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Microbial systems are in continuous flux. Considering the human gut microbiome, 

changes in community composition are associated with differences in host immune regulation, 

metabolic function, and a litany of physiological metrics. A growing number of diseases can be 

etiologically explained by the presence of some strains or the absence of others, though myriad 

conditions associated with the microbiome cannot be cleanly attributed to the actions of single 

organisms. Indeed, the true nature of the human microbiome is analogized best as a tangled web 

of ecological co-dependency, a careful balance between resource antagonism and symbiotic 

negotiations at the Maginot Line of the gut epithelium.  

Short-read sequencing is an invaluable tool for examining the nucleic acid content of 

microbiome samples, and the tools of metagenomic assembly are getting ever-better at 

partitioning reads into near-complete pseudo genomes. However, many important microbial 

genes are found on genetic constructs that are readily shared between bacterial cells. These 

constructs, called mobile genetic elements (MGEs), are difficult to assemble, and their 

promiscuity confounds reference-based mapping of taxa to functions. Getting to the ground truth 

of gene-taxa pairings requires that we extend classic metagenomic sequencing to retain 

information about in situ MGE context. Of course, the carriage of a particular gene does not tell 

us to what extent a gene is expressed in the gut niche, so metagenomic techniques must be paired 

with tailored transcriptomics methods to ultimately draw causal links from genes to bacteria to 

human cells. In this dissertation, I present the application of two sequencing techniques, Hi-C 



 

and PRO-seq, to human microbiome samples, with the goal of contributing a partial framework 

for gaining greater insight into the tripartite interaction between bacterial cells, mobile genetic 

elements, and the human that encapsulates it all. 

The human gut microbiome is a reservoir of antibiotic resistance genes (ARGs) that can 

be accessed by pathogens via horizontal gene transfer, leading to multidrug-resistant infections.  

Metagenomic short-read sequencing can reveal community composition and the presence of 

ARGs, but assembly alone is insufficient to link ARGs on extrachromosomal elements with their 

host strains, and culture of ARG-containing gut microbes is complicated by specific nutritive 

requirements and low oxygen tolerance.  In Chapter 2 of this dissertation, I will discuss the 

application of metagenomic proximity ligation to probe the microbiomes of neutropenic patients 

with hematologic malignancies.  Broadly, we observe individualistic networks of mobile gene 

carriage and increased exchange of antibiotic resistance genes in the guts of hospitalized patients, 

with implications for understanding the emergence of multi-drug resistant Enterobacteriaceae.   

Transcriptional analyses of mixed bacterial communities can give valuable insights into 

the ecological and metabolic interactions of neighboring species. However, RNAseq of 

microbiomes is confounded by variable efficiency of ribosomal RNA depletion across organisms 

and the short half-lives of most bacterial mRNAs, meaning that only robust transcriptional 

changes are typically observed in bulk meta-transcriptomic experiments. In Chapter 3, I discuss 

the application of a minimally modified precision run-on sequencing protocol (PRO-seq) for run-

on transcription from engaged prokaryotic RNA polymerase, allowing for the biotinylation and 

capture of nascent bacterial transcripts.  We show that PRO-seq is replicable in both E. coli and 

diverse members of the human gut microbiome, and that PRO-seq gives information beyond that 

of RNAseq concerning RNA polymerase dynamics at metagenomic loci.  
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CHAPTER 1: Introduction 
 

The genomic fluidity and functional flexibility of bacteria 
 

In 1997, the first complete E. coli genome was published. The single 4.6 Mb 

chromosome of E. coli strain K12 contained 4,288 protein-coding genes, more than a third of 

which had no known function 1. Five years later, a comparison of uropathogenic E. coli genomes 

showed that only 39% of nonredundant proteins were shared across three strains  2. In 2008, 

comparative genomics of 17 E. coli isolates identified more than 13,000 unique genes, with a set 

of nearly 2,200 genes common between all strains 3. Then, in 2019, an analysis of 4,401 E. coli 

and Shigella genomes uncovered an astonishing 128,193 genes, of which just 2608 were shared 

by at least 99% of the genomes analyzed 4. This trend, while best exemplified by the genomes of 

well-sampled pathogens, is common across all bacteria. For a given species, plotting the number 

of genomes against the proportion of genes gives a characteristic U-shaped distribution 5–7; i.e. 

many genes are present in all or most strains, and many genes are present in only one or two 

strains. The genes shared across all strains comprise the so-called core genome, which includes 

genes essential to cellular function and propagation. The rest of the genes are supplementary, 

including genes promoting niche-specific metabolism 8, virulence 9–11, and resistance to chemical 

insults 12,13; these are collectively dubbed the accessory or peripheral genome. Together, the core 

and accessory genomes define a pangenome, which is all the genes that have been found in any 

representative genome of that species. Over the last two decades, pangenomes have been curated 

and published for dozens of bacterial species and higher taxa 14,15, revealing extensive genomic 

mosaicism across the prokaryotic tree of life. Though pangenomics is a useful frame to ask 

questions about the genetic architecture unifying specific clades, more data seems to only beget 

more questions. Analyses of ever-larger databases of bacterial genomes have blurred the 
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distinction between core and accessory elements: ostensibly essential genes can be functionally 

displaced by non-orthologous proteins 16–18, and genes labeled “non-essential” can be 

surprisingly persistent 19,20 or contribute to the adaptive evolution of emerging pathogens 21. New 

approaches go beyond orthologous gene groups and account for genomic structure by encoding 

pangenome features at the nodes of weighted networks 22 or by building composite core genomes 

from strain genomes embedded in reference graphs 5. While such methods enable estimation of 

gene retention within the set of related strains representing a population, they tell us very little 

about how genes are initially acquired by a species. Even in the era of genomics, the bacterial 

species is a concept that continues to defy rigid definition.  

At the crux of this genomic fluidity is the phenomenon of horizontal gene transfer 

(HGT). In single- and multi-celled eukaryotes, inter-organismal gene transfer is taxonomically 

constrained and relatively rare 23. In bacteria, however, HGT is common and may be carried out 

by diverse mechanisms including plasmid conjugation 24, transduction 25, transformation 26, 

extracellular vesicles 27, and virus-like particles 28. The genetic payloads exchanged during HGT 

are often called mobile genetic elements (MGEs), and these elements themselves engage in 

ecological interplay that dictates their proliferation. For example, plasmids interfere with the 

replication of genetically similar plasmids through the expression of antisense RNAs that tightly 

control copy number by inhibition of replication machinery translation 29 or by directly binding 

the origin of replication 30. Plasmids may also inhibit the proliferation of other plasmids through 

incompatibility of DNA-binding proteins necessary for partitioning plasmid copies during the 

separation of daughter cells 31,32. Likewise, temperate bacteriophage are classified by immunity 

groups, within which a phage may preclude co-infection by another group member due to 

similarities in their genetic circuitry controlling lytic growth 33,34. From the perspective of the 
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bacterial cell, genetic similarity is the best predictor of whether two organisms can engage in 

HGT 35–37. Shared ecology, as well, is highly correlated with HGT frequency across phyla 38,39. 

Further complicating the study of bacterial HGT is the propensity of certain species for the 

transformation of naked DNA; the genus Acinetobacter, a pathogen of increasing prevalence 40, 

is a paragon of transformation ability and has been shown to indiscriminately incorporate both 

highly damaged DNA 41 and DNA with very small regions of homology 42–44. 

Of course, the movement of genes and their persistence in cells can only be meaningfully 

explained through consideration of their functions. The survival and proliferation of bacteria 

requires that they respond quickly and robustly to environmental stimuli. As discussed, genetic 

heterogeneity is part of the bacterial strategy – different cells within a population will have 

different peripheral genomes that may provide a selective advantage in the presence of stressors 

or in specific environments. Notably, plasmids are common vectors for genes conferring 

resistance to antibiotics 45–47 heavy metals 48–51, and there are numerous examples of pathogens 

acquiring phage-encoded toxins 52–58. Separate from the products of horizontally transferred 

genes, MGEs may be co-opted by bacteria for transcriptional control of niche-specific or 

lifecycle-critical functions. Examples include phagosome escape by competence system 

activation via prophage excision in Listeria monocytogenes 59,60, mutation rate control by 

reversible integration of a chromosomal island into the mutSL operon of Streptococcus pyogenes 

61, and the timed excision of inactive phage remnants from the sigK locus of various Gram-

positive bacteria to express the sigma factors required for endospore maturation 62–65. In these 

ways, MGEs may become indispensable to their host chromosomes. Conversely, “static” 

components of bacterial chromosomes may also be transferred by lateral transduction 66. Truly, 

the borders between bacterial species are little more than picket fences – readily hopped. It is 
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helpful, then, to conceptualize bacterial chromosomes and MGEs not as discrete entities, but 

rather as consortia of genetic components along a continuum of mobilizability, whose movement 

within and between cells is a function of evolutionary distance, environmental co-habitation, and 

functional compatibility.  

 

The benefits and limitations of metagenomic sequencing 
 

As cited, studies on the contribution of MGEs to bacterial functional capacity and 

transcriptional regulatory networks have been largely constrained to cultured pathogens. From an 

anthropocentric perspective, this makes sense: we want to know about the bugs that make us 

sick. However, the fluidity of bacterial genomes implies that many pathogenic functions of 

interest may be derived from non-pathogenic bacteria. Concerning human pathogens, the human 

gut microbiome is frequently referenced as a persistent source from which pathogens may 

acquire genetic material via HGT 67–70. It is paramount, then, that we have sensitive methods by 

which to interrogate microbiomes so that we may better understand the selective pressures and 

organismal interactions that promote HGT.  

While culture is a powerful tool to interrogate microbial communities, the full diversity 

of the human gut microbiome has been difficult to recapitulate in vitro due to the complex 

nutrient requirements 71,72 and oxygen sensitivity 73,74 of its constituent species. Amplicon 

sequencing of 16S ribosomal rRNA genes from microbiome samples can be used to reliably 

estimate taxonomic relative abundance in microbial communities 75, and leveraging a multi-

region framework can greatly increase phylogenetic resolution 76. However, despite the 

availability of ever-better databases to predict microbiome metabolic capacity from taxonomic 

marker genes 77,78, inference of total microbiome genotypes from amplicon sequencing will 
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always miss some genes, especially those encoded in peripheral pangenomes. Genotypic gaps 

can be partially filled by PCR-based methods that fuse taxonomic marker genes with sequences 

of interest 79,80, though such methods require target-specific primers and are thus low-throughout.  

Currently, the most useful tool for untargeted assessment of the total genetic content of 

complex microbial communities is metagenomic sequencing. In brief, this involves the isolation 

of DNA from a sample, the preparation of short-read Illumina sequencing libraries, and the 

assembly of short reads into contiguous sequences (contigs) 81–83. As a field, metagenomics has 

shed light on the genetic composition of countless environmental and host-associated 

microbiomes. However, one obvious drawback to assembly by contiguity is that DNA sequences 

that are not co-molecular in situ cannot be associated after sequencing, such as a chromosome 

and a plasmid that occupy the same cell. Metagenomic assemblies can be made better by 

binning, which is the process of associating contigs by alternative sequence-based metrics. Most 

binning programs use a combination of two metrics: (1) sequence composition, like GC content 

or k-mer frequencies, and (2) co-abundance measurements to group contigs that show similar 

sequence coverage variation 84–89. However, binning programs disproportionately fail for 

plasmids 90, whose sequence composition can be greatly diverged from their hosts’ 

chromosomes. Even MGEs like prophage and transposons often fail to assemble with their host 

chromosomes 91,92, despite the fact that they are contiguous with bacterial genomes.  

 

A brief but enlightening analysis of the genes at the nodes of short-read assembly graphs 
 

 As a case in point, I sought to understand why assemblies fail for MGEs by interpreting 

the source material: short-read assembly graphs.  Assembly graphs consist of segments of 

sequences connected by links, which are collapsed into contigs for downstream analyses. In the 
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parlance of graph theory, segments are nodes and links are edges. Taking the graphical fragment 

assembly files output by metaSPAdes 82, I count the links associated with each segment and 

extract sequences incident at high-degree nodes. After filtering by coverage to preclude segments 

that are poorly assembled due to low depth, the remaining segments represent the set of 

sequences whose contig assignment is maximally ambiguous, from the perspective of the 

assembly software. I formalized this procedure as a small program (github.com/acvill/nodeSeqs) 

and applied it to six graphs, each recovered from a human oral microbiome assembly that I 

generated using ~50 million paired-end reads and default metaSPAdes parameters. The resulting 

sets of sequences include some stretches of simple repeats, but most of the extracted sequences 

lack any discernible repeat structure. To evaluate the putative functions of these sequences, I ran 

each sequence set through eggNOG-mapper 93, which is built to annotate novel sequences using 

clustered orthologous groups of proteins (COGs). With COG annotations, I then asked which 

functions were highly represented among high-degree segments. Plotting the top functions as 

proportions of the total number of segments for each sample, we see that transposases and 

recombinases, both common components of integrated mobile elements 94, are overrepresented 

among high-degree nodes in short-read assembly graphs (Figure 1.1). This is unsurprising, given 

the ubiquity of these elements and their sequence conservation across phylogenetic space 95, but 

this result gives empirical justification for the assertion that MGEs are underrepresented in 

metagenome-assembled genomes. 
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Figure 1.1. Bar graph showing the proportion of high-degree segments from six human oral 

microbiome assembly graphs (s1 – s6) that encode proteins belonging to certain COGs. The 5 

COGs with the highest median percentage across samples are shown. Annotations of selected 

COGs whose functions are common in mobile elements are shown in bold. 
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Proximity ligation sequencing permits more complete metagenomes 
 

So, what can be done to reliably link all classes of mobile genetic elements – 

extrachromosomal and integrated – with their bacterial host cells? One method that has shown 

great potential is all-against-all proximity ligation sequencing, commonly called Hi-C. In short, 

whole cells are chemically crosslinked to preserve protein-DNA interactions, then DNA is 

enzymatically fragmented and subject to dilute ligation. DNA molecules captured in the same 

crosslinked globule are ligated end-to-end, and sequencing across ligation junctions implicates 

different DNA molecules as residents in the same cellular compartment (Figure 1.2). Initially 

developed as a method to explore the spatial architecture of eukaryotic genomes 96, Hi-C has 

since been applied to microbiomes in order to assemble more complete bacterial genomes 97–99, 

link plasmids with host chromosomes 100–102, and probe phage-host infection networks 103.  

