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ABSTRACT 

 

Multiferroic materials are those that exhibit both magnetic polarization and electrical 

polarization in the same phase.  A multiferroic thin film heterostructure consisting of 

antiferromagnetic NiO and dielectric SrTiO3 is interesting due to the possibility of 

achieving a negative index of refraction in the far infrared.  If the ionic resonance 

frequency of SrTiO3 (~100cm-1) and the antiferromagnetic resonance of NiO  

(~36 cm-1) can be shifted to match at some frequency, the composite material should 

exhibit a negative index of refraction at that frequency. It should be possible to shift 

the SrTiO3 resonance to lower frequency by lowering the temperature or by doping 

with Ba and therefore raising the ferroelectric Curie temperature.  The NiO 

antiferromagnetic resonance should shift to higher temperature by applying an 

external magnetic field or by doping with ions with higher anisotropy, such as Fe or 

Co.  Pressed powder bulk composite samples of NiO/SrTiO3 have been fabricated and 

used to verify that NiO and SrTiO3 are compatible and non-reacting up to a 

temperature of 1550°C.  FTIR measurements on these bulk samples verify the 

existence of the ionic and antiferromagnetic resonances of interest.  An epitaxial 

multiferroic composite of (SrTiO3/NiO)n/MgO has also been fabricated using reactive 

off-axis rf sputtering with n = 1 or 2.  Crystal quality has been verified using x-ray 

diffraction and ion channeling with Rutherford backscattering.  The full width at half 

max for the SrTiO3 (100) diffraction rocking curve is only 1.3° for the composite with 

n = 2.  Off-axis sputtering is a useful technique because it can be used to achieve a 

concentration gradient between constituents.  This allows for a method of quickly 

determining the effects of Ba doping in SrTiO3 or Co, Fe doping in NiO.  It should be 

possible to measure the frequency response of these films in the future with FTIR 

techniques with polarized radiation and/or a synchrotron high intensity source.   
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