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Carbon nanotubes (CNTs) are nanometer sized cylinders made of carbon atoms

which possess extraordinary electrical, thermal, and mechanical properties.

Their potential applications include such diverse areas as conductive and high

strength composites, energy storage and conversion devices, sensors, field emis-

sion displays and radiation sources, hydrogen storage media, and nanometer

sized semiconductor devices, probes and interconnects. A single-walled carbon

nanotube (SWNT) is a CNT formed from a single atomic layer comprised of a

hexagonal network of carbon atoms that has been rolled up to form a seamless,

hollow cylinder, and it is of interest to understand how the underlying atomic

structure determines its macroscopic properties. The present dissertation deals

with models to study the influence of atomic structure on the macroscopic me-

chanical properties of SWNTs.

In describing such atomic systems, all-atom simulations using appropriate

energetic descriptions are accurate, and often employed. However, these are

limited by computational expense to a small number of atoms and time steps.

Alternatively, continuum models capture a collective behavior of atoms and are

computational efficient. However, the accuracy of traditional continuum mod-

els suffers from surface, interface and size effects, and ambiguities in model pa-

rameters. Hence, there is a need to develop atomistically enriched continuum

models which combine the accuracy of all-atom simulations and the efficiency



of continuum analyses.

The present dissertation focuses on two zero-temperature, atomistically en-

riched, large-strain, elastic continuum models to study mechanical deforma-

tions of SWNTs − (i) a two-dimensional, quasicontinuum membrane model,

and (ii) a one-dimensional rod model. The membrane SWNT model has been

employed in prior, published work to predict localized effects such as buck-

led mode shapes of the effective continuum in severe twist and bending defor-

mations. In the present dissertation, modifications to the existing membrane

model are proposed, and implemented in studying coupled extension and twist

deformations of SWNTs. The rod model is motivated by the need to model

global behavior of long SWNTs in which the aforementioned localized effects

are not of significant interest. It is a unified, large-strain SWNT model capable

of simultaneously accounting for (a) bending, (b) twist, (c) shear, (d) extension,

(e) coupled extension and twist, and (f) coupled bending and shear deforma-

tion modes. Both the atomistic-continuum SWNT models in the present dis-

sertation demonstrate the benefits of accounting for important anisotropic and

large-strain effects as improvements over employing traditional, linearly elas-

tic, isotropic, small-strain, continuum models. It is envisioned that the ideas

presented in this dissertation can be extended to other atomic systems such as

silicon or boron nitride nanotubes by use of appropriate lattices and energetic

descriptions.
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CHAPTER 1

INTRODUCTION

Recent developments in micro- and nano-manipulation of systems have ush-

ered in a new era of modeling efforts, which seek to validate experiments as well

as provide a framework to predict and explain behavior difficult to observe ex-

perimentally. Such efforts have also been inspired by materials in which ex-

traordinary macroscopic properties emerge from their underlying atomic struc-

ture. An example of such a material is a carbon nanotube (CNT) − a nanometer

sized cylinder made of carbon atoms. CNTs possess remarkable strength and

ductility, and can be either electrically conducting or semi-conducting based on

their underlying atomic structure. These intriguing properties of CNTs, some

of which stem from the close connection between CNTs and graphite, have

aroused a strong interest in their possible use in nano-electro-mechanical sys-

tems (NEMS) such as nanowires, or as active components in electronic devices

such as field-effect transistors.

A single-walled carbon nanotube (SWNT), which is the primary system of

study in the present dissertation, is a CNT formed from a single atomic layer

comprised of a hexagonal network of carbon atoms that has been rolled up to

form a seamless, hollow cylinder (Figure 1.1). Depending on the axis about

which the planar sheet is rolled up, the SWNTs formed may be categorized

into chiral, armchair, and zigzag ones (Figure 1.1). SWNTs are the fundamen-

tal structural units that form the building blocks of other atomic systems such

as multi-walled CNTs, nanotube ropes and rings, and offer exciting potential

applications in diverse areas utilizing their superior mechanical, electrical, ther-

mal, and optical properties. Among the many applications of SWNTs is a NEMS

1



oscillator. This is of interest in attogram sensitive mass detection of airborne

pathogens, radio-frequency signal processing, and as a model system for inves-

tigating quantum phenomena in macroscopic systems.

Electrical actuation and detection of guitar-string oscillation modes of

clamped SWNT oscillators [75] have shown that the resonance frequencies can

be widely tuned (3 − 200MHz), and that the devices can be used to transduce

small forces (force sensitivities of about 10−15 N Hz−1/2) [75]. These experiments

motivate studies of large, elastic deformations of SWNTs in a dynamic, coupled

electro-mechanical setting in which electronic properties such as the band gap

have also been observed to change with mechanical deformations [77]. How-

ever, there are intrinsic difficulties in experimentally carrying out such studies

with challenges in dispersing, sorting, and placing CNTs on a substrate [25, 75].

Hence, accurate modeling and simulation tools are necessary to drive these ef-

forts, and understand how atomic structure determines macroscopic properties

of such materials. The present dissertation deals with models that account for

the influence of atomic structure on the macroscopic mechanical properties of

SWNTs.

Characterization of the mechanical properties of SWNTs using elastic mod-

uli such as the Young’s modulus, Poisson’s ratio, or the flexural rigidity has

been the subject of several studies [35, 48, 53, 68, 74]. The assumption of elas-

tic behavior stems from the observation of SWNTs undergoing large, reversible

deformations [42, 99] without developing lattice defects, in spite of reports of

brittle fracture [100], and computational predictions of the onset of plastic de-

formations [61, 80].

Methods to characterize elastic properties of CNTs can be broadly classified
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(a) Rolling of a planar graphene sheet into
an SWNT

(b) A chiral (9,6) SWNT

(c) An armchair (5,5) SWNT (d) A zigzag (10,0) SWNT

Figure 1.1: Rolling of a planar graphene sheet into SWNTs drawn on the
same scale. Figures (b,c,d) have been produced using the soft-
ware in [57].

into atomistic or continuum-based approaches. Atomistic methods to extract

elastic constitutive properties for CNTs include tight-binding models [40], ab

initio calculations [48, 74, 88], or use of analytic potentials [16, 66, 67]. Such

approaches can be computationally expensive and suffer from the limitations

of approximate polynomial fits or finite-difference approximations of deriva-

tives which can lead to significant numerical errors [74]. Moreover, these ap-

proaches do not provide information about the relation between the continuum

properties and the atomistic potential. All-atom molecular dynamic (MD) sim-

ulations using appropriate energetic descriptions are accurate, and often em-
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ployed to obtain an atomic-scale description of systems such as CNTs, as well

as biomolecules and biological processes. However, computational expense

severely limits the size of atomic systems and time scales that can be studied

using MD to obtain meaningful information. For example, the current limita-

tions on computer power permit simulations of around 10 million integration

steps, i.e., in the multi-nanosecond range, which is short by a factor of around

1000 million for many important biological processes [90].

On the other hand, elastic continuum models can be useful to study long-

range phenomena of extended atomic systems since they capture a collective

behavior of atoms and offer computational efficiency by reducing degrees of

freedom. However, in spite of the robustness and economy of continuum me-

chanics, use of traditional continuum models for CNTs can lead to inconsisten-

cies [96] due to surface, interface and size effects, and ambiguities associated

with model parameters such as elastic moduli and CNT wall thickness taken

from the literature. Hence, there is a need to develop atomistically enriched

continuum models which combine the accuracy of all-atom simulations and the

efficiency of continuum analyses.

The present dissertation focuses on two zero-temperature, atomistically

enriched, large-strain, elastic, continuum models (referred to as atomistic-

continuum models in the present dissertation) to study mechanical deforma-

tions of SWNTs − (i) a two-dimensional, quasicontinuum membrane model, and

(ii) a one-dimensional rod model. In both these models, the SWNT is treated as

a hyperelastic material, i.e., an ideally elastic material for which the stress-strain

relationship derives from a strain energy density function, with the capability to

account for material as well as geometric nonlinearities that may arise in large-
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strain regimes. Sections 1.1 and 1.2, in the following, respectively contain a

summary of different atomistic and continuum descriptions applicable to mod-

eling SWNTs. The two SWNT models presented in this dissertation are also

placed in the context of the described approaches.

1.1 Atomistic energy descriptions

Atomistic energy descriptions can be broadly classified into ab initio, empirical,

first-principles, and semi-empirical ones.

Ab initio approaches such as the post-Hartree-Fock schemes [18] provide ap-

proximate solutions to the electronic Schrödinger’s equation for the atomic sys-

tem. This makes them highly transferable, quantitatively reliable, and amenable

to systematic control of accuracy through choice of basis set size or sampling

of the first Brillouin zone (FBZ). However, they tend to be restricted to either

periodic systems or small collections of atoms because of their computational

expense.

Empirical potentials such as the Lennard-Jones pair potential [49] and the

Tersoff-Brenner multi-body potential [8, 9, 86] contain parameterized, closed-

form expressions for the energies between atoms in terms of bond lengths and

orientations by taking into account the influence of surrounding atoms up to

a certain radius of influence. Parameters in the potentials are usually fit to ex-

periments or ab initio simulations based on specific physical criteria. Hence,

empirical potentials can suffer from the limitations of transferability from one

system to another. However, they offer tremendous computational savings, and

hence can be applied to large atomic systems. Further, closed-form expressions
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enable analytic evaluation of derivatives as required in computations of stresses

and forces, although the accuracy of the results is limited by the extent of appli-

cability of a given potential to a certain atomic system.

The first-principles method, density functional theory (DFT), is currently the

most popular way of performing electronic structure calculations [41, 46]. It pro-

vides a rigorous reformulation of Schrödinger’s equation for a many-electron

system into a problem of estimating the wave function and corresponding en-

ergy of an effective single-electron system. While this approach is exact, it is

stated in terms of an unknown exchange and correlation functional. A large

number of approximate expressions for this unknown functional have now been

developed (such as the local-density-approximation (LDA) [41, 46]) which can

frequently provide accurate predictions for the structure and energetics of sys-

tems that contain less than about 200 atoms. In Chapter 4 of the present dis-

sertation, DFT is employed to estimate Young’s moduli of representative chiral,

armchair and zigzag SWNTs.

As a means to trade-off accuracy and computational expense in performing

atomistic simulations, various approaches have been developed that attempt to

exploit the benefits of ab initio and empirical approaches, and hence termed as

semi-empirical methods. Semi-empirical methods such as PM3 [82, 83] or AM1

[19] are based on approximations such as the Neglect of Differential Diatomic

Overlap (NDDO) [65], and obtain some parameters from empirical data. They

are important in treating large molecules where ab initio methods can be expen-

sive while empirical methods may be inaccurate.

In the present dissertation, the empirical Tersoff-Brenner potential [8, 86] is

used to model interatomic energies in the two-dimensional, quasicontinuum
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membrane SWNT model [3, 14, 101] (Chapters 2, 3, and 4). It is demonstrated

that the use of this potential can lead to numerical results that depend on the val-

ues of the empirically fit parameters in the potential, as mentioned previously

in this section. Chapter 4 on the two-dimensional, quasicontinuum membrane

model also contains a computation of the Young’s modulus for representative

SWNTs using a DFT approach.

The atomistic simulations for the one-dimensional rod model (Chapter 5)

are performed using a density-functional-based tight-binding (DFTB) method

[21, 22, 27] maintaining self-consistency in electronic charges (SCC). This semi-

empirical method is best viewed as an approximation to DFT, and is parame-

terized based on LDA-DFT calculations. It has been tested and shown to re-

produce, quite accurately, the mechanical properties of brittle materials such as

diamond, CNTs, and graphene, as predicted by DFT, while being on the order

of 100times faster than DFT based on first-principles [21, 22, 27].

1.2 Elastic continuum models of SWNTs

Elastic continuum models of SWNTs can be broadly classified into one-, two-,

and three-dimensional ones.

An example of a three-dimensional SWNT model is a space truss network

with linearly elastic, isotropic bars representing carbon bonds and atomic loca-

tions represented by nodes in a network [50] that assumes a fixed connectivity

between carbon atoms in an essentially molecular-mechanics-based approach.

The atomic interactions are assumed to be captured through tensile, flexural,

and torsional rigidities in the connecting bars, and the corresponding stiffness
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properties are computed in terms of force field constants of an assumed inter-

atomic potential. Such a model makes assumptions on the geometry and di-

mensions of the bars. Further, it takes into account all the atoms in a given

SWNT segment without any coarse-graining, and can hence be computation-

ally expensive.

Two-dimensional continuum SWNT models have been based on an elastic,

thin-shell model with the Young’s modulus and wall thickness as input param-

eters assumed from other calculations [63]. In the large-strain regime, the quasi-

continuum approach, proposed originally for bulk crystals [79, 84, 85], has been

used for atomistic-continuum modeling of mechanical deformations of CNTs

[2, 3, 12, 13, 14, 44, 52, 101] to derive a hyperelastic, membrane model based on

the empirical Tersoff-Brenner interatomic potential [8, 86] to describe atomistic

energies. It is noted that this membrane model possesses a bending stiffness

(unlike a traditional membrane) that arises out of the changes in bond angles

that are captured by the Tersoff-Brenner interatomic potential (details in Chap-

ter 2), and in this sense, is similar to a shell model. The quasicontinuum, mem-

brane SWNT model has been employed in the past [2, 3, 14, 44, 101] to obtain

SWNT elastic moduli [3, 14, 44, 101], as well as study rippling and buckling

modes in severe bending and twist deformations [2, 3]. As mentioned previ-

ously, this is one of the SWNT models detailed, subsequently, in the present

dissertation (Chapters 2, 3, and 4). The key contributions of the present disser-

tation to the membrane model are summarized in Section 1.3.

Finally, one-dimensional models of SWNTs have been based on the

Bernoulli-Euler beam model [28] in order to study their transverse strengths,

bending, and vibrational properties (for example, in [75, 87]), with the Young’s
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modulus and wall thickness as input parameters assumed from other calcula-

tions. Although this approach may be sufficient to compute linearized material

properties of the effective continuum, it is restricted to small strains, and as-

sumes that the continuum is isotropic and linearly elastic. In [34], the authors

present a modified Cosserat rod approach applied to SWNTs with deformable

cross-sections. Although this model is capable of large deformations, it still

assumes the material to be linearly elastic and isotropic. In the present disser-

tation, an atomistic-continuum rod model of SWNTs is developed which can

exhibit geometric as well as material nonlinearity [38]. The notable features of

this model are summarized in Section 1.3.

1.3 Contributions and organization

The present section summarizes the key contributions and describes the organi-

zation of the present dissertation.

• As mentioned in Section 1.2, the quasicontinuum, membrane SWNT

model has been employed in the past [2, 3, 14, 44, 101] to obtain SWNT

elastic moduli [3, 14, 44, 101], as well as study rippling and buckling

modes in severe bending and twist deformations [2, 3]. An important in-

gredient of this approach is the Cauchy-Born (CB) hypothesis [17, 23, 98]

that relates bond lengths to the deformation of the continuum, and its sub-

sequent modifications [2, 3, 13] as necessary for application to SWNTs

modeled as curved, two-dimensional membranes. A key assumption in

the CB rule is that of the deformation being homogeneous at the atomic

scale. The basis of this assumption is investigated, and modifications to
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the CB rule to deal with inhomogeneous deformations are proposed in

the present dissertation in Chapter 2, and implemented in the context of a

specific class of deformations in Chapter 3.

• Prior work on the SWNT membrane model [2, 3, 44, 52, 101] assumes

a planar (graphene) reference configuration. In the present dissertation,

a cylindrical reference configuration is employed which enables a study

of variations in the constitutive properties with diameter and chirality of

SWNTs that arise from the anisotropy and change in strain energy result-

ing from the finite deformation required to roll up a planar graphene sheet

into an SWNT [2, 3].

• Examples of the three configurations of SWNTs − chiral, armchair, and

zigzag − are shown in Figure 1.1(b-d). As an illustration, it is seen that chi-

ral SWNTs contain a helical arrangement of atoms which can cause them

to twist when extended and vice versa. Further investigation on the heli-

cal idealization of SWNTs can be found in Chapter 5 and Appendix B. In

the present dissertation, this coupling behavior is investigated in Chapter

3, as well as taken into account in determining constitutive properties in

Chapter 4.

• The one-dimensional rod model of SWNTs developed in the present

dissertation (Chapter 5) is motivated by the global behavior of long

SWNTs (microns in length) of interest in nano-oscillators (for example,

in [75, 87]), for which one-dimensional models are computationally more

efficient than two-dimensional ones. As mentioned in Section 1.2, the

one-dimensional models in the literature are limited by linearly elastic

and isotropic material assumptions which do not take into account cou-

plings between deformation modes, such as the extension-twist coupling
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described previously. The rod model developed in Chapter 5 is a uni-

fied, large-strain approach that takes into account (a) bending, (b) twist,

(c) shear, (d) extension, (e) coupled extension and twist, and (f) coupled

bending and shear deformations. As noted in [51], coupling responses can

modify electronic, thermal, and mechanical properties of CNTs, under-

scoring their importance in NEMS devices that exploit electro-, thermo-,

chemico-, and optico-mechanical response of CNTs. For example, torques

produced in multi-walled CNT-based rotational bearings, oscillators, and

nanomotor shafts can result in axial strains that can modify the oscillatory

response. Conversely, axial strains generated during transverse vibrations

of SWNTs can result in torsional strains which not only affect the predicted

resonant frequencies of the SWNTs, but can also change their electronic

properties. Pulsed voltage biases and laser fields can easily exploit the

coupling response to realize tunable rotational oscillators and regulators.

The present dissertation is organized as follows. Chapter 2 describes

the two-dimensional, quasicontinuum, hyperelastic membrane SWNT model.

Chapter 3 describes the implementation of this membrane model to study kine-

matic coupling between extension and twist deformations of SWNTs. Chapter

4 describes the implementation of the membrane model to obtain elastic mod-

uli and stress-strain curves for SWNTs subject to coupled extension and twist

deformations. Chapter 5 presents the details of the atomistic-continuum, one-

dimensional rod model of SWNTs developed in the present dissertation. Chap-

ter 6 concludes the dissertation with some remarks on future work.
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CHAPTER 2

TWO-DIMENSIONAL QUASICONTINUUM MEMBRANE MODEL

2.1 Introduction

In the present chapter, the quasicontinuum approach, proposed originally for

bulk crystals [79, 84, 85], but which has also been used for atomistic-continuum

modeling of mechanical deformations of CNTs [2, 3, 12, 13, 44, 52, 101], is pre-

sented, with a focus on applications to SWNTs.

The approach, outlined in Figure 2.1, essentially consists of formulating a

hyperelastic, continuum strain energy density function for a two-dimensional

continuum representation of the SWNT based on interatomic bond energies

over a representative unit cell of the atomic lattice. This, effectively, connects

the atomic system to the deformation of the continuum thereby leading to an

atomistic-continuum framework. The essential ideas can also be found in other

works dealing with the quasicontinuum method for bulk materials [79, 84, 85].

Referring to Figure 2.1, the end goal is to obtain a strain energy density func-

tion relating the continuum stress (the second Piola-Kirchhoff stress tensor, T,

in a Lagrangian description) and the continuum strain (the Green-Lagrangian

strain tensor, E = 1
2(FTF−I ), with I being the second-rank identity tensor) which,

for a hyperelastic material, is a function of the continuum deformation gradient,

F. The intermediate steps are as follows. First, the continuum deformation gra-

dient, F, is used to relate the undeformed and deformed bond lengths using the

CB rule (Section 2.4). This results in the deformed bond lengths being expressed

in terms of E. Finally, the deformed bond lengths are used, along with a choice
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Figure 2.1: Overview of the two-dimensional, quasicontinuum membrane
model.

of the interatomic energy description, and an appropriate atomistic-continuum

bridging hypothesis, to define a hyperelastic, continuum strain energy density

function. The framework was originally proposed for bulk materials [79, 84, 85]

and subsequently modified [2, 3, 12, 13, 44, 52, 101] to suit its application to

CNTs.

The present chapter is organized as follows. Section 2.2 describes an em-

pirical interatomic potential widely applied to study the mechanics of CNTs.

Section 2.3 describes the mapping that converts a planar graphene sheet to a

cylindrical SWNT. As will be subsequently elaborated in Chapters 3 and 4, this

is essential because it takes into account the anisotropy and change in strain en-

ergy that results from the finite deformation required to roll up a planar sheet

into a cylindrical tube [3, 14]. Section 2.4 describes the CB rule in its original

form applicable to bulk crystals, as well as its subsequent modifications arising

from the atomic lattice, curved geometry of the continuum membrane, and in-
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homogeneous deformations, required in order to be applicable to SWNTs in this

dissertation. Section 2.5 describes the final step in the approach − the atomistic-

continuum bridging hypothesis − that results in the definition of a hyperelas-

tic, continuum strain energy density function in terms of the deformed bond

lengths and the interatomic potential.

