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ABSTRACT 

 

VINEYARD FLOOR MANAGEMENT IN THE FINGER LAKES REGION: 

PHYSIOLOGICAL AND MICROBIAL PERSPECTIVES 

 

Ming-Yi Chou 

Cornell University, 2018 

 

Excessive vine vegetative growth in wet, cool climates increases management costs and 

compromises grape quality. However, the standard practice of bare soil under vines exacerbates 

the vigor problem. Previous studies found that using under-vine cover crops reduced vine vigor 

in young vineyards but had little to no impact on mature vines. Wine sensory properties were 

impacted by under-vine cover crops although the cause was not clear. A study conducted in a 

mature Cabernet franc (Vitis vinifera L.) vineyard in the Finger Lakes region showed that chicory 

was the most effective cover crop to consistently reduce pruning weight and canopy leaf layer 

number without reducing yield compared to glyphosate maintained bare soil, whereas other 

under-vine cover crop treatments were not as consistent. In a three year study conducted in a 

mature Riesling (Vitis vinifera L.) vineyard, under-vine natural vegetation reduced vine canopy 

leaf layers and occlusion layers in one of the years compared to glyphosate maintained bare soil 

but there were no detectable sensory differences among wines from different under-vine floor 

treatments in any year. Profiling of soil microbiome using high-throughput sequencing showed 

that microbial community of natural vegetation diverged from the cultivation and glyphosate 

maintained treatments. However, no corresponding change in fungal community structure was 

observed on grapes or in simulated spontaneous fermentations. Undiscernible wine sensory 

properties also confirmed the lack of treatment effects in wines. Although under-vine cover crops 
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impact on vine vegetative growth varied, no reduction in yield suggested that under-vine cover 

crops could serve as beneficial alternatives to bare soil for sustainable vineyard management. 

Further studies on how under-vine cover crops impact wine sensory properties are required to 

evaluate their practical adoptability.  
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CHAPTER 1 

 

Literature review 

 

Introduction 

             Excessive vegetative growth of the grapevine, Vitis vinifera L., is a primary viticultural 

challenge in Finger Lakes. If incorrectly managed, excessive vegetative growth can incur high 

vineyard management costs and compromised fruit quality. A high source-sink ratio promotes 

growth in woody plants (Kozlowski, 1992). In cool climate, the factors limiting source supply 

are minimized due to ideal growing season temperatures, combined with an abundance of 

precipitation and fertile soil with 3-5% organic matter content (Wolf, 2008). The high supply of 

source and the indeterminate shoot growth habit of grapevines (as a strong sink) result in 

excessive vegetative growth. Furthermore, many vineyard management practices inadvertently 

promote further vine vegetative growth, such as inappropriate planting densities, rootstocks, 

trellis systems, and floor management. Among these practices, floor management is readily 

adjustable, especially in a well-established and mature vineyard. In the Finger Lakes, 

maintaining a bare soil strip directly under the vine with a mixed vegetation inter-row is the most 

common vineyard floor management practice (Wolf 2008). However, this floor management 

scheme further promotes vine vigor, as maintaining a bare soil strip denies resource competition 

from under-vine vegetation (Wheeler et al., 2005). As a result, the winter pruning weight of 

mature Vitis vinifera vines, vertically trained and maintained for wine grape production, often 

exceeds one kilogram per vine in vineyards with 1.8m in-row spacing in many cool climate 

regions, even when hedging is commonly performed throughout the growing season.  
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             Excessive vegetative growth can result in high canopy density and fruit shading. It has 

been found that high canopy density favors disease development and increases the difficulty of 

disease management due to reduced sunlight exposure, airflow, and pesticide penetration in the 

fruiting zone (Austin et al., 2011). In addition, berry shading has been found to negatively impact 

grape and must composition influencing soluble solids, pH, tartrate/malic acid ratio, polyphenol 

and anthocyanin concentration (Smart, 1985), and accumulation of highly organoleptic 

compounds, such as methoxypyrazines (Scheiner et al., 2012) and rotundone (Geffroy et al., 

2014). Wine sensory properties can also be impacted by cluster shading. Traminette wines made 

from exposed grapes were described as more fruity, floral, and spicy than the wines made from 

shaded grapes (Skinkis et al., 2010). Wines made from shaded Shiraz grapes had less fruit flavors 

on the palate compared with wines made from grapes that received higher sunlight exposure 

(Ristic et al., 2007). Managing vines with an adequate vegetative and reproductive balance is 

crucial for sustainable and high quality grape and wine production (Howell, 2001, Kliewer and 

Dokoozlian, 2005), and excessive vine vigor is an issue that needs to be addressed in overly 

vigorous vineyards such as vineyards in Finger Lakes. 

             A bare soil strip is often achieved by applying herbicide or with soil cultivation. 

Glyphosate, the most widely used herbicide in the vineyards of the Northeastern U.S. (Wolf, 

2008, Yeh et al., 2014), selectively disrupts plant enolpyruvylshikimate phosphate synthase when 

in contact with plant tissue. It is considered to be an herbicide with relatively low environmental 

risk (Duke and Powles, 2008) due to its high microbial degradability, since glyphosate per se is a 

carbon and nitrogen metabolic substrate for microorganisms (especially fungi) when it adsorbs to 

soil (Sprankle et al., 1975). However, it has become a great concern that intensive application of 

glyphosate accelerates the evolution of glyphosate resistant weeds (Yamada et al., 2009). There 
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are 293 plant species that have been identified as glyphosate resistant worldwide (Heap, 2018). 

Compared to herbicide use, soil cultivation is more time and energy demanding, but is favored 

by organic growers as it enables weed management without the application of synthetic 

herbicides. However, soil cultivation physically breaks down soil aggregates and promote losses 

in the mineral nutrient pool (Paustian et al., 1997, Elliott, 1986). Aside from promoting vine 

vigor, maintaining bare soil in the vineyard was also found to enhance soil erosion and runoff 

(Battany and Grismer, 2000, Napoli et al., 2017), resulting in pesticide and nutrient leaching into 

the waterway (Karl et al., 2016b), and potential reduction of long-term soil health (Blanco-

Canqui et al., 2011, Peregrina et al., 2010). 

             A recent study revealed that grapevine aerial organs shared high amount of  bacterial 

OTUs with soil, and theorized that microbes present on grape berries may have originated from 

the soil (Zarraonaindia et al., 2015). Hence, vineyard floor management practices should not be 

examined solely for their impact on soil health and vine physiological parameters. One study on 

under-vine cover crops found that although vine growth and grape harvest parameters were not 

impacted by under-vine cover crops, wine sensory properties were (Jordan et al., 2016). This 

raises suspicions about the effects of under-vine cover crops on the wine sensory properties 

through alteration of the vineyard microbiome. Thus, further study is warranted on the use of 

aggressive under-vine cover crops to mitigate vine vigor in cool climate mature vineyards and 

their effect on wine sensory properties through vine physiological and vineyard microbial routes.  
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Grapevine and wine sensory properties respond to under-vine floor management practices 

             Cover crop establishment is not always recommended, as resource competition can 

substantially reduce vine growth and yield in hot and arid regions (Medrano et al., 2015, Tesic et 

al., 2007). The efficacy of cover crops in different climatic regions varies; complete vineyard 

floor vegetation compared with maintaining bare soil was shown to drastically reduce 

Chardonnay vine yields in an arid climate, but only moderately reduce yield in a climate with 

higher rainfall (Tesic et al., 2007). That study showed reduced shoot growth and canopy density 

correlated with a decrease in petiole nutrient and soil water content, but not soil nutrient content. 

This indicates that reduced soil water content suppressed soil nutrient mineralization and led to 

decreased vine vegetative growth and yield capacity (Tesic et al., 2007). Another study showed 

that cover crops competed for soil nitrogen with grapevines, after cover crop establishment 

(Pérez-Álvarez et al., 2015). This resulted in reduced vine petiole nitrogen content in the third 

year, and reduced berry YAN in the fourth year. These sequential results indicated direct nutrient 

competition between cover crops and grapevines. However, mitigation of excessive vine vigor 

due to resource competition from under-vine ground vegetation could be beneficial to growers in 

wet and cool climate regions.  

             In cool climates, it was found that chicory growing under-vine did not impact vine yield, 

but reduced young vine vegetative growth, including shoot growth rate, leaf size, leaf layers, and 

pruning weight in a one year study (Wheeler et al., 2005). Consequently, berry ripeness 

improved, including increased soluble solids and reduced TA. In the same study, sensory 

evaluation of the wines made from vines with under-vine chicory crops had higher rated 

attributes for appearance, aroma, palate, and higher overall scores than wines from vines with 

soil cultivation treatment. Another study conducted in the humid climate of southern Uruguay 
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showed that under-vine tall fescue reduced pruning weight, yield, canopy density, and berry size 

of young Tannat vines, while simultaneously increasing sunlight penetration in the canopy and 

berry soluble solids compared to vines with bare soil maintenance with herbicide treatment 

(Coniberti et al., 2018). Wines made from Tannat vines with under-vine cover crop treatment had 

a greater anthocyanin concentration than those from vines with herbicide treatment. In the cool 

climate Finger Lakes, it was also shown that under-vine native vegetation and white clover can 

reduce pruning weight, canopy leaf layers, and yield in young Cabernet Franc vines while 

maintaining the same Ravaz index and juice soluble solids, pH, and TA (Karl et al., 2016a). 

However, wines from this study and their aromatic properties were indistinguishable to a sensory 

panel. In a study performed in North Carolina, where the climate is warm and humid, under-

trellis KY-31 tall fescue, Aurora Gold fescue, perennial ryegrass, orchardgrass, and Elite II tall 

fescue cover crops were found to effectively reduce pruning weights and the percentage of 

shaded clusters without impacting yield in a young (6 years old at onset of the experiment) 

Cabernet Sauvignon vineyard; these effects were likely due to nutrient competition as vine water 

potential was minimally impacted (Giese et al., 2014).  

             Another study completed in warm and humid Virginia showed that an under-trellis cover 

crop mix including creeping red fescue, tall fescue, and orchard grass limited lateral shoot leaf 

growth, reduced pruning weight by 47%, and enhanced canopy light environment by reducing 

canopy density mainly by increasing water competition in a three year old Cabernet Sauvignon 

vineyard (Hatch et al., 2011). Similar results were observed in the continued study of the same 

vineyard, where under-vine perennial creeping red fescue reduced pruning weight by an average 

of 26% and improved cluster light exposure by an average of 35% compared with bare soil 

maintained with herbicide over seven years of assessment (Hickey et al., 2016). However, it was 
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also concluded that nutrient competition, especially for nitrogen, contributed more to the reduced 

vegetative growth compared to water competition as a function of under-vine cover crops. The 

results from these studies indicate increased water competition resilience in mature grapevines.  

             In a mature Cabernet Franc vineyard (9 years old when the experiment was started) in 

the Finger Lakes, under-vine buckwheat and rosette forming turnips had no impact on yield, 

pruning weight, or Ravaz index. It was hypothesized that vines shed fine roots in areas of high 

competition, but maintained fine roots longer in the low competition areas to better explore soil 

for water and nutrients (Centinari et al., 2016). In the same study, under-vine annual ryegrass 

reduced pruning weight by 34% in the third year, showing the ability of under-vine cover crops 

to mitigate mature vine vigor. In the same region, residential vegetation, annual ryegrasss, and 

buckwheat were found to have no impact on 16 years old Riesling vine growth, as canopy 

structure, pruning weight, yield, and berry harvest parameters were unaffected in all three years 

of the study (Jordan et al., 2016). However, wines made from the different treatments had 

sensory differences in the second year of the study, and the wine from vines with herbicide 

treatment differed from the others in the third year. These results indicated better resource 

competition resilience in mature vines than that of young vines. It has been proposed that the 

increased resilience of mature vines faced with variations in morphology, water, and nutrient 

status in mature vines are likely due to larger root systems and permanent structures with higher 

nutrient reserves (Zufferey and Maigre, 2007, Grigg et al., 2018, Holzapfel et al., 2010). The 

wine sensory results from Jordan et al. (2016) also indicated that under-vine cover crops affect 

wine sensory properties through non-physiological routes. 
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Floor management practices impact soil conditions 

             Bare soil in the vineyard intensifies soil erosion and runoff. There is a significant 

negative correlation between soil erosion and runoff and vineyard ground cover; soil loss was 

reduced with increased ground coverage (Battany and Grismer, 2000). An eight year study in a 

Mediterranean vineyard found an overall 68.5% reduction in eroded soil and significantly lower 

levels of nitrogen and phosphorous loss in a vineyard with floor vegetation compared to a 

vineyard with soil cultivation (Napoli et al., 2017). Compared to herbicide treatment, cultivation 

maintained greater weed biomass which contributed to labile carbon in the soil, and had higher 

nitrogen retention (Steenwerth and Belina, 2010). However, soil cultivation mechanically breaks 

down soil aggregates, which reduced macroaggregate stabilization and resulted in more 

microaggregates, in which the carbon and nitrogen were less labile (Elliott, 1986). The 

destabilization of aggregates increases organic content availability for utilization by 

microorganisms and results in lower soil organic matter in the long term (Snyder and Vázquez, 

2005, Six et al., 2002). Compared to cover crops, many studies have shown that cultivation and 

tillage decrease organic matter content, microbial activity, and soil aggregation, while increasing 

subsoil bulk density and soil erosion (Zehetner et al 2015, Steenwerth and Belina 2008b, Six et al 

1999). A study showed that 15 years of perennial cover crop rotation reduced soil density by 4%, 

while increasing top soil aggregate size by 80% and organic matter content up to 30% compared 

to cultivated bare soil (Blanco-Canqui et al., 2011). In a California vineyard, cover crop Trios 

102 and Merceds Rye enhanced soil carbon mineralization, microbial respiration, and microbial 

biomass compared with cultivated soil (Steenwerth and Belina, 2008b). It was also found in cool 

climates that maintaining under-vine native vegetation or white clover enhanced soil microbial 

respiration rate and reduced dissolvable organic carbon in soil leachate in all four years of the 
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study. Additionally, soil organic matter content increased in the fourth year compared with 

cultivated soil (Karl et al., 2016a).  

             Soil nitrogen content was reduced in a Spanish vineyard with cover crops in comparison 

with tilled bare soil (Pérez-Álvarez et al., 2015). Another study also showed that non-permanent, 

inter-row cover crops reduced surface soil nitrogen in a Mediterranean vineyard (Celette et al., 

2009). Aside from soil nutrient content, many studies found that vineyard cover crops increased 

vineyard water use and reduced soil water content. Vineyard permanent residential vegetation 

and sowed cover crop mix increased water use before bloom in a Mediterranean climate vineyard 

(Monteiro and Lopes, 2007). Increased floor vegetation coverage led to reduced soil volumetric 

water content in a hot and arid climatic condition (Tesic et al., 2007). It was also demonstrated 

that permanent vineyard cover crops dried out the top soil zone and causing the vine to extend its 

root system to explore water in the deeper soil zone (Celette et al., 2008). In wet climate 

vineyards, soil volumetric water content was found to be reduced by under-vine chicory, white 

clover, and native weeds in comparison with bare soil maintained by herbicide or soil cultivation 

(Wheeler et al., 2005, Karl et al., 2016a). Reduced soil water could also relate to reduced soil 

nutrient mineralization which leads to reduced vine growth. One study observed that cover crops 

reduced vine yield, pruning weight, and petiole nutrients including nitrogen and magnesium 

(Tesic et al., 2007). In that study, reduced soil moisture, combined with an unchanged soil 

nutrient concentration indicates that the reduced vine nutrient uptake was due to lower soil 

nutrient mineralization under reduced soil moisture. However, a study done in a California 

vineyard showed that microbial biomass, nitrogen, and soil nitrogen mineralization were 

increased using a cover crop of Trios 102 and Merceds Rye without impacting soil moisture, 

despite the fact that total nitrogen in the dry soil was lower compared to cultivated soil 
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(Steenwerth and Belina, 2008a). These previous findings indicate that cover crops could 

potentially increase the easily mineralizable nitrogen pool in the soil, which is beneficial to 

grapevine nitrogen uptake. The findings also suggested that cover crop effects on soil water and 

nutrient status are likely weather dependent. 

 

Vineyard management practices and vineyard microbiome  

             The impact of the vineyard microbiome and its potential to generate wines with a 

regional typicity is referred to as microbial terroir (Gilbert et al., 2014). The potential of 

endophytes to regulate plant metabolism and produce volatile compounds that could impact 

grape and wine aromatic profiles has been suggested (Abrahão et al., 2013, Yang et al., 2016). 

For example, the endophytic pathogen Botrytis cinerea was found to impact the synthesis of a 

wide variety of berry secondary metabolites, including many aroma precursors such as fatty 

acids, amino acids, lipids and polyols, and aromatic compounds such as benzoic acid (Agudelo-

Romero et al., 2015). There have been many endophytic bacteria and fungi identified in grapes 

(Compant et al., 2011, González and Tello, 2011), including yeast genera that can negatively 

impact wine fermentation and wine organoleptic properties. Acremonium, Aspergillus, and 

Penicillium were a few of the pernicious genera identified.  

             Recent studies have shown that the climatic conditions, vintage, and grape varieties were 

crucial factors that shaped grape must microbiome and microbial biogeography (Bokulich et al., 

2014). One study showed that use of selected regional Saccharomyces yeast genotypes in wine 

fermentation affected the resulting wine chemical composition (Knight et al., 2015). A study 

showed that vineyard sites had differentiated grape microbiomes, which correlated with the wine 
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metabolome, and suggested that selected microbiota in grapes could be used as wine metabolite 

abundance predictors (Bokulich et al., 2016). These studies indicated the importance of the grape 

and vineyard microbiome and their possible contribution to wine phenotypes, but the mechanism 

of how microbiome variance contributes to wine chemistry has yet investigated. The 

geographical pattern of grape associated microbiomes could also be linked to the soil 

microbiome. The grapevine aerial organs shared a considerate amount of bacterial OTUs with 

soil which indicated the possibility of grape microbiome’s soil origination (Zarraonaindia et al., 

2015). The results of that study further emphasized the importance of investigating vineyard soil 

microbiome management and its link to the grape and wine fermentation microbiomes.  

             Glyphosate is readily biodegradable when bonding to soil (Sprankle et al., 1975), and 

thus is considered to have a low environmental risk. A long term study on repeated glyphosate 

application found that the culturable bacterial population was not impacted, but fungal 

population increased (Araújo et al., 2003). However, repeated application of glyphosate for four 

years was found to reduce organic carbon content by 46%, nitrogen by 15%, and acid phosphate 

activity by 64% in Haplorthod soil (Pe´rie´ and Munson, 2000) in a cool climate. These soil 

properties could be unsupportive to microbial population, and hence negatively impact soil 

microbial health. It was concluded that glyphosate application had few direct impacts on soil 

microbial activity, biomass, and structure, but had indirect impacts on the microbial population 

such as reducing soil vegetation and organic matters were more prominent (Rose et al., 2016). 

Compared with glyphosate application, soil cultivation seemed to have a more consistent 

negative impact on soil microbiota according to previous studies. Cultivated soil was found to 

have lower carbon, nitrogen, and microbial biomass compared with vegetated soil in a study of 

42 coastal land sites in California (Steenwerth et al., 2002). In a California vineyard, higher 
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microbial biomass was found in soil with cover crop treatments, including native grass and 

clover, in comparison with tilled soil (Ingels et al., 2005). Compared to bare soil maintained with 

manual cultivation and glyphosate application, microbial activity as measured by microbial 

respiration was higher in an under-vine native vegetation treatment in three out of four years, and 

in a white clover treatment in two out of four years (Karl et al., 2016b).  

             Aside from floor management, other vineyard management practices were also studied. 

Grape epiphytic bacterial cell density was negatively correlated with the copper from 

phytosanitary spray (Martins et al., 2012). Similarly, epiphytic yeasts and yeast-like fungus 

showed the same response to copper originating from pesticide use (Martins et al., 2014). In 

these studies, culturable bacterial and fungal community structure in organic vineyards were 

found to be different from that of a conventional vineyard (Martins et al., 2014, Martins et al., 

2012). Fungal phospholipid fatty acids markers are negatively associated with soil copper, which 

indicated the impact of copper pesticides on vineyard soil microbiome properties (Zehetner et al., 

2015). In a study of different vineyard farming systems, dominant non-Saccharomyces yeasts in 

the must differed if the vineyard management practices were conventional, biodynamic, or 

integrated pest management, but diverged non-Saccharomyces yeasts did not affect the growth of 

Saccharomyces yeast during spontaneous fermentation (Bagheri et al., 2015). However, using a 

culture dependent method (Martins et al., 2012, Martins et al., 2014, Bagheri et al., 2015) 

without proper field replications (Bagheri et al., 2015) greatly limited the scope of microbial 

populations studied and possibilities of conducting statistical analysis. A more recent study 

adopted next generation sequencing and found that soil, and grape associated fungal community 

of conventionally managed vineyards differed from that of biodynamically managed vineyards 

(Morrison-Whittle et al., 2017). In that study, vineyard management approaches were studied 
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while it was unclear which management practices impacted aspects of the fungal community, and 

to what degree.      

