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We formulate and partially analyze a model for heterosexually trans­

mitted diseases from which infecteds recover without partial or temporary 

immunity. We compute the threshold that determines the transition be­

tween disease-free and endemic equilibria as parameters are varied, and 

show that if recruitment of new susceptibles depends on disease prevalence 

then the endemic equilibrium may be unstable. 
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1. Introduction 

The history of models for sexually-transmitted diseases begins with the malaria model 

of Ross (1911, p.667), who recognized that vector- and sexually-transmitted diseases have 

equivalent mathematical formulations. In Ross' malaria model, transmission is through a 

female vector. Humans bitten by infected female mosquitoes may become infected and fe­

male mosquitoes may become infected by biting infected humans. Transmission from from 

mosquitoes to mosquitoes or from humans to humans is not possible, except through blood 

transfusions. However, despite these similarities, vector-transmission takes place at a faster 

time scale. Because of the need for future theoretical work on models for vector-transmitted 

diseases (e.g. malaria infects and kills more individuals than all other diseases) we will out­

line the connection between vector- and heterosexually-transmitted diseases in the conclusion. 

We believe that the approaches that we use in this manuscript may be useful also in the 

study of the transmission dynamics of vector-transmitted diseases. The first model used for 

the explicit study of a sexually-transmitted disease, namely gonorrhea, was a one-sex model 

[Cooke and Yorke (1973)]. A two-sex model developed specifically for gonorrhea was for­

mulated by Lajmanovich and Yorke (1976). Concerns with the HIV I AIDS epidemic have 

generated extensive research activity on models for the sexual-transmission of HIV I AIDS. 

However, most work has concentrated on the study on models for the homosexual transmis­

sion of HIV I AIDS [see Castillo-Chavez, (1989), Anderson and May (1991), Gabriel et al. 

(1990), Velasco-Hernandez and Hsieh (1993)]. For some notable exceptions see the work of 

Hoppensteadt (1974), Castillo-Chavez and Busenberg (1991), Castillo-Chavez et al. (1991), 

Dietz and Hadeler (1988), Hadeler (1989), Hadeler and Nagoma (1990), Hadeler et al. (1988), 

Waldstatter (1989), Schmitz et al. (1993). 

In this paper we formulate and partially analyze models for the simplest possible het­

erosexually transmitted disease, namely a two-sex S-I-S model which would be appropriate 

for diseases without immunity such as gonorrhea. We incorporate epidemiological and demo­

graphic effects. These effects may be coupled or decoupled. Most models have usually assumed 
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that they are decoupled. Some exceptions, in the context of homosexually-transmitted dis­

eases includes the work of Blythe et al. (1992), Scalia-Tomba (1991), Heiderich et al. (1993), 

and Hadeler and Castilla-Chavez (1993). 

In most population models, demographic effects may include births and deaths. For a 

sexually transmitted disease model it is reasonable to assume a mortality rate from causes 

unrelated to the disease (retirement from risky-sexual activity) but it is not appropriate to 

consider a birth rate, and hence we consider rates of recruitment into the heterosexually-active 

population under study. In fact, we study disease dynamics in a very simplified scenario, that 

is, we implicitly assume that most of the risky sexual activity takes place within the modeled 

population, the core group, and that the rate of sexual activity between core and non-core 

group members is negligible. This approach allows for the exploration of the effects of coupled 

demographic and epidemiological factors in as simple a setting as possible. The scenario that 

we have chosen is simple but realisLlc as there is considerable indication that the core group is 

the source for most cases of sexually transmitted diseases. For example, Hethcote and Yorke 

(1984) describe a gonorrhea model in which there is a core population forming 2% of the total 

population which contains 13% of the cases of disease and is responsible, through contacts with 

the non-core group, for 60% of the cases. We shall describe a model for the core group of the 

most sexually active members of a larger but unspecified population. The coupling between 

demographic and epidemiological effects is through the recruitment of new susceptibles as we 

are assuming that there is essentially no infection in the larger population. By looking at the 

disease only in the core group we lose some realism but we avoid the model complication of 

subdividing the population into risk classes depending on the level of sexual activity [Castilla­

Chavez and Busenberg (1991)]. Thus we are able to get a better understanding of the role 

of behavior in core-disease dynamics by assuming that the recruitment rates into the core 

population depend on the size of the core population and by considering the possibility that 

potential recruits to the core population may be influenced by the prevalence of infection 

within the core. As we shall see, this will allow the possibility of instability and oscillation in 

the model. 
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2. A model for heterosexually transmitted diseases 