2.2 Interatomic potential description

In the present work on the two-dimensional, quasicontinuum membrane

model, a particular interatomic energy description − the empirical Tersoff-

Brenner interatomic potential [8, 86] − is employed. This interatomic potential

has been widely employed to study the mechanics of CNTs [16, 29, 96], includ-

ing the nucleation of defects [73, 91]. In the present work, it is assumed that the

topology of the bond network does not change, i.e., there is no bond breaking

or formation. Following [8], an expression for the bond energy between carbon

atoms i and j is

V(a(i, j)) = VR(a(i, j)) − B̄(i, j)VA(a(i, j)) , (2.1)

where a(i, j) is the distance between carbon atoms i and j, VR and VA are repul-

sive and attractive pair terms, respectively, given by

VR(a) =
D(e)

S − 1
exp[−

√
2Sβ(r − R(e))] fc(a) (2.2)

and
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VA(a) =
D(e)S
S − 1

exp[−
√

2/Sβ(r − R(e))] fc(a) , (2.3)

where β,R(e),D(e), and S are parameters. The term, B̄(i, j) in Equation 2.1, is given

by B̄(i, j) = 1
2[B(i, j) + B( j, i)], and represents a multi-body coupling between the

bond from atom i to atom j, and the local environment of atom i, with

B(i, j) =

1 +
∑

k,i, j

G[θ(i, j, k)] fc[a(i, k)]


−δ

, (2.4)

where δ is a parameter, G and fc are continuous functions defined as

G(θ) = a0

[
1 +

c2
0

d2
0

− c2
0

d2
0 + (1 + cosθ)2

]
, (2.5)

where a0, c0, and d0 are parameters, and

fc(a) =



1 a < R(1)

(1/2)
{
1 + cos

[
π(a−R(1))
R(2)−R(1)

]}
R(1) ≤ a ≤ R(2)

0 a > R(2)

, (2.6)

where R(1) and R(2) are parameters. Further, in Equation 2.4, k denotes other

carbon atoms besides i and j, and θ(i, j, k) is the angle between the bonds i − j

and i − k, which can be expressed as

θ(i, j, k) = arccos[
a(i, j)2 + a(i, k)2 − a( j, k)2

2 a(i, j) a(i, k)
] . (2.7)

The potential given by [8] contains two sets of values, tabulated in Table 2.2,

for the 10 parameters δ,a0, c0,d0,R(1),R(2),R(e),D(e), β, and S.
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Table 2.1: Two sets of values for the parameters in the Tersoff-Brenner [8,
86] interatomic potential for carbon.

Parameter Value (set # 1) Value (set # 2)

D(e) 6.325 eV 6.00 eV

S 1.29 1.22

β 15 nm−1 21 nm−1

R(e) 0.1315 nm 0.1390 nm

R(1) 0.17 nm 0.17 nm

R(2) 0.20 nm 0.20 nm

δ 0.80469 0.5

a0 0.011304 0.00020813

c0
2 192 3302

d0
2 2.52 3.52

The first set is a good fit with the bond lengths, while the second fits the

stretching force constants well. As noted in Section 1.2, the use of this inter-

atomic potential enables the capture of changes in bond angles that leads to a

bending stiffness in the membrane model (unlike a traditional membrane) and

in this sense, the quasicontinuum membrane is similar to a shell. Through-

out the present dissertation, any reference to the quasicontinuum, SWNT mem-

brane model is assumed to refer to this non-traditional, shell-like, membrane

model that possesses a bending stiffness.
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2.3 Mapping of a planar graphene sheet into an SWNT

In some of the published work dealing with a two-dimensional, quasicontin-

uum membrane model of SWNTs, such as [44, 52, 101], the SWNT deformation

analysis is performed by mapping the deformed SWNT back to a planar sheet,

and measuring the energies of the atoms on the SWNT by considering their

mapped positions on the cylinder. In the present dissertation, it is consistently

assumed that bond lengths are measured as Euclidean distances between atoms

on the deformed cylinder, and the energies of atoms are measured in the cylin-

drical configuration.

ΓB

A C

D

a
1

a
2

a
3

a
5a
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φ
ψ

2
ψ

1

Λ

Figure 2.2: A representative atom, A, and its nearest neighbors B,C,D, and
bonds AB,AC,AD. a1 = −−→BC and a2 = −−→DC.

The present section summarizes the computation of cylindrical positions

of atoms on an SWNT by mapping a planar graphene sheet to a cylindrical

SWNT based on its chirality. This models the rolling process of a planar sheet of

graphene into a cylindrical SWNT by minimizing the binding energy of a rep-

resentative atom in the cylindrical SWNT with respect to certain lengths in the

planar graphene sheet.

A representative carbon atom, A, and its nearest neighbors, B,C,D, on a pla-
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nar graphene sheet, are shown in Figure 2.2. The vectors ak, k = 1,2,3,4,5,

shown in the figure, have lengths ak. The length of the vector −−→AD, as well as the

angles ψ1 and ψ2 in Figure 2.2, can be obtained as functions of ak, k = 1,2,3,4,5,

which are, in turn, computed from minimizing the binding energy of atom A.

The graphene sheet is rolled into a cylinder whose circumferential vector is

the chiral vector, Γ. Its length is the circumference of the SWNT, so that the

diameter of the SWNT is d = Γ/π, where Γ = |Γ|. The translational vector along

the SWNT longitudinal axis, Λ, is also denoted in Figure 2.2. Its magnitude

equals the axial period of the SWNT. According to the definition of the chiral

indices of an SWNT,

Γ = na1 + ma2 , (2.8)

where n and m are integers (n ≥ |m| ≥ 0), and (n,m) is the chirality of the

SWNT − (n,0) is called a zigzag, (n,n) is called an armchair, and the general

case n > |m| > 0 is called a chiral SWNT (Figure 1.1). Referring to Figure 2.2, it is

straightforward to show that

Γ =

√
n2a2

1 + m2a2
2 + nm(a2

1 + a2
2 − a2

3), φ = cos−1

(
Γ · a1

Γa1

)
. (2.9)

Now, the mapped atomic positions of the points A,C,D in Figure 2.2 in the

rolled-up SWNT are considered. In cylindrical polar coordinates, with B as the

reference point, it is seen that

R(A) = R(B) = R(C) = R(D) = d/2 ,
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Z(A) = a4 sin(ψ2 + φ), Z(B) = 0, Z(C) = a1 sin(φ) ,

Z(D) = a3 sin(ψ1 + ψ2 + φ) ,

Θ(A) =
2a4 cos(ψ2 + φ)

d
, Θ(B) = 0, Θ(C) =

2a1 cos(φ)
d

,

Θ(D) =
2a3 cos(ψ1 + ψ2 + φ)

d
.

(2.10)

Finally, if a(0)(X,Y) denotes the Euclidean distance (which is also the bond

length when X and Y are nearest neighbors) between two atoms X and Y (X,Y =

A, B,C,D), when X,Y are located on the surface of the SWNT, it follows that

a(0)(X,Y) =

√
d2

2

[
1− cos(Θ(Y) − Θ(X))

]
+ (Z(Y) − Z(X))2 . (2.11)
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(a) Atomic structure of an armchair SWNT
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(b) Atomic structure of a zigzag SWNT

Figure 2.3: Atomic structure of armchair and zigzag SWNTs. The fig-
ures show nearest neighbors B,C,D of atom A, and the nearest
neighbors of B,C,D.

The angle, θ, in Equation 2.5, is obtained from a(0)(X,Y) (X,Y = A, B,C,D) by

using the cosine rule − Equation 2.7. Given m,n, the parameters in the Tersoff-
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Brenner potential (Table 2.2, and the bond lengths a(0)(X,Y), the binding en-

ergy per atom (V) associated with atom A (half of the energy from each bond

is counted towards the binding energy for atom A) can be written as

V =
1
2

[V(a(A, B)) + V(a(A,C)) + V(a(A,D))] , (2.12)

which is now known as a function of ak, k = 1,2,3,4,5. The final step is to

minimize the binding energy for atom A. This leads to

∂V
∂ak

= 0, k = 1,2,3,4,5 (2.13)

to solve for ak, k = 1,2,3,4,5.

a(B, B1) = a(C,A) a(D,D2) = a(C,A)

a(B, B2) = a(D,A) a(C,C1) = a(D,A)

a(C,C2) = a(B,A) a(D,D1) = a(B,A)

a(A, B1) = a(C, B) a(A, B2) = a(D, B)

a(A,C1) = a(D,C) a(A,C2) = a(B,C)

a(A,D1) = a(B,D) a(A,D2) = a(C,D)

Box 1: Relationships between the interatomic Euclidean distances for all

SWNTs.

Implementation of Equation 2.4, for the atoms B,C,D in Figure 2.2, requires

consideration of the nearest neighbors X1,X2 of X, where atom X represents

B,C,D (Figure 2.3). The relations needed for including these interactions are

listed in Box 1. These relations are used to obtain bond lengths and angles

which are required to calculate the binding energy for atom A (Figure 2.3) as
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per the Tersoff-Brenner interatomic potential, and hold good during imposed

deformation as well, based on assumed periodicity of the graphene lattice.

2.4 The Cauchy-Born rule

This section presents a study of the CB rule as applied to the deformation anal-

ysis of SWNTs that are modeled as two-dimensional membranes. The bond

vectors in the SWNT are assumed to deform according to the local deformation

gradient, as per the CB rule, or a modified version thereof.

2.4.1 Bulk crystals

The CB rule [17, 23] provides a natural, kinematic connection between defor-

mations at the atomistic and continuum scales without other phenomenological

input. It enables a relation between deformed and undeformed bond lengths

in an atomic lattice by homogenizing the continuum deformation at the atomic

scale. Essential ideas can be found in other works dealing with the deformation

analysis of SWNTs (for example, in [2, 3, 12, 13, 44, 52, 79, 85, 101]), and are sum-

marized in the present dissertation. The CB rule states that the vector defined

by a pair of atoms deforms according to the local deformation gradient, i.e.,

a = F(X) · A , (2.14)

where A refers to the undeformed bond vector, a refers to the deformed bond

vector, and F refers to the local deformation gradient at material point X. This
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hypothesis describes crystal behavior well as long as the continuum deforma-

tion is nearly homogeneous in the scale of the crystal. The CB rule (with a ho-

mogeneous F at the atomic scale) has been successfully applied to space-filling

crystals represented as complex Bravais lattices by [79, 84, 85]. However, as will

be subsequently elaborated in Chapter 3, the two-dimensional SWNT mem-

brane model in the present dissertation is employed in the context of a class

of deformations that is, in general, assumed to be spatially inhomogeneous at

the atomic scale. Hence, modifications are necessary to the CB rule to account

for possible spatial inhomogeneities in F. Further modifications are necessary,

to account for the curved geometry of SWNTs, and the two-atom basis of the

honeycomb graphene lattice. These modifications are discussed below.

Figure 2.4: The direct map F (F (P) = p).

2.4.2 Modifications for inhomogeneous deformations

It is demonstrated below that in the case of inhomogeneous deformations at the

atomic scale, the CB rule is only approximate. Further, it is shown that, in such
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cases, the mean value theorem in calculus [37] can be used as a guide to modify

the CB rule (Equation 2.14) to account for the spatial inhomogeneity of F at the

atomic scale. To deal with inhomogeneities such as defects and non-local effects,

mixed continuum-atomistic approaches have been proposed by [79, 84] in the

context of finite element (FE) formulations.

The following illustrates the relation between the CB rule and the exact ex-

pression for the deformed bond vectors in the case of an arbitrary deforma-

tion imposed on a bulk solid, in which atoms are assumed to lie in a three-

dimensional continuum. From Figure 2.4, and from the map p = F (P), it is seen

that

a = F (X + A) − F (X) . (2.15)

By expanding the right hand side of Equation 2.15 in a Taylor series about X,

and using F = ∇F , Equation 2.15 is rewritten as

a = F(X) · A +
1
2!
∇F(X) : (A ⊗ A) +

1
3!
∇∇F(X) � (A ⊗ A ⊗ A) + h.o.t , (2.16)

where ‘�’ denotes the action of a fourth rank tensor on a third rank tensor that

results in a vector, ‘:’ denotes the action of a third rank tensor on a second rank

tensor that results in a vector, ‘⊗’ denotes the standard tensor product [81], and

‘h.o.t’ denotes higher order terms. Equation 2.16 gives the exact expression for

the deformed bond vector (as obtained directly from the deformation map) and

shows that the deformed bond vector depends not only on F, but on its gradi-

ents as well. If F is spatially uniform, all its gradients vanish, and the Taylor
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series reduces to the standard CB rule (Equation 2.14), which becomes exact in

this case. Hence, the Taylor series holds the key to the degree of homogeniza-

tion enforced on F. A key idea to note is that, even in the case of inhomogeneous

deformations at the atomic scale, if the deformation map, F , is differentiable on

the closed interval [X,X+A], the mean value theorem in calculus [37] guarantees

the existence of some Xα ∈ [X,X + A] that allows Equation 2.15 to be rewritten

as

a = F(Xα) · A . (2.17)

This idea provides the basis for modifying the CB rule to account for inho-

mogeneous deformations at the atomic scale, as will be subsequently discussed

in detail in Section 4.2.2, in the context of a particular class of inhomogeneous

deformations.

2.4.3 Curved membrane modification

The standard CB rule (Equation 2.14) requires modification to be applicable to

two-dimensional membranes (which are, geometrically, two-dimensional man-

ifolds) instead of bulk crystals. In such cases, Equation 2.14 needs to be inter-

preted in terms of F mapping tangent vectors to the manifold at point X, from

the undeformed to the deformed domains [56]. Here, it is possible to use ei-

ther a three-dimensional (bulk) F or a two-dimensional (surface) F − the actions

of both these operators on tangent vectors to two-dimensional manifolds, are

identical [81]. In the present work (details in Chapter 3), a three-dimensional

deformation gradient evaluated at the surface of the SWNT, is employed. Since
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all the carbon atoms are assumed to lie on the same cylindrical surface, this

means that there is no radial variation of F. Further, in the case of curved mem-

branes, the bond vectors are, in fact, chords and not tangent vectors (and the

chord ≈ tangent approximation gets worse as the curvature increases). For such

domains, the standard CB rule has been extended using the idea of an expo-

nential map [2, 3] and termed as the exponential CB rule. This modification is

summarized below.

In this modification, the bond lengths are viewed as intrinsic distances in

the two-dimensional continuum, which are essentially geodesics connecting

the two atoms on the surface (although, for energetic considerations, the bond

lengths are always measured as the Euclidean straight-line distances between

carbon atoms). To be able to apply the CB rule in this case, it is necessary to first

‘unwrap’ the geodesic onto the tangent plane at X, then apply F to this geodesic

vector to obtain the deformed geodesic vector lying on the deformed tangent

plane, and finally ‘wrap’ the deformed geodesic back onto the deformed sur-

face to obtain the Euclidean bond lengths. The exponential map provides the

mathematical means to perform the ‘unwrapping’ and ‘wrapping’ operations

described above. It is noted, from Section 2.4.2, that if a three-dimensional

F is used in the CB rule with the SWNT atoms assumed to lie in the three-

dimensional continuum, the standard CB rule (without any modification, i.e.,

using the bond vectors as chords) gives the exact solution if F is spatially uni-

form [12]. In such an approach, modifications to the CB rule become necessary

only if F is inhomogeneous at the atomic scale.

The notion of the exponential map modification to the CB rule is made more

specific in the following. The starting point here is the undeformed SWNT with
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Figure 2.5: The exponential CB rule for SWNTs modeled as two-
dimensional, curved manifolds [2].

the atom positions obtained as described in Section 2.3. A continuous deforma-

tion denoted by x = F (X) is considered, where X and x denote the positions of

a material point in the undeformed and deformed configurations respectively.

The deformation gradient is obtained as F = ∇XF . The Euclidean bond vectors

before and after deformation are denoted by A and a respectively. As mentioned

previously, the exponential CB rule effectively replaces F in Equation 2.14 by a

composition of three operations − an ‘unwrapping’ of the geodesic connecting

the atoms onto the tangent plane at X (this operation is denoted here by M),

operation of F on this geodesic vector to obtain the deformed geodesic vector

lying on the deformed tangent plane, and finally a ‘wrapping’ of the deformed

geodesic vector back onto the deformed surface (this operation is denoted by

M−1) to obtain the Euclidean bond lengths.

This sequence is graphically shown in Figure 2.5, and may be expressed as

follows:

26



a =M−1F(X)MA . (2.18)

This results in obtaining the Euclidean deformed bond lengths in terms of F.

2.4.4 Bravais multi-lattice modification

When dealing with an SWNT, special attention needs to be paid to the fact that

graphene is a Bravais multi-lattice consisting of two woven simple sub-lattices

(Figure 2.6). A centrosymmetric (simple Bravais) lattice is one that has pairs

of bonds in opposite directions around each atom. The CB rule ensures equi-

librium for such a structure for arbitrary, imposed, homogeneous deformations

[17, 85]. The graphene lattice that forms an SWNT, however, is not centrosym-

metric, but consists of two different sub-lattices (a Bravais multi-lattice), each of

which is centrosymmetric (Figure 2.6). The standard crystal elasticity treatment

of multi-lattices is to assume that the homogeneous deformation affects each of

the simple lattices [17, 85].

Additional kinematic variables describing the relative shifts of the simple

lattices must be introduced to properly describe the configurations of uniformly

strained multi-lattices. An in-plane shift vector, η, becomes necessary in such a

case to relate an atom pair when each of the atoms in the pair lies on different

sub-lattices [2, 3, 12, 13, 44, 52, 79, 85, 101]. This leads to a modification in

Equation 2.18 as follows:

a(i, j) =M−1F(X)M [
A(i, j) + η

]
, (2.19)
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Figure 2.6: The graphene lattice viewed as a Bravais multi-lattice − either a
simple Bravais hexagonal lattice with two basis atoms (a pair of
filled and empty circles), or two woven simple Bravais hexago-
nal lattices (the collection of filled and empty circles separately)
shifted relative to each other.

when atoms i and j belong to different sub-lattices, while η = 0 otherwise. It

is noted, from above, that a deformed bond length, a, in general, is a function

of E and η. This is shown explicitly through analytic expressions provided in

Section 4.2. In practice, the shift vector can be accounted for by providing ad-

ditional degrees of freedom to the coordinates of the representative atom in the

undeformed configuration, and finding these additional displacements by min-

imizing the binding energy of the representative atom for each imposed defor-

mation, F. In the present two-dimensional membrane continuum, η has only

in-plane components (specifically, with respect to a cylindrical basis, the only

allowed components are ηΘ and ηZ, with the radial component constrained to be

zero). Since the internal relaxation due to the shift vectors is applied to the ref-

erence configuration, material frame indifference of the deformed bond lengths

to rigid body rotations is automatically guaranteed. In fact, this guarantees ma-

terial frame indifference even when an exact deformation map (Equation 2.16)
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is used to obtain the deformed bond lengths instead of the CB rule (viewed as

a truncated Taylor series). This is made clear in the context of a specific de-

formation map in Chapter 3. This implementation approach also ensures that

the internal relaxation can be easily incorporated in the analytic expressions for

the deformed bond vectors derived subsequently in Sections 3.3 and 4.2.2. In

all of the above equations involving F or E, it is noted that when the deforma-

tion is inhomogeneous, these tensors need to be evaluated at a specific point on

each bond in order to apply the above equations and obtain the deformed bond

lengths, as described in Section 2.4.2.

2.5 Continuum strain energy density expressed in terms of in-

teratomic potentials

The deformed bond lengths obtained from Equation 2.19 are used along with

Equation 2.1 to define a hyperelastic, continuum strain energy density function,

W, for the two-dimensional membrane SWNT model.

A representative unit cell of the graphene lattice, indicated in Figure 2.7, con-

taining two carbon atoms [20], is considered. In view of the two-atom basis for

graphene, its entire structure can be generated by replicating the parallelogram

in Figure 2.7 without gaps or overlaps. This leads to the following definition of

W [2, 3, 12, 13, 44, 52, 101]:

W(E, η(E)) ≡ Ŵ(E) =

∑
cellV(a(i, j))

Ωcell
, (2.20)

where the bond energies are summed over the domain of the representative unit
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Figure 2.7: The shaded parallelogram shown above is the unit cell in a
graphene sheet.

cell of area Ωcell in the cylindrical configuration. This area is assumed to be pre-

served while rolling up a planar graphene sheet, and hence can be computed

from the planar configuration shown in Figure 2.7. It is noted here that W is

frame-indifferent to rigid body rotations since it depends only on the deformed

bond lengths which have been shown to be frame-indifferent in Section 2.4.4.

This hyperelastic strain energy density also depends on the undeformed crystal

structure and inherits its symmetries. Further, when the deformation is inho-

mogeneous, E varies in space. However, the above definition of W implies that

as long as the deformed bond lengths are obtained by evaluating E at a specific

point on each bond, W is uniform over the unit cell (i.e., it does not contain an

explicit spatial variation within the unit cell). This leads to an approximation of

the total energy in the domain as the sum of unit cell energies.

The second Piola-Kirchhoff stress tensor, T, is obtained as the derivative of

the strain energy density function, Ŵ, with respect to the Green-Lagrangian

strain, E, as follows:
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T(E) =
dŴ
dE

=
∂W
∂E η

+
∂W
∂η E

· dη
dE

=
∂W
∂E η

, (2.21)

since the relaxed shift vector, η = η̂, is chosen such that (referring to earlier

discussion on the shift vector) ∂W
∂η E

= 0. The fourth-rank Lagrangian elasticity

tensor, C, at the onset of deformation has the form [12, 14, 101]

C =
dT(E)

dE

∣∣∣∣∣
E=0

=


∂2W
∂E∂E

− ∂2W
∂E∂η

·
[
∂2W
∂η∂η

]−1

· ∂
2W

∂η∂E


∣∣∣∣∣∣∣
E=0

, (2.22)

where the reference configuration is assumed to be stress-free, i.e., T(0) = 0. Fur-

ther, as noted in [2, 3, 12, 101], the above definition of the strain energy density

(Equation 2.20) leads to stresses with units of force per unit length because W is

defined as the strain energy per unit area (rather than per unit volume) of the

continuum. A consequence of this choice is that the stress and modulus ten-

sors, T(E) and C, defined in Equations 3.4−2.22, are actually the (conventional)

stress × wall thickness and (conventional) modulus × wall thickness, respec-

tively. This issue is further addressed while interpreting numerical results in

Section 4.4.

In the following chapter, the two-dimensional, quasicontinuum, hyperelas-

tic membrane SWNT model is implemented to study the kinematic coupling

between extension and twist in SWNTs.
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CHAPTER 3

KINEMATIC COUPLING BETWEEN EXTENSION AND TWIST USING

THE QUASICONTINUUM MEMBRANE MODEL

3.1 Introduction

This chapter presents a study of coupled extension and twist deformations in

SWNTs. Aspects of the CB rule (Section 2.4) related to spatial inhomogeneity of

the deformation gradient, F, at the atomic scale, are investigated in the context

of a specific class of extension-twist deformation problems. Analytic expres-

sions are derived for the deformed bond lengths using the standard CB rule,

as well as its modified versions (Section 2.4). The extension-twist deformation

problem is chosen because of its simplicity in being able to describe a deforma-

tion map, which makes it possible to compare the modified CB rules against the

exact solution (i.e., the exact analytic expression for the deformed bond vectors)

arising directly from the deformation map (Section 2.4.2). This approach pro-

vides insights into the CB rule and its possible modifications for use in more

complicated deformations where an explicit deformation map is not available.

