from seismic events on an electric power 

system in general and the EI in specific. The fifth section focuses on quantifying the 

impact of cascading outages that can spread the blackout beyond the initial seismic 

damage to an electric power system. The sixth section focuses on estimating the load 

shed and costs incurred over the restoration period. The seventh section discusses 

conclusions. 

 

Method Overview 

This section develops each of the four modeling steps needed to understand the 

seismic vulnerability of an electric power system and to provide an estimate of the 

benefit of a set of specific mitigation actions. Those steps are illustrated in Figure 1.  
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Figure 1. Modeling Earthquake Impacts on Electric Power Networks. 
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Figure 2. Locations at which ground motion is analyzed to select earthquake scenarios. 

 

P35 

P84 
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The first step is to develop a suite of earthquake scenarios (location and 

magnitude) that replicate important measures of the seismic hazard. For electric power 

systems the key measure is the exceedance curves for peak ground acceleration (PGA) 

where seismically sensitive components are located. Figure 2illustrates the 81 

locations at which the hazard is measured in the NMSZ. Figure 3 illustrates the PGA 

exceedance curve for control point 35, which is located near Pinckneyville, Illinois.  

 

 

Figure 3. Exceedance curve for PGA at location P35 (Near Pinckneyville, IL). 

 

Under each scenario the probability that each component sustains specific levels of 

damage is then computed using a regional loss estimation methodology such as, 

HAZUS [FEMA 2003]. It can be used to provide estimates of damage to buildings and 

individual elements of utility and transportation systems based on a single event. 

HAZUS accomplishes this task by bringing together two key pieces of data for each 

element in the built infrastructure or lifeline system: fragility curves that are dependent 

on the type of structure/lifeline component and a probability distribution for the 

ground shaking at that location based on the event.  A fragility curve specifies the 

probability that a structure of a specific type experiences a certain level of damage or 

greater for a given amount of ground shaking. Figure 4 gives an example of a set of 
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fragility curves for a low voltage substation with seismic components. HAZUS 

categorizes damage to substations into five classes: no damage, slight, moderate, 

extensive and complete.  The curves are interpreted as follows. If the peak ground 

acceleration is 0.4 g, the probability that the substation experiences at least Slight 

damage is 90%.  This fact implies that the probability that No Damage occurs is 10%. 

Furthermore, the probability it experiences at least moderate, extensive or complete 

damage is 70%, 40% and 5%, respectively.  

 

Figure 4. Example Fragility Curves for Low Voltage Substations with Seismic 

Components [FEMA 2003] 

 

The second element that is needed is a probability distribution for the ground 

shaking at the location of interest. This ground shaking is often estimated using 

empirical relationships called ground motion prediction equations (empirical equations 

are often referred to as attenuation equations), which predict the distribution of ground 

motion amplitudes using a logarithmic mean that represents the distance, magnitude, 
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type of rupture, soil classification, etc., and a standard deviation. It is commonly 

assumed that the residuals, as estimated by the standard deviation, are normally 

distributed about the mean. 

Since the performance of lifelines is governed by the joint distribution of damage 

over all components, each earthquake scenario must be translated into a set of 

consequence scenarios and their hazard-adjusted occurrence probabilities. In each 

consequence scenario, the level of damage of each component is specified. The 

development of these consequence scenarios is the second step in the process. More 

generally, we develop these consequence scenarios specifying the condition for each 

component with and without seismic mitigation.  

Electric power systems are vulnerable to cascading failures. That is, when an 

initial set of components fail, in this case as a result of an earthquake, those failures 

can lead to current and voltage fluctuations in other components and outages in those 

components.  "Outage" means that the component is removed from service and is 

therefore unavailable to transmit electric power. Cascading outages are recursive in 

that the lines that outage as a result of cascade can lead to the outage of additional 

lines. Dobson and Carreras [2010] develop a branching process model to represent the 

propagation of transmission line outages from an initiating event through successive 

generations of cascading line outages. We use their branching process model in the 

analysis to determine a probability distribution of the additional line outages due to 

cascading and hence the additional load shed in the resultant blackout. 

The final step is the use of an economic dispatch model over the repair duration to 

understand the distribution in the costs to be incurred. We also explore how those 

costs would be affected through mitigation. The duration of component outages 

stemming from a cascade are significantly different than the length of outages of 

seismically damaged components. Hence the final two steps can be envisioned as 



 

39 

parallel analyses. Understanding the scope of a cascade in addition to the impact of 

outages stemming from damage is important because cascade induced damage does 

produce additional societal costs and complicates restoration activities after natural 

hazard events. The following four sections describe each of these steps in turn. 

 

Characterizing the Hazard 

A key element of modeling the vulnerability of a region, which is a necessary 

precursor to understanding the impact of these events on infrastructure, is developing a 

mechanism to express the hazards. We express the hazard by identifying a small set of 

earthquake scenarios and their hazard-adjusted probability of occurrence. We use the 

scenario approach because electric power systems are spatially distributed therefore it 

is critical to describe the hazard in a manner that preserves the spatial impacts on the 

system. We focus on limiting the number of scenarios because the computations 

needed to predict the system impacts for each scenario are extensive. 

We use PGA as the key measure of the hazard. We extend the mathematical 

optimization method to describe the hazard developed by Vaziri et al. [in press] to find 

the best subset of earthquake events and their associated probabilities which cause the 

least discrepancy with the seismic behavior as represented in the exceedance curves 

for PGA for each of the control points. The exceedance curves were obtained from the 

USGS website [2008b]. We choose to focus on the exceedance curves rather than the 

recurrence relationship as a description of the hazard because (24) the connection 

between earthquake events and damage to the infrastructure is more effectively 

summarized in the exceedance curves since they contain highly resolved spatial 

information; (25) our goal is to identify a very small subset of events that represent the 

hazard and a significantly larger number is generally needed to fit a frequency 

magnitude relationship well; and (26) for NMSZ, there is considerable debate about 
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the nature of the frequency-magnitude relationship which has not been resolved 

[Newman et al. 1999]. 

The mathematical formulation developed in Vaziri et al. [in press] requires a set of 

earthquake scenarios, S, associated with a single seismic zone where each earthquake 

is characterized by a magnitude, Ms, and the probability distribution of ground shaking 

at control points, i.. Let Fi,s(g) represent the probability that earthquake s leads to a 

PGA greater than or equal to g in location i. Fi,s(gi,r) is defined in (24). gi,r (in units of 

[g]) is the PGA which has a 1/r annual probability of exceedance where r is the return 

period or estimated time interval between events of same or greater intensity. Notice 

that it is a weighted sum of the probability of exceeding acceleration gi,r. wa, is the 

weight associated with attenuation relation a as given in Petersen et al [2008]. More 

specifically, this probability corresponds to the weighted sum of the probabilities that 

the lognormal random variable with mean, ln (µi,s,a) and standard deviation σi,s,a., is 

greater than the acceleration gi,r, associated to point i and return period r.  

𝐹𝑖,𝑠�𝑔𝑖,𝑟� = �𝑤𝑎 ∗ �1 −Φ�𝑙𝑛𝑔𝑖,𝑟 − 𝑙𝑛𝜇𝑖,𝑠,𝑎�/𝜎𝑖,𝑠,𝑎 �                     (24)
𝐴

𝑎=1

 

This problem can be formulated as a linear problem (LP) with the following 

decision variables: the adjusted occurrence probability of each scenario, Ps, and the 

errors from over and under estimating the probability of exceeding PGA in point i and 

for return period r, and 𝑒𝑖,𝑟+  and 𝑒𝑖,𝑟−  respectively. The objective function given in (25) 

corresponds to the minimization of the sum of all the errors. Equation (26) requires 

that the weighted sum of the probabilities of exceeding PGA value in point i and with 

return period r for all the earthquake scenarios to be as close as possible to the return 

period provided in USGS [2008b]. Equation (27) establishes the bounds for the 

occurrence probability of each earthquake scenario. The lower bound is zero and the 
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upper bound a defined Pmax; for the purpose of this study we defined this value as 

0.05. Equation (28) defines the errors as non-negative variables. 
 

𝑀𝑖𝑛 ∑ ∑ (𝑒𝑖𝑟+ + 𝑒𝑖𝑟−)                                            (25)𝑅
𝑟=1

𝐼
𝑖=1   

                                     
∑ �𝑃𝑠 ∗ 𝐹𝑖,𝑠�𝑔𝑖,𝑟��𝑆
𝑠=1 − 𝑒𝑖,𝑟+ + 𝑒𝑖,𝑟− = 1/𝑟         ∀𝑖, 𝑟                        (26)  

                                
0 ≤ 𝑃𝑠 ≤ 𝑃𝑚𝑎𝑥                      ∀𝑠                           (27) 

 
𝑒𝑖,𝑟+ , 𝑒𝑖,𝑟− ≥ 0                         ∀𝑖, 𝑟                        (28) 

The LP will likely assign nonzero probabilities to many earthquake scenarios. 

Each scenario increases considerably the computation required for the downstream 

analyses. Therefore, we extend this formulation to create a mixed-integer linear 

programming problem by requiring that no more than N scenarios have a non-zero 

adjusted occurrence probability. This is done by augmenting the LP with a set of 

binary variables, 𝑃𝑠� , each of which takes on a value of 1 if scenario s is part of the set 

and zero otherwise. Constraint (27) is then replaced with constraint (29). Constraint 

(30) limits the number of chosen earthquakes to N, and (31) defines the new set of 

binary variables. 
0 ≤ 𝑃𝑠 ≤ 𝑃𝑚𝑎𝑥 ∗ 𝑃𝑠�                   ∀𝑠                              (29) 

 

�𝑃𝑠�
𝑆

𝑠=1

≤ 𝑁                                                             (30) 

 
𝑃𝑠�  ∈ {0,1}                            ∀𝑠                              (31) 

We use two sources of candidate earthquakes scenarios. The first source is the 

earthquake catalog from the USGS website [2008a]. This catalog includes 433 

earthquakes that occurred within the NMSZ. The magnitudes were converted from 

mblg to MW using Atkinson and Boore [1995] and Johnston [1996] equally weighted as 

given in Petersen et al [2008]. The mean PGA for each control point was estimated 

using Toro et al [1997], Frankel et al [1996], Campbell [2003], Atkinson and Boore 
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[2006], Tavakoli and Pezeshk [2005], and Silva et al [2002] assuming BC site 

conditions (shear-wave velocity, 760 m/s), the relative weights given in Petersen et al 

[2008] . In addition to the 433 earthquakes identified in the Central-East Unites States 

earthquake scenarios catalog, we use 20 synthetic events on 5 synthetic faults created 

by USGS to represent the hazard in New Madrid. The 20 scenarios correspond to each 

of the 4 possible magnitudes (7.3, 7.5, 7.7 and 8) for ruptures in the 5 different 

branches described in Petersen et al [2008]. USGS [2008c] provides computer code 

that can be compiled and run to generate each of these deterministic scenarios in New 

Madrid. For this additional set of events, the attenuation relationship from Somerville 

et al [2001] is also included in the analysis. 

 

Table 5. List of 8 earthquake scenarios with adjusted probability of occurrence.  
Location Depth Magnitude 

Date  Source 
Adjusted 
occurrence 
probability Lat. Long. Fault 

Info. [km] mblg MW 

36.7 -90.3  0.0 4.3  2/2/1954  NCEER 0.0500 
38.2 -89.8  11.0 4.3  4/9/1955  NCEER 0.0500 
37.9 -88.4  21.0 5.5  11/9/1968  NCEER 0.0078 
38.7 -88.0  10.0 5.2  6/10/1987  USHIS|5.20mn 0.0069 
36.8 -89.2  5.0 4.5  9/29/1987  USHIS|4.50mn 0.0500 
35.8 -90.2  9.0 4.2  5/1/2005  PDE|4.20mw 0.0500 

  
Mid-
East   7.7  USGS faults 0.0018 

  West   8.0  USGS faults 0.0010 

Table 5 gives the 8 earthquake scenarios selected (from the 433 earthquake events 

in the historic catalogue and the 20 synthetic events developed by USGS) with their 

adjusted occurrence probability. Figure 5 illustrates the “location” of the 8 earthquake 

scenarios. Scenarios from the USGS catalog are located with a star with a size relative 

to the magnitude of the scenario; there are 6 of these scenarios. There are 2 scenarios 

from the fault sources; the complete synthetic rupture is also illustrated in the map. 
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Figure 5. New Madrid Seismic Zone and location of the 8 earthquake scenarios (2 

from fault ruptures and 6 point locations). 
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As illustrated in Figure 2, there are 81 locations at which the optimization needs to 

match the exceedance curves within the limitations of the earthquake events provided 

and the maximum number of scenarios from that set that may be used.  The solution 

illustrated in Table 5 and Figure 5 does result in some departures from the exceedance 

curves at a small number of locations. The largest discrepancy between the 

exceedance curve and the exceedance curve implied by the scenarios selected and 

their hazard-adjusted probability of occurrence occurs at location P84 (boarder 

between Tennessee and Arkansas at the Mississippi River near Osceola, Arkansas) as 

illustrated in Figure 6.  

 

 

Figure 6. Exceedance curves for location P84. 

 

Figure 6 illustrates the exceedance curve from USGS, the implied exceedance 

curve obtained from the scenarios (and their probabilities of occurrence) based on the 

formulation given in Vaziri et al. [in press], and based on that model with the 

extension to limit the number of events.  All, curves correspond to location P84. When 

the number of events, which have a positive probability of occurrence is limited to ten, 

the number of events to include based on the optimization drops from 149 to 8.   
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Figure 7. Histogram of PGA optimization error for every combination of location and 

return period. 

 

Notice that there is very little difference in the implied exceedance curves. Figure 7 

gives a histogram of the difference between the PGA for each of the return periods 

based on the USGS data at each location and the probability based on the earthquakes 

selected for that same value of PGA. It is useful to notice that limiting the number of 

earthquakes selected has a minimal impact on the quality of the estimation and that the 

magnitudes of these differences in probability are quite small.  It is also useful to 

notice that the distribution of errors is symmetric indicating that the approximation of 

the exceedance curves is not biased. 

 

Vulnerability Modeling 

For each scenario selected to represent the underlying hazard, the probability that 

each component falls into each damage state can be computed using an earthquake 

regional loss methodology such as HAZUS.  However, the performance of a lifeline 

system is dependent on the joint distribution of damage to the components.  Each 

element in the infrastructure impacts the connectivity of the network, therefore, the 
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marginal damage distribution of damage to each element in isolation is insufficient for 

analysis. The common mechanism to represent this joint distribution is the 

development of consequence scenarios where each consequence scenario has a 

realized damage state for each component of the infrastructure. Also, associated with 

each consequence scenario is a probability of occurrence. For each consequence 

scenario, system performance is then computed. 