We let Sf and Sm denote the number of susceptible females and males respectively. If 

and Im the number of infective females and males respectively, and NJ and Nm the total 

female and male population sizes. As we are formulating an S-1-S model, with no immunity 

following recovery, 

Nf =Sf +If, Nm = Sm +Im· 

We shall describe the model in terms of the variables If, Nj, Im, and Nm, but it will be 

convenient to use Sf and Sm in the description with the understanding that 

Our model will involve two epidemiological processes - the acquisition of and recovery 

from infection. It will also involve two demographic processes - the recruitment of new mem­

bers into core groups of females and males, and the deaths (retirement from risky sexual 

activity) of members. Thus there are four processes altogether, and we must make assump­

tions about each in order to construct our model. 

We assume that there is a rate of recruitment of new members in each sex and a constant 

per capita death rate J.l which is the same for both sexes, that is 1/ J.l denotes the average period 

of sexual activity (the length of the average sexual-life). We are interested in the situation 

in which population sizes remain bounded in the absence of infection. Thus we assume that 

recruitment rates depend on total population size; the rate of recruitment of females is a 

function F(NJ) and the rate of recruitment of new males is a function M(Nm)· Then, in the 

absence of infection the total population sizes for the two sexes satisfy 

We assume that there are carrying capacities K f and Km such that 
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(1) 

When infection is present, we will assume that the per capita death rates are the same for 

infected and healthy members, that is, there is no disease-induced mortality. 

Next, we describe the assumptions that we make on epidemiological effects, beginning 

with the assumptions on the rate of new infections. 

We assume that the number of contacts capable of passing infection per male in unit time 

is a function em ( N f) of the female population size, and that the number of contacts capable 

of passing infection per female in unit time is a function CJ(Nm) of the male population size. 

Because the total number of such contacts in unit time by males must equal the total number 

of such contacts in unit time by females, we have the balance law 

[Castilla-Chavez and Dusenberg (1991)]. If we define 

~ (N ) _ Cm(NJ) ~ (N. ) _ CJ(Nm) 
Cm f - Nf 'Cf m - Nm ' 

the balance law takes the form 

(2) 

It is often assumed that the functions Cm and CJ are linear, so that cm(NJ) = (3N1, c1(Nm) = 

f3Nm, and then the balance law becomes 

We may generalize by allowing the possibility of saturation in contacts, and it is reasonable 

to assume that Cf and Cm are non-decreasing functions while Cf and Cm are non-increasing 

functions of the variables N m and N f respectively. Thus we assume 

cj(Nm) ::; 0, c'm(NJ) ::; 0 

[c,(Nm)]' = [Nmcf(Nm)]' = CJ(Nm) + Nmcj(Nm) 2: 0 

[cm(NJ )]' = [NJcm(NJ )]' = cm(NJ) + N!c'm(NJ) 2: 0 

(3) 
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The number of new female infections in unit time is the number Cm (N f) of contacts per 

male multiplied by the number Im of infective males multiplied by the probability S1 jN1 that 

the female contacted is not yet infected. Thus the rate of new female infections in unit time 

is 

Similarly, the rate of new male infections in unit time is 

Our assumption on the rate of recovery from infection is that there is a non-increasing 

function P0 (s), with Po(O) = 1, describing the fraction of the members of each group who 

remain infective if still alive a time s after becoming infected. The two most-studied special 

cases in epidemiological modelling are 

which leads to ordinary differential equations models, and 

Po(s) = { 1, 0::; s::; ro 
0, s > ro, 

which leads to differential-difference equation models. We formulate our model in terms of an 

arbitrary distribution of infective periods in order to study whether the qualitative behavior 

of the model depends on the form of Po ( s). 

The fraction of infectives remaining alive and infective a time s after becoming infected 

is 

P(s) = e-f.Ls Po(s). (4) 

The mean infective period (corrected for mortality) is 

(5) 
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To simplify the exposition (we shall return to this point later), we assume that the rates of 

disease transmission per contact are independent of the gender of the infected individual. This 

is obviously not the case as it is well known that the probability of transmission per contact 

per infected male is larger than that for a female in the case of gonorrhea [see Hethcote and 

Yorke, (1984)] and drastically different for males and females in IITV-transmission [Padian 

and Jewell, (1991)]. 