Chapter 2 of this dissertation describes our application of metagenomic Hi-C to the 

microbiomes of cancer patients. These patients receive multiple courses of antibiotics to prevent 

nosocomial infections and are therefore vulnerable to multidrug-resistant pathogens.  We find 

antibiotic resistance genes that are shared across diverse taxa and distinct networks of mobile 

gene transfer within individuals.  Inclusion of proximity ligation libraries representing healthy 

microbiomes reveals that resistance genes and MGEs are dispersed across more taxa in 

neutropenic patients compared to healthy individuals.  Gene exchange is most frequent between 

bacterial species in the same phylum, though transfer between Proteobacteria and Firmicutes is 

increased in our patient population during treatment, establishing a likely route for ARG 

transmission between enteric pathogens and commensal microbiota. 
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Figure 1.2. Metagenomic proximity ligation sequencing can associate plasmids with bacterial 

chromosomes, without the need to isolate and culture the host. Figure made with Biorender.com. 
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The promise of nascent transcriptomics for understanding microbial functions 
 

The construction of complete metagenome-assembled genomes with concomitant mobile 

elements is a vital step in understanding the biology of microbiomes and their impacts on human 

health. However, the genetic contents of a microbiome only divulge the potential functions of a 

community. RNA sequencing (RNAseq) has enabled a deeper understanding of microbial 

communities and their overall effects on host health 104–106. Yet, despite these gains, vanilla 

RNAseq analysis performed on microbiomes provides incomplete information about the 

transcriptional landscape. Bacterial RNAseq requires negative selection of ribosomal RNA, 

which comprises 85% of the total transcripts in bacterial cells 107,108, but rRNA depletion can be 

costly and introduce bias into sensitive datasets. Bacteria also perform extensive post-

transcriptional modification 109, especially of non-coding RNAs 110,111, and these extra chemical 

moieties can interfere with reverse transcription during vanilla RNAseq protocols. Moreover, 

measurement of mature RNA abundance via RNAseq gives little information about real-time 

RNA polymerase activity, specifically with respect to transcriptional dynamics like initiation, 

pausing, and aborted polymerization 112–115. Some bacterial transcripts are regulated by 

modulating their stability 116–119, though RNAseq alone cannot decouple changes in transcript 

stability from changes in the rate of polymerization. These dynamics are understudied outside 

common laboratory strains, even though further insight into the transcriptional regulatory 

mechanisms employed by diverse bacteria will enable deeper understanding of the functional 

plasticity of the human microbiome. 

Chapter 3 of this dissertation discusses my application of precision run-on sequencing 

(PRO-seq) to assess the nascent transcriptomes of cultured and human-associated bacteria. Using 

an E. coli heat shock model as a proof-of-concept, we show that PRO-seq gives reproducible 

results for bacterial monocultures and captures transcriptional dynamics that are not apparent in 
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paired RNA-seq libraries.  Extending this technique to human gut microbiome samples, we 

observe concordance between PRO-seq and RNAseq signals across metagenome-assembled 

genomes. PRO-seq, however, is sensitive to transient transcriptional events at metagenomic 

features that are lost in RNA-seq, including transcription across CRISPR arrays and tRNA 

clusters that are co-transcriptionally processed. Altogether, nascent prokaryotic transcriptomics 

is a technique that can give a deeper understanding of the transcriptional dynamics of 

microbiomes. 

 

In Chapter 4, I discuss the current state of cutting-edge metagenomics methods and end 

with a brief discussion about how these methods may be combined to comprehensively 

understand the genetic structure and function of human-associated microbial communities.   
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CHAPTER 2: Widespread transfer of mobile antibiotic resistance 
genes within individual gut microbiomes revealed through bacterial 

Hi-C 
 

This chapter is adapted from a 2020 paper in Nature Communications. Alyssa Kent and Albert 

Vill contributed equally to this publication: 

AG Kent, AC Vill, Q Shi, MJ Satlin, IL Brito. Widespread transfer of mobile antibiotic 

resistance genes within individual gut microbiomes revealed through bacterial Hi-C. 

Nature Communications 11, 4379 (2020). 
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wrote and compiled code. All authors contributed to the manuscript. 

Abstract 
 

The gut microbiome harbors a ‘silent reservoir’ of antibiotic resistance (AR) genes that is 

thought to contribute to the emergence of multidrug-resistant pathogens through horizontal gene 

transfer (HGT). To counteract the spread of AR, it is paramount to know which organisms 

harbor mobile AR genes and which organisms engage in HGT. Despite methods that characterize 

the overall abundance of AR genes in the gut, technological limitations of short-read sequencing 

have precluded linking bacterial taxa to specific mobile genetic elements (MGEs) encoding AR 

genes. Here, we apply Hi-C, a high-throughput, culture-independent method, to surveil the 

bacterial carriage of MGEs. We compare two healthy individuals with seven neutropenic patients 

undergoing hematopoietic stem cell transplantation, who receive multiple courses of antibiotics, 

and are acutely vulnerable to the threat of multidrug-resistant infections. We find distinct 

networks of HGT across individuals, though AR and mobile genes are associated with more 

diverse taxa within the neutropenic patients than the healthy subjects. Our data further suggest 

that HGT occurs frequently over a several-week period in both cohorts. Whereas most efforts to 
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understand the spread of AR genes have focused on pathogenic species, our findings shed light 

on the role of the human gut microbiome in this process.  

Introduction 
 

The acquisition of antibiotic resistance (AR) genes has rendered important pathogens, 

such as multidrug-resistant (MDR) Enterobacteriaceae and Pseudomonas aeruginosa, nearly or 

fully unresponsive to antibiotics. It is widely accepted that these so-called ‘superbugs’ acquire 

AR genes through the process of horizontal gene transfer (HGT) with members of the human 

microbiome with whom they come into contact1. The emergence of these MDR bacteria 

threatens our ability to perform life-saving interventions, such as curative hematopoietic cell 

transplants for patients with hematologic malignancies2. Furthermore, antibiotic use, required for 

vital prophylaxis in these patients, has been proposed as a trigger for HGT. Although tools are 

available to identify AR genes within the gut microbiome, and characterize their function 3, 

abundance4,5 and their host-associations6, no studies have attempted to monitor the bacterial host 

associations of AR genes and mobile elements during relatively short periods, such as during 

these patients’ hospitalizations. 

To determine the bacterial hosts of mobile AR genes, we utilized a high-throughput 

chromatin conformation capture (Hi-C) method aimed at sampling long-range interactions within 

single bacterial genomes7,8,9. Briefly, while cells are still intact, DNA within individual cells is 

crosslinked by formaldehyde. Cells are then lysed and the DNA is cut with restriction enzymes, 

biotinylated, and subjected to dilute ligation to promote intra-molecular linkages between 

crosslinked DNA. Crosslinking is reversed and then ligated DNA molecules are pulled-down and 

made into DNA libraries for sequencing. As is, this protocol has been used to improve 

metagenomic assemblies of bacterial genomes10 and has identified a handful of strong plasmid- 
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and phage-bacterial host associations11,12,13,14, suggesting that this technique could be applied to 

link mobile genes with specific taxa more broadly and to observe the process of HGT over time.  

Here, we develop a modified version of current Hi-C protocols and analytical pipelines 

(Figure 2.1) in conjunction with metagenomic shotgun sequencing to surveil the bacterial taxa 

harboring specific mobile AR genes in the gut microbiomes of two healthy individuals and seven 

patients undergoing hematopoietic stem cell transplantation. These patients have prolonged 

hospitalizations during their transplant (21 ± 4 days) and often receive multiple courses of 

antibiotic therapy, increasing the likelihood of an MDR infection. As a result of their condition 

and treatment, these patients face mortality rates of 40-70% when bacteremic with carbapenem-

resistant Enterobacteriaceae (CRE) or carbapenem-resistant Pseudomonas aeruginosa15, and 

therefore represent a salient population for surveillance and one in which MDR pathogens may 

emerge and/or amplify under antibiotic selection. Gut microbiome samples for patients and 

healthy subjects were collected over a 2-3-week period, which, for the neutropenic patients 

started upon admission for transplant and continued during their hospitalization until neutrophil 

engraftment (Figure 2.2A).  

We introduce a number of improvements to current bacterial Hi-C protocols to obtain 

gene-taxa associations. We change sample storage and optimize the choice of restriction 

enzymes to improve the congruence between the composition of metagenomic and Hi-C 

sequencing libraries (Figure 2.3). We also integrate Nextera XT sequencing library preparation 

directly into the Hi-C experimental protocol, streamlining operations and decreasing sample 

preparation time. Importantly, within diverse bacterial communities such as the gut microbiome, 

MGEs may be highly promiscuous and recombinogenic, complicating both assembly16 and 

linkage analyses17. Therefore, we implement a computational workflow to assemble genomes, 
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separating large integrated phage onto their own contigs, and allowing them to associate with 

genomes via binning or Hi-C connections. In a mock community of three organisms, each 

harboring an identifiable plasmid, we are able to confidently link each plasmid to its nascent 

genome (Figure 2.4). 
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Figure 2.1. Experimental and computational pipeline. Our pipeline for assigning mobile and AR genes 

to bacterial taxa utilizes data from metagenomic (black) and Hi-C (red) sequencing libraries. In brief, 

metagenomic samples are assembled using standard approaches. The resulting contigs (circles) are 

binned into draft assemblies and quality filtered. Bins are taxonomically annotated at the lowest level 

with >50% of bps assigned to a taxon using a weighted Kraken approach. Contigs containing AR or 

mobile genes are associated with metagenomic assemblies by residency or by Hi-C linkages requiring at 

least 2 readpairs linking the contig with the metagenomic assemblies. Associations of mobile or AR 

genes with specific taxa are made by clustering the genes of interest at 99% identity and counting each 

unique taxon once. 



22 
 

 

 

Figure 2.2. (A) Neutropenic hematopoetic stem cell transplant (B-) 

recipients’ and healthy (H-) individuals’ timecourses included in the 

study are depicted, with periods of neutropenia (gray) and antibiotic 

use (green). Black lines indicate time points for which metagenomic 

and Hi-C libraries were constructed. Red lines indicate 

gastrointestinal colonization with MDR enteric pathogens.  

(B) Each Hi-C read pair that maps to two non-mobile contigs is 

plotted according to the taxonomic assignment of each read. Color 

depicts the number of reads linking contigs according to taxonomy. 

(C) The percent of the total taxa-mobile gene (left) and taxa-AR 

gene (right) associations observed from metagenomic assembly that 

are supported by two or more Hi-C links (brown) is plotted, along 

with the percent additional interactions gained by using Hi-C (red). 

(D) Stacked barplots showing the number of species-level taxa to 

which each AR gene (clustered at 99% identity) is assigned within 

each patient, and across patients. Only those genes assigned to 2 or 

more taxa are shown. We either used metagenomic assemblies alone 

to assign taxonomies (left) or combined with Hi-C libraries 

considering those taxa-gene assignments with evidence from at least 

two Hi-C reads. The numbers above each stacked barplot represent 

the total number of AR genes with 2 or more taxonomic associations. 

(E) Horizontal stacked bar plots show the percentage of unique 

phage genes (defined as 95% similar) (above) or AR genes (below) 

in the metagenomic assemblies and the origins of their taxonomic 

associations, identified either by BLAST to NCBI’s NT (for phage) 

or PATRIC’s reference database (for AR genes) or through Hi-C 

linkages.  
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Figure 2.3. Congruence between metagenomic and Hi-C sample composition. (A) Class-level compositions of 

individuals’ gut metagenomes and Hi-C libraries as determined by MetaPhlAn2. The human microbiome sample from 

Press et al. was included in our analysis. (B) Dendrogram of metagenome and Hi-C library compositions. Sample 

compositions (class-level) were hierarchically clustered according to their Bray-Curtis distances. (C) Compositional 

differences between metagenomic and Hi-C libraries in samples processed according to the restriction enzyme(s) used 

(numbers of comparisons are 4, 7, 4, 4, 3, 6, 5, and 5 for B314, B316, B320, B331, B335, B357, B370, H3, H8, 

respectively. In addition, data from two Hi-C samples were compared with 1 metagenome from Press et al.). The bounds 

of the box represent the first and third quartiles with the center value the median.  
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Figure 2.4. Number of Hi-C reads linking genomic regions to themselves (left), to their 

plasmids (middle) and within each plasmid (right). Blue linkages are correct, whereas brown 

hues are incorrect associations. Note that there is a region of homology between the plasmid 

backbones of the RP5 and pKJK5 plasmids carried by Pseudomonas putida and Escherichia 

coli, respectively. Nevertheless, none of the incorrect host-plasmid linkages would have been 

surpassed our threshold for assigning gene-taxa associations. 
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Results 
 

Hi-C substantially improves antibiotic resistance gene-taxa associations  
 

 Our Hi-C experimental and computational approach results in robust linkages between 

contigs in human microbiome samples. Hi-C read pairs linking non-mobile contigs with 

contradictory taxonomic annotations are rarely observed (3.4% at the genus-level) and likely 

represent homologous sequence matches, highlighting the purity of our Hi-C libraries (Figure 

2.2B). Hi-C read pairs linking two contigs are preferentially recruited to contigs that are longer 

and more abundant, but to a lesser degree than expected, reducing potential bias in our dataset 

toward highly abundant organisms (Figure 2.5). We binned contigs using several tools 

(Maxbin18, MetaBat and Concoct), and applied a binning aggregation strategy, DAS Tool19, to 

obtain a set of draft genomic assemblies. As misassembly can resemble HGT, we removed 

assemblies with greater than 10% contamination, as determined by CheckM, resulting in 

taxonomically coherent assemblies (Figure 2.6), albeit a greater number of unbinned contigs 

(24.6% of the total). We then apply conservative criteria to link mobile and mobile AR-

containing contigs with the genomic draft assemblies, considering an MGE part of a genome 

assembly only if it is directly linked to it by at least two uniquely-mapped Hi-C read-pairs. As 

MGEs are known to recombine, this mitigates the potential for falsely linking contigs that merely 

share common mobile genes. However, this also potentially reduces our ability for overall 

detection, especially for larger MGEs, since mobile contigs are often fragmented in metagenomic 

assemblies20. Nevertheless, we restricted our analysis to those AR-organism and MGE-organism 

linkages derived from high-confidence read mappings. 

Hi-C significantly improved our ability to detect mobile gene-bacterial host linkages 

beyond standard metagenomic assembly alone. Hi-C confirms many of the AR gene-taxa and 
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mobile gene-taxa associations observed in the metagenomic assemblies (30.49% ± 11.49% of the 

AR genes; 30.1% ± 9.52% of the mobile genes), but importantly adds on average 31.81% ± 

16.28% AR gene associations and 36.64% ± 11.56% mobile gene associations to those observed 

by metagenome assembly alone (Figure 2.2C). Furthermore, whereas metagenomic assembly 

methods can generally link a single mobile gene cluster to one or two organisms, our Hi-C 

method was able to identify up to 15 bacterial hosts harboring the same AR or mobile gene, 

requiring two or more Hi-C linkages within a single individual (mean = 3.53 ± 5.69 bacterial 

hosts per AR gene, Figure 2.2D; mean = 6.85 ± 10.88 bacterial hosts per gene, Figure 2.7). A 

larger percentage of AR and mobile genes overall (8.1%±5.2% vs. 0.9%±0.9% for AR genes and 

6.1%±4.8% vs. 1.9%±1.7% for mobile genes) can be assigned to multiple taxonomies. These 

results were consistent with more stringent thresholds for Hi-C associations (Figure 2.8). 

Our data increases mobile and AR gene-taxa assignments above those observed using 

publicly available reference genomes, while focusing on those immediately relevant to the 

individual patient. We first investigated phage-host associations identified through Hi-C and 

compared them with those in NCBI, as many phage are host-specific21. Indeed, 43.5% of the 

phage genes with Hi-C genera-level assignments recapitulate known interactions (Figure 2.2E). 

