EPITAXIAL MULTIFERROIC THIN FILM HETEROSTRUCTURE OF (SrTiO3/NiO)n/MgO FOR USE AS A FUTURE NEGATIVE INDEX MATERIAL

A Thesis

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

by Steven Daniel Kirby August 2006 © 2006 Steven Daniel Kirby

ABSTRACT

Multiferroic materials are those that exhibit both magnetic polarization and electrical polarization in the same phase. A multiferroic thin film heterostructure consisting of antiferromagnetic NiO and dielectric SrTiO₃ is interesting due to the possibility of achieving a negative index of refraction in the far infrared. If the ionic resonance frequency of SrTiO₃ (~100cm⁻¹) and the antiferromagnetic resonance of NiO $(\sim 36 \text{ cm}^{-1})$ can be shifted to match at some frequency, the composite material should exhibit a negative index of refraction at that frequency. It should be possible to shift the SrTiO₃ resonance to lower frequency by lowering the temperature or by doping with Ba and therefore raising the ferroelectric Curie temperature. The NiO antiferromagnetic resonance should shift to higher temperature by applying an external magnetic field or by doping with ions with higher anisotropy, such as Fe or Co. Pressed powder bulk composite samples of NiO/SrTiO₃ have been fabricated and used to verify that NiO and SrTiO₃ are compatible and non-reacting up to a temperature of 1550°C. FTIR measurements on these bulk samples verify the existence of the ionic and antiferromagnetic resonances of interest. An epitaxial multiferroic composite of (SrTiO₃/NiO)_n/MgO has also been fabricated using reactive off-axis rf sputtering with n = 1 or 2. Crystal quality has been verified using x-ray diffraction and ion channeling with Rutherford backscattering. The full width at half max for the $SrTiO_3$ (100) diffraction rocking curve is only 1.3° for the composite with n = 2. Off-axis sputtering is a useful technique because it can be used to achieve a concentration gradient between constituents. This allows for a method of quickly determining the effects of Ba doping in SrTiO₃ or Co, Fe doping in NiO. It should be possible to measure the frequency response of these films in the future with FTIR techniques with polarized radiation and/or a synchrotron high intensity source.

BIOGRAPHICAL SKETCH

Steven Kirby, originally from Moatsville, WV graduated from Rochester Institute of Technology with honors in a B.S. degree in Microelectronic Engineering in May 2003. While there he also completed internships at Dominion Semiconductor in Manassas, VA and Micron Technology in Boise, ID. He began studying Materials Science & Engineering at Cornell University in the fall of 2003.

ACKNOWLEDGMENTS

I would like to acknowledge the help and expertise of those who helped me. Maura Weathers for help in the XRD facility, Dr. Stephen Menasian for RBS analysis, and Mark Lee at Sandia Labs for FTIR measurements. I would like to acknowledge Mark Polking and Katie Miller who contributed as undergraduates. I would also like to acknowledge the van Dover group for fruitful discussion and support.

TABLE OF CONTENTS

1 Multiferroic Materials	1
1.1 Single phase Multiferroic Materials	1
1.2 Multiferroic Composites	2
1.3 Conclusion	3
2 Negative Index of Refraction	4
2.1 Introduction	4
2.2 The Dispersion Relationship	6
2.3 Negative Index of Refraction	8
2.4 Multiferroic Composite with a Negative Index	9
2.5 Negative Index of Refraction in the Far Infrared	12
2.6 Conclusion	16
3 NiO/SrTiO ₃ Bulk Ceramic Composite	17
3.1 Introduction	17
3.2 Technique	17
3.3 X-ray Diffraction Results	18
3.4 FTIR Measurements	18
3.5 Conclusion	21
4 Thin Film Deposition and Analysis	24
4.1 Introduction	24
4.2 X-ray Diffraction Analysis with GADDS	27
4.3 Rutherford Backscattering: Composition and Crystal Quality	31
4.4 Multiferroic Thin Film Heterostructure	
4.5 Conclusion	32

5 Epitaxial NiO on MgO Substrate

5.1 Introduction	
5.2 Substrate Preparation	
5.3 Deposition Technique	32
5.4 XRD Results	34
5.5 Ion Channeling with RBS	
5.6 Conclusion.	36
6 Epitaxial SrTiO ₃ on MgO Substrate	41
6.1 Introduction	41
6.2 Deposition Technique	41
6.3 XRD Results	41
6.4 RBS Results	46
6.5 Conclusion	49
7 (SrTiO ₃ /NiO) _n /MgO Epitaxial Thin Film Heterostructure	50
7.1 Introduction	50
7.2 Results and Analysis	50
7.3 Conclusion.	52
8 Conclusions	54

LIST OF FIGURES

Figure 2.1: Effect of an electromagnetic wave as it enters glass	5
Figure 2.2: An electromagnetic signal in a material of n < 1	7
Figure 2.3: Frequency dependence of yttrium iron garnet permeability	11
Figure 3.1: XRD data for NiO/SrTiO ₃ composite	19
Figure 3.2 FTIR data for SrTiO ₃ pressed powder sample	20
Figure 3.3 FTIR data for NiO pressed powder sample	22
Figure 3.4 FTIR data for SrTiO ₃ /NiO pressed powder composite	23
Figure 4.1 Deposition rate for SrTiO ₃ as a function of rf power and distance	25
Figure 4.2 Off-axis sputtering system for thin film composition spread	26
Figure 4.3 Schematic of diffraction system with two-dimensional detector	28
Figure 4.4 GADDS output for polycrystalline corundrum	29
Figure 4.5 Intensity as a function of γ for an epitaxially grown SrTiO ₃ peak	20
Figure 5.1 GADDS output for NiO/MgO thin film sample	35
Figure 5.2 GADDS output for NiO/MgO samples deposited at various temperature	e37
Figure 5.3 GADDS ouput for a NiO/MgO sample deposited at 300°C as deposited	l and
after annealing	38
Figure 5.4 Ion channeling with RBS for a NiO/MgO sample	39
Figure 6.1 Effect of crystal quality of SrTiO ₃ on deposition rate	43
Figure 6.2 SrTiO ₃ (100) rocking curve and (110) \u03c6 plot	46
Figure 6.3 RBS results for 3500Å SrTiO ₃ on MgO	48
Figure 6.4 RBS results showing anomalous Mg diffusion	49
Figure 7.1 SrTiO ₃ rocking curve and ϕ plot for SrTiO ₃ /NiO/MgO	51
Figure 7.2 SrTiO ₃ rocking curve and ϕ plot for (SrTiO ₃ /NiO) ₂ /MgO	53

LIST OF TABLES

Cable 2.1: Several antiferromagnetic materials with antiferromagnetic resonance	
frequency and Neél temperature	12
Table 6.1: Effect of annealing temperature on crystal quality of SrTiO ₃ by me	asuring
the FWHM of a (100) rocking curve and the γ ratio of the (110) diffraction pea	ak44