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1. Introduction

Recent progress in signal processing and estimation has generated con-
siderable interest in the problem of computing the minimal eigenvalue of a
Toeplitz matrix. The fundamental modelling and solution that led to this are
due to Pisarenko [P73], while more recently numerous authors have discussed
the computational aspects of the problem [F83,H80,H83a,H83c].

In this paper we shall not discuss the underlying assumptions, merits,
or potential applications of the model-- instead pointing the interested read-
er to the literature concerned with these issues [H83a,P73]. We hasten to add
that the quantities of ultimate interest in applications are the roots of the
polynomial whose coefficients are given by the eigenvector associated with the
minimal eigenvalue of the Toeplitz matrix. We shall only discuss the computation
of the minimal eigenvalue noting that the associated eigenvector can be obtained
as a by-product. Furthermore, methods exist for computing the roots that alto-
gether avoid the explicit formation of the eigenvector [C84b].

The essence of our minimum eigenvalue procedure involves solving systems
of shifted Yule-Walker (YW) systems. Initially, the solutions to these systems
are used in a bisection scheme that repeatedly halves a bracketing subinterval.
Subsequently, a Newton iteration takes over that quadratically convergés to the
desired eigenvalue. We stress the fact that only YW systems are involved--an
important point since extremely efficient methods for YW systems exist. (They
require half the computational resources needed by general symmetric Toeplitz
system solvers.)

In an absolute sense, only modest use is made of Toeplitz structure. In-

deed, this is true of all currently known Toeplitz eigenvalue solvers. The



study of the eigenstructure of finite Toeplitz matrices is proceeding rathes
slowly. Recent developments include [C84a,C84b,D83]. An indication of the ce- -
lective ignorance about Toeplitz eigenstructure is that the inverse eigenvai.e
problem for real symmetric Toeplitz matrices is currently unsolved. We suspe:t
that the process of designing efficient algorithms for this problem will go
hand in hand with the uncovering of Toeplitz eigenstucture properties.

Our paper is organized as follows. Section 2 describes a rational func=ion
intimately related to the eigenvalue problem for Hermitian matrices. Sectiax 3
specializes the discussion to real symmetric Toeplitz matrices and then dewe:-
ops our bisection/Newton scheme. In the last section we discuss the numericazi

behavior of our procedure.

2. A Rational Eigenvalue Equation

In this section we derive a rational function from a given Hermitian ma-
trix that has the property that its zeros are eigenvalues of the original ma-
trix. A feature of this rational function is that both it and its derivatives
are easily evaluated thereby making Newton-type schemes feasible. Strictly
speaking, parts of our derivation are not new and can be found in [W65], but
we present the details for the sake of completeness.

Let T be an nxn Hermitian matrix partitioned as follows:

v T 1

T = -
r G n-1
1 n-1

N .
Here, r denotes the conjugate transpose of r. It is well known [G83] that the
eigenvalues of T and G are real and satisfy an interlacing property. In par-

ticular, if Ai(T) and Ai(G) are the i-th largest eigenvalues of T and G



respectively then
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Note that if T has a repeated eigenvalue then the repeated value is also

an eigenvalue of G. Adopting the notation

Xmin = An(T)

we shall assume throughout this paper that

(2.1) d = kn_l(G) - Xmin > 0 .

The strict separation of Xn_l(G) and Amin guarantees that the eigenvector
associated witk xmin is unique up to scalar premultiplication. It is a realistic

assumption in many important problems such as the estimation of Pisarenko fre-

quencies. See ¥C84b].

Suppose
(2.2) = A

where it is assumed that o and y are not both zero. From this equation we

obtain
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We must have a # 0 for otherwise Gy = Xminy contradicting (2.1). Noting that



G - XminI is positive definite we obtain the following rational equation for

A,
min

* -1 -
(2.4) Yy - r (G XminI) r Amin 0

Thus, the smallest eigenvalue of T 1is the smallest root of the rational function

(2.5) EO) = y - A -1 (@G -1 Lr

In addition, £()) has the following important properties whenever X\ < A G)

n-1
(2.6) £'G) = -1 - || - aD e ||§ < -1
(2.7) £"0) = 20 (G -AD 3 < o0

Now consider the following Newton iteration:

Algorithm 2.1

Let X e [x ., , A (G) ) be given along with a tolerance § > 0.
min n-1

Do Until ( |[£(A)] < &6/ (1 + l|w||§ )2 )

Solve (G - \I)w = -r for w .