However, broader genera-level associations are obtained for 64.2% of the unique phage genes in 

our database, reflecting apparent selection biases within our reference databases and the 

promiscuity of certain phage22,23,24. A greater percentage of AR genes with Hi-C genera-level 

taxonomic assignments, 82.8%, were evident in reference genomes. Yet, Hi-C expands genera-

level assignments for 37.6% of the AR genes. Despite having a limited number of reads linking 

each mobile or AR gene to a particular taxa, our annotations are supported by the fact that Hi-C 

reads preferentially map near to these genes on the overall contig (Figure 2.9). 
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We next sought to determine the extent to which we could capture associations using Hi-

C. First, we performed a modified rarefaction analysis to determine whether the number of AR 

gene-taxa associations and mobile gene-taxa associations saturated with increased sequencing 

depth of our Hi-C libraries. Most of our samples saturated within our target sequencing depth 

(roughly 15 million paired reads), and sequencing samples to roughly four-fold this amount did 

not significantly increase the number of gene-taxa associations (Figure 2.10). The number of 

contigs that recruited Hi-C reads (on average 18.3 ± 10.9%) was not dependent on sequencing 

depth, yet 88.2% ± 9.5 of our genome bins recruited two or more Hi-C reads, which amounts to 

90.7% ± 9.0% of the taxa recruiting reads. This breadth is supported by the congruence of Hi-C 

libraries and metagenomic libraries (Figure 2.3). We suspect that the variation in recruitment of 

Hi-C reads across the genome reflects either recurrent structural patterning of DNA25, 

differences in DNA-binding proteins available for cross-linking, and the distribution of 

restriction enzyme cut sites26. We next measured our ability to detect the same mobile genes 

across timepoints. If we consider only the AR gene-taxa associations we observe at least once, 

and we conservatively assume that should continue to observe the gene-taxa association, i.e. that 

the lack of repeated observation was due to the stochastic sampling process of Hi-C rather than 

HGT, we repeatedly detect an average of 66% of all possible associations where both the 

organism and AR genes were detectable in the draft assemblies but were not linked through Hi-C 

(Figure 2.11).  

Overall, within each person’s microbiome, mobile genes, including AR genes and HGT 

machinery genes, were distributed across a wide range of taxa (Figures 2.12 & 2.13). Less than 

10% of unique mobile genes and 19% of unique AR genes (clustered at 99% identity) were 

found across multiple patients, a finding consistent with previous surveys of MGEs across 
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individuals27, indicating limited inter-personal or nosocomial transmission. Furthermore, for 

these MGEs found across patients, few of their host associations were conserved. We speculate 

that HGT may result in their dispersal within individual’s gut microbiomes and that selection 

may affect MGE-taxa associations at the level of individuals27. Despite heavy administration of 

antibiotics, the abundances of AR genes, even those conferring resistance to administered 

antibiotics, did not correspond with patient-specific therapeutic courses, a finding consistent with 

other patient-timecourses of mobile AR genes28, and possibly reflective of the low plasmid-based 

resistance to levofloxacin or combination antibiotic therapies (Figure 2.14).  
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Figure 2.5. (A) A histogram showing the distribution of abundances (RPKM) of contigs that 

recruit (purple) or do not recruit (orange) Hi-C contig-connecting read pairs. (B) A histogram 

showing the distribution of lengths (bp) of contigs that recruit (purple) or do not recruit (orange) 

Hi-C contig-connecting read pairs. 
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Figure 2.6. (A) Completeness of each assembled genome bins from each patients’ samples as 

scored by CheckM. Boxplots show 25th, median and 75th percentile. (total number of genomes 

per person (n) = 261 (B314), 750 (B316), 297 (B320), 161 (B331), 156 (B335), 519 (B357), 469 

(B370), 430 (H3), and 573 (H8)). (B) Contamination of each assembled genome bins from each 

patients’ samples as scored by CheckM. Boxplots show 25th, median and 75th percentile. Same 

n as in (A). (C) Length of each assembled genome bins within each patients’ samples. Boxplots 

show 25th, median and 75th percentile. Same n as in (A). 
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Figure 2.7. Stacked barplots showing the number of species-level taxa to which each mobile 

gene (clustered at 99% identity) is assigned within each patient, and across patients. Only those 

genes assigned to 2 or more taxa are shown. We either used metagenomic assemblies alone to 

assign taxonomies (left) or Hi-C libraries considering those taxa-gene assignments with 

evidence from at least two Hi-C read pairs. The numbers above each stacked barplot represent 

the total number of mobile genes with 2 or more taxonomic associations. 
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Figure 2.8. (A) The percent of the total taxa-mobile gene (left) and taxa-AR gene (right) 

associations observed from metagenomic assembly that are supported by five or more Hi-C 

links (brown) is plotted, along with the percent additional interactions gained by using Hi-C 

(red). (B) Stacked barplots showing the number of species-level taxa to which each AR gene 

(clustered at 99% identity) is assigned within each patient, and across patients as determined by 

5 or more Hi-C links. Only those genes assigned to 2 or more taxa are shown. We either used 

metagenomic assemblies alone to assign taxonomies (left) or combined with Hi-C libraries 

considering those taxa-gene assignments with evidence from at least two Hi-C reads. The 

numbers above each stacked barplot represent the total number of AR genes with 2 or more 

taxonomic associations. (C) Stacked barplots showing the number of species-level taxa to which 

each mobile gene (clustered at 99% identity) is assigned within each patient, and across patients 

as determined by 5 or more Hi-C links. Only those genes assigned to 2 or more taxa are shown. 

We either used metagenomic assemblies alone to assign taxonomies (left) or combined with Hi-

C libraries considering those taxa-gene assignments with evidence from at least two Hi-C reads. 

The numbers above each stacked barplot represent the total number of AR genes with 2 or more 

taxonomic associations. 
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Figure 2.9. (A) As illustrated, Hi-C read pairs may map anywhere on a contig containing a 

mobile or AR gene. The boundaries of an MGE may be elusive and MGEs may integrate into 

contigs that have incomplete annotations. We assessed the linear distance (bp) between where 

Hi-C read pairs aligned and the positions of mobile or AR genes used for taxon-gene 

associations on the contigs to ensure that Hi-C read pairs were mapping at distances relevant for 

their assignments. In the example, both Hi-C reads A and B align to the same taxonomically 

annotated contig, yet read A maps at a minimum distance that is closer to the mobile gene, and 

therefore more confidently links the mobile gene with the contig. (B) For each taxon-mobile 

gene connection, we plot the minimum distance between a Hi-C read pair and the start/end of 

the mobile gene on that contig, according to contig length. The inset shows distances of less 

than 200,000bp broken down more finely. (C) The same analysis as (B) but for AR genes. 
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Figure 2.10. (A) The number of unique mobile gene-species connections within each sample 

after subsampling reads from each Hi-C dataset. The first Hi-C sample from each timecourse 

(noted with an asterisk) was sequenced significantly more deeply than the rest of the timecourse 

so that we could better assess whether there were any new gene-species connections that arose 

in any subsequent samples. (B) The number of unique AR gene-species connections within each 

sample after subsampling reads from each Hi-C dataset. 
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Figure 2.11. (A) Examples of the detection of AR genes, bacterial hosts and their linkage during 

patients’ timecourses. The last scenario depicts an instance where a mobile or AR gene is linked 

with a specific taxon with Hi-C during at least one time point, but is detected in the 

metagenomic data at other time points but not linked with Hi-C. Although this may be explained 

by changes in strain-level composition or gene loss, we assessed the repeatability of detecting 

associations, assuming that these genes are truly linked in any instance when the mobile or AR 

gene and the bacterial taxon are both present. (B) A bar chart showing the extent to which we 

repeatedly detect specific gene-taxa associations observed within each patients’ microbiomes. 

Assuming that we should observe associations present in one timepoint in all timepoints (i.e. 

that there is no HGT), we define the true positives (TPs) as the number of unique mobile gene-

bacterial taxon connections observed; and the false negatives (FNs) as the total number of 

instances where both the bacterial taxon and the mobile gene are detected in the metagenomic 

assemblies. Repeat detection is calculated as TPs/(TPs+FNs), with the caveat that a portion of 

genome mobile gene-taxon linkages that did not depend on Hi-C sequencing read pairs are 

included here. (C) A bar chart showing the amount of repeat detection of AR gene-taxon 

connections observed within each patients’ microbiomes. This was calculated as described in 

(B), with the same caveat applied. 
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Figure 2.12. A heatmap of taxa-specific assignments, colored by class, for 

AR genes that are present in three or more patients. 
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Figure 2.13. A heatmap of taxa-specific assignments, colored by class, for 

mobile genes that are present in three or more patients. 
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Figure 2.14. For each patient-timecourse (columns), AR gene abundances 

(RPKM) are plotted for each gene according to the antibiotic to which it 

confers resistant. The antibiotics administered to each patient over their 

timecourse is denoted. 
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Horizontal gene transfer networks vary across individuals’ gut microbiomes 
 

When comparing the networks of HGT within each individual’s gut microbiome, we 

expected to observe a strong preference for gene exchange between more closely related 

organisms, as previously observed when comparing exchange networks using reference 

genomes29. Whether HGT occurs more frequently in an individual’s gut is an essential question 

to understand the development and maintenance of the reservoir of AR genes in the gut 

microbiome, yet it has been difficult to answer for technical reasons. Using Hi-C, we find that 

the spread of AR genes and other mobile genes is significantly higher within an individual’s gut 

microbiome than between different individuals’ gut microbiomes (Figures 2.15A & 2.16). 

Beyond closely related pairs of organisms, there was considerable variation in the networks of 

shared AR and mobile genes across individuals (Figure 2.17).  Despite this, we find that those 

microbiomes similar in composition shared more of the same connections among the organisms 

present in both microbiomes (Figure 2.15B), most notably between the two healthy individuals.  

Given their clinical importance, we focused on the gene-sharing networks of 

Proteobacteria, and more specifically, Enterobacteriaceae. Within all patients, gene exchange 

was most frequent within members of the same phylum (Figure 2.15C,D). In neutropenic 

patients, Proteobacteria shared genes outside their phylum most often with Firmicutes. The main 

transfer partners with Enterobacteriaceae were different across patients, but notably included 

both opportunistic pathogens (i.e. Veillonella parvula and Enterococcus faecium), commensals 

that may flourish post-antibiotic use (i.e. Erysipelotrichaceae sp.30), and even those organisms 

that have been considered as probiotic (i.e. Faecalibacterium prausnitzii31 and Roseburia 

intestinalis32).   
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Figure 2.15. (A) HGT rates (per 100 comparisons) of AR genes between organisms within each individual 

(n=9) versus between individuals (n=36), according to those that share the same species, genus, family, order, 

class, and phylum are plotted for comparison. Significance was measured with Mann Whitney U-tests (two-

sided; *, p<0.05; **, p<0.01; ***, p<0.005, ****, p<0.001;*****, p<0.0005. p-values are 0.0468, 0.0039, 

0.0259, 0.0518,0.1929,0.0008, from species to phyla). Boxplot represents the interquartile range where ends of 

the whiskers represent ±1.5*interquartile range and median value is indicated. (B) For each pair of individuals, 

the Jaccard distance of their composite microbiome compositions are plotted against the average Jaccard 

distance of the HGT network connections of mobile genes exchanged between organisms present in both 

individuals. Points are colored according to the health status of the donors being compared. (C) Network plots 

showing bacterial AR gene exchange according to phyla within healthy (left) and neutropenic (right) 

individuals’ microbiomes. n refers to the number of people included in the plot. (D) Network plots showing 

bacterial mobile gene exchange according to phyla within healthy (left) and neutropenic (right) individuals’ 

microbiomes. n refers to the number of people included in the plot. 
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Figure 2.16. HGT rates (per 100 comparisons) of AR genes between organisms within each individual (n=9) 

versus between individuals (n=36), according to those that share the same genus, family, order, class, phylum 

and kingdom are plotted for comparison. Significance was measured with Mann Whitney U-tests (two-sided; 

*, p<0.05; **, p<0.01; ***, p<0.005, ****, p<0.001;*****, p<0.0005. p-values are 0.1186,0.00032, 0.01411, 

0.1376, 0.0215, 0.0043 from species to phyla). The bounds of the box represent the first and third quartiles 

with the centre value the median. The ends of the whiskers represent either the smallest and largest values or at 

most ±1.5× interquartile range. 
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Figure 2.17. (A) Circle relationship plots showing networks of bacterial 

mobile gene exchange in the gut microbiomes across individuals (top 

left) and within each individual. Taxa present in each individual’s 

microbiome are depicted by black circles. The thickness of the lines 

corresponds to the number of unique mobile genes associating the two 

taxa. (B) Circle relationship plots showing networks of bacterial AR gene 

exchange in the gut microbiomes across individuals (top left) and within 

each individual. Taxa present in each individual’s microbiome are 

depicted by black circles. The thickness of the lines corresponds to the 

number of unique AR genes associating the two taxa. 
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Horizontal gene transfer is frequent and is elevated in neutropenic patients 
 

Antibiotic treatment33 and inflammation34 are putative triggers for HGT, through the 

production of reactive oxygen species and DNA damage. We hypothesized that mucositis caused 

by cytotoxic chemotherapy, along with the selective pressures imposed by antibiotics and 

inflammation, would create conditions amenable to HGT in these neutropenic patients. We 

noticed that the average density of connections (percentage of actual connections of the total 

possible connections) between taxa and AR or mobile genes is greater in the neutropenic patients 

than the healthy individuals (Figure 2.18A). Several patients, B316, B320, B335 and B370, 

experienced increases in the proportion of overall gene-taxa connections, referred to as network 

density, during their timecourses. This was unrelated to the abundance of Enterobacteriaceae in 

the samples, which have been proposed as mediators of HGT35, the total abundance of AR genes, 

or the number of Hi-C reads (Figure 2.19). Rather, we found that the only correlate was the 

number of taxa in a sample: as patients’ microbiomes became less diverse, the gene-taxa network 

density increased (Figure 2.18B). We hypothesize that this is caused either by an undefined 

selective pressure acting to preserve more connected organisms; or that once selection has 

occurred, organisms in less diverse populations will have increased contact rates and therefore 

greater opportunity for transfer.  
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Figure 2.18. (A) Boxplots showing the gene-taxa network linkage 

densities, or the proportion of total possible gene-taxa links that are 

observed to be linked, for each individuals’ samples (n=4, 7, 4, 4, 3, 6, 

5, and 5 for B314, B316, B320, B331, B335, B357, B370, H3, H8, 

respectively). A dotted line is shown at the maximum network density 

observed in the healthy samples. The bounds of the box represent the 

first and third quartiles with the centre value the median. The ends of 

the whiskers represent either the smallest and largest values or at most 

±1.5× interquartile range. (B) Individual patient samples are plotted 

according to the alpha diversity, assessed using Metaphlan, and their 

gene-taxa network density. An ANOVA showed that gene-taxa 

network density was related to alpha diversity (F(1,39), p = 3.3x10-5) 

and health status (F(1,6), p=0.01501). (C) All observed HGT events 

across different genera are plotted for each individual. Each genus is 

colored according to its phylum. 
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Figure 2.19. Each patient’s timecourse is shown according to their 

gene-taxa linkage density, as defined by both Hi-C and metagenomic 

assembly; the number of taxa in that sample’s metagenome 

(calculated by Metaphlan), the number of total Hi-C reads; and the 

abundance of AR genes (RPKM). Individuals were ordered according 

to the trend of their gene-taxa linkage density over their timecourse. 
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Emergence of antibiotic resistance in pathogens and commensals 
 

Next, we more closely examined those timecourses with putative HGT events for which 

we had the highest confidence. To distinguish between the migration of new bacterial strains and 

HGT, we only considered HGT between strains present at the start of the timecourse. Potential 

donor strains were required to have Hi-C-verified connections with specific mobile or AR genes 

in the first patient sample. Individuals’ initial Hi-C samples were sequenced 3-4-fold deeper than 

the remainder of their timecourses to ensure that gene-taxa associations were adequately sampled 

(Figure 2.10) and that putative recipient strains did not harbor those specific genes of interest at 

the start. We enforced this by requiring a complete absence of gene-recipient taxa connections 

inferred by Hi-C or metagenomic assembly, including connections with taxa that could only be 

annotated at higher taxonomic levels. Finally, we considered HGT as occurring between these 

donor strains and recipient strains with Hi-C-verified associations with the transferred genes in 

later timepoints. Providing additional support, 12.2% of the putative transfer events (19 of 155) 

were supported by Hi-C across multiple timepoints and 32.9% (51 out of 155) were supported by 

Hi-C links across multiple contigs in both the donor and recipient genomes. Most of the transfers 

(60%) were between members of the same phylum. Ultimately, evidence of HGT was found in 

all individuals in our study (Figure 2.18C). 