Consequence scenarios to represent seismic risk are generally obtained using 

Monte Carlo Simulation. Since performing computationally intensive calculations on a 

large number of samples is impractical, in practice small sample sizes are used or the 

computations performed on each sample observation is simplified. Chang, et al. 

[2000] randomly generates 10 consequence scenarios for each single event using the 

probabilistic information derived for each bridge to analyze the impacts of earthquakes 

on the Los Angeles highway system. Shiraki et al. [2007] extend the analysis in Chang 

et al. [2000] to consider 47 earthquake events using 10 Monte Carlo sample 

realizations each of each. Çağnan, Davidson, and Guikema [2006] use a mixture of 

Monte Carlo simulation and expert opinion to model the Los Angeles electrical system 

with 10 or 20 Monte Carlo samples to assess the impacts of an event. Jayaram and 

Baker [2010] apply Monte Carlo sampling to construct consequence scenarios for the 

San Francisco highway system. They use a large number of ground-motion intensity 

maps to represent the hazard (which can be viewed as ground shaking realizations 

from the scenarios identified in the previous section).  For each ground-motion map 

they use Monte Carlo simulation to draw consequence scenarios to assess system 

performance. Since the downstream analysis is a static user equilibrium computation, 

which is somewhat computationally intensive, they reduce the complexity of the San 

Francisco highway system by focusing on major facilities thereby reducing the 

computational burden of the analysis.   
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We use and extend the optimization method introduced by Brown et al. [2011] to 

develop consequence scenarios and their hazard-consistent probability of occurrence. 

Each consequence scenario has a realized damage state for each component of the 

infrastructure and an associated probability. For a given component the damage state 

and probability from each scenario can be used to determine the implied vulnerability. 

The objective of the optimization is to select the consequence scenarios and associated 

probabilities so the implied vulnerabilities of each component match the “true” (input) 

vulnerability as closely as possible. We describe this formulation in terms of 

components of the electric power system for clarity and brevity with the understanding 

that this formulation could be applied to any spatially distributed lifeline systems by 

replacing the notions of generation units, substations and distribution circuits with the 

appropriate seismically vulnerable components in that lifeline system.  

The power grid components’ vulnerability is represented as described in the 

HAZUS regional loss estimation methodology [FEMA 2003]. HAZUS classifies 

transmission substations voltages that are less than 150 kV, 150 to 350 kV, and above 

350 kV as low, medium and high voltage, respectively. Additionally, all the 

substations, generation units and distribution circuits are classified as seismically 

designed and not seismically designed. HAZUS divides damage to all components in 5 

mutually exclusive and exhaustive damage states: no-damage, slight, moderate, 

extensive, and complete. For each damage state and component group, HAZUS 

includes the median and dispersion of the damage probability function. As illustrated 

in Figure 5, these fragility curves depend on the PGA at the component’s location.  As 

mentioned previously, for each scenario which has a positive probability based on the 

method described in the previous subsection, there is a probability distribution for the 

PGA at each component’s location. 
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In this analysis, we do not consider damage to generation units. According to 

Schiff [1998] power plants have good overall seismic performance in the United 

States and in countries such as Chile and Japan. For substation, only four of the five 

damage states are included: no-damage, moderate, extensive, and complete. Similarly, 

for transmission lines, the damage states are no-damage, extensive and complete.  

Brown et al. [2011] did not consider the possibility of investing in seismic 

reinforcement for components. For the purposes of this research their optimization 

model is expanded to include the performance of the components prior to 

reinforcement and after reinforcement. (32) is the objective function for our 

optimization. It represents the minimization of the errors from overestimating or 

underestimating the probability that each component is in each damage state. k 

identifies each component, d represents each of the damage states, 𝑒𝑘𝑑+  and 𝑒𝑘𝑑−  are the 

overestimation and underestimation errors when component k is not seismically 

designed, and 𝜀𝑘𝑑+  and 𝜀𝑘𝑑−  are the errors when the component is seismically designed. 

 

min  �(𝑒𝑘𝑑+ + 𝑒𝑘𝑑− + 𝜀𝑘𝑑+ + 𝜀𝑘𝑑− )
𝑘𝑑

                                 (32) 

 

The errors correspond to the difference between the probability of component k 

being in damage state d, and the sum of the product of the consequence scenario’s 

occurrence probability for those consequence scenarios in which the component is in 

damage state d (See (33) and (34)). The probability that component k is in damage 

state d when it is not seismically design is 𝑚𝑘𝑑; when it is seismically designed, this 

parameter is 𝜇𝑘𝑑. 𝑠𝑗 is the likelihood of occurrence of consequence scenario j. 𝑏𝑗𝑘𝑑 and 

𝛽𝑗𝑘𝑑 are binary variables that take value one when component k is in damage state d in 
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consequence scenario j in the absence of mitigation (non-seismic) and after mitigation, 

respectively (seismic). 

 

�𝑠𝑗
𝑗

𝑏𝑗𝑘𝑑 − 𝑒𝑘𝑑+ + 𝑒𝑘𝑑− = 𝑚𝑘𝑑        ∀𝑘, 𝑑                     (33) 

 
�𝑠𝑗
𝑗

𝛽𝑗𝑘𝑑 − 𝜀𝑘𝑑+ + 𝜀𝑘𝑑− = 𝜇𝑘𝑑         ∀𝑘,𝑑                              (34) 

 

(35) and (36) guarantee that component k can only take one damage state per 

consequence scenario for each design level (seismic and non-seismic). 
 

� 𝑏𝑗𝑘𝑑
𝑑

= 1                          ∀𝑘, 𝑗                               (35) 

 
� 𝛽𝑗𝑘𝑑

𝑑
= 1                          ∀𝑘, 𝑗                               (36) 

 

(37) establish the lower and upper bound for the consequence scenarios occurrence 

likelihood. For the current problem smin is zero and smax one. Equation (38) requires 

that the sum of the probability of all consequence scenarios must equal one. 
 

𝑠𝑚𝑖𝑛 < 𝑠𝑗 < 𝑠𝑚𝑎𝑥                ∀𝑗                                       (37) 
 

� 𝑠𝑗
𝑗

= 1                                                                  (38) 

(39) defines all error variables as positive, and (40) define bjkd and βjhd as binary 

variables. 
𝑒𝑘𝑑+ , 𝑒𝑘𝑑− , 𝜀𝑘𝑑+ , 𝜀𝑘𝑑− ≥ 0        ∀𝑘,𝑑                                  (39) 

 
 

𝑏𝑗𝑘𝑑 ,𝛽𝑗𝑘𝑑 ∈ {0,1}              ∀𝑗,𝑘,𝑑                                (40) 
 

The optimization problem is a nonlinear integer problem. To solve it, we used the 

same heuristic proposed and implemented in Brown et.al. [2011]. The extension to 
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address the representation of seismic mitigation does not change the underlying 

problem structure that yielded that solution procedure.  It is important to notice that 

the notation we use to develop this formulation does overlap with the notation used to 

describe the optimization to select the scenarios to match the exceedance curves at 

each of the 81 locations. Our notation for each of these separate optimizations is 

consistent with the original publications that described these core ideas. Therefore, it 

is important to understand the different meaning for similar notation in the two 

subsections. We have elected to do this to make the related publications more 

accessible. 

Based on the analysis in the previous section, 8 events effectively captured to 

hazard (Table 5).  The formulation developed in this section provides a mechanism 

(through the use of consequence scenarios) to construct a collection of consequence 

scenarios to represent the joint distribution of damage to the components in the electric 

power system under each of those scenarios. The six events with mblg less than 6, 

result in effectively no physical damage to the electric power grid based on the 

fragility curves given in HAZUS and the probability distribution for PGA for each 

event. 
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Figure 8. PGA from earthquake scenario in West fault of magnitude 8.0 MW, and one 

of the consequence scenarios. 

The earthquake scenario on the Mid-East fault of magnitude 7.7 MW, and the 

earthquake scenario on the West fault of magnitude 8.0 MW do result in considerable 

damage, however. For each of these events, we generate 6 consequence scenarios 

using the formulation described above. The average error across all six scenarios 

(based on their probabilities of occurrence) and the probability each component is in 

each of the damage states with a positive probability is about 3.5%. Table 7 gives the 

probability of each consequence scenario as well as the number of transmission lines 

and substations in each relevant damage state, with and without seismic 

improvements. 

Figure 8 illustrates the damage state for each component under the first 

consequence scenario listed in Table 6 associated with the earthquake scenario of 
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magnitude 8.0 MW on the West fault. It is useful to notice the extensive damage to the 

Memphis, Tennessee and Paducah, Kentucky, area as well as Southeastern, Missouri. 

 

Table 6. Consequence scenarios general information.  

Source 
Adjusted 

occurrence 
probability 

Basic design Seismically reinforced components 
Transmission 
Lines damage Substations damage Transmission 

Lines damage Substations damage 

Ext. Com. Mod. Ext. Com. Ext. Com. Mod. Ext. Com. 

West 
branch, 
8.0 MW 

0.00016 5 24 18 8 15 2 24 15 3 7 

0.0002 5 25 23 19 8 6 20 13 15 7 

0.00008 15 24 68 24 10 25 5 66 26 9 

0.00018 4 25 13 14 10 5 20 7 12 7 

0.00024 6 24 12 16 9 4 22 8 20 6 

0.00014 6 22 26 22 12 4 21 26 12 6 

Mid-East 
branch, 
7.7 MW 

0.000126 27 11 35 16 14 21 9 29 13 14 

0.000396 28 14 4 13 11 16 6 3 13 9 

0.000288 30 13 17 12 12 19 8 9 8 11 

0.000342 28 13 6 7 19 24 8 9 10 11 

0.000432 24 14 5 13 13 18 8 3 19 6 

0.000216 28 26 25 10 13 15 9 13 16 5 
Mod.=Moderate, Ext.=Extensive, Com.=Complete 

 

Estimating Cost during Restoration Process 

An economic dispatch model of electric power can be used to estimate the impact 

generated by each consequence scenario.  These impacts can then be combined using 

the estimated probability of occurrence of the earthquake scenario they stems from 

and the probability of the consequence scenario itself. It is important to remember that 

each consequence scenario specified the damage state of each component. Based on 

the HAZUS methodology [FEMA 2003], again, we assume that substations have three 

possible levels of damage: moderate, extensive, and complete. Moderate damage 

causes repair costs of 40% of general substation cost and does not affect any of the 
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transformers in the substation. Extensive damage in average, affects 70 % of the 

substation and 50% of transformers in the facility. Complete damage, causes complete 

loss of the substation including all the transformers. When substations sustain 

moderate damage, the estimate time for repair is 3 days, for extensive damage, a week, 

and for complete damage, repairs can vary depending on transformers. High voltage 

and/or customized transformers can have very large lead-times. Therefore, for 

modeling purposes, we assume that for Low voltage transformers the operator would 

have access to spares within a month. All the components in substations under 

complete damage are back to normal within a month with exception of Medium and 

High voltage transformers. We assume an average lead-time for these transformers of 

6 months. Thus, the complete system can get back to normal conditions after 6 

months. For transmission lines we only model two levels of damage, extensive and 

complete. Extensive damage for a transmission line corresponds to a damage ratio of 

50% of total cost and complete, 100%. Transmission lines under extensive damage 

can be repaired within 3 days and under complete damage within a week. 

Based on the different repair periods for substations and transmission lines, we 

model 4 recovery stages. The stages extend from right after the event to 3 days, from 3 

days to a week, a week to a month, and the final stage extends from the end of the first 

month to 6 months after the earthquake. Each time period is modeled by a dc flow 

model with the objective of minimizing operating costs. Operating costs include 

power generation and load shed costs. Average power generation costs are estimated 

based on the data collected by the U.S. Department of Energy [2009]. We model two 

types of generators: nuclear, and a weighted average of the rest of energy sources that 

reflected national energy consumption. Based on data from 2002, the relative shares of 

energy consumed by source fuel is 39%, 24%, 22.5%, 8.5%, and 6% for oil, gas, coal, 

nuclear, hydro and renewable constitute, respectively. Finally, Billington et al. [1989] 
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presents business interruption costs (which are indirect costs) per kW and kWh for 

different sectors. 

The linear dc power flow model formulated below represents the optimal operation 

during the recovery period after the seismic event. Mathematically, the objective is to 

minimize equation (41). It represents the total generation and load shed costs for the 

system in the four recovery periods.  

𝑚𝑖𝑛 � ��𝑐𝐵𝑈𝑖𝑘

𝑖∈𝐵

+ �𝑐𝑔𝐺𝐺𝑔𝑘
𝑔∈𝐺

�
𝑘=1,2,3,4

(𝑡𝑘 − 𝑡𝑘−1)                              (41) 

subject to 
�𝜃𝑖1 − 𝜃𝑗1��1 − 𝑦𝑖𝑗

𝐸,𝐶��1 − 𝑥𝑠𝑖
𝑀,𝐸,𝐶� �1 − 𝑥𝑠𝑗

𝑀,𝐸,𝐶� = 𝑚𝑖𝑗𝑃𝑖𝑗1 , ∀ (𝑖, 𝑗)                   (42) 
 

�𝜃𝑖2 − 𝜃𝑗2��1 − 𝑦𝑖𝑗𝐶 ��1 − 𝑥𝑠𝑖
𝐸,𝐶� �1 − 𝑥𝑠𝑗

𝐸,𝐶� = 𝑚𝑖𝑗𝑃𝑖𝑗2 ,        ∀ (𝑖, 𝑗)                    (43) 
 

�𝜃𝑖3 − 𝜃𝑗3��1 − 𝑥𝑠𝑖
𝐶 � �1 − 𝑥𝑠𝑗

𝐶 � = 𝑚𝑖𝑗𝑃𝑖𝑗3 ,        ∀ (𝑖, 𝑗)                    (44) 
 

�𝜃𝑖4 − 𝜃𝑗4��1 − 𝑥𝑠𝑖
𝐶 𝑇𝑖𝑗� = 𝑚𝑖𝑗𝑃𝑖𝑗4 ,        ∀ (𝑖, 𝑗)                    (45) 
 

� 𝐺𝑔𝑘
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗𝑘
(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑗𝑖𝑘
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖𝑘, ∀ 𝑖, 𝑘                      (46) 

0 ≤ 𝑈𝑖𝑘 ≤ 𝐷𝑖 ,         ∀ 𝑖, 𝑘                      (47) 
 

0 ≤ 𝐺𝑔𝑘 ≤ 𝐺𝑔𝑚,        ∀𝑔, 𝑘                      (48) 
 

�𝑃𝑖𝑗1 � ≤ 𝑃𝑖𝑗𝑚�1 − 𝑦𝑖𝑗
𝐸,𝐶��1 − 𝑥𝑠𝑖

𝑀,𝐸,𝐶� �1 − 𝑥𝑠𝑗
𝑀,𝐸,𝐶� ,      ∀ (𝑖, 𝑗)                    (49) 