Specifically, it is demonstrated that in the case of inhomogeneous deformations

at the atomic scale for which the CB rule is only approximate (as mentioned in

Section 2.4.2), the mean value theorem in calculus [37] can be used as a guide

to modify the CB rule (Equation 2.14) to account for the spatial inhomogene-

ity of F at the atomic scale. The deformed bond lengths are subsequently used

to formulate a hyperelastic continuum strain energy density function based on

interatomic potentials (as described in Section 2.5).

The deformation map (and hence F, the bond vectors, and the continuum
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strain energy density function) contains certain parameters, some of which are

imposed and others determined as a result of energy minimization in a standard

variational formulation. Numerical results for kinematic coupling and binding

energy per atom are presented in the case of imposed extension and twist de-

formations on representative chiral, zigzag, and armchair SWNTs using the CB

rule and its modifications, as well as the exact solution based directly on the

deformation map. Although the ideas presented in this chapter are investigated

only in the context of SWNTs, they are also applicable to other lattices.

This chapter is organized as follows. A generalized deformation map that

models coupled extension and twist of a thin-walled, circular cylinder is pre-

sented in Section 3.2, and an analysis of the equivalence between the strong

and weak forms of static equilibrium for this proposed deformation map fol-

lows in Sections 3.2.1 and 3.2.2. The deformation gradient (F) derived from this

map happens to be inhomogeneous, in general. Hence, in the context of this

coupled extension-twist deformation, possible modifications to the CB rule are

presented in Section 3.3 (in conjunction with the previous discussions in Sec-

tion 2.4.1) to deal with the inhomogeneity in F using analytic expressions for

the deformed bond lengths derived from different approaches. Finally, numer-

ical results are presented in Section 3.4 to illustrate the suggested modifications

in the context of two different deformation problems. In the first problem, dis-

cussed in Section 3.4.1, the coupling between extension and twist deformations

imposed on SWNTs is studied, while in the second, discussed in Section 3.4.2,

the variation of the binding energy per atom with imposed extension on SWNTs,

is studied. A discussion of the results and some concluding remarks in Section

3.5 complete the chapter.
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3.2 Generalized extension and twist of a thin-walled circular

cylinder

A generalized extension-twist deformation map is presented in Box 2 in terms

of cylindrical polar coordinates, and illustrated in Figure 3.1.

r = γR

θ = Θ + f (Z; k)

z = (1 + ε)Z

Box 2: The generalized extension-twist deformation map.

i  (undeformed)

e

r
R

Θi if(Z ;k)

1

2

e
e

e

R

Θ

e

e

r

θ

i  (deformed)

Figure 3.1: Undeformed and deformed states corresponding to the gener-
alized extension-twist deformation map in Box 2.

In Box 2, r and R are the deformed and undeformed radii of cross-section

of a thin-walled, circular cylinder respectively, γ is a parameter that captures

34



the change in cross-sectional radius, θ and Θ are, respectively, the deformed

and undeformed polar angles on the cylindrical cross-section, z and Z are the

deformed and undeformed axial coordinates respectively, ε is the axial strain,

and f , parameterized by k, is a sufficiently smooth and differentiable function

of Z. For example, in the special case when f (Z; k) ≡ kZ, k is the angle of twist

per unit undeformed length of the cylinder. It is noted that the deformation

map in Box 2 is, in general, inhomogeneous owing to the presence of f . As

is evident, this deformation maps an undeformed cylinder onto a deformed

cylinder (Figure 3.1).

The present section is organized as follows. First, the local (strong) form of

the equilibrium equations is presented in Section 3.2.1. Next, the variational

(weak) form of equilibrium based on energy minimization, is presented in Sec-

tion 3.2.2. Both formulations are consistently Lagrangian, i.e., all equations are

expressed in terms of the undeformed configuration. It is assumed that there

are no body forces (i.e., volumetrically distributed forces) under consideration,

and the deformation in Box 2 is assumed to be achieved by the application of

surface tractions alone. It is useful in this context to refer to Ericksen’s theorem,

a proof of which can be found in [62]. The theorem states that homogeneous

deformations are the only deformations (of an unconstrained, isotropic, elastic

solid) which can be achieved by the application of surface tractions alone, inde-

pendent of the form of the strain energy density function. In the present work,

however, the equivalent continuum material is not assumed to be isotropic and,

therefore, Ericksen’s theorem does not apply. Finally, the correspondence be-

tween the two formulations is investigated. Contrary to the formulation of a

standard boundary-value-problem, the correspondence between the strong and

weak forms is not trivial in the present case because the deformations have been
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prescribed and not obtained as solutions to the field equations with boundary

conditions. The analysis also enables the establishment of conditions on f for

equivalence of the two formulations.

3.2.1 Local form of the static equilibrium equations

It is convenient to perform the present analysis by employing two sets of cylin-

drical basis vectors. A referential set of basis vectors, {eR,eΘ,eZ}, and a de-

formed set of basis vectors, {er ,eθ,ez}, are introduced. The two sets of basis

vectors are related by an orthogonal transformation given as follows (Figure

3.1):

er = eR cos(f ) + eΘ sin(f )

eθ = −eR sin(f ) + eΘ cos(f )

ez = eZ .

(3.1)

In terms of these basis vectors, the deformation gradient, F, can be evaluated

to be

F = γ(er ⊗ eR + eθ ⊗ eΘ) + γR f′eθ ⊗ eZ + (1 + ε)ez⊗ eZ , (3.2)

where f ′ denotes the derivative of f with respect to Z. The corresponding ex-

pression for the Green-Lagrangian strain tensor, E = 1
2(FTF− I ) (with I being the

second-rank identity tensor), is
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E =
1
2

(
γ2 − 1

)
(eR⊗eR+eΘ⊗eΘ)+

1
2
γ2R f′(eΘ⊗eZ+eZ⊗eΘ)+

1
2

(γ2R2 f ′2+2ε+ε2)eZ⊗eZ .

(3.3)

The second Piola-Kirchhoff stress tensor, T, is obtained as the derivative of

the strain energy density function, Ŵ, with respect to E as follows:

T =
dŴ
dE

=
∂W
∂E η̂

+
∂W
∂η η̂

· dη
dE η̂

=
∂W
∂E η̂

, (3.4)

since the relaxed shift vector η̂ is chosen such that (Section 2.4.4)

∂W
∂η η̂

= 0 . (3.5)

The first Piola-Kirchhoff stress tensor, S, is obtained as

S = F · T . (3.6)

Next, the referential version of the equilibrium equations without body

forces is presented in cylindrical polar coordinates. First, it is assumed that the

surfaces of the thin-walled cylinder are traction-free, i.e.,

S · eR = 0 (3.7)

on the outer and inner lateral surfaces. However, since the SWNT is a single-

atomic layer thick with a vanishingly small wall thickness, Equation 3.7 is as-
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sumed to be true through the ‘thickness’ as well. The equilibrium equations, in

conjunction with Equation 3.7, along {eR,eΘ,eZ} respectively, are given as [28]

1
R
∂SRΘ

∂Θ
− 1

R
SΘΘ +

∂SRZ

∂Z
= 0

1
R

SRΘ +
1
R
∂SΘΘ

∂Θ
+
∂SΘZ

∂Z
= 0

1
R
∂SZΘ

∂Θ
+
∂SZZ

∂Z
= 0 .

(3.8)

Using Equations 3.1 and Equation 3.2 in Equation 3.6, and projecting Equa-

tions 3.8 along er gives

TΘΘ + 2R f′TΘZ + f ′2R2TZZ = 0 . (3.9)

Similarly, projecting Equations 3.8 along eθ gives

∂TΘΘ

∂Θ
+ f ′R

∂TΘZ

∂Θ
+ R

∂TΘZ

∂Z
+ f ′′R2TZZ + f ′R2∂TZZ

∂Z
= 0 . (3.10)

Finally, projecting Equations 3.8 along ez gives

∂TΘZ

∂Θ
+ R

∂TZZ

∂Z
= 0 . (3.11)

Further, the stress measures in the present problem, can be assumed to be

independent of the polar coordinate, Θ. Thus, Equations 3.10 and 3.11 can be

further reduced to
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∂

∂Z
[TΘZ + f ′RTZZ] = 0 , (3.12)

and

∂TZZ

∂Z
= 0 , (3.13)

respectively. Equations 3.12 and 3.13, along with Equation 3.9, form the final set

of static equilibrium equations in local form for the present problem.

3.2.2 Weak form of the static equilibrium equations: Principle

of stationary potential energy

The total potential energy of any given deformation map, Ψ, can be written as

Π(Ψ) = Πint − Πext + Πnb , (3.14)

where Πint is the internal (strain) energy of the system, given as

Πint =

∫

Ω0

Ŵ(E(Ψ))dΩ0 , (3.15)

where Ω0 is the undeformed domain, Πext contains the body forces, and Πnb

contains the non-bonded interactions. As mentioned earlier, the presence of

body forces is not considered in the present problem. Non-bonded interactions

[2], which account for forces acting between non-bonded pairs of atoms, are
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also excluded in the present problem. According to the principle of stationary

potential energy, the equilibrium configurations, Φ, of the system, are stationary

points of the potential energy functional. Therefore, it follows that

δΠ(Φ) ≡ ∂

∂β
Π(Φ + βΥ)

β=0
= 0 , (3.16)

for all admissible variations, Υ, that satisfy the specified displacement boundary

conditions. In connection with the deformation map prescribed in Box 2 and

Equation 3.3, it is useful, at this stage, to consider Ŵ as a function of γ, k and ε,

i.e.,

Ŵ(E) ≡ W̃(γ, k, ε) . (3.17)

The following sub-sections investigate the possibility of satisfying the local

equilibrium equations (Equations 3.12, 3.13, and 3.9) by minimizing W̃ with re-

spect to its arguments. Here, the following distinction is made. If ε is imposed,

and γ and k determined by minimization, the problem is called an imposed ex-

tension problem. On the other hand, if k is prescribed, and γ and ε are obtained

through minimization, the problem is called an imposed twist problem.

Imposed extension problem

In the present problem, ε is imposed, and γ and k are obtained through min-

imization of W̃. Accordingly, it is required that ∂W̃
∂γ

= 0. Using this condition,

along with Equation 3.3 and 3.4, gives
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TΘΘ + 2R f′TΘZ + f ′2R2TZZ = 0 , (3.18)

which is precisely Equation 3.9 obtained from the local form of static equilib-

rium. In addition, it is also required that ∂W̃
∂k = 0, which leads to

∂ f ′

∂k
[TΘZ + f ′RTZZ] = 0 . (3.19)

Assuming ∂ f ′

∂k , 0, it follows that

TΘZ + f ′RTZZ = 0 , (3.20)

which satisfies Equation 3.12. With regard to satisfying Equation 3.13, the fol-

lowing relation between the second Piola-Kirchhoff stress and the Cauchy stress

is noted:

T = JF−1 · σ · F−T , (3.21)

where J = det(F), from which it follows that

TZZ =
γ2

(1 + ε)
σzz . (3.22)

Since σzz is constant under imposed extension, Equation 3.22 implies that

Equation 3.13 is also satisfied. Hence, the imposed extension minimization

problem satisfies the required equilibrium equations (without body forces) for

arbitrary f (Z; k) satisfying ∂ f ′

∂k , 0.
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Imposed twist problem

In the present problem, k is imposed, and γ and ε are obtained through min-

imization of W̃. As in the previous sub-section, it is first noted that ∂W̃
∂γ

= 0,

which gives Equation 3.18, and hence satisfies Equation 3.9. In addition, it is

also required that ∂W̃
∂ε

= 0, leading to

(1 + ε)TZZ = 0⇒ TZZ = 0 , (3.23)

which satisfies Equation 3.13. Equation 3.23, along with Equation 3.22, also

implies

σzz = 0 . (3.24)

Using Equation 3.23 in Equation 3.12, it is required that

TΘZ = constant , (3.25)

in order to satisfy the full set of equilibrium equations. Using Equation 3.21,

combined with the result from Equation 3.24, it follows that

TΘZ = γσθz . (3.26)

Now, a necessary condition is generated, to satisfy Equation 3.25, by consid-

ering a small-strain theory. From Saint Venant’s theory of torsion [28], and from

using Box 2, it follows that
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σθz = GγR f′ , (3.27)

where G is the twist modulus of the material in a small-strain theory. Finally,

from using Equation 3.27 and Equation 3.26 in Equation 3.25, it follows that

f ′ = constant , (3.28)

as the necessary condition to satisfy static equilibrium (without body forces) in

the imposed twist problem.

In summary, it is noted that the imposed extension problem satisfies equi-

librium for arbitrary f (satisfying ∂ f ′

∂k , 0), while the imposed twist problem

requires the condition f ′ = constant.

3.3 Bond vector deformations

In the present section, analytic expressions are obtained for the deformed bond

vectors between any two atoms denoted by i and j using the CB rule and its

modifications (Section 2.4). The deformed bond vectors, obtained directly using

the deformation map (Box 2), serve as a basis for evaluating the accuracy of

these deformation rules. Subscripts i and j, in the following, are labels used to

denote the corresponding atoms.
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3.3.1 Modified Cauchy-Born rule in the generalized extension-

twist problem

In the following discussion, the Euclidean bond vectors before and after defor-

mation are denoted by A and a respectively. The projected geodesic vector lying

on a tangent plane to the undeformed SWNT is denoted by Ã, and the deformed

geodesic vector (lying on a tangent plane to the deformed SWNT) obtained from

directly using the deformation map (Box 2) is denoted by ã, while the deformed

geodesic vector obtained from the exponential CB rule (Section 2.4.3) is denoted

by â.

As discussed in Section 2.4.3, the exponential CB rule effectively replaces F

in Equation 2.14 by a composition of three operations − first ‘unwrapping’ the

geodesic connecting the atoms onto the tangent plane at X (this operation is

denoted here by M), then applying F to this geodesic vector to obtain the de-

formed geodesic vector lying on the deformed tangent plane, and finally ‘wrap-

ping’ the deformed geodesic vector back onto the deformed surface (this oper-

ation is denoted by M−1) to obtain the Euclidean bond lengths. This process

is graphically shown in Figure 2.5, and mathematically expressed in Equation

2.18.

In the context of the extension-twist deformation problem (Box 2), the un-

deformed geodesic vector directed from atom i to atom j, when ‘unwrapped’

onto the undeformed tangent plane at a referential material point, is given (in

cylindrical polar coordinates) by
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Ã =MA

= R(Θ j − Θi)eΘ + (Z j − Zi)eZ .

(3.29)

Next, the deformed geodesic vector, obtained directly by using the deforma-

tion map given in Box 2 (and hence the infinite Taylor series denoted in Equation

2.16), can be written as

ã = F (Ã)

= γR(θ j − θi)eθ + (zj − zi)ez

= γR[(Θ j − Θi) + { f (Z j) − f (Zi)}]eθ + (1 + ε)(Z j − Zi)ez .

(3.30)

It is noted that use of the direct deformation map, as given by Equation 2.16,

leads to a higher gradient theory where W ≡ Ŵ(F,∇F,∇∇F, . . .). Though the

definition of stress measures (and hence the use of the local formulation) is not

as straightforward as in the case when W ≡ Ŵ(F), the weak formulation (Section

3.2.2) can still be used directly to perform deformation simulations. Also, com-

ments related to material frame indifference and symmetry made in Section 2.5,

apply to the use of the direct map as well.

Now, the deformed geodesic vector is obtained by using the exponential CB

rule (using Equations 4.4 and 3.2 in Equation 2.18). However, since F, in general,

varies with space in the present analysis, it is evaluated at an intermediate point
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Xα lying on the undeformed geodesic vector directed from atom i to atom j, and

is given by

â = F(Xα) · Ã = γR[(Θ j − Θi) + (Z j − Zi) f ′(Zα)]eθ + (1 + ε)(Z j − Zi)ez , (3.31)

where Zα is the undeformed axial coordinate of this intermediate point. Com-

paring Equations 3.31 and 3.30 enables the determination of the point, Xα, at

which the exponential CB rule (Equation 2.18) gives the exact solution as ob-

tained from Equation 2.16. This is obtained as the solution of

f ′(Zα) =
f (Z j) − f (Zi)

Z j − Zi
. (3.32)

It is noted that, since f is assumed to be a differentiable function between Zi

and Z j , the mean value theorem states that Equation 3.32 can always be solved

to obtain Zα [37]. It is useful, at this point, to refer to Section 2.4.2 (Equation

2.17) in which a discussion on applying the CB rule for general, inhomogeneous

deformations is provided in the context of bulk crystals. As an illustration of the

application of Equation 3.32, it is noted that when f (Z; k) ≡ kZ, Equation 3.32 is

identically satisfied for all choices of Xα, and the exponential CB rule yields the

exact deformed bond vectors (and bond lengths) independent of the point at

which F (in Equation 2.14) is evaluated. However, if f (Z; k) ≡ kZ2, Equation

3.32 gives the best location to apply the CB rule to be Zα = 1
2(Zi + Z j), which

corresponds to the mid point of the ‘unwrapped’ undeformed bond vector. For

all other choices of Zα, the result from the CB rule is, clearly, only approximate

as pointed out in Section 2.4.2.
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The actual length of the deformed bond vector, i.e., the Euclidean distance

between atoms i and j in the deformed configuration (Figure 2.5), is obtained

by ‘wrapping’ the deformed geodesic (Equation 3.31) back onto the deformed

cylinder, and is given by

a(i, j) = |a|

= |M−1â|

=

√
[4γ2R2sin2{1

2
((Θ j − Θi) + (Z j − Zi) f ′(Zα))} + (1 + ε)2(Z j − Zi)

2] .

(3.33)

As mentioned before, for a choice of the ‘unwrap’ point (Xα) given by Equa-

tion 3.32, this expression coincides with the exact expression obtained directly

from using the deformation map (Box 2). For all other choices of α, this ex-

pression is, in general, only approximate. In principle, such an approximation

can be improved by successively adding higher order terms of the Taylor series

denoted in Equation 2.16.

Equation 4.5 is used to perform deformation simulations on SWNTs in Sec-

tion 3.4. In the following sub-section, Section 3.3.2, some general observations

are presented on the nature of the deformation gradient, F, pertaining to the CB

rule, which generalize some of the conclusions drawn in the present section.
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3.3.2 Observations on the deformation gradient related to the

Cauchy-Born rule

A setting similar to the one in Section 3.2.1 is considered1. A set of basis vectors,

{eI} (I = 1,2,3), are defined to describe the undeformed configuration, while

a set of basis vectors, {ei}, (i = 1,2,3) are defined to describe the deformed

configuration such that these sets of basis vectors are related by an orthogonal

transformation, Q, similar to Equations 3.1, i.e.,

ei = QiI eI . (3.34)

For convenience, the undeformed basis vectors are also expressed in terms

of a fixed Cartesian basis {eα} (α = 1,2,3) as follows:

eI = RIαeα , (3.35)

and it is further noted that QiI Q jI = δi j , RIαRJα = δIJ, where δi j is the Kronecker

delta function defined by

δi j =


1, i = j

0, i , j
. (3.36)

It is also to be noted that the basis vectors, {eI}, {ei}, and the orthogonal

transformations, Q and R, vary in space in general (as also seen from Equation

1In the present section (Section 3.3.2), lower as well as upper case Latin and Greek indices
range from 1 to 3, and indices repeated in the same term are summed over their respective
ranges unless explicitly stated otherwise.
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3.1 for the cylindrical basis vectors). In terms of these basis vectors, the defor-

mation gradient, F, and the undeformed geodesic vector can be expressed (in

forms generalizing Equations 3.2 and 4.4 respectively) as

F = FiJei ⊗ eJ , (3.37)

and

Ã = ÃIeI . (3.38)

It is noted that the components ÃI are constants (cf. with Equation 4.4), while

the components FiJ may either be constants or vary in space depending on the

specific deformation map. In the present deformation considered (Box 2), this

depends on the choice of f (Z; k). From Equation 3.2, it is evident that FiJ would

be constant in the present case if f (Z; k) is constant (pure extension problem) or

linear (kZ), while it would vary with space otherwise. Using the exponential CB

rule (Section 2.4.3), the deformed geodesic vector is expressed (as a generalized

version of Equation 3.31) in terms of the fixed Cartesian basis as follows:

â = FiJÃJQiI RIαeα . (3.39)

In Equation 3.39, it is noted that the components of â are inhomogeneous, in

general, owing to the presence of Q and R, irrespective of whether the compo-

nents FiJ vary with space. However, the magnitude of â can be found (using the

orthogonality of Q and R) to be
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â =

√
FiJFiK ÃJÃK . (3.40)

This shows that the deformed geodesic length, obtained from the exponen-

tial CB rule, would be independent of the spatial variation in F if its components

FiJ are constants. For the deformations considered in the present work, this also

means that the deformed bond lengths would be independent of the spatial

variation in F if its components are constants, which is in agreement with the

conclusions drawn from Section 4.2.2. Using a similar approach, one can ob-

serve that similar conclusions hold even if F is expressed in a fully referential

basis (F = FIJeI⊗eJ). In this case, the magnitude of the deformed geodesic vector

would be equal to
√

FIJFIK ÃJÃK , and the deformed bond lengths would be inde-

pendent of the spatial variation in F if its components FIJ are constants. Finally,

as mentioned in Section 2.4.2, it is observed that the standard CB rule (with no

modification using the exponential map) gives the exact deformed bond vector

if the components of F are spatially constant with respect to the fixed Cartesian

basis (as would occur, for example, in the case of simple tension, or uniform

radial expansion and contraction of a circular cylinder) because the gradient-

based terms in Equation 2.16 would automatically vanish in such a case.