Within these relatively short timecourses, we observed the expansion of the gut 

commensal reservoir of resistance genes. Although we did not observed the transfer of AR genes 

conferring resistance specifically to the antibiotics used in this cohort, namely levofloxacin, 

pipercillin-tazobactam, or trimethoprim-sulfamethoxazole, we did observe transfer of multi-drug 

resistance cassettes with beta-lactam- and fluoroquinolone-resistance genes, covering two of the 

corresponding antibiotic classes. Notably, within a few days post-transplant, we see transfer of a 

plasmid encoding mdtEF, a multidrug efflux pump conferring resistance to fluoroquinolones, 
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and their transcriptional regulators, CRP and gadW, from an Escherichia coli strain in patient 

B331 to a strain most similar to Bacteroides sp. A1C1. Despite their ubiquitous antibiotic 

prophylaxis, only a minority (19.4%) of transfer events involved annotated AR genes in the 

neutropenic patients.  

Additionally, we observe the emergence of novel AR genes in enteric pathogens, 

originating either from gut commensals or other enteric pathogens, including Enterobacteriaceae. 

Enterobacteriaceae species are among the most common causes of infection and sepsis in these 

patients and Enterobacteriaceae from the gut have been shown previously to harbor excessive 

numbers of AR genes36 and serve to promote HGT of AR genes37. We see the exchange of AR 

gene-containing plasmids between members of the Enterobacteriaceae, namely Klebsiella 

pneumoniae and Citrobacter brakii in patient B335, and between E. coli and Klebsiella species 

in B314, and one instance of K. pneumoniae in patient B335 acquiring DNA harboring a 

plasmid-based efflux pump from a commensal, Blautia hansenii. We also note the overall 

transfer of mobile elements between these pathogenic species and other opportunistic pathogens, 

such as Streptoccocus parasanguinis, S. salivarius, and E. faecium, exposing the potential for 

HGT to alter the AR profiles of these bacteria over short periods of time.  

Remaining challenges linking bacteria with their mobile genetic elements 
 

These examples highlight the dynamic nature of HGT within the gut ecosystem, 

especially in the context of gut inflammation, immune dysregulation and antibiotic use. 

Nevertheless, our method has several limitations. First, we can only assign bacterial hosts for 

those MGEs and host genomes that we are able to assemble and annotate. Although 95.9% ± 

2.8% of our metagenomic reads contribute to assembled contigs and 80.4% ± 10.4% (median 

82.4%) of Hi-C reads align to our assemblies, we were only able to annotate 47.8% of our draft 
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assemblies at either the genus- or species-level. Second, the assembly of MGEs can be 

confounded by their high rates of recombination creating multiple genomic arrangements and 

transfer, and, thus, redundancy within and across genomes. To mitigate the potential for false 

positive interactions, we examined only those mobile gene-containing contigs with multiple Hi-C 

reads directly linking them to taxonomically annotated genome assemblies. We cannot however 

rule out the possibility that our sensitivity is actually higher, and that our inability to detect 

linkages at specific time-points reflects true strain-level variation within the microbiome, or 

undetected real-time mobilization of genetic elements. Third, for those HGT events that we 

observed, we cannot always confirm the transfer of an entire contig and its associated genes. 

This issue underscores several observed HGT events, involving plasmids comprising prophage 

and transposable elements. This is mitigated by the requirement for more Hi-C read linkages and 

the overall proximity between Hi-C read linkages and the inferred transferred genes (Figure 2.9). 

Future studies should leverage long reads in hybrid assemblers to better capture co-occurring AR 

genes and large MGEs38. We expect to overcome these limitations with additional technical 

improvements to the bacterial Hi-C protocol.  

Discussion  
 

Here, we observe extensive transfer of mobile and AR genes within a single individual’s 

gut microbiome across distant phylogenetic backgrounds and over relatively short timespans. 

The transfer networks within each individual’s gut microbiome are unique and are likely 

explained by personal ecological niches that govern local contact rates between organisms. Few 

of the total AR gene-taxon associations are observed across individuals, which may suggest 

limited dispersal rates and/or strong selective pressures that prevail within each individual’s gut. 

Although the molecular dynamics of HGT in the gut microbiome are not well-understood, our 
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data from healthy subjects point to a basal level of transmission, even in the absence of 

inflammation or antibiotic use. Many of the observed transfers appeared transient, which may be 

due to the limited detection of our method, or by the neutral or deleterious nature of most HGT 

events39,40. 

The ramifications of HGT in this neutropenic patient population are acute. Our results 

show increased pathogen load and elevated gene-taxa network densities in neutropenic patients 

as compared with healthy individuals, suggesting an increased risk of emergence of MDR 

pathogens in this at-risk patient population. How to translate these findings into the prevention of 

the emergence of MDR pathogens is paramount. This technology highlights the potential for 

screening the burden of AR genes and the carriage of enteric pathogens to guide empirical 

antibiotic therapy. These findings also expose the limitations of taxa-specific therapies to remove 

AR genes from the gut microbiome41,42,43, in favor of mechanisms to limit HGT more generally. 

Overall, these results emphasize a view of the population-wide dissemination of AR genes that 

includes diverse members of the gut microbiome. 

Methods 
 

Sample collection 
 

Fresh stool was collected from informed and consenting individuals in accordance with 

IRB protocols for Weill Cornell Medical College (#1504016114) and Cornell University 

(#1609006586). Neutropenic patients were all admitted to the Bone Marrow Transplantation 

Unit at New York Presbyterian Hospital/Weill Cornell Medicine between December 2016 and 

July 2017. Healthy samples were collected similarly in 2019. Approximately 0.25 g replicates of 

each time-point were either frozen ‘as is’ (for metagenomic sequencing) or homogenized in 

phosphate-buffered saline (PBS) + 20% glycerol before freezing (used for Hi-C sequencing).   
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Metagenomic sequencing  
 

Frozen stool was thawed on ice and DNA was extracted using the PowerSoil DNA 

Isolation Kit (Qiagen) with additional Proteinase K treatment and freeze/thaw cycles 

recommended by the manufacturer for difficult-to-lyse cells. Extractions were further purified 

using 1.8 volumes of Agencourt AMPure XP bead solution (Beckman Coulter).  DNA was 

diluted to 0.2 ng/uL in nuclease-free water and processed for sequencing using the Nextera XT 

DNA Library Prep Kit (Illumina). 

Proximity ligation 
 

Stool stored in PBS + 20% glycerol was thawed on ice for 15 minutes and homogenized 

in 5 mL PBS containing 4% v/v formaldehyde.  Sample were crosslinked at room temperature 

with continuous inversion for 30 minutes, then incubated on ice for 30 minutes.  Unreacted 

formaldehyde was quenched by adding glycine to a final concentration of 0.15 M and incubating 

for 10 minutes on ice.  Crosslinked cell mixtures were pelleted (10,000 g, 4° C, 5 min.), the 

supernatant was removed, and pellets were flash-frozen on dry ice/ethanol and stored at -80° C.   

Frozen crosslinked stool cell pellets were thawed on ice then resuspended in 450 μL TES 

(10 mM Tris, 1 mM EDTA, 100 mM NaCl, pH 7.5) and transferred to 2 mL screw-cap tubes.  50 

μL freshly prepared Lysozyme solution (20 mg/mL in TES, Amresco lyophilized powder, 23500 

U/mg) was added to each resuspended pellet and incubated at room temperature for 15 minutes 

with continuous inversion.  Sodium dodecyl sulfate (SDS) was added to a final concentration of 

0.5% w/v and samples were incubated at room temperature for 10 minutes with continuous 

inversion.  Samples were pelleted and the volume was reduced to 400 μL. 50 μL 10X Lysis 

Buffer (100 mM Tris pH 7.5, 100 mM NaCl, 1% IGEPAL CA-630 v/v) was added to each 

sample, followed by 50 μL freshly prepared 10X protease inhibitor (Roche cOmplete mini 
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EDTA-free tablets). Cells were resuspended by pipetting and incubated on ice for 15 minutes. 

Manual lysis of cells was carried out by adding 400 μL 0.5 mm sterile glass beads to each tube 

and vortexing at maximum Hz for 30 seconds, followed by 30 seconds incubation on ice. 

Vortexing and ice incubation was repeated for 10 cycles. Bead-beaten samples were allowed to 

settle upright on ice for 15 minutes, then the liquid supernatant (~250 μL) was transferred to a 

new 1.5 mL tube. Sample volume was equilibrated to 500 μL with cold 2X NEBuffer 1.1 and 

incubated at 50° C for 10 minutes. After incubation, 30 μL 10% Triton X-100 v/v was added to 

each tube, mixed by inversion.  Cross-linked DNA fragments were digested overnight with 50 U 

Sau3AI.  Digested DNA complexes were pelleted (20,000 g, 4° C, 5 min.) , gently washed with 

cold 1X NEBuffer 2, and resuspended in 200 μL NEBuffer 2.   

Digested DNA was heated to 50° C for 5 minutes to melt paired sticky ends then put into 

a 200 μL Klenow fragment (exo-, NEB) fill-in reaction containing 36 μM biotin-14-dCTP 

(Thermo Fisher) and equimolar amounts of dATP, dTTP, and dGTP. Reactions were carried out 

for 2 hours at room temperature and the polymerase was quenched by adding EDTA to a final 

concentration of 10 mM.  The full volume of each fill-in reaction was put into a dilute blunt-end 

ligation reaction (640 U T4 DNA Ligase, NEB) and allowed to incubate overnight at 15° C.  

Protein and crosslink digestion was carried out by adding 50 μL freshly prepared 20 mg/mL 

Proteinase K (VWR, freeze-dried powder suspended in 10 mM Tris, 1 mM MgCl2, 50% 

glycerol, pH 7.5) and incubating at 65° C for 6 hours.  This digestion was repeated once.  Protein 

was removed by phenol:chloroform extraction and ligated DNA was precipitated from the 

aqueous fraction with one volume 5M ammonium acetate and 4 volumes cold absolute ethanol.  

Clean DNA was quantified, and at least 1 μg but no more than 5 μg DNA was put into an end-

resection reaction (5 U T4 DNA Polymerase, NEB) to remove biotin from unligated ends.  
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Exonuclease activity of the polymerase was quenched with 5 mM EDTA and free biotinylated 

nucleotides were removed via 1.8X Ampure XP bead cleanup.  Biotinylated DNA was 

immobilized on M280 streptavidin beads using the Invitrogen kilobaseBINDER Kit.  Bead-

bound DNA was quantified and prepared for sequencing using Illumina’s Nextera XT kit.  

Multiplexed libraries were size-selected with Ampure XP beads, quantified, and pooled for 

sequencing on an Illumina NextSeq 2x150 paired-end platform.     

Mock community methods  
 

Bacillus subtilis containing pDR244, Pseudomonas putida containing pKJK5, and 

Escherichia coli containing RP4 were cultured in LB under antibiotic selection to maintain 

plasmids (spectinomycin, tetracycline, and kanamycin, respectively). Overnight cultures were 

washed with PBS, resuspended in PBS + 20% glycerol v/v, and frozen as aliquots, with one 

aliquot of each retained for titer determination on selective agar media. To create the mock 

community, 5×108 colony forming units from each frozen stock was thawed and combined, and 

immediately carried through formaldehyde crosslinking as described for stool. Mock community 

Hi-C sequences were mapped with HiC-Pro against reference genomes and plasmids using 

default settings. Valid pairs, i.e. those that map to different restriction fragments, were 

compartmentalized into groups based on whether or not they connected the genome-genome, 

genome-plasmid, or plasmid-plasmid and coded according to the expected plasmid-host 

relationship.   

Quality filtering and assembly 
 

Metagenomic and Hi-C sequences were quality filtered using Prinseq45 v0.20.2 to 

derepelicate, Bmtagger46 (v2/21/14) to remove human reads, and Trimmomatic47 v0.36 to 

remove adapters and quality filter reads (using settings: Leading:3, Trailing:3, Slidingwindow 
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4:15, Minlen: 50).  Metagenomic reads were assembled using SPAdes48 v3.13.2 with ‘-meta’  

setting with a minimum contig size of 1,000bp. Genes on these contigs were called using 

Prodigal49 v2.6.3. PhageFinder50 v2.1 was used to identify large prophage regions and were 

excised from the first to the last phage gene called and considered separate contigs, unless the 

surrounding regions were less than 1,000bp, in which case they were also included as the excised 

phage. 

Metagenomic binning 
 

 Contigs were binned using several tools (Maxbin51, MetaBat52, and Concoct53), 

culminating with a metagenomic binning aggregation strategy, DAS Tool54, we assessed genome 

contamination using CheckM and removed bins with contamination >10%, resulting in quality 

metagenomic bins although in many cases partial bins. To prevent overcalling of partial bins, 

downstream analyses aggregate at the taxon rather than individually calling unique bins.   

Taxonomic Identification  
 

Kraken was applied to each metagenomic bin and annotated each contig individually 

using its algorithm. Then we assigned each bin the lowest taxonomic level at which more then 

50% of the bin was assigned by Kraken with contigs weighted by length (bp). Contigs assigned 

Eukaryotic taxonomies were removed from further analysis.  

Antibiotic resistance gene annotation 
 

All contigs were annotated with CARD’s (Comprehensive Antibiotic Resistance 

Database) Resistance Gene Identifier (RGI)55 3.2.1 against the CARD56 database and with 

HMMer57 against the Resfams58 database with the gathering cutoff. AR genes were clustered 

using CD-HIT-EST59 (identity:0.99; word size:8; length difference cutoff: 0.9) after they were 

sorted by length. Antibiotic resistance mechanisms are defined in Supplementary Data 5. We 
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focused on AR genes that are commonly harbored by the most problematic MDR bacteria60 and 

that confer resistance to antibiotics that are most frequently relied on in neutropenic patients: 

Table 1. AR genes of high importance 

Drug Resistance determinant 

Oxacillin61 mecA, mecC 

Penicillin62,63,64 pbp2b, pbp2x 

Ampicillin65 blaTEM, blaSHV 

Cephalosporin66,67 blaTEM, blaSHV, blaCTX-M, 

blaCMY, blaMIR, blaMOX, blaLAT, blaFOX, blaDHA, blaACT, blaCFE 

Carbapenem68 blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48, blaOXA-23, oprD 

Fluoroquinolones69 gyrA, gyrB, parC, parE, qnrA, qnrS (Note: we considered 

any qnr gene.) 