With the above hypotheses on the rates of acquisition of and recovery from infection and 

the rates of recruitment and mortality, our model is given by the system. 

IJ(t) =[too em(N,(x))S,(x)Im(x)P(t- x)dx 

N/ = F(NJ) - p.NJ 

Im(t) = [
00 

Cj(Nm(x))Sm(x)IJ(x)P(t- x)dx 

N:n = M(Nm) - p.Nm 

Equilibria (constant solutions) of (6) are solutions of the two pairs of equations 

It follows from (8) that Nf = Kj, Nm = Km. The balance law (2) gives 

and we define 

Then (7) becomes 

(6) 

(7) 

(8) 

(9) 

If /1 = 0 then Im = 0 and it follows that 81 = Kf, Bm = Km (disease-free equilibrium). On 

the other hand, if If> 0, then (9) gives 

_!L_ = ~ = {3r, 
Sjlm Smlf 
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which implies 

Because 

(10) 

if If > 0, Im > 0, the existence of an endemic equilibrium (an equilibrium with I1 > 0, Im > 

0, ~Sf < Kj, 0 < Sm < Km) requires 

In fact, if (f3r) 2 K1Km > 1, we may solve (9) by elimination, using Sf = K1 - I1, Sm = 

Km - Im, to obtain the unique endemic equilibrium 

((3r) 2KmKf -1 (3rKf + 1 
11 = (3r(f3rKm + 1) ,Sf= (3r(f3rKm + 1)'N1 = Kf (11) 

(f3r) 2KmKf -1 (3rKm + 1 
Im= (3r(f3rKJ+1) ,Sm= f3r((3TKJ+1)'Nm=Km 

The linearization of the system (6) at an equilibrium (If, Nf, Im, Nm) is 

UJ(t) = j_too [-ImCm(NJ )u,(x)+Im{Cm(NJ )+SJc'm(NJ )}v,(x)+Cm(NJ )SJUm(x)]P(t-x)dx 

v/ = [F'(NJ)- JL]VJ 

um(t) = j_too [c,(Nm)Smuf(x)- IjCJ(Nm)um(x) + Ij{CJ(Nm) +Smc/(Nm)}vm(x)]P(t- x)ds 

v'm = [M' (Nm) - JL]Vm 

The characteristic equation (the condition that this linearization have a solution whose com­

ponents are constant multiples of e>.t ) is 

-cm(N,)ImP(:>..)- 1 ImQJ(NJ )P(> .. ) s1cm(N1 )P(:>..) 0 , 

0 F' (NJ) - JL- :>.. 0 0 
det =0 

Smcf(Nm)P(:>..) 0 -c,(Nm)I,f>(:>..- 1) I!Qm(Nm)P(:>..) 

0 0 0 M'(Nm)- JL- :>.. 
(12) 



where 

P(> .. ) = 100 
e->.s P(s)ds, 

the Laplace transform of P( s), and 

and 

F(O) = 100 
P(s)ds = r, 

Q1(N1) = em(N1) + s1c'm(N1) 

Qm(Nm) = CJ(Nm) + Smc/(Nm) 
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and similarly Qm(Nm) > 0. An equilibrium is asymptotically Jtable if and only if all roots of 

the characteristic equation at the equilibrium have negative real part (see, for example [Webb 

(1985), Chapter 5]). At the disease-free equilibrium, If = 0, Im = 0, 81 = Nf = K 1, Bm = 

Nm = Km, and the characteristic equation is 

Because of (1) the roots of the characteristic equation are the negative real roots F' (K 1) - p, 

and M'(Km)- Ji together with the roots of 

Because 

for Re>.. 2:: 0 there can be no root of the characteristic equation with non-negative real part if 

{P K f Km r 2 < 1. In fact, it is not difficult to see that the condition 
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is necessary and sufficient for the asymptotic stability of the disease-free equilibrium. The 

basic reproductive number for the model (6) is 

and we see that the disease-free equilibrium is asymptotically stable if and only if Ro < 1. It 

is not difficult to show by standard methods involving a priori estimates that the asymptotic 

stability is global if Ro < 1. 