3.4 Deformation simulations

In the present section, the results of SWNT deformation analyses are discussed

corresponding to specific choices of f (Z; k) in Box 2.
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3.4.1 f (Z; k) ≡ kZ: Imposed twist and extension problems

Some of the published work that deals with SWNTs under imposed twist and

extension (Section 3.2.2) [12, 13, 44, 52, 101] involves a deformation map as given

in Box 2, with f (Z; k) ≡ kZ. As shown in Section 3.2.2 (Equation 3.28), this is the

only choice for f which can be maintained in equilibrium without body forces

for an imposed twist problem. In [12], deformation analysis is performed using

the standard CB rule (Equation 2.14) without constraining the atoms to lie on

a single surface. It is shown that the bond lengths (and the kinematic coupling

plots) obtained from the standard CB rule coincide with those obtained from

the direct deformation map only for small values of k. This differs from the

present approach in which the exponential CB rule is used with all the atoms

lying on a single surface (the radial component of η, ηR, is constrained to be

zero in the present work − Equation 2.19). In the present case, since f ′ is a

constant, Equation 3.32 implies that the deformed bond vector (and hence the

kinematic coupling results − induced extension obtained under imposed twist)

obtained from the exponential CB rule is independent of the point at which F is

evaluated. Also, Equation 3.32 implies that this deformed bond vector is exact

(Equations 3.30 and 3.31 coincide). This has, however, been shown to not be true

if the standard CB rule is used [12], and hence the exponential map modification

becomes essential in this case to obtain the exact bond lengths.

Kinematic coupling results are presented (using the exponential CB rule and

ηR = 0) for imposed twist in Figures 3.2(a) and 3.2(b), and imposed extension in

Figures 3.2(c) and 3.2(d), for representative chiral (9,6), zigzag (10,0), and arm-

chair (5,5) SWNTs corresponding to parameter set 1 (Table 2.2) of the Tersoff-

Brenner interatomic potential (Section 2.2). The results from using parameter set
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Figure 3.2: Kinematic coupling plots for representative chiral (9,6), zigzag
(10,0), and armchair (5,5) SWNTs corresponding to f (Z; k) ≡
kZ, using parameter set 1 (Table 2.2) of the Tersoff-Brenner po-
tential (Section 2.2).

2 (Table 2.2) of the Tersoff-Brenner potential are qualitatively similar, but quanti-

tatively different (not shown). This aspect of the Tersoff-Brenner potential used

in the quasicontinuum membrane model is discussed subsequently in Chapter

4 (Section 4.5), in estimating elastic moduli and stress-strain curves. In Figure

3.2(a), it is observed that there is a small decrease in the radii of the SWNTs for

large values of the twist parameter, k. In Figure 3.2(b), it is observed that the

chiral SWNT exhibits an asymmetric coupling between extension and twist, for

imposed twist. The armchair and zigzag SWNTs, however, exhibit a symmetric

extension ε(k) about k = 0. Further, the chiral SWNT exhibits the largest |ε | for

large values of |k|. In the case of imposed extension, it is noted that the changes
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in radius caused by extension (Poisson’s effect [28] − Figure 3.2(c)) are, in gen-

eral, much larger than those caused by twist (Figure 3.2(a)). The chiral SWNT

twists under imposed extension (Figure 3.2(d)), while the armchair and zigzag

SWNTs do not (i.e., the induced twists for the armchair and zigzag SWNTs are

zero throughout the range of imposed extension). This behavior is related to the

atomic arrangements in the SWNTs (Figure 1.1 and Appendix B). This aspect of

the kinematic coupling is explored again, in detail in Section 5.5.2, using a com-

pletely independent approach with a one-dimensional rod model of SWNTs.

Some of the prior, published work related to extension-twist coupling in

SWNTs is discussed in the present context. In [30], an approach is presented for

using bond-stretching and bond-bending modes to describe gap energy mod-

ulation by external strains, dimensional and torsional deformations caused by

charge injection, and stretch-induced torsion. The dependence of these proper-

ties on the SWNT chirality is investigated, the stretch-induced twist as a func-

tion of the chiral angle is derived, and it is shown that the stretch-induced twist

vanishes for armchair and zigzag SWNTs − in agreement with the results in

the present work (see also Section 5.5.2 and Appendix B). A direct quantita-

tive comparison is not made since [30] conclude that the absolute magnitude of

these effects may strongly depend on the details of the empirical model used

for calculations. In [31], a nonlinear stick-spiral model is developed, based on

a molecular mechanics concept, to investigate elastic behavior of an SWNT un-

der axial, radial, and torsion conditions, including extension-twist coupling in

chiral SWNTs with special attention paid to the effects of SWNT chirality and

size. [51] use classical MD with the second generation reactive empirical bond

order (REBO) potential [9] to characterize strain-induced twist limited to chiral

SWNTs. However, the differences in the atomistic descriptions between these
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and the present work make it difficult to carry out a direct comparison.

Further, it is mentioned here that a simplified version of the Tersoff-Brenner

[8, 86] potential is employed in the present work (Section 2.2). The same, sim-

plified version is also used by [2, 3, 44, 52, 101]. In particular, F(i, j) (called Fi j in

[8]) is assumed to be zero in the expression for B̄(i, j) in [8] (called B̄i j in Equa-

tion 10 of [8]). The primary reason for doing this is to employ an analytically

convenient form of the interatomic potential (there is no intrinsic difficulty in

using the complete expressions in [8]). The consequences of using this form of

the potential are discussed in detail in [12]. It is observed that the assumed form

is exact for this class of problems for imposed strains of up to about 30% (after

which the bond order of some of the carbon atoms changes − bonds may break

and new bonds may form). This is in agreement with some earlier results on

tensile yield strains of SWNTs using MD calculations at temperatures of about

600 K [97, 94]. In particular, [97] reports a strong temperature dependence on

the value of the yield strain (with values as high as 55%at 50 K, decreasing to

about 25%at 1200K), and a weak dependence on the chirality of SWNTs. The

assumed form is, however, exact for the imposed twist problem throughout the

plotted range of imposed k (−0.5 ≤ k ≤ 0.5) because no changes are observed in

the bond orders of the carbon atoms throughout this range of imposed k.

3.4.2 f (Z; k) ≡ kZ2: Imposed extension problem

In the present section, numerical results are presented for imposed extension

problems with f (Z; k) ≡ kZ2 (this satisfies the conditions obtained in Section

3.2.2). Since this choice of deformation ( f (Z; k) ≡ kZ2) is difficult to realize
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physically, plots of the binding energy per atom in the deformed configura-

tions are presented (instead of kinematic coupling plots), i.e., the binding energy

per atom (Eb) for representative chiral (9,6), zigzag (10,0), and armchair (5,5)

SWNTs using parameter set 1 (Table 2.2) of the Tersoff-Brenner interatomic po-

tential. As in the case of Section 3.4.1, the results from using parameter set 2

(Table 2.2) of the Tersoff-Brenner potential are qualitatively similar, but quanti-

tatively different (not shown).

Figure 3.3: Various ‘unwrapping’ rules − (a) start point, (b) mid point, and
(c) end point.

For the present problem, Equation 3.32 gives the best location to apply the

exponential CB rule to be Zα = 1
2(Zi + Z j) (it is noted that since α lies on the

geodesic connecting i and j, it also follows that Θα = 1
2(Θi + Θ j)) − henceforth

referred to as the ‘mid point rule’ − where the deformed bond vectors obtained

from the direct map and the exponential CB rule coincide. Results are also pre-

sented from applying the exponential CB rule at the locations of each of the two

atoms, i and j. These are denoted as the ‘start point rule’ and the ‘end point

rule’ respectively. Figure 3.3 illustrates these different ‘unwrapping’ rules.

In Figure 3.4, the binding energy per atom (as a function of imposed ε) ob-

tained using the three deformation rules mentioned above, are compared for

each type of SWNT. It is observed, as expected, that for all the SWNTs, results

from the ‘mid point rule’ coincide exactly with those from the direct deforma-
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Figure 3.4: Comparison of binding energy per atom (Eb) from different
rules for representative (a) chiral (9,6), (b) zigzag (10,0), and
(c) armchair (5,5) SWNTs corresponding to f (Z; k) ≡ kZ2, us-
ing parameter set 1 (Table 2.2) of the Tersoff-Brenner potential
(Section 2.2). Results from the ‘mid point’ rule coincide exactly
with those from the direct map (here called the exact solution).

tion map (referred to as the exact solution). The results from the ‘start point’ and

‘end point’ rules, however, do not agree with the exact solution − as expected

from the discussion in Section 4.2.2.

3.5 Concluding remarks

In concluding the present chapter, the following remarks are in order.
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• The modified CB rule has been employed to study deformations that are

assumed to be inhomogeneous at the atomic scale. For a specific class

of generalized extension-twist deformations on SWNTs, the present work

deals with determining a point (on the undeformed bond) at which to

evaluate F in the exponential CB rule (Equation 2.18) so that the deformed

bond vectors coincide with the exact expression given by the direct map

(Box 2).

• Numerical results are presented for extension-twist problems with

f (Z; k) ≡ kZ and f (Z; k) ≡ kZ2 (Box 2). The ‘mid point rule’ (Section 3.4)

is analytically shown to give a deformed bond vector coincident with the

exact expression determined from the map. Numerical results for imposed

extension are presented for this problem using the ‘mid point rule’, as

well as the ‘start point’ and ‘end point’ rules (Section 3.4). It is analyti-

cally shown that in the case when f (Z; k) ≡ kZ, the deformed bond lengths

obtained from the exponential CB rule coincide with the exact solution

(Section 4.2.2) independent of the point at which F is evaluated. How-

ever, when f (Z; k) ≡ kZ2, the ‘mid point rule’ alone gives the exact solution

while the ‘start point’ and ‘end point’ rules do not.

• For more complicated deformations, the ‘mid point rule’ does not, in gen-

eral, yield the exact solution. However, in these cases, if a deformation

map is available, the mean value theorem can be utilized to obtain a loca-

tion at which the CB rule gives the exact solution (Equation 3.32).

• In the absence of a generalization of the exponential CB rule for inhomoge-

neous deformations without an explicit deformation map, the ‘mid point

rule’ can still be heuristically recommended based on the fact that the mid

point is unbiased relative to any other point on a bond. A Taylor series
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calculation shown in Appendix A lends further support to this idea.

In the following chapter, the two-dimensional, quasicontinuum, hyperelastic

membrane SWNT model is employed to obtain elastic moduli and stress-strain

curves for SWNTs subject to coupled extension and twist deformations.
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CHAPTER 4

ELASTIC MODULI AND STRESS-STRAIN CURVES IN EXTENSION

AND TWIST USING THE QUASICONTINUUM MEMBRANE MODEL

4.1 Introduction

The present chapter deals with the computation of elastic moduli and stress-

strain curves for SWNTs subject to coupled extension and twist deformations

using the quasicontinuum membrane model introduced in Section 2. The pri-

mary contributions in this chapter, to computing the stress-strain curves and

elastic moduli of SWNTs, are summarized below.

4.1.1 Extension-twist coupling effects

As discussed in Chapter 3, there are notable extension-twist coupling effects in

SWNTs [12, 13, 30, 31, 51]. One of the goals of the present chapter is to take

these coupling effects into account in determining elastic moduli and stress-

strain curves for SWNTs. Explicit expressions for the bond lengths and elastic

moduli are presented in Section 4.2 to elucidate the effects of extension-twist

coupling on the elastic moduli and stress-strain curves.

4.1.2 Cylindrical reference configuration

In determining these constitutive properties, as mentioned in Chapter 2 (Sec-

tions 2.1 and 2.3) and Chapter 3, a cylindrical reference configuration is em-
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ployed in the quasicontinuum membrane SWNT model in the present work

[12, 13, 14] rather than a planar graphene sheet [2, 3, 44, 52, 101]. This enables

the study of variations in the constitutive properties, with diameter and chirality

of SWNTs, that arise from the anisotropy and change in strain energy resulting

from the finite deformation required to roll up a planar graphene sheet into an

SWNT [2, 3]. The bond lengths are measured as Euclidean distances, and the ex-

ponential CB rule, discussed in Section 2.4, is employed to obtain bond lengths

and overcome the deficiencies of the standard CB rule when applied to curved

two-dimensional membranes (Section 2.4). Although [2, 3] provide an excellent

demonstration of the efficacy of the exponential CB rule through FEM simula-

tions of severe twist and bending deformations on SWNTs, the elastic moduli

are still calculated for a planar graphene sheet and considered to be representa-

tive of SWNT values.

4.1.3 DFT approach

As discussed in Chapter 2, the Tersoff-Brenner empirical interatomic poten-

tial is used to model the bond energies, which enables an analytic evaluation

of the derivatives of the strain energy density function rather than a numer-

ical approach. The obtained values for the extension and twist elastic mod-

uli indicate that they do not depend strongly on the chirality of the SWNTs

[3, 14, 44, 70, 101]. The relative magnitudes of the extension and twist mod-

uli, obtained from this approach, fall within the well known range in classical

elasticity theory in most cases, and the computed values for the moduli agree

well with existing experimental results and atomistic studies that employ the

same interatomic potential. However, it is demonstrated in the present chapter,
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that the use of the Tersoff-Brenner interatomic potential in the quasicontinuum

membrane SWNT model can lead to results that depend on the values of pa-

rameters in the potential (Table 2.2). Hence, the present chapter also includes

a computation of the Young’s modulus using a DFT approach [48, 74] (Section

1) by performing unit cell relaxations that avoid the use of an empirical poten-

tial. A comparison between the moduli obtained from both approaches brings

to notice the advantages and limitations of the corresponding methods.

The present chapter is organized as follows. The analysis of SWNTs subject

to tension and torsion is presented in Section 4.2, which also contains an ex-

plicit analytic formula for the bond lengths, along with certain key expressions

for evaluating stresses and elastic moduli. Details of the DFT unit cell simula-

tions are presented in Section 4.3. Section 4.4 presents numerical values of the

elastic moduli and stress-strain curves for representative chiral, armchair, and

zigzag SWNTs subject to coupled extension-twist deformations, and compares

the values obtained in the present work with experimental values and atomistic

simulations in the literature, along with values of Young’s moduli from the DFT

approach in the present work. A discussion of these results, and some conclud-

ing remarks, complete the chapter.

4.2 Tension and Torsion of SWNTs

As discussed in Chapter 3, the extension-twist coupling effects in SWNTs

[12, 13, 14] can be taken into account in determining their elastic moduli and

stress-strain curves. It is convenient to study their constitutive behavior by pre-

scribing a deformation map as given in Box 2 (Section 3.2) which allows exten-
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sion and twist deformations to be treated in a unified manner. For clarity, this

is reproduced below in Box 3 with the specific choice of f (Z; k) ≡ kZ, where k

is the angle of twist per unit undeformed length of the SWNT modeled as a

thin-walled circular cylinder (Section 3.2).

As before in Section 3.2, r and R, in Box 3, are the deformed and unde-

formed radii of cross-section of a thin-walled, circular cylinder respectively,

γ is a parameter that captures the change in cross-sectional radius, θ and Θ

are, respectively, the deformed and undeformed polar angles on the cylindri-

cal cross-section, z and Z are the deformed and undeformed axial coordinates

respectively, ε is the axial strain, and k is the angle of twist per unit undeformed

length of the cylinder. The deformation map in Box 3 is clearly a special case of

the more general deformation map (Box 2) considered in Section 3.2, in which

the satisfaction of the equations of static equilibrium without body forces, as

well as the equivalence between the strong and weak forms of implementing

such a map, have been investigated.

r = γR

θ = Θ + kZ

z = (1+ ε)Z

Box 3: The coupled extension-twist deformation map.

In the present section, the static equilibrium equations, for the specific cou-

pled extension-twist problem in Box 3, are first presented in Section 4.2.1. Next,

the expression for the interatomic bond lengths is given in Section 4.2.2 in terms

of the Green-Lagrangian strain tensor components, which proves to be impor-

tant in determining the stresses and elastic moduli subsequently. Finally, the
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expressions for the second Piola-Kirchhoff stress, as well as the Young’s and

twist moduli, are presented in Section 4.2.3.

4.2.1 Static equilibrium equations

As before in Section 3.2.1, with the assumptions of the lateral surfaces of the

thin-walled cylinder being traction-free and the stress measures being axisym-

metric (i.e., independent of the cylindrical polar coordinate, Θ), the final forms

of the equilibrium equations are (details in Section 3.2.1)

TΘΘ + 2RkTΘZ + k2R2TZZ = 0

∂

∂Z
[TΘZ + kRTZZ] = 0

∂TZZ

∂Z
= 0 . (4.1)

Similarly, following Section 3.2.1, the expression for the Green-Lagrangian

strain tensor can be evaluated to be

E =
1
2

(
γ2 − 1

)
(eR⊗eR+eΘ⊗eΘ)+

1
2
γ2Rk(eΘ⊗eZ +eZ⊗eΘ)+

1
2

(γ2R2k2+2ε+ε2)eZ⊗eZ ,

(4.2)

where {eR,eΘ,eZ} is the set of cylindrical basis vectors spanning the undeformed

configuration. Further, in relation to the deformation map in Box 3 and Equation

4.2, and the strain energy density function prescribed by the quasicontinuum

hypothesis (Section 2.5), it is useful to consider the hyperelastic strain energy

density function, Ŵ, as a function of γ, k, and ε (as in Section 3.2.2), i.e.,
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Ŵ(E) ≡ W̃(γ, k, ε) . (4.3)

From Section 3.2.2, it is recalled that the local equilibrium Equations 4.1

can be satisfied by minimizing W̃ with respect to its arguments in accordance

with the principle of stationary potential energy. This allows for a straightfor-

ward implementation of the coupled extension-twist deformation simulations.

Again, recalling from Section 3.2.2, if ε is imposed, and γ and k are determined

by minimization of W̃, the problem is termed an imposed extension problem.

On the other hand, if k is prescribed, and γ and ε are obtained through minimiza-

tion of W̃, the problem is termed as one of imposed twist. The aforementioned

minimizations are all performed using a BFGS [10, 26, 33, 78] quasi-Newton

minimization subroutine in the MATLABr software.

4.2.2 Bond length deformations

Referring to the discussion in Section 2.4.3, the undeformed geodesic vector di-

rected from atom i to atom j, when ‘unwrapped’ onto the undeformed tangent

plane at a referential material point, is given (in cylindrical polar coordinates)

by

Ã =MA

= R(Θ j − Θi)eΘ + (Z j − Zi)eZ . (4.4)

The actual length of the deformed bond vector, i.e., the Euclidean distance

between atoms i and j in the deformed configuration (Figure 2.5), is obtained by
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‘wrapping’ the deformed geodesic back onto the deformed cylinder (Equation

2.18), and can be derived in terms of the cylindrical polar components of E as

follows:

a(i, j) = |a|

= |M−1F(X)MA|

=

√
[4γ2R2sin2(∆θ) + (∆z)2] , (4.5)

where

∆θ =
(EΘZ + EZΘ)(Z j − Zi) + (1 + 2EΘΘ)R(Θ j − Θi)

2
[√

1 + 2EΘΘ

]
γR

∆z =



√
1 + 2EZZ − (EΘZ + EZΘ)2

1 + 2EΘΘ

 (Z j − Zi) . (4.6)

In the above equations, if i and j belong to different sub-lattices, the only

modification required is to replace Θi ¾ Θi + ηΘ, and Zi ¾ Zi + ηZ in order to

get the bond lengths corresponding to Equation 2.19. Otherwise, ηΘ = ηZ = 0.

As shown in Section 3.3, the deformed bond length for this problem (Box

3), obtained from the exponential CB rule, is exact, i.e., it coincides with the

expression obtained by directly employing the map in Box 3 to the cylindrical

polar coordinates of atoms, and is also independent of the point X in Equation

4.5 at which the exponential CB rule is applied. Section 3.3 contains a detailed

investigation of inhomogeneous deformations in which such is not the case.
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4.2.3 Evaluating stresses and elastic moduli

In the present section, details are presented on evaluating Equations 3.4 and

2.22 using the strain energy density function (W) defined in Equation 2.20. It

is noted that this definition is based on the binding energy for a representa-

tive carbon atom in the lattice, which involves neighboring carbon atoms as

required by the multi-body coupling term in the Tersoff-Brenner interatomic

potential (Equation 2.1) − typically, nearest and next-to-nearest neighbor inter-

actions. Section 2.3 contains details on identifying the relevant bonds and calcu-

lation of the binding energy for a representative carbon atom. In the following,

it is assumed that W is completely expressed in terms of Euclidean interatomic

lengths alone, i.e., W(E, η(E)) ≡ W(a(i, j)), where i and j refer to all the relevant

carbon atoms to be considered. This can be done by expressing the required

bond angles in terms of Euclidean lengths (Equation 2.7) incorporating the shift

vector as mentioned following Equation 4.6. Further, all the derivatives in the

following are assumed to be evaluated at η = η̂, the relaxed shift vector (as in

Equations 3.4 and 2.22), and summation is implied on all repeated indices over

the energetically relevant bond lengths.

Referring to Equation 3.4, it follows that

T =
∂W
∂E η

=
∂W
∂ap

∂ap

∂E
. (4.7)

Further, the individual terms comprising Equation 2.22 can be evaluated as

follows:
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∂2W
∂E∂E

=
∂2W
∂am∂an

[
∂am

∂E
⊗ ∂an

∂E

]
+
∂W
∂ap

∂2ap

∂E∂E
(4.8)

∂2W
∂E∂η

=
∂2W
∂am∂an

[
∂am

∂E
⊗ ∂an

∂η

]
+
∂W
∂ap

∂2ap

∂E∂η
(4.9)

∂2W
∂η∂η

=
∂2W
∂am∂an

[
∂am

∂η
⊗ ∂an

∂η

]
+
∂W
∂ap

∂2ap

∂η∂η
(4.10)

∂2W
∂η∂E

=
∂2W
∂am∂an

[
∂am

∂η
⊗ ∂an

∂E

]
+
∂W
∂ap

∂2ap

∂η∂E
, (4.11)

where Equations 4.8 and 4.10 evaluate to fourth rank and second rank tensors

respectively, and Equations 4.9 and 4.11 evaluate to third rank tensors. All the

derivatives of a(i, j) with respect to E and η can be analytically evaluated using

Equations 4.5 and 4.6, while the derivatives of W can be analytically evaluated

from the expression for the potential in Equation 2.1 (Section 2.2). It is noted that

Equations 4.7−4.11 may be evaluated at any stage of deformation for which the

bond lengths and shift vector have been determined (Section 4.2.1). Typically,

Equation 4.7 is applied throughout the range of imposed deformation to obtain

the stress-strain curves, and Equations 4.8−4.11 are evaluated at the onset of

deformation (E = 0) in order to obtain the linearized elastic moduli.