Aminoglycosides70 aac(3’), aac(6’), aad 

Genes in bold above represent those genes that were identified in our cohort’s microbiomes.  

Mobile genetic element annotation 
 

All contigs and excised prophage contigs were assessed for the presence of mobile genes 

using several programs. Contigs were mapped using BLASTN to PlasmidFinder71 database (best 

hit, minimum 80% identity and 60% coverage), NCBI’s genomic plasmids downloaded 

(05/10/2017) (best hit, minimum 1000bp, minimum 80% identity), and IMMEdb72 (best hit, min 

1,000 bp and 80% identity). Contigs were also identified as plasmids using PlasFlow73 with 

threshold of 0.95. Genes were mapped using BLASTP to ACLAME74 database v0.4 (besthit, min 

80% identity and 60% coverage) and PHASTER75 prophage/virus database (v8/3/17) (best hit, 

min 80% identity and 60% coverage). Genes were mapped using HMMER76 v3.1b2 to Pfam77 

and known plasmid, phage, and transposons were identified78,79. A search of common mobile 

gene terms against Pfam descriptions was carried out. Terms included for transposon: transpos, 

insertion element, is element, IS[0-9]; phage: phage, tail protein, tegument, capsid, relaxase, tail 

fibre, tail assembly, tail sheath, tail tube; plasmid: conjug, Trb, type IV, Tra[A-Z], mob, Vir[A-

Z][0-9], t4ss, resolvase, plasmid; other: integrase. All Pfam IDs and descriptions are listed in the 

Supplementary Data 6. Contigs were also annotated for insertion sequence (IS) elements using 
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ISEScan80 v1.5.4. Contigs with taxonomies assigned to the ‘Virus’ domain were considered 

phage. Contigs with any mobile annotation were annotated as MGEs.  

Sequence mapping  
 

Paired-end metagenomic sequences were mapped to the metagenomic contigs using 

BWA-MEM81 v0.7.13 requiring primary only alignments and filtered at 90% identity. Paired-end 

metagenomic sequences were also mapped separately to the AR and mobile gene clusters and 

filtered at 99% identity. Contig and individual AR and mobile gene RPKM values were 

calculated using mapped metagenomic reads (total reads mapped to the contigs with >80% 

contig coverage, divided by the length of the contigs per kilobase and the total read count in that 

sample per million). Hi-C reads were mapped with HiC-Pro using default parameterswhich 

internally uses Bowtie2. HicPro requires valid pairs to map to different restriction fragments and 

allows only unique mapping of reads.   

Cleanliness comparisons 
 

Reads mapping between two different contigs were included in the analysis if neither 

contig carried a mobile gene. Taxonomic associations were determined from residency in a 

metagenomic bin annotated to at least the taxonomic level of interest.  

Mobile and antibiotic resistance gene associations 
 

All mobile and AR gene-containing contigs, including excised phage, were associated 

with taxa if they were linked to a Hi-C clustered genomic contig with at least two Hi-C read pairs 

or if they were clustered into an annotated genomic bin. Hi-C linkages between MGEs and their 

genomic bins are more robust if Hi-C reads map more closely (i.e. smaller linear distance (bp)) 

with the genes that are annotated as mobile. To assess this, we calculated the genetic distance 

between the mobile or AR gene and the nearest Hi-C read linking any contig with a particular 
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taxonomy. Often this resulted in multiple linkages between the mobile contig and taxonomic 

contigs clustered with the same taxa. We therefore assessed the strongest data linking the two, 

the minimum genetic distance, considering the other reads as further support for this gene-taxon 

assignment.  

Comparison of horizontal gene transfer between individual taxa 
 

First, we compared HGT observed between species (as shown in Figures 2.9 and 

2.15B,C) defined above, through Hi-C read pair linkages. To create an HGT network, we 

examined the number of unique (defined as 99% sequence identity) AR or mobile gene linked to 

genomic bins for each particular taxa. Consequently we could identify taxa-taxa connections 

based on these identified gene sharing events.  

We assessed the rate of HGT per 100 species-species comparisons at different taxonomic 

levels within and between patients, as a comparison with Smillie et al. (2011)82. For comparisons 

between species, we compared each species within a single genus to one another. For every other 

taxonomic level, we compared species that differed according to that taxonomic level (i.e. for 

comparisons between families, species of one family, e.g. the Enterobacteriaceae, were 

compared exclusively with species in other taxonomic families). When comparing two species, 

we considered HGT events as those taxa sharing at least one gene of interest (AR or mobile 

gene) at >99% identity. We compared HGT within each patient or performed pairwise 

comparisons between the 9 individuals. For each taxonomic level, we compared within vs. 

between patients using a Mann-Whitney U-test. 

Antibiotic resistance gene and phage machinery gene host specificity 
 

Genes of interest associated with taxa through Hi-C alone (i.e. not including taxa 

originally assigned to a contig that contained that AR gene or phage machinery gene) were 
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compared to taxonomies identified by comparison using BLASTN (e-value < 1e-100) to 

PATRIC83 genome database (downloaded October 1, 2018) for the AR genes or compared to 

NCBI nt database (downloaded June 4, 2018) for the phage machinery genes and placed into one 

of several categories defined in Figure 2.2. This was assessed at different taxonomic levels.  

Network density 
 

Network density was calculated by dividing the number of observed connections between 

mobile or AR genes and binned organisms in each sample out of the theoretical maximum 

number of connections (number of AR genes or mobile genes multiplied by number of distinct 

organisms). Number of total species in a population were identified from MetaPhlan.  

Measuring novel horizontal gene transfer during individuals’ timecourses 
 

Within an individuals’ timecourse, we identified novel HGT events by comparing the 

first timepoint to subsequent timepoints and requiring that the gene-taxa connection met several 

criteria. HGT events were only considered between donor organisms strongly linked with a 

mobile or mobile AR gene at the start of the timecourse and recipient organisms present, albeit 

unlinked to the mobile or mobile AR gene, at the start of the timecourse. We sequenced the 

initial timepoint 3-4 times more deeply than the remainder of the timecourse to be able to 

distinguish between migration of strains and HGT. Mobile or AR gene-containing contigs were 

required to be linked via at least 2 Hi-C reads (mean = 28.6) to genome assemblies that were 

taxonomically annotated at the level of genus or species. We required an absence of association 

between the mobile or AR gene of interest and potential recipient taxa. In other words, one Hi-C 

read was sufficient to disqualify a putative HGT event, as was any taxonomic marker on that 

contig associating it with a congruent recipient taxon, or any association with a genome 

assembly with any congruent higher-order taxonomy. We required recipient taxa to have at least 
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2 Hi-C reads (mean = 14.8) associating each mobile or AR gene-containing contig with the 

recipient genome assembly. We tallied the number of HGT events that were supported by more 

than one timepoint, both strictly by the same genes and also by the same taxa; as well as those 

that were supported across multiple contigs.  

Data and code availability 
 

Metagenomic and Hi-C sequences, filtered for quality and human-reads are available on 

NCBI’s Short Read Archive (PRJNA649316). Our mock metagenomic sample is at 

SAMN15663484. Code relies heavily on published packages and several databases, including 

CARD’s (Comprehensive Antibiotic Resistance Database) Resistance Gene Identifier (RGI), 

Resfams, IMMEdb, PlasmidFinder, ACLAME, Pfam, PHASTER, the PATRIC genome database 

and the NCBI genome plasmid database. Code for this project is available on Github at 

https://github.com/acvill/microbiome. 

References 
 

1. Huddleston, J. R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of 

antibiotic resistance genes. Infect Drug Resist. 7, 167-176. (2014). 

2. Satlin, M. J. & Walsh, T. J. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, 

and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant 

recipients. Transpl Infect Dis 19, (2017). 

3. Sommer, M. O. A., Dantas, G., Church, G. M. Functional characterization of the antibiotic 

resistance reservoir in the human microflora. Science. 325, 1128-1131 (2009). 

4. Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance 

determinants reveals microbial resistomes cluster by ecology. ISME J 9, 207–216 (2015). 

5. Kaminski, J. et al. High-Specificity Targeted Functional Profiling in Microbial Communities with 

ShortBRED. PLoS Comput. Biol. 11, e1004557 (2015). 

6. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals 

extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol (2019) 

doi:10.1038/s41564-019-0625-0. 

7. Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the 

diversity of chromosome organization in microorganisms. Elife 3, e03318 (2014). 

8. Burton, J. N., Liachko, I., Dunham, M. J. & Shendure, J. Species-level deconvolution of 

metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4, 1339–1346 

(2014). 

9. Beitel, C. W. et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by 

sequencing proximity ligation products. PeerJ 2, e415 (2014). 



59 
 

10. Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the 

diversity of chromosome organization in microorganisms. Elife 3, e03318 (2014). 

11. Stewart, R. D., et al. Assembly of 913 microbial genomes from metagenomic sequencing of the 

cow rumen. Nature Comm 9, 870 (2018). 

12. Bickhart, D. M. et al. Assignment of virus and antimicrobial resistance genes to microbial hosts 

in a complex microbial community by combined long-read assembly and proximity ligation. 

Genome Biology 20, 153 (2019). 

13. Stalder, T., Press, M. O., Sullivan, S., Liachko, I. & Top, E. M. Linking the resistome and 

plasmidome to the microbiome. The ISME Journal 13, 2437–2446 (2019). 

14. Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing 

host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci 

Adv 3, e1602105 (2017). 

15. Satlin, M. J. & Walsh, T. J. Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa, 

and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant 

recipients. Transpl Infect Dis 19, (2017) 

16. Pop, M. Genome assembly reborn: recent computational challenges. Brief Bioinform. 10, 354-366 

(2009).   

17. Krawczyk, P. S., Lipinski, L., Dziembowski, A. PlasFlow: predicting plasmid sequences in 

metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018). Apr 6; 46(6): e35. 

18. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to 

recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). 

19. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation 

and scoring strategy. Nat Microbiol. 3, 836-843. (2018) 

20. Pop, M. Genome assembly reborn: recent computational challenges. Brief Bioinform. 10, 354-366 

(2009).   

21. Ross, A., Ward, S. & Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. 

Front. Microbiol. 7, (2016). 

22. Yu, J., Lim, J.-A., Kwak, S.-J., Park, J.-H. & Chang, H.-J. Comparative genomic analysis of 

novel bacteriophages infecting Vibrio parahaemolyticus isolated from western and southern 

coastal areas of Korea. Arch. Virol. 163, 1337–1343 (2018). 

23. Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-

generating retroelements. Nature 431, 476–481 (2004). 

24. Ross, A., Ward, S. & Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. 

Front Microbiol 7, 1352 (2016). 

25. Crémazy, F. G. et al. Determination of the 3D genome organization of bacteria using Hi-C. 

Methods Mol Biol. 1837, 3-18 (2018).  

26. Marbouty, M. et al. Metagenomic chromosome conformation capture (meta3C) unveils the 

diversity of chromosome organization in microorganisms. Elife 3, e03318 (2014). 

27. Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual 

scales. Nature 535, 435–439 (2016). 

28. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic 

treatments on strain-level diversity and stability. Sci Transl Med 8, 343ra81 (2016). 

29. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human 

microbiome. Nature 480, 241–244 (2011). 

30. Kaakoush, N. O. Insights into the Role of Erysipelotrichaceae in the Human Host. Front Cell 

Infect Microbiol. 5, 84 (2015). 

31. Rossi, O. et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human 

and murine dendritic cells and modulates T cell responses. Scientific Reports 6, 18507 (2016). 

32. Zhu, C. et al. Roseburia intestinalis inhibits interleukin-17 excretion and promotes regulatory T 

cells differentiation in colitis. Mol Med Rep. 17, 7567–7574 (2018). 



60 
 

33. Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance 

reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013). 

34. Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 

355, 1211–1215 (2017). 

35. Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in 

the gut. Nature 573, 276–280 (2019). 

36. Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic 

resistance reservoir in the human microflora. Science 325, 1128–1131 (2009). 

37. Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in 

the gut. Nature 573, 276–280 (2019). 

38. Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance 

determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019). 

39. Knöppel, A., Lind, P. A., Lustig, U., Näsvall, J. & Andersson, D. I. Minor fitness costs in an 

experimental model of horizontal gene transfer in bacteria. Mol. Biol. Evol. 31, 1220–1227 

(2014). 

40. McCarthy, A. J. et al. Extensive horizontal gene transfer during Staphylococcus aureus co-

colonization in vivo. Genome Biol Evol 6, 2697–2708 (2014). 

41. Citorik, R. J., Mimee, M., & Lu, T. K. Sequence-specific antimicrobials using efficiently 

delivered RNA-guided nucleases. Nature Biotechnology. 32, 1141-1145 (2014). 

42. Vercoe, R. B. et al.  Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape 

bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9, e1003454 (2013). 

43. Yosef, I., Manor, M., Kiro, R., & Qimron U. Temperate and lytic bacteriophages programmed to 

sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 112, 7267-72 (2015).  

44. Press, M. O. et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft 

genomes and reveals plasmid-genome interactions. Preprint at bioXriv. 

https://doi.org/10.1101/198713 (2017) 

45. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. 

Bioinformatics 27, 863–864 (2011). 

46. Rotmistrovsky, K. & Agarwala, R. BMTagger: Best Match Tagger for removing human reads 

from metagenomics datasets. Unpublished (2011). 

47. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence 

data. Bioinformatics 30, 2114–2120 (2014). 

48. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile 

metagenomic assembler. Genome Res. 27, 824–834 (2017). 

49. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. 

BMC Bioinformatics 11, 119 (2010). 

50. Fouts, D. E. Phage Finder: Automated identification and classification of prophage regions in 

complete bacterial genome sequences. Nucleic Acids Res 34, 5839–5851 (2006). 

51. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to 

recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). 

52. Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome 

reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). 

53. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat Methods 11, 

1144–1146 (2014). 

54. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation 

and scoring strategy. Nat Microbiol. 3, 836-843. (2018) 

55. Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic 

resistance database. Nucleic Acids Res 45, D566–D573 (2017). 

56. McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents 

Chemother. 57, 3348–3357 (2013). 



61 
 

57. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: 

HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013). 

58. Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance 

determinants reveals microbial resistomes cluster by ecology. ISME J 9, 207–216 (2015). 

59. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or 

nucleotide sequences. Bioinformatics 22, 1658–1659 (2006). 

60. Centers for Disease Control. Antibiotic Resistance Threats in the United States. Atlanta, GA 

(2013) 

61. Lakhundi, S. & Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular 

Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 31, e00020-18 (2018). 

62. Magill, S. S. et al. Prevalence of antimicrobial use in US acute care hospitals, May-September 

2011. JAMA 312, 1438-1446 (2014). 

63. Dowson, C. G. et al. Penicillin-resistant viridans streptococci have obtained altered penicillin 

binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl 

Acad Sci U S A. 87, 5858-5862 (1990). 

64. van der Linden, M. et al. Insight into the Diversity of Penicillin-Binding Protein 2x Alleles and 

Mutations in Viridans Streptococci. Antimicrob Agents Chemother. 61, e02646-16 (2017). 

65. Paterson, D. L. & Bonomo, R. A. Extended-Spectrum β-Lactamases: a Clinical Update. Clinical 

Microbiology Reviews. 18, 657-686. (2005). 