 
�𝑃𝑖𝑗2� ≤ 𝑃𝑖𝑗𝑚�1 − 𝑦𝑖𝑗𝐶 ��1 − 𝑥𝑠𝑖

𝐸,𝐶� �1 − 𝑥𝑠𝑗
𝐸,𝐶� ,        ∀ (𝑖, 𝑗)                     (50) 

 
�𝑃𝑖𝑗3 � ≤ 𝑃𝑖𝑗𝑚�1 − 𝑥𝑠𝑖

𝐶 � �1 − 𝑥𝑠𝑗
𝐶 � , ∀ (𝑖, 𝑗)                      (51) 

 
�𝑃𝑖𝑗4� ≤ 𝑃𝑖𝑗𝑚�1 − 𝑥𝑠𝑖

𝐶𝑇𝑖𝑗�, ∀ (𝑖, 𝑗)                      (52) 

The objective function given in equation (41) is the sum of the power generation, 

and load shed. 𝑐𝑔𝐺 represent the unitary cost of power generation associated with 

generator g, 𝐺𝑔𝑘 the generation output in generator g and time period k, cB the unitary 
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cost per load shed, and 𝑈𝑖𝑘 the load shed in bus i and time period k. Notice that the 

length of the time periods is represented with (𝑡𝑘 − 𝑡𝑘−1). Constraints (42), (43), (44), 

and (45) approximate the active power flows on the transmission lines in the four 

stages of the repair process. In these equations, 𝑚𝑖𝑗 is the reactance in line (i,j), 𝑦𝑖𝑗
𝐸,𝐶  is 

an indicator that takes the value of one when a line is either in extensive or complete 

damage states, otherwise is zero (similarly  takes the value of one when a line is in 

damage state complete), and 𝑥𝑠𝑖
𝑀,𝐸,𝐶 is an indicator that is one when a substation is 

under moderate or greater damage (notice that superscript  “E,C”, stands for extensive 

or greater damage, and “C” exclusively for complete damage). 𝜃𝑖𝑘 is a variable that 

represents the phase angle in bus i and time period k, and 𝑃𝑖𝑗𝑘  represents the power 

flow in transmission line (i,j) for time period k. Constraints (46) preserve the power 

balance at the buses in the four-stage recovery process. Constraints (47) state that the 

load shedding at a bus cannot exceed the demand at the bus. Constraints (48) bounds 

the power produced at each generator; 𝐺𝑔𝑚 is the maximum generation output in 

generator g. Note that the power flow in each transmission line can go in either 

direction therefore the flow load on each transmission line can take either a negative 

or positive value. Constraints (49), (50), (51), and (52) set the maximum absolute 

values of the flows for transmission lines in each stage. A line is not available in the 

first stage if it is in damage states extensive or complete, or if a substation to which is 

connected is in moderate or more intense damage. In the final stage, high voltage 

and/or customized transformers in substations under complete damage are still out of 

operations. These transformers are identified by 𝑇𝑖𝑗, an indicator  that takes the value 

of one for high voltage and/or customized transformers and zero in all the other cases.  

Figure 9 gives exceedance relationships for load shed and repair costs for the EI 

with and without complete seismic mitigation.  For example, if an earthquake occurs 

that is sufficiently strong to affect the electric power infrastructure, that event will 
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cause damages in excess of US$2 billion and result in load shed costs in excess of 

US$10 billion.  

 

 

Figure 9. Exceedance relationship for repair and load shed costs. 

 

Modeling Cascades 

The initial failures directly caused by the earthquake can often propagate to cause 

a more widespread blackout by a process of cascading outages. The power system 

weakens as each outage occurs and it is then more likely that further outages occur.  

The equipment outaged by cascading is usually not damaged; it is typically removed 

from service by automatic protection devices or by operator actions. The outaged 

equipment can be restored to service without repair, but if the blackout is large and 

widespread, full restoration can take hours to days. The direct cost of the blackout 

associated with the cascading is primarily due to cost of the interruption of the supply.  

However, it should be noted that indirect blackout costs such as adverse interactions 

with other infrastructures, and particularly the impediments caused by a lack of 

electrical power to support the efforts to rescue people affected by the earthquake 
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damage and executing an effective infrastructure repair and restoration process can be 

very significant. 

Our objective is to estimate the order of magnitude of the increase in the load shed 

due to cascading. Since the systematic study of cascading failure is recent, to perform 

this first, rough estimate we apply new methods to describe the probability distribution 

of the additional lines that will trip out and implicitly identify a joint probability 

distribution for where those lines will be in the network. 

Here the assumed number of initial outages is the number of lines damaged by the 

earthquake. It should be noted that not all damaged lines are outaged (they can 

sometimes remain operational even if they have to be repaired later) and that lines 

may be outaged by the quake without damage (for example, swaying lines flash over 

and trip out). However, in the absence of data on the exact relation of outaged lines to 

damaged lines, we make the simple assumption that the number of lines initially 

outaged by the earthquake is equal to the number of damaged lines.  

Modeling cascades has two parts. The first part probabilistically estimates how 

many lines are outaged after cascading given the number of initial line outages, and is 

based on standard utility data and a branching process model of cascading. The second 

part samples a possible blackout area with the estimated total number of lines outaged. 

The blackout load shed can then be estimated from the blackout area.  
 

A. Estimating the Number of Lines in the Cascade 

Branching process models of cascading are high-level probabilistic models that 

can track the cascading in terms of the number of lines outaged. The use of branching 

process models to estimate the probability distribution of the number of lines outaged 

after cascading is supported by comparisons with observations and simulations of 

transmission line outages (Dobson et al. [2010], Ren and Dobson [2008], Dobson and 
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Carreras [2010]) and by the approximation of other high-level probabilistic models of 

cascading by branching processes [Kim and Dobson 2010]. Given the number of 

initial failures and the average amount by which the cascade propagates, the branching 

process gives formulas that can be evaluated to estimate the probability distribution of 

the number of lines outaged by cascading. Here we obtain the initial number of line 

failures from the earthquake scenarios and use propagation estimates obtained from 

observed data for the propagation of line outages. The details of the formulas and data 

used are given in Dobson and Carreras [2010]. For example, Figure 10 shows the 

probability distribution of the total number of lines outaged after cascading for 

assumed numbers of initial line failures. As an illustration of the probability 

distributions given in Figure 10, suppose the earthquake damages 29 lines. There is 

about a 5% chance that more than 57 lines will be outaged when the opportunity for 

cascades is considered. 

 

 

Figure 10. Probability of line outages for 4 different values of initial failures. 
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The mechanisms of cascading failure in electric power systems are complicated 

and diverse. One advantage of using an observed data set instead of simulated 

transmission line outages is that there are no modeling assumptions restricting or 

approximating the interactions between the line outages. The observed data set used to 

estimate the propagation is 12.4 years of transmission line outages in the Northwest 

USA that is publicly available in [Bonneville Power Administration 2009].  

 
 

B. Estimating the Enlarged Blackout Area 

Given a sample of the total number of lines outaged after cascading, we 

approximate a sample blackout area that includes the initial lines outaged. To do this, 

we add outaged lines at random to grow the area of the blackout until the area includes 

the total number of lines outaged. The lines are randomly added so that they are next 

to lines that have already outaged, so that the final blackout area resembles a 

connected region, as are quite commonly observed after a blackout. This process 

approximates the final outcome of a blackout and is not intended to represent the 

sequence in which lines outage in the blackout, since some mechanisms of blackout 

propagation do not spread via neighboring lines. The process amounts to a random 

sample of a possible blackout area including the initial line failures that regards 

spreading of the blackout in any direction as equally likely. Additionally, we assume 

that any substation connected to one or more outaged transmission lines would also be 

out of service. A sample of the outcome of a cascade is then produced and then the 

load shed is identified.  Figure 11 shows an example of a blackout extent with and 

without the cascade. In the original scenario 29 lines are outaged; this number 

increases to 57 in the cascade scenario. The probability of this blackout or larger is 

about 5%. Notice that the cascade causes the impacts on the electric power system to 
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be felt as far away as Southern Louisiana. The original blackout interrupts 37,600 

MW, and the cascade scenario interrupts 53,300 MW, an increase of 40%. 

 

Figure 11. Load shed stemming from the first consequence scenario in Table 7 

including a potential cascade. 
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We focus on modeling cascades exclusively for the case when components are not 

mitigated to achieve additional seismic resilience. For each consequence scenario we 

estimate the load shed after the earthquake without considering cascading failure. We 

also estimate the total load shed for each possible number of line outages due to 

cascading until we reach 99% of the cumulative distribution. For each number of 

initial lines out, we generate 10 cascade scenarios, each with a probability of 0.1.  

We generate more than 10,000 damage scenarios to evaluate the risk due to 

cascading effects right after the earthquake. The adjusted occurrence probability for 

each consequence scenario can be multiplied by the probability of cascade to obtain a 

new occurrence probability for each of the 10,000 scenarios. We use a standard dc 

load flow model to estimate the total load shed per hour in the occurrence of each one 

of the events. In this dc load flow model we assume that the operator does not 

minimizes the operation costs and only minimizes the load shed. The objective 

function in (41) becomes equation (53). Notice that equation (54) and (58) include an 

indicator for line outages due to cascading, 𝑦𝑖𝑗𝐶𝑎𝑠𝑐.. 

 

𝑚𝑖𝑛�𝑈𝑖
𝑖∈𝐵

                                                                           (53) 

subject to 

 

�𝜃𝑖 − 𝜃𝑗��1 − 𝑦𝑖𝑗
𝐸,𝐶��1 − 𝑦𝑖𝑗𝐶𝑎𝑠𝑐.��1 − 𝑥𝑠𝑖

𝑀,𝐸,𝐶� �1 − 𝑥𝑠𝑗
𝑀,𝐸,𝐶� = 𝑚𝑖𝑗𝑃𝑖𝑗 ,∀ (𝑖, 𝑗)         (54) 

 
� 𝐺𝑔
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗
(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑖𝑗
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖 , ∀ 𝑖                (55) 

 
0 ≤ 𝑈𝑖 ≤ 𝐷𝑖,         ∀ 𝑖                (56) 

 
0 ≤ 𝐺𝑔 ≤ 𝐺𝑔𝑚,        ∀𝑔                (57) 
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�𝑃𝑖𝑗� ≤ 𝑃𝑖𝑗𝑚�1 − 𝑦𝑖𝑗
𝐸,𝐶��1 − 𝑦𝑖𝑗𝐶𝑎𝑠𝑐.��1 − 𝑥𝑠𝑖

𝑀,𝐸,𝐶� �1 − 𝑥𝑠𝑗
𝑀,𝐸,𝐶� ,      ∀ (𝑖, 𝑗)       (58) 

 
 

 

Figure 12. Exceedance probability of initial load shed when analysis considers 

cascading failure and when it does not. 

 

Figure 12 shows the exceedance curve for load shed immediately after a seismic 

event with and without the impacts of cascades. Line cascading was modeled 

following the procedure described above. Substation performance under cascade 

conditions has not been previously studied. Therefore, we included three different 

cascade analyses that differ in the risk of substation tripping. In the first analysis, any 

substation connected to one or more affected lines will trip; the other two analyses 

correspond to the cases when the tripping is caused by two or more, and three or more 

tripped lines, respectively. It is useful to notice that cascade consequences have greater 

impact on the relative size of blackouts for scenarios with smaller amounts of 

earthquake damage. It is also useful to notice that the number of outaged lines that are 
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assumed to cause a substation to trip has a significant impact on the magnitude of the 

cascade that stems from the original earthquake damage; hence it is important to 

deepen our understanding of substation tripping during the cascading process.  

 

Conclusions 

This paper has augmented existing methods in the literature to develop a 

comprehensive modeling process for estimating the impacts of earthquakes on electric 

power systems including explicit representation of cascading. It has also demonstrated 

that the methods can be applied to large-scale electric power systems.  

The modeling process is composed of four steps.  The first step is a robust 

mechanism, using optimization, to represent the earthquake hazard through the 

selection of specific events from a candidate set, including the hazard adjusted 

probabilities of occurrence for each event, that is consistent with the exceedance 

curves for the hazard across the region. The second step is the translation of each of 

those earthquake scenarios (location and magnitude) into a collection of consequence 

scenarios (and their probabilities of occurrence) where each consequence scenario 

identifies the level of damage for each component in the electric power system.  In the 

case study developed in this paper, the regional loss estimation methodology HAZUS 

was used to compute the probability that each component fell into each of a set of 

mutually exclusive and exhaustive damage states for each consequence scenario. The 

third step uses an economic dispatch model of the electric power system to compute 

the repair costs and the load shed under each consequence scenario. Then, using the 

probability of occurrence of each consequence scenario and the probability of 

occurrence of the earthquake event that lead to that consequence scenario the 

distribution for load shed and repair costs are computed. The fourth and final step is 
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the computation of the additional load shed that stems from each consequence 

scenario via cascading failure of the electrical grid. 

There is a range of opportunities for further research. First, while it is important to 

understand the risks posed by earthquakes on the electric power system it is even more 

important to identify how those risks might be mitigated. This modeling process has 

illustrated how to construct consequence scenarios which include how damage would 

change with mitigation.  This leads to the opportunity to construct an optimization 

model to understand how fixed funds might be expended to mitigate earthquake 

hazard for electric power systems. Second, this modeling has assumed that the 

components damaged in the earthquake are also the components that are outaged. 