 

Conclusion 

             Excessive vine vigor in cool climate regions is a major challenge for growers. Using 

under-vine cover crops to mitigate vigor in young vines is effective, but the efficacy on mature 

vine is unclear. Also, the use of under-vine floor management practices was found to impact wine 

sensory properties without influencing vine physiological parameters. This indicates that under-

vine floor management may affect wine sensory properties through alteration of the vineyard 

microbiome. 

 This study evaluated the effects of aggressive under-vine cover crops in mitigation of 

high vine vigor in a mature vineyard of the Finger Lakes region. In addition, under-vine floor 

management effects on wine sensory properties through vine physiological and microbial routes 

were examined. The objective of this study is to assess how under-vine floor management 

practices impact vine growth, yield, and wine sensory properties for practical use in cool climate 

mature vineyards in order to achieve sustainable vineyard management. 
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CHAPTER TWO 

 

Under-vine cover crops mitigated vine vigor in a mature and vigorous Cabernet franc vineyard 

 

Introduction 

             Maintaining bare soil under-vine by applying herbicide is the most common vineyard 

under-vine floor management practice around the world. While vineyard ground cover provides 

water and nutrient competition (Wheeler et al., 2005, Lopes et al., 2008, Celette et al., 2009), 

bare soil maintained under-vine enables higher water and nutrient availability and promotes vine 

vegetative growth. In the Finger Lakes region of New York State, frequent growing season 

precipitation and high soil organic matter combine to result in excessive vine vigor, which is one 

of the main viticultural challenges.  

             Excessive vine vegetative growth can lead to high canopy management costs (Smart and 

Robinson, 1991), reduced fruit sunlight exposure and increased disease incidence (Austin et al., 

2011, Valdés-Gómez et al., 2008), which compromise fruit quality (Smart, 1985). Bare soil 

maintained with either herbicide or soil tillage risks degradation of soil health such as soil 

erosion, breakdown of soil aggregates, depletion of organic matter and deterioration of the 

microbial environment (Blanco-Canqui et al., 2011, Napoli et al., 2017, Peregrina et al., 2010). 

Moreover, vineyard soil without groundcover results in pesticide and nutrient leaching which 

contaminates groundwater (Karl et al., 2016b). 

             Many studies have investigated the effect of under-vine cover crops in young vineyards 

and found some cover crop species were able to reduce vine vegetative growth such as pruning 

weight, leaf layers and shoot length (Hatch et al., 2011, Giese et al., 2014, Karl et al., 2016a), but 
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studies completed in mature vineyards are lacking. One study done in a mature vineyard in cool 

climate Finger Lakes found that  annual ryegrass inconsistently reduced vine pruning weight 

with yield being affected but the grape composition was not examined (Centinari et al., 2016). 

Another study done in the same region showed that vine growth, yield, grape composition were 

not impacted by annual ryegrass, buckwheat and resident vegetation growing under-vine in three 

years on one site (Jordan et al., 2016) but chicory reduced shoot growth, pruning weight and 

yield in the second year of establishment on the other site (Jordan, 2014). The inconsistent 

results implied the uncertainty of using under-vine cover crops in mature vineyards. Thus, a 

study on aggressive under-vine cover crops and their effects on vine growth, yield and berry 

composition was needed. 

             This study aimed to employ aggressive under-vine cover crops, including chicory, 

fescue, tillage radish, alfalfa and natural vegetation, to determine if vigorous resource 

competition coming from the under-vine cover crops would consistently reduce vine growth, and 

also to evaluate how yield and berry composition would be impacted by under-vine cover crops 

in a mature vineyard in the cool climate region of the Finger Lakes. It was hypothesized that 

under-vine cover crops would reduce vine vegetative growth through reduce vine water potential 

and nutritional status. The objective of this study was to investigate under-vine cover crops in the 

vineyard to mitigate vine vigor and improve soil health to facilitate sustainable vineyard 

operation. 

 

Material and methods 

Experimental setup 

             This study was conducted from 2014 to 2016 at a commercial vineyard in Ovid, NY 
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(42.66˚N, -76.71˚W). The soil type was Howard gravely loam with less than 5% slope (Soil 

Survey Staff 1975). 

             The climate in 2016 was the warmest during the three years of the experiment with total 

1648 GDD followed by 2015 (1586 GDD) and 2014 (1431 GDD) based on 10˚C (Table 2.1). 

Although the sum of the precipitation was higher in 2016, the early growing season from late 

May to early August was the driest compared to 2014 and 2015. The early season precipitation, 

June and July, of 2014 and 2015 was 127% and 93% more than that of 2016. In 2016, many sites 

in the Finger Lakes were listed at level three drought according to U.S. Drought Monitor 

(http://droughtmonitor.unl.edu/)  but the experimental site had ample precipitation through much of 

the season.  

             The Cabernet franc cl.UC Davis 1 grafted onto Courderc 3309 rootstock vines were 

planted in 1999 in a North-South row orientation and trained on Scott-Henry trellis. The in-row 

vine spacing was 2.13m and inter-row spacing was 2.74m. According to the standard practices of 

the region (Wolf 2008), the vines were late winter cane-pruned around February each year to a 

consistent bud number, on average 16.4 buds per linear meter and 40 buds per vine, not including 

one extra cane that served the dual function of kicker and winter damage back-up cane, which 

was removed by bloom. 

             An experimental plot was set up for five cover crop treatments to compare with 

glyphosate maintained bare soil as the control. The randomized complete block design (RCBD) 

was applied across four adjacent vineyard rows of the experimental site for four replications, 

with treatments and control randomly assigned within each replication. Each experimental unit 

was comprised of four consecutive panels with three vines per panel (12 vines per experimental 

unit). The middle two panels (six vines) were used for data collection for a total of 48 panels 

http://droughtmonitor.unl.edu/
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(144 vines) in the experiment. Cover crops were seeded, and the herbicide was applied to 

approximately 1.2m wide under-vine strip along the row. A permanent between-row cover crop, 

a mix of fescue, white clover and weeds, was maintained separately and mowed periodically. 

 

Table 2.2. Growing Degree Days (GDD) base on 10˚C and precipitation 

of the experimental site during the growing season from 2014 to 2016.  

Month 
GDD (˚C)   Precipitation (cm) 

2014a 2015b 2016   2014c 2015 2016 

April 28.3 29.9 24.4  7.1 6.6 3.8 

May 165.2 210.6 125.2  4.6 3.4 5.8 

June 294.0 293.7 291.2  5.5 3.8 1.8 

July 335.7 360.3 406.7  7.0 6.8 3.7 

August 289.2 328.2 423.8  8.1 3.3 11.0 

September 225.0 297.3 271.7  1.3 7.9 7.6 

October 94.1 65.5 104.6  2.2 5.2 10.9 

Sum 1431.4 1585.6 1647.5   35.7 37.1 44.6 
aData obtained from Romulus, NY station. 
bGDD and precipitation data of 2015 and 2016 were obtained from Ovid, NY station. 
cData obtained from Varick, NY station. 

 

 

Under-vine cover crop establishment  

             The five under-vine cover crops treatments were natural vegetation (NV), alfalfa (ALF), 

fescue (FES), tillage radish (TR) and chicory (CHI).  Seeding rates varied by treatment (Table 

2.1). The control was maintained by applying Roundup (Roundup® PRO concentrate, Monsanto, 

St. Louis MO). The under-vine cover crops and herbicide stripes were established on an annual 

basis. 

             For the NV treatment, the weeds were allowed to grow freely whereas the other cover 

crops treatments were seeded. Seeds of ALF, FES, CHI and TR treatments were hand 

broadcasted on 26 May to 2 June 2014, 13 to 15 May 2015 and 25 to 26 May 2016. The seeding 

rates were the same for FES across all three years but increased in 2015 and 2016 for the other 



22 
 

cover crops due to poor establishment in 2014. The control was established with Roundup 

application, in which Glyphosate was the active ingredient, with 2.9 kg a.i./ha application rate of 

2% solution on 24 June and 16 July 2014, 16 June 2015 and 15 June 2016.  The cover crop 

treatments were trimmed using a string trimmer on 8 to 9 August 2015 as the vegetation was 

reaching the fruiting zone.  

 

Ground coverage assessment and weed identification  

             In each experimental unit, two 400cm2 square-shaped grids were randomly chosen using 

a square wooden frame with 0.2m inner length of each side at veraison in 2015 and 2016. A 

digital photo was taken at 1.5m vertically above each chosen grid with measuring tape placed 

horizontally on the ground to be used as photo scaling reference. The above ground tissue of 

cover crop and weeds were separately harvested from each of the chosen grid, contained in 

separate paper bags, dried in oven at 60˚C overnight and weighed. The chosen grid within each 

digital photo was analyzed with ImageJ Version 1.50b (open resource via http://imagej.nih.gov/) 

to define the proportion of ground coverage with image processing steps similar to Ricotta et al. 

(2014). The percentage of cover crop coverage was determined by dividing cover crop biomass 

by total biomass for each of the experimental unit. The weeds in the NV treatment were 

identified visually using the same digital photos for percent ground cover measurement. 

 

Table 2.1. Scientific name, common name and seeding rate of under-vine cover crop treatments used in 

the experiment. The seeds were purchased from Ernst Seeds, PA, USA. 

Abbreviation Scientific name Variety/Common name 

Seeding rates 

(kg/ha) 

2014 2015&16 

CHI Cichorium intybus  Blue Chicory 7.01 8.76 

ALF Medicago sativa Alfalfa, Vernal 28 35 

TR Raphanus sativus Tillage Radish, Ground hog 14 17.4 

FES Festuca arundinacea Tall Fescue, Kentucky 31 196 196 



23 
 

Shoot growth measurement 

             Four shoots per data vine were randomly marked in the beginning of each growing 

season to represent the primary shoot growth dynamic for each vine throughout the growing 

season. Shoot diameters were measured (mm) by using calipers at the middle of internode one 

above the first fully developed bud where two measurements were taken per shoot. The average 

of the two numbers was used to represent each shoot. Shoot length was measured (cm) with 

measuring tape from primary shoot base to shoot tip. Lateral shoot from the primary shoot 

marked for primary shoot measurement were measured using the same methods described for the 

primary shoot beginning after the first hedging and continuing until the second hedging or shoot 

thinning which imposed missing tagged shoots.  

 

Canopy architecture - EPQA 

             Point quadrat analysis (PQA) (Smart and Robinson, 1991) and enhanced point quadrat 

analysis (EPQA) (Meyers and Vanden Heuvel, 2008) were conducted to characterize canopy 

light environment at veraison, 25 August 2015 and 19 August 2016. To measure basic PQA, a 

thin wooden stick horizontally inserted through the fruiting zone in perpendicular to the row at 

20cm interval on a per panel basis while recording any leaf and cluster contact with the stick end. 

Light environment of the canopy at fruiting zone was also measured on the same day of 

measuring PQA using a ceptometer (Decagon, model AccuPAR LP-80, Pullman, WA), which 

recorded the photon flux, with an ambient flux sensor attached. Two measurements were taken 

per data vine on the fruiting zone during the solar noon with an hour deviation. The ambient flux 

sensor was pointed vertically toward the sky above canopy without any shade throughout the 

ceptometer measurement. The proportion light interception was calculated dividing fruiting zone 
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photon flux by ambient photon flux. Light interception and PQA data were uploaded into 

Canopy Exposure Mapping Tools, version 1.7 (available via Jim Meyers, jmm533@cornell.edu) 

to calculate leaf layer number, occlusion layer number, interior leaf percentage, interior cluster 

percentage, cluster exposure layer and cluster exposure flux availability.  

 

Vine water and nutrient status measurements 

             Vine midday stem and predawn leaf water potential were measured according to Fulton 

et al. (2001) with a pressure chamber (Soil Moisture Equipment Corporation, model 3005F01, 

Santa Barbara, CA). Midday stem water potential measurements were performed at solar noon 

with one hour deviation on a biweekly basis and predawn water potential was measured during 

late growing season during fruit ripening 11 September 2015and 13 September 2016 at 4AM 

EST with one hour deviation. For midday stem water potential measurement, fully expanded 

healthy young leaves were bagged with a 500ml alumina foil covered Ziploc bag for 15mins 

before measurement. Each leaf was cut off with a sharp blade, transferred immediately into the 

pressure chamber, and pressurized at about 1bar/sec to the point when xylem sap moisturized the 

cut surface of the petiole. 

             One hundred petiole samples per experimental unit, from young fully expanded leaves, 

were collected at roughly full bloom on 20 June 2015 and 24 June 2016, and veraison on 4 

September 2014, 24 August 2015 and 26 August 2016. The petioles were washed with mild soap, 

rinsed with deionized water and sent to Cornell Nutrient Analysis Laboratory (CNAL) for total 

Carbon, Nitrogen using combustion method, and macro- and micronutrients (Al, B, Ca, Cu, Fe, 

K, Mg, Mo, Mn, Na, P, Zn) using dry ash extraction method according to Campbell et al (1998).  

 

mailto:jmm533@cornell.edu
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Yield components and juice composition measurements 

             The yield data was collected at commercial harvest as determined by the grower on 25 

October 2014, 17 October 2015 and 22 October 2016. For each year, the harvests were done 

manually on a per vine basis. The clusters from each vine were clipped, counted and pooled in a 

plastic lug to determine the yield by weighing using a hanging scale (Salter Brecknell, model 

SA3N340, accuracy ±0.1kg, Fairmont, MN). The total yield per vine was then divided by the 

number of clusters to determine the average weight per cluster. An extra 100 berries per 

experimental unit was collected at harvest, stored in Ziploc bag at -20˚C until weighed (Santorius 

ELT103, accuracy ±0.001g, Goettingen, Germany) to determine the average berry weight.  

             Pruning weight was collected on a per vine basis from upward shoots in 2014 and from 

both upwards and downwards shoots in 2015 and 2016 in the early winter for downward shoots 

and late winter for the upwards shoots of each year (as determined by the cooperating grower’s 

standard practice). Only upward shoot pruning weight was collected in 2014 because the 

downward shoots were pruned in an untraceable manner by the vineyard worker prior to data 

collection. In 2016, the downward shoots were pruned by the vineyard worker prior to the data 

collection. However, the shoots remained directly under the vine so the data was collected from 

the shoots reconstructed by identifying the size, shape and color of the cut surfaces. Pruning 

weight was used as an indicator for vine vegetative growth and to determine the Ravaz index by 

dividing yield by pruning weight. 

             Twenty clusters were collected randomly from each experimental unit at harvest and 

stored in a -20˚C freezer before juice composition analysis. The clusters were then thawed at 

room temperature, whole cluster pressed and the juice was filtered with cheesecloth. The juice 

soluble solids, titratable acid (TA), pH and yeast assimilable nitrogen (YAN) were analyzed 
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using temperature compensating digital refractometer, titration 50 mL aliquot of juice against 

0.10 M NaOH to pH 8.2, a benchtop pH meter (VWR Symphony pH Meter, model SB80RI, 

Radnor, PA), and a Chemwell 2910 multianalyzer to measure ammonia and spectrophotometry to 

measure primary amino nitrogen (Nisbet et al., 2013). YAN was quantified in 2015 and 2016 

only. Cluster compactness was measured in the third year of study in 2016 where 10 clusters 

from each of the experimental unit was collected at harvest, berries from each cluster were 

counted and removed to measure the naked rachises length. The compactness was presented as 

number of berries per cm of rachis.   

 

Analysis of soil properties 

             Under-vine soil samples were collected at the end of the growing season in November 

2015 and 2016. Six soil cores to depth 20 cm were taken from each experimental unit, combined, 

and analyzed for wet aggregate stability, organic matter content and microbial respiration rate.  

             Soil properties were measured according to Gugino et al. (2009) and Karl et al. (2016a). 

Briefly, aggregate stability was measured with dried soil that was sieved to select particle size 

between 0.25-2mm. Water droplets in a 0.042mm/s rate generated from a rain simulator were 

applied to the soil placed on 0.25mm sieve for 5min. Soil particles retained on and passed 

through the sieve were collected, dried and weighed to determine the proportion of stable soil 

aggregates. Soil organic matter content was measures by dry combustion at 550˚C for two hours. 

For cumulative microbial respiration measurement, 50g soil from each experimental unit with 

particle size smaller than 2mm in diameter was placed in a 250ml airtight and sterilized glass jar 

along with 20ml of 0.5M NaOH contained in a plastic tube. The jars were placed in darkness at 

30 ˚C for two weeks. Electrical conductivity of NaOH in the plastic tube in each jar was 
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measured and compared with a control solution to calculate the CO2 generated during the two 

weeks of incubation. Carbon mineralizability was calculated dividing CO2 generation rate by 

organic carbon content in the soil. 

             Additional tests of Morgan-extractable phosphorus, potassium and micronutrients were 

conducted in 2015. Briefly, soil nutrients were extracted using Morgan’s solution and quantified 

with Inductively Coupled Argon Plasma Spectrophotometry. In November 2016, four intact soil 

cores per experimental unit were collected for soil bulk density measurement. The soil samples 

were stratified into 0-5, 5-10, and 10-15cm by hand, dried in oven at 60˚C for 24hrs, weighed 

and divided the weight by volume.  

 

Statistical methods 

             The data were checked for normality assumption and analyzed with mixed-model 

ANOVA, where under-vine floor treatments were classified as a fixed effect and blocks as 

random effects, using JMP Pro version 12.0.1. The Dunnett’s test was adopted for post-hoc 

comparison of treatment means compared to the mean of the GLY control at α=0.05. 

 

Results 

Cover crop establishment 

             Cover crops were not well established in the first year of the experiment, likely due to 

residual herbicide remaining in the treatment plots from the previous seasons. In the second and 

third years of the experiment, the area under the vines was well covered with cover crops and 

weeds (Fig. 2.1.).  The glyphosate control remained relatively bare while the coverage was 30% 

in 2015 and less than 10% in 2016 at veraison (Fig 2.1) whereas more than 70% of the 
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proportion of ground coverage(cover crops and weeds combined) was achieved with cover crops.  

             Natural vegetation had more than 70% ground coverage for 2015 and 2016. The weed 

species identified are listed in Table 2.3. Among the cover crops, TR was the most difficult to 

establish and resulted in the lowest coverage at about 27% and 38% in 2015 and 2016 

respectively. Unlike TR, ALF had poor establishment in 2015 at 24% coverage but grew well in 

2016 and reached 67% ground coverage. Cover crops of FES and CHI treatments were relatively 

well established for both years where CHI had 50% coverage in both years and FES had 53% 

and 62% in 2015 and 2016, respectively. 

 

Cover crop treatment

NV GLY CHI ALF TR FES

U
n

d
e

r-
v

in
e

 g
ro

u
n

d
 c

o
v

e
r 

(%
)

0

20

40

60

80

100

p<0.001

(a) 2015

All the treatments > GLY control

Cover crop treatment

NV GLY CHI ALF TR FES

U
n

d
e

r-
v

in
e
 g

ro
u

n
d

 c
o

v
e
r 

(%
)

0

20

40

60

80

100

p<0.001

(b) 2016

All the treatments > GLY control

 

 
Figure 2.1. Proportion of under-vine soil covered with weeds and cover crops in a Cabernet franc 

vineyard at Veraison in (a) 2015 and (b) 2016. NV = Natural Vegetation, GLY = Glyphosate, CHI 

= Chicory, ALF = Alfalfa, FES = Fescue and TR = Tillage Radish. The bars indicate standard 

errors. The significant differences between each of the treatment and control were found using 

mixed model ANOVA following with Dunnett’s test at α=0.05.  
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Table 2.3. Weed species identified in under-vine natural vegetation treatment at veraison in 2015 and 2016. 
2015 2016 

Common name Scientific name Common name Scientific name 

Blackseed plantain Plantago lanceolata L. Blackseed plantain Plantago lanceolata L. 

Common blue violet Viola sororia Willd. Common burdock Arctium minus Bernh. 

Common mallow Malva neglecta Wallr. Common milk weed Asclepias syriaca L. 

Dallisgrass Paspalum dimidiatum L. Dallisgrass Paspalum dimidiatum L. 

Dandelion Taraxacum officinale F.H. Wigg. Dandelion Taraxacum officinale F.H. Wigg. 

Horsenettle Solanum carolinense L. Eastern black nightshade Solanum ptychanthum Dunal. 

Horseweed Erigeron canadensis (L.) Cronquist Horsenettle Solanum carolinense L. 

Johnsongrass Sorghum halepense (L.) Pers. Lesser-seeded bittercress Cardamine oligosperma Nutt. 

Large crabgrass Digitaria sanguinalis (L.) Scop. Oxeye daisy Leucanthemum vulgare Lam. 

Red clover Trifolium pratense L. Powell amaranth Amaranthus powellii S.Wats. 

Roughstalk bluegrass Poa trivialis L. Red clover Trifolium pratense L. 

Smartweed Persicaria lapathifolia (L.) Delabre. Roughstalk bluegrass Poa trivialis L. 

Smooth pig weed Amaranthus hybridus L. Smartweed Persicaria lapathifolia (L.) Delabre. 

