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Prior research in chip-level reconfigurable computing has involved augment-

ing a single processor core with reconfigurable logic. Despite significant perfor-

mance gains for some applications, the area and power costs can easily out-

weigh the benefits, especially when considering the breadth of applications run

on a general purpose processor and the benefit they receive from reconfigurable

logic, from orders of magnitude benefit to no benefit at all. Moreover, this prior

work focused almost exclusively on uniprocessor systems and did not address

the unique requirements of parallel applications.

This dissertation proposes novel reconfigurable architectures for chip multi-

processors (CMPs). In our approach, the reconfigurable fabric is shared among

multiple threads from both sequential and parallel applications to amortize the

area and power costs and increase fabric utilization. To further reduce the over-

head, we propose a heterogeneous CMP where different regions are optimized

for different tasks, including regions with shared reconfigurable fabrics, and

other regions with only conventional cores. Within a reconfigurable region,

the architecture dynamically manages the use of the shared fabric and includes

mechanisms that accelerate parallel applications and enable parallelization of

otherwise sequential applications.

We first identify a number of features from previous proposals that enable

efficient sharing of reconfigurable logic. With these features in mind we design

Specialized Programmable Logic (SPL), a reconfigurable fabric specially tailored



for sharing among multiple cores, and evaluate and optimize the SPL under a

range of both single- and multi-threaded applications.

As with other shared structures, shared SPL must be intelligently controlled

in order to achieve optimal performance. We propose a number of sharing

schemes and find that, with proper management, shared SPL achieves perfor-

mance similar to providing each core with its own large, private fabric, while

substantially reducing area and peak power costs.

When multiple single- and multi-threaded applications are running on mul-

tiple SPL clusters, the assignment of threads to clusters and the dynamic par-

titioning of the fabric significantly impact performance. To address these is-

sues, we propose a number of management algorithms that control both thread

scheduling and SPL sharing.

Finally, the shared nature of the SPL makes it well suited for communicating

among the attached cores. We propose modifications to the baseline SPL de-

sign that allow it