Understanding and refining this approximation would be useful.  Third, modeling 

cascades in electric power systems stemming from earthquakes is complicated. They 

occur when the system is fragile and in a damaged state. Unusual events and 

interactions will occur and operators are busy trying to understand what has been 

damaged and how to organize a repair effort.  There are some actions that can be taken 

to lessen the load shed from the cascade, including re-assessing the feasible 

dispatching.  The modeling assumed that these measures were taken and then assumes 

a probabilistic representation of blackout area.  Understanding what strategies are 

possible and how to represent them accurately is important.  Fourth, the electric power 

system is critical to the operation of many other infrastructures. Conversely, the 

electric power system is dependent on other infrastructures. Understanding the impact 

of earthquakes on interdependent infrastructures (including electric power networks) is 

very important.  There are opportunities to apply these methods to other infrastructures 

and to link the resultant infrastructure models together. In the context of mitigation, 

this avenue for additional research becomes even more compelling.
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CHAPTER 3 

 

INVESTMENT PLANNING FOR ELECTRIC POWER SYSTEMS TO MITIGATE 

EARTHQUAKE HAZARDS 

 

Introduction 

Earthquakes pose a significant risk to electric power systems as illustrated by a 

range of recent events.  For example, on January 17, 1994 the Northridge earthquake 

struck the city of Los Angeles and surrounding areas. Two and a half million 

customers lost power [Dong et al. 2004]. The Great Hanshin earthquake occurred a 

year later affecting the city of Kobe, Japan. Twenty fossil-fire power generation units, 

six 275 kV substations, and two 154 kV substations were damaged. Approximately, 

2.6 million customers were affected by outages [Noda 2001]. On May 18, 2008, the 

Wenchuan earthquake caused extensive damage to the local power transmission and 

distributions systems in the Sinchuan province, China. Approximately 900 substations 

and 270 transmission lines of the State Power Grid were damaged. It has been 

estimated that at least 90% of the damage could have been avoided by adopting new 

guidelines for seismic design [Eidinger 2009]. 90% of Chileans did not have 

electricity immediately following the February 27, 2010 8.8 MW earthquake. The 

event caused the largest power transmission company in Chile to have direct losses of 

approximately US $ 6.5 billion [Long 2010]. The devastating Tohoku Chiho – 

Taiheiyo-Oki earthquake on March 11, 2011 and its aftershocks damaged 14 power 

plants (including Fukushima nuclear power plant), 70 transformers, and 42 

transmission towers, among other failures. Outage stemming from the event affected 

4.6 million residences and the April 7 aftershock affected an additional 4 million 

[Shumuta 2011]. 
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Further, damage in the electric power system often causes impacts on other 

infrastructures including transportation, electric power, oil, gas, telecommunications 

and emergency services. The 2003 Northeast blackout provides an excellent 

illustration of how a disruption in the power network can quickly and 

comprehensively affect other infrastructures across a wide area. The 2003 Northeast 

blackout affected Ohio, Michigan, Pennsylvania, New York, Vermont, Massachusetts, 

Connecticut, New Jersey and the Canadian province of Ontario with a combined 

population of over 50 million and 61,800 megawatts of electric load [U.S.-Canada 

Power System Outage Task Force 2004]. At least 70 auto and parts plants were 

shutdown idling more than 100,000 workers in the Motor Vehicle & Automotive Parts 

Industries. The blackout affected at least 8 oil refineries in the U.S. and Canada. It also 

triggered emergency shutdown procedures at the Marathon Oil Corporation’s 

Marathon Ashland refinery about 10 miles south of Detroit that ended up in a small 

explosion and the release of a mixture of hydrocarbons and steam. The steel, chemical, 

aluminum, paper, and food were among affected industries. Local telephone service 

was operational but jeopardized by the energy emergency generated by the blackout. 

Airports were closed in Toronto, Newark, New York, Detroit, Cleveland, Montreal, 

Ottawa, Islip, Syracuse, Buffalo, Rochester, Erie, and Hamilton [ELCON 2004].  

“[During the 2003 Northeast blackout] except for ferries and feet, nearly all other 

forms of transportation around the [New York] metropolitan region failed miserably 

[on August 14, 2003]” [Kennedy 2003]. Seven hours after the beginning of the 

blackout airlines with flights to and from the three major airports in the region 

(Newark Liberty International, JFK International, and New York La Guardia) began to 

reestablish limited operations. Air traffic controllers in the three airports lost contact 

with all airplanes during the 30-45 seconds that the backup emergency generation took 

to switch on. The night of August 14th all three airports instituted their “snow plan” 
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for stranded passengers spending the night in the airports and agreed to accept some 

flights throughout the night. Newark Liberty Airport operations were almost fully 

restored within 22 hours Operations in La Guardia and JFK Airports were restored in 

about 30 hours [U.S. Department of Transportation 2003].  

On January 4, 2010, Reagan National Airport in Washington, DC was paralyzed 

for one hour due to a power outage. Flights were grounded and only two of the four 

security screening points worked during that period. The two screening points that 

were working were on backup power generation [KTLA 2010]. On January 20, 2010, 

a seven and a half hour blackout affected thousands of passengers traveling to and 

from Cleveland Hopkins International Airport. Backup generation powered the control 

tower, airfield, and operations center, which accounts for 20% of the airport’s power 

needs. The airport can’t operate without electricity to power ticket counters, security 

checkpoints, baggage carousels and jetways. Full operations were restored on the 

afternoon of January 21st, more than 24 hours after the beginning of the blackout. 

“Cleveland Hopkins International Airport is willing to risk another power outage like 

the one that grounded hundreds of flights Sunday [January 20, 2010] rather than spend 

millions of dollars in backup generators to keep terminals operating” [Gillispie 2010]. 

Furthermore airlines are responsible for having backup systems at their ticket 

counters, but most do not have them [Miller 2010]. 

The objective of this paper is to develop a model to optimize the selection of 

mitigation strategies to stem the consequences of earthquake events. These mitigation 

strategies include investments in anchoring as well as the addition of operating margin 

to the system. It is important to realize that anchoring of electric power components is 

only of value against earthquake hazards, whereas investments in operating margin are 

useful across a range of situations, including spikes in demand stemming from 
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prolonged periods of intense hot or cold spells, equipment failures, hurricanes, and ice 

storms. Hence it is important to consider both types of mitigation strategies.  

In addition to the development of this optimization model, we include an analysis 

of the potential benefits of these investments on the reliable delivery of electric power 

to airports.  It is clear that blackouts can have serious impacts on many other important 

infrastructures and this study gives one example of estimating the impact on the air 

travel infrastructure. The decisions to invest or do not invest in hardening 

infrastructure have profound impacts. Our purpose is to explore these impacts with the 

understanding that it is possible and important to integrate these impacts into the 

investment modeling directly.   

The model and solution procedure is illustrated through its application to the 

Eastern Interconnect Power Grid (EI) to investigate opportunities to stem the hazards 

generated by the New Madrid Seismic Zone (NMSZ).  These mitigation plans are then 

evaluated to assess their benefits to the national passenger air transportation system.  

The power network used is a 1998 representation of the EI and the air model is 

developed based on the top 80 airports as measured by enplanements in 2010. We 

model the NMSZ risk on EI using HAZUS’ regional loss estimation method. The 

performance of the power grid is evaluated using a dc flow economic dispatch model, 

which is used to estimate the load shed in all the nodes of the grid and particularly in 

the substations providing energy to airports included in the air system model. 

We implement a knapsack based heuristic to solve the non-linear integer 

programming problem (NLIP) to optimize the selection of mitigation strategies for 

electric power system components. To model the seismic risk, we use a suite of 

earthquake scenarios that nearly replicates the exceedance curves for peak ground 

acceleration (PGA) as measured at 81 control locations across the NMSZ .  Since the 

electric power system is a spatially distributed system, we create a suite of 
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consequence scenarios for each earthquake scenario where each consequence scenario 

identifies the resulting damage state of each component.  Once the damage state of a 

component is known, the expected time required for the component to be operational 

again and the cost of the repair can be estimated.  The construction of these 

consequence scenarios provides an implicit representation of the joint distribution of 

damage for each earthquake scenario.  The damage to the power grid considered is 

limited to transmission lines and substations. As mentioned previously, the operation 

of the power grid is modeled using an economic dispatch model and it is assumed that 

the operator of the network has a limited budget to invest in mitigating the risk. A 

simpler version of the NLIP is solved using Lingo 13. The results using Lingo and our 

proposed heuristic are compared for different mitigation budgets to gain a sense of the 

performance of the heuristic.  

The contribution of this paper is three fold.  First, this is the formulation to 

simultaneously optimize structural mitigation decisions and capacity enhancement 

opportunities. Second, this is the first solution procedure for the optimization of 

transmission system capacity expansion that can be applied to very large problem 

instances. We focus on the EI in its entirety; hence the problem instances have about 

15,000 nodes and 23,000 arcs. This is about two orders of magnitude larger than the 

biggest network found in the literature.  Third, we explore the impacts on the air 

transportation system of investments in the electric power system.  There are many 

papers focused on modeling interdependencies, however, they use graph theory based 

abstractions of each of the underlying system models rather than modeling the 

“physics” of the operation of each system.   

The next section reviews the relevant literature.  The third section develops the 

formulation. The fourth section presents the solution procedure. The fifth section 

describes the key elements of the case study. The sixth section describes the results of 
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the application of the tools developed in sections two and three to the case study 

described in section four. It also includes a comparison of the performance of the 

solution procedure developed in the third section to LINGO 13, a commercial solver, 

for a simplified problem instance. The seventh section summarizes the key elements of 

the paper and next steps for future research. 

 

Literature Review 

This work represents an extension of three related areas in the literature: (1) 

optimization of structural reinforcement of components in electric power systems, (2) 

the broader transmission capacity expansion literature, and (3) modeling the 

interdependencies in infrastructure systems.  

Vanzio found optimized structural upgrading strategies for electric power 

networks using a new index to choose among critical nodes in the network [2000]. The 

method was tested using a representation of the Sicily, Italy power network, which 

includes 181 nodes and 220 lines. Shumuta focused on upgrading substation 

equipment [2007].  He evaluated the criticality of components with 4 indexes; two 

indexes were used to represent the earthquake resistant capacity of each component, 

the third index represents the seismic performance of the component, and the fourth 

index is related to the upgrading costs. This method was tested on a hypothetical 

electric power system with 16 substations, located in the Nagoya region, Japan.  

Transmission expansion planning for power networks includes a variety of 

approaches with exact or heuristic solution procedures, and for static or dynamic 

planning horizons. An extensive literature review can be found in Latorre et al. [2003]. 

Work in this area does not specifically consider the benefits under seismic risk and 

normally applies to small scale networks. Samarakoon et al. used a mixed integer 

linear programming model to solve the transmission and generation expansion 
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problem [2001]. Prior to the model application, they identified all possible single 

circuit outages associated with all possible expansion investments. The critical 

contingencies (possible single circuit outages) are included in the model as constraints. 

The method is tested on the Sri Lankan power network, a 38 node model, and 8 new 

nodes and 19 new branches are considered among the expansion options. Alguacil et 

al. used a revised mixed integer linear formulation of the static transmission expansion 

problem that is computationally efficient using conventional solvers [2003]. Both 

Samarakoon et al. [2001] and Alguacil et al. [2003] use a “disjunctive parameter to 

allow enough degrees of freedom to the voltage angle difference between every 

disconnected nodes” [Alguacil et a. 2003]. Alguacil et al. [2003] tested their model in 

the One Area IEEE reliability test system [Grigg 1999] which has 24 nodes and 38 

links. With the same problem formulation, Carrion et al. presented a methodology to 

expand the transmission network in order to reduce its vulnerability to intentional 

attacks [2007]. This formulation includes not only the enhancement of current lines 

but the development of new lines, which is achieved by including other transmission 

lines with initial capacity zero. Carrion et al. [2007] tested their methodology on the 

Two Area IEEE reliability test system [Grigg 1999]; the test system has 48 nodes and 

79 lines, and the model considered 20 prospective new lines. Georgilakis presented an 

improved differential evolution solution to the transmission expansion problem 

[2010]. The methodology uses a reference network subproblem which is topologically 

identical to the expanded network, and with generation and load unchanged. The 

reference network subproblem is used to find the optimal capacities of transmission 

lines; this subproblem includes a set of contingency scenarios as constraints of the 

individual load flow problem. The optimum network problem is the same as the 

subproblem with the additional difficulty of having to choose the lines to add to the 

network. Georgilakis [2010] tested the methodology in a 30-bus IEEE reliability and 9 
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prospect transmission lines. Aguado et al. recently presented a transmission expansion 

model that explicitly considers a multi-year planning horizon [2012]. The model is 

formulated as a mixed-integer linear problem and the method is tested on a 6 bus 

system and applied on the transmission system of mainland Spain, which includes 86 

buses and 168 circuits. 

We build on the literature for modeling electric power systems by integrating the 

optimization of structural hardening with capacity expansion.  This is important 

because investments in hardening are only valuable under earthquake conditions 

where as operating margin is valuable under a range of events. Further, our solution 

strategy can be used for very large problem instances. There are related problems 

solved in the literature but those problems reach a maximum of a couple of hundred 

nodes and arcs. Our algorithm has been successfully applied to the EI which is on the 

order of tens of thousands of nodes and arcs. 

Infrastructure models that incorporate interdependencies between systems are 

important to address the infrastructure planning problem holistically. Previous 

approaches that address the interdependency problem use input-output analysis, graph 

theory, network flow and Markov models. Rinaldi et al. [2001] presented a framework 

to understand and analyze infrastructure interdependencies. They explicitly discuss the 

centrality of the electric power system to the operation of a range of infrastructures.  

Haimes and Jiang [2001] and Crowther and Haimes [2005] develop a input-output 

models to analyze the interdependencies between infrastructures.  Crowther and 

Haimes provide a methodological framework to model multisectoral and multiregional 

economic interdependencies [2010]. This model is based on the work developed by 

Haimes and Jiang [2001]. Dueñas-Osorio et al. use graph theory methods to analyze 

the response of the water and power networks of Shelby Count, Tennessee [2007]. 

Dueñas-Osorio et al. introduces geographical proximity as a rule to establish 
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interdependencies among infrastructure systems; furthermore it analyzed the response 

in one network based on the degree of coupling between interdependent networks 

[2007]. Poljansek et al. assessed the performance of two interdependent infrastructure 

systems using graph theory: the European gas network and the electric network 

[2011]. Xu et al. [2007] developed a method based on network flow and Markov 

models to estimate the recovery time in interdependent infrastructure after a 

disruption. Xu et al. [2007] use transition matrices in the Markov model to represent 

the changes in the capacity of links overtime. The method is illustrated in a small gas-

electric infrastructure network. Lee II at al. [2007] uses a network flow approach to 

model restoration of service after disruption of the interdependent power, 

telecommunications and subway system of the lower Manhattan region of New York.  

We build on the research in modeling interdependencies by representing the 

physical links that exist between those networks as well as the behavior of the material 

that flows across each infrastructure. In the electric power network, that is real power 

flow. In the airline network that is aircraft and travelers.  Our motivation for including 

the estimation of the impacts of the air system from investments in the electric power 

system is to illustrate the need to move towards coupled infrastructure models that 

differentiate between the different end uses for electric power and quatify the wider 

impacts of losing the power. 

 

Formulation 

The key question addressed by the formulation is how to optimally invest in 

seismic mitigation strategies for the power network. The strategies include reinforcing 

the lines and substations, and adding capacity to the lines and generators given the 

budget limitations. We measure the performance of the power network as the sum of 

the power generating cost, load shed and repair costs under a set of consequence 
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scenarios that model the seismic hazard in the region and vulnerability of the network 

to that hazard.  

We evaluate the performance of a passenger air transportation system for the 

existing and improved power system assuming the lowest cost operation of the electric 

power system after the event. The performance of the air transportation system is 

measured by the number of passengers that are able to be accommodated after the 

event. We use an optimization model to estimate the number of passengers that can be 

accommodated after the event. The electric power and air transport models are 

discussed in turn in the next two subsections. 