Sow thistles Sonchus oleraceus L. Smooth pig weed Amaranthus hybridus L. 

Tumble mustard Sisymbrium altissimum L. Sow thistles Sonchus oleraceus L. 

Tall fescue Festuca arundinacea Schreb. Tall fescue Festuca arundinacea Schreb. 

Velvetleaf Abutilon theophrasti Medik. Velvetleaf Abutilon theophrasti Medik. 

White clover Trifolium repens L. White clover Trifolium repens L. 

Wild buckwheat Fallopia convolvulus (L.) Á.Löve Wild buckwheat Fallopia convolvulus (L.) Á.Löve 

Yellow foxtail Setaria pumila (Poir.) Roem. & Schult. Yellow foxtail Setaria pumila (Poir.) Roem. & Schult. 

Yellow woodsorrel Oxalis stricta L. Yellow woodsorrel Oxalis stricta L. 

 

Shoot growth 

             Shoot length was not statistically different whether cover crops were utilized or not 

throughout the first half of the 2015 growing season (Fig. 2.2a). In 2016 early season, the 

primary shoot length was longer in vines of FES and TR treatments than control vines (Fig. 

2.2b). Primary shoot length of FES was about 16% and 30% longer than that of control on 6 and 

20 June respectively. Primary shoot length of TR was about 25% longer than that of control on 

both 6 and 20 June. Primary shoot length was reduced by CHI in the middle of the growing 

season by 29% and 39% compared to GLY on 12 and 25 July, respectively. There were no 

primary shoot diameter differences found between any ground cover management in 2015 and 

2016 (Fig. 2.3). 

             Lateral shoot length did not differ between any of the treatments and control in both 

years (Fig. 2.4). The proportion of primary shoots with laterals was not different between any of 
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the treatments and control in 2015 (Fig. 2.5a) but in 2016 fewer primary shoots in CHI had 

laterals compared to the GLY control on 12 September (Fig. 2.5b).  
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Figure 2.2. Primary shoots length of Cabernet franc vine growing with different under-vine cover 

crop treatments throughout the early to mid-growing season in (a) 2015 and (b) 2016. NV = 

Natural Vegetation, GLY = Glyphosate, CHI = Chicory, ALF = Alfalfa, FES = Fescue and TR = 

Tillage Radish. The significant differences between each of the treatment and control were tested 

using mixed model ANOVA following with Dunnett’s test at α=0.05. 

 



32 
 

 

Date

6/8  6/15  6/22  6/29  7/6  7/13  7/20  

S
h

o
o

t 
d

ia
m

e
te

r 
(m

m
)

3

4

5

6

7

NV

GLY

CHI

ALF

TR

FES

(a) 2015

 

(b) 2016

Date

06/06  06/20  07/04  07/18  08/01  

S
h
o

o
t 
d
ia

m
e
te

r 
(m

m
)

3

4

5

6

7

 
 
Figure 2.3. Primary shoots diameter of Cabernet franc vine growing with different under-vine 

cover crop treatments throughout the early to mid-growing season in (a)2015 and (b) 2016. NV = 

Natural Vegetation, GLY = Glyphosate, CHI = Chicory, ALF = Alfalfa, FES = Fescue and TR = 

Tillage Radish. The significant differences between each of the treatment and control were tested 

using mixed model ANOVA following with Dunnett’s test at α=0.05. 
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Figure 2.4. Lateral shoot growth of Cabernet franc vines with different cover crops growing 

under-vine throughout the mid to late growing season in (a)2015 and (b)2016. NV = Natural 

Vegetation, GLY = Glyphosate, CHI = Chicory, ALF = Alfalfa, FES = Fescue and TR = Tillage 

Radish. The significant differences between each of the treatment and control were tested using 

mixed model ANOVA following with Dunnett’s test at α=0.05. 
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Figure 2.5. Proportion of primary shoot with laterals of Cabernet franc vines with different cover 

crops growing under-vine throughout the mid to late growing season in (a)2015 and (b)2016. NV 

= Natural Vegetation, GLY = Glyphosate, CHI = Chicory, ALF = Alfalfa, FES = Fescue and TR 

= Tillage Radish. The significant differences between each of the treatment and control were 

tested using mixed model ANOVA following with Dunnett’s test at α=0.05. The significance 

symbol * indicates P-value <0.05. 
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EPQA 

             Grapevine canopy structure was impacted in the second and third year of the experiment 

(Table 2.4) (EPQA data was not collected in 2014). In 2015, planting cover crops reduced the 

leaf layer number in the fruiting zone, and NV, TR and FES resulted in reduced occlusion layer 

numbers compared to the GLY control. The proportion of interior leaves was reduced to 8.9% in 

FES compared to 20.3% in GLY and the proportion of interior clusters was reduced to 15.5% and 

17% in NV and ALF, respectively, compared to 43.2% in the GLY control. Although the canopy 

structure was impacted by the under-vine cover crops in 2015, the light environment parameters 

including cluster exposure layer and cluster exposure flux availability were not significantly 

impacted. In 2016, the leaf layer number was impacted in the fruiting zone where CHI reduced 

35% and FES reduced 28% of the leaf layer compared to GLY. Mixed model ANOVA also 

showed that the cluster exposure layer and cluster exposure flux availability were significantly 

impacted by the different under-vine cover crops but no pairwise differences between any of the 

treatments and control were found using the Dunnett’s test.  
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Table 2.4. Canopy architecture approximation using EPQA analysis of Cabernet franc vines 

with different under-vine cover crops in 2015 and 2016 at veraison. 

2015 veraison 

Treatmenta 
 

Leaf Layer Number 
 

Occlusion Layer Number 
 

% Interior Leaves 
 

    

GLY 
 1.75±0.24c  2.33±0.15  20.3±4.39  

NV 
 1.18±0.23 *d  1.84±0.15 *  15.0±4.20  

CHI  1.22±0.23 *  2.11±0.15  12.4±4.20  

TR  1.08±0.23 **  1.82±0.15 **  14.7±4.20  

ALF 
 1.21±0.23 *  1.95±0.15  10.2±4.20  

FES 
 1.20±0.23 *  1.80±0.15 **  8.93±4.20 *  

P-valueb 
 0.022  0.009  0.146  

Treatment 
 

% Interior Clusters 
 

Cluster Exposure Layer 
 

Cluster Exposure Flux 

Availability 
 

   
 

GLY 
 43.2±8.01  0.44±0.08  0.42±0.07  

NV 
 15.5±7.20 *  0.19±0.08  0.54±0.06  

CHI  28.3±7.20  0.30±0.08  0.49±0.06  

TR  20.9±7.20  0.24±0.08  0.57±0.06  

ALF 
 17.0±7.20 *  0.20±0.08  0.51±0.06  

FES 
 26.1±7.20  0.26±0.08  0.56±0.06  

P-value   0.091  0.225   0.416   

2016 veraison 

Treatment 
 

Leaf Layer Number 
 

Occlusion Layer Number 
 

Interior Leaves (%) 
 

    

GLY 
 1.34±0.07  2.26±0.07  20.2±2.3  

NV 
 1.27±0.06  2.29±0.06  19.6±2.0  

CHI  0.87±0.06 ***  1.93±0.06  13.5±2.0  

TR  1.16±0.06  2.31±0.06  17.2±2.0  

ALF 
 1.25±0.08  2.31±0.08  14.2±2.6  

FES 
 0.96±0.07 *  2.01±0.07  20.4±2.3  

P-value 
 0.001  0.055  0.316  

Treatment 
 

% Interior Clusters 
 

Cluster Exposure Layer 
 

Cluster Exposure Flux 

Availability 
 

   
 

GLY 
 22.41±4.3  0.24±0.05  0.56±0.06  

NV 
 26.87±3.7  0.28±0.04  0.58±0.05  

CHI  9.48±3.7  0.11±0.04  0.58±0.05  

TR  27.41±3.7  0.29±0.04  0.58±0.05  

ALF 
 33.32±4.3  0.33±0.05  0.49±0.06  

FES 
 17.56±4.3  0.18±0.05  0.65±0.06  

P-value   0.003  0.013   0.595   
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = Alfalfa, FES 

= Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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Yield components and berry composition 

             Yield per vine was not impacted by the under-vine cover crops in 2014 and 2015, but in 

2016 NV and TR increased the yield by 100% and 77% respectively compared to GLY (Table 

2.5). Since the cluster weight was not impacted by any of the under-vine cover crops, the yield 

increment in NV and TR was mainly due to the increased number of clusters per vine. Only 

upward shoot pruning weight was collected in 2014 which indicated no differences (p=0.4673, 

data not shown). Compared to GLY, CHI reduced pruning weight by 65% in 2015 and 59% in 

2016. Pruning weight was reduced about 54% by TR and FES compared to the control in 2015. 

However, the Ravaz index (yield/pruning weight) was only impacted by CHI (increase of 129%) 

in 2015.  

             Cluster number per vine was increased by NV, TR, FES in 2016 by 95%, 66% and 73% 

respectively.  Berry size was increased by using under-vine cover crops in 2016. Number of 

berries per cluster was reduced by CHI and FES in 2016 by 31% and 25% respectively. In 2016, 

the third year of the experiment, berries from all the cover crop treatments increased the berry 

size by about 10 to 17%. Cluster compactness was only measured in 2016. The cluster 

compactness, presented as number of berry per cm rachis, was impacted by the under-vine floor 

treatments as revealed by ANOVA but the pairwise comparison showed no differences between 

any of the treatments and the GLY control. The modification of the cluster compactness was 

possibly because that the rachis length was reduced 18.6% by CHI compared to the control 

(Table 2.6). Berry soluble solids and TA were not impacted by any of the under-vine treatments 

in all three years (Table 2.7). Juice pH was reduced 5% by FES in 2014 and YAN was reduced 

40% by CHI in 2015 compare to those of GLY control which were pH 3.42 and 112mg/L, 

respectively. 
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Table 2.5. Yield components of Cabernet franc vines growing with different under-vine cover crops. 

Treatmenta 
 Yield (kg/vine)  Pruning Weight (kg/vine) 
 2014 2015 2016  2014 2015 2016 

GLY 
 

4.61±0.85c 3.90±0.57 2.89±0.73 
 

- 1.15±0.18 0.44±0.09 

NV 
 

4.25±0.85 4.11±0.47 5.80±0.63***d 
 

- 0.81±0.18 0.36±0.08 

TR  6.51±0.85 4.74±0.47 5.12±0.63**     - 0.53±0.18* 0.34±0.08 

CHI  6.11±0.85 5.22±0.46 3.03±0.63  - 0.40±0.18** 0.18±0.08 

FES 
 

5.57±0.85 4.28±0.51 4.18±0.63 
 

- 0.58±0.18* 0.36±0.08 

ALF 
 

5.68±0.85 4.61±0.49 2.88±0.73 
 

- 0.86±0.19 0.35±0.09 

P-valueb 
 

0.1123 0.4563 0.0008 
 

  0.008 0.1231 

Treatment 
 Ravaz-Index (yield/pruning weight)  Number of Cluster (cluster/vine) 
 2014 2015 2016  2014 2015 2016 

GLY 
 

- 7.5±4.2 10.8±5.2 
 

37.9±5.5 31.3±5.1 32.3±7.1 

NV 
 

- 6.1±3.6 20.7±4.5 
 

33.5±5.5 38.3±4.1 62.9±6.0*** 

TR  - 10.5±3.6 18.0±4.5  47.7±5.5 47.1±4.7 53.7±6.1* 

CHI  - 17.3±3.6* 18.2±4.5  45.7±5.5 41.8±4.2 38.5±6.2 

FES 
 

- 8.2±3.8 13.2±4.5 
 

45.2±5.5 33.0±4.7 55.9±6.3** 

ALF 
 

- 13.6±3.7 14.1±5.2 
 

46.8±5.5 38.9±4.2 30.5±7.2 

P-value 
 

  0.001 0.3761 
 

0.1119 0.236 <0.0001 

Treatment 
 Number of berry (kg/vine)  Cluster weight (g/cluster) 
 2014 2015 2016  2014 2015 2016 

GLY 
 

70.7±5.9 84.3±7.7 77.9±7.2 
 

122.0±10.9 122.9±10.7 97.0±10.0 

NV 
 

73.6±5.9 72.6±6.7 63.8±6.2 
 

130.7±10.9 128.3±8.7 94.0±8.5 

TR  75.6±5.9 67.8±6.9 68.9±6.2  141.1±10.9 115.1±9.8 95.9±8.5 

CHI  78.0±5.9 87.6±6.7 53.8±6.3**  133.9±10.9 131.9±8.9 79.8±8.7 

FES 
 

68.0±5.9 90.3±7.1 58.4±6.4* 
 

125.2±10.9 143.9±9.9 81.3±8.8 

ALF 
 

64.0±5.9 74.8±6.7 73.7±7.3 
 

118.5±10.9 119.9±9.4 101.9±10.1 

P-value 
 

0.5941 <0.0001 0.0052 
 

0.6788 0.2478 0.0991 

Treatment 
 Berry weight (g/berry)   
 2014 2015 2016     

GLY 
 

1.60±0.05 1.52±0.03 1.26±0.03 
    

NV 
 

1.75±0.05 1.68±0.03* 1.47±0.02**** 
    

TR  1.95±0.05* 1.63±0.03 1.39±0.02***     

CHI  1.63±0.05 1.53±0.03 1.47±0.02****     

FES 
 

1.75±0.05 1.57±0.03 1.40±0.02**** 
    

ALF 
 

1.83±0.05 1.57±0.03 1.39±0.02*** 
    

P-value 
 

0.0117 <0.0001 <0.0001 
    

aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = Alfalfa, FES 

= Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, 

ALF = Alfalfa, FES = Fescue. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cPooled standard error  

dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.6. Cluster compactness measurement of mature Cabernet franc vines with 

different cover crops growing under-vine 

Treatmenta 

Cluster 

compactness Rachis length  Berry number per 

cluster 

  

(berry 

number/cm) (cm) 

GLY 7.63 ± 0.85c 11.8 ± 1.32 89.3 ± 9.21 

NV 8.05 ± 0.74 11.2 ± 1.14 91.4 ± 7.97 

TR 7.99 ± 0.74 10.7 ± 1.14 84.9 ± 7.97 

CHI 8.52 ± 0.74 9.61 ± 1.14 *d 76.7 ± 7.97 

FES 6.48 ± 0.74 12.2 ± 1.14 78.0 ± 7.97 

ALF 8.39 ± 0.85 10.1 ± 1.32 83.3 ± 9.21 

P-valueb 0.0024 <0.0001 0.3539 
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Table 2.7. Berry composition of Cabernet franc vines growing with different under-vine cover 

crops. 

Treatmenta 
 Soluble Solids (Brix)  pH 
 2014 2015 2016  2014 2015 2016 

GLY 
 

22.2±0.4c 18.8±0.8 16.9±1.3 
 

3.42±0.03 3.57±0.05 3.70±0.08 

NV 
 

21.8±0.4 20.8±0.7 15.8±1.1 
 

3.44±0.03 3.68±0.04 3.63±0.07 

TR  20.9±0.4 20.5±0.7 19.3±1.1  3.37±0.03 3.59±0.04 3.49±0.07 

CHI  21.3±0.4 20.0±0.7 18.1±1.1  3.41±0.03 3.51±0.04 3.57±0.07 

FES 
 

21.3±0.4 20.3±0.7 17.3±1.1 
 3.25±0.03*d 3.59±0.04 3.56±0.07 

ALF 
 

21.1±0.4 18.9±0.7 17.2±1.3 
 

3.41±0.03 3.59±0.04 3.62±0.08 

P-valueb 
 

0.5138 0.2043 0.4563 
 

0.0123  0.1975 0.4513 

Treatment 
 Titratable Acid (g/L)  YAN (mg/L) 
 2014 2015 2016  2014 2015 2016 

GLY 
 

5.84±0.23 5.86±0.33 3.40±0.32 
 

- 112.0±11.2 71.7±26.9 

NV 
 

5.59±0.23 4.78±0.29 3.59±0.28 
 

- 85.9±9.7 72.8±23.3 

TR  5.87±0.23 4.96±0.29 4.05±0.28  - 73.7±9.7 76.9±23.3 

CHI  5.36±0.23 5.00±0.29 3.26±0.28  - 67.5±9.7* 51.0±23.3 

FES 
 

5.81±0.23 5.09±0.29 3.82±0.28 
 

- 70.4±9.7 57.0±23.3 

ALF 
 

5.89±0.23 5.47±0.29 4.41±0.32 
 

- 106.0±9.7 100±26.9 

P-value 
 

0.1915  0.1585 0.1075 
 

- 0.0389 0.7576 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = Alfalfa, FES 

= Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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Nutrient and water status 

             Petiole nutrient differences were found at bloom in 2015 and veraison in 2015 and 2016. 

In 2015 bloom, CHI reduced B by 10.7mg/kg (23%), ALF increased Cu by 2.7mg/kg (24%), 

ALF reduced Na by 0.05 g/kg (28%), all the treatments except NV increased P by up to 1.21 

g/kg (48%), and NV, CHI and FES reduced Zn by up to 10 mg/kg (20%) compared to the control 

(Table 2.8a). By veraison in 2015, TR and CHI increased petiole Mg content by up to 2.64 g/mg 

(48%) and TR increased petiole P content by 1.39 g/kg (45%) (Table 2.8b). In 2016 at veraison, 

the petiole C content was reduced 1.4% by NV and increased 0.9 and 1% by CHI and FES 

respectively compared to GLY (Table 2.8c). At the same time, NV increased the petiole Fe and 

Na content by 16.3 mg/kg (75%) and 0.94 g/kg (300%) respectively compared to GLY. 

             There were no vine midday stem water potential (SWP) differences found between any 

of the treatments and the GLY control in 2015 (Fig. 2.6a). In 2016 vines from FES treatment had 

lower mean SWP (-8.1bar) on 20 June, vines from FES treatment had higher mean SWP (-6.6 

bar) on 3 August, vines from NV treatment had lower mean SWP (-9.9 bar) on 27 August and 

vines from NV, ALF and FES treatment had lower mean SWP, ranging from -12 to -13 bars, on 

late growing season 13 September which is when the lowest SWP in the growing season was 

observed (Fig. 2.6b).  

             Differences in late season predawn leaf water potential between treatment and control 

were found in both 2015 and 2016. Vines in TR treatments constantly had lower predawn leaf 

water potential values, 42% in 2015 and 55% in 2016 compared to vines in GLY (Fig. 2.6c). In 

2016, FES reduced the predawn leaf water potential by 60% compared to the GLY control (Fig. 

2.6d).  
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Table 2.8. Vine petiole nutrient analysis of Cabernet franc vines growing with different under-vine cover crops in 2015 at (a) bloom and (b) 

veraison and 2016 at (c) veraison. 