*

R e W O

1 + whw £1(N)

Properties (2.6) and (2.7) ensure that the iteration converges to A ., . To
min

see thi
e is assume that A e (Ami . Xn_l(G)) and set

n

£())
£1(0)



Since f 1is monotone decreasing in this interval, it follows that both f(2)

and f'()) are negative. Thus, X < X . On the other hand, from truncated Tay-

+

lor series we have

- - ' _ £"'(%) _ 182
0 = f(xmin) = f(x) + f (k)(xmin A) o+ — (xmin )

with z € [, 5 A] . It follows that
min

(2.8) voo— o o= M G o2 s

Thus, the iterates in the algorithm converge monotonically to xmin from
the right and at a rate that is ultimately quadratic. Note from (2.8) that in

the limit we have

(error in new X ) 4 C+( error in old X )2

where

£, ) WG - D
C - min = min

2€' (X . ) 1 + w'w
min

and w = =(G - A, I) 'r . Since Il (6 -2, 1)‘1i
min min

l2 = 1/d it is easy to show

that C g 1/d. It follows that Algorithm 2.1 may converge slowly in problems
where the separation d is small. We return to this point later.

The termination criteria in Algorithm 2.1 gives good absolute error in

the final ) provided the tolerance § is small enough. This follows from

*
Y r 1 1 £(0)

- A = = e .
r G w w 0
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Applying standard Hermitian matrix perturbation theory (see [G83]) we may con-

clude that there exists an exact eigenvalue Ae of T that satisfies

-l < gl as w2 H® o< s

If § is sufficiently small compared to the separation d , then one can ensure

that » =) ., .,
e min

Despite the nice mathematical properties of Algorithm 2.1, its practical
value hinges on two critical factors: how is the starting value determined and
how is the linear system (G - AI)w = -r to be solved? We address these ques-

tions in the next section for the case when T is symmetric, positive defin-

ite, and Toeplitz.

3. The Symmetric Positive Definite Toeplitz Case

Let (to,tl,...,tn_l) be the first row of a symmetric positive definite

Toeplitz matrix T = (tij), i.e., tis = . Assume that T is normalized

t). .
i ]3]
so that tO = 1 and partition it as follows:

T

T = r = (tl,...,tn ) .

-1
Recall that in order to apply Algorithm 2.1 we must find a starting value A

that belongs to the interval [An(T) ,An_l(G)) . This requirement can be couched
in the language of signatures. The signature sig(A) of a symmetric matrix A is a
triplet of integers (neg,z,pos) where neg, z, and pos are the number of neg-
ative, zero and positive eigenvalues of A. Our starting value problem is to find

A such that sig(G - AI) = (0,0,n-1) while sig(T - AI) = (1,0,n-1) or (0,1,n-1).



This problem can be solved by exploiting the well-known Levinson-Durbin

algorithm:

Algorithm 3.1

For i = 1 to n-1

i-1
Ry o= oyt LAy gty B
j=1
For j =1 to i-1
Laij = 3,y T ok
a,, =k,
11 1
2
By = Bjp (3 -k

1 t M a, ] [t 7]
B1 ¢ v 0 B i1 1
e, 1 . , .
R '] . = - .
: * . * ’ .
t 1 a
i-1 LA _ didif tl

for i = 1,...,n-1 . The quantities ki and Ei are referred to as the i-th
partial correlation coefficient and the i-th prediction error respectively.

(ki is also known as the i-th reflection coefficient.) See [G83] for a dis-
cussion of Algorithm 3.1.

In [C80] it is shown that if
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L = . .
n-1,n-1 ¢ ¢ 1
then
(3.1) LTLY = diag(l,E E )
. iag(l,Ej,.obE o

Since signature is preserved under congruence transformations by the Sylvester
Law of Inertia, all of the Ei are positive since T is bositive definite.
However, if we apply Algorithm 3.1 to the normalized Toeplitz matrix
(T - AXI)/(1 - A) and if the algorithm runs to completion, then the number of
negative Ei that are generated equals the number of eigenvalues of T - AL
that are negative, i.e., the number of T's eigenvalues that are strictly less
than )\ . The caveat "runs to completion" must be added because it is possible
for one of the Ei to be zero if Algorithm 3.1 is applied to an indefinite T.
Adapting the algorithm so that computes (3.1) for T := (T - AI)/(l - 1) gives