H Ro > 1, so that the disease-free equilibrium is unstable, there is a unique endemic 

equilibrium and the characteristic equation at this equilibrium (after removal of the factors 

[F' (K 1) - JL - A][M' (Km) - JL - A]) is 

{32(StSm -ftim)[P(A)]2 - f3(Im +It )P(A)- 1 = 0, 

which we may solve for P(A) to obtain 

P(A) = f3(Im +It)± }f32 (Im +It )2 + 4(StSm- I tim) 
2{32(8/Sm- I tim) 

Thus the characteristic equation splits into two equations 

P(A) =a, P(A) =b. 

Because 

(13) 

both a and bare real. H StSm- Itim > 0, then b < 0 but a> 0, while if StSm -ftim < 0, 

then both a and bare negative. It is known [Brauer (1987)] that all roots of a characteristic 

equatin P(A) =a have negative real part if and only if P(O)/a < 1. In particular, if a < 0 

then all roots of P(A) =a have negative real part. Thus the only possibility for a root of (13) 

with non-negative real part is if StSm- Itim > 0 with the factor 
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But 
2f3JS1Sm 1 

a> = =-r 
2{32SJSm f3)SJSm 

by (10), and the stability condition P(O)/a < 1 is satisfied because P(o) = -r. 

We have now established the following result: 

THEOREM 1: Under the hypotheses (1), (3), (4), (5), the model (6) with s 1 + I1 = N1, 

Sm + Im = Nm has a disease-free equilibrium 81 = Kf, Sm = Km, If = 0, Im = 0 which is 

globally asymptotically stable if Ro = [3-rJKJKm < 1. If Ro > 1, the disease-free equilibrium 

is unstable but there is an endemic equilibrium with 81 < Kf, Sm < Km, If > 0, Im > 0 

given by (11) which is asymptotically stable. 

In formulating the model (6), we have assumed that the probabilities of transmission of 

infection from male to female and from female to male are the same. If this is not true, we 

would assume that the rate of new female infections in unit time is pem(NJ )ImSf and that the 

rate of new male infections in unit time is qcm(NJ )ImSf with p 1- q. The integral equations 

in the model (6) would then be replaced by 

IJ(t) =[too pem(N,(x))s,(x)Im(x)P(t- x)dx 

The equilibrium conditions would become 

which imply pq({3-r) 2S1Sm = 1. The characteristic equation at an equilibrium now reduces to 

det [ -pf3ImP~A)- 1 p{3S1Af>(>..) l = O 
qf3SmP(A) -{3qiJP(A)- 1 . 

At the disease-free equilibrium, the characteristic equation is 
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and the necessary and sufficient condition for asymptotic stability is 

The analysis for the endemic equilibrium is analogous to that when p = q = 1, and we find that 

the endemic equilibrium is asymptotically stable if Ro > 1. Thus the results are completely 

analogous to those in the case of equal disease transmission probabilities. Hence asymmetric 

transmission probabilities will lead to the same qualitative dynamics. The potential dynamics 

if one considers a fatal sexually-transmitted disease such as HIV /AIDS are poorly understood. 

For example, if one considers a one-sex two-group epidemiological model for a fatal sexually­

transmitted disease, we observe that pronounced asymmetry in epidemiological parameters 

implies the possibility of multiple endemic equilibria (see Castilla-Chavez et al. 1989, Huang 

et al. 1992). 

3. Recruitment depending on disease status 

If the recruitment functions F and M depend on the size of the infective populations 

as well as on total population sizes, the analysis is considerably more complicated. We now 

let F(I1, N1) be the rate of recruitment of females in unit time and M(Im, Nm) the rate of 

recruitment of males in unit time. In the model (6) we replace F(Nt) by F(If, Nt) and 

M(Nm) by M(Im, Nm)· It is reasonable to assume that the recruitment rates decrease as the 

number of infectives increase, so that 

(14) 

Two special cases of interest are recruitment function of the form 

F(I,N) = G1(J), G~(I) < 0 

so that Fr(I, N) < 0, FN(l, N) = 0, and 

F(I,N) = G2(IjN),G~(P) < 0 
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so that F1(I, N) < 0, FN(I, N) > 0 and IF1(I, N) + NFN(I, N) = 0. To locate equilibria 

of the model (6) we must consider a curve of the form y = F(I, N) with I as a parameter. 