(a) 2015 Bloom 

Treatmenta 
N   C   Al   B Ca Cu Fe 

%   %   mg/kg   mg/kg g/kg mg/kg mg/kg 

GLY 0.91 ± 0.05c  38.7 ± 0.2  10.1 ± 2.5  46.2 ± 2.3 13.0 ± 0.66 11.4 ± 0.4 20.4 ± 2.8 

NV 0.84 ± 0.05  38.6 ± 0.2  15.2 ± 2.5  42.4 ± 2.3 13.4 ± 0.66 11.7 ± 0.4 20.0 ± 2.8 

TR 0.80 ± 0.05  38.4 ± 0.2  10.5 ± 2.5  41.6 ± 2.3 13.3 ± 0.66 12.8 ± 0.4 20.0 ± 2.8 

CHI 0.75 ± 0.05  38.3 ± 0.2  13.7 ± 2.5  35.5 ± 2.3 *d 14.0 ± 0.66 12.4 ± 0.4 24.0 ± 2.8 

FES 0.85 ± 0.05  38.6 ± 0.2  10.0 ± 2.5  42.7 ± 2.3 13.3 ± 0.66 12.7 ± 0.4 17.7 ± 2.8 

ALF 0.89 ± 0.05  38.0 ± 0.2  9.30 ± 2.5  44.9 ± 2.3 14.9 ± 0.66 14.1 ± 0.4 ** 16.6 ± 2.8 

P-valueb 0.4454   0.3567   0.4669   0.0902 0.2674 0.0062 0.5664 

Treatment 
K   Mg   Mn   Na P Zn   

g/kg   g/kg   mg/kg   g/kg g/kg mg/kg  
GLY 14.3 ± 0.9  3.99 ± 0.16  69.4 ± 10  0.18 ± 0.01 2.54 ± 0.20 57.8 ± 2.4    
NV 14.5 ± 0.9  3.62 ± 0.16  51.3 ± 10  0.19 ± 0.01 2.81 ± 0.20 46.8 ± 2.4 *    
TR 15.0 ± 0.9  3.88 ± 0.16  50.2 ± 10  0.14 ± 0.01 3.50 ± 0.20 * 50.4 ± 2.4    
CHI 14.3 ± 0.9  4.25 ± 0.16  66.1 ± 10  0.17 ± 0.01 3.46 ± 0.20 * 47.8 ± 2.4 *    
FES 15.0 ± 0.9  3.50 ± 0.16  45.0 ± 10  0.13 ± 0.01 * 3.32 ± 0.20 * 46.1 ± 2.4 **    
ALF 15.3 ± 0.9  4.52 ± 0.16  72.2 ± 10  0.15 ± 0.01 3.75 ± 0.20 ** 54.2 ± 2.4    

P-value 0.9574   0.0025   0.3467   0.0025 0.0032 0.0108  
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(b) 2015 Veraison   

Treatment 
N   C Al   B   Ca Cu   Fe   

%   % mg/kg   mg/kg   g/kg mg/kg   mg/kg   

GLY 0.81 ± 0.08  44.8 ± 4.4 3.76 ± 0.61  36.2 ± 2.6  16.3 ± 1.1 6.59 ± 0.43  13.1 ± 0.90  

NV 0.80 ± 0.08  43.2 ± 4.4 3.93 ± 0.61  38.1 ± 2.6  16.2 ± 1.1 6.71 ± 0.43  12.2 ± 0.90  

TR 0.71 ± 0.08  41.3 ± 4.4 4.25 ± 0.61  36.6 ± 2.6  17.6 ± 1.1 6.45 ± 0.43  14.0 ± 0.90  

CHI 0.67 ± 0.08  41.1 ± 4.4 5.59 ± 0.61  33.7 ± 2.6  17.2 ± 1.1 5.96 ± 0.43  15.3 ± 0.90  

FES 0.67 ± 0.08  43.2 ± 4.4 4.08 ± 0.61  37.4 ± 2.6  16.1 ± 1.1 6.49 ± 0.43  14.8 ± 1.02  

ALF 0.75 ± 0.08  42.1 ± 4.4 3.42 ± 0.61  36.3 ± 2.6  17.6 ± 1.1 6.36 ± 0.43  13.5 ± 0.90  

P-value 0.8396   0.9868 0.2409   0.9229   0.7288 0.381   0.3138   

Treatment 
K   Mg Mn   Na   P Zn      

g/kg   g/kg mg/kg   g/kg   g/kg mg/kg    
GLY 28.9 ± 1.5  5.48 ± 0.64 75.7 ± 12.3  0.47 ± 0.04  3.11 ± 0.32 67.3 ± 2.8      
NV 26.5 ± 1.5  6.79 ± 0.64 85.9 ± 12.3  0.49 ± 0.04  4.11 ± 0.32 67.2 ± 2.8      
TR 24.4 ± 1.5  8.09 ± 0.64  87.9 ± 12.3  0.50 ± 0.04  4.50 ± 0.32  67.2 ± 2.8      
CHI 22.6 ± 1.5  8.12 ± 0.64  87.7 ± 12.3  0.53 ± 0.04  4.29 ± 0.32 61.0 ± 2.8      
FES 24.9 ± 1.5  6.76 ± 0.74 72.0 ± 14.2  0.57 ± 0.05  3.62 ± 0.37 66.9 ± 3.3      
ALF 23.7 ± 1.8  7.11 ± 0.64 95.4 ± 12.3  0.48 ± 0.04  3.97 ± 0.32 65.6 ± 2.8      

P-value 0.1772   0.0872 0.822   0.6908   0.1425 0.6438    
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(c) 2016 Veraison 

Treatment 
N   C Al   B Ca   Cu   Fe 

%   % mg/kg   mg/kg g/kg   mg/kg   mg/kg 

GLY 0.57 ± 0.03  38.4 ± 0.3 32.6 ± 4.6  37.3 ± 1.8 28.3 ± 1.1  33.0 ± 6.8  22.5 ± 4.2 

NV 0.61 ± 0.03  37.0 ± 0.3 ** 32.4 ± 4.6  38.0 ± 1.8 28.8 ± 1.1  22.7 ± 6.8  39.3 ± 4.2 * 

TR 0.54 ± 0.03  39.0 ± 0.3 15.9 ± 4.6  40.5 ± 1.8 26.0 ± 1.1  14.6 ± 6.8  22.8 ± 4.2 

CHI 0.52 ± 0.03  39.3 ± 0.3 * 17.6 ± 4.6  37.7 ± 1.8 25.1 ± 1.1  24.7 ± 6.8  28.1 ± 4.2 

FES 0.51 ± 0.03  39.4 ± 0.3 * 15.7 ± 4.6  39.5 ± 1.8 25.8 ± 1.1  9.31 ± 6.8  18.9 ± 4.2 

ALF 0.51 ± 0.03  39.3 ± 0.3 17.4 ± 4.6  37.7 ± 1.8 25.2 ± 1.1  11.5 ± 6.8  26.6 ± 4.2 

P-value 0.1571   <0.0001 0.048   0.8298 0.138   0.2168   0.0391 

Treatment 
K   Mg Mn   Na P   Zn     

g/kg   g/kg mg/kg   g/kg g/kg   mg/kg    
GLY 18.2 ± 2.5  16.2 ± 1.3 161 ± 25  0.31 ± 0.13 1.20 ± 0.25  80.1 ± 4.4     
NV 18.7 ± 2.5  18.2 ± 1.3 174 ± 25  1.25 ± 0.13 ** 1.59 ± 0.25  77.0 ± 4.4     
TR 10.5 ± 2.5  19.6 ± 1.3 166 ± 25  0.25 ± 0.13 2.18 ± 0.25  83.6 ± 4.4     
CHI 11.6 ± 2.5  18.4 ± 1.3 172 ± 25  0.32 ± 0.13 1.90 ± 0.25  90.2 ± 4.4     
FES 15.2 ± 2.5  16.3 ± 1.3 113 ± 25  0.29 ± 0.13 1.97 ± 0.25  81.5 ± 4.4     
ALF 12.7 ± 2.5  17.8 ± 1.3 173 ± 25  0.28 ± 0.13 1.49 ± 0.25  80.0 ± 4.4     

P-value 0.1634   0.5208 0.6007   0.0005 0.109   0.4551    
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = Alfalfa, FES = Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following with Dunnett’s test at α=0.05. 
cPooled standard error 

cSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001 



45 
 

(a) 2015

Date

6/11/2015 6/18/2015 7/7/2015 7/17/2015 7/28/2015 8/5/2015 8/17/2015 8/28/2015 9/8/2015

W
a

te
r 

p
o

te
n

ti
a

l 
(b

a
r)

-14

-12

-10

-8

-6

-4

-2

0

NV

GLY

CHI

ALF

TR

FES

 

(b) 2016

Date

6/10/2016 6/20/2016 7/1/2016 7/11/2016 8/3/2016 8/27/2016 9/13/2016

W
a
te

r 
p
o

te
n

ti
a
l 
(b

a
r)

-14

-12

-10

-8

-6

-4

-2

0

p=0.0237

p<0.0001 p<0.0001

p<0.0001

NV,ALF&FES<GLY

NV<GLYFES>GLY

FES<GLY

 



46 
 

(c) 2015 predawn
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Figure 2.6. Midday stem water potential throughout the first half of growing seasons in (a) 2015 

and (b) 2016, and late season predawn water potential of Cabernet franc vines growing with 

different under-vine cover crops in (c) 2015 and (d) 2016. There were no significant differences 

among the treatments in midday stem water potential for both 2015 and 2016 and late season 

predawn water potential in 2016 using mixed model ANOVA following with Dunnett’s test at 

5% significance level. NV = Natural Vegetation, GLY = Glyphosate, CHI = Chicory, ALF = 

Alfalfa, FES = Fescue and TR = Tillage Radish.  
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Soil property parameters 

             Soil property parameters were generally increased by cover crops except for TR 

compared to the GLY control (Table 2.9). Stable wet soil aggregates were improved to 20.3% in 

NV and 20.5% in ALF compared to 11.1% in GLY in 2015. Organic matter content was raised to 

3.36% in CHI compared to 2.97% in GLY in 2015, and increased to 3.33 and 3.36% in NV and 

FES respectively compared to 3.02% in GLY in 2016. Microbial respiration rate was increased 

64% by NV in 2015 and 75% by FES in 2016. Soil carbon mineralizability lined-up with the 

microbial respiration rate where NV in 2015 and FES in 2016 was 54% and 68% higher, 

respectively, compared to GLY in each year.  

             In 2015, soil morgan-extractable nutrients were analyzed (Table 2.10). There were no 

differences found between any of the treatments and control soil regarding P, K, Fe and Zn 

content. Soil Mg content was increased 21%, 18% and 17% by NV, CHI and FES respectively; 

while Mn content was increased 35% and 38% by CHI and FES respectively. Soil nutrient data 

was not collected in 2016. There were no soil bulk density differences found between any of the 

treatments and control in any of the soil depth from 0-15cm (Table 2.11).   
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Table 2.9. Property parameters of the under-vine soil treated with 

different cover crops. 

Treatmenta 
  Aggregate Stability (%) Organic Matter (%) 
 2015 2016  2015 2016 

GLY 
 11.1±2.1c 17.1±2.0  2.97±0.10 3.02±0.07 

NV 
 20.3±2.1*d 21.5±2.0  3.13±0.10 3.33±0.07 

TR  12.1±2.1 17.5±2.0  3.19±0.10 3.28±0.07 

CHI  15.5±2.1 22.5±2.0  3.36±0.10 3.24±0.07 

FES 
 12.1±2.1 20.3±2.0  3.21±0.10 3.36±0.07 

ALF 
 20.5±2.1* 23.6±2.0  3.27±0.10 3.15±0.07 

P-valueb 
 0.028 0.196  0.065 0.057 

Treatment 
  Microbial respiration 

 (mg CO2 g/14days) 

C Mineralizability 

(mg CO2/g OC) 
 2015 2016  2015 2016 

GLY 
 1.17±0.18 0.89±0.11  39.5±4.78 29.34±3.08 

NV 
 1.92±0.18 1.33±0.11  60.8±4.78* 39.84±3.08 

TR  1.55±0.18 1.16±0.11  48.2±4.78 35.5±3.08 

CHI  1.58±0.18 1.09±0.11  46.6±4.78 33.8±3.08 

FES 
 1.33±0.18 1.56±0.11**  41.4±4.78 46.2±3.08* 

ALF 
 1.56±0.18 1.29±0.11  47.8±4.78 41.4±3.08 

P-value 
 0.072 0.025  0.046 0.035 

aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, 

ALF = Alfalfa, FES = Fescue. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = 

Alfalfa, FES = Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following with Dunnett’s test at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 
 
 
 

Table 2.11. Bulk density of under-vine soil treated with different 
under-vine cover crops at different depths in third year of the 
experiment (2016) 

Treatmenta 
0-5cm   5-10cm   10-15cm 

(g/cm3) 

GLY 1.11 ± 0.05c  1.23 ± 0.03  1.30 ± 0.03 
NV 1.06 ± 0.05  1.21 ± 0.03  1.29 ± 0.04 
TR 1.07 ± 0.05  1.20 ± 0.03  1.30 ± 0.04 
CHI 1.12 ± 0.05  1.18 ± 0.03  1.25 ± 0.03 
FES 1.17 ± 0.05  1.19 ± 0.03  1.23 ± 0.03 
ALF 1.12 ± 0.05  1.17 ± 0.03  1.31 ± 0.03 

P-valueb 0.238   0.706   0.448 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CHI = Chicory, TR = Tillage Radish, ALF = 

Alfalfa, FES = Fescue. 
bP-value: The P-value was derived from mixed model ANOVA following with Dunnett’s test at α=0.05. 
cPooled standard error 
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Discussion 

             This study revealed that under-vine cover crops can consistently reduce vine vegetative 

growth in a vigorous, mature, cool climate vineyard without reducing yield, which is a major 

economic concern to growers. Previous studies have demonstrated that alleyway cover crops 

altered vine balance by maintaining the same level of yield with reduced pruning weight in warm 

and hot climate mature vineyards in Spain (Pérez-Álvarez et al., 2015) and Portugal (Lopes et 

al., 2008). However, under-vine cover crop studies done in cool climates demonstrated  little to 

no impact on vegetative growth and Ravaz index (Jordan, 2014, Centinari et al., 2016). Chicory 

growing under-vine was found to reduce vine canopy density and pruning weight but did not 

impact on yield in New Zealand (Wheeler et al., 2005). However, the study was conducted in a 

young vineyard and presented only a single year of results. 

             In this study, chicory growing under-vine most effectively and consistently reduced the 

vine vegetative growth including pruning weight and canopy structure, while other cover crops 

showed inconsistent effects on the same parameters. The inconsistency of the cover crop effect 

on vine growth may due to different growing habits of the cover crops such as rooting pattern, 

depth and density that may trigger different water and nutrient dynamics in the soil (Perkons et 

al., 2014, Sainju et al., 1998, Karl et al., 2016a). The timing of the competition was likely 

different between weeds and cover crop due to different timing of establishment and growth. 

Also, the interaction of the cover crop with year to year weather variation especially the uneven 

precipitation resulting in inconsistent ground coverage by the cover crops might have a 

significant impact. As for the experimental site, drastically different weather patterns were found 

during the experiment which may have confounded results.  

             The reduction of vegetative growth in the CHI treatment led to the high crop load as 
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shown by Ravaz index which exceeded the recommended range of 5 to 10 for quality table and 

wine grapes production under various of trellis systems (Kliewer and Dokoozlian, 2005). 

However, the grape ripeness level was not compromised as the berry soluble solids and TA of 

CHI treatment did not statistically differ from that of GLY control. Although wines were not 

made in this study, the grape harvest parameters indicated that the reduced vegetative tissue 

including leaf layers and shoots were unnecessary to ripen the fruit to commercially acceptable 

standards for the region. Further study on wine sensory properties and other chemical 

compounds such as secondary metabolites are required.  

             Resource competition was considered to be the reason for reduced vine growth in the 

previous cover crop studies (Wheeler et al., 2005, Monteiro and Lopes, 2007, Tan and Crabtree, 

1990). In our study, however, there were no clear associations of reduction of water potential and 

nutrient content with the vine growth in the cover crop treatments except for TR and FES. 

Predawn soil water potential, which is often used as soil water indicator (Winkel and Rambal, 

1993), was reduced in 2015 by TR. Pruning weight and leaf layer number were also reduced in 

the TR in 2015. In 2016, the reduction of midday stem water potential early and late growing 

season, and late season predawn water potential in FES treatment may also explain the reduced 

leaf layer number. Since the seeds of fescue were broadcast in late May, they likely grew 

vigorously starting June to provide aggressive water competition. The water competition of FES 

might have a critical impact on vine vegetative growth especially in the early growing season as 

it was found that vines are sensitive to water deficit before veraison and can lead to inhibition of 

vegetative and reproductive growth (Matthews and Anderson, 1989, Hardie and Considine, 

1976).  

             The mechanism behind the reduction of vegetative growth in CHI treatment remained 
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unclear as the treatment did not significantly impact vine water and nutrient status. For nutrient 

status, petiole analysis showed that CHI led to minor fluctuations in some of the nutrients but 

these nutrients were all in the optimal range (Wolf, 2008). Nitrogen competition was suggested 

as the reason for reduced vine vegetative growth in many cover crop studies in various climates 

(Celette et al., 2009, Pérez-Álvarez et al., 2015, Wheeler et al., 2005). However, there were no 

statistical differences between any of the treatments and control vines in the petiole N content in 

this study. Although the nitrogen content of vines from both treatments and control were at the 

borderline or lower than the recommended value (1.2% at bloom and 0.8% at latter stage) 

according to Wolf (2008), there was no visual nutrient deficiency symptom observed. This 

phenomenon was also observed in previous studies done in the region (Centinari et al., 2016, 

Jordan et al., 2016, Karl et al., 2016a). Previous studies showed that using barley as a cover crop 

reduced top soil nitrate availability since the first year of the experiment and yet the effect of 

reduction of nitrogen only showed up in plant tissue in the third year and grape must in the fourth 

(Pérez-Álvarez et al., 2015). This finding suggested that the nutrient competition started at the 

soil first, and then the reduction in nutrient showed up in vegetative tissues and grapes. With only 

petiole N and fruit YAN measured in this study, it was unknown if the N competition actually 

happened at the soil level in this study. Although the same petiole nutrient status were found in 

vigorous vines in GLY control and smaller vines in CHI treatment, the equality of the nutrient 

status may due to the dilution effect (Jarrell and Beverly, 1981) where the nutrient uptake in a 

large vine with high nutrient availability equals to that in a small vine with low nutrient 

availability.  

             Although the range of predawn water potential found in our study falls between -2 to -4 

bars, which is classified as mild water stress range (Ojeda et al., 2002), no visual symptom of 
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water stress in any of the growing seasons was observed. Although CHI reduced vine vigor, it 

did not impact on the vine water status in any of the years. This was not the first study to report 

that reduced vine vigor as a result of cover cropping had no association with vine water status. 

One study found that interrow tall fescue growth did not impact vine midday stomata 

conductance and predawn leaf water potential but reduced pruning weight by approximately five 

t/ha (Celette et al., 2005a) in a young Sauvignon Blanc vineyard in a Mediterranean climate. 

Another study done in the cool climate Finger Lakes region of New  York also showed that 

under-vine white clover reduced pruning weight of young Cabernet franc vines without 

impacting midday stem and predawn leaf water potentials (Karl et al., 2016a). Aside from water 

and nutrient competition, cover crops may also have allelopathic effects on vine growth as 

suspected by previous studies (Wolpert et al., 1993, Celette et al., 2005b). In fact, tall fescue has 

been demonstrated to allelopathically suppress the below- and aboveground growth of young 

pecan trees (Smith et al., 2001). 

             Berry composition was not impacted by most of the cover crops which was similar to 

previous studies (Monteiro and Lopes, 2007, Tesic et al., 2007). As an exception, CHI reduced 

berry YAN compared to GLY in 2015. A reduction in grape must YAN as a result of cover crops 

has often been coupled with an association with reduced petiolar nitrogen content (Sweet and 

Schreiner, 2010, Pérez-Álvarez et al., 2015, Karl et al., 2016a). Previous studies showed that 

winegrapes in Finger Lakes generally had low YAN (Karl et al., 2016a, Nisbet et al., 2014). The 

YAN of grapes from all of the treatments and control in this study also had lower than the 

recommended content for healthy fermentation (Boulton et al., 2013, Bell and Henschke, 2005) 

so nitrogen adjustment may be required regardless of under-vine cover crop treatment. 

             Under-vine soil physical, chemical and microbial health were improved by under-vine 
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cover crops except TR. The lack of improved soil properties with TR may because of its growing 

habit. Tillage radish is known to grow actively in the fall, producing a high amount of biomass 

with a low C/N ratio (Weil et al., 2009) but does not favor the growth of plant beneficial fungi 

and other soil microorganisms due to its Brassicaceae biofumigation effect (White and Weil, 

2010, Sarwar et al., 1998). Thus, great amounts of biomass were still produced but did not built 

soil OC. Although a previous study showed that using barley and clover as cover crops did not 

impact vineyard soil P, K and Mg content in Spain (Pérez-Álvarez et al., 2015), Mg was 

increased in the soil by NV, CHI and FES treatments in 2015 in this study. Cover crops enriched 

vineyard soil organic matter, increased soil aggregation, improved microbial respiration rate, and 

resulted in higher nutrient mineralization in the previous studies (Steenwerth and Belina, 2008, 

Peregrina et al., 2010, Ruiz-Colmenero et al., 2013). In this study, organic matter in the soil was 

not significantly impacted while microbial respiration rate and mineralizability were improved 

by FES. The decoupling of soil organic matter content and microbial activity may indicate that 

FES effectively built the labile carbon in the soil and created microbial friendlily soil 

environment but the contribution to stable soil organic carbon was dismissible in the short term. 

Microbial activity is sensitive to the short-term enrichment of labile carbon, such as cover crop 

residues in this study, that can be readily used as metabolism substrates (Sparling 1997). 