 

A. Electric Power Transmission System 

The electric power transmission system investment planning model is formulated 

as a two-stage stochastic program. A two-stage stochastic program is an optimization 

model formulation that incorporates uncertainty in the parameters of the model. The 

two-stage structure assumes that all decisions are made at one time instance prior to 

the resolution of all uncertainty. In this case, the uncertainty revolves around what 

damage will occur to each component in the electric power system.  This uncertainty 

is expressed through the use of a number of consequence scenarios, where each 

consequence scenario gives the damage to each component.  The decisions are made 

in what is termed the “first-stage” of the model. In our formulation, the first-stage is 

the identification of what components in the electric power system should be 

reinforced and what components should be enhanced.   The consequences of those 

decisions, under each consequence scenario, occur in the “second-stage” of the model. 

In this problem formulation, the second-stage is the power flow across each 

component including what demands for power are not satisfied under each 

consequence scenario. 
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We first introduce the topology of the power network. Let Π be the set of 

transmission lines. Let 𝑆 be the set of substations. Let 𝐺 be the set of generators. Let 𝐵 

be the set of buses. Let 𝐼(𝑖) be the set of the generators connected to bus 𝑖. We define 

the first-stage binary decision variables as follows. Let  𝑥𝑠 = 1 if substation 𝑠 is 

reinforced and 𝑥𝑠 = 0 otherwise. The cost to reinforce substation 𝑠 is 𝑏𝑠. Let 𝑦𝑖𝑗 = 1 

if transmission line (𝑖, 𝑗) is reinforced and 𝑦𝑖𝑗 = 0 otherwise. The cost to reinforce 

transmission line (𝑖, 𝑗) is 𝑓𝑖𝑗. Let  𝑧𝑔 take integer values 0, 1 or 2 representing the 

respective amount of discrete capacity increments in the capacity of power generator 

𝑔. The cost to add a discrete increment  𝜇 to the existing capacity of generator 𝑔 is 𝑜𝑔. 

Let 𝑤𝑖𝑗 take integer values 0 to 4 representing the amount of discrete increments in 

transmission capacity for line (𝑖, 𝑗). The cost to add a discrete capacity increment 𝜌 to 

the existing capacity of transmission line (𝑖, 𝑗) is ℎ𝑖𝑗. We assume that the total 

available budget for seismic reinforcement is 𝑀𝐷, and that the total budget available 

for transmission capacity and power generation enhancement is 𝑀𝐶 . Since the total 

investments to reinforce the components and to adding capacities to the components 

cannot exceed the available respective budgets, then equations (59) and (60) must 

hold. 

 

�𝑏𝑠𝑥𝑠
𝑠∈𝑆

+ � 𝑓𝑖𝑗𝑦𝑖𝑗
(𝑖,𝑗)∈Π

≤ 𝑀𝐷 ,                                    (59) 

 
� ℎ𝑖𝑗𝑤𝑖𝑗 +

(𝑖,𝑗)∈Π

�𝑜𝑔𝑧𝑔
𝑔∈G

≤ 𝑀𝐶 .                                     (60) 

 

In this application, the seismic reinforcement of transmission lines is assumed to 

be a percentage of the total replacement cost of the line obtained from Balducci et. al. 

[2006]. Seismic reinforcement of substations entails anchoring the transformers in the 

substations. Therefore the cost to reinforce a substation is estimated by multiplying the 
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cost of anchoring a transformer [Shinozuka 2003] by the number of transformers in 

the substation. Transmission line enhancement is modeled as discrete increments of a 

quarter of total original capacity of the line. The maximum capacity expansion for 

lines is a doubling of current capacity. Generation enhancement is modeled as discrete 

increments of a fifth of initial capacity. The cost of the enhancement is modeled as a 

percentage of the total cost of the line or generator. 

Based on the HAZUS seismic risk assessment methodology [FEMA 2003], five 

damage states are defined for electric power components: none, minor, moderate, 

extensive and complete.  We choose to focus on the damage states none, moderate, 

extensive and complete because the damage associated with minor is not substantial in 

this context.  Moderate damage generates a repair cost of 40% of substation cost and 

does not affect any of the transformers in the substation. Extensive damage is assumed 

to imply damages costing 70% of the value of the substation including impacting 50% 

of the transformers in the substation. Complete damage causes the complete loss of the 

substation including all the transformers. The estimated time for repair is 3 days for 

the moderate damage and a week for extensive damage. For complete damage, repairs 

can vary depending on the ease with which the transformers can be replaced. High 

voltage and/or customized transformers can have very large lead-times. Thus, for 

modeling purposes, we assume that for low voltage transformers, the operator would 

have access to spares within a month. We assume that the average lead-time for 

medium and high voltage transformers is 6 months.  Therefore, all the components in 

substations under complete damage are back to normal within a month with the 

exception of medium and high voltage transformers which is 6 months. For 

transmission lines we only model two levels of damage: extensive and complete. 

Extensive damage for a transmission line corresponds to a damage ratio of 50% of the 

total cost of the line and complete damage results in costs totaling the full cost of the 
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line. Transmission lines under extensive damage can be repaired within 3 days and 

under complete damage within a week. This implies that by the end of 6 months, in 

the worst case, the system is back to normal.  

From a modeling perspective, this implies that the repair process is composed of 4 

time periods. The first period extends from the quake event to the end of the third day. 

By then transmission lines that have experienced extensive damage have been 

restored. Also, substations under moderate damage have been repaired. The second 

time period extends from the beginning of day four to the end of the first week. By 

then transmission lines that have experienced complete damage have been repaired as 

well as substations under extensive damage. The third time period extends from the 

end of the first week to the end of the first month. By the end of this time period, low 

voltage transformers will have been replaced. The final time period extends from one 

month to six months.  Six months after the event, medium and large voltage 

transformers will have been repaired. The following notation encapsulates these time 

period definitions.  Let 𝑡0 = 0, 𝑡1 = 3 days, 𝑡2 = 1 week, 𝑡3 = 1 month, and 𝑡4 = 6 

months, Then 𝑡𝑘 − 𝑡𝑘−1 is the time length in days of period 𝑘 for 𝑘 = 1,2,3,4. 

We assume that there are 𝑁 earthquake consequence scenarios, i.e., 𝑛 = 1, … ,𝑁. 

The associated annual probability of scenario 𝑛 is 𝑃𝑟(𝑛). Let 𝑐𝐵 be the per unit load 

shed cost. Let 𝑐𝑔𝐺 be the per unit power generation cost of generator g. Note that the 

first-stage reinforcement decisions and the earthquake scenario determine the level of 

damage in the component; hence, the length of time from the earthquake that the 

component is unavailable and the repair cost is known. Let Ψ𝑠𝑛(𝑥𝑠) be the repair cost 

for substation 𝑠 under the first-stage decision 𝑥𝑠 for the earthquake scenario 𝑛. Let 

Ω𝑖𝑗𝑛 �𝑦𝑖𝑗� be the repair cost of damaged transmission line (𝑖, 𝑗) under the first-stage 

decision 𝑦𝑖𝑗 and given earthquake scenario 𝑛. Let ∆𝑠𝑛𝑘(𝑥𝑠) = 1 if substation 𝑠 is not 

functional in period 𝑘 under earthquake scenario 𝑛 for the given first-stage decision 
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𝑥𝑠𝐷 and ∆𝑠𝑛𝑘(𝑥𝑠) = 0 otherwise. Similarly, let  Λ𝑖𝑗𝑛𝑘�𝑦𝑖𝑗� = 1 if transmission line (𝑖, 𝑗) 

is not functional in period 𝑘 under scenario 𝑛 for the given first-stage decision 𝑦𝑖𝑗 and 

Λ𝑖𝑗𝑛𝑘�𝑦𝑖𝑗� = 0  otherwise. Note that in this application, functions Ψ𝑠𝑛(𝑥𝑠) and  ∆𝑠𝑛𝑘(𝑥𝑠) 

are nonlinear functions in 𝑥𝑠 and functions Ω𝑖𝑗𝑛 �𝑦𝑖𝑗� and Λ𝑖𝑗𝑛𝑘�𝑦𝑖𝑗� are nonlinear 

functions in 𝑦𝑖𝑗𝐷. Let 𝜌 be the percentage of total line’s capacity corresponding to the 

discrete capacity increments, and let 𝜇 be the same for generators. 

Now we define the second-stage decision variables.  Let  𝜃𝑖𝑛𝑘 be the voltage phase 

angle in bus 𝑖 and period k under scenario 𝑛. Let 𝑃𝑖𝑗𝑛𝑘 be the real power flow in 

transmission line (𝑖, 𝑗) in period k under scenario 𝑛. Since the electric flows can go in 

both directions, 𝑃𝑖𝑗𝑛𝑘  can be positive or negative. Let 𝐺𝑔𝑛𝑘 be the nonnegative 

generation output from generator g in period k under scenario 𝑛. Let 𝑈𝑖𝑛𝑘 be the 

nonnegative load shed in bus 𝑖 in period k under scenario 𝑛.  

Let 𝑚𝑖𝑗 be the reactance of transmission line (𝑖, 𝑗) and let 𝑇𝑖𝑗 be an indicator 

parameter with value 1 when the operator has a spare transformer for transmission line 

(𝑖, 𝑗) and 0 otherwise.  

 

�𝜃𝑖𝑛1 − 𝜃𝑗𝑛1� �1 − Λ𝑖𝑗𝑛1�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛1�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛1 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗� 

= 𝑚𝑖𝑗𝑃𝑖𝑗𝑛1,          ∀ (𝑖, 𝑗),𝑛  (61) 
 

�𝜃𝑖𝑛2 − 𝜃𝑗𝑛2� �1 − Λ𝑖𝑗𝑛2�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛2�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛2 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗� 

= 𝑚𝑖𝑗𝑃𝑖𝑗𝑛2,          ∀ (𝑖, 𝑗),𝑛  (62) 
 

�𝜃𝑖𝑛3 − 𝜃𝑗𝑛3� �1 − ∆𝑠𝑖
𝑛3�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛3 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗� = 𝑚𝑖𝑗𝑃𝑖𝑗𝑛3,    ∀ (𝑖, 𝑗),𝑛  (63) 
 

�𝜃𝑖𝑛4 − 𝜃𝑗𝑛4� �1 − ∆𝑠𝑖
𝑛4�𝑥𝑠𝑖��1 − 𝑇𝑖𝑗�� �1 + 𝜌𝑤𝑖𝑗� = 𝑚𝑖𝑗𝑃𝑖𝑗𝑛4,                  ∀ (𝑖, 𝑗),𝑛  (64) 

 

Constraints (61), (62), (63), and (64) approximate the active power flows on the 

transmission lines in the four periods of the repair process. If the per day demand at 
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bus 𝑖 is 𝐷𝑖, then constraints (65) state flow conservation at each bus under each 

earthquake scenario. 

 

� 𝐺𝑔𝑛𝑘
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗𝑛𝑘
(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑗𝑖𝑛𝑘
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖𝑛𝑘, ∀ 𝑖,𝑘,𝑛  (65) 

 

where 𝛿+(𝑖) is the set of the transmission lines such that (𝑖, 𝑗) ∈ Π and 𝛿−(𝑖) is the set 

of transmission lines such that (𝑗, 𝑖) ∈ Π. Since the load shed at a bus cannot exceed 

the demand at the bus. 

 
0 ≤ 𝑈𝑖𝑛𝑘 ≤ 𝐷𝑖,                                               ∀ 𝑖,𝑘,𝑛  (66) 

 

We assume that generator 𝑔 has capacity 𝐺𝑔𝑚 and transmission line (𝑖, 𝑗) has 

capacity 𝑃𝑖𝑗𝑚. Equations (67)-(71) reflect the capacity constraints in each generator and 

each transmission line in each time period under each earthquake scenario. 

 
0 ≤ 𝐺𝑔𝑛𝑘 ≤ 𝐺𝑔𝑚�1 + 𝜇𝑧𝑔�,                                 ∀𝑔,𝑘,𝑛   (67) 

 
�𝑃𝑖𝑗𝑛1� ≤ 

𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗� �1 − Λ𝑖𝑗𝑛1�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛1�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛1 �𝑥𝑠𝑗�� ,          ∀ (𝑖, 𝑗),𝑛 (68) 
 
�𝑃𝑖𝑗𝑛2� ≤ 

𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗� �1 − Λ𝑖𝑗𝑛2�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛2�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛2 �𝑥𝑠𝑗�� , ∀ (𝑖, 𝑗),𝑛 (69) 
 

�𝑃𝑖𝑗𝑛3� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗� �1 − ∆𝑠𝑖
𝑛3�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛3 �𝑥𝑠𝑗�� ,          ∀(𝑖, 𝑗),𝑛 (70) 
 

�𝑃𝑖𝑗𝑛4� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗� �1 − ∆𝑠𝑖
𝑛4�𝑥𝑠𝑖��1 − 𝑇𝑖𝑗�� ,         ∀ (𝑖, 𝑗),𝑛 (71) 

 

where 𝑠𝑖 is the substation, to which bus 𝑖 belongs. The objective function of the two-

stage stochastic program is to minimize the expected generation, load shed and repair 

costs in the four recovery periods as given in Equation (72). 
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�𝑃𝑟(𝑛) � (𝑡𝑘 − 𝑡𝑘−1)��𝑐𝐵𝑈𝑖𝑛𝑘

𝑖∈𝐵

+ �𝑐𝑔𝐺𝐺𝑔𝑛𝑘
𝑔∈𝐺

�
𝑘=1,2,3,4

𝑁

𝑛=1

+ 

�Ψ𝑠(𝑥𝑠)
𝑠∈𝑆

+ � Ω𝑖𝑗�𝑦𝑖𝑗�
(𝑖,𝑗)∈Π

      (72) 

where Ψ𝑠(𝑥𝑠𝐷) = ∑ 𝑃𝑟(𝑛)Ψ𝑠𝑛(𝑥𝑠)𝑁
𝑛=1  and Ω𝑖𝑗�𝑦𝑖𝑗� = ∑ 𝑃𝑟(𝑛)Ω𝑖𝑗𝑛 �𝑦𝑖𝑗�𝑁

𝑛=1 .  