Now, it is straightforward to derive expressions for the Young’s and twist

moduli using the components of the linearized elasticity tensor at the onset of

deformation (E = 0). First, components of the Lagrangian elasticity tensor are

obtained from Equation 2.22. Next, the non-zero components ofC and T, for the

coupled extension-twist problem described in Box 3, are identified. The actual

values of Young’s modulus (Y) and twist modulus (G) are next determined from

the incremental stress-strain relations that govern this coupled problem. At the

onset of deformation, it follows that
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Y =
δTZZ

δEZZ
(4.12)

G =
δTΘZ

2 δEΘZ
(4.13)

in terms of the appropriate incremental stress and strain components.

From the dependence of the deformed bond lengths on the components of E

(Equations 4.5 and 4.6), it can be concluded that the only non-zero components

ofC for this coupled extension-twist deformation (Box 3) are CZZZZ, CZZΘΘ, CZZΘZ,

CΘZΘZ, CΘZΘΘ, and CΘΘΘΘ (along with their symmetric permutations). Similarly,

the only non-zero components of the stress tensor, T, for this extension-twist

problem, can be shown to be TZZ, TΘZ, and TΘΘ. The incremental stress-strain

relations relevant to the determination of the Young’s and twist moduli are

δTZZ = CZZZZ δEZZ + CZZΘΘ δEΘΘ + 2 CZZΘZ δEΘZ (4.14)

δTΘZ = CΘZZZ δEZZ + CΘZΘΘ δEΘΘ + 2 CΘZΘZ δEΘZ (4.15)

δTΘΘ = CZZΘΘ δEZZ + CΘΘΘΘ δEΘΘ + 2 CΘZΘΘ δEΘZ , (4.16)

where δ denotes an increment in the appropriate quantity. The procedure to

express the Young’s and twist moduli, in terms of the above components of C,

is presented below.
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Evaluating the Young’s modulus

The expression for the Young’s modulus can be derived from a stress state re-

sulting from simple imposed extension, in which the Lagrangian measures of

axial tension and axial strain are related. In this case, an incremental stress-

strain relationship for the axial tension, as shown in Equation 4.14, can be writ-

ten. In order to relate δTZZ and δEZZ, the additional equations δTΘZ = 0 and

δTΘΘ = 0 (Equations 4.15 and 4.16 respectively), are used at the onset of defor-

mation (E = 0) to express δEΘZ and δEΘΘ in terms of δEZZ. It is noted [12] (p. 320,

footnote 3) that during imposed extensional deformation for the chiral SWNT, it

is possible to have TΘZ , 0 even if the corresponding Cauchy stress component,

σθz = 0. However, at the onset of deformation, it is true that σθz = TΘZ = 0.

Finally, it follows that

δTZZ = Y δEZZ , (4.17)

where the Young’s modulus, Y, is given as

Y = CZZZZ + ν(e)
ΘΘ

CZZΘΘ + ν(e)
ΘZ CZZΘZ , (4.18)

with dimensionless quantities, ν(e)
ΘΘ

and ν(e)
ΘZ, defined as

ν(e)
ΘΘ

=
∆

(e)
ΘΘ

∆(e)

ν(e)
ΘZ =

2∆
(e)
ΘZ

∆(e) , (4.19)

where ∆(e), ∆
(e)
ΘΘ

, and ∆
(e)
ΘZ are determinants given by
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∆(e) =

∣∣∣∣∣∣∣∣∣
CΘΘΘΘ 2CΘZΘΘ

CΘZΘΘ 2CΘZΘZ

∣∣∣∣∣∣∣∣∣

∆
(e)
ΘΘ

=

∣∣∣∣∣∣∣∣∣
−CZZΘΘ 2CΘZΘΘ

−CZZΘZ 2CΘZΘZ

∣∣∣∣∣∣∣∣∣

∆
(e)
ΘZ =

∣∣∣∣∣∣∣∣∣
CΘΘΘΘ −CZZΘΘ

CΘZΘΘ −CZZΘZ

∣∣∣∣∣∣∣∣∣
. (4.20)

It is noted that the underlined terms in Equation 4.18 represent the contribu-

tions due to twisting under imposed extension and the Poisson’s effect (change

in SWNT diameter due to axial strain). Further, the above expression for Y

is a generalized version of Equation 36 in [101] which holds in the case of no

extension-twist coupling under imposed extension, and can also be obtained

from evaluating the slopes of the extensional stress-strain curves at the onset

of deformation. The values of Y for representative chiral, armchair, and zigzag

SWNTs obtained from the above approach, as well as from the slopes of stress-

strain curves, are tabulated and compared in Section 4.4.

Evaluating the twist modulus

An approach that parallels the one presented in Section 4.2.3 is followed. The

expression for the twist modulus can be derived from a stress state resulting

from simple imposed twist, in which the appropriate Lagrangian measures of

torsional stress and strain are related. In this case, an incremental stress-strain

relationship for the torsional (shear) stress can be written as shown in Equation

4.15. In order to relate δTΘZ and δEΘZ, the additional equations δTZZ = 0 and
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δTΘΘ = 0 (Equations 4.14 and 4.16 respectively), are used at the onset of defor-

mation (E = 0) to express δEZZ and δEΘΘ in terms of δEΘZ. Finally, it follows

that

δTΘZ = G (2 δEΘZ) , (4.21)

where the twist modulus, G, is given as

G = CΘZΘZ + ν(t)
ΘΘ

CΘZΘΘ + ν(t)
ZZ CZZΘZ , (4.22)

with dimensionless quantities, ν(t)
ΘΘ

and ν(t)
ZZ, defined as

ν(t)
ΘΘ

=
∆

(t)
ΘΘ

∆(t)

ν(t)
ZZ =

∆
(t)
ZZ

∆(t) , (4.23)

where ∆(t), ∆
(t)
ΘΘ

, and ∆
(t)
ΘZ are determinants given by

∆(t) =

∣∣∣∣∣∣∣∣∣
CZZΘΘ CZZZZ

CΘΘΘΘ CZZΘΘ

∣∣∣∣∣∣∣∣∣

∆
(t)
ΘΘ

=

∣∣∣∣∣∣∣∣∣
−CZZΘZ CZZZZ

−CΘZΘΘ CZZΘΘ

∣∣∣∣∣∣∣∣∣

∆
(t)
ZZ =

∣∣∣∣∣∣∣∣∣
CZZΘΘ −CZZΘZ

CΘΘΘΘ −CΘZΘΘ

∣∣∣∣∣∣∣∣∣
. (4.24)
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It is noted that the underlined terms in Equation 4.22 represent the contri-

butions due to extension and change in diameter under imposed twist. Further,

G can also be obtained from evaluating the slopes of the torsional stress-strain

curves at the onset of deformation. The values of G for representative chiral,

armchair and zigzag SWNTs, obtained from the above approach, as well as from

the slopes of stress-strain curves, are tabulated and compared in Section 4.4.

4.3 Evaluation of Young’s modulus using DFT

In the present section, representative chiral (4,1), armchair (5,5), and zigzag

(5,0) SWNTs are considered. The coordinates of all the atoms in a single trans-

lational unit cell, along with the length of each translational unit cell, are ob-

tained using the SWNT generator in [43] ([92], for example, contains formulas

to generate carbon atom coordinates in an SWNT). One translational unit cell

of the (4,1) SWNT contains 28 atoms, while the (5,5) and (5,0) SWNT unit cells

each contain 20 atoms. DFT simulations are performed [5] by relaxing the co-

ordinates of these atoms for imposed axial strains on the translational unit cell.

These simulations are performed within the generalized gradient approxima-

tion (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE) [64]. Ultrasoft Van-

derbilt [89] pseudopotentials are used, and the wavefunctions are expanded in a

plane-wave basis set with a 50 Rydberg energy cut-off and 240Rydberg charge

density cut-off [58]. A cell size of 13.8 Å × 13.8 Å is used for the coordinates

perpendicular to the axial direction [58] to allow for sufficient lateral separation

between neighboring SWNTs (in order to consider them to be isolated). The

in-plane dimension of 13.8 Å is considered sufficient because the (4,1), (5,0),

and (5,5) SWNTs have relaxed diameters of 3.801 Å, 4.082 Å, and 6.869 Å re-
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spectively. The relaxations are performed using the BFGS [10, 26, 33, 78] quasi-

Newton minimization algorithm.
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Figure 4.1: Total unit-cell relaxed energies and stress-strain plots for repre-
sentative chiral (4,1), zigzag (5,0), and armchair (5,5) SWNTs
using plane-wave pseudopotential DFT (Section 4.3).

For sampling the irreducible Brillouin zone, the k-points are generated auto-

matically using the Monkhorst-Pack algorithm [60], with grid-offsets of one-half

of the lattice translation vectors [7] in the case of the (5,5) and (5,0) SWNTs (re-

sulting in 4 special k-points with the appropriate lattice symmetries taken into

account, for both the (5,5) and (5,0) SWNTs), while a Γ-point sampling (1 k-

point) is used in the case of the (4,1) SWNT. Although a finer k-point grid can be

chosen for the (4,1) SWNT, a Γ-point sampling is used in view of computational

efficiency because the algorithms used in [5] are optimized for Γ-point simula-
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tions. These choices are primarily dictated by the lengths of the translational

unit cells and desired levels of accuracies in total unit cell energies in each case.

The relaxed equilibrium configurations of the SWNTs have the following trans-

lational unit-cell lengths: 2.477 Å for the (5,5), 4.265 Å for the (5,0), and 6.451

Å for the (4,1) SWNT. Since the translational unit-cell lengths of the considered

SWNTs are less than 50%of the in-plane dimensions (13.8 Å), a finer grid along

the axial direction is employed. The total unit cell energies obtained from sin-

gle, self-consistent runs of a Monkhorst-Pack grid resulting in 4 special k-points

(for both the (5,5) and (5,0) SWNTs), and a grid resulting in 15 k-points for the

(5,5) and 18k-points for the (5,0) SWNT, differ by less than 0.0033%(relative er-

ror) for the (5,5) SWNT, and 0.0064%(relative error) for the (5,0) SWNT. In the

case of the (4,1) SWNT, the total unit cell energies from single, self-consistent

runs of a Γ-point sampling and a Monkhorst-Pack grid resulting in 4 k-points,

differ by less than 0.03%(relative error). These relative errors are assumed to be

acceptable.

Strains are applied by varying the axial coordinates of the carbon atoms at

the edges of the tube, which are constrained to lie within a plane perpendic-

ular to the tube axis. The other coordinates of the edge carbon atoms and all

coordinates of the other carbon atoms are then relaxed at each applied strain

with the optimized atomic configuration from a previous (and lower) value of

strain serving as the initial configuration for the following value of strain. The

converged total unit cell energies are plotted against the lengths of the transla-

tional unit cell, and a least-squares parabolic fit is performed through these data

points. The L2-norms (in milli-Rydberg) of the difference between the parabolic

energy fit and the actual data points, averaged over the number of data points,

are 1.404, 1.511, and 0.856 for the (4,1), (5,5), and (5,0) SWNTs, respectively.
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Next, the force of tension is obtained as the slope of this parabolic fit, and the

stress values are computed by dividing the force by the product of the current

value of the SWNT circumference and an assumed SWNT wall thickness of 3.35

Å [14, 95, 101] (interlayer spacing in bulk graphite) − as mentioned in Section

2.5. Finally, the slopes of the stress-strain curves are used to estimate the Young’s

moduli. This numerical procedure (that uses the slope of the stress-strain curve)

corresponds to Equation 4.17, which relates the axial stress and axial strain.

4.4 Deformation simulations and moduli values

The present section discusses stress-strain curves and elastic moduli obtained

from coupled extension-twist deformations on representative SWNTs.

Stress-strain curves are presented in Figure 4.2 for both parameter sets in the

Tersoff-Brenner interatomic potential (Section 2.2). In the case of imposed exten-

sion (Figures 4.2(a) and 4.2(c)), the true (Cauchy) stress, σzz, is plotted against

the axial strain, ε. In the case of imposed twist (Figures 4.2(b) and 4.2(d)), the

true (Cauchy) stress, σθz, is plotted against the strain measure, kR. It is noted that

a constant wall thickness of 3.35 Å [14, 95, 101] is assumed in estimating these

stresses. This wall thickness is assumed to be independent of the loading and

merely serves to compare the numerical results with other values published in

the literature. The hyperelastic model used in the present work is strictly that of

a two-dimensional membrane that does not require a value for the wall thick-

ness (Section 2.5). The slopes of the stress-strain curves serve to estimate the

elastic moduli. The numerical values are further validated by computing the

elastic moduli using Equations 4.18−4.20, and Equations 4.22−4.24.
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Figure 4.2: Stress-strain plots for representative chiral (9,6), zigzag (10,0),
and armchair (5,5) SWNTs using parameter set 1 of the Tersoff-
Brenner interatomic potential (Section 2.2) in (a) and (b), and
parameter set 2 in (c) and (d).

A summary of the numerical results obtained from these calculations is pre-

sented in Tables 4.4−4.4. Although the Young’s modulus (Y) and the twist mod-

ulus (G) are computed using a Lagrangian elasticity tensor, C (Equation 2.22),

and the slopes of the (true) stress-strain curves yield Eulerian measures of the

moduli, it is noted that the corresponding values are being compared at the

onset of deformation (E = 0), where both the Eulerian and the Lagrangian mea-

sures become identical.

As pointed out in [6, 31, 93], as well as subsequently investigated in Chap-

ter 5, the elastic properties of SWNTs are nonlinear and strain-dependent. In
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the present Chapter, however, only the moduli at the onset of deformation are

reported. A more detailed discussion on how they vary over the deformation

range is postponed to Chapter 5.

It is observed, from Figure 4.2, that the stress-strain curves for different

SWNTs are coincident up to reasonably large strains. The values of moduli

obtained from the slopes of the stress-strain curves differ by a few percent from

those calculated using the elasticity tensor. This is because the slopes are ap-

proximate numerical estimates, while the values obtained from the modulus

tensor calculation correspond to Equation 4.18 (for Y) and Equation 4.22 (for G),

and are more accurate analytic results.

Table 4.1: Young’s modulus values from slope of the stress-strain curves
(Figure 4.2(a)) and modulus calculation (Equation 4.18) using
parameter set 1 of the Tersoff-Brenner interatomic potential (Sec-
tion 2.2) and SWNT wall thickness of 3.35 Å [14, 95, 101].

Type of SWNT Y [GPa] (slope of curve) Y [GPa] (modulus calculation)

(9,6) Chiral 455 470

(5,5) Armchair 455 457

(10,0) Zigzag 455 464

From Tables 4.4−4.4, a good agreement between the values obtained from

the slopes of the stress-strain curves (Figure 4.2) and the ones obtained from

calculation of the modulus tensor (Equations 4.18 and 4.22), is observed. The

slopes of the curves in Figure 4.2 agree well with the stress-strain curves pre-

sented in [44] (for pure extension and pure twist), and the Young’s moduli agree
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Table 4.2: Young’s modulus values from slope of the stress-strain curves
(Figure 4.2(c)) and modulus calculation (Equation 4.18), with pa-
rameter set 2 of the Tersoff-Brenner interatomic potential (Sec-
tion 2.2) and SWNT wall thickness of 3.35 Å [14, 95, 101].

Type of SWNT Y [GPa] (slope of curve) Y [GPa] (modulus calculation)

(9,6) Chiral 687 693

(5,5) Armchair 687 670

(10,0) Zigzag 687 684

Table 4.3: Twist modulus values from slope of the stress-strain curves (Fig-
ure 4.2(b)) and modulus calculation (Equation 4.22), with pa-
rameter set 1 of the Tersoff-Brenner interatomic potential (Sec-
tion 2.2) and SWNT wall thickness of 3.35 Å [14, 95, 101].

Type of SWNT G [GPa] (slope of curve) G [GPa] (modulus calculation)

(9,6) Chiral 187 188

(5,5) Armchair 192 193

(10,0) Zigzag 176 177

well with the values reported in [101] (475GPa for parameter set 1 and 705GPa

for parameter set 2 of the Tersoff-Brenner interatomic potential (Section 2.2)),

and [3] (≈ 704 GPa), assuming a wall thickness of 3.35 Å, although, as noted

previously (Section 4.1.2), both these previous studies [3, 101] are performed

on planar graphene sheets. The Young’s moduli corresponding to parameter

set 2 of the Tersoff-Brenner interatomic potential (Section 2.2) have further been

reported in [101] to fall well within the range of values reported by several ex-

perimental and atomistic studies of SWNTs (for example, in [16, 59, 71, 72, 102]),

although the values are smaller than a more widespread estimate of ≈ 1000GPa
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Table 4.4: Twist modulus values from slope of the stress-strain curves (Fig-
ure 4.2(d)) and modulus calculation (Equation 4.22), with pa-
rameter set 2 of the Tersoff-Brenner interatomic potential (Sec-
tion 2.2) and SWNT wall thickness of 3.35 Å [14, 95, 101].

Type of SWNT G [GPa] (slope of curve) G [GPa] (modulus calculation)

(9,6) Chiral 239 240

(5,5) Armchair 245 246

(10,0) Zigzag 224 226

for the Young’s modulus (close to the Young’s modulus of graphene).

The values of twist moduli presented in Tables 4.4 and 4.4 have not been re-

ported before in the literature using the quasicontinuum membrane model for

SWNTs (cylindrical reference configuration), although the G values correspond-

ing to parameter set 2 of the Tersoff-Brenner interatomic potential (Section 2.2)

in Table 4.4 agree well with values for graphene reported in [3] (≈ 249GPa) us-

ing the same interatomic potential with a wall thickness of 3.35 Å. The G values

corresponding to parameter set 2 of the Tersoff-Brenner interatomic potential

(Section 2.2) in Table 4.4, are somewhat close, though smaller, compared to that

of graphite − 330 GPa [71], and 450 GPa for SWNTs − reported in [53, 54] us-

ing an empirical force-constant model and an empirical lattice dynamics model

respectively, and a value of 414 GPa for graphite and ≈ 390 GPa for SWNTs

− reported in [66] (≈ 15% lower than the value reported in [53, 54]) using a

perturbation technique within a lattice-dynamical model. Since the reported Y

values in this work are also somewhat smaller than the more widespread es-

timate of ≈ 1000GPa (as also pointed out in [3, 101]), it is concluded that the

quasicontinuum membrane SWNT model using the empirical Tersoff-Brenner
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interatomic potential (Section 2.2) consistently underestimates both these elas-

tic moduli. This observation is in agreement with [58] where similar conclusions

are drawn for the mechanical properties of defected CNTs estimated using the

second-generation Brenner potential [9] (the second-generation Brenner poten-

tial [9] has been reported in [3] to closely match the Tersoff-Brenner potential

[8] (Section 2.2) in estimating elastic properties of SWNTs). It is also interesting

to note that the shear modulus for nanotube ropes has been reported in several

studies, for example, in [71, 72], and has been observed to be particularly small

(≈ 1− 7 GPa, in [71, 72]) compared to that for an individual SWNT (≈ 200− 300

GPa in the present work, 450GPa in [53, 54], and 390GPa in [66]).

Finally, it is noted that the discussion, in Section 3.4.1, on the use of a ‘sim-

plified’ version of the Tersoff-Brenner potential [8] (Section 2.2) in the quasi-

continuum membrane model, is applicable in the present section as well − it is

observed that the assumed form is exact (and the corresponding results reliable

within the assumed model) for this class of problems for imposed strains of up

to about 30%and imposed twist of up to about −0.75 ≤ kR≤ 0.75 (after which

the bond order of some of the carbon atoms changes − bonds may break and

new bonds may form).

The total unit-cell energies and stress-strain curves for the (5,0), (5,5), and

(4,1) SWNTs, from the DFT calculations, are plotted in Figures 4.1. The values

of Young’s modulus obtained from the unit-cell DFT relaxations (slopes of the

stress-strain curves) are as follows: 990GPa for the (5,5), 965GPa for the (4,1),

and 906GPa for the (5,0) SWNT. These values are closer to the widespread es-

timate of ≈ 1000GPa for SWNTs (for example, in [47, 48, 53, 54, 58, 59, 71, 72,

88, 102]) than the results given in Tables 4.4−4.4 from using the quasicontin-
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uum membrane model with the Tersoff-Brenner empirical interatomic potential

(Section 2.2).

Finally, there is a small variation in the computed Young’s and twist moduli

with chirality and diameter of the SWNTs, obtained from both the quasicontin-

uum and DFT approaches presented in this chapter. This has been investigated

in the literature for both single-walled and multi-walled nanotubes, as well as

nanotube ropes (for example, in [6, 15, 31, 39, 47, 51, 53, 54, 58, 59, 67, 74, 71,

72, 88, 93]). The present work captures this variation in a natural manner by

assuming a cylindrical reference configuration (Section 4.1.2).

4.5 Concluding remarks

This chapter performs a study of two different approaches to estimate the elastic

moduli and constitutive laws for SWNTs − a quasicontinuum membrane SWNT

model using the Tersoff-Brenner empirical interatomic potential (Section 2.2),

and a DFT unit-cell relaxation approach. The following remarks are in order.

• The results from the quasicontinuum approach using the Tersoff-Brenner

interatomic potential with two different parameter sets (Section 2.2) yield

qualitatively similar results, but quantitatively different values for the

elastic moduli.

• The results (for the Young’s modulus) from the DFT simulations match

values from available experimental and atomistic studies better than the

quasicontinuum approach, although the computations in this case are far

more expensive than the quasicontinuum approach.