However, the stabilized soil organic carbon pool takes a long time to accumulate (Smith 2004, 

Wander et al. 1994). 
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Conclusion 

             This experiment showed that the under-vine cover crops can be used to reduce the need 

for herbicide use, mitigate vine vigor and improve soil health in a mature vineyard in a cool 

climate region. A previous analysis conducted in the same region found growing under-vine 

cover crops had a lower cost than maintaining bare soil by applying herbicide (Karl et al., 

2016a). However, that study did not recommend using cover crops due to the fact the yield 

reduction in cover crops treatment could lead to loss of total revenue up to $4,000/ha in a young 

vineyard. In the Northeastern U.S., yield is key to economic viability for grape growers due to 

the low profit margin (Yeh et al., 2014). In contrast, this study found that under-vine cover crops 

could reduce vine vegetative growth but maintain the vine yield. This may because this 

experiment was conducted in a mature vineyard, which likely had a more extensive root system 

and carbohydrate reserves than young vines (Holzapfel et al., 2010) potentially making it more 

resilient to resource competition. However, the practical adoption of the cover crops will require 

further investigation of their impact on wine quality and careful assessment on their adaptation to 

the specific sites, grape cultivars and the resulting financial outcomes. 
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CHAPTER THREE 

 

Under-vine soil management practices impact vine growth but not wine sensory properties in 

mature Riesling grapevines  

 

Introduction 

             The vineyard floor directly under vines is most commonly managed as bare soil by 

applying herbicide or adopting soil cultivation around the world. However, bare soil is 

susceptible to soil erosion and run-off (Battany and Grismer, 2000) and can result in groundwater 

pollution due to pesticides and nutrients leaching into the waterway (Karl et al., 2016a). In 

addition, constant herbicide application promotes herbicide-resistant weeds (Heap, 2014).  Soil 

cultivation, or tillage, physically breaks down the soil aggregates, increases dissolvable carbon in 

the soil leachate and risks reduction of the long-term mineral nutrient pool (Paustian et al., 1997, 

Elliott, 1986, Karl et al., 2016a) 

             Under the cool and humid conditions in the Finger Lakes, excessive vegetative growth of 

grapevines is the result of high precipitation during the growing season and fertile soil. In wet 

years, pruning weight often exceeds one kilogram per vine for vines on1.8m in-row spacing 

(Jordan et al., 2016, Karl et al., 2016b). Since under-vine vegetation can provide water and 

nutrient competition to the vines, reducing competition by reducing or eradicating the vegetation 

enables higher resource availability and further promotes vine vigor (Wheeler et al., 2005, Giese 

et al., 2014, Karl et al., 2016b). High vigor vines give rise to increased canopy density and 

shaded fruit, reducing quality attributes including soluble solid, pH, tartrate/malic acid ratio, 

polyphenol, coloration (Smart, 1985), and wine sensory properties (Morrison and Noble, 1990, 
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Cortell et al., 2008). Many aromatic compounds including 1,1,6-trimethyl1,2-

dihydronaphthalene (TDN) and b-damascenone are increased with reduced canopy density and 

increased cluster light exposure in Riesling (Meyers et al., 2013), although whether the increase 

in TDN is positive from a consumer response is debatable (Sacks et al., 2012, Ross et al., 2015). 

Thus, in cool climate viticultural regions, allowing vegetation to grow under vines as a 

substitution for bare soil may offer an opportunity for reducing herbicide pollution, reducing 

erosion, lowering nutrient leaching, and mitigating vine vigor through water and nutrient 

competition which could be beneficial to commercial growers.  

             In a young vineyard, chicory growing under vines effectively reduced the Cabernet 

Sauvignon vine petiole nitrogen content, shoot growth, leaf size, pruning weight and resulted in 

riper grapes and better rated wines in the cool climate of New Zealand (Wheeler et al., 2005).  In 

the Finger Lakes region of New York state, under-vine native vegetation reduced vine pruning 

weight, canopy density and berry pH, titratable acidity and yeast assimilable nitrogen content of 

young Cabernet franc vines but had no noticeable impact on wine sensory properties (Karl et al., 

2016b). However, young grapevines with smaller root systems may be more effected by the 

cover crop induced resource competition in the top soil horizons.  

Studies of under-vine floor management affects in mature vineyards are limited and 

suggest inconsistent results with respect to vine vegetative growth, reproductive growth and wine 

sensory properties. A previous study conducted in a mature Cabernet franc vineyard 

demonstrated that under-vine annual ryegrass reduced pruning weight and canopy density in the 

third year of the experiment without impacting on berry brix, pH and titratable acidity (Centinari 

et al., 2016) but wine sensory properties were not examined.  Another study in a mature Riesling 

vineyard found that under-vine annual ryegrass, buckwheat and resident vegetation had no 
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impact on vine petiole nutrient content at veraison, midday stem water potential, predawn leaf 

water potential, vegetative growth, yield, and berry composition (Jordan et al., 2016). In that 

same study, aroma characteristics of wines made from vines with under-vine cover crops and 

herbicide strip diverged from each other but the reasons remained unknown. This indicated that 

further research would be required to understand the mechanism and the effects of under-vine 

floor management practices on mature vine growth and wine sensory properties, as well as the 

potential use in mature vineyards. 

            To investigate the under-vine floor management practices impact on wine sensory 

properties, vine physiological and vineyard microbial factors were examined in this and next 

Chapter respectively. This study aimed to examine the vine physiological factors including shoot 

growth, canopy structure, water status and nutrient status of mature and vigorous Riesling vine in 

the cool climate region of the Finger Lakes, NY. In this presented study, it was hypothesized that 

allowing weeds to grow under vines would improve soil health, engage resource competition, 

mitigate vine vigor and reduce canopy density, thereby affecting berry composition and wine 

sensory properties.  
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Material and methods 

Experimental setup 

             This experimental setup was used from 2014-2016 for both the vine physiological study 

and the vineyard microbiome study presented in Chapter 3 and Chapter 4, respectively. The 

research plot was located in Ovid, NY (42.66˚N, -76.71˚W) with soil type of Howard gravely 

loam according to Soil Survey Staff (1975). Riesling cl. 239 vines grafted onto Couderc 3309 

rootstock were planted in 1999 in a South-North row orientation and trained to a Scott-Henry 

trellis system. The in-row vine spacing was 2.13m and inter-row spacing was 2.74m. The 

vineyard was managed according to standard practices (Wolf, 2008). The vines were cane-pruned 

in February each year to a consistent bud number, on average 16.4 buds per linear meter (40 buds 

per vine), not including one extra cane that served the dual function of kicker and winter damage 

back-up cane, which was removed before bloom. The vines were hedged periodically throughout 

the growing season when shoots grew well above the top catch wires.  

The experiment investigated two under-vine floor treatments in addition to a glyphosate 

maintained bare soil as the control. A randomized complete block design was applied to enable 

four replicates for each of the three treatments. Treatments were randomly assigned to the 

experimental units, which are one meter wide under-vine soil strips, within each block. Each 

experimental unit was across three rows with nine consecutive vines in a row (27 vines per 

experimental unit, 81 vines per rep, 324 vines in the experiment). The vine growth, yield and soil 

samples were measured and collected from the middle three vines and the 1m × 6m under-vine 

soil strip, in the middle row from each of the experimental unit where the other vines were 

served as guards for physical and spatial buffering. A permanent interrow cover crop, a mix of 

fescue, white clover and weeds, was maintained separately and mowed periodically. 
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Under-vine floor management practices  

             The under-vine floor management treatments included natural vegetation (NV), soil 

cultivation (CULT) and Glyphosate (GLY) application. The GLY treatment (control) was 

maintained by applying Roundup (Roundup® PRO concentrate, Monsanto, St. Louis MO). For 

the NV treatment, the weeds were allowed to grow freely. Soil was cultivated, when the weeds 

reached 50% ground coverage by visual assessment, in June 2014, June and July 2015, and June 

and July 2016 for CULT treatment. The GLY control was established with Roundup application, 

in which Glyphosate was the active ingredient, with 2.9 kg a.i./ha application rate of 2% solution 

on 24 June and 16 July 2014, 16 June 2015 and 15 June 2016. The groundcover in NV was 

trimmed only in 2015 using a string trimmer on 8 - 9 August as the vegetation was reaching the 

fruiting zone.  

 

Ground coverage assessment and weed identification  

             On September 2015 and August 2016 at late veraison, two 400cm2 square-shaped grids 

were randomly chosen in each experimental unit. For each chosen grid, a digital photo was taken 

at 1.5m vertically above with measuring tape placed horizontally on the ground as photo scaling 

reference. The chosen grid within each digital photo was analyzed with ImageJ Version 1.50b 

(open resource via http://imagej.nih.gov/) to define ground percentage cover with image 

processing steps similar to Ricotta et al. (2014). The digital photos taken from the NV treatment 

were also used for visual weed species identification.  

 

Shoot growth measurement 

             Length and diameter of primary and lateral shoots were measured. Four shoots per data 
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vine were randomly marked in the beginning of each growing season to represent the primary 

shoot growth dynamic for that vine throughout the growing season. Shoot diameter was 

measured (mm) by using calipers at the middle of internode one above the first fully developed 

bud where two measurements were taken per shoot. The two numbers were averaged to represent 

the diameter of each shoot. Shoot length was measured (cm) with a measuring tape from primary 

shoot base to shoot tip. Length and diameter of the basal lateral shoot were recorded using the 

same methods described for the primary shoot. Lateral shoots from the same primary shoots 

were measured starting from the first hedging and continuing until the second hedging or shoot 

thinning which led to an inability to track tagged lateral shoots.  

 

Canopy architecture - EPQA 

             Point quadrat analysis (PQA) (Smart and Robinson, 1991) and enhanced point quadrat 

analysis (EPQA) (Meyers and Vanden Heuvel, 2008) were conducted to characterize canopy 

light environment at veraison, 25 August 2015 and 19 August 2016. Basic PQA was conducted 

by inserting a thin wooden stick horizontally through the fruiting zone in perpendicular to the 

row at 20cm interval on a per panel basis. Any leaf and cluster contact with the stick end was 

recorded. On the same day of measuring PQA, light environment of the canopy at fruiting zone 

was also measured using a ceptometer (Decagon, model AccuPAR LP-80, Pullman, WA), which 

recorded the photon flux, with an ambient flux sensor attached. Two measurements were taken 

per data vine on each side of the fruiting zone within one hour of solar noon. The ambient flux 

sensor was pointed vertically toward the sky above canopy without any shade throughout the 

ceptometer measurement. The light interception was calculated dividing fruiting zone photon 

flux by ambient photon flux and presented in percentage. Light interception and PQA data were 
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pooled into Canopy Exposure Mapping Tools, version 1.7 (available via Jim Meyers, 

jmm533@cornell.edu) to calculate leaf layer number, occlusion layer number, interior leaf 

percentage, interior cluster percentage, cluster exposure layer and cluster exposure flux 

availability.  

 

Vine water and nutrient status measurements 

             Vine water status including midday stem and predawn leaf water potential were 

measured according to Fulton et al. (2001) with a pressure chamber (Soil Moisture Equipment 

Corporation, model 3005F01, Santa Barbara, CA). Midday stem water potential was measured 

roughly every two weeks at solar noon with one hour deviation and predawn water potential was 

measured during the late growing season during fruit ripening on 11 September 2015and 13 

September 2016 at 4AM EST with one hour deviation. For midday stem water potential 

measurements, fully expanded healthy young leaves were bagged with a 500ml alumina foil 

covered Ziploc bag for 15mins before measurement. Each leaf was cut from the shoot with a 

sharp blade, transferred immediately into the pressure chamber, and pressurized at about 1bar/sec 

to the point when xylem sap moisturized the cut surface of the petiole. 

             For each experimental unit, 100 petiole samples were collected from young fully 

expanded leaves at roughly full bloom on 20 June 2015 and 24 June 2016, and veraison on 4 

September 2014, 24 August 2015 and 26 August 2016. The samples were washed with mild 

soap, rinsed with deionized water and sent to Cornell Nutrient Analysis Laboratory (CNAL) for 

total carbon and nitrogen using a combustion method (Campbell and Plank, 1998). Macro- and 

micronutrients (Al, B, Ca, Cu, Fe, K, Mg, Mo, Mn, Na, P, Zn) were measured using dry ash 

extraction method. 

mailto:jmm533@cornell.edu
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Yield components and juice composition measurements 

             Yield data were collected on a per vine basis at commercial harvest as determined by the 

grower on 30 October 2014, 11 October 2015 and 15 October 2016. The clusters were harvested 

from each vine and counted before being pooled in a plastic lug to measure the total yield per 

vine by weighing with the hanging scale (Salter Brecknell, model SA3N340, accuracy ±0.1kg, 

Fairmont, MN). The average weight per cluster was calculated by dividing the total weight of the 

fruit per vine by the number of clusters. The berry weight was determined by averaging the 

weight of 100 berries that were collected on a per experimental unit basis at harvest. The berries 

were stored in Ziploc bag at -20˚C after harvest until weighed (Santorius ELT103, accuracy 

±0.001g, Goettingen, Germany).  

             Winter pruning weight was collected on a per vine basis in December for downward 

shoots and February for the upwards shoots of each year (as determined by the cooperating 

grower’s standard practice). In 2016, although the downward shoots were pruned by the vineyard 

crew prior to data collection, the pruned shoots remained directly under the vine. As a result, the 

data were collected from the shoots that were reconstructed by identifying the size, shape and 

color of the cut surfaces. Pruning weight was used as an indicator for vine vegetative growth.  To 

determine Ravaz index, yield was divided by pruning weight. Cluster compactness parameters 

were measured in the third year of the experiment where 10 clusters were randomly sampled 

from each of the experimental unit. Berries of each cluster were detached from the rachis and 

counted. The length of the rachises (cm) were recorded.  

                          Twenty clusters were randomly collected from each experimental unit at harvest 

for juice composition analysis. The clusters were stored at -20˚C freezer until analysis. They 

were thawed in a 4˚C cooler, whole cluster pressed and the juice was filtered through cheesecloth 
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before measuring soluble solids, titratable acid (TA), pH, and yeast assimilable nitrogen (YAN) 

using a temperature compensating digital refractometer, titration 50 mL aliquot of juice against 

0.10 M NaOH to pH 8.2, a benchtop pH meter (VWR Symphony pH Meter, model SB80RI, 

Radnor, PA), and a Chemwell 2910 multianalyzer to measure ammonia and spectrophotometry to 

measure primary amino nitrogen (Nisbet et al., 2013). YAN was only quantified in 2014 and 

2015. 

 

Soil property parameters 

             Under-vine soil samples were collected at the end of growing season in November 2015 

and 2016 for soil health analysis according to Gugino et al. (2009). Six soil cores from the top 20 

cm soil were taken from each experimental unit, combined, and sent to CNAL for soil health 

assessment including wet aggregate stability, organic matter content and microbial respiration 

rate for both 2015 and 2016. Extra tests of organic matter, Morgan-extractable Phosphorus, 

Potassium, Iron, Manganese and Zinc were conducted in 2015 only. In November 2016, four 

intact soil cores were taken per experimental unit from the top 15cm soil for soil bulk density 

measurement. The soil samples were manually stratified in an interval of 5cm, dried in oven at 

60˚C overnight, weighed, and divided the weight by volume for bulk density calculation.  

 

Winemaking and Sensory analysis  

             In each year, grapes from each treatment were obtained at commercial harvest as 

described above and fermented in duplicate at the Vinification and Brewing Laboratory at 

Geneva, NY using standard white winemaking procedures. Briefly, within 24hr after harvest the 

clusters were destemmed, crushed, pressed, 50ppm SO2 added to the juice, settled overnight at 
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4°C, racked from the sediment and contained in 114L stainless steel jacketed fermenters. 

Commercial yeast Sacharomyces cerevisiae strain EC-1118 at 0.25 g/L, fermentation aid Go-

Ferm Protect® and Fermaid® K (Lallemand, Petaluma, CA) as per manufacturer’s directions 

were added to conduct the fermentation. The wines were fermented at 15°C until dryness as 

tested with Clinitest tablet (Bayer, West Haven, CT) and did not undergo malolactic fermentation 

nor acid adjustment. Wines were brought up to 40 ppm SO2, cold stabilized at 2°C for three 

months, tasted for faults before being bottled in 750ml green glass bottles and stored at 15°C.  

             Wines derived from the process described above were subjected to sensory evaluation to 

determine whether they were aromatically similar or different. The sensory studies were 

conducted on 13 September 2016, 21 April 2017 and 18 May 2017 for the wines of 2014, 2015 

and 2016 vintages, respectively, at Cornell University, Ithaca, NY. The sensory evaluation 

process was according to Lawless and Heymann (2010) and Jordan et al. (2016). For each year, 

the panelists were comprised of 100 panelists who self-reported to drink white wine at least once 

a month. The panelists were seated in a room with white fluorescence light at a wooden table 

separated by white cardboard partitions to isolate each of them. The setting of each spot included 

50ml of each wines, all the field treatments and control in duplicate, contained in ISO tasting 

glasses with plastic lids on top, a sorting sheet that included a short survey about drinking 

frequency, age and gender, and a pencil to fill out the sheet. The wines were presented 

simultaneously with randomly generated three-digit codes on each of the glasses. The panelists 

were asked to smell all the wine, group the wines based on the overall aroma similarity, and to 

complete the survey without time limitation. Similarity scores were assigned to the results 

derived from each of the sensory panelist. Score of one was given to the wines that were 

grouped, while zero was given to the wines that were not in the same group. The cumulative 
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scoring results of each year were transferred into a similarity square matrix and analyzed using 

single dimensional scaling in R version 3.2.4.  

 

Climate data 

             Climate data from Romulus, NY and Varick, NY for 2014 and Ovid, NY stations for 

2015 and 2016 were obtained from the Cornell University Network for Environment and 

Weather Applications (NEWA). The distances between each of the weather stations and the 

experimental site were 17.8km, 5km and 4.1km for Varick, Romulus, and Ovid respectively. The 

weather stations were all northwest of the experimental site. The Romulus and Varick data were 

used for Growing Degree Days (GDD) and precipitation respectively due to the weather station 

at Ovid malfunctioning in 2014. The growing degree days were calculated using 10˚C as baseline 

for the growing seasons. 

 

Table 3.1. Growing Degree Days (GDD) base on 10˚C and precipitation 

of the experimental site during the growing season from 2014 to 2016.  

Month 
GDD (˚C)   Precipitation (cm) 

2014a 2015b 2016   2014c 2015 2016 

April 28.3 29.9 24.4  7.1 6.6 3.8 

May 165.2 210.6 125.2  4.6 3.4 5.8 

June 294.0 293.7 291.2  5.5 3.8 1.8 

July 335.7 360.3 406.7  7.0 6.8 3.7 

August 289.2 328.2 423.8  8.1 3.3 11.0 

September 225.0 297.3 271.7  1.3 7.9 7.6 

October 94.1 65.5 104.6  2.2 5.2 10.9 

Sum 1431.4 1585.6 1647.5   35.7 37.1 44.6 
aData obtained from Romulus, NY station. 
bGDD and precipitation data of 2015 and 2016 were obtained from Ovid, NY station. 
cData obtained from Varick, NY station. 
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             Year 2016 had highest overall precipitation among the three experimental years (Table 

3.1). However, due to the high precipitation in August and October, the growing season of 2016 

from late May to early August was the driest among the three years. Precipitation in 2015 was 

more equally distributed during the growing season whereas 2014 had wetter early growing 

season and drier late growing season from September to October. The temperature in 2016 was 

the warmest with 16478GDD followed by 2015 with 15856GDD and 2014 with 1431GDD. 

Statistical methods 

             Normality assumptions were checked for all the data. The data were analyzed with 

mixed-model ANOVA, where under-vine floor treatment was classified as a fixed effect and 

blocks as a random effect, using JMP Pro version 12.0.1. The post-hoc analysis for pair-wised 

comparison was performed using Dunnett’s test comparing treatment means with mean of GLY 

control at α=0.05 significance level. 

 

Results 

Under-vine floor coverage 

             The ground coverage in the NV treatment was significantly higher than that of GLY 

control, while CULT was the same as GLY in both 2015 and 2016 (Fig. 3.1). NV ground 

coverage was four and 42 times more than the vegetation coverage of GLY in 2015 and 2106, 

respectively. There was no difference in the CULT and GLY in proportion ground coverage in 

2015 and 2016. The weeds identified in the NV treatment are listed in Table. 3.2. 
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Figure 3.1. Proportion of Riesling vineyard under-vine soil covered with weeds at veraison in (a) 

2015 and (b) 2016. NV = Natural Vegetation, GLY = Glyphosate, CULT = Soil Cultivation. The 

bars indicate standard errors. The significant differences between treatment and control were 

found using mixed model ANOVA following with Dunnett’s test at 5% significance level. The 

significance symbol *** indicates P-value <0.001. 
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Vegetative growth 

             There were no primary and lateral shoot length differences between either of the two 

treatments (NV, CULT) compared to (GLY) control except the primary shoot length in mid July 

2016 where the primary shoot of NV was 33% longer than the control (Fig. 3.2). The proportion 

of primary shoots that had lateral shoots was the same between either of the treatments and 

control.  