Note that the two-stage stochastic program (59) – (72) is a nonlinear mixed integer 

stochastic program. To better understand the structure of the two-stage nonlinear 

mixed integer stochastic program, we rewrite the program as follows. Let 𝑥 =

(𝑥𝑠: 𝑠 ∈ 𝑆), 𝑦 = �𝑦𝑖𝑗: (𝑖, 𝑗) ∈ Π�, 𝑤 = �𝑤𝑖𝑗: (𝑖, 𝑗) ∈ Π�, and 𝑧 = �𝑧𝑔:𝑔 ∈ E�,. For the 

given first-stage decision variables (𝑥,𝑦,𝑤, 𝑧), the second-stage optimization problem 

is to choose �𝐺𝑔𝑛𝑘,𝑃𝑖𝑗𝑛𝑘 ,𝑈𝑖𝑛𝑘� to minimize 

 

�𝑃𝑟(𝑛) � ��𝑐𝐵𝑈𝑖𝑛𝑘

𝑖∈𝐵

+ �𝑐𝑔𝐺𝐺𝑔𝑛𝑘
𝑔∈𝐺

�
𝑘=1,2,3,4

(𝑡𝑘 − 𝑡𝑘−1)
𝑁

𝑛=1

                   (73)  

 

subject to constraints (61) – (71). Note that the second-stage optimization problem is a 

linear program (LP) and the program can be solved by scenario when the first stage 

decisions are known. Let Φ(𝑥,𝑦,𝑤, 𝑧) be the objective function value associated with 

Equation (73) subject to constraints (61)-(71) for the given first stage variables 

(𝑥,𝑦,𝑤, 𝑧). Then the first-stage of the two-stage nonlinear mixed integer stochastic 

program is to choose the binary variables (𝑥,𝑦,𝑤, 𝑧) to minimize  

 

Φ(𝑥,𝑦,𝑤, 𝑧) + �Ψ𝑠(𝑥𝑠)
𝑠∈𝑆

+ � Ω𝑖𝑗�𝑦𝑖𝑗�    
(𝑖,𝑗)∈Π

                                 (74) 

 

subject to (59) and (60).  Notice that this is a knapsack problem. This motivates our 

solution procedure described in the next section. 
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B. Passenger Air Transportation System 

As discussed previously, one goal of this paper is to understand how outages in the 

electric power network affect the performance of a passenger air transportation system 

and how those impacts might be mitigated through investments in the transmission 

system. Again, we do not suggest investments in the electric power system to directly 

address impacts of outages in electric because there is no dataset that specifically 

identifies the purpose of each load in a transmission model.  

Disruption in the air transportation system is modeled for the first three time 

periods of the power outage.  It is difficult for airlines to change their flight schedules 

quickly due to a myriad of issues including work rules for flight crews, basing of 

crews, aircraft maintenance support and gate availabilities. However, if their access to 

an airport for operations is restricted for a long period of time (greater than about a 

month), changes to the flight plan are likely to occur. Hence we focus on impacts in 

the first month.   

The objective assumed for the passenger air transportation model is to maximize 

the number of passengers that can be accommodated given a fixed number of 

passengers that wish to travel, each with known origins and destinations. Let 𝑈∗ =

�𝑈𝑖∗𝑛𝑘� be the optimal load shed at each bus in all periods and under all scenarios from 

the previous stochastic program. We suppress the dependence of 𝑈∗ on the optimal 

improvement of the power network (𝑥∗,𝑦∗,𝑤∗, 𝑧∗) from the previous stochastic 

program to simplify the notation.  

We first define the topology of the passage air transportation system as follows. 

Let 𝑅𝑜𝑑 be the set of all the possible routes between origin-destination pair (𝑜, 𝑑), let 

L be the set of all the links representing individual segments of trips, and let 𝑅𝑜𝑑𝑙  be 

the set of all the possible routes between origin-destination pair (𝑜, 𝑑) that include link 

𝑙. Let A be the set of all the origin-destination pairs for the possible trips in the system. 
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We assume that 𝐷�𝑜𝑑 is the daily average number of passengers traveling between 

origin-destination pair (𝑜, 𝑑) and 𝑞𝑙�  is the daily maximum number of passengers using 

link 𝑙 as a segment of their trip . 

The decision variables are defined as follows. Let 𝑝𝑟𝑛𝑘 be the daily average 

passenger flow in route r under the power outage during time period k and scenario 𝑛, 

and let 𝑞𝑙𝑛𝑘 be the daily average passenger flow in link 𝑙 under the power outage 

during time period k and scenario 𝑛.  

  

� � 𝑝𝑟𝑛𝑘

𝑟∈𝑅𝑜𝑑
𝑙(𝑜,𝑑)∈𝐴

= 𝑞𝑙𝑛𝑘, ∀𝑙,𝑛,𝑘 = 1,2,3                                      (75) 

 
� 𝑝𝑟𝑛𝑘
𝑟∈𝑅𝑜𝑑

≤ 𝐷�𝑜𝑑 ,         ∀(𝑜,𝑑),𝑛,𝑘 = 1,2,3                                      (76) 

 
𝑝𝑟𝑛𝑘 ≥ 0,                    ∀𝑟, 𝑛,𝑘 = 1,2,3                                           (77) 

 

Equations (75) computes the total number of passengers using link 𝑙 based on the 

route flows across all (o,d) pairs. Equation (76) ensures that the route flows do not 

exceed the demand for travel. Equations (77) require that the passenger flow variables 

are nonnegative.  

For each scenario in the electric power network, either with or without investment, 

the locations where insufficient power is supplied can be identified using the 

economic dispatch model given in the previous subsection.  Hence, we assume that if 

either the origin and/or destination airport of a link do not receive sufficient power, the 

capacity of the link is zero. To model this dependence, let 𝑜𝑙 and 𝑑𝑙 be the respectively 

origin and destination of link 𝑙. Let 𝐵𝑜 be the set of all buses supplying energy to 

airport𝑜. Also let 𝑀𝑝 be the load shed that would cause an airport to be unable to 

support aircraft arrivals and departures (which includes insufficient power for security, 

baggage handling, etc.). We define the function 𝜗𝑜𝑛𝑘(𝑈∗) to be one if ∑ 𝑈𝑖∗𝑛𝑘𝑖∈𝐵𝑜 ≥
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𝑀𝑝 and to be zero, otherwise. Then equation (78) gives the dependence of the air 

passenger transportation system on the power network. 

 

𝑞𝑙𝑛𝑘 ≤ 𝑞𝑙� �1 − 𝜗𝑜𝑙
𝑛𝑘(𝑈∗)� �1 − 𝜗𝑑𝑙

𝑛𝑘(𝑈∗)� ,         ∀𝑙,𝑛,𝑘 = 1,2,3             (78) 

 

The objective of the air flow system is to find �𝑝𝑟𝑛𝑘, 𝑞𝑙𝑛𝑘� to maximize the 

expected daily average passengers accommodated. This leads to the maximization of 

the following equation: 

 

�𝑃𝑟(𝑛) � � � 𝑝𝑟𝑛𝑘
𝑟∈𝑅𝑜𝑑(𝑜,𝑑)∈𝐴𝑘=1,2,3

(𝑡𝑘 − 𝑡𝑘−1)
𝑁

𝑛=1

/24.                         (79)  

 

Recall that 𝑈∗ is known in the optimization model (75)-(79) and then both 

𝜗𝑜𝑙
𝑛𝑘(𝑈∗) and 𝜗𝑑𝑙

𝑛𝑘(𝑈∗) are known. Thus the mathematical program (75)-(79) is a linear 

program that can be decomposed by scenario and time period.   

 

Solution Procedure 

Once the load shed in each of the power network buses is known the operability of 

each of the airports, the passenger air traffic problem is a linear programming network 

flow problem which can be solved using a solver such as IBM ILOG Optimization 

Studio CPLEX 12.2. Therefore this section we focus on the solution to the power 

network investment planning problem. As mentioned previously, this is a two-stage 

mixed integer nonlinear stochastic program for which realistic instances will be very 

large (on the order of many hundreds to thousands of integer variables, each with 

relatively small values) therefore; we develop a heuristic solution procedure.   

Since the costs for seismic reinforcement are considerably smaller than those for 

investments in additional capacity, we first estimate the optimal reinforcement 
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investments and then estimate the optimal capacity expansion decisions.   The key 

idea that underlies each heuristic is to construct a knapsack problem with a linear 

objective function so that the solution of the knapsack problem is also a good solution 

to either the optimization for reinforcement or for capacity expansion. 

 

A. Seismic Reinforcement 

This heuristic has four steps. The first step is to run the dc load flow economic 

dispatch model assuming all components are available. The second step is to run the 

economic dispatch assuming that a single component ∈ set(𝑅) (set of all components 

that can be reinforced) is not functional. The third step is done for each component 

that can be reinforced. This step involves computing the relative benefit for 

reinforcing each component. The fourth step identifies the subset of reinforcement 

strategies that maximizes the benefit (as approximated using the weights developed in 

step 3) subject to the budget constraint given in equation (59). To simplify the 

notations, let us consider the following parametric dc load flow dispatch problem 

where we determine �𝜃𝑖 ,𝐺𝑔,𝑃𝑖𝑗 ,𝑈𝑖� that minimizes 

 

�𝑐𝐵𝑈𝑖
𝑖∈𝐵

+ �𝑐𝑔𝐺𝐺𝑔
𝑔∈𝐺

                                              (80) 

subject to 
 

�𝜃𝑖 − 𝜃𝑗��1 − 𝜏𝑖𝑗��1 − 𝜍𝑠𝑖� �1 − 𝜍𝑠𝑗� = 𝑚𝑖𝑗𝑃𝑖𝑗            ∀(𝑖, 𝑗)            (81) 
 

� 𝐺𝑔
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗
(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑗𝑖
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖            ∀ 𝑖                 (82) 

 
�𝑃𝑖𝑗� ≤ 𝑃𝑖𝑗𝑚�1 − 𝜏𝑖𝑗�                            ∀(𝑖, 𝑗)            (83) 

 
0 ≤ 𝑈𝑖 ≤ 𝐷𝑖                                      ∀𝑖                  (84) 

 
0 ≤ 𝐺𝑔 ≤ 𝐺𝑔𝑚                                    ∀𝑔                 (85) 
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where 𝜏𝑖𝑗 and 𝜍𝑠𝑖 are input parameters for all (𝑖, 𝑗). The solution procedure is then as 

follows. 

Step i: Run the dc flow economic dispatch problem (80) – (85) with 𝜏𝑖𝑗 = 𝜍𝑠𝑖 = 𝜍𝑠𝑗 =

0 for all (𝑖, 𝑗) to determine �𝜃𝑖 ,𝐺𝑔,𝑃𝑖𝑗 ,𝑈𝑖�. Note that the load shed at each bus 𝑈𝑖 = 0 

since we assume that all components in the network are functional. Let 𝜆̅ be the 

optimal objective value.  

Step ii: Let the set(R) be comprised of the collection of components r for which there 

is at least one consequence scenario under which the component is not operational but 

with mitigation it becomes operational, for at least one time period.   Run the dc flow 

economic dispatch problem (80) – (85) for each component 𝑟 ∈ set(𝑅) assuming that 

component r is not functional. To do this, the parameters in the program are set as 

follows. If 𝑟 = (𝑖, 𝑗), we let 𝜏𝑖𝑗 = 1 for (𝑖, 𝑗) = 𝑟 and let 𝜏𝑖𝑗 = 0 for (𝑖, 𝑗) ≠ 𝑟. We 

also let 𝜍𝑠𝑖 = 𝜍𝑠𝑗 = 0 for all (𝑖, 𝑗).  If 𝑟 = 𝑠𝑖, we let 𝜍𝑠𝑖 = 1 for 𝑠𝑖 = 𝑟 and let 𝜍𝑠𝑖 = 0 

for 𝑠𝑖 ≠ 𝑟. We also let 𝜏𝑖𝑗 = 0  for  (𝑖, 𝑗). We determine the solution �𝜃𝑖 ,𝐺𝑔,𝑃𝑖𝑗,𝑈𝑖� 

and let 𝜆𝑟 be the optimal objective value.  

Step iii:  Estimate the benefit of reinforcement for all components for which it is a 

consideration.  Let  𝑟 ∈ set(𝑅) be the members of that set.  

 
If 𝑟 = (𝑖, 𝑗), let  

𝛽𝑖𝑗𝐷 = �𝑃𝑟(𝑛) � �𝜆𝑖𝑗 − 𝜆̅� �Λ𝑖𝑗𝑛𝑘(0) − Λ𝑖𝑗𝑛𝑘(1)�
𝑘=1,2

𝑁

𝑛=1

(𝑡𝑘 − 𝑡𝑘−1) +  Ω𝑖𝑗(0) − Ω𝑖𝑗    , 

 
If 𝑟 = 𝑠, let  

𝛽𝑠𝐷 = �𝑃𝑟(𝑛)� � �𝜆𝑠 − 𝜆̅��Δ𝑠𝑛𝑘(0) − Δ𝑠𝑛𝑘(1)�(𝑡𝑘 − 𝑡𝑘−1)
𝑘=1,2,3

�
𝑁

𝑛=1

+ 

�𝑃𝑟(𝑛) ��𝜆𝑠 − 𝜆̅�𝑆̅(𝑠)�Δ𝑠𝑛4(0) − Δ𝑠𝑛4(1)�(𝑡4 − 𝑡3)�
𝑁

𝑛=1

+  Ψ𝑠(0) −Ψ𝑠(1)    (86) 
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It is important to notice that in the fourth time period some large transformers may not 

be operational in some substations. The rest of the substation may still be used if there 

are other functioning transformers, but its performance has not been fully restored. To 

reflect this we define 𝑆̅(𝑠) be the serviceability of a substation.  The definition of this 

quantity is the fraction of lines and transformers that are functional within the 

substation to the total number of lines and transformers (both functional and non-

functional) within the substation.  Notice that the values 𝜆𝑖𝑗and 𝜆𝑠 are the result of step 

(ii). Also, Λ𝑖𝑗𝑛𝑘(0) (Δ𝑠𝑛𝑘(0)) are binary input data that reflect whether a line 

(substation) is operational during period k under scenario n if no mitigation is 

performed. Similarly, Λ𝑖𝑗𝑛𝑘(1)  (Δ𝑠𝑛𝑘(1)) are binary input data that reflect whether a 

line (substation) is operational during period k under scenario n if mitigation is 

performed.  Finally, Ω𝑖𝑗(0) − Ω𝑖𝑗(1) reflects the repair costs savings if mitigation is 

performed on a line. Similarly, Ψ𝑠(0) −Ψ𝑠(1) is the same quantity, except it is 

associated with substation repair cost savings. 

Step iv: Determine the reinforcement strategy for the network. Run the integer 

problem to determine the reinforcement strategy (𝑥,𝑦) that maximize 

 

�𝛽𝑠𝐷𝑥𝑠
𝑠∈𝑆

+ � 𝛽𝑖𝑗𝐷𝑦𝑖𝑗
(𝑖,𝑗)∈Π

                                             (87) 

subject to 
 

�𝑏𝑠𝐷𝑥𝑠
𝑠∈𝑆

+ � 𝑓𝑖𝑗𝐷𝑦𝑖𝑗
(𝑖,𝑗)∈Π

≤ 𝑀𝐷                                       (88) 

 
𝑥𝑠 = 0,𝑦𝑖𝑗 = 0 for 𝑠 ∉ 𝑠𝑒𝑡(𝑅), (𝑖, 𝑗) ∉ 𝑠𝑒𝑡(𝑅)                          (89) 

 

B.  Capacity Enhancement 

For the capacity enhancement problem we used a heuristic that iterates over three 

main steps to gradually add capacities to the selected components. The first step is to 
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run a linearized version of the enhancement problem given in equations (60)-(71) and 

(73). The second step is to estimate the relative benefit from investment in each of the 

components. The third step is to identify a subset of 𝐸� enhancements that maximizes 

the benefit subject to the budget constraint given in equation (2). To reduce 

computational time and memory requirements, we split the problem by scenario n and 

time period k. Let 𝑤𝑖𝑗
𝑛𝑘 be a continuous variable representing the capacity 

enhancement of transmission line (i,j) under scenario n and during time period k. In 

the same way, let 𝑧𝑔𝑛𝑘  be a continuous variable representing the capacity enhancement 

of generator g under scenario n and during time period k. Notice there is no 

requirement that these variables be the same across scenarios and time periods.  Of 

course these recommendations cannot be implemented directly.  The heuristic will 

integrate these decisions together and draw conclusions that will then be 

implementable.   