This curve for I= 0 is assumed to intersect the line y = J.LN when N =Kif I= 0, and it is 

assumed that F(O, N) > J.LN for 0 < N < K, FN(O, N) < f.L· H F1(I, N) < 0, then the curve 

y = F(I, N) moves down as I increases and intersects the line y = J.LN for N = N(I) < K. 

We assume F(I, N) > J.LN for 0 < N < N(I), FN(I, N(I)) < J.L. 

Equilibria of (6) are given by 

and (7), and we are assuming that at an equilibrium (Ij,Nf,lm,Nm) we have 

(15) 

The characteristic equation at an equilibrium is now given by the determinant of the matrix 

r -cm(Nt )ImP(>.) - 1 ImQJ(NJ )P(>..) S1C-m(N1 )P(>.) 0 

F1(IJ, Nf) FN(ft, Nt)- J.L- A 0 0 

BmcJ(Nm)P(A) 0 -cJ(Nm)IJP(A)- 1 IJ(Qm(Nm)P(>.) 
0 0 MI(Im,Nm) MN(Im, Nm) - J.L- A 

equal to zero. Because of the entries FI(It, N1) and MI(Im, Nm) we can no longer remove 

the factors FN(IJ, N1)- J.L- A and MN(Im, Nm)- J.L- A as we did in analyzing (12). At the 

disease-free equilibrium, because Im = 0, I1 = 0 the characteristic equation reduces just as 

before and this equilibrium is asymptotically stable if and only if Ro < 1. 

At the endemic equilibrium, the characteristic equation is 
\ 



We let 
AJ = J.t- FN(lf, Nt ), Am= J.t- MN(Im, Nm) 

P! = -FI(lbNt)ImQJ(NJ), Pm = -MI(lm,Nm)IJQm(Nm) 

qf = f3lm, qm = f3lt. 

Then the assumptions (14), {15) imply 

AJ > 0, Am> 0, P! > 0, Pm > 0, qf > 0, qm > 0. 

14 

(17) 

Writing (16) in terms of these parameters and making use of (10), we may write the charac­

teristic equation at an endemic equilibrium as 

(18) 

We are unable to analyze the characteristic equation (18) in general, but we can treat some 

special cases. 

Let us consider the case of exponentially distributed infective periods, where the model 

(6) reduces to a system of ordinary differential equations. We use 

Po(s) = e-sf-ro, P(s) = e-(J.&+ .;o )s, 

so that T = ~-'.,:~ 1 • H we write a= 1/-r, then P(s) = e-as, P(O) = 1/a, P(>..) = A~a· The 

characteristic equation is then a fourth degree polynomial equation 

This has the form 

with 

a1 = 2a + qf + ).. f + qm + Am 

a2 = AJ(a + qf) + P! + Am(a + qm) + Pm +(a+ qf + AJ )(a+ qm +Am)- a2 

aa =[>..,(a+ qf) + Pt](a + qm +Am)+ [>..m(a + qm) + Pm](a + qf +lambda!)- a2(AJ +Am), 

a4 = [>..,(a+ qf) + PtH>..m(a + qm) + Pm]- a2 AmAJ· 
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Using (17) we can show by some tedious calculations that the Routh-Hurwitz conditions 

are satisfied. This shows that in the special case of exponentially distributed infective periods 

the endemic equilibrium is always asymptotically stable. 

There are, however, situations in which the endemic equilibrium could be unstable. A 

specific example is easily obtained by considering the "symmetric" case in which F and M are 

the same function, Im =If, and em(NJ) = f3Nt, CJ(Nm) = f3Nm so that C-m(NJ) = CJ(Nm) = 
{3 and Q1(NJ) = Qm(Nm) = {3. The characteristic equation then becomes 

[ 1 + qi>(>.) + ~~(~~]' 
with q = qf = qm, p = P! = Pm, .\1 = AJ =Am. We specialize further by taking q = 1/r, so 

that I= S. The characteristic equation factors, 

and we will demonstrate the possibility of a root with non-negative real part of 

or 

(19) 

To accomplish this, it suffices to show the possibility of a pure imaginary root >. = iy with 

y > 0 of {19), and this is equivalent to the solvability of the pair of equations corresponding 

to the real and imaginary parts of (19), 

p 100 
P(s) cosysds + >..1 = 0, 

(20) 

p 100 
P(s) sinysds- y = 0. 