             The fruiting zone canopy structure and light environment were impacted by NV in 2015 

but not in 2016 (Table 3.3). In 2015, NV reduced the leaf layer number by 36%, occlusion layer 
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number by 41% and percent interior cluster by 49% compare to that of GLY control. The change 

of the canopy structure resulted in change of the canopy light environment where the cluster 

exposure layer and cluster exposure flux availability was reduced 50% and increased 76%, 

respectively, by NV compared to GLY in 2015. There were no canopy structure and light 

environment differences found between CULT treatment and GLY in both 2015 and 2016. 
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(b) 2016 Primary Shoot Length
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(c) 2015 Lateral Shoot Length
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(d) 2016 Lateral Shoot Length
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(e) 2105 Proportion of primary shoots with laterals
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(f) 2106 Proportion of primary shoots with laterals
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Figure 3.2. Shoot growth of Riesling vine growing with different under-vine cover crop 

treatments. Primary shoot length before hedging in (a) 2015 and (b) 2016. Lateral shoot in (c) 

2015 and (d) 2016 and proportion of primary shoot with laterals in (e) 2015 and (f) 2016 after 

hedging. NV = Natural Vegetation, GLY = Glyphosate, CULT = Soil Cultivation. Significant 

difference between treatment and control was found using mixed model ANOVA following with 

Dunnett’s test at 5% significance level. 
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Table 3.3. Canopy architecture approximation using EPQA analysis of Riesling vines with 

different under-vine floor management practices in 2015 and 2016 at veraison 

2015 veraison 

Treatmenta Leaf Layer Number 

Occlusion Layer 

Number         % Interior Leaf 

GLY 2.08 ± 0.15c 2.99 ± 0.28    32.3 ± 4.5 

NV 1.33 ± 0.15 *d 1.76 ± 0.28 * 23.5 ± 4.5 

CULT 2.08 ± 0.17 2.70 ± 0.33 31.3 ± 5.2 

P-valueb 0.0281 0.042 0.5067 

Treatment % interior cluster 

Cluster Exposure 

Layer 

Cluster Exposure Flux 

Availability 

GLY 52.3 ± 5.5 0.56 ± 0.06 0.33 ± 0.03 

NV 26.6 ± 5.5 * 0.28 ± 0.06 * 0.58 ± 0.03 ** 

CULT 48.8 ± 6.4 0.53 ± 0.06 0.48 ± 0.04 

P-value 0.0452 0.0303 0.0138 

                    

2016 veraison 

Treatment Leaf Layer Number 

Occlusion Layer 

Number % Interior Leaf 

GLY 0.89 ± 0.10 2.16 ± 0.16 9.65 ± 4.42 

NV 0.72 ± 0.10 1.90 ± 0.16 11.6 ± 4.42 

CULT 0.74 ± 0.12 1.76 ± 0.19 6.30 ± 5.11 

P-value 0.1056 0.2957 0.7613 

Treatment % interior cluster 

Cluster Exposure 

Layer 

Cluster Exposure Flux 

Availability 

GLY 21.3 ± 3.7 0.25 ± 0.05 0.51 ± 0.04 

NV 15.4 ± 3.7 0.15 ± 0.05 0.57 ± 0.04 

CULT 14.3 ± 4.3 0.14 ± 0.06 0.57 ± 0.05 

P-value 0.4083 0.2091 0.6516 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cPooled standard error  
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001 

 

Yield components, cluster compactness and berry composition 

             Yield components including yield per vine, Ravaz index, cluster weight, number of 

clusters per vine, and number of berries per cluster were not affected by the under-vine floor 

treatments. (Table 3.4). Berry weight was impacted by the under-vine floor management 

practices in 2014 and 2016 as revealed by mixed model ANOVA with no pairwise differences. In 
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2015, the vine pruning weight was considerably but not significantly reduced by NV compared 

to vines from GLY control. No significant difference was found in terms of cropload as Ravaz 

index showed no differences between either of the treatments and GLY. 

             Berry composition including pH, Brix, TA and YAN were not impacted by the under-

vine floor treatments in all three years of the experiment (Table 3.5). Cluster compactness, 

measured in the third year of the experiment, suggested that rachis length, berry number per 

rachis and berry number per unit rachis were all similar between either of the treatment and 

control (Table 3.6). 
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aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value was derived from mixed model ANOVA following with Dunnett’s test at α=0.05. 
cSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cPooled standard error 

d2016 YAN data was not collected 

 

 

 

Table 3.6. Cluster compactness measurement of Riesling vines growing with 

different under-vine floor management practices in the third year of experiment in 

2016 

Treatmenta 

Cluster 

compactness 
Rachis length Berry number per 

rachis 

 
(berry/rachis 

length) 
(cm) 

GLY 10.8 ± 0.5c 9.23 ± 0.54 94.7 ± 5.8 

NV 9.42 ± 0.5 8.92 ± 0.54 82.4 ± 5.9 

CULT 9.96 ± 0.4 9.07 ± 0.52 91.0 ± 5.4 

P-valueb 0.1430 0.8322       0.0529 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cPooled standard error 
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Vine water and nutrient status 

             Midday stem water potentials of the treatment vines were higher than that of control 

vines in late season from early August to early September in 2015 (Fig. 3.3a). However, in late 

season 2015, NV led to lower predawn water potential (-2.13bar) than the GLY control (-

1.74bar) (Fig. 3.3c). There were no predawn and midday stem water potential differences 

between either of the treatments and control in 2016. 

             Comparing to GLY, petiole N was reduced 12% and 11% by NV and CULT respectively, 

B was reduced 8% and 12% by NV and CULT respectively, Mn was reduced 20% by NV, and P 

was reduced 10% by CULT in 2015 by bloom (Table 3.7). NV increased Al by 81% by veraison 

2015 and reduced Mn by 24% by veraison 2016 compared to GLY control. The rest of the 

nutrients in the petiole were the same between either of the under-vine floor treatments and GLY 

control.  
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Figure 3.3. Midday stem water potential throughout the growing seasons in (a) 2015 and (b) 

2016 and late season predawn water potential in (c) 2015 and (d) 2016 of Riesling vines growing 

with different under-vine floor management practices. The significant differences were tested 

using mixed model ANOVA followed with Dunnett’s test at 5% significance level. NV = Natural 

Vegetation, CULT = Soil Cultivation, GLY = Glyphosate.  
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aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value was derived from mixed model ANOVA at α=0.05. 
cSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
dPooled standard error 
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Soil property parameters 

             Soil property parameters were generally improved by NV, where soil aggregate stability 

was increased by 50% and organic matter content was increased by 18% in 2016. Microbial 

respiration rate was increased by 70% and 27% in 2015 and 2016 respectively, and carbon 

mineralizability was increased 54% in 2015, when compared to the GLY control (Table 3.8). 

None of the soil health parameters differed between the CULT treatment and GLY control. 

For soil nutrients, NV and CULT treatments increased Mg by 10% and 12% respectively and NV 

increased Mn by 36% compared to GLY in 2015 (Table 3.9). Other nutrients including P, K, Fe 

and Zn were unaffected by the under-vine floor treatments. Soil bulk density in the top 5 cm was 

reduced 16% by NV compared to GLY but the bulk density of soil from 5-15cm was the same 

between either of the treatment and control in the third year of experiment in 2016 (Table 3.10). 

Table 3.8. Health parameters of the under-vine soil treated with different floor 

management practices in a Riesling vineyard in the second and third year of the 

experiment (2015 and 2016) 

Treatmenta 
Aggregate stability Organic matter 

(%) (%) 

  2015 2016 2015 2016 

NV 12.3 ± 1.24c 27.0 ± 2.38 *d 3.07 ± 0.10 3.26 ± 

0.07 

** 

GLY 9.87 ± 1.24 18.0 ± 2.38  2.80 ± 0.10 2.77 ± 0.07  

CULT 10.4 ± 1.24 15.6 ± 2.38  3.10 ± 0.10 2.74 ± 0.07  

P-valueb 0.4842 0.0251 0.1095 0.0069 

  

Treatment 
Microbial respiration C Mineralizability 

 (mg CO2 g/14days) (mg CO2/g OC) 

  2015 2016 2015 2016 

NV 1.82 ± 

0.15 

* 1.08 ± 0.04***  59.0 ± 

4.00 

* 33.2 ± 1.36 

GLY 1.07 ± 0.15  0.85 ± 0.04  38.3 ± 4.00  30.9 ± 1.36 

CULT 1.21 ± 0.15  0.88 ± 0.04  39.0 ± 4.00  32.2 ± 1.36 

P-value 0.0271 <0.0001 0.0211 0.4988 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value is derived from mixed model ANOVA at α=0.05. 
cPooled standard error 

dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001 
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Table 3.9. Nutrient analysis of under-vine soil treated with different floor 

management practices in 2015 after harvest 

Treatmenta 
P K Mg 

ppm 

GLY 22.6 ± 1.44c 349 ± 36.1 112 ± 8.46 

NV 22.4 ± 1.44 356 ± 36.1 123 ± 8.46 *d 

CULT 22.0 ± 1.44 346 ± 36.1 125 ± 8.46 * 

P-valueb 0.9691 0.8658 0.0186 

                    

Treatment 
Fe Mn Zn 

ppm 

GLY 0.48 ± 0.09 8.12 ± 0.60  1.25 ± 0.10 

NV 0.51 ± 0.09 11.0 ± 0.60 ** 1.61 ± 0.10 

CULT 0.50 ± 0.09 9.60 ± 0.60  1.52 ± 0.10 

P-value 0.9141 0.0102 0.0718 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value is derived from mixed model ANOVA at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01 

 

 

Table 3.10. Bulk density of under-vine soil treated with different under-

vine cover crops at different depths in third year of the experiment 

(2016) 

Treatmenta 
0-5cm 5-10cm   10-15cm   

(g/cm3)   

GLY 1.20 ± 0.06c 1.23 ± 0.04  1.36 ± 0.03  
NV 1.01 ± 0.06 **d 1.17 ± 0.04  1.27 ± 0.03  

CULT 1.12 ± 0.06 1.27 ± 0.04  1.28 ± 0.04  

P-valueb 0.0159 0.0564   0.0803   
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bP-value: The P-value is derived from mixed model ANOVA at α=0.05. 
cPooled standard error 
dSignificance designation of Dunnett’s test: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 

Winemaking and one-dimensional sorting on the wine aroma 

             Although statistical analysis was not performed, the mean values of pseudo-replicated 

wine composition parameters including the ethanol, TA and pH were very similar between either 

of the treatments and control (Table 3.11).   

             Based on the one-dimensional sorting of the sensory study data derived from 100 
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panelists each year, there were no grouping patterns of the replications or treatments across all 

three years (Fig. 3.4). The wine replications randomly spread along the sorting scale for each 

year which indicated that panelists were unable to differentiate the under-vine floor treatments 

from the control based on the aromatic properties of the wines in all three years of the study.     

 

Table 3.11. Riesling juice soluble solid after press and wine ethanol, titratable acid 

and pH at bottling from grapes of different under-vine floor treatments in 2014, 

2015 and 2016.  

Treatmenta Repb 
Soluble solid (Brix) after press   Ethanol content (%) at bottling 

2014 2015 2016   2014 2015 2016 

GLY 1 19.6 20 22  - 11.7 12.8 

GLY 2 19.6 20 22  - 11.6 12.8 

NV 1 19.2 18.8 20.9  - 11.6 12.5 

NV 2 19.2 18.8 20.9  - 11.6 12.5 

CULT 1 19.3 19.8 20.9  - 11.5 12.6 

CULT 2 19.3 19.8 20.9   - 11.5 12.7 

Treatment Rep 
pH at bottling    Titratable acid (g/L) at bottling 

2014 2015 2016   2014 2015 2016 

GLY 1 3.19 3.22 2.97  8.55 7.94 8.9 

GLY 2 3.33 3.17 2.98  8.21 8.06 8.61 

NV 1 3.33 3.13 2.89  8.35 7.83 8.69 

NV 2 3.3 3.17 2.91  8.08 7.93 9.05 

CULT 1 3.21 3.18 2.91  8.61 7.7 8.94 

CULT 2 3.23 3.14 2.9   8.71 8.23 9.09 
aTreatment: GLY = Glyphosate, NV = Natural vegetation, CULT = Soil Cultivation. 
bRep: Fermentation replications of each treatment 
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Figure 3.4. One dimensional scaling of wine sensory property similarity rating of Riesling wines 

made from grapes derived from vines treated with under vine Glyphosate application (GLY), soil 

cultivation (CULT) and natural vegetation (NV) in 2014, 2015 and 2016. n=100 for all three 

years. 
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Discussion 

             The major finding of this study was that allowing under-vine floor weeds to grow had 

little impact on mature vine growth and no discernable impact on wine sensory properties. Shoot 

growth, vine pruning weight, yield per vine, berry soluble solids, pH and TA were all unaffected 

by the under-vine soil treatments over the three year duration of the experiment. The only 

parameter impacted by treatments was canopy structure where leaf layers and occlusion layers 

were reduced and cluster light environment was improved in 2015, the year when the 

precipitation was reasonably equally distributed throughout the growing season. Previous studies 

have demonstrated that under-vine cover crops reduced vine canopy density and improved 

cluster light exposure (Wheeler et al., 2005, Hatch et al., 2011, Karl et al., 2016b, Hickey et al., 

2016). In these studies, reduction in canopy density was always coupled to reduced shoot growth 

and pruning weight attributable to resource competition from under-vine cover crops. However, 

in this study pruning weight and shoot growth were not significantly reduced, though pruning 

weight was lower in NV than in GLY in all years of the study. Compared to previous studies 

(Wheeler et al., 2005, Hatch et al., 2011, Karl et al., 2016b, Hickey et al., 2016), direct water and 

nutrient competition between vine and floor vegetation were less prominent in this study. The 

midday stem water potential was the same in the early season and higher in the late season in NV 

compared to GLY in 2015. The resilience of grapevine to withstand competition from weeds 

observed in this study can likely be explained by an extensive root system and high carbohydrate 

reserve in mature vines (Holzapfel et al., 2010). 

             The reduction of fruiting zone leaf layer number and occlusion layer number in NV in 

2015 may relate to the reduced vine nutrient status at bloom in 2015 where the N, B and Mn 

content were lower in the petiole compared to GLY control. This result may be due to reduced 
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soil nutrient content resulting in lower vine available nutrient (Pérez-Álvarez et al., 2015) or to 

lower soil nutrient mineralization while the soil overall nutrient was not reduced (Tesic et al., 

2007). In this study, none of the soil nutrients were reduced in the NV treatment. Although soil N 

and B were not measured, Mn, which was reduced in the petiole, was higher in soil in the NV 

treatment than the control. Thus, the latter theory (lower soil nutrient mineralization) is more 

likely to explain the reduction of vine petiole nutrients.  

Soil nutrient mineralization is mainly derived from biological process of soil 

microorganisms which can be impacted by substrate, temperature and moisture (Bardgett and 

Chan, 1999, Goncalves and Carlyle, 1994). Although soil temperature was not examined in this 

study, soil substrate content, microbial activity and moisture were indirectly quantified. In 2015 

the soil nutrient concentration was not reduced by NV. Soil organic matter content was 

unaffected by the NV treatment but the organic carbon was more labile as higher carbon 

mineralizability was noted. Given the same moisture level, microbial population was more 

actively mineralizing nutrients in NV than in GLY as shown by the higher microbial respiration 

rate. Thus, it is more possible that reduced vine nutrient status was due to less favorable soil 

moisture conditions for nutrient mineralization in the NV treatment. Indeed, the soil water was 

found to be lower in the NV treatment than in the control in 2015 through an indirect 

measurement using predawn leaf water potential, which is often used as soil water indicator 

(Winkel and Rambal, 1993). As a result, the reduced vine canopy density found in NV treatment 

in 2015 was likely due to lower nutrient availability caused by drier soil with lower nutrient 

mobility and mineralization. The same phenomenon was also observed by Tesic et al. (2007), 

where the vine canopy density was reduced by complete floor coverage. They reported that floor 

vegetation reduced the soil volumetric water and consequently reduced the vine N and Mg 
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uptake due to lower nutrient mineralization rate in the soil. Groundcover may have redistributed 

the vine root to the deeper soil (Centinari et al., 2016) where the N mineralization rate was lower 

and that resulted in lower vine N status and reduced vegetative growth (Celette et al., 2009). 

             Although predawn leaf water potential was lower in the NV treatment compared to GLY 

in 2015, the surface soil may have been moister in the NV treatment during the late growing 

season, which was when many of the weeds stopped growing actively and served merely as 

living mulch preventing surface soil water evaporation. The plant residues left from soil 

cultivation had the same function for protecting surface soil moisture. The ability of vegetative 

mulch to protect soil water from evaporation loss was previously discussed (Frye et al., 1988). 

The evaporation loss prevention was demonstrated in cool climate vineyard where the growing 

season volumetric water top 20cm surface soil was higher in the manually cultivated soil 

compared to that of herbicide maintained bare soil in all three years of the study (Karl et al., 

2016a). This likely explained why the midday stem water potential of vines in NV and CULT 

treatments were higher than the control in late season 2015. In additional to the soil surface water 

conservation effect of NV and CULT treatments, differentiated root distribution among the vines 

with different under-vine floor management practices may had an impact on the vine water 

status. Soil cultivation was observed to reduce the grapevine root distribution in the top soil 

horizon (Van Huyssteen and Weber, 1980). A study done in a humid climate demonstrated that 

mature grapevine growing with bare soil maintained with herbicide under vines had 49% more 

total absorptive root length distributed to the top 20cm soil than the grapevine growing with 

permanent under-vine grass (Klodd et al., 2016). Thus, if the surface soil dried out during the day 

it may have had more impact on the vines in GLY control than in other treatments if there was 

more water absorptive root distributed. This further explained the observation that late season 
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midday stem water potential of NV and CULT was higher compared to that of GLY control in 

late season 2015.  

             By examining the grapevine biomass distribution, it was suggested that early season 

growth is dependent on carbohydrate and nutrient reserves stored in permanent structures of the 

vine (Keller and Koblet, 1995). Although the nutrients including N, B and Mn were reduced in 

the vines in NV treatment in 2015, more vigorous primary shoot growth in the early 2016 did not 

suggest reduced nutrient reserves. This observation may be explained by post-harvest reserve 

nutrient replenishment. Twenty three years old mature grapevines in Oregon not only had great 

resilience of nutrient reserve but also relied heavily on the post-harvest nutrient acquirement for 

reserve nutrient replenishment (Schreiner et al., 2006). Since the soil organic matter in the NV 

treatment was more labile, the decomposition of the cumulative weeds residues plus the 

mineralization of nutrients in the late season and post-harvest period could have replenished and 

even enriched the nutrient reserve in the vines, and consequently led to more vigorous early 

season primary shoot growth. However, longer early season primary shoot length in the NV 

treatment did not result in higher winter pruning weight likely due to periodically hedging of all 

treatments and the compensation growth of the lateral shoots, mainly from concurrent season 

nutrient uptake. 

             Many studies have shown the link between reduced canopy density along with increased 

light environment by under-vine cover crops and enhanced berry ripeness including increased 

soluble solids and reduced TA (Hickey et al., 2016, Coniberti et al., 2018). Although with only 

one year of results, another study not only showed that chicory growing under-vine reduced vine 

canopy density which led to increased soluble solids and reduced TA in grapes but also observed 

higher rated wine sensory properties including appearance, aroma, palate and overall evaluation 
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of wines from the under-vine chicory compared to cultivated bare soil (Wheeler et al., 2005). 

However, in our study, grape soluble solids, pH and TA were not impacted by the under-vine 

floor treatment and the sensory study showed parallel results, even though the canopy structure 

and light environment were improved by NV treatment in 2015. In a New York study, mature 

Riesling vine growth including canopy density, pruning weight and yield were not impacted by 

the under-vine cover crop treatments but the wines were sensorially different from each other 

(Jordan et al., 2016). That study suggested that under-vine floor management practices could 

have altered the wine sensory properties through mechanisms other than vine balance, canopy 

light environment, and water and nutrient status. Under-vine cover crop effects on wine sensory 

properties through altering the grape associated microbial communities was suspected. 

Manipulated grapevine endophytic fungal community showed impact on grape secondary 

metabolites including total flavonoids, total phenols and trans-resveratrol (Yang et al., 2016). 

Thus, microbial factors of under-vine floor management practices impact on vineyard soil, 

grapes, spontaneously fermentation and the resulting wine sensory properties were examined and 

discussed in the next Chapter. 

             Letting weeds grow under-vine resulted in lower management costs compared to 

maintaining cover crops and bare soil using cultivation or herbicide but reduced overall revenue 

because of yield reduction derived from resource competition was demonstrated in a previous 

study done in a young Cabernet franc vineyard (Karl et al., 2016b). However, in this study, the 

NV treatment did not reduce vine yield and Ravaz index even under dramatic different climatic 

conditions throughout the experiment in a mature vineyard. Thus, letting weeds to grow under-

vine, which is associated with lower management cost, in cool climate mature vineyards could be 

a beneficial management practice to the growers.  
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             This study hypothesized that natural vegetation growing under-vine would reduce vine 

vegetative growth including shoot growth, pruning weight and canopy density through resource 

competition and consequent increases in canopy light environment and alteration of grape 

composition and wine sensory properties. The experimental results rejected the hypothesis. Vine 

physiological factors of under-vine floor management effects were examined in this chapter, 

microbial factors were also examined in Chapter 4 to better understand their impacts on wine 

sensory properties and adaptability for sustainable viticulture. 

  

Conclusion 

             This study revealed the potential of using under-vine natural vegetation as an alternative 

to bare soil in a mature vineyard in cool climate environmental conditions. Under-vine NV 

treatment had no impact on vine vegetative growth, yield, fruit harvest parameters and wine 

sensory properties in all three years, and generally improved soil health parameters. These 

findings suggested that letting weeds to grow under-vine could provide a beneficial alternative to 

the traditional herbicide and/or cultivation maintained bare soil with lower management cost and 

improved soil health.  
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CHAPTER FOUR 

 

Fungal communities of grapes and spontaneous fermentations are resilient to vineyard 

management techniques that shift soil microbiome composition 

 

 

Introduction 

             Vineyard management practices impact fruit and wine composition through many routes 

(Jackson and Lombard, 1993). Widely known effects include the modification of the leaf area to 

fruit ratio (Kliewer and Dokoozlian, 2005), alteration of the fruit microclimate (Smart and 

Robinson, 1991), and changes in nutrient and/or water uptake. However, the role of vineyard 

microbiology has been largely overlooked until recently, with researchers suggesting microbial 

composition as a possible driver of wine sensory properties (Gilbert et al., 2014).  