66. Paterson, D. L. & Bonomo, R. A. Extended-spectrum beta-lactamases: a clinical update. Clin 

Microbiol Rev. 18, 657-686. (2005). 

67. Strahilevitz, J., Jacoby, G. A., Hooper, D. C., Robicsek, A. Plasmid-mediated quinolone 

resistance: a multifaceted threat. Clin Microbiol Rev. 22, 664-689 (2009). 

68. Queenan, A. M., & Bush, K. Carbapenemases: the Versatile β-Lactamases. Clinical Microbiology 

Reviews. 20, 440-458 (2007). 

69. Hooper D., C., & Jacoby, G., A.Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of 

Action and Resistance. Cold Spring Harb Perspect Med. 6, a025320 (2016). 

70. Doi, Y., Wachino, J., I., Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 

16S Ribosomal RNA Methyltransferases. Infect Dis Clin North Am. 30, 523-537 (2016). 

71. Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid 

multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014). 

72. Jiang, X., Hall, A. B., Xavier, R. J., & Alm, E. J. Comprehensive analysis of mobile genetic 

elements in the gut microbiome reveals phylum-level niche-adaptive gene pools. PLoS One. Doi: 

10.1371/journal.pone.0223680 (2019) 

73. Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid sequences in 

metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018). 

74. Leplae, R., Lima-Mendez, G. & Toussaint, A. ACLAME: a CLAssification of Mobile genetic 

Elements, update 2010. Nucleic Acids Res. 38, D57-61 (2010). 

75. Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic 

Acids Res. 44, W16-21 (2016). 

76. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: 

HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013). 

77. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic 

Acids Res. 44, D279-285 (2016). 

78. Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation—a benchmark of 

metagenomics software. Nature Methods 14, 1063–1071 (2017). 

79. Schlüter, A., Krause, L., Szczepanowski, R., Goesmann, A. & Pühler, A. Genetic diversity and 

composition of a plasmid metagenome from a wastewater treatment plant. Journal of 

Biotechnology 136, 65–76 (2008). 

80. Xie, Z. & Tang, H. ISEScan: automated identification of insertion sequence elements in 

prokaryotic genomes. Bioinformatics 33, 3340–3347 (2017). 



62 
 

81. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. 

Bioinformatics, 25:1754-60. (2009). 

82. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human 

microbiome. Nature 480, 241–244 (2011) 

83. Wattam, A. R. et al. PATRIC, the bacterial bioinformatics database and analysis resource. 

Nucleic Acids Res. 42, D581-591 (2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

CHAPTER 3: Run-On Sequencing Reveals Transcriptional 
Dynamics Within The Human Microbiome 

 

This chapter is adapted from a manuscript under review at Nature Microbiology:  

AC Vill, EJ Rice, I De Vlaminck, CG Danko, IL Brito. Run-on sequencing reveals 

transcriptional dynamics within the human microbiome. 

 

A.C.V., I.D.V., C.G.D., and I.L.B. conceived of the project. A.C.V. designed and performed the 

experiments, processed the metagenomic and RNAseq libraries, wrote the code, performed the 

analyses, and created the figures. E.J.R processed the PRO-seq libraries. A.C.V. and I.L.B. wrote 

the manuscript. 

Abstract 
 

Precise regulation of transcription initiation and elongation enables bacteria to control 

cellular responses to environmental stimuli. RNAseq is the most common tool for measuring the 

transcriptional output of bacteria, comprising predominantly mature transcripts. To gain further 

insight into transcriptional dynamics, it is necessary to discriminate actively transcribed loci 

from those represented in the total RNA pool. One solution is to capture RNA polymerase 

(RNAP) in the act of transcription, but current methods are restricted to culturable and 

genetically tractable organisms. Here, we apply precision run-on sequencing (PRO-seq) to 

profile nascent transcription, a method amenable to diverse species. We find that PRO-seq is 

well-suited to profile small, structured, or post-transcriptionally modified RNAs, which are often 

excluded from RNAseq libraries. When PRO-seq is applied to the human microbiome, we 

identify taxon-specific RNAP pause motifs. We also uncover concurrent transcription and 

cleavage of guide RNAs and tRNA fragments at active CRISPR and tRNA loci. We demonstrate 
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the specific utility of PRO-seq as a tool for exploring transcriptional dynamics in diverse 

microbial communities.  

Introduction 
 

Bacterial transcriptional circuitry underlies cellular stress responses, host-pathogen 

immune interactions, group-level dynamics, and other responses to environmental stimuli. 

Within the gut microbiome, these transcriptional responses may reveal pathways involved in 

pathogenesis or define the resilience of communities under different selective pressures. 

Metagenomic sequencing has been used to infer the potential functions of microbiome members, 

though only a fraction of genes in a cell are expressed at any given time. RNAseq has therefore 

been used to provide a more accurate depiction of cellular function. However, RNAseq, as 

performed on microbiomes, gives limited information about transcriptional dynamics across 

genes, requires depletion of ribosomal RNA, which may introduce species- and sequence-

specific biases, and may fail to capture small, structured, or post-transcriptionally modified 

RNAs.  

RNAseq indiscriminately sequences the pool of mature and accessible RNA molecules. 

In comparison, the nascent transcriptome comprises only RNA molecules that are being actively 

transcribed by RNA polymerase (RNAP). While total RNA sequencing has great utility in 

measuring steady-state levels of messenger RNA, the nascent transcriptome represents the state 

of a cell agnostic to the different degradation rates of RNA species. In model eukaryotes, nascent 

transcriptomics has aided the study of RNAP kinetics and revealed species of transient 

noncoding RNAs important for transcriptional regulation (reviewed in 1).  

In bacteria, nascent transcriptomics has shed light on the pausing and elongation 

dynamics of RNAP. However, these observations have been largely limited to genetically 
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tractable model organisms due to significant methodological constraints. NET-seq involves the 

immunoprecipitation of RNAP, and thus requires either clade-specific RNAP antibodies or 

genetic manipulation to add epitope tags; to date, it has only been applied to Escherichia coli and 

Bacillus subtilis 2,3. Other methods rely on discrimination of mature and immature RNAs by 

enzymatic recognition of 5’ nucleotide chemistry. Differential RNA-seq (dRNA-seq) has been 

applied to diverse bacterial species and employs 5’-P-dependent exonuclease to degrade 

monophosphorylated mature transcripts, leaving immature triphosphorylated transcripts to be 

sequenced 4–6. Likewise, Cappable-seq has been applied to E. coli and a mouse cecal microbiome 

and relies on a 5’-PPP capping enzyme to incorporate biotin into nascent transcripts in order to 

map transcription start-sites (TSS) 7. While these methods are well-equipped to identify TSSs by 

mapping 5’ transcript ends, they do not provide information about the position and procession of 

RNAP.  

Precision run-on sequencing (PRO-seq) has been developed to uncover transient 

transcriptional signals in eukaryotes 8–10. PRO-seq involves capturing RNA bound by engaged 

and actively transcribing RNAP (Figure 3.1A). In PRO-seq, cells are first permeabilized to 

deplete endogenous nucleotide triphosphates (NTPs), halting transcription. Then, lysates are 

subject to a ‘run-on’ reaction, which introduces biotinylated NTPs to reinitiate transcription and 

tag the 3’ ends of nascent transcripts. Nascent RNA molecules are then enriched using 

streptavidin-coated beads and sequenced. Apart from eukaryotic RNAPII, transcription 

elongation by run-on reaction has been demonstrated for T7 RNAP 11 and mitochondrial 

POLRMT 12,13, suggesting that PRO-seq may be amenable to RNA polymerases across the tree 

of life. Here, we establish PRO-seq as a method for prokaryotes using an E. coli heat shock 
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model and in human gut microbiomes, to measure nascent transcription across diverse species 

simultaneously.  

Results 
 

Paired PRO-seq and RNA-seq discriminate promoters by sigma factors in E. coli 
 

The response to heat shock in E. coli is controlled, in part, at the level of transcription. 

We performed an experiment comparing RNAseq and PRO-seq in E. coli MG1655 cells subject 

to 7 minutes of heat-shock at 50 °C, hypothesizing that we could identify differences in cellular 

responses at genes controlled by specific sigma factors involved in the heat shock response. 

Pairwise scatterplots of technical triplicates show that PRO-seq is replicable in bacteria (Figure 

3.1B), and, as expected, rank-ordering of transcripts suggests that PRO-seq and RNAseq signals 

are correlated (ρ = 0.875 for control; ρ = 0.76 for heat-shock, Spearman’s rank correlation). 

Bacterial RNAseq requires ribosomal RNA (rRNA) depletion to reduce rRNA representation in 

sequencing; across E. coli treatments, rRNA depletion reduces rRNA from 73.7 ± 2.7% to 0.013 

± 0.004% of the library. In contrast, E. coli PRO-seq libraries are 1.39 ± 0.31% rRNA reads, 

demonstrating that PRO-seq is agnostic to bias from highly stable RNA species (Figure 3.1C). 

Removing the need for rRNA depletion has the benefit of reducing the potential bias introduced 

by such handling steps 14. 

Examining the RNAseq data, there was no difference between the read depth profiles 

proximal to transcription start sites under control of σ70 promoters in the different treatments, 

consistent with the role of σ70 as the major regulator of housekeeping genes (Figure 3.1D). This 

was also apparent in the PRO-seq data, where the position of RNA polymerase is denoted by the 

3’ ends of nascent transcripts. During heat shock, the PRO-seq profiles across the same loci were 

comparatively reduced as transcription continues into gene bodies. This may be explained by 
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aborted transcription of housekeeping genes in favor of genes needed to mount a response to 

thermal stress. Accordingly, at operons regulated by σ32, the master regulator of the heat shock 

response, we saw upregulation in both the RNAseq and PRO-seq datasets upon heat shock. The 

σ24 envelope stress response is only active in response to extreme heat stress. Transcription 

proximal to σ24 promoters is solely captured by PRO-seq during heat shock. These data suggest 

that PRO-seq enables the observation of active loading of RNA polymerase at σ24-controlled 

loci preceding the accumulation of mature transcripts.  

We were also able to identify pause site motifs in E. coli using PRO-seq (Figure 3.1E). 

We defined PRO-seq peaks as any genomic position centered in a 50 bp window with a 

minimum 3’ read end depth of 10 and a Z-score of at least 5. RNAP pause sites were found at 

both 5’ untranslated regions and within gene bodies, suggesting that PRO-seq can be used to 

uncover promoter-adjacent regulatory pausing as well as elemental pausing. The sigma factor 

repertoires of peak-containing regulatory regions are concordant with the treatments: heat-

shocked E. coli operons regulated by σ32 and σ24 are enriched in the merged heat shock dataset 

relative to the control (Figure 3.1F). 
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Figure 3.1.  

(A) Outline of bacterial PRO-seq. Cells are permeabilized to liberate NTPs and halt RNA polymerization. 

Addition of biotinylated NTPs allows RNA polymerase to incorporate a single biotin-NTP to the 3’ end of the 

nascent RNA strand. 

(B) Correlation of reads aligning to genes in E. coli in replicate samples in rRNA-depleted RNAseq (n=2) and 

PRO-seq (n=3) libraries in control and heat shock-treated E. coli cells. Spearman’s rank correlation coefficients 

(ρ) and Pearson’s correlation coefficients (r) are inset. 

(C) Percent of reads aligning to E. coli 16S, 23S and 5S rRNA genes in RNAseq libraries without rRNA 

depletion, RNAseq libraries with rRNA depletion, and PRO-seq libraries made from control and heat shock-

treated samples. 

(D) Normalized and smoothed mean read depth profiles proximal to E. coli transcription start sites (TSS, 

position +1) under control of promoters regulated by σ70, σ32, and σ24, as annotated by RegulonDB v10.9. 

Replicate libraries were combined for each library type + treatment pair: rRNA-depleted RNAseq control (light 

blue), PRO-seq control (light orange), rRNA-depleted RNAseq heat shock (dark blue), and PRO-seq heat shock 

(dark orange). For RNAseq libraries, composite profiles represent full reads, whereas PRO-seq profiles only 

represent read 3’ ends. For operons under the control of multiple promoters, plots are centered at the TSS 

closest to the start codon of the first gene, and operons regulated by multiple sigma factors are excluded. 

Bounds represent normal confidence intervals. 

(E) Logos for sequences surrounding PRO-seq read 3’ end peaks coincident with regulatory regions, which are 

defined for each operon as the sequence starting from the left-most TSS and ending with the first base of the 

start codon of the first gene. The range of nucleotides in physical association with E. coli RNAP is plotted (-11 

to +5), where position -1 represents the RNAP pause site and position 1 represents the next nucleotide added. 

(F) For peaks and regulatory regions described in (E), bar plots show the distribution of sigma factors 

regulating promoters within regulatory regions containing one or more peaks. “Mixed” regulatory regions 

contain promoters under control of two or more different sigma factors. The inset Venn diagram shows the 

overlap between peak-containing regulatory regions for control and heatshock libraries, replicates merged. 
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PRO-seq is suitable for diverse species of human-associated microbiota  
 

We next investigated the utility of PRO-seq to capture nascent transcripts from diverse 

microbial communities. We performed PRO-seq and RNAseq, with replicates, on gut 

microbiome samples from two healthy individuals. The first step in performing PRO-seq is 

permeabilization, which results in the rapid depletion of NTPs from cells, thus halting 

transcription. We were concerned that the permeabilization protocol used on E. coli would be 

insufficient to permeabilize microbiome-derived cells, as harsher lysis methods are typically 

required to minimize extraction biases 15,16. As heat and proteinase treatment are incompatible 

with PRO-seq, we opted for bead-beating in a nonionic detergent buffer, preserving halted 

RNAP-RNA complexes (which can be very stable 17) for subsequent run-on reactions. Overall, 

we found strong concurrence between replicate samples (ρ = 0.954 and ρ = 0.938 for the two 

microbiome samples, Spearman’s rank correlation) (Figure 3.2A). We subset reads according to 

the metagenomic assembled genomes to which they aligned, and found an enrichment of certain 

strains in the PRO-seq libraries compared to the RNAseq libraries (Figure 3.2B). With the 

exception of Ruminococcus bromii, Firmicutes were less well represented in the PRO-seq 

libraries than RNAseq libraries. This may be attributed to more efficient lysis of Gram negative 

Bacteroidetes. Alternatively, Bacteroidetes are highly abundant in both of these samples, which 

may reflect their overall higher growth rates and possibly more active transcription.  
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Figure 3.2. (A) Correlation of reads aligning to metagenomic features for replicate samples in rRNA-depleted 

RNAseq (n = 2) and PRO-seq (n = 2) libraries. Spearman’s rank correlation coefficients (ρ) and Pearson’s 

correlation coefficients (r) are inset. (B) For metagenomic bins that are least 90% complete with less than 5% 

contamination, box plots show the distribution of PRO-seq RPKM divided by RNAseq RPKM for each 

feature; replicate libraries are merged. Dotted lines demarcate equal coverage in both sequencing types. For 

each bin, relative abundance, percent completeness, and percent contamination are provided (right). 
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PRO-seq captures concurrent transcription and cleavage of CRISPR RNAs  
 

We next turned our focus towards specific genomic loci that tend to be difficult to 

capture by RNAseq. Non-coding RNAs may be structured or sequestered in protein complexes, 

affecting their representation in metatranscriptomic experiments 18. CRISPR arrays are 

comprised of repeated elements and unique spacers which are transcribed and cleaved to create 

functional guide RNAs. RNAseq reads that align to CRISPR loci are typically sparse 19. Whereas 

CRISPR arrays are less represented in our RNAseq data as well, we see active transcription 

across these loci in the PRO-seq data. Furthermore, at CRISPR loci with high PRO-seq 

coverage, we observe a distinct periodic pattern with a pile-up of PRO-seq read 5’ ends at 

consistent positions within repeats (Figures 3.3A, 3.4A & B). When examining further, we found 

these pile-ups occur at predicted sites of endonuclease hydrolysis, corresponding to the 3’ ends 

of the predicted repeat stem loops (Figure 3.3B). It is currently unclear whether transcription of 

the full pre-crRNA precedes endonuclease processing or if pre-crRNAs are co-transcriptionally 

cleaved. Our data suggest that the latter is the case, as the capture of individual crRNAs in our 

PRO-seq libraries implies those transcripts are bound by RNAP. In support of this finding, on a 

contig for which we were able to assemble a CRISPR array and its associated Cas proteins, we 

find active expression of the upstream Cas5d endonuclease (Figure 3.3C). Given that in most 

CRISPR systems, the newest spacers are incorporated at the end of the array closest to the leader 

20, this model of co-transcriptional cleavage is consistent with the need to rapidly assemble 

CRISPR-Cas complexes to respond to incoming phage or other mobile genetic elements.  