We take f.-£= 0, so that AI= -FN(l, N) > 0, and choose 

Then 

P(8 ) = { 1, 0 S 8 S T 
0, 8 > 'T 

100 sinyT 
P(8)cosy8d8 = --, 

0 y 
100 • 1- COSU'T 

P(8)smy8d8 = ----
o y 

and (20) becomes 
y2 

cosy,-= 1--. 
p 

We must have sin2 y,- + cos2 y,- = 1, and this implies the condition 

Thus we must choose AI and p with At< 2p, and then we need to choose,- so that 

sin TV2p- At= -AI V2p- Atfp 

COSTV2p- At= 1- (2p- Ai)jp = Ai/p - 1,. 

16 

This is possible provided the values -Al .j2p- At/P and At/p-1 of the trigonometric functions 

have absolute value no greater than 1, a consequence of At < 2p. Thus the endemic equilibrium 

is unstable for suitable choices of parameters in this example. 

We conclude that when recruitment depends on disease state, instability of the endemic 

equilibrium is possible although not for exponentially distributed infective periods. As the 

instability is signalled by a pure imaginary root of the characteristic equation, we would expect 

a Hopf bifurcation and sustained oscillations about the endemic equilibrium. 



17 

4. Conclusions 

In this work we have formulated a model for a heterosexually transmitted disease of S­

I-S type. The formulation of S-I-R models with permanent removal or with recovery with 

immunity should be straightforward but the dynamics may be quite different. We have also 

considered the effect of demographic recruitment which depends on the number of infectives. 

This has not yet been studied thoroughly for models with direct transmission, although it 

is known that instability is possible for an S-I-R model with permanent removal even with 

exponentially distributed infective periods (Blythe, Brauer and Castilla-Chavez (1992)]. Our 

results here support a conjecture that in general recruitment depending on disease status 

tends to support the possibility of instability of equilibrium and oscillation. AB our example 

of instability was essentially a one-sex model, we have no indication whether heterosexual S­

I-S transmission models have qualitatively different behavior from direct transmission one-sex 

S-I-S models. 

A full analysis of models with recruitment depending on disease state is indicated because 

it would have applications beyond sexually transmitted diseases. Models in which the demo­

graphic processes are births and deaths and in which there are births in both susceptible and 

infective classes, with birth rates which depend on the size of the infective class can describe 

diseases with vertical transmission (Busenberg and Cooke (1993)]. Both direct transmission 

(analogous to a one-sex model) and transmission through a vector (analogous to a two-sex 

model) are possible. As vertical transmission occurs in some diseases with millions of victims, 

there are many important questions. Most of the results known for vertical transmission are 

for models in which total population size would grow exponentially in the absence of disease. 

The corresponding results for populations with finite carrying capacity would be of great 

interest. 

Although the generalization to S-I-R models with permanent removal or with recovery 

with immunity is straightforward, this is not quite the case if one wishes to extend these 

models to study the dynamics of vector-transmitted diseases. 
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As mentioned in the introduction, models of sexually-transmitted diseases (two-sexes) 

and vector-transmitted diseases have an analogous contact structure and both satisfy a con­

servation of contacts law. However, in vector-transmitted diseases there exists a fundamental 

asymmetry in the interaction because vectors choose hosts actively while hosts do not choose 

their vectors. This asymmetry may be modeled through the following modification of the 

balance law: 

(21) 

where h stands for hosts and m for vectors, and the contact rate per vector in unit time is a 

function of the vector population density while the host contact rate is a function of vector 

and host densities 

The classical Ross-Macdonald model for malaria states that the transmission rate of 

Plasmodium from vector to host is a function of the biting rate of the mosquito and the ratio 

of vector numbers to host numbers. Therefore we have 

(22) 

as the following expression for the host incidence rate. By taking 

and substituting back into {22) we obtain the expression for the incidence rate in the Ross­

Macdonald model: 

But (21) forces us to define 

ch(Nm) = Nm[/3~: J 

which gives the following expression for the vector incidence: 
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The last expression is in sharp contrast with the classical Ross-Macdonald model incidence 

rate, 

where a is a constant. Therefore, Ross-Macdonald-type models do not satisfy the balance 

law (21) unless Nm and Nh are constant and a (the fraction of the biting rate that results 

in infection in the vector) is proportional to f3 (the fraction of the biting rate that results 

in infection in the host). This last assumption must be weakened and incorporated into 

models with the above incidence rates. These studies may lead to our further understanding 

of vector-transmitted diseases. 
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