             Aside from intentional inoculation, the major sources of yeasts in wine fermentations are 

derived from the vineyard and winery (Sabate et al., 2002, Mortimer and Polsinelli, 1999). The 

impact of the winery environment on yeast dynamics during fermentation has been extensively 

studied (Sabate et al., 2002, Ciani et al., 2004, Bokulich et al., 2013, Perez-Martin et al., 2014), 

but vineyard factors have received less attention. Recent studies have found that the microbial 

communities present in wine fermentations are structured to reflect regional and vineyard site 

patterns (Bokulich et al., 2016), which suggests the importance of vineyard factors.  

             Grape microbiomes can be shaped by climate, region, site, and grape cultivar (Bokulich 

et al., 2014, Corneo et al., 2013, Setati et al., 2012, Burns et al., 2015), and also appear to be 

associated with the composition of the microbiome involved in wine fermentation, and with wine 

metabolite profiles and abundances (Bokulich et al., 2016). Regionally-differentiated yeast 
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genotypes collected from vineyards, forests, and spontaneous fermentations are confirmed to 

have different impacts on wine chemical composition (Knight et al., 2015). These studies suggest 

the importance of “microbial terroir” by indicating the significance of specific vineyard 

properties on wine characteristics as a function of microbiome composition. The term “microbial 

terroir” refers to a microbially-triggered grape and wine fermentation response that results in 

region-specific wine characteristics (Gilbert et al., 2014, Belda et al., 2017).  

             Management practices in the vineyard and winery, such as the use of fungal sprays and 

sulfiting fermentations, play important roles in the microbial dynamics of grape and wine 

fermentations that potentially contribute to terroir (Grangeteau et al., 2017).  Yeast populations in 

vineyard soil (Zehetner et al., 2015), grapes, and wine fermentations (Martins et al., 2014, 

Bagheri et al., 2015, Patrignani et al., 2016) have been studied in the context of specific vineyard 

management techniques, such as organic or conventional management. A study that was 

conducted in a hot and arid climate in Spain suggested that soil tillage is related to high diversity 

in grape-associated yeast (Cordero-Bueso et al., 2011b). However, they were unable to 

statistically test this concept as they relied on culture-dependent techniques to characterize yeast 

diversity. Another study conducted in California (USA) used next generation sequencing 

methods to demonstrate that vineyard floor management impacted the community structure of 

soil bacteria(Burns et al., 2016). Fungi were not included in their study, nor was the association 

of soil microbial composition with grape or wine fermentation microbiomes. 

             The concept of soil as a source of microorganisms inhabiting grape surfaces and wine 

fermentations is easily understood, but challenging to examine systematically. A study conducted 

in Long Island, NY (USA) found that bacterial communities associated with grape leaves, 

flowers, and fruit shared a greater proportion of taxa found in soil compared with each other, 
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which they suggested as evidence of soil serving as a bacterial reservoir in vineyards 

(Zarraonaindia et al., 2015). There are several known microbial dispersal mechanisms that 

transport fungi and bacteria from the ground to crops, including rain (Madden, 1997) and wind 

(Bock et al., 2012). These routes of microbial dispersal are likely to hold in vineyards as well, 

although there are many other possible routes to be explored. Thus, it is possible that vineyard 

soil management practices could alter the microbiome in the vineyard - not only at the soil level, 

but also with aerial parts such as grapes. In one of our previous studies conducted in New York 

(Jordan et al., 2016), we showed that under-vine soil treatments had no impact on vine growth 

and yield components, but that wine sensory properties differed. We suspected that 

microorganisms in the vineyard, as a function of floor management practices, might have 

triggered changes in grape secondary metabolite production that altered wine sensory properties.   

             To understand the management impacts on microbial terroir, a three-year single-factor 

study was conducted within an experimental design that corresponds to our previous study 

(Jordan et al., 2016) in a commercial vineyard in the Finger Lakes Region of New York. Under-

vine soil management was chosen as our vineyard management factor, as we expected that it 

would directly manipulate the vineyard microbial pool in soil. The objective was to examine how 

under-vine soil management practices, including herbicide application with Glyphosate (GLY), 

soil cultivation (CULT) using hand weeding, and under-vine natural vegetation (NV) with no 

cultivation/herbicide, impacted the microbiomes of soil, grapes, and simulated spontaneous 

fermentations. The goal of the study is to understand the role of specific vineyard soil 

management practices on microbial terroir. We hypothesized that specific types of under-vine 

soil management would alter the composition of the soil microbiome, and this impact would be 

reflected in the community found on grapes and in simulated spontaneous wine fermentations, 
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which would impact wine sensory properties.  

 

Material and methods 

Vineyard design 

             The experiment was conducted in a commercial vineyard on Howard gravelly loam soil 

located in Ovid, NY, USA for three consecutive years from 2014 to 2016. The vines, V. vinifera 

cultivar Riesling grafted onto 3309C rootstock, were planted in 2001 with 2.13m × 2.74m intra- 

and inter-row spacing. The trellis system was cane pruned Scott-Henry system with 10 buds per 

cane on each of four canes. A complete randomized block design was applied to enable four 

replicates for each treatment, and the treatments were randomly assigned to the experimental 

units, which are one meter wide under-vine soil strips, within each block. Each experimental unit 

was across three rows with nine consecutive vines in a row. The grape and soil samples were 

collected from the middle three vines and the accordance under-vine 1m × 5.8m soil strip, in the 

middle row from each of the experimental unit where the other vines were served as guards for 

physical and spatial buffering. The vineyard canopy, pest-control and amendments were 

managed following standard commercial practice in the Finger Lakes region (Wolf, 2008) by the 

professional vineyard crew. 

 

Under-vine soil treatments 

             The experimental units were subjected to three different under-vine soil treatments in a 

one meter wide strip under vines including spot application of herbicide, in which the active 

ingredient was glyphosate, cultivation maintained bare soil, and natural vegetation, where weeds 

grew freely with periodic mowing to keep them out of the fruiting zone. Herbicide and 
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cultivation bare soil strips were established following the commercial standard. In brief, 2% 

Roundup (Monsanto, MO, USA) was sprayed with electronic pumped spraying nozzle in rate 

about 3kg a.i./ha. Cultivation was done by combining mechanical, rototiller to roughly 20cm 

depth, and manual tillage, cultivation with hoes. Herbicide was applied on June 23rd, July 9th, 

July 18th in 2014, June 16th in 2015 and June 15th in 2016.  Soil cultivation was applied on June 

27th, July 3rd, and July 18th in 2014, June 3rd, July 23rd to July 27th in 2015 and May 25th and June 

24th in 2016. A permanent between-row cover crop was maintained separately and was a mix of 

fescue, white clover and weeds. 

 

Sample collection 

             At bloom (2015 and 2016) and harvest (2014, 2015 and 2016), ten soil cores per 

experimental unit were collected using a core (6 cm diameter × 10 cm deep) attached to the slide 

hammer auger (AMS Inc, American Falls, ID, USA) in a grid pattern. Grape cluster samples 

were taken at commercial harvest with individual sterilized blazers for each of the experimental 

unit. Ten clusters from each experimental unit were randomly picked. The soil and grape samples 

from each experimental unit were contained in separate zip bags immediately after sampling, 

transported at 0˚C and stored in -20˚C until further analysis. Sub-samples of five berries per 

cluster, comprised of two from the top, two from the middle and one from the bottom of the 

cluster were detached in the original field sampling bag while frozen and allocated into a new zip 

bag to make 50 berries per experimental unit for grape microbial community DNA extraction.  

Simulated spontaneous fermentation 

             Simulated spontaneous fermentations were duplicated for each field treatment (n=2) with 

a fermentation control (i.e., no inoculation). Riesling juice obtained from the Cornell University 
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property at Lansing, NY, pasteurized for more than 30 minutes with exit temperature 75˚C served 

as base juice for both rinsing and fermentation. The base juice was divided into eight sanitized 

22.7L glass carboys with 16kg of juice in each. Eight sound clusters from each experimental unit 

were randomly harvested on Oct. 14th 2014, which was the commercial harvest date, and kept in 

4˚C overnight. The following day the clusters from the same treatment, a total of 24 clusters per 

treatment, were combined in a carefully sanitized plastic rinsing bucket. The clusters from each 

treatment were then soaked in 4L of base juice and shaken for three hours to dislodge the surface 

fungi including yeasts (Renouf et al., 2005). The drench from each rinsing bucket was divided 

into two 1.8L inoculum batches, avoiding any solids. The inocula were then introduced into the 

carboys that contained pasteurized juice to start the fermentation. One un-inoculated 

fermentation control was lost due to a carboy flaw. The fermentation was conducted in an 

isolated 16˚C dark room and was terminated when the fermentation reached dryness. The 

fermentation was monitored and sampled on average once every three days with sterilized pipets. 

For monitoring during the fermentation 30ml of fermenting wine was drawn. Out of the 30ml 

sample, 15ml of well homogenized fermenting wine were kept in sterilized falcon tube in -20˚C 

freezer until process for DNA extraction and the other 15ml was tested with portable density 

meter DMA35 (Anton Paar, VA, USA) and, when close to dry as evidenced by a Clinitest (Bayer 

Corporation, IN, USA).  

 

Sample DNA extraction, amplification and Sequencing 

             DNA extraction of soil samples followed the protocol for the PowerSoil DNA isolation 

kit (MO BIO Laboratories, CA, USA). For grape samples, the grapes were thawed and crushed 

in the zip bag before following the procedures, which were also used for fermenting wine 
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samples. Grape must and fermenting wine samples were vortexed and homogenized, and 

transferred into two 2ml Eppendorf tubes and centrifuged at 11600×g for 20 minutes. The pellets 

from the same sample were combined and washed two times with chilled PBS. The pellets were 

then used for DNA extraction following the protocol from the MoBio PowerPlant DNA isolation 

kit. The bacterial 16S rRNA gene V3/V4 regions and fungal ITS barcoded region were amplified 

with the universal bacterial primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-

GACTACHVGGGTATCTAATCC-3’) and fungal primers ITS1F (5′-

CTTGGTCATTTAGAGGAAGTAA-3′) and 5.8A2R (5′-CTGCGTTCTTCATCGAT-3′), in 

which the Illumina adaptors at the 5’ end of the primer sequences (5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ for the forward primer and 5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’ for the reverse primer) were 

attached(Bell et al., 2016, Yergeau et al., 2015). The reaction was conducted in 20μl containing 

9μl H2O, 8μl 5prime HotMaster mix (5 PRIME Inc., MD, USA), 1 μl of each primer (forward 

and reverse) and 1 μl of 1:10 diluted DNA template in thermocycler (Bio-Rad, CA, USA) 

following the condition of 3 min at 95˚C and then 25 (bacteria) and 30 (fungi) cycles of 30 s at 

95˚C, 35 s at 50˚C and 60s at 72˚C before entering the final step of 10 min at 72˚C. The 

amplicons were transferred into 96-well plates and cleaned with MagBio HighPrep PCR beads 

(MagBio Genomics, MD, USA). We then attached unique two-barcode indexes to cleaned 

amplicons by running PCR with 2.5 μl each of forward and reverse primers (10 µM) carrying 

designated barcodes, 12.5 μL of Q5 High Fidelity 2X Master Mix (New England Biolabs Inc., 

MA, USA), 5 μL of template, and 2,5 μl of water, with the following temperature protocol: 8 

cycles of 15 s at 98˚C, 30 s at 55˚C and 20s at 72˚C after 1 min at 98˚C and before 3 min at 72˚C. 

Sample DNA was normalized with the SequalPrep Normalization Kit (ThermoFisher, Waltham, 
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MA), pooled using equal liquid volumes, and the pool purified with a PureLink QuickGel 

Extraction Kit (ThermoFisher).  Each pool was sent to the Cornell Institute of Biotechnology 

(Ithaca, NY) for paired-end sequencing, using the 600-cycle MiSeq Reagent Kit v.3 for our 16S 

pool, and the 500-cycle MiSeq Reagent Kit v.2 for our ITS pool on the Illumina MiSeq platform 

(Illumina Inc., CA, USA). The sequencing process generated 4,060,310 ITS and 552,871 16S 

rRNA gene reads after downstream processing as described below. All the MiSeq data were 

uploaded to the NCBI Sequence Read Archive and are public accessible under the project 

number of SRP132177.  

 

Bioinformatic and statistical analysis 

             The raw sequences were processed and aligned following the protocol described in the 

Brazilian Microbiome Project (Pylro et al., 2014) with some modifications (Howard et al., 2017). 

Briefly, paired-end sequence merging, primer trimming, and singleton sequence removal were 

performed in Mother v 1.36.1. Operational Taxonomic Units (OTU) were produced at 97% 

sequence similarity. Taxonomic classification of OTUs was performed in Mother using the 

GreenGenes v.13.8 database for 16S sequences and UNITE v. 7 database for ITS sequences. 

From this step, all the downstream data analysis was conducted in R version 3.3.3 with packages 

Vegan and Phyloseq. The microbial diversity was determined using Shannon Diversity Index. 

The β-diversity of the assemblage dissimilarity between samples were calculated with the Bray-

Curtis distances for fungal community and weighted UniFrac distances for the bacterial 

community. The fungal β-diversity based on the Bray-Curtis distance metric was also tested on 

variables of vintage and under-vine soil treatments with Permutational Multivariate Analysis of 

Variance (PERMANOVA) and paired REMANOVA at α=0.05. When three-year overall analysis 
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was done, the year was positioned as a fixed effect with samples within each block in constrained 

permutation to account for the repeated measures. The overall PERMANOVA was not performed 

for soil 16S data due to incomparable sequence reads between 2014 and the rest of the years. 

Paired-PERMANOVA was performed by subsetting the treatments and Bonferroni correction 

was applied to the P-values. The relative abundance of selected fungal genera in the samples 

were compared using one-way analysis of variance (ANOVA) test followed by Student’s t test if 

there was only one group of comparison and Tukey HSD if there were more than one group of 

comparisons performing in JMP Pro 12.0.1 (SAS Institute, NC, USA), with log transformations 

when needed under violations of normality. For the comparison of the relative abundance of 

Saccharomyces and Hanseniaspora, each DAI was calculated by pooling samples across 

different treatments (n=7) to enable meaningful statistical analysis. Since the interaction of DAI 

and fungal genus was significant, the comparisons were made for each DAI individually.  

 

Sensory evaluation 

             Wines derived from simulated spontaneous fermentations were subjected to sensory 

evaluation regarding the overall aroma similarity. The panelists were comprised of 97 male and 

female aged from 21 to 79 who self-reported drank white wine at least once a month. The 

panelists were seated in a room with white fluorescence light at a wooden table separated by 

white cardboard partitions to isolate each of them. The setting of each spot included the wines, 

all the field treatments and fermentation control in duplicate, contained in ISO tasting glasses 

with plastic lids on top, a sorting sheet that included a short survey about drinking frequency, age 

and gender, and a pencil to fill out the sheet. The wines were presented simultaneously with 

randomly generated three-digit codes on each of the glasses. The panelists were asked to smell 
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all the wine and group the wines based on the overall aroma similarity, and to complete the 

survey without time limitations (Lawless and Heymann, 2010).  

 

Results 

Fungal communities cluster distinctly between soil, grapes and inoculum, and wine 

fermentations 

             Fungal community profiles showed distinct clustering of samples derived from grapes 

and inoculum, wine fermentation, and soil collected under grapevines. The Bray-Curtis distance 

metric was used to determine multivariate sample distances, which were visualized through an 

ordination of a principal coordinates analysis (PCoA). Axes 1 and 2 explained 66% of the 

variance in the data. The inoculum for the fermentations clustered with the grapes, as they were 

the drenches of the grapes washed by base juice. Similarly, the soil samples clustered together 

distinctly, and separately from other sample sources according to both PCoA dimensions. 

However, the wine samples showed fungal communities that varied widely in taxonomic 

profiles, suggesting variability throughout the fermentation (Fig. 4.1). Shannon diversity indices 

for OTUs did not differ among treatments across grapes, inoculum, soil, or wine fermentations 

across years (Supplementary Fig. S1), thus PCoA analysis was not likely influenced substantially 

by differences in OTU diversity across treatments.   
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Figure 4.1. Principal coordinates analysis (PCoA) of fungal communities (ITS region) of soil, 

grape, inoculum (derived from grape must) and wine fermentations from all harvest years and 

management treatments. The ordination is based on the Bray-Curtis distance metric, with 

samples clustering by collection type (grape/inoculum, soil, and wine fermentations). 

 

Under-vine soil management impacted soil fungal community structure  

             To evaluate the impact of under-vine soil management on microbial community 

composition, we first profiled the soil microbiome. The three-year average under-vine soil 

vegetation coverage rate for NV was more than 70%, while coverage rates for CULT and GLY 

were less than 20% at veraison. PCoA plots with samples from each of the three years of the 

study (generated using the Bray-Curtis distance metric) showed that NV soil fungal communities 

differed from those of GLY and CULT treatments (Fig. 4.2a). Over the three years of the 

experiment, sample clustering was based primarily on vintage, with each vintage clustered, and 

then by treatment, where NV separated from GLY and CULT. However, no clustering pattern 

was detected among the CULT and GLY samples. Notably, the dissimilarities between NV and 
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the other two soil treatments grew with time since groundcover establishment, suggesting 

possible intensification of the NV treatment effect over time. In 2015 and 2016, the soil samples 

were taken at two different vine phenological stages - bloom and harvest, which showed 

separation by PCoA ordination.  

             These observations were confirmed by statistical analysis. According to the three-year 

overall Permutational Multivariate Analysis of Variance (PERMANOVA), vintage and treatment 

effects were both significant (P<0.001), while vintage (R2=0.159) explained more variation than 

treatment (R2=0.114). The treatment effect was significant across all three years (p=0.032 in 

2014, p=0.001 in 2015 and p=0.001 in 2016) when each year was analyzed individually. The 

phenological stage effect was significant in both year 2015 (p=0.008) and 2016 (p=0.048), when 

samples were not taken at vine full bloom in 2014 (Table 4.1a).  

             Unclassified fungal genera in soil samples ranged from around 10% to more than 25% 

relative abundance. However, analyses excluding the unidentified genera did not change the 

differentiation of NV samples from CULT and GLY samples on the ordination. The top five 

fungal genera found in the soil (excluding unclassified) were Verticillium, Nectria, Mortierella, 

Gibberella and Fusarium, based on average relative abundances across all soil samples (Fig. 

4.4a). Fungal genera relative abundance differences were found in Gibberella, Neopestalotiopsis, 

Verticillium and an unclassified genus under Amphisphaeriaceae family, where soil of NV 

treatment had less Gibberella (P<0.005 in 2015), Neopestalotiopsis (P<0.05 in 2015 and 2016), 

unclassified Amphisphaeriaceae (P<0.05 in 2016) and more Verticillium (P<0.05 in 2015). Soil 

of CULT treatment had less Neopestalotiopsis (P<0.05 in 2015 and 2016) compared to soil of 

GLY (Fig. 4.4b). Among these genera, Neopestalotiopsis and Verticillium are found in the top 

five most important variables along with Monographella, Paraphaeosphaeria and unclassified 
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genera under Nectriaceae in the Random Forest model for soil treatment prediction 

(Supplementary Fig. S2). 

 

 

Table 4.1. Comparison of bacterial and fungal community structure dissimilarity in soil and 

grapes using (a) permutational multivariate analysis of variance (PERMANOVA) and (b) paired-

PERMANOVA. The significance symbol *, ** and *** indicates P-value <0.05, <0.01 and 

<0.001 respectively. 