81



• SWNT twisting simulations with the DFT approach have not been at-

tempted owing to the limitation of translational periodicity that arbitrary

twist deformations do not satisfy. Therefore, the twist modulus is not cal-

culated using the DFT approach.

• The two approaches studied in the present work − the quasicontinuum

method and DFT − have been coupled in DFT-based (Kohn-Sham DFT,

as well as orbital-free DFT) local quasicontinuum approaches [24] that are

free of interatomic potentials fit with parameters, although this approach

also has the limitation of being extremely computer intensive.

• It can be inferred, from the numerical results, that empirical interatomic

potentials, in the context of a quasicontinuum approach, are best suited to

obtain efficient qualitative predictions, while more accurate atomistic sim-

ulations are necessary to extract quantitatively accurate parameter values

for use in suitable continuum models of atomic systems.

The next chapter presents the one-dimensional SWNT rod model developed

in the present dissertation.
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CHAPTER 5

ONE-DIMENSIONAL COSSERAT ROD MODEL

5.1 Introduction

The focus of the present chapter is an atomistic-continuum model of SWNTs

based on an elastic rod theory which can exhibit geometric as well as mate-

rial nonlinearity [38]. In particular, the SWNT is modeled as a one-dimensional

elastic continuum with some finite thickness bounded by the lateral surface. Ex-

ploitation of certain symmetries in the underlying atomic structure leads to suit-

able representations of the continuum elastic strain energy density in terms of

strain measures that capture extension, twist, bending, and shear deformations

[38]. Bridging between the atomic scale and the effective continuum is carried

out by parameterization of the continuum elastic energy and determination of

the parameters using unit-cell atomistic simulations over a range of deformation

magnitudes and types. Specifically, the proposed model takes into account (a)

bending, (b) twist, (c) shear, (d) extension, (e) coupled extension and twist, and

(f) coupled bending and shear deformations. The extracted parameters reveal

benefits of accounting for important anisotropic and large-strain effects as im-

provements over employing traditional, linearly elastic, isotropic, small-strain

continuum models to simulate deformations of SWNTs. It is envisioned that the

proposed approach and the extracted model parameters can serve as a useful

input to simulations of SWNT deformations using existing nonlinearly elastic

continuum rod codes based, for example, on the finite element method (FEM).
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5.1.1 Motivations, contributions and organization

The following are viewed as the key motivations and contributions of the

present work:

• Linearized, isotropic elastic properties adequately describe material be-

havior under small strains. However, in SWNTs undergoing large strains,

there are effects such as the coupling between extension and twist [12,

13, 14, 30, 31, 51] (investigated in Chapters 3 and 4 in the present dis-

sertation) which would be undetectable in an isotropic material. While

these studies demonstrate the presence of anisotropy at large strains, it is

of interest to also explore and characterize other deformation modes and

the couplings thereof in SWNTs. The proposed rod model for SWNTs in

the present work is capable of material as well as geometric nonlinear-

ity and takes into account (a) bending, (b) twist, (c) shear, (d) extension,

(e) coupled extension and twist, and (f) coupled bending and shear de-

formations. Prior, published work on elastic moduli has taken into ac-

count cases (a)−(d), individually, for small strains, and past work, includ-

ing [12, 13, 14, 30, 31, 51], and Chapters 3 and 4 in the present dissertation,

has considered case (e). But this is the first effort at a unified large-strain

approach that takes into account all of these modes for SWNTs.

• While two-dimensional membrane models of SWNTs (for example, in

[2, 3, 12, 13, 14]) have been useful to predict localized effects such as buck-

led mode shapes of the effective continuum, they may not be computation-

ally efficient to model global behavior of long SWNTs (microns in length)

of interest in nano-oscillators (for example, in [75, 87]). A one-dimensional

model is better suited to such an application. However, one-dimensional
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models published so far are limited by linearly elastic and isotropic mate-

rial assumptions which do not take into account the aforementioned cou-

plings.

• Finally, since this is a parameterized continuum model of an atomic sys-

tem, it is possible to apply this model, by suitable parameter estimation, to

other atomic systems such as silicon [76] or boron nitride [32] nanotubes

by use of appropriate lattices and energetic descriptions to perform unit

cell simulations.

More specifically, in the present work, the SWNT is modeled as a one-

dimensional continuum curve joining the centroids of a stack of rigid cross-

sections whose motions are tracked by a set of orthonormal basis vectors (called

‘directors’ − Section 5.2) attached to each cross-section (Figure 5.1). Motions

of the directors, viewed as material fibers in the cross-section, determine strain

measures for the rod − extension, twist, shear (rotations of cross-sections about

in-plane directors), and bending strains. The nonlinearly elastic strain energy

density is obtained from representation theorems proved in [38] by invoking

principles of material objectivity (Section 5.3.1) and transverse material sym-

metry (Section 5.3.2). By choosing an explicit representation, the strain energy

density is expressed as a function of the strains. The coefficients in this expres-

sion capture effects of direct extension, twist, bending, and shear, as well as

coupled extension-twist and bending-shear. The atomistic-continuum bridging

is performed by determining these coefficients from unit cell simulations.

This chapter is organized as follows. Section 5.2 discusses the kinematics of

the Cosserat rod model and defines the strain measures in the theory. Section

5.3 presents a hyperelastic constitutive model (in which the stress-strain rela-
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tionship derives from a strain energy density function) that provides the means

to model geometric as well as material nonlinearity including representations

of the strain energy density arising from physical restrictions of objectivity and

transverse material symmetry. Section 5.4 motivates the applicability of the hy-

perelastic constitutive model to SWNTs and presents the atomistic-continuum

bridging hypothesis that enables application of the rod model to SWNTs. Sec-

tion 5.5 presents some details of the parameter-fitting procedure including nu-

merical results for the parameters over a range of deformation magnitudes and

types. A discussion of these results, and some concluding remarks, complete

the chapter.

5.2 Kinematics of the Cosserat rod model

The present section describes the kinematics of static deformations in the

Cosserat rod model including definitions of the strain measures and their phys-

ical significance. This section serves as a precursor to a later discussion on the

constitutive model and strain energy density representations.

The rod model has been successful in capturing deformations of a variety

of long, slender structures such as marine cables [36], MEMS components [11],

SWNTs [34], and DNA [4, 45, 55, 90], each having their respective material con-

stitutive behavior. The rod model is a large deformation, nonlinearly elastic

generalization of models such as the Bernoulli-Euler and Timoshenko beams

[28] that are restricted to small strains and linearly elastic materials. This gen-

eralization enables capturing aspects of systems such as DNA and SWNTs that

are not portrayed at small strains such as the coupling between different defor-
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mation modes [12, 13, 14, 45, 55]. The focus of the present work is to develop a

rod model of SWNTs that is based on the underlying atomic structure and able

to capture primary deformation modes as well as characterize the couplings

between them.
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Figure 5.1: Cosserat rod as defined by the centroidal curve and directors.

Referring to Figure 5.1, {e1,e2,e3} is assumed to denote a fixed, right-handed,

orthonormal basis. It is assumed that the reference configuration of the rod is

straight, stress-free and parallel to e3 with a prismatic cross-section, and that

plane sections remain plane after deformation. Rods that are initially bent − a

common situation in practice − can be modeled by extending the theory pre-

sented below. Let the arc-length coordinate (of the centerline) in the unde-

formed rod be denoted by s, and the position vector (with respect to some fixed

origin) of the material point originally at s in the reference configuration be de-

noted by r (s). Let the rotation of the cross-section spanned by {e1,e2} at s in the
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undeformed rod be denoted by R(s). The first two unit vectors of the orthonor-

mal field defined by

di(s) = R(s)ei; i = 1,2,3 (5.1)

are called directors in the special Cosserat theory employed here, from which it

follows that

di · d j = δi j , d3 = d1 × d2; i, j = 1,2,3 , (5.2)

where δi j is the Kronecker delta function defined previously in Equation 3.36.

The deformed configuration of the rod is uniquely specified by the fields r (s)

and R(s). Differentiation of Equation 5.1 with respect to s (denoted by primes)

yields

di
′ = R′RTdi; i = 1,2,3 . (5.3)

Since the tensor field

K ≡ R′RT (5.4)

is skew-symmetric, there is a unique vector field, κ, such that

di
′ = κ × di; i = 1,2,3 , (5.5)
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i.e., κ is the axial vector of K . Differentiation of r (s) with respect to s gives1

r ′ = νidi , (5.6)

while

κ = κidi . (5.7)

The scalars νi , κi are the ‘strains’ in this theory [1] − ν1, ν2 are ‘shears’, ν3 is

the axial ‘stretch’ (the true stretch in the length of the centerline is given by

| r ′ |=
√
ν1

2 + ν2
2 + ν3

2), κ1, κ2 are ‘curvatures’, and κ3 is the ‘twist’.

Examples of the primary deformation modes are given in Figure 5.2 to illus-

trate the physical meanings of these strain definitions.

From Figure 5.2(a), the only non-zero strain is the axial strain, ε ≡ ν3 − 1,

while in Figure 5.2(b), κ3 physically corresponds to the angle of twist per unit

undeformed length. From Figure 5.2(c), the shear strain, ν1, is related to the

angle of shear, α, while the true stretch is
√

1 + α2. Finally, from Figure 5.2(d),

κ2 corresponds to the bending angle per unit undeformed length (L), otherwise

known as the bending curvature. The deformed length of the rod is given by

the arc length λγL, and is equal to the undeformed length (L) in the case of

bending without stretching the centerline if λγ = 1, in which case the curvature,

γ, expectedly results to be the reciprocal of λ, the radius of curvature.

1Throughout this chapter, lower case Latin indices range from 1 to 3 while lower case Greek
indices range from 1 to 2. Indices repeated in the same term are summed over their respective
ranges unless explicitly stated otherwise.
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(a) Extension (b) Twist

(c) Shear in the 1− 3 plane (d) Bending in the 1− 3 plane

Figure 5.2: Cosserat rod kinematics and strain measures in some primary
deformation modes.
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5.3 Hyperelastic constitutive model and strain energy repre-

sentations

For a hyperelastic rod, the existence of a differentiable, scalar-valued, strain en-

ergy density function, Φ(r ′,R,R′, s), can be assumed, such that the integral

∫

0

L

Φds (5.8)

represents the total strain energy of a rod of undeformed length L. Next, restric-

tions on the form of Φ are imposed due to material objectivity and transverse

material symmetry. The representations of Φ that arise from each case are pre-

sented below. The following sub-sections are intended to summarize the main

results from strain energy representations [38] that are relevant to the present

work.

5.3.1 Material objectivity

It is required that the strain energy density function, Φ, satisfy the principle of

material objectivity, namely, invariance of its functional form under superposed

rigid body motions, as follows:

Φ(Qr ′,QR,QR′, s) = Φ(r ′,R,R′, s)∀Q ∈ O(3) . (5.9)

In particular, the choice Q = RT gives [38]
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Φ = W(ν1, ν2, ν3, κ1, κ2, κ3, s) . (5.10)

Further, the internal contact force, n(s), and the internal contact couple, m(s),

respectively, acting on the cross-section originally at s in the reference configura-

tion, can be obtained by application of the stationary potential energy principle

to get [38]

n = nidi; m = midi , (5.11)

with

ni =
∂W
∂νi

; mi =
∂W
∂κi

; i = 1,2,3 , (5.12)

where n1,n2 are ‘shear forces’, n3 is the ‘axial force’, m1,m2 are ‘bending mo-

ments’, and m3 is the ‘torque’ or ‘twisting moment’.

5.3.2 Transverse material symmetry

In the present section, symmetry-based restrictions on the functional form of the

strain energy density, W (Equation 5.10), are considered, to present representa-

tions of W.
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Definitions

Let a proper rotation of the rod about e3 by an angle θ(0 ≤ θ < 2π) (illustrated

in Figure 5.3) be represented by Qθ, and a reflection of the rod across the plane

spanned by e1 and e3 be represented by E. Further, let the matrix representation

of any two-tensor, with respect to the fixed basis {e1,e2,e3}, be denoted by an

overbar. Then, with respect to {e1,e2,e3},

E =



1 0 0

0 −1 0

0 0 1


(5.13)

and

Qθ =



cosθ − sinθ 0

sinθ cosθ 0

0 0 1


. (5.14)

Next, the group of proper rotations, S OC(2) ≡ {Qθ : 0 ≤ θ < 2π}, and the

orthogonal group of rotations and reflections, OC(2) ≡ {Qθ,EQθ : 0 ≤ θ < 2π}, are

defined.

To motivate the definition of transverse material symmetry, a deformation

of the rod corresponding to some configuration (r ,R) with associated strains

νi , κi (i = 1,2,3), is imagined. Next, the straight, undeformed rod is subject to ei-

ther a rotation or reflection, P, and then the same deformation as before is imag-

ined to be applied to the rotated or reflected rod, the net effect corresponding

to the configuration (r ,RP). The accompanying strains can now be determined,
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and a transverse symmetry, P, can be defined [38] as an undetectable transfor-

mation that does not change the strain energy density function, i.e., P ∈ OC(2)

such that, if

v =



ν1

ν2

ν3


(5.15)

and

k =



κ1

κ2

κ3


, (5.16)

then

W(Pv,det(P)Pk, s) = W(v, k, s) . (5.17)

The group of symmetry transformations that satisfy Equation 5.17 form the

transverse material symmetry group of the rod. In the following sub-sections,

specific symmetry transformations relevant to rods with helical microstructures

are considered. Their application to SWNTs is motivated, and strain energy

representations derived from the corresponding restrictions they impose, are

presented.
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Transverse hemitropy and isotropy

A transversely hemitropic rod is defined as one in which the symmetry trans-

formation group P ≡ entire S OC(2).

Figure 5.3: Rotational symmetry G about e3.

Further, a transversely isotropic rod can be defined as one in which the sym-

metry transformation group P ≡ entire OC(2). It can be shown [38] that a rod is

transversely hemitropic if and only if

W(v, k, s) ≡ Γhemi(νανα, ν3, νακα, κακα, εαβνακβ, κ3) , (5.18)

where εαβ is the alternating symbol, i.e., εαβνακβ = ν1κ2 − ν2κ1. Further, a trans-

versely hemitropic rod is also transversely isotropic if and only if [38]

W(v, k, s) ≡ Γiso(νανα, ν3, (νακα)
2, κακα, εαβνακβ, (κ3)

2, νακακ3) , (5.19)

where Γhemi and Γiso are reduced forms of the strain energy density function.
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5.3.3 Flip symmetry

Yet another symmetry that can be defined for rods corresponds to invariance of

the strain energy density function under proper 180◦ rotations about axes within

the cross-section. This is illustrated in Figure 5.4.

Figure 5.4: Flip symmetric operation G about e2.

It can be shown [38] that if a rod is flip symmetric in addition to being trans-

versely hemitropic or isotropic, the strain energy density function is indepen-

dent of ‘εαβνακβ’ in Equations 5.18 and 5.19. Further, if the strain energy density

function were truncated at quadratic order and assumed to be explicitly inde-

pendent of s, it follows that the most general quadratic representation of the

strain energy density function for transversely hemitropic and flip symmetric

rods is of the form [38]

W =
1
2

[Aκακα + Bκ3
2 + Cνανα + Dε2 + 2Eεκ3 + 2Fνακα] , (5.20)

where, as mentioned before, ε ≡ ν3−1 (the extensional strain), and A, B,C,D,E, F

are material constants. A, B,C, and D are the bending, twisting, shearing, and

extensional ‘moduli’ respectively, E is the extension-twist coupling (studied pre-

viously in Chapters 3 and 4 in the present dissertation [12, 13]) coefficient, and

F the bending-shear coupling coefficient. Further, imposing the physically real-

istic assumption that the quadratic form 5.20 is positive definite, the following
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necessary and sufficient conditions [38] on the material constants are obtained

for positive-definiteness:

A, B,C,D > 0; BD− E2 > 0; AC− F2 > 0 . (5.21)

Further, for transversely isotropic rods, the ‘coupling constants’ vanish, i.e.,

E = F = 0.

Figure 5.5: Helical idealization of a chiral SWNT.

In the context of a constitutive law for SWNTs, as illustrated in Figure 5.5, it is

observed that SWNTs usually have only a small number of atoms around their

circumference compared to their length and hence would fail to satisfy trans-

verse hemitropy in a strict sense. However, helical symmetries can be identified

and exploited as discussed in the next sub-section.
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Figure 5.6: Single and multiple (for n = 6) axes of helical symmetry.

5.3.4 Single and multiple helical symmetry

It is observed that rods possessing a single-helical structure exhibit a special flip

symmetry (180◦ rotation invariance) about a unique axis passing through the

intersection of the helix with a plane perpendicular to the rod axis (as illustrated

in Figure 5.6) at any point along the axis. This symmetry axis ‘rotates’ as we

move from one cross-section to another along the length of the rod (Figure 5.6).

Further, in the case of chiral SWNTs, the atomic arrangement can be viewed

as comprising of multiple helices (Figure 5.5). The number of such helices can be

computed as a function of the chirality of the SWNT (Appendix B). In this case,

there exist two or more equally spaced flip-symmetric axes (Figure 5.5). Con-

sequently, it can be shown [38] that for rods exhibiting n−fold multiple helical

symmetry with n ≥ 3 (true for most SWNTs grown experimentally in practice),

the most general quadratic strain energy density is identical to the case of trans-

verse hemitropy + flip symmetry, i.e., the strain energy density function up to

quadratic order is the same as Equation 5.20. Further, when n → ∞ (relevant

to SWNTs with very large diameters − Appendix B), the strain energy density

function is identical to the case of transverse hemitropy + flip symmetry up to
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any order. Since the atomic arrangement in armchair and zigzag SWNTs can be

treated as special cases of a chiral SWNT, the above description applies to such

SWNTs as well (Appendix B). Hence, the strain energy density function (which

provides the constitutive model for a hyperelastic rod) at least up to quadratic

order for SWNTs is immediately realized once the parameters A, B,C,D,E, F in

Equation 5.20 can be evaluated for SWNTs.

5.4 Atomistic-continuum bridging hypothesis

Bridging of the Cosserat rod model to SWNTs (outlined in Figure 5.7) is per-

formed by determining the coefficients in Equation 5.20 subject to the con-

straints in Equation 5.21 through sufficient number of unit cell atomistic simu-

lations performed on a representative chiral (9,6) SWNT, capturing the primary

deformation modes and their corresponding energies. As mentioned in Section

1.1, the SCC-DFTB method [21, 22, 27] is employed to perform the atomistic

simulations in this work.

The SWNT unit cell has a diameter of 1 nm, length of 2 nm, and contains

228 atoms with 3 atoms at each axial location which are used to define cross-

sectional planes and directors as required in the rod model (Section 5.2). Simu-

lations are performed over a range of imposed deformation magnitudes corre-

sponding to extension, twist, bending (in the 1− 3 as well as 2− 3 planes), and

shear (in the 1− 3 as well as 2− 3 planes). In each case, the strains are imposed

by fixing certain degrees of freedom of the end planes of the unit cell and allow-

ing the rest of the atoms to relax to the local energy minimum. In this relaxed

configuration, the strain energy is computed by subtracting away the energy
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Figure 5.7: Atomistic-continuum bridging approach through parameter
estimation.

(a) Imposed shear (in 1−3 plane) using angles
of rotation (θ) of cross-sections about in-plane
axes

(b) Imposed bending (in 1 − 3 plane) using
mid point deflections (m) of the centroidal
curve − Figure 5.1

Figure 5.8: Imposed deformation profiles in shear and bending deforma-
tions.

corresponding to the undeformed configuration and the induced strains are ex-

tracted by using the relaxed atomic locations (3 atoms at each axial location in

the (9,6) SWNT) to find the deformed cross-sectional planes and orientations of

the directors as required in the rod model.

Simulations of imposed extension, shear (by rotations of cross-sectional
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planes about the two in-plane axes − Figure 5.8(a)), and bending (Figure 5.8(b))

are carried out with periodic boundary conditions, while imposed twist simula-

tions are performed on a finite tube by capping the carbon atoms at the ends

with hydrogen atoms because of arbitrary twist deformations not satisfying

periodicity. Further, in order to use a bending deformation pattern that satis-

fies periodicity at the ends, a particular bent profile corresponding to a beam

clamped at both ends (zero slopes and bending deflections at both ends leading

to a quartic bent shape) is chosen with maximum deflection at the mid point

(Figure 5.8(b)). The equation of interest is Equation 5.20. The strains extracted

using the aforementioned procedure are, in general, functions of the axial coor-

dinate, s. In order to find the coefficients A, B,C,D,E, F, Equation 5.20 is inte-

grated on both sides with respect to the axial coordinate, s, (carried out using

the trapezoidal rule in the present work) over the length of the unit cell, L, at

each step of imposed extension, twist, bending, and shear to set up a rectangular

system of the form

[M]nsim×6{u}6×1 = { f }nsim×1 , (5.22)

where nsim� 6 is the total number of simulation steps including all the defor-

mation modes, and {u} = {A, B,C,D,E, F}T . As an illustration, let the relaxed cell

strain energy (Figure 5.7) of a particular simulation step j, 1 ≤ j ≤ nsim, with

associated strains νi
( j)(s), κi

( j)(s) (i = 1,2,3) − either imposed or induced − be

denoted by RCS E( j). Then, the elements of the j th row in Equation 5.22 are

M j1 =

∫

0

L 1
2
κα

( j)(s)κα
( j)(s)ds; M j2 =

∫

0

L 1
2
κ3

( j)2(s)ds; M j3 =

∫

0

L 1
2
να

( j)(s)να
( j)(s)ds;
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M j4 =

∫

0

L 1
2
ε( j)2(s)ds; M j5 =

∫

0

L

ε( j)(s)κ3
( j)(s)ds; M j6 =

∫

0

L

να
( j)(s)κα

( j)(s)ds

(5.23)

and

f j = RCS E( j) . (5.24)

The system of Equations 5.22 is solved by minimizing ‖ [M]{u} − { f } ‖2 in a

constrained least-squares fitting procedure with the set of constraints in Equa-

tion 5.21 (using a gradient-based, constrained minimization subroutine in the

MATLABr software), where

‖ {x} ‖2 =
√

x(1)2 + x(2)2 + . . . + x(n)2 (5.25)

for any arbitrary vector, {x}, of length n.