This is an iterative procedure, therefore we define 𝑀𝐶∗ budget that has been 

allocated in previous iterations.  At the beginning of the procedure, this value is zero.  

Also, let l be the iteration number. 

Step v. Initialize parameters. Let 𝑙 = 0, 𝑤𝑖𝑗
𝑙 = 0 for all transmission lines (𝑖, 𝑗), and 

𝑧𝑔𝑙 = 0 for all generators g. Also 𝑀𝐶∗ = 0. Select the maximum number, 𝐶̅, of 

enhancement units to be added per iteration. Also select the 𝑍̅ and 𝑊� , the upper 

bounds for  𝑤 and 𝑧.  Notice there is single maximum level of capacity augmentation 

for generators and lines, respectively. 

Step vi. Run a linearized version of the dc economic dispatch defined by constraints 

(60) – (71) and objective function defined in equation (73) but decomposed by 

scenario and time period and as given in equations (90)-(46). The linearization of the 

model is achieved through the following two modifications. First, equations (61) – 

(64) are replaced by equations (91) to (94) by replacing the term �1 + 𝜌𝑤𝑖𝑗� with 
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�1 + 𝜌𝑤𝑖𝑗
𝑙 � . Effectively this assumes that the change in the reactance is proportional 

to the additional capacity added in previous iterations.  Second, the sets of integer 

variables 𝑧𝑔𝑛𝑘 and 𝑤𝑖𝑗
𝑛𝑘 become positive continuous variable that can take values from 

𝑧𝑔𝑙  and 𝑤𝑖𝑗
𝑙  (the value already obtained in previous iterations) up to 𝑍̅ and 𝑊�  

respectively as given in equations (98)-(103).  Notice that constraints (95) to (97), 

(102) to (104) are common to the n by k problems; however, equations (91) to (94) 

define only the kth problem as indicated in the superscript of the variables. Equations 

(98) to (101) are also different definitions of the same constraint for each of the four 

time periods. We solve n by k linear problems choosing variables 

(𝐺𝑔𝑛𝑘,𝑃𝑖𝑗𝑛𝑘,𝑈𝑖𝑛𝑘,𝑤𝑖𝑗
𝑛𝑘, 𝑧𝑔𝑛𝑘) that minimize  

 

�𝑐𝐵𝑈𝑖𝑛𝑘

𝑖∈𝐵

+ �𝑐𝑔𝐺𝐺𝑔𝑛𝑘
𝑔∈𝐺

                                                      (90) 

subject to 

�𝜃𝑖𝑛1 − 𝜃𝑗𝑛1� �1 − Λ𝑖𝑗𝑛1�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛1�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛1 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗
𝑙 � 

= 𝑚𝑖𝑗𝑃𝑖𝑗𝑛1       ∀ (𝑖, 𝑗)  (91) 

 

�𝜃𝑖𝑛2 − 𝜃𝑗𝑛2� �1 − Λ𝑖𝑗𝑛2�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖
𝑛2�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛2 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗
𝑙 � 

= 𝑚𝑖𝑗𝑃𝑖𝑗𝑛2       ∀ (𝑖, 𝑗)  (92) 

 

�𝜃𝑖𝑛3 − 𝜃𝑗𝑛3� �1 − ∆𝑠𝑖
𝑛3�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗

𝑛3 �𝑥𝑠𝑗�� �1 + 𝜌𝑤𝑖𝑗
𝑙 � = 𝑚𝑖𝑗𝑃𝑖𝑗𝑛3        ∀ (𝑖, 𝑗)  (93) 

 

�𝜃𝑖𝑛4 − 𝜃𝑗𝑛4� �1 − ∆𝑠𝑖
𝑛4�𝑥𝑠𝑖��1 − 𝑇𝑖𝑗�� �1 + 𝜌𝑤𝑖𝑗

𝑙 � = 𝑚𝑖𝑗𝑃𝑖𝑗𝑛4         ∀ (𝑖, 𝑗)  (94) 

 

� 𝐺𝑔𝑛𝑘
𝑔∈𝐼(𝑖)

− � 𝑃𝑖𝑗𝑛𝑘
(𝑖,𝑗)∈𝛿+(𝑖)

+ � 𝑃𝑗𝑖𝑛𝑘
(𝑗,𝑖)∈𝛿−(𝑖)

= 𝐷𝑖 − 𝑈𝑖𝑛𝑘             ∀ 𝑖         (95) 
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0 ≤ 𝑈𝑖𝑛𝑘 ≤ 𝐷𝑖 ,                                         ∀ 𝑖      (96) 

 

0 ≤ 𝐺𝑔𝑛𝑘 ≤ 𝐺𝑔𝑚�1 + 𝜇𝑧𝑔𝑛𝑘�,                              ∀𝑔      (97) 

 

�𝑃𝑖𝑗𝑛1� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗
𝑛𝑘� �1 − Λ𝑖𝑗𝑛1�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖

𝑛1�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗
𝑛1 �𝑥𝑠𝑗�� ∀ (𝑖, 𝑗) (98) 

 

�𝑃𝑖𝑗𝑛2� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗
𝑛𝑘� �1 − Λ𝑖𝑗𝑛2�𝑦𝑖𝑗�� �1 − ∆𝑠𝑖

𝑛2�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗
𝑛2 �𝑥𝑠𝑗�� ∀ (𝑖, 𝑗) (99) 

 

�𝑃𝑖𝑗𝑛3� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗
𝑛𝑘� �1 − ∆𝑠𝑖

𝑛3�𝑥𝑠𝑖�� �1 − ∆𝑠𝑗
𝑛3 �𝑥𝑠𝑗��           ∀(𝑖, 𝑗) (100) 

 

�𝑃𝑖𝑗𝑛4� ≤ 𝑃𝑖𝑗𝑚�1 + 𝜌𝑤𝑖𝑗
𝑛𝑘� �1 − ∆𝑠𝑖

𝑛4�𝑥𝑠𝑖��1 − 𝑇𝑖𝑗��                ∀ (𝑖, 𝑗) (101) 

 

𝑤𝑖𝑗
𝑙 ≤ 𝑤𝑖𝑗

𝑛𝑘 ≤ 𝑊�                                             ∀ (𝑖, 𝑗) (102) 

 

𝑧𝑔𝑙 ≤ 𝑧𝑔𝑛𝑘 ≤ 𝑍̅                                               ∀ 𝑔      (103) 

 

� ℎ𝑖𝑗𝐶 𝑤𝑖𝑗
𝑛𝑘 +

(𝑖,𝑗)∈Π

�𝑜𝑔𝐶𝑧𝑔𝑛𝑘
𝑔∈E

≤ 𝑀𝑐 ,                                        (104) 

 

Note that 𝛬𝑖𝑗𝑛𝑘�𝑦𝑖𝑗� for all (𝑖, 𝑗) and ∆𝑠𝑛𝑘(𝑥𝑠) for all s, are known parameters from steps 

(i) to (iv). Then mathematical program (90) – (104) is a linear program. Let 

(𝐺𝑔𝑛𝑘,𝑃𝑖𝑗𝑛𝑘,𝑈𝑖𝑛𝑘,𝑤𝑖𝑗
𝑛𝑘, 𝑧𝑔𝑛𝑘) be the solution. 

Step vii. Estimate the benefit from individual transmission and generation 

enhancements. These correspond to the sum of the component’s marginal capacity 

enhancements in iteration l, for each scenario and time period. Notice that for equation 



 

96 

(106) we include the ratio between the maximum enhancement units for lines, 𝑊�  to 

the maximum enhancement units for generators, 𝑍� . This ratio warranties that the 

benefits are within the same proportion to ensure that generator and transmission 

enhancement are coordinated. The benefit from the enhancement in transmission line 

(𝑖, 𝑗) is defined as follows: 

 

𝛽𝑖𝑗𝐶 = �𝑃𝑟(𝑛) � �𝑤𝑖𝑗
𝑛𝑘 − 𝑤𝑖𝑗

𝑙 �
𝑘=1,2,3,4

𝑁

𝑛=1

(𝑡𝑘 − 𝑡𝑘−1)                             (105) 

 
The benefit from the enhancement in generator 𝑔 is defined as follows: 
 

𝛽𝑔𝐶 = �𝑊� 𝑍̅� ��𝑃𝑟(𝑛) � �𝑧𝑔𝑛𝑘 − 𝑧𝑔𝑙 �(𝑡𝑘 − 𝑡𝑘−1)
𝑘=1,2,3,4

𝑁

𝑛=1

                      (106) 

 

Step viii. Select a subset of the capacity enhancement strategy of the network. Run the 

integer program to determine binary variables (𝑤� , 𝑧̅) that maximize 

 

� 𝛽𝑖𝑗𝐶

(𝑖,𝑗)∈Π

𝑤�𝑖𝑗 + �𝛽𝑔𝐶𝑧𝑔̅                                                                      (107)
𝑔∈𝐸

 

 
subject to 

� ℎ𝑖𝑗𝐶 𝑤�𝑖𝑗 +
(𝑖,𝑗)∈Π

�𝑜𝑔𝐶𝑧𝑔̅
𝑔∈E

≤ 𝑀𝐶 −𝑀𝐶∗                                                      (108) 

 
� 𝑤�𝑖𝑗 +

(𝑖,𝑗)∈Π

�𝑧𝑔̅
𝑔∈E

≤ 𝐶̅                                                                  (109) 

 

Let (𝑤� , 𝑧̅) be the solution.  

Notice that we only add one discrete unit of capacity per component per iteration; 

therefore, it is important that the number 𝐶̅, which limits the number of selected 
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enhancements per iteration, is small enough in relation to the number of enhancements 

we can choose from the total possible for the available budget. 

Step ix. Update the solutions and the budget as follows:  
wij
l+1 = wij

l + w�ij                                                            (110) 
                                                                    

 𝑧𝑔𝑙+1 = 𝑧𝑔𝑙 + 𝑧𝑔̅                                                                             (111) 
 

𝑀𝐶∗ = � ℎ𝑖𝑗𝐶 𝑤𝑖𝑗
𝑙+1 +

(𝑖,𝑗)∈Π

�𝑜𝑔𝐶𝑧𝑔𝑙+1
𝑔∈E

                                                           (112) 

 

Step x. Check stopping conditions: If 𝑀𝐶 −𝑀𝐶∗ < 𝜀, let 𝑙 = 𝑙 + 1 and go back to step 

vi. Otherwise, report the enhancement solutions (𝑤, 𝑧) = (𝑤𝑙, 𝑧𝑙).  

 

Case Study 

We focus on questions of seismic mitigation of the EI under limited budget, and 

the repercussions on passenger air transportation between the top 80 airports as 

measured by the number of enplanements. The representation of the EI was developed 

in 1998 by the Multi-Area Modeling Working Group. It is a representation of the 

system as of 1998 with demands reflective of a prediction of the summer of 2003. This 

case includes direct representation of every region in the EI, which extends 

approximately from the Rocky Mountains to the East Coast excluding Texas. Detailed 

representation is for voltages greater than 100 kV. It includes information for 23,416 

transmission lines and 14,957 buses. These buses are grouped in 2,765 substations 

with two or more buses and 6,448 single buses. Load shed, generation output, repair, 

and mitigation costs were estimated in 2002 U.S. dollars. 

We only consider the seismic risk from the NMSZ. The hazard is modeled by a set 

of earthquake scenarios selected using the mathematical optimization method 

developed by Vaziri et al.[in press]. The method also assigns an adjusted occurrence 
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probability to each scenario minimizing the discrepancy with the seismic behavior as 

represented in the exceedance curves for PGA. We located 81 control points in the 

NMSZ area and obtained the PGA exceedance curves for each point from the U.S. 

Geological Survey (USGS) Seismic Hazard Maps [2008b]. A key input to that 

optimization is the identification of the candidate set of earthquake events.  We used 

two sources to create the candidate set: the earthquake catalog from the USGS website 

[2008a], and 20 synthetic scenarios created using code provided by USGS [2008c]. 

The earthquake catalog includes 433 earthquakes that occurred within the NMSZ. The 

magnitudes were converted from mblg to MW as described in Petersen et al [2008]. 

The mean PGA for each control point was estimated using Toro et al [1997], Frankel 

et al [1996], Campbell [2003], Atkinson and Boore [2006], Tavakoli and Pezeshk 

[2005], and Silva et al [2002] assuming soil type BC (Firm Rock), the relative weights 

given in Petersen et al [2008]. In addition to the 433 earthquakes identified in the 

Central-East Unites States earthquake scenarios catalog, we use 20 synthetic events on 

5 synthetic faults created by USGS to represent the hazard in New Madrid. The 20 

scenarios correspond to each of the 4 possible magnitudes (7.3, 7.5, 7.7 and 8) for 

ruptures in the 5 different branches described in Petersen et al [2008]. USGS provides 

computer code that can be compiled and run to generate each of these deterministic 

scenarios in New Madrid [2008c].  

For electric power systems, the key measure is the exceedance curves for PGA 

where seismically sensitive components are located. Figure 13 illustrates the 

exceedance curve from USGS and the implied exceedance curve obtained from the 

selected scenarios (and their probabilities of occurrence) based on the formulation 

given in Vaziri et al. [in press] for a single control point located near the border 

between Tennessee and Arkansas at the Mississippi River near Osceola, Arkansas. 
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Table 7 presents the 8 earthquake scenarios selected with their adjusted occurrence 

probability. 