 

(a) PERMANOVA 

 

Factors 
Overall 2014 2015 2016 

R2 P-value R2 P-value R2 P-value R2 P-value 

Soil 16S         

Treatment - - 0.243 0.042* 0.097 0.181 0.104 0.013* 

Stage - - - - 0.061 0.032* 0.094 <0.001** 

Treatment*Stage - - - - 0.083 0.757 0.085 0.176 
         

Soil ITS         

Treatment 0.114 <0.001** 0.246 0.032* 0.213 <0.001** 0.243 <0.001** 

Stage 0.012 0.443 - - 0.074 0.008** 0.054 0.048* 

Year 0.159 <0.001** - - - - - - 

Treatment*Stage - - - - 0.094 0.066 0.058 0.653 

Treatment*Year 0.082 <0.001** - - - - - - 
         

Grape ITS         

Treatment 0.026 0.658 0.138 0.492 0.211 0.472 0.169 0.278 

Year 0.498 <0.001** - - - - - - 

Treatment*Year 0.051 0.771 - - - - - - 
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(b) Paired-PERMANOVA 

 

Pairs 
overall 2014 2015 2016 

R2 p value R2 p value R2 p value R2 p value 

Soil 16S         
CULT vs 

GLY - - 0.135 0.621 0.070 0.481 0.064 0.455 

CULT vs 

NV - - 0.186 0.033* 0.072 0.209 0.088 0.064 

GLY vs NV - - 0.190 0.026* 0.083 0.086 0.088 0.036* 
         

Soil ITS         
CULT vs 

GLY 0.061 0.005** 0.157 0.238 0.110 0.027* 0.103 0.022* 

CULT vs 

NV 0.101 <0.001** 0.225 0.095 0.179 0.001** 0.251 0.002** 

GLY vs NV 0.097 <0.001** 0.208 0.105 0.205 <0.001** 0.197 <0.001** 
         

Grape ITS         
CULT vs 

GLY 0.022 0.860 0.186 0.103 0.089 0.809 0.135 0.608 

CULT vs 

NV 0.021 0.894 0.113 0.912 0.172 0.421 0.155 0.514 

GLY vs NV 0.017 0.834 0.051 0.581 0.205 0.206 0.105 0.835 
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 (a)  

 
(b) 

 
Figure 4.2. Principal coordinates analysis (PCoA) ordinations of fungal communities (ITS 

region) derived from (a) soil at grapevine bloom and harvest; and (b) grape at harvest. The three 

under-vine management treatments include Cultivation (CULT), Glyphosate (GLY) and Natural 

Vegetation (NV). The PCoA is based on the Bray-Curtis distance metric for three experimental 

years.  
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Under-vine soil bacterial community structure was not clearly impacted by floor 

management practice 

             The sequencing reads generated from the 2014 samples contained unexpectedly high 

amounts of short reads, whereas the sample sequences were comparatively low. Thus, the 2015 

and 2016 soil bacterial samples were analyzed separately from the 2014 samples to generate the 

following results. Although the samples did not seem to cluster based on treatments on PCoA 

plots using UniFrac distance metrics (Fig.4.3), the treatment effect was significant in year 2014 

(p=0.042) and 2016 (p=0.013) according to PERMANOVA (Table 4.1a). In fact, paired-

PERMANOVA further revealed that the bacterial community structure among the treatments was 

different in 2014, where NV differed from GLY (p=0.026) and CULT (p=0.033), and 2016, 

where NV differed from GLY (P=0.036) (Table 4.1b). Grape- and wine-associated bacterial 

community structure was not further examined due to low yield of bacterial DNA resulting in 

low PCR amplification.  
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Figure 4.3. Principal coordinates analysis (PCoA) ordinations of soil sample bacterial microbiota 

derived from Cultivation (CULT), Glyphosate (GLY) and Natural vegetation (NV) field 

treatments at bloom(B) and harvest(H) based on weighted UniFrac distance metric for 2014, 

2015 and 2016 experimental years, where year 2014 was analyzed apart from 2015 and 2016 due 

to the amount of sequences difference in the samples.  
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 (a) 

 
(b) 

 
Figure 4.4. Soil fungal relative abundance at genus level. (a) full fungi profile (>1%) in the soil 

from Cultivation (CULT), Glyphosate (GLY) and Natural vegetation (NV) field treatments (n=4) 

and (b) Selective fungi that were different in relative abundance (n=4). The statistical differences 

were tested by using one-way analysis of variance (ANOVA) followed with Tukey HSD test 

comparing log mean relative abundance at α=0.05. 

 

 

Under-vine soil management did not impact fungal communities on grapes 

             Grape samples were collected at commercial harvest in each year. Over 71% of the 

variance in grape fungal community structure was explained by the first two PCoA axes, but the 

grape samples were not structured as a function of under-vine soil treatments (Fig. 4.2b). 

PERMANOVA and paired PERMANOVA were used to confirm that no community composition 

differences were found among treatments. The three-year overall PERMANOVA showed that the 

year-to-year differences were the only significant effects (Table 4.1a).  

             Unclassified genera accounted for 5 to more than 30% of the relative abundance in grape 

samples. The top five fungal genera with the highest average relative abundance of the three 
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years in the grape samples were Sporobolomyces, Aureobasidium, Rhodosporidium, Penicillium, 

and Entyloma. The fungal genera that differed in relative abundance in soil were not found to 

differ in relative abundance in grapes. Differences in relative abundance in grape-associated 

fungal genera were found in Penicillium, Sporobolomyces and unidentified genera across the 

years. The fungal genus Penicillium was only found in the 2014 grape samples, which was 

16.6% in relative abundance, and Sporobolomyces was highest in relative abundance in 2015 

(p<0.05) and lowest in 2016 in grape samples (p<0.01), and the unidentified genera relative 

abundance in 2016 was higher than that in 2014 and 2015 (p<0.0001) (Supplementary Fig. S3). 

The differences in these fungal genera may account for the separation of the grape samples by 

vintage on the PCoA plot. The grape-specific (not found in soil nor wine) fungal genera detected 

included Coprinellus, Ischnoderma, Mycosphaerella, Occultifur, Pestalotiopsis, and Tilletiopsis. 

Many yeast genera commonly found in abundance in grapes, such as Candida, Pichia, 

Debaryomyces, Lipomyces, Kluyveromyces, and Issatchenkia, were not found or not abundant 

(<1% in relative abundance) in this study.   

 

Simulated spontaneous fermentation 

             To simulate spontaneous fermentations, we used microbiomes present on grapes to 

inoculate the pasteurized (microbially-inactive) base Riesling juice. While the base juice was 

consistent across treatments, the initial grape microbiome was the only factor that differed in the 

fermentation reaction. Previous studies have demonstrated that under-vine soil management can 

alter grape chemistry and/or wine sensory properties(Jordan et al., 2016, Karl et al., 2016a).  

    The fermentations started when soluble solids content (˚Brix) dropped at the 9th day after 

inoculation (DAI) and reached the end of fermentation close to the 48th DAI. Soluble solid 
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consumption during fermentation did not differ among treatments, except for the uninoculated 

control, which was delayed two days before the soluble solid content started dropping, and did 

not reach dryness in two months (Supplementary Fig. S4). The samples selected for analysis 

were 7th DAI (before the fermentation started), 9th DAI (right as the fermentation started), 13rd 

DAI (the peak of fermentation), 21st DAI (post-peak of fermentation), and 48th DAI (the end of 

fermentation where all the samples reached dryness except the uninoculated fermentation 

control). 

             The fungal genus Hanseniaspora had the highest relative abundance of all fungal genera 

over the course of fermentation. For the treatments GLY and CULT, the abundance of 

Hanseniaspora was reduced greatly by the end of the fermentation, but remained high in NV 

(Fig. 4.5a). The genus Saccharromyces is usually considered as the major wine fermenting yeast, 

however, its relative abundance was notably low (peaked at about 10% relative abundance) when 

compared to Hanseniaspora (peaked at 60% relative abundance) (Fig. 4.5b). We acknowledge 

that this could also be related to primer-specific biases. Although Hanseniaspora was present at a 

high relative abundance, we do not know what role it played in the fermentation. Hanseniaspora, 

Saccharromyces, Sporobolomyces and Aureobasidium, which are all yeast or yeast-like fungi, 

followed a similar succession pattern, with low relative abundance early in the fermentation, a 

peak midway, and a decline near the end of the fermentation (Fig. 4.5a).  

             There was no sample separation by treatment, but by stage of fermentation as shown on 

the non-metric multidimensional sorting table (Fig. 4.6). Samples of DAI 7th and 9th were similar, 

DAI 13th separated from all other stages, 21st DAI and 48th DAI overlapped mainly due to the 

uninoculated fermentation control sample as it remained unfinished in DAI 48th (Fig. 4.6). To 

compare the fungal relative abundance of each DAI, the sample separation of DAI 13th on the 
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PCoA plot may be due to the high abundance of a few genera, including Hanseniaspora, 

Sporobolomyces, Saccharomyces, and Aureobasidium, and their effect of displacing more rare 

genera toward the peak of fermentation. The PERMANOVA also confirmed that DAI had a 

significant effect (P<0.001) on fungal community composition in the fermentation (data not 

shown). 
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(a) 

 
(b) 

 
Figure 4.5. Simulated spontaneous fermentation fungal relative abundance at genus level. (a) 

Fungal relative abundance of wines fermented with treatments (GLY: glyphosate, CULT: soil 

cultivation, NV: natural vegetation) grape microbiome and non-inoculated (NI) fermentation 

control (n=2 for treatments and n=1 for NI). (b) Saccharomyces and Hanseniaspora overall mean 

relative abundance (n=7) throughout simulated spontaneous fermentation. The error bars indicate 

standard error. Only the fungi genera with more than 1% mean relative abundance of all the 

replications within each treatment were presented. The statistical differences were tested by 

using one-way analysis of variance (ANOVA) followed with Student’s t test comparing log mean 

relative abundance at α=0.05. 
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Figure 4.6. Fungal assemblage throughout simulated spontaneous fermentation using microbial 

wash from grapes of under-vine soil treatments including Soil cultivation (CULT), Glyphosate 

(GLY) and Natural vegetation (NV) with a non-inoculated fermentation control (NI) plotting on 

a non-metric multidimensional sorting table. The ellipses were drawn to show the sample 

clustering in a DAI basis.  
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Sensory analysis of resulting wines from simulated spontaneous fermentations 

             The wines (2014 only) were assessed by overall aroma similarity by 97 panelists who 

self-claimed to drink white wine at least once a month. Metric based single-dimensional scaling 

revealed that the distance of fermentation replications of GLY and NI samples was closer than 

that of NV and CULT. However, there was no identifiable clustering among the treatment 

duplicates (Fig. 4.7). This sensory result matches our findings from the grape and fermentation 

microbiome structure, in that the under-vine soil management effect was not found in grapes or 

in simulated spontaneous fermentations.    

 
Figure 4.7. Metric-based one dimensional scaling of the overall aroma similarity of simulated 

spontaneously fermented Riesling (n=97). The base juice was inoculated with inoculums made 

of drench derived from grapes from different under-vine soil treatments including Cultivation 

(CULT), Glyphosate(GLY) and Natural vegetation (NV) washed by base juice. The NI indicates 

non-inoculated fermentation control and the numbers followed the treatments indicate 

fermentation replicates.  
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Supplementary data 

 
 

 
Figure S1. Fungal diversity in the under-vine soil from three experimental years (2014-2016) at 

two different vine developmental stages, bloom and harvest, analyzed using Shannon Diversity 

Index. In the x-axis, the numbers in the labels indicate vintage, H/B indicates the sampling stage 

at harvest/bloom and the C/G/G indicates the soil treatments CULT/GLY/NV. 
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Figure S2. Under-vine soil treatment prediction derived from Random Forest model using soil 

fungal OTUs as variables. List of top 20 most important predictors and their correspondent 

fungal taxonomy according to their mean decrease in Gini coefficients.  
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Figure S3. Fungal relative abundance of grape samples from Cultivation (CULT), Glyphosate 

(GLY) and Natural vegetation (NV) field treatments at genus level for three consecutive 

experimental years. Only the fungi genera with more than 1% mean relative abundance of all the 

replications within each treatment were presented. 

 

 

 

 
Figure S4. Simulated spontaneous fermentation soluble solid consumption curve. The 

fermentation was conducted using the grape wash drench where the grapes were harvested from 

the under-vine soil treatment blocks including Cultivation (CULT), Glyphosate (GLY) and 

Natural vegetation (NV). The uninoculated fermentation control (NI) was the base juice that was 

the same juice used for preparing inoculum and fermentation per se. 
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Discussion 

             The link between soil microbiome composition and regional wine characteristics has 

been recently studied (Bokulich et al., 2016, Knight et al., 2015), leading to greater interest in the 

role of microbial terroir (Gilbert et al., 2014). Our multiple-year experiment examined how 

different management practices could alter grape and fermentation microbial and wine sensory 

properties, through the influence of the microbiome. While a previous study suggested that soil 

management in the vineyard impacted soil microbial communities (Burns et al., 2016) and that 

grapevine aerial organ-associated microbiomes originated from soil (Zarraonaindia et al., 2015), 

we hypothesized that implementing different under-vine soil management practices would not 

only alter soil microbial composition, but that the grape-associated and wine fermentation 

microbiomes would reflect these changes.  

             In our study, changes in the fungal community of the soil, due to adopting different 

under-vine soil management practices, did not extend to the grapes or simulated spontaneous 

fermentations. As revealed by sensory evaluation, the simulated spontaneously fermented wines, 

where the inocula were gathered from the grapes grown under the varying management 

treatments, did not possess consistent detectable different sensory properties. 

             While this study showed a link between under-vine management practices and soil 

fungal composition, it did not reveal corresponding changes in grape and fermentation 

properties. Previous studies have shown that vineyard management alters grape and wine 

microbiome composition where systematic vineyard management practices or direct microbial 

management approaches were applied (Cordero-Bueso et al., 2011a, Martins et al., 2014, 

Bagheri et al., 2015, Grangeteau et al., 2017). In one study, for example, yeast dynamics during 

the spontaneous fermentation using grapes obtained from conventionally and non-conventionally 
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managed vineyards differed (Bagheri et al., 2015). Another study revealed that management 

practices applied directly onto grapes, such as pesticides, impacted grape-associated yeast 

diversity, which negatively correlated with the copper residuals found on the grapes (Martins et 

al., 2014). Unlike these studies, our study did not directly manage the microbes on the grapes, 

but applied indirect changes to microbial community structure in soils. 

             In our study, the under-vine soil effects on grape and simulated-spontaneous 

fermentation fungal community structure could also be masked by factors such as climate, 

geological properties (e.g. soil type), management practices associated with cool climate 

viticulture (e.g. trellis system, fungal spray use and frequency), vineyard management history, 

and inter-row vineyard floor management. Among these factors, many are specific to the region, 

such as large vine size with tall trellis systems, frequent pesticide applications, and hilling soil up 

over the graft union in winter and down off of the graft union in the spring. In a broader sense, 

climatic conditions play a significant role in microbiome structure, which is shown in our study, 

with year-to-year climate differences being the most significant factor explaining variance in the 

soil and grape fungal assemblages, which is consistent with a previous study (Bokulich et al., 

2014).  

             With weather variability increasing as a function of climate change, there is renewed 

interest in improving resilience of vines to environmental stress. Cover crops are known to 

improve soil health by retaining soil moisture, enhancing drainage, raising soil organic matter 

content, maintaining soil physical structure, supporting soil microbial properties and processes 

(Doran and Zeiss, 2000, Steenwerth and Belina, 2008b, Peregrina et al., 2010, Ruiz-Colmenero 

et al., 2013, Karl et al., 2016b). Also, cover crops provide a prolific root zone (rhizosphere) that 

enriches for a diversity of microorganisms that perform many functions, such as mediating soil 
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nutrient cycling, impacting plant growth and development, and influencing pathogen interactions 

(Barrios, 2007, Steenwerth and Belina, 2008a, Steenwerth and Belina, 2008b, Doran and Zeiss, 

2000, Gianinazzi et al., 2010). Although no evidence of higher microbial diversity was supported 

by under-vine cover crops in this study, possible grapevine pathogenic genera Neopestalotiopsis 

was reduced in vegetation covered soil.  

             Hight relative abundance of Hanseniaspora observed in this study may originated from 

grapes or winery environment. Hanseniaspora is known to be present in high abundance on 

grape, must (Zott et al., 2010), and in the early stages of controlled or uncontrolled fermentation 

(Fleet, 2003, Torija et al., 2001, Grangeteau et al., 2015, Bokulich et al., 2015). Previous studies 

have also shown that Hanseniaspora, even though occurring at very low relative abundance at 

the end of fermentations, persists throughout the fermentation without addition of SO2 to tolerate 

alcohol levels up to 13% (Grangeteau et al., 2017). There is also a study demonstrating that 

Hanseniaspora has the ability to secrete toxins that suppress the activity of Saccharomyces 

during fermentation (Radler et al., 1990), which may also be the case in this study as low 

Saccharomyces relative abundance was observed. Although the actual role of Hanseniaspora 

was unknown in our study, its significance in abundance suggests that Hanseniaspora may have 

the potential to ferment wine to dryness with the help of Saccharomyces. 

             This study aimed to evaluate the role of management practices - specifically vineyard 

soil management - on microbial terroir. Our study is the first to examine the impact of 

management practices on soil tracked through to grapes and spontaneous wine fermentations. We 

found that bare soil maintained by soil cultivation and herbicide led to soil fungal communities 

that diverged from the non-cultivation natural vegetation treatment.  The results indicate that 

vineyard microbial terroir could be susceptible to changes under different soil management 
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practices; however, the spatial gap between soil and the fruiting zone, and the frequent pesticide 

applications, could impact the level of soil management effects. It also suggests that future 

studies on the movement of microorganisms from soil to grape would be key to understanding 

the role of vineyard soil management in microbial terroir.  

             Despite the previous findings on vineyard management effects on vineyard microbiomes, 

our findings reveal that altering soil microbial composition in the vineyard through under-vine 

management practices does not result in corresponding changes to the grape and wine 

microbiome or the wine sensory properties. The concept that soil microbial composition could be 

driving microbial terroir should be examined in light of vineyard management practices that alter 

soil biotic components. Regional management practices that modify soil conditions could have a 

significant role in shaping microbial terroir in wine growing regions.  

 

Conclusion 

             This study showed that letting weeds to grow under-vine shifted soil bacterial and fungal 

community structure. However, this fungal community shift in soil did not extend to the grapes 

or the simulated spontaneous fermentations. Sensory analysis of wine inoculated with the 

microbiome from grape washes showed no distinguishable patterns across treatments. Strong 

microbial association between soil and grapes suggested by previous studies was disapproved. 

While previous studies emphasized on geographical impact on vineyard microbiome, the results 

of this study suggested that regional vineyard management practices such as trellis system and 

pesticide application frequency may have greater impact on grape associated and wine 

fermentation microbial communities. 
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Chapter 5 

 

Conclusion and Future Perspectives 

 

             Vine vigor mitigation effects of under-vine cover crops were prominent in young 

vineyards where vines were susceptible to nutrient or water competition (Wheeler et al., 2005, 

Hickey et al., 2016, Karl et al., 2016, Coniberti et al., 2018), but mature vines were less impacted 

by under-vine vegetation (Centinari et al., 2016, Jordan et al., 2016). Resilience to resource 

competition in mature vines was confirmed by the results in Chapter 3 where under-vine natural 

vegetation had little impact on mature Riesling vines, but the study in Chapter 2 showed that 

excessive vigor of mature vines could still be reduced using aggressive under-vine cover crops 

such as chicory.  

             In the studies reported here, the yield was not reduced in any of the under-vine floor 

treatments across two grape cultivars and three years. Yield is crucial to financial sustainability 

especially to Finger Lakes growers due to low profit margins (Yeh et al., 2014). The ability to 

maintain stable yield with under-vine cover crops suggested the practical adoptability and 

advantage of using under-vine cover crops in mature vineyards rather than young ones. However, 

long-term effects of under-vine cover crops were not studied. Long-term evaluation of how 

under-vine cover crops impact vine growth, and grape and wine composition are required for 

commercial adoption.  

In the first two chapters, grapes were only examined on their harvest parameters 

including soluble solids, pH, TA and YAN. Although the results suggested that under-vine cover 

crops did not compromise harvest parameters, other grape quality associated compounds such as 
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aroma precursors, colors, and tannins were not examined. Although wine sensory properties were 

evaluated and suggested no detectable differences among the wines, the untrained and skewed 

selection of panelists was not necessary the best representation of the regular wine consumers. A 

comprehensive chemical analysis of grape and wine composition could provide a thorough 

evaluation of the impact of under-vine floor management practices on fruit and wine, and could 

advance the understanding of their effects by tracing the influences backwards from wine to 

grape, grape to vine, and vine to soil. Using a trained sensory panel may also provide a more 

robust qualitative and quantitative sensory assessment of the wines. 

             A previous study conducted in the Finger Lakes region showed a surprising result where 

the under-vine floor management effect on wine sensory properties was decoupled from vine 

shoot growth, pruning weight, Ravaz index, canopy structure, midday stem water potential and 

petiole nutrient status when these parameters were not affected but wine sensory properties 

differed  (Jordan et al., 2016). In the presented studies, under-vine cover crop impact on wine 

sensory properties were studied in a mature Riesling vineyard (Chapter 3 and 4). Sensory 

analysis on the wines made from inoculated winemaking processes revealed panelists did not 

consistently detect differences in aroma among wines while under-vine floor treatments had little 

impact on vine physiological parameters over the three years. Multi-dimensional sorting of the 

simulated spontaneous fermentations showed that there were no detectable differences among the 

wines from different under-vine floor management regimes and indicated no detectable effect of 

soil microbial community structure changes. Fungal community profiling of grapes from each of 

the under-vine floor management regimes confirmed that there were no fungal community 

structure differences among them, even though soil fungal communities differed. This result 

rejected the hypothesis derived from the study of Jordan et al. 2016, that the under-vine floor 
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management impacted wine sensory properties through the change of grape associated 

microbiome. However, this result revealed the importance of investigating vineyard microbiomes 

in a range of climatic and managerial environments in future studies. To answer the question of 

how under-vine cover crop impacted wine sensory properties without changing vine growth 

parameters, under-vine cover crops impact on microclimate such as humidity and temperature, 

and the subsequent impact on disease and pest incidence and severity may be interests of future 

studies.  
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