PRO-seq profiles indicate additional transcriptional dynamics at CRISPR loci. For 

instance, we detect anti-sense transcription for a subset of the spacers closest to the leader 

(Figure 3.3A), a phenomenon that has been previously observed but whose functional 

significance is poorly understood 19,21–23. In some of the detected CRISPR arrays, pile-ups of 
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PRO-seq read 5’ ends are coincident with spacers, not repeats, indicative of pre-crRNA 

processing in some systems employing RNase III 24. This implies that PRO-seq can capture 

transcription across CRISPR arrays that undergo diverse modes of maturation. We also observe 

regular 3’ end transcript pile-ups at specific nucleotides within the CRISPR array (Figures 3.3A 

& 3.4), which may point to regulation at these loci at the level of RNAP procession.  
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Figure 3.3. (A) Coverage of PRO-seq and RNA-seq reads across a CRISPR array in a US2 Prevotella sp. 

contig. Shaded boxes represent repeats. The large black arrow in each panel represents the leader sequence 

containing a putative promoter. Small black arrows in the “PRO-seq 5’ end” panel correspond to the predicted 

site of crRNA cleavage proximal at the base of the repeat stem loop. (B) Predicted crRNA repeat secondary 

structure. The black arrow points to the phosphodiester bond that is likely cleaved by Cas5d during pre-crRNA 

processing, which marks the same position in the repeat as the small arrows in (A). The sequence logo shows 

perfect conservation of the repeat sequence for this array. (C) PRO-seq captures nascent transcription of cas5d 

upstream of and contiguous with the CRISPR array. 
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Figure 3.4. Strand-specific RNAseq and PRO-seq read depths, in addition to PRO-seq reads’ 3’- and 

5’-ends, are plotted for several well-covered CRISPR loci. Shaded boxes represent repeats. 

Sequence logos below each plot show repeat conservation. As in Figure 3.3, (A) and (B) show 

PRO-seq read 5’ end pile-ups at the same position across repeats. (C) and (D) show PRO-seq 

read 5’ end pile-ups within spacers. 
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Concurrent transcription and cleavage also occurs at tRNA loci 
 

Non-coding RNAs (ncRNAs) are often decorated with post-transcriptional modifications 

that render them difficult to amplify using reverse transcriptase 25,26. In particular, tRNA 

derivatives formed by cleavage and base-specific modifications are interesting because they 

serve functions beyond their canonical role in translation 27,28, with implications for pathogenesis 

29,30 and bacterial physiology 31,32. Quantifying microbiome tRNA abundances often requires 

mass spectrometry or tailored protocols to remove these modifications prior to sequencing 33,34. 

We compared active transcription of tRNA loci in PRO-seq libraries to mature transcripts in 

RNAseq libraries. We initially focused on three Prevotella species found in high abundance in 

one of the samples for which we could annotate numerous tRNA isoforms. We noticed that a 

greater proportion of PRO-seq reads could be attributed to these loci than RNAseq reads (0.21 ± 

0.07% vs. 0.013 ± 0.016%) and that a larger number of isoforms per tRNA were observed 

(Figure 3.5), highlighting the utility of PRO-seq to capture differences in ncRNA transcription 

between closely related bacterial strains.  

Among metagenomic tRNA loci, we noticed pile-ups of PRO-seq read 5’-ends within 

tRNA gene bodies (Figures 3.6A,B & 3.7), a phenomenon also observed within the cultured E. 

coli heat-shock samples (Figure 3.8). We hypothesized that this may be due to processing of 

tRNAs into tRNA fragments, which act as signaling molecules in many bacterial species 30. In 

one example of a tRNA gene cluster in Ruminococcus bromii, we noticed PRO-seq read 5’ end 

pile-ups in Arg, His and Lys tRNA genes, corresponding to predicted tRNA cleavage sites within 

each anticodon loop (Figure 3.6C). Transcription of this locus was absent in the RNAseq data, 

despite comparable transcription detected across both RNAseq and PRO-seq libraries at protein-

coding genes on the same contig (Figure 3.6D). This example, among others present in a diverse 
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set of species (Figure 3.7), suggests that, similarly to CRISPR loci, tRNA processing is 

temporally coupled with transcription. 

There are two alternative hypotheses concerning the interpretation of the pile-up of PRO-

seq read 5’ ends within tRNA anticodon loops. (1) In the PRO-seq protocol, nascent RNAs are 

fragmented by alkaline hydrolysis prior to 3’ adapter ligation. ssRNA is more susceptible to 

chemical hydrolysis than dsRNA35, so unprotected bases within tRNA loops may be 

overrepresented as sites for hydrolysis products for a given tRNA isoform. If this is the case, we 

would expect to see similar peaks in the 5’ end pile-up at the T- and D-arms of nascent tRNAs. 

However, peaks within T- and D-arms are rare in the PRO-seq traces relative to peaks coincident 

with anticodon loops, suggesting that preferential hydrolysis of non-base-paired RNA cannot 

fully explain the patterns we observe. (2) A crucial step in all RNA sequencing protocols is 

reverse transcription, by which DNA is created from an RNA template for library construction 

and sequencing. Reverse transcriptase (RT) is sensitive to both the structural conformation and 

chemical modifications of the template RNA strand36,37, and anticodon loops are common sites 

for methylation in bacteria38,39. Therefore, tRNA anticodon loops may be a common site for RT 

stalling, leading to false inference of stall sites as the true 5’ ends of nascent transcripts. 

However, 5’ adapter ligation is carried out before reverse transcription, so cDNAs made from 

aborted RT products will lack a 5’ adapter and the concomitant PCR handle. It is therefore 

unlikely that such truncated cDNAs would be represented in the sequencing library, and RT 

stalling is therefore insufficient to explain the patterns we observe.  
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Figure 3.5. tRNA genes were identified in three highly complete US2 bins: Prevotella 

sp900313215, Prevotella sp002265625 and Prevotella copri. Different colors in the 

stacked bar plots represent different tRNA isoforms. 
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Figure 3.6. (A) Coverage of PRO-seq and RNA-seq reads across a tRNA gene cluster in a US3 

Ruminococcus bromii contig. Shaded boxes represent tRNA genes. Small black arrows in the “PRO-seq 

5’ end” panel correspond to the base of the predicted repeat stem loop that serves as the site of crRNA 

cleavage. (B) Coverage of PRO-seq 5’ ends for the tRNA array shown in (A). Green arrows show the 

starts of the tRNA genes. Black arrows show the predicted cleavage sites within anticodon loops.  

(C) Coverage of PRO-seq and RNAseq reads over the entire contig. The positions of gene bodies are 

shown (middle). Black arrows point to the site of the tRNA array shown in (A). (D) Predicted structures 

and cleavage sites (black arrows) of tRNA genes shown in (A). 
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Figure 3.7. Representative tRNA genes, listed according to the sample, species annotation, and 

anticodon, are depicted from the two human microbiome samples. PRO-seq coverage, pile-up of PRO-seq 

3’and 5’ read ends, and RNAseq coverage are shown for each tRNA gene (left). A zoomed-in PRO-seq 

read 5’ end pile-up is shown for each tRNA gene (right). 
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Figure 3.8. Representative E. coli tRNA genes, listed by isoform, are shown for control (left) and heat 

shock (right) conditions. PRO-seq coverage, pile-up of PRO-seq 3’and 5’ read ends, and RNAseq 

coverage are shown for each tRNA gene. 
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RNAP pause-site motifs annotated in diverse species 
 

The procession of RNAP across a gene body can be interrupted by pauses at specific 

sequences or secondary structures. These pauses are involved in synchronizing transcription and 

translation, coordinating the recruitment of regulatory factors, and the dissociation of elongation 

complexes 40,41. Transcription pause sites have previously been shown to differ between E. coli 

and B. subtilis 2,42, suggesting that they may vary across the members of the gut microbiome. To 

test this, we called PRO-seq 3’ end peaks across gene bodies in well-covered and near-complete 

metagenomic assembled genomes. We found concordant consensus pause sites between 

members of the Bacteroidetes phylum, a Parabacteroides and a Prevotella species, across two 

individuals (Figure 3.9). This TA-rich consensus site, was similar to that found in the Firmicutes 

species Agathobacter rectale, found in both individuals’ microbiomes. On the contrary, the 

pause site motif identified in Sutterella wadsworthensis, a Proteobacteria, was more closely 

aligned with the consensus pause site identified in our earlier experiments with E. coli, a 

different Proteobacteria. These observations suggest that PRO-seq is applicable to a wider range 

of comparative transcription dynamics questions across diverse species.  
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Figure 3.9. Logos for sequences surrounding PRO-seq read 3’ end peaks annotated for two 

Bacteroidetes, two Firmicutes and one Proteobacteria across two microbiome samples. Position -1 

represents the RNAP pause site and position 1 represents the next nucleotide added. 

pause site and position 1 represents the next nucleotide added. 
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Discussion 
 

Bacterial nascent transcriptomics provides insights into co-transcriptional RNA 

processing and RNAP activity and localization. Rather than antibodies or epitopes fused to 

RNAP, PRO-seq leverages the universal function of RNAP to profile active transcription. We 

demonstrate its applicability to diverse species within microbiomes, showing that PRO-seq is 

capable of capturing nascent transcriptional dynamics without the need for cell culture. Our 

experiments using PRO-seq on heat-shocked E. coli highlight the potential for PRO-seq to 

decipher regulatory circuits operating under other environmental perturbations. Our observation 

of transcription of RNA species unique to the PRO-seq libraries in both cultured E. coli and gut 

microbiome samples (Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.10 & 3.11) illustrates the utility of 

PRO-seq in identifying regulatory non-coding RNAs and co-transcriptionally processed RNA 

products. For bacteria in which non-coding RNAs have not yet been documented, PRO-seq 

offers a means to broadly survey these RNA molecules. In E. coli, where non-coding RNAs are 

well-annotated, we find that they are enriched in PRO-seq libraries compared to RNAseq 

libraries (Figures 3.10 & 3.11). PRO-seq data from metagenomes can therefore provide better 

guidance on the outputs of these genes than RNAseq data alone. Similarly, given the observation 

that PRO-seq can be used to broadly profile the transcription of tRNA isoforms and CRISPR loci 

across diverse species, we expect this method to shed light on the expression and processing of 

these molecules across conditions.  

PRO-seq can also be combined with existing transcriptomic tools to examine 

transcriptional dynamics at a much finer scale than achievable with RNAseq alone. PRO-seq 

reveals RNAP positioning with base-pair resolution and also captures immature RNA cleavage 

products. We note that Cappable-seq, the only other nascent transcription method applied to 
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microbiomes, is not suited to the identification of co-transcriptionally processed RNAs due to the 

need for intact 5’-PPP. However, PRO-seq can also be combined with Cappable-seq for paired 

analysis of transcription start sites and RNAP localization. PRO-seq may be further paired with 

NET-seq, albeit in genetically tractable organisms due to its reliance on the immunoprecipitation 

of RNAP, to discriminate nascent transcripts that are being actively polymerized from those in 

backtracked states 43. Altogether, PRO-seq demonstrates that a larger fraction of bacterial 

genomes is actively transcribed than represented by traditional RNA sequencing, and that 

nascent transcription of microbiomes has potential, in concert with other -omics methods, to 

uncover co-transcriptional dynamics that provide functional insight into the gut microbial 

community. 
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Figure 3.10. Selected E. coli small non-coding RNA (sRNA) loci shown with coverage (per nucleotide 

per 10^9 sequenced reads) surrounding each locus (left) in RNAseq libraries and PROseq libraries from 

under control and heat shock conditions. On the right, RNAseq coverage, composite PRO-seq read 

coverage, 5’ end and 3’ end coverage are shown for the specific portion of the locus encoding the sRNA. 
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Figure 3.11. (A) Log-log RPKM plots comparing merged PRO-seq and RNAseq libraries for control and 

heat-shock conditions. Genes are colored by RNA type. Spearman’s rank correlation coefficients (ρ) and 

Pearson’s correlation coefficients (r) are inset. (B) Box plots show the RPKM distribution for small non-

coding RNAs and tRNAs across control and heat-shock conditions. Black lines represent medians. P-

values from Wilcoxon signed-rank tests are reported for each RNA type + treatment pair. 
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Materials and methods  

 

E. coli heat-shock experiment 
 

An overnight culture of E. coli MG1655 was subcultured in 50 mL LB and grown at 

37°C to OD600 = 0.95. The culture was then split into 2 × 25 mL, with one half subjected to 

continued incubation at 37°C and the other half subjected to heat shock at 50 °C for 7 minutes, as 

described elsewhere 44. Cultures were then split into 5 mL aliquots and pelleted by centrifugation 

at 3000 × g. At this point, pellets were either flash-frozen and stored at –80 °C for RNAseq or 

carried through permeabilization for PRO-seq.  

Human gut microbiome sample collection 
 

Freshly voided stool samples were collected and homogenized in an equal volume of 

cold, O2-depleted phosphate-buffered saline, pH 7.2. Stool slurries were centrifuged to remove 

insoluble material (500 × g, 4 °C, 10 min.), then 12 mL of the liquid supernatant was layered 

over 3 mL 50% Nycodenz (Accurate Chemical) and centrifuged to concentrate cells (5000 × g, 4 

°C, 20 min.). The cell-rich layer above the Nycodenz was collected and stored on ice; this was 

repeated until all stool homogenate was processed. 2 mL aliquots of each sample were stored at –

80 °C for metagenome preparation and RNAseq. Four 600 μL aliquots of each sample were kept 

on ice until PRO-seq permeabilization. All individuals gave informed consent and all samples 

were collected under protocol #1609006585 approved by the Cornell University Institutional 

Review Board.  