5.5 Numerical results and discussion

The following are simplifying assumptions that are found to aid the parame-

ter fitting procedure outlined in Section 5.4, and important observations made

during that fitting:

• It is observed that the extension-twist and bending-shear modes can be

considered to be decoupled, i.e., in the cases of imposed ε (= ν3 − 1) and

κ3, the induced να, κα (α = 1,2) are observed to be negligible. Similarly, in
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the case of imposed να and κα (α = 1,2), the induced ε and κ3 are observed

to be negligible. This results in decoupling the fitting procedure into two

separate problems − one of fitting the coefficients B,D,E corresponding to

the extension-twist simulations, and the other of coefficients A,C, F corre-

sponding to the bending-shear simulations. Further, it is observed that the

extracted strain measures ε, κ3, ν1, and ν2 are uniform over the length of the

SWNT whenever each of them is imposed, while κ1, κ2 always vary over

the length (this is expected from the bending profile imposed, as explained

in Section 5.4).

• In order to minimize numerical scatter in the fitting data, the following

steps are carried out:

– All the atomic coordinates are normalized by the undeformed maxi-

mum axial coordinate, Zmax ≈ L (length of the unit cell), with the ori-

gin of coordinates located on the centerline on one end of the SWNT

unit cell. Hence, the axial coordinates run from s≡ Z
Zmax

= 0 −→ 1.

– In the imposed extension and twist simulations, ν3 and κ3, between

s = 0 −→ 0.2, are replaced by a straight line connecting the values of

ν3 and κ3 at s = 0.2 to their values at s = 0 which, in turn, are assumed

to be the average of their values over the region s = 0.2 −→ 1.

• In the imposed bending and shear simulations, κ1 is observed to be negli-

gible when κ2 or ν1 are imposed, while κ2 is observed to be negligible when

κ1 or ν2 are imposed.

• Computing derivatives of the centroidal position vector to find να, κα

(α = 1,2): Since the locus of centroidal positions obtained during the

simulations can be non-smooth, a smooth quartic polynomial (found to
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be sufficient in terms of degree, as well as consistent with the imposed

bending profile (Section 5.4)) is fit through the centroidal points and the

derivatives computed in closed-form. Such an approach avoids the use

numerical derivatives which can be unreliable when employed for non-

smooth functions. Further, atoms with s < 0.2 and s > 0.85 are neglected,

with να, κα (α = 1,2) over those regions replaced with straight lines in a

procedure identical to the case of imposed extension and twist.

• Finally, considering the bending-shear fitting problem

W =
1
2

[Aκακα + Cνανα + 2Fνακα] , (5.26)

it is found necessary to neglect the Cνανα term when κ1 or κ2 are imposed

in order to obtain a fit. However, it is found not to be necessary to neglect

the Aκακα term when ν1 or ν2 are imposed. Numerical results are provided

with both keeping (indicated by ‘2’ in Figures 5.11) and dropping (indi-

cated by ‘1’ in Figures 5.11) the Aκακα term when ν1 or ν2 are imposed, and

are observed to be only slightly different. This indicates that the induced

shear during imposed bending is much more significant than the induced

curvature during imposed shear.

• For the primary ‘moduli’, A, B,C,D, a comparison between the corre-

sponding values obtained from an isolated deformation mode fit (indi-

cated by ‘bend-only fit’, ‘twist-only fit’, ‘shear-only fit’, and ‘extension-

only fit’ respectively for A, B,C,D in Figures 5.10 and 5.11), and the cou-

pled deformation mode fit gives an indication of the amount of strain en-

ergy distributed in the induced terms. For example, in the case of the twist

modulus, the value of B obtained from fitting W = 1
2Bκ3

2 (imposed twist

alone) is compared with the value of B obtained from fitting

W =
1
2

[Bκ3
2 + Dε2 + 2Eεκ3] (5.27)
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Table 5.1: Small-strain elastic moduli in extension, twist, bending, and
shear of a (9,6) SWNT. Converted bulk quantities (Appendix
D), with units specified in square braces, and corresponding
one-dimensional quantities in parantheses (fit using strain ener-
gies in Hartrees and strains extracted with atomic coordinates
normalized by Zmax − Section 5.5 − and hence have units of
Hartrees).

BR [aJ.nm] (A) G [GPa] (B) S [GPa] (C) Y [GPa] (D)

2.43 (0.30) 420 (15.36) 409 (187.10) 1081 (494.51)

corresponding to coupled extension and twist. Since the induced effects

are expected to be small, the parameter values obtained from both cases

are expected to be comparable.

5.5.1 Small-strain elastic moduli

Table 5.5.1 summarizes the linearized (small-strain) elastic moduli in extension,

twist, bending, and shear deformations of a (9,6) SWNT. These are considered

to be useful in performing small-strain simulations involving these primary de-

formation modes. The small-strain elastic moduli in extension and twist have

also been reported in Chapter 4 (Section 4.4) using different approaches, and

compared to several values in the literature. A more detailed study of nonlinear

behavior such as variations of the elastic moduli with deformation regimes, as

well as aspects of coupling between deformation modes, is contained in Figures

5.10 and 5.11 with related discussions in Sections 5.5.2 and 5.5.3 respectively.

In Table 5.5.1, BR,G,S, and Y are, respectively, the bending rigidity, twist

modulus, shear modulus, and Young’s modulus. It is observed that BR is of the
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order of 1.68% of the bending rigidity obtained from using a Bernoulli-Euler

beam theory (i.e., Young’s modulus (Y) × cross-sectional bending moment of

inertia (I ), YI, [28]) indicating a string-like behavior of the SWNT under consid-

eration, with low bending rigidity. This aspect of SWNTs has also been studied

and reported by [75, 87]. The twist and shear moduli (G and S respectively)

are close to each other and around 38% of Y. Further, it is observed that the

Young’s modulus (Y) agrees with most reported values in the literature (that

also assume an artificial wall thickness of 3.35 Å) (for example, Chapter 4 in the

present dissertation [14] contains a list of reported values from the literature on

SWNT Young’s moduli).

5.5.2 Coupled extension-twist deformations

Figure 5.9 displays kinematic coupling results from the extension-twist simula-

tions. Figure 5.9(a) shows the induced angle of twist under imposed extension

as a function of the axial coordinate for some representative deformation steps.

It is observed that successive planes of atoms rotate by equal and opposite an-

gles. While this non-smooth kinematic behavior is different from the smooth

kinematic behavior observed in [12] (Figures 7(b,d), 8(b,d), 9(b,c,d)), Chapter 3

− Figures 3.2(b,d) ([13] − Figures 6(b,d)), it is noted that the periodicity of the

two-dimensional honeycomb lattice of graphene is explicitly imposed in Chap-

ters 2, 3, and 4 [12, 13] leading to restricted deformation patterns while no such

restrictions are imposed in the present case. Figure 5.9(b) shows the induced

axial strain under two equal and opposite imposed twists. In this case, it is ob-

served that the induced axial strains are equal (excluding some scatter at the

ends of the cell) for both senses of imposed twist. This is also observed in [12]
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(Figures 7(d), 8(d), 9(b,c,d) − in the neighborhood of the origin) and in Chapter 3

− Figure 3.2(b) ([13] − Figure 6(b)), where the coupled extension-twist problem

is addressed using a completely independent approach − the Tersoff-Brenner

[8, 86] interatomic potential within a quasicontinuum membrane framework.

This observation can be used to show that the quadratic extension-twist cou-

pling coefficient should vanish (or the contribution from the 2Eεκ3 term in Equa-

tion 5.20 should be vanishingly small) as follows. Equation 5.20 can be used in

Equations 5.12 to get

n3 = Dε + Eκ3 (5.28)

and

m3 = Bκ3 + Eε . (5.29)

In the case of imposed twist, since the axial strain is admitted, n3 = 0, and,

from Equation 5.28,

ε = −E
D
κ3 . (5.30)

Now, it is straightforward to show that if (ε1, ε2) are the induced axial strains

corresponding to equal and opposite imposed twists of (κ3,−κ3), and ε1 = ε2 (as

in Figure 5.9(b), [12](Figures 7(d), 8(d), 9(b,c,d)), and Chapter 3 − Figure 3.2(b)

([13] − Figure 6(b))), then, from Equation 5.30, the coupling coefficient E = 0.

Alternatively, from [12](Figures 7(d), 8(d), 9(b,c,d)), and Chapter 3 − Fig-

ure 3.2(b) ([13] − Figure 6(b)), it is observed that ∂ε
∂κ3
|κ3=0 = 0. This can also be
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Figure 5.9: Coupled extension-twist results from representative deforma-
tion steps.

used with Equation 5.30 to show that E = 0. Further, it is easy to show, from

Equations 5.28 and 5.29, that when E , 0 in Equation 5.20, a rod with E > 0

will contract (ε < 0) when κ3 > 0 (termed as a ‘right-handed’ rod [38]) while a

rod with E < 0 will extend (ε > 0) when κ3 > 0 (termed as a ‘left-handed’ rod

[38]). From the observations in the present work, as well as Chapter 3 − Fig-

ures 3.2 [12, 13], it can be concluded that the extension-twist coupling for the

SWNT under consideration should be at least cubic or higher, and is negligible

at quadratic order.

Figures 5.10 show the results from fitting the parameters B,D,E to the exten-

sion and twist atomistic simulations over a range of deformation magnitudes

corresponding to each imposed mode. Details of the procedure used to obtain

the curves in Figures 5.10 are given in Appendix C, while conversions from

the one-dimensional primary moduli, B and D in this case, to more physically

appealing bulk quantities (twist modulus G corresponding to B, and Young’s

modulus Y corresponding to D) are outlined in Appendix D. It is expected that

there be some variation in the resulting values of the parameters over the de-

formation ranges because of the same quadratic model (Equation 5.20) being fit
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Figure 5.10: Fitting results for elastic moduli in extension and twist defor-
mation modes corresponding to different ranges of imposed
extension (axial strain %) and imposed twist (angle of twist
per unit undeformed length in rad/Å).

to atomistic simulations over increasing amounts of imposed strain. As pointed

out in [6, 31, 93], as well as evident from Figures 5.10, the elastic properties of

the SWNT are nonlinear and strain-dependent. Hence, the quadratic rod pa-

rameters depend on the range of deformation over which they are fit.

Further, it is observed that, although non-zero fit values are obtained for E

in Figure 5.10(c), the contribution of the extension-twist coupling term to the

total strain energy in imposed extension or twist (Equation 5.27) is negligible −
as will be elaborated subsequently in Appendix E. As stated in Section 5.5.1, it

is observed that the values of the Young’s modulus obtained in Figure 5.10(a)
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agree with most reported values in the literature (that also assume an artificial

wall thickness of 3.35 Å) (for example, Chapter 4 in the present dissertation [14]

contains a list of reported values from the literature on SWNT Young’s moduli).

As described in Section 5.5.1, Table 5.5.1 summarizes the primary elastic moduli

in extension and twist useful in small-strain simulations.

5.5.3 Coupled bending-shear deformations

Figures 5.11 show the results from fitting the parameters A,C, F to the bending

and shear atomistic simulations over a range of deformation magnitudes cor-

responding to each imposed mode. Details of the procedure used to obtain the

curves in Figures 5.11 are given in Appendix C, while conversions from the one-

dimensional primary moduli, A and C in this case, to more physically appealing

bulk quantities (bending rigidity BR corresponding to A, and shear modulus S

corresponding to C) are outlined in Appendix D.

As in the case of extension-twist deformations (Section 5.5.2), some vari-

ations of the resulting parameter values are observed over the deformation

ranges. As pointed out in Section 5.5.2, as well as evident from Figures 5.11,

the elastic properties of the SWNT are nonlinear and strain-dependent. Hence,

the quadratic rod parameters depend on the range of deformation over which

they are fit.

As mentioned in Section 5.5.1, an interesting aspect of the SWNT under con-

sideration emerges from comparing the bending modulus obtained from the

bending simulations (Figure 5.11(a)) to one obtained from using a Bernoulli-

Euler beam theory (i.e., Young’s modulus (Y) × cross-sectional bending moment
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Figure 5.11: Fitting results for elastic moduli in bending and shear defor-
mation modes corresponding to different ranges of imposed
curvatures (reflected in the mid point deflections (m in Å −
Figure 5.8)), and shear deformations (angles of rotation of
cross-sections about in-plane axes (θ in radians − Figure 5.8)).
In the legends, for example, ‘2, 0.085’ indicates keeping and
‘1, 0.085’ indicates dropping the Aκακα term when ν1 or ν2 are
imposed (of magnitude indicated by θ = 0.085 rad − Figure
5.8) − Equation 5.26 and Section 5.5.

of inertia (I ), YI, [28]). It is observed that the obtained bending rigidities are

much lower than predictions from a Bernoulli-Euler beam theory thus indicat-

ing that the SWNT under consideration behaves more like a string, with low

bending rigidity, than a beam. This aspect of SWNTs has also been reported by

[75, 87] in which the frequency dependence of suspended SWNT oscillators is

studied and the behavior classified based on the amount of slack (defined as
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the ratio of the excess length of the SWNT to the distance between clamping

points) and the transverse force. Further, in the present work, it is observed

that identical shear and bending moduli are obtained for deformations in the

1 − 3 and 2 − 3 planes thus providing an a posteriori justification for the ap-

plicability of the hemitropic + flip symmetric rod model with Equation 5.20 to

the present case. Although there appears to be no straightforward interpreta-

tion of the bending-shear coupling coefficient (F) in a manner analogous to the

extension-twist coupling coefficient (E) (Section 5.5.2), it is observed (as will be

elaborated subsequently in Appendix E) that the energetic contribution of the

bending-shear coupling term to the total strain energy in imposed bending or

shear deformations (Equation 5.26) is relatively small compared to the primary

bending or shearing strain energies respectively. As described in Section 5.5.1,

Table 5.5.1 summarizes the primary elastic moduli in bending and shear useful

in small-strain simulations.

5.6 Concluding remarks

An approach to model SWNTs is presented in this chapter using a one-

dimensional, nonlinearly elastic rod theory that suitably exploits certain sym-

metries in the underlying atomic structure. While prior work on coupling of

deformation modes in SWNTs has focused on extension and twist alone [12, 13],

the present model captures extension, twist, bending, and shear deformation

modes including extension-twist and bending-shear coupling.
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5.6.1 Summary of findings

The material properties for an SWNT are contained in the elastic parameters of

the strain energy density function, which are computed by performing atomistic

simulations over a range of deformation magnitudes (Figures 5.10 and 5.11). As

pointed out in Sections 5.5.2 and 5.5.3, as well as evident from Figures 5.10 and

5.11, the elastic properties of the SWNT are nonlinear and strain-dependent.

Hence, the quadratic rod parameters depend on the range of deformation over

which they are fit.

With regard to the primary moduli in extension, twist, bending, and shear

deformation modes, it is observed that values of the Young’s modulus (Y) (over

the specified deformation ranges) agree with most reported values in the litera-

ture (Sections 5.5.1 and 5.5.2). The twist and shear moduli (G and S respectively)

are close to each other and around 35−40%of Y (Sections 5.5.1, 5.5.2, and 5.5.3).

The bending rigidity (BR) is found to be of the order of 1.65− 2.30%of the bend-

ing rigidity obtained from using a Bernoulli-Euler beam theory (Sections 5.5.1

and 5.5.3) indicating a string-like behavior of the SWNT under consideration,

with low bending rigidity. With regard to the extension-twist and bending-

shear coupling terms, it is argued that the extension-twist coupling be negligi-

ble at quadratic order of the strain energy density (Section 5.5.2 and Appendix

E), and the contribution of the bending-shear coupling term to the total strain

energy in bending or shear be relatively small (Section 5.5.3 and Appendix E).

Table 5.5.1 summarizes the primary elastic moduli in extension, twist, bending,

and shear useful in small-strain simulations.

The results (for example, of the bending rigidity) indicate benefits of ac-

counting for important anisotropic and large-strain effects as improvements
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over employing traditional, linearly elastic, isotropic, small-strain, continuum

models to SWNTs. It is envisioned that these material properties can serve

as useful inputs to existing nonlinearly elastic continuum rod simulation tools

capable of studying complex deformation patterns that could be applicable to

SWNTs (for example, in studying oscillations of suspended SWNTs [75, 87], or

deformations of nanocomposites).

5.6.2 Future work

The following lines of future study are proposed.

• One of the topics of interest is to study the variations of the elastic material

parameters with chirality of SWNTs. For example, it is known that the ex-

tensional modulus depends weakly on the SWNT chirality (for example,

Chapter 4 [14]). Some of the other publications that characterize the vari-

ations in certain elastic properties with chirality and diameter of SWNTs

are [6, 15, 31, 39, 51, 93]. But it is of interest to perform a similar study

on all of the other moduli − both by keeping the diameter of the SWNT

fixed and varying the configuration (chiral, armchair, or zigzag), as well

as holding the configuration fixed and varying the diameter. Such a study

can enable a rigorous quantification of the transferability of computed pa-

rameter values in this work (using the (9,6) SWNT) to other SWNTs.

• The bending properties have been evaluated by imposing a particular bent

profile (Section 5.4) and it is of interest to inspect if these properties change

upon changing the imposed bent profile. An additional source of incon-

sistency arises from the imposed twist simulations being performed on
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a finite SWNT (without periodic boundary conditions) that make them

somewhat different from the remaining deformation modes. Future ef-

forts could address such aspects of the present study.

• One of the key assumptions in the rod model employed in this work is

that of rigid cross-sections (Section 5.2). This assumption neglects effects

such as the Poisson’s effect [28] (change in the cross-sectional dimensions

due to axial strain) which can be especially important for thin-walled hol-

low tubes and systems that are single-atomic layer thick such as SWNTs.

A natural approach to follow is to use a shell or a membrane theory

(as has already been carried out, for example, in Chapters 2, 3, and 4

[2, 3, 12, 13, 14, 44, 52, 101]). But such an approach loses the reduced

dimensionality advantage that the rod model holds over the shell or mem-

brane model. [34] present an approach to take into account cross-sectional

deformations by adding the cross-sectional strain energy as an additional

term to the total strain energy of the rod. However, this approach still

fails to capture the Poisson’s effect since it decouples the axial and cross-

sectional deformations. Moreover, the model by [34] assumes a linearly

elastic, isotropic, Kirchhoff-like constitutive model [34] that is devoid of

the coupling between different deformation modes as has been studied in

the present work.

• Based on some preliminary work (details in Appendix F), a key idea to ac-

count for cross-sectional deformations in the rod model is to relax the or-

thonormality constraint imposed on directors in the restricted theory (Sec-

tion 5.2) to obtain a more general rod model. This enables capturing cross-

sectional shear deformations through the change in angle between direc-

tors, and change in cross-sectional thickness using magnitudes of the di-
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rectors. These additional strain measures characterize cross-sectional de-

formations. It is noted that the restricted theory described in Section 5.2 is

immediately realized as a special case of the general formulation when the

directors are defined to be mutually orthonormal (Equation 5.2). Within

the nonlinearly elastic material assumption, the next steps are to derive

strain energy density representations for this general rod model, similar to

published work on the special rod model [38]. This general rod model will,

then, enable a unified treatment of extension, twist, bending, shear, cou-

pled modes, and in-plane cross-sectional deformations. This is expected

to be a significant step in improving the applicability of a rod model to

hollow structures such as SWNTs and biomolecules such as DNA. The

only neglected effect in comparison to a three-dimensional approach will

be that of warping (out-of-plane deformations) of cross-sections, which is

not expected to be significant for slender structures such as SWNTs and

DNA. Application of this improved rod model to SWNTs will require fit-

ting additional coefficients (that arise in this model due to cross-sectional

deformations) although the data generated from atomistic simulations al-

ready carried out in the present work can be used to estimate these addi-

tional coefficients.

The following chapter presents some conclusions, including directions for

future work.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The following remarks are in order in concluding the present dissertation.

• This dissertation is primarily motivated by the need to incorporate atom-

istic details into continuum mechanical models in order to build accurate

yet computationally tractable methods capable of simulating large atomic

systems (Chapter 1). An SWNT is the atomic system of interest in the

present dissertation.

• The dissertation deals with two atomistic-continuum models to study me-

chanical deformations of SWNTs − (i) a two-dimensional, quasicontinuum

membrane model (Chapters 2, 3, and 4), and (ii) a one-dimensional rod

model (Chapter 5).

• The two-dimensional, quasicontinuum SWNT model (Chapter 2) has been

employed in prior, published work [2, 3, 12, 13, 14, 44, 52, 101]. The key

contributions of the present dissertation are in modifying the atomistic-

continuum kinematic hypothesis − the CB rule − to deal with inhomo-

geneous deformations, to account for the energetic differences between

a planar graphene sheet and a cylindrical SWNT by considering a cylin-

drical reference configuration, investigating coupled extension and twist

deformations in SWNTs (Chapter 3), and accounting for this coupling be-

havior in determining elastic moduli and stress-strain curves in extension

and twist deformations (Chapter 4).

• The one-dimensional SWNT rod model (Chapter 5) is an improvement

over linearly elastic, isotropic, small-strain, one-dimensional SWNT mod-

els. It contains the capability to model material as well as geometric non-
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linearity, and anisotropic effects that arise in large-strain regimes. In a

unified framework, it captures extension, twist, bending, and shear defor-

mation modes including extension-twist and bending-shear coupling.

• It is envisioned that the material properties derived in the rod model

can serve as useful inputs to existing nonlinearly elastic continuum rod

simulation tools (based, for example, on the finite element method) ca-

pable of studying complex deformation patterns that could be applica-

ble to SWNTs (for example, in studying oscillations of suspended SWNTs

[75, 87], or deformations of nanocomposites).