 

 

Table 7. Selected earthquake events and their probabilities of occurrence. 
Location Depth Magnitude 

Date  Source 
Adjusted 
occurrence 
probability Lat. Long. Fault 

Info. [km] mblg MW 

36.7 -90.3  0.0 4.3  2/2/1954  NCEER 0.0500 
38.2 -89.8  11.0 4.3  4/9/1955  NCEER 0.0500 
37.9 -88.4  21.0 5.5  11/9/1968  NCEER 0.0078 
38.7 -88.0  10.0 5.2  6/10/1987  USHIS|5.20mn 0.0069 
36.8 -89.2  5.0 4.5  9/29/1987  USHIS|4.50mn 0.0500 
35.8 -90.2  9.0 4.2  5/1/2005  PDE|4.20mw 0.0500 

  Mid-
East   7.7  USGS faults 0.0018 

  West   8.0  USGS faults 0.0010 

 

Using a HAZUS [FEMA 2003] we estimate the probability that each component 

sustains specific levels of damage under each scenario. HAZUS is regional loss 

estimation methodology that categorizes damage to substations and transmission lines 

into five classes: no damage, slight, moderate, extensive and complete.  As mentioned 

before we only modeled moderate, extensive and complete damage for substations and 

extensive and complete for transmission lines. The probability that each component 

sustains the different levels of damages is modeled as a set of consequence scenarios, 

each one with an adjusted occurrence probability. We use the optimization method 

introduced by Brown et al. [2011] to develop the consequence scenarios and their 

hazard-consistent probability of occurrence. The objective of the optimization is to 

select the consequence scenarios and associated probabilities so the implied 

vulnerabilities of each component match the “true” (input) vulnerability as closely as 
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possible. [Brown et al. 2011] optimization is expanded to include the no-reinforcement 

and reinforcement scenarios. 

 

Figure 13. Exceedance curves for control point located at the border between 

Tennessee and Arkansas at the Mississippi River near Osceola, Arkansas. 

 

The earthquake scenario on the Mid-East fault of magnitude 7.7 MW, and the 

earthquake scenario on the West fault of magnitude 8.0 MW are the only two scenarios 

resulting in considerable physical damage to the electric grid. For each of these events, 

we generate 6 consequence scenarios. Table 8 presents the 12 consequence scenarios 

and the number of transmission lines and substations that fall into each of the possible 

damage states. Figure 14 shows the spatial distribution of PGA for the earthquake 

scenario in the West branch with a magnitude of 8.0 MW and the consequence scenario 

3 (See ID column in Table 8). 

We use a static network flow model to represent the passenger air traffic system. 

The model focuses on the largest 80 airports (as measured by enplanements) in the 

U.S for the year 2010 [FAA 2010]. The number of seats flown in each direction for 

pairs of airports was obtained from the T100 dataset for 2010 [BTS 2010]. Trips 

between the selected airports correspond to more than 80% of total domestic 
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passenger trips. To obtain the routes between each pair of considered airports, we use 

the Airline Origin and Destination Survey, DB1B from the BTS website, for the year 

2010 [BTS 2010]. We only included routes with a maximum of three flight segments; 

this reduces the total number of passengers considered by less than 1%. With the 

DB1B we estimated the number of seats taken by passengers not considered in our 

model. This information combined with the total seats per segments were used to 

estimate the capacity available in each link, 𝑞𝑙� . The average daily number of 

passengers traveling between the 80 largest airports on routes with 3 or less segments 

was a little over 916,000 for the year 2010. The daily number of passengers between 

origin-destination pairs, 𝐷𝑎∗, is the demand considered in the model. 

 

Table 8. Consequence scenarios use to represent the NMSZ  hazard on the EI. 

Source ID 
Adjusted 

occurrence 
probability 

Basic design Seismically reinforced 
components 

Lines 
damage 

Substations 
damage 

Lines 
damage 

Substations 
damage 

Ext. Com. Mod. Ext. Com. Ext. Com. Mod. Ext. Com. 

West 
branch, 
8.0 MW 

1 0.000160 5 24 18 8 15 2 24 15 3 7 
2 0.000200 5 25 23 19 8 6 20 13 15 7 
3 0.000080 15 24 68 24 10 25 5 66 26 9 
4 0.000180 4 25 13 14 10 5 20 7 12 7 
5 0.000240 6 24 12 16 9 4 22 8 20 6 
6 0.000140 6 22 26 22 12 4 21 26 12 6 

Mid-
East 

branch, 
7.7 MW 

7 0.000126 27 11 35 16 14 21 9 29 13 14 
8 0.000396 28 14 4 13 11 16 6 3 13 9 
9 0.000288 30 13 17 12 12 19 8 9 8 11 
10 0.000342 28 13 6 7 19 24 8 9 10 11 
11 0.000432 24 14 5 13 13 18 8 3 19 6 
12 0.000216 28 26 25 10 13 15 9 13 16 5 

Mod.=Moderate, Ext.=Extensive, Com.=Complete 
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Figure 14. Distribution of PGA and damage for an 8.0 MW earthquake on the West 

Branch under consequence scenario 3.  

 

We approximately identify the substations in the EI that provide electricity to each 

airport based on GIS information. In addition, we used the energy cost per 

enplanement for large airports from [Salamone 2007] and energy costs per load in the 

transportation sector from the U.S. Energy Information Administration website to 

estimate the airport’s average energy consumptions [EIA 2012]. With this information 

and the list of substations in the vicinity of the airports, we connected each airport to a 

substation or a group of substations such as the total demand of the substations was at 

least twice the airport’s energy demand.  
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Results 

For reinforcement, the heuristic was tested using a simplified version of the EI 

model which considers only the first time period and two of the twelve earthquake 

scenarios. We solved the NLIP for 3 different mitigation budgets: US$100 million, 

US$20 million, and US$10 million using two methods: the proposed heuristic coded 

in C++ with IBM ILOG Optimization Studio CPLEX 12.2 serving as an LP solver, 

and the full NLIP in Lingo 13 (which has an non-linear integer solver) in a Dell 

Precision T5500, Intel® Xeon® X5650 with 2 processors of 2.66 GHz., and 6.00 GB 

of total RAM memory. Lingo found a 0.5% better solution for a mitigation budget of 

US$100 million; for the other two problem instances the heuristic method found 

solutions that were 20% better in quality. Lingo took over 8 hours to solve and the 

heuristic took 8 minutes.  Given the computational burden, Lingo cannot be used to 

address the full problem formulation for the EI. 

We used the heuristic to find the solution to the problem of estimating the optimal 

seismic reinforcement strategy for the EI full problem formulation. The analysis 

included the 12 consequence scenarios identified to represent the hazard in the NMSZ. 

For each consequence scenario we modeled the repair process using the 4 time periods 

described above. The total running time varies depending on the budget; the average 

computation time is 1 hour using the machine described above Figure 15 shows the 

exceedance probability of load shed costs for 4 different investment scenarios: no-

mitigation, US$ 5 million, US$ 10 million, and US$ 100 million.  

We assume about 50 lines and 110 substations are viable candidates for 

reinforcement.  Depending on the budget available, some lines may be too expensive 

hence the exact number of candidates varies between the experiments. For a budget of 

US$ 5 million, the model suggests no seismic reinforcement for lines, and that about 

63% of substations should be anchored. For a budget of US$ 10 million, 6% of 
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transmission lines and 87% of substations are selected for reinforcement. Finally, for 

US$ 100 million, 70% transmission lines and 100% of substations should be 

reinforced. Investing US$ 10 million can reduce the load shed costs by almost 40% of 

the load shed costs in no reinforcement situation, and the repair costs by almost 20%. 

In expectation this reduction translates to a saving of about US$ 12 million annually 

stemming from an upfront investment of US$ 10 million. Investing US$ 100 million 

provides and additional US$ 2 million benefit.  

 

 

Figure 15. Exceedance probability for load shed costs during repair for different 

reinforcement mitigation investment budgets. 

 

The second part of the problem, finding an optimum capacity enhancement 

solution, is more computationally demanding. Therefore, it could not be tested with a 

simplified version of the EI seismic risk model. We used the one area IEEE Reliability 

Test System (RTS) – 1996 [Grigg 1999]. We formulated the problem for a 

hypothetical case in which demands in the test system were doubled. The nonlinear 

integer programming problem (NLIP) was evaluated for 4 different mitigation 

budgets: US$50 million, US$100 million, US$500 million, and US$1 billion using 
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two methods: the proposed heuristic coded in C++ with IBM ILOG Optimization 

Studio CPLEX 12.2 serving as an LP solver, and the full NLIP in Lingo 13 (using the 

global solver). The four solutions are within a 0.1% error from the optimal solution 

found using Lingo. Lingo requires between 20 seconds to 3 minutes depending on the 

investment budget, and the heuristic, less than 20 seconds. 

We used the heuristic to find optimum enhancement strategies that help to mitigate 

the consequences on the EI of a seismic event in the NMSZ. The problem included the 

12 consequence scenarios, and the 4 time repair periods and over 110,000 potential 

investments over 30,000 components. We found solutions for three enhancement 

budgets under two situations, no previous reinforcement, and US$ 10 million 

investment. The 3 enhancement budgets are: US$ 100 million, US$ 1 billion, and US$ 

10 billion. Computational time varies significantly depending on the relation between 

the total budget and parameter 𝐶̅, with the smallest computation times on the order 2 

hours and the longest on the order of 12 hours. 

Figure 16 shows the exceedance probability of load shed costs during repair time 

for the case of no previous investment in reinforcement and for 4 different investment 

scenarios: no-mitigation, US$ 100 million, US$ 1 billion, and US$ 10 billion. Figure 

17 shows the same results for the case of investment in reinforcing for a budget of 

US$ 10 million.  

When there is no previous reinforcement investment, the enhancement mitigation 

strategies include enhancement of 57 lines for a budget of US$ 100 million, 204 lines 

and 1 generator for a budget of US$ 1 billion, and 444 lines and 52 generators for a 

budget of US$ 10 billion. When there is previous reinforcement the solutions include 

54 lines, 226 lines and 1 generator, and 448 lines and 52 generators, respectively. An 

investment of US$ 100 million exclusively in capacity enhancement represents a 25% 

savings in load-shed over the 6 months repair period. For a budget of US$ 1 billion 



 

106 

and US$ 10 billion, the load shed savings are 37% and 48% respectively. If US$ 10 

million were invested in reinforcement and US$ 100 million in capacity enhancement 

there is a 51% savings in load shed costs. The saving goes as high as 64% when the 

capacity enhancement investment is US$ 10 billion. As an exercise, we estimated the 

benefit from investing US$ 110 million exclusively in reinforcement. We found that 

the expected annual saving in load shed costs is US$ 1 million smaller in this case 

than in the case when US$ 10 million are invested in reinforcement and US$ 100 

million in capacity expansion. The combined investment is better for the mitigation of 

seismic risk; furthermore, investing US$ 100 million in capacity enhancement can 

benefit the power network not only in a seismic event but also against other hazardous 

events and spikes in demand. 
 

 

Figure 16. Exceedance probability for load shed costs during repair when there is no 

investment in reinforcement and some investment in capacity enhancement. 
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Figure 17. Exceedance probability for load shed costs during repair when there is US$ 

10 million  investment in reinforcement and some investment in capacity 

enhancement. 

 

We evaluated the performance of the U.S. domestic air traffic system under power 

outages due to the NMSZ. We did not model the seismic vulnerabilities of the air 

traffic infrastructure and we only considered the first three time periods of the of the 

power disruption (because for long term outages, the airlines may choose to change 

the flight schedule). The solution varies among the consequence scenarios depending 

on whether Memphis International Airport (MEM), Nashville international Airport 

(BNA), and  Lambert-St. Louis international Airport (STL) are part of the blackout 

area or not. Under no mitigation investment, MEM is always affected by the power 

outage. Problems in BNA and STL vary from one scenario to another.  

First, we focus on the first time period (first three days after an earthquake) for the 

first three consequence scenarios.  The first scenario affects MEM and STL and it 

causes the disruption of more than 30,000 daily trips, and affects 315 origin-

destination pairs out of the total 6,222. All the disruptions occur to flights departing or 

arriving at the affected airports. The second scenario only affects MEM, and causes no 
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consequences on passengers travelling between airports different than MEM. The third 

scenario affects MEM, BNA, and STL. It affects more than 7% of the origin-

destination pairs causing no with origin and or destination at the affected airports.  

Table 9 shows the number of daily passengers whose trip is cancelled under each 

of the earthquake scenarios and during the three repair time periods within the first 

month after the seismic event. Results are presented for a scenario of  US$ 10 million  

and US$ 100 million  for  reinforcement and capacity enhancement, respectively.  

 

Table 9. Average daily cancelled trips. 

Scenario 
No mitigation Seismic reinf.: US$ 10 million,  

enhancement: US$ 100 million 
First 72 
hours 

3rd – 7th 
day 

2nd - 4th 
week 

First 72 
hours 

3rd – 7th 
day 

2nd - 4th 
week 

1 30,532 7,374 7,374 0 0 0 
2 73,74 7,374 0 7,374 7,374 0 
3 47,644 7,374 0 47,644 0 0 
4 7,374 7,374 0 7,374 7374 0 
5 30,532 7,374 0 7,374 7374 0 
6 30,532 30,532 0 7,374 0 0 
7 7,374 7,374 0 0 0 0 
8 7,374 7,374 0 7,374 7,374 0 
9 30,532 7,374 7,374 7,374 7,374 0 
10 24,604 7,374 7,374 7,374 7,374 7,374 
11 7,374 7,374 0 7,374 7,374 0 
12 30,532 7,374 0 7,374 7,374 0 

 

Conclusions 

This paper develops a computational effective procedure, using stochastic 

programming, to optimize seismic mitigation (both anchoring of components as well 

as capacity expansion in transmission and generation) in electric power systems for 

large-scale application.  The solution procedure was tested using smaller problem 

instances.  It was then applied to perform seismic mitigation planning for EI, which 
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has almost 15,000 nodes and 23,000 links. As mentioned previously, this is the first 

paper to model both the opportunity to strengthen system components as well as to 

add operating margin.  Further this is the first attempt to address capacity planning for 

very large transmission systems. 

Future work is valuable in at least three related areas.   First, the interdependency 

between the electric power system and the air system is only in one direction.  That is, 

lack of power affects the air transportation system. Lack of air travel capabilities does 

not impact the electric power system. For this particular infratsrcuture interaction, this 

is reasonable. However, in other systems, the one way impact is too simplistic. For 

example, consider the relationship between water and electric power. Substantial 

amounts of water are used in generation for electric power, and electric power is used 

for pumping in the water system. Explicit representation of these “two way” linkages 

is important. Therefore, extending the modeling to incorporate these complex linkages 

with explicit representation of the physical operation of each of the systems is 

important. Second, we simply compute the impacts on the air transportation system of 

investments in the electric power system, rather than use that computation as part of 

the optimization to dispatch the remaining power after an event. Currently there is 

very little data available on the end uses for the electric power demanded at the high 

voltage busses represented in the transmission network model. That is, there is very 

limited information about how the lower voltage distribution system allocates end uses 

to the transmission network busses. However, if that data were available, and there 

were methods available to exploit that data, decision making for investment planning 

would be much improved. Third, the focus of this modeling has been earthquake 

hazards. In reality many kinds of events impact infrastructure systems including 

hurricanes, ice storms and intentional disruption (though this has occured primarily 

outside the U.S). Extending the modeling to address multiple hazards is important. 
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