RNAseq sample preparation and sequencing 
 

For each E. coli treatment, RNA was extracted from replicate samples using the RNeasy 

Mini Kit (Qiagen), including the optional β-mercaptoethanol treatment specified in the 

manufacturer’s protocol. On-column DNase I treatment was carried out using components of the 



96 
 

DNase Max Kit (Qiagen). RNA was eluted in at least 50 μL nuclease-free water and quantified 

with the Qubit RNA HS Assay Kit (Thermo Fisher). RNA was combined with 0.1× volume 3M 

sodium acetate, 3× volumes cold absolute ethanol, and 1 μL GlycoBlue Coprecipitant (Thermo 

Fisher) and allowed to precipitate at –80 °C for 30 minutes. RNA was pelleted by centrifugation 

(20,000 × g, 4 °C, 15 min.), washed with cold 70% ethanol, air-dried, and resuspended in 

nuclease-free water at a concentration of 91 ng/μL. One μg (11 μL) of each sample was subject 

to rRNA depletion using 2 μL NEBNext Bacterial rRNA Depletion Solution and 2 μL NEBNext 

Probe Hybridization Buffer (New England Biolabs). Sequencing libraries were prepared from 

both rRNA-depleted and whole RNA aliquots using the NEBNext Ultra II Directional RNA 

Library Prep Kit for Illumina (New England Biolabs) following the manufacturer’s protocol for 

library preparation from intact RNA. RNAclean XP beads were substituted for AMPure XP 

beads supplemented with 10 U/mL SUPERase-In RNase Inhibitor (Thermo Fisher). Library 

concentrations were quantified by Qubit dsDNA HS Assay Kit (Thermo Fisher), and library size 

distributions were visualized by polyacrylamide gel electrophoresis. 

For each Nycodenz-purified stool cell sample, RNA was extracted using the RNeasy 

PowerMicrobiome Kit (Qiagen), following the manufacturer’s protocol to increase the 

representation of small RNAs. Total RNA was eluted from columns with 100 μL nuclease-free 

water and quantified using the Qubit RNA BR Assay Kit (Thermo Fisher). Duplicate 1 μg 

aliquots were subject to RNA fragmentation and rRNA depletion using the QIAseq FastSelect –

5S/16S/23S Kit (Qiagen), assuming a RNA integrity number ≥ 8 for all samples. Sequencing 

libraries were prepared from rRNA-depleted samples as described for E. coli. Sequencing 

platforms and number of reads for each replicate are listed in Table 2.  
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Table 2. List of samples sequenced in this project  

Sample name Replicate Sequencing 

platform 

Number of clean 

paired-end reads 

E. coli – control – RNAseq 1 NextSeq, 2 × 150 1,713,282 

2 NextSeq, 2 × 150 1,871,542 

E. coli – control – RNAseq with 

rRNA depletion 

1 NextSeq, 2 × 150 1,834,682 

2 NextSeq, 2 × 150 1,456,787 

E. coli – control – PRO-seq 1 NextSeq, 2 × 75 3,982,364 

2 NextSeq, 2 × 75 1,615,517 

3 NextSeq, 2 × 75 6,026,982 

E. coli – heat shock – RNAseq 1 NextSeq, 2 × 150 1,533,500 

2 NextSeq, 2 × 150 1,790,382 

E. coli – heat shock – RNAseq 

with rRNA depletion 

1 NextSeq, 2 × 150 1,290,188 

2 NextSeq, 2 × 150 1,442,903 

E. coli – heat shock – PRO-seq 1 NextSeq, 2 × 75 4,857,572 

2 NextSeq, 2 × 75 5,730,267 

3 NextSeq, 2 × 75 2,703,945 

US2 – RNAseq with rRNA 

depletion 

1 NextSeq, 2 × 150 23,115,457 

2 NextSeq, 2 × 150 19,572,778 

US2 – PRO-seq 1 HiSeq X, 2 × 150 120,441,062 

2 HiSeq X, 2 × 150 89,204,805 

US3 – RNAseq with rRNA 

depletion 

1 NextSeq, 2 × 150 21,299,806 

2 NextSeq, 2 × 150 21,617,152 

US3 – PRO-seq 1 HiSeq X, 2 × 150 125,455,387 

2 HiSeq X, 2 × 150 117,270,406 

US2 metagenome n/a NextSeq, 2 × 150 15,572,009 

US3 metagenome n/a NextSeq, 2 × 150 16,747,211 

 

PRO-seq sample preparation and sequencing 
 

For each E. coli treatment, the cell pellets described above were resuspended in 1.5 mL 

cold cell permeabilization buffer (10 mM Tris-HCl, pH 7.4, 300 mM sucrose, 10 mM KCl, 5 

mM MgCl2, 1 mM EGTA, 0.05% v/v Tween-20, 0.1% v/v IGEPAL CA-630, 0.1% v/v Triton X-

100, 0.5 mM DTT, 1× Roche cOmplete Protease Inhibitor Cocktail (Sigma-Aldrich), and 20 

U/mL SUPERase-In RNase Inhibitor (Thermo Fisher); modified from Mahat et al. 8) and 

incubated on ice for 5 minutes. Pelleting, resuspension in permeabilization buffer, and incubation 

was repeated for a total of 3 permeabilization washes. Cell lysates were then pelleted by 

centrifugation (10,000 × g, 4 °C, 5 min.), resuspended in 250 μL storage buffer (10 mM Tris-
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HCl, pH 8.0, 25% v/v glycerol, 5 mM MgCl2, 0.1 mM EDTA, and 5 mM DTT), split into 5 × 50 

μL aliquots, flash-frozen on dry ice / ethanol, and stored at –80 °C until run-on. Final cell 

concentrations inferred from plating pre-permeabilization cell suspensions were 2.5 × 1010 and 

5.0 × 1010 CFU/mL for control and heat-shocked samples, respectively.  

To improve the permeabilization of Gram-positive organisms, 1000 U of Ready-Lyse 

Lysozyme Solution (Lucigen) was added to each 600 μL Nycodenz-purified stool cell aliquot 

and incubated for 10 minutes on ice. Then, cell suspensions were transferred to 2 mL screw-cap 

tubes and combined with 400 μL sterile 0.5 mm glass beads and 1 mL cold cell permeabilization 

buffer. Cells were pulverized by vortexing for 3 cycles of 2 minutes at max Hz followed by 2 

minutes on ice. Lysates were stored upright on ice for 10 minutes to allow beads to settle, then 1 

mL supernatant from each tube was transferred to a 1.5 mL tube and centrifuged to collect cell 

contents (10,000 × g, 4 °C, 5 min.). Pellets were washed once with 1 mL cold storage buffer, 

pelleted again, and resuspended in 200 μL cold storage buffer. Lysates were flash-frozen and 

stored as described for E. coli.  

For all samples, PRO-seq was carried out following the “4-Biotin run-on” variant of the 

protocol described in Mahat et al 8. Briefly, permeabilized cells were thawed on ice and run-on 

reactions were carried out at 37 °C using a master mix containing Biotin-11-ATP, Biotin-11-

CTP, Biotin-11-GTP, and Biotin-11-UTP. Total RNA was extracted by TRIzol and ethanol 

precipitation, and RNA was fragmented by NaOH hydrolysis. 3’ adapters were ligated, then 

biotinylated transcripts were enriched and washed with hydrophilic streptavidin magnetic beads. 

5’ de-capping and phosphorylation were carried out with nascent transcripts bound to the beads, 

then RNA was eluted from the beads by TRIzol extraction and ethanol precipitation. 5’ adapters 

with unique molecular identifiers were ligated to nascent transcripts, and excess adapters were 
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removed by again capturing biotinylated RNA on streptavidin beads, washing the beads, and re-

extracting RNA with TRIzol and ethanol precipitation. Nascent RNA was reverse transcribed, 

and cDNA was quantified by qPCR to determine the appropriate number of cycles for PCR 

amplification. Library amplification was carried out using custom PCR primers to incorporate 

Illumina adapter sequences and i7 barcodes. PCRs were cleaned up with Exonuclease I and 

Shrimp Alkaline Phosphatase. DNA concentration was quantified with the Qubit dsDNA HS 

Assay Kit, and library quality was assessed by polyacrylamide gel electrophoresis. Sequencing 

platforms and number of reads for each replicate are listed in Supplemental Table 1.  

Metagenomic library preparation, sequencing, assembly, binning, and annotation 
 

To prepare metagenomes against which to map transcriptomics reads, DNA was isolated 

from 250 μL of Nycodenz-purified stool cells using the DNeasy PowerSoil Kit (Qiagen). DNA 

was eluted in 100 μL warm 0.1× TE, quantified by Qubit dsDNA BR Assay, and diluted to 0.2 

ng/μL for input to the Nextera XT DNA Library Preparation Kit (Illumina). Sequencing libraries 

were prepared from 1 ng fecal DNA following the manufacturer’s protocol, and libraries were 

cleaned up using 1.5× volumes of AMPure XP beads. Library concentration was quantified by 

Qubit dsDNA HS Assay, and fragment size distribution was visualized by 8% polyacrylamide 

gel electrophoresis.  

Metagenomes were sequenced as referenced in Table 2. Raw reads were processed with 

PRINSEQ lite v0.20.4 45 and trimmomatic v0.36 46 to remove duplicates and sequencing 

adapters. Reads mapping to the human genome were discarded using BMTagger 47. Clean reads 

were assembled using SPAdes v3.14.0 48 (paired-end mode and --meta option) and reads were 

aligned to contigs using BWA-MEM v0.7.17 49,50. Contigs were binned using CONCOCT v1.1.0 

51, metaBAT v2.12.1 52, and MaxBin v2.2.4 53, then bins from different programs were resolved 
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into metagenome-assembled genomes (MAGs) using DAS Tool v1.1.2 54 with DIAMOND 

v2.0.4 55 for single copy gene identification. The completeness and contamination of MAGs was 

assessed with CheckM v1.1.2 56 and taxonomic classifications were assigned to MAGs using 

GTDB-Tk v1.0.2 57. MAG features were annotated using prokka v1.14.5 58 (--metagenome, --

rfam), which uses Prodigal 59, ARAGORN 60, barrnap 61, and Infernal 62 for identification of 

protein-coding sequences, tRNAs, rRNAs, and ncRNAs, respectively.  

Transcriptomics data processing and analysis 
 

PRO-seq reads were processed with proseq2.0.bsh (https://github.com/Danko-

Lab/proseq2.0) to trim by quality, remove adapter sequences, and remove duplicates by their 

unique molecular identifiers (UMIs). RNAseq reads were similarly processed, but without UMI 

deduplication. Cleaned paired-end reads were aligned to their respective references using BWA: 

metatranscriptome reads were aligned to the assemblies described above; E. coli reads were 

aligned to the GenBank Reference Sequence for E. coli K12, version NC_000913.3 63,64. BAM 

files were filtered with SAMtools v1.11 65 to include only paired reads in proper pairs with a 

minimum MAPQ score of 30 (-f 3 -q 30) and exclude all unmapped or non-primary alignments (-

F 2316). Reads were assigned to features using the featureCounts function from subread v2.0.2 

66. E. coli protein-coding genes and regulatory loci were identified using the regutools R package 

67 and RegulonDB v10.9 68. The genomecov function from BEDTools v2.29.2 69 was used to 

report strand-specific PRO-seq and RNAseq depth at each position in the metagenome (-ibam -d 

-pc -strand). For PRO-seq, metagenomic depth profiles from 3’ and 5’ fragment ends were 

additionally reported as follows: since the P5 Illumina adapter is ligated to the 3’ end of the 

nascent transcript, the 5’ end of the first read in each pair gives the 3’ end of the nascent 

transcript on the opposite strand (samtools view -f 64 -b $bam | bedtools genomecov -5 -d -
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strand - > plus_3p.txt); likewise, the 5' end of the second read in each pair gives the 5' end of the 

nascent transcript on the same strand, since proper pairs align to opposite strands (samtools view 

-f 128 -b $bam | bedtools genomecov -5 -d -strand + > plus_5p.txt).  

Read depth profiles at regions of interest were visualized with ggplot2 70 using custom R 

code available at https://github.com/britolab/PRO-seq. CRISPR repeats were detected using 

MinCED 71, which is derived from CRISPR Recognition Tool 72. CRISPR RNA and tRNA 

secondary structures were predicted with the ViennaRNA secondary structure server 73 and 

visualized with forna 74. Pearson’s correlation coefficients (r) and Spearman’s rank correlation 

coefficients (ρ) were calculated for correlation plots using the stats package from base R 75. 

Wilcoxon signed-rank tests were performed using the ggpubr package v0.4.0 76. 

Peaks were called from 3’ end depth data by first filtering all positions for a minimum depth of 

10 reads. Then, the mean coverage over a ±25 nt interval surrounding each position was 

calculated, and Z scores were determined for each peak centered in its interval. Positions with Z 

scores of at least 5 were kept, and sequences surrounding those peaks were pulled to create 

sequence logos with the ggseqlogo package 77. 

Data and code availability 
 

Scripts are available at: https://github.com/britolab/PRO-seq.  Sequencing data has been 

uploaded to NCBI’s Sequence Read Archive and is associated with BioProjects PRJNA800038 

and PRJNA800070.  
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CHAPTER 4: Concluding remarks, and the future of meta’omics 
 

 In this dissertation, I’ve touched on two major aspects of the biology of microbiomes: 

genetic composition and transcription. Shotgun metagenomics involves the assembly of short 

reads along two dimensions: contiguity and coverage. Hi-C adds a third dimension, proximity, by 

which reads can be linked to contigs, though there are additional data types that can be leveraged 

to improve metagenomic assembly and the association of mobile elements with bacterial hosts. 

Long-read sequencing, besides greatly increasing the contiguity of assemblies1, allows 

exploration of DNA modifications through detection of differentially methylated motifs2. These 

motifs can be leveraged to associate mobile elements with their hosts3, given that chromosomal 

DNA and plasmids are exposed to the same methyltransferases. Equally promising for 

microbiome science is single-cell metagenomics, which has so far been applied to uncover sub-

strain genomic variation that is typically collapsed into single MAGs during bulk sequencing and 

assembly4,5.  

 On the gene expression front, much work still needs to be done to assess interpersonal 

and strain-level variability in transcription within the human microbiome. Though transcription 

regulation in prokaryotes is simpler than in eukaryotes by a number-of-components metric, there 

is an immense diversity of regulatory mechanisms within human-associated bacteria, some of 

which control expression in specific host niches6,7 or respond to antibiotic-induced stress8. As 

with metagenomics, metatranscriptomics can greatly benefit from single-cell techniques. 

Currently, microSPLiT9 and PETRI-seq10 have both been described for prokaryotic cells, each 

circumventing the need to segregate single microbes by the clever application of combinatorial 

indexing. Though either technique has yet to be applied to uncultured cells, the road has been 

paved for a revolution in microbiome RNA sequencing. Another method worth mentioning is 
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MetaRibo-Seq11, which involves the isolation of intact ribosomes from microbiome-derived 

bacteria and the sequencing of mRNAs engaged in translation. Where PRO-seq sheds light on 

the birth of transcripts, MetaRibo-Seq reveals their destiny, and, in doing so, spans the gap 

between nascent transcriptomics and metaproteomics12,13. 

 Microbiomes are messy, convoluted things. Bioinformaticians are working diligently to 

address the compositional nature of microbiomes and make the best use of existing data, though 

computational innovation must be paired with creativity at the bench to glean true biological 

insights. An immense amount of work has already been done to characterize the interplay 

between commensal bacteria and their hosts, though there is much left to discover, and it will 

require the synthesis of data at every level – DNA, RNA, and protein – before we can approach a 

comprehensive understanding of the microbes that inhabit us.  
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