• The deformable cross-section atomistic-continuum rod model (Section

5.6.2 and Appendix F) is proposed as a future line of study that relaxes

the constraint of rigid cross-sections in the present rod model, thereby im-

proving the applicability of the rod model to hollow structures such as

SWNTs, and biomolecules such as DNA.

• It is also envisioned that the ideas presented in this dissertation can be

extended to other atomic systems such as silicon [76] or boron nitride [32]

nanotubes by use of appropriate lattices and energetic descriptions.
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APPENDIX A

CAUCHY-BORN RULE FOR INHOMOGENEOUS DEFORMATIONS

Let xi and xj denote points on a curve parameterized by s, with curvilinear

coordinates si and sj respectively. Let xm denote the mid point between xi and

xj , and sm denote its curvilinear coordinate. Then, for an arbitrary function φ(x)

(assumed to be sufficiently smooth and differentiable in [xi , xj]) defined on the

curve, and ξ1 ∈ [xi , xm], ξ2 ∈ [xm, xj],

φ(xi) = φ(xm) + (si − sm)φ,s(xm) +
1
2!

(si − sm)2φ,ss(ξ1) , (A.1)

and

φ(xj) = φ(xm) + (sj − sm)φ,s(xm) +
1
2!

(sj − sm)2φ,ss(ξ2) , (A.2)

where , s denotes a derivative with respect to s. Now, if φ is assumed to be

quadratic, φ,ss(ξ1) = φ,ss(ξ2). Using this, along with the fact that xm is the mid

point, and subtracting Equation A.1 from Equation A.2 gives

φ(xj) − φ(xi) = φ,s(xm)(sj − si) (A.3)

which amounts to Equation 3.32 for a quadratic f evaluated using the ‘mid point

rule’. Further, if φ is of any higher degree (than quadratic), Equation 3.32 can be

readily employed to obtain a location xexact∈ [xi , xj] at which

φ(xj) − φ(xi) = φ,s(xexact)(sj − si) . (A.4)
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APPENDIX B

COMPUTATION OF THE NUMBER OF HELICES IN AN SWNT

This section presents formulas for the number of helices in the rod model

(Section 5.3.4) in terms of the chirality of SWNTs (Figures B.1, B.2 and B.3). In

terms of the carbon-carbon bond length in graphene, a, and the SWNT chiral

indices, (n,m), the circumference of the rolled-up SWNT can be expressed [20,

70, 92] as

C =
√

3a
√

n2 + m2 + nm , (B.1)

and the chiral angle, θ, is given by

θ = arctan

√
3m

m+ 2n
. (B.2)

The orientation of the helices with respect to the circumferential direction

(Figure B.1) is

φ =
π

3
+ θ . (B.3)

If the number of helices (each of width a/2 and parallel to each other with

spacing a) is h, the following relation can be written (from Figure B.1(b)):

√
3a

2 sinφ
h = C =

√
3a
√

n2 + m2 + nm , (B.4)
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from which h = m + n. As special cases, an armchair SWNT (Figure B.2) has

m = n which gives harmchair = 2n, and a zigzag SWNT (Figure B.3) has m = 0

which gives hzigzag= n.

(a) Atomic structure in the planar configura-
tion

φ

C

L
a

a/2

equispaced atoms along lines ata 3
(b) Helices at an orientation of φ from the cir-
cumferential direction

Figure B.1: Helical idealization of a chiral SWNT.

According to the kinematic extension-twist coupling results from Chapter 3

and [30, 31, 51], it is observed that armchair and zigzag SWNTs do not exhibit

any induced twist during imposed extension. In terms of the proposed helical

idealization, this observation can be interpreted as follows. In the case of arm-

chair SWNTs, helices can be formed at 30◦, 90◦, and 150◦ (Figure B.2(b) shows

helices corresponding to the 90◦ orientation alone) from the circumferential di-

rection (the 60◦ orientational spacing between successive possible helices, which

applies to all SWNT configurations, arises from the 60◦ rotational symmetry of

the underlying hexagonal lattice). Similarly, in the case of zigzag SWNTs, he-

lices can be formed at 60◦ and 120◦ from the circumferential direction (Figure

B.3(b) shows helices corresponding to the 60◦ orientation).
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(a) Atomic structure in the planar configura-
tion

a

C

L

equispaced atoms along lines ata 3

a/2

(b) Helices at an orientation of 90◦ from the
circumferential direction

Figure B.2: Helical idealization of an armchair SWNT.

Further, it is noted, from symmetry, that helices at orientations of 90◦ ± ω
(0◦ ≤ ω ≤ 90◦) induce an equal and opposite handedness to the rod. Hence,

it follows that there is no net handedness in the case of armchair and zigzag

SWNTs (leading to zero induced twist during imposed extension − Chapter 3

and [30, 31, 51]), while chiral SWNTs retain a net handedness that induces twist

during imposed extension (Chapter 3 and [30, 31, 51]).

Further, consideration of the number of atoms along the SWNT circumferen-

tial direction (circumference C is fixed once the chiral indices are chosen), and

along the helices, provides the necessary motivation to consider the helices as

continua. The following formulas are given for chiral SWNTs with chiral in-

dices (n,m) and the corresponding expressions for armchair and zigzag SWNTs

follow immediately upon setting n = mand m = 0 respectively. From Figure B.1,
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(a) Atomic structure in the planar configura-
tion

60

C

L
a

a/2

equispaced atoms along lines ata 3

(b) Helices at an orientation of 60◦ from the
circumferential direction

Figure B.3: Helical idealization of a zigzag SWNT.

the number of atoms in the circumferential direction, natoms
(C), is given by

natoms
(C) = 2h = 2(m+ n) , (B.5)

while the number of atoms along the helices, natoms
(L), is given by

natoms
(L) =

L

a
√

3 sinφ
, (B.6)

where L is the SWNT length. Upon using Equations B.2 and B.3, Equation B.6

can be rewritten as

natoms
(L) =

2L
3a

√
m2 + n2 + nm

m+ n
. (B.7)
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Since, typically, L � a for long SWNTs (continuum limit), it follows that

natoms
(L) � natoms

(C) and hence the helices may be considered as continua in com-

parison to the circumferential direction.
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APPENDIX C

DETERMINATION OF ROD PARAMETERS OVER DIFFERENT RANGES

OF DEFORMATIONS

As pointed out in Sections 5.5.2 and 5.5.3, as well as evident from Figures

5.10 and 5.11, the elastic properties of the SWNT are nonlinear and strain-

dependent. Hence, the quadratic rod parameters depend on the range of de-

formation over which they are fit. As an example, one of the curves in Figures

5.10(a,b,c) can be considered. Each point on this curve corresponds to a specific

value of |κ3|max and εmax. Such a point in obtained as follows.

First, |κ3|max is imposed in increments κ(i) : κ(1), κ(2), κ(3), . . . , κ(n), where n is the

number of imposed twist simulations taken to reach |κ3|max. It is noted that κ(i)

denotes the imposed angle of twist per unit undeformed length, which gives rise

to an induced axial strain ε(i). If W(i) denotes the strain energy density of the

corresponding deformed state, from Sections 5.4 and 5.5, and Equation 5.27,

W(i) =
1
2

[Bκ(i)2 + Dε(i)2 + 2Eε(i)κ(i)]; i = 1,2,3, . . . , n . (C.1)

Next, εmax is imposed in increments ε( j) : ε(1), ε(2), ε(3), . . . , ε(m), where m is the

number of imposed extension simulations taken to reach εmax, and m equations

analogous to Equation C.1 are written in terms of the imposed axial strain, ε( j),

and the induced angle of twist per unit undeformed length, κ( j).

These n + m equations are used together in a least-squares fitting procedure

(as outlined in Section 5.4) to obtain the values of the coefficients D, B, and E

for this pair (|κ3|max, εmax). Finally, the Young’s modulus (Y) and the twist mod-

ulus (G) are obtained, corresponding to coefficients D and B respectively, as
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described subsequently in Appendix D. Figures 5.11, corresponding to coupled

bending-shear deformations, are obtained in an analogous manner using Equa-

tion 5.26.
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APPENDIX D

CONVERSION OF MATERIAL PROPERTIES FROM ROD PARAMETERS

TO BULK QUANTITIES

This section presents the conversions from raw parameter values obtained

by data fitting in the quadratic strain energy − Equation 5.20 − to bulk quan-

tities assuming that the rod is of undeformed length, L, has a thin-walled cir-

cular cross-section of undeformed radius, R, wall thickness, t, and is subject to

small enough deformations with constant strain states that can be adequately

described by classical small-strain models [28]. These conversions are also em-

ployed in certain cases of large deformations (Figures 5.10 and 5.11 contain the

ranges of deformation in each mode) during which it is noted that their applica-

bility is only approximate. It is also noted that the cross-sectional assumptions

are only required as a means to convert the rod material parameters to bulk

quantities. As mentioned earlier (Section 5.1), the present rod model does not

require any information on the cross-section and treats the continuum as a one-

dimensional curve.

D.1 Extensional modulus

For a bulk cylinder subject to tension or compression, the strain energy per unit

volume is given by 1
2Yε2 [28], where Y is the Young’s modulus and ε is a con-

stant axial strain. Hence, the total strain energy stored is given by 1
2Y(2πRtL)ε2.

From the parameter fitting in the rod model (Equation 5.20) with normalized

coordinates, the total strain energy stored in an extension-only mode with the

same constant axial strain, ε, is 1
2Dε2 (since the length becomes unity upon nor-

malization). Equating the strain energies in the bulk cylinder and the rod model
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gives the relation between the rod parameter, D, and the bulk Young’s modulus,

Y, to be Y = D
2πRtL.

D.2 Twist modulus

For a bulk cylinder subject to Saint Venant torsion, the strain energy per unit

volume is given by 1
2Gκ3

2R2 [28], where G is the twist modulus and κ3 is a con-

stant angle of twist per unit undeformed length of the cylinder. Hence, the total

strain energy stored is given by 1
2Gκ3

2R2(2πRtL). From the parameter fitting in

the rod model (Equation 5.20) with normalized coordinates, the total strain en-

ergy stored in a twist-only mode with the same constant angle of twist per unit

undeformed length is 1
2Bκ3norm

2, where κ3norm = κ3Zmax is the angle of twist per

unit undeformed length in normalized coordinates. Equating the strain ener-

gies in the bulk cylinder and the rod model with the assumption that Zmax ≈ L

gives the relation between the rod parameter, B, and the bulk twist modulus, G,

to be G = BZmax

2πR3t .

D.3 Bending modulus

For a bulk cylinder modeled as a Bernoulli-Euler beam subject to bending, the

total strain energy stored is given by [28] 1
2BRκbend

2L, where BR is the bending

rigidity (for an isotropic Bernoulli-Euler beam, BR = YI, where Y is the Young’s

modulus of the material and I is the cross-sectional bending moment of inertia

[28]), and κbendis a constant bending curvature. From the parameter fitting in the

rod model (Equation 5.20) with normalized coordinates, the total strain energy
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stored in a bend-only mode with the same constant bending curvature is (noting

that when κ1 is imposed, κ2 is assumed to be zero, and when κ2 is imposed,

κ1 is assumed to be zero) 1
2Aκbendnorm

2, where κbendnorm = κbendZmax is the bending

curvature in normalized coordinates. Equating the strain energies in the bulk

cylinder and the rod model with the assumption that Zmax≈ L gives the relation

between the rod parameter, A, and the bulk bending rigidity, BR, to be BR =

AZmax.

D.4 Shear modulus

The conversion from the rod parameter, C, to the shear modulus closely follows

Appendix D.1. For a bulk cylinder subject to shear, the strain energy per unit

volume can be expressed as Sν2, where S is the shear modulus and ν is a con-

stant shear strain. Hence, the total strain energy stored is given by S(2πRtL)ν2.

From the parameter fitting in the rod model (Equation 5.20) with normalized

coordinates, the total strain energy stored in shear-only modes with the same

constant shear strain, ν, is (noting that both ν1 and ν2 are allowed to be non-zero

when either of them, or κ1 or κ2 are imposed) Cν2 (since the length becomes unity

upon normalization). Equating the strain energies in the bulk cylinder and the

rod model gives the relation between the rod parameter, C, and the bulk shear

modulus, S, to be S = C
2πRtL.
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APPENDIX E

STRAIN ENERGY PROPORTIONS

Figures E.1, E.2, and E.3 show the percentage contributions of the extension,

twist, and coupled extension-twist terms in Equation 5.20 at the points of max-

imum imposed ε,+κ3,−κ3 respectively (corresponding to the same deformation

ranges as presented in Figures 5.10).
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Figure E.1: Percentage contributions to the total strain energy in cou-
pled extension-twist deformations corresponding to different
ranges of imposed extension (axial strain %) and imposed twist
(angle of twist per unit undeformed length in rad/Å) at points
of maximum imposed ε.

It is observed, from Figures E.1, E.3, E.2, that although we obtain non-zero fit

values for E in Figure 5.10(c), the contribution of the extension-twist coupling
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Figure E.2: Percentage contributions to the total strain energy in cou-
pled extension-twist deformations corresponding to different
ranges of imposed extension (axial strain %) and imposed twist
(angle of twist per unit undeformed length in rad/Å) at points
of maximum imposed +κ3.

term to the total strain energy in imposed extension or twist is negligible (as

mentioned in Section 5.5.2).

Further, instances when the contribution to the total strain energy from some

of the terms is negative can be viewed as strain release modes (since positive

strain energy is due to built-up strain, negative strain energy can be viewed as

arising from strain release or relaxation − assuming no (inelastic) dissipation).
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Figure E.3: Percentage contributions to the total strain energy in cou-
pled extension-twist deformations corresponding to different
ranges of imposed extension (axial strain %) and imposed twist
(angle of twist per unit undeformed length in rad/Å) at points
of maximum imposed −κ3.

Also, instances when the strain energy contributions from the D, B,E terms

do not add up exactly to the total strain energy can be viewed as ones in which a

part of the total strain energy is stored in the A,C, F terms that are not accounted

for in the extension-twist simulations, or as arising from the least-squares fitting

approximation (Section 5.4).

Figures E.4, E.5, E.6, and E.7 show the percentage contributions of the bend-

ing, shear, and coupled bending-shear terms in Equation 5.20 at the points of

maximum imposed ν1, ν2, κ2, κ1 respectively (corresponding to the same defor-
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Figure E.4: Percentage contributions to the total strain energy in coupled
bending-shear deformations at points of maximum imposed
ν1. Each point corresponds to a different range of imposed cur-
vatures (reflected in the mid point deflections (m in Å − Fig-
ure 5.8)), and shear deformations (angles of rotation of cross-
sections about in-plane axes (θ in radians − Figure 5.8)). In the
legends, for example, ‘2, 0.085’ indicates keeping and ‘1, 0.085’
indicates dropping the Aκακα term when ν1 or ν2 are imposed
(of magnitude indicated by θ = 0.085 rad, Figure 5.8) − Equa-
tion 5.26 and Section 5.5.
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Figure E.5: Percentage contributions to the total strain energy in coupled
bending-shear deformations at points of maximum imposed
ν2. Each point corresponds to a different range of imposed cur-
vatures (reflected in the mid point deflections (m in Å − Fig-
ure 5.8)), and shear deformations (angles of rotation of cross-
sections about in-plane axes (θ in radians − Figure 5.8)). In the
legends, for example, ‘2, 0.085’ indicates keeping and ‘1, 0.085’
indicates dropping the Aκακα term when ν1 or ν2 are imposed
(of magnitude indicated by θ = 0.085 rad, Figure 5.8) − Equa-
tion 5.26 and Section 5.5.

mation ranges as presented in Figures 5.11).

As expected, it is observed, from Figures E.4, E.5, E.6, and E.7, that most of

the strain energy in each imposed deformation case is stored in the primary im-

posed deformation mode while the coupling term and the secondary induced

effects contribute much smaller amounts to the overall strain energy (as men-
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m[Å]

‘A
’ 

te
rm

 [
%

]

1, 0.085
1, 0.119
1, 0.153
2, 0.085
2, 0.119
2, 0.153

(a) Percentage of strain energy from the ‘A’
term

0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

m[Å]
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Figure E.6: Percentage contributions to the total strain energy in coupled
bending-shear deformations at points of maximum imposed
κ2. Each point corresponds to a different range of imposed cur-
vatures (reflected in the mid point deflections (m in Å − Fig-
ure 5.8)), and shear deformations (angles of rotation of cross-
sections about in-plane axes (θ in radians − Figure 5.8)). In the
legends, for example, ‘2, 0.085’ indicates keeping and ‘1, 0.085’
indicates dropping the Aκακα term when ν1 or ν2 are imposed
(of magnitude indicated by θ = 0.085 rad, Figure 5.8) − Equa-
tion 5.26 and Section 5.5.

tioned in Section 5.5.3).

Further, as mentioned already, instances when the contribution to the total

strain energy from one of the terms is negative can be viewed as strain release

modes − assuming no (inelastic) dissipation. Also, instances when the strain

energy contributions from the A,C, F terms do not add up exactly to the total
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Figure E.7: Percentage contributions to the total strain energy in coupled
bending-shear deformations at points of maximum imposed
κ1. Each point corresponds to a different range of imposed cur-
vatures (reflected in the mid point deflections (m in Å − Fig-
ure 5.8)), and shear deformations (angles of rotation of cross-
sections about in-plane axes (θ in radians − Figure 5.8)). In the
legends, for example, ‘2, 0.085’ indicates keeping and ‘1, 0.085’
indicates dropping the Aκακα term when ν1 or ν2 are imposed
(of magnitude indicated by θ = 0.085 rad, Figure 5.8) − Equa-
tion 5.26 and Section 5.5.

strain energy can be viewed as ones in which a part of the total strain energy

is stored in the D, B,E terms that are not accounted for in the bending-shear

simulations, or as arising from the least-squares fitting approximation (Section

5.4).
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APPENDIX F

DEFORMABLE CROSS-SECTION COSSERAT ROD: KINEMATIC

PRELIMINARIES

The present section describes the kinematic preliminaries of a Cosserat rod

model that includes strain measures which can capture deformations of the

cross-section (the special Cosserat rod model described in Section 5.2 assumes

that cross-sections are rigid). The notation in the present section follows [69].

Similar to Section 5.2, {e1,e2,e3} is defined as a fixed, right-handed, orthonor-

mal basis that spans the reference configuration of the rod (Figure 5.1). It is

assumed that the reference configuration is straight, stress-free, parallel to e3

with a prismatic cross-section, and that plane sections remain plane after defor-

mation. The arc-length coordinate (of the centerline) in the undeformed rod is

denoted by s, and the position vector (with respect to some fixed origin) of the

material point originally at s in the reference configuration is denoted by r (s). It

is assumed that {d1(s),d2(s),d3(s)} denotes a linearly independent, right-handed

triad of directors (neither of unit magnitude nor mutually orthogonal) attached

to each cross-section in the deformed configuration, with d3(s) ‖ r ′, i.e., along the

tangential direction to the deformed centroidal curve. Further, ‘tangential defor-

mation’ is defined as deformation along d3, and ‘cross-sectional deformation’ as

deformation in the plane perpendicular to d3 (i.e., normal to the deformed cen-

troidal curve). Finally, with d33 = d3 · d3, projections of d1 and d2 into the plane

perpendicular to d3 are defined as follows:

dα = dα − 1
d33

(dα · d3)d3 (α = 1,2) , (F.1)
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giving

dα · dα = dα · dα − 1
d33

(dα · d3)
2 (no sum; α = 1,2) (F.2)

and

d1 · d2 = d1 · d2 − 1
d33

(d1 · d3)(d2 · d3) , (F.3)

and, further, automatically ensuring dα · d3 = 0 (α = 1,2).

Now, the following deformation measures can be introduced:

(I) Tangential extension measured by
√

d33 − 1. This deformation mode can

be constrained by setting d3 · d3 = constant.

(II) Tangential shear deformations measured by dα · d3 (α = 1,2). These

deformation modes can be constrained by appropriately setting dα ·d3 = 0 (α =

1,2).

(III) Cross-sectional extension measured by change in |dα| (α = 1,2). These

deformation modes can be constrained in one of two possible ways:

(a) Setting dα · dα = constant (no sum; α = 1,2).

(b) Setting dα · dβ = δαβ (α, β = 1,2) (δαβ is the Kronecker delta function de-

fined in Equation 3.36), or more generally, setting dα ·dα = constant (no sum; α =

1,2).

The two possibilities, (III-a) and (III-b), are physically different as long as

the tangential shear deformations are nonzero, i.e., dα · d3 , 0 (α = 1,2)

138



− Equation F.2. Possibility (III-b) [1] assumes the dimensions of the material

cross-section that was normal in the reference configuration to remain constant

but allows the dimensions of the normal cross-section in the present configu-

ration to change, whereas possibility (III-a) assumes the normal cross-sectional

dimensions of the present configuration to remain constant while allowing the

material cross-sectional dimensions of the reference configuration to change.

(IV) Cross-sectional shear deformation measured by change in angle be-

tween d1 and d2. Analogous to (III), this deformation mode can be constrained

in one of two possible ways:

(a) Setting d1 · d2 = 0.

(b) Setting d1 · d2 = 0.

The two possibilities, (IV-a) and (IV-b), are physically different as long as

the tangential shear deformations are nonzero, i.e., dα · d3 , 0 (α = 1,2) −
Equation F.3. Possibility (IV-b) eliminates in-plane shear of the material cross-

section that was normal in the reference configuration but allows in-plane shear

of the normal cross-section in the present configuration, whereas possibility (IV-

a) eliminates in-plane shear of the normal cross-section in the present configura-

tion while allowing in-plane shear of the material cross-section that was normal

in the reference configuration.

Based on the above definitions, a variety of restricted theories can be de-

rived by imposing appropriate constraints [69]. A nonlinear Timoshenko rod

is obtained by imposing constraints on modes (III) and (IV), while a nonlinear

Bernoulli-Euler rod is obtained by imposing constraints on modes (II), (III), and

(IV) [69]. The special Cosserat model, described in Section 5.2 and employed in
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the present work, assumes cross-sections to be rigid and is realized by requiring

the directors to be mutually orthonormal, i.e., to follow Equation 5.2.
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