Adapting the algorithm so that it computes (3.1) for T := (T - AT)/(1 - )

gives



Algorithm 3.2

i =0
E, = 1
Do While ( Ei >0 & i<n-1)
i=i+1
i-1
k, = -(t, + Z a £ )/IA-E; ]
j=1
-~ — —— r -
3 Fal ai1
. ’
; B ; LY ‘
i-1 i-1 1 la
1
-ai ] ~O ] i |
2
By =B - k)

We have dropped the double subscripting of the a's since we need only be in
possession of the most recent YW solution at any one time.

Note that if the loop terminates because i = n-1 , then we have

3 £
e 4
(G - XI) . = - .
] I
%n-1 tn—;_

Recall that being able to solve this shifted YW system is critical to Algorithm
2.1, the Newton iteration for f(X).
Equally important, the final value of i in Algorithm 3.2 enables us to

determine the position of A with respect to )\ , and A (G)
min n-1

(a) If 1

n-1 and En >0, then A < A

-1 min

A
>
A
>
~~
(»]
g

(b) If i

1 < 0 , then xmi

(¢) If i < n-1 then An_l(G) < .

n-1l and En n n-1
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Hence, Algorithm 3.2 can be used in a bisection scheme to eventually position

A 1in the interval [Amin ,An_l(G) ). Thereafter, it can be used to carry out

the Newton iteration. All we need is an initial interval [a,8] with the prop-
erty that

(3.2)

Q
A
>
A
>
.

min

Algorithm 3.3

Compute o and 8 satisfying (3.2) and let §>0 be a given tolerance.

k=20

VO o (at8 2

Do Until ( lx(k) - x(k'l)] < 5 !%(k_l)l)

: Apply Algorithm 3.2 with A = A(k) to generate i and ajsecend; o
k :=k +1

If (i <n-1)

then
s=2 5 A o (asgyn
else
If (En_l>0)
then
a=2 5 A% o (44 )/2
else
N X +tia + ..o+t ja
L 1+a§+...+ arzl-l

The last expression for A(k) above is same as the A update expression in

. _ T _ T T _
Algorithm 2.1 with y =1 , r” = (tl ,...,tn_l) and w = (a1 seeesd o



- 11 -

There are several possible ways to choose the initial bracketing interval

[Q’B] .

Method 1.

Set [a,B] = [0,1]. The choice for B follows from the inequality Amin <

T _ _ T
ellfel = 1 where e, = (1,0,...,0)" .
Method 2.
Set [a,B] = [0, 1 - [t1[] . Since the smallest eigenvalue of
1 ty
T1 =

ty 1
is given by 1 - |t1|, we have from separation theory that 1 - [tl‘ = Az(Tl) =
AL (D
Method 3.

set [a,8] = [ 0, min {1 - lti|}'] . The reasoning is the same as
i -
for Method 2 with t1 replaced by ti . Note that [l t{] is a principal sub-
t, 1
matrix of T . *
Method 4.
set [a,B] = [0, En_z(l - lkn_l|) ] where En—2 and kn—l are

generated by Algorithm 3.3 with A= 0 . To understand the choice for B , con-

with En =t + ¢ in Algorithm 3.3

sider the effect of replacing t -1 n-1

-1
and that we set A =0 . Nothing changes except during the last pass through the
loop when we compute

n-2

= —(t__, + jzl ajcj)/En_2

R
R

kn—l
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Note that if we choose € so that 1 -’Li—l = 0 , then the resulting En—l will

be zero. Thus, a perturbation of size ¢ transforms T into a singular matrix.

It follows that An(T) < €. The choice for B is the smaller of the two e values

that render 12 =1
n-1
Method 5.
1 d n-1
Set [a,B] =] =] s =y ] . The value for o follows
o llT o, (e,
from the inequality
1 -1 -1
e e T
A_(T)
Here, ||-|| _denotes maximum row sum . The value for B follows from
1 1 -1 =1
> = e, = Na-1fleTrl,
A, (D) A,_1(®
The quantities || T—IH°° and ]|G-1|L§an be calculated in O(nz) operations and

0(n) storage using the Trench algorithm [T64].

4. Analysis, Discussion, and Numerical Experiments.

Another method for finding Amin via the Levinson-Durbin algorithm
is presented in [H80]. They propose solving f(A) =0 (En(u) = 0 in their
notation) using a linear interpolation scheme. A key aspect of our work and
what distinguishes it from [H80] is the recognition that one can apply New-
ton's method using by-products from the Levinson-Durbin algorithm. In additionm,
we have attempted to handle the problem of starting values more rigorously

than [H80].
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The importance of only having to solve Yule-Walker systems should be
stressed. Methods based on inverse iteration, for example, require the sol-
ution of general Toeplitz systems. This doubles the amount of work per step.
Moreover, there currently exist highly concurrent algorithms and VLSI architec-

tures for solving Yule-Walker systems in O(n) time. See [K83].

The total amount of work required by Algorithm 3.3 is determined by the

number of YW systems that must be solved. The number NB' of bisection steps

is bounded above by

Ny S —logz[d/(B-a)] + 1

Note that during this phase of the algorithm, calls to Algorithm 3.2 do not

require a full n-1 steps so it is a little hard to quantify the overall work.

As a function of n, NB appears to grow as log(n) . A simple explanation of

this is possible if we assume that the eigenvalues of T are uniformly dis-

tributed. In this case, the distance kn_l(G) - xmin is roughly 1/n2 . Hence

the worst case limit on NB is proportional to log{(mn).

The number of Newton steps NN tends to be around 5 or 6 based on our

experience with numerous examples a subset of which we now describe. For each
n = 11,21,..,91 we generated 25 random positive definite symmetric Toeplitz
matrices. These matrices had the form

n

T=m2wT
k=1 k ZWGk

where n 1is the dimension, m is chosen so that T is normalized,

Ty = (tij) = (cos(8(i-1))),
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and the v and Ok are uniformly distributed random numbers taken from [0,1].

It can be shown that T9 is rank two, symmetric, semidefinite, and Toeplitz.
Table 1 summarizes the results of these experiments. Only initial interval

Methods 2 and 4 were coqsidered. Method 1 is unnecessarily crude while Methods

3 and 5 were too similar in performance to Methods 2 and 4 respectively for us

to report. (Note: in tabulating the work associated with Method 4, the single

call to Algorithm 3.2 necessary to compute B is accounted for in the Table.)

Starting Values | Starting Values
Via Method 2 ; Via Method 4
Order Bisection Newton E Bisection Newton
Steps Steps ! Steps Steps
11 4.8 | 5.0 5.7 4.8
21 8.5 5.7 4.8 5.4
31 9.7 5.3 6.6 5.0
41 ; 10.¢ 4.6 6.7 5.2
51 l 11.7 5.8 8.1 5.5
61 l 12.1 5.0 9.2 5.3
71 j 12.90 5.3 9.2 5.2
81 ‘ 13.6 5.4 9.8 5.0
91 ? 11.6 5.0 8.4 5.7

-6
Table 1. Behavior of Algorithm 3.3 (8= 10 ") based on 25
random examples per dimension.
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The matrices were generated by a Fortran program and the eigenvalues

Amin and -An_l(G) were computed by the EISPACK routine rs [S76]. Although

our generation technique was guaranteed to generate at least a semi-definite
matrix (definite with probability one) rounding errors led to the generation
of some isolated slightly indefinite cases. Although indefinite matrices (due
to finite arithmetic) ought to be expected in practice, they provide no real-
istic test for our procedure. In fact, if we know that our data has t signifi-
cant bits (floating point) then more than t calls to the bisection step is
useless. Given the quality of our data, after t steps of bisection we must

conclude the the matrix is either not definite or that the condition

-t
lAn_l(G) - Amin [ <2 holds and so to the precision of our data,
An(G) = Amin . This follows from standard eigenvalue perturbation arguments
[p8O].

While on the subject of small separations, it is important to point out
that 1/d is the condition of Amin's eigenvector. This is often the quantity of
ultimate interest and so it is good to know that slow convergence in Algorithm

3.3 goes hand in hand with ill-conditioning in the minimum eigenvector.
The actual procedure was implemented in C on a DEC-10. Computations

were done in the '"double" data type. The tolerance § in Algorithm 3.3 was

6. The Newton iteration terminated successfully on all strictly

set to 10~
separated trials and gave six significant digit agreement with EISPACK gen-—

erated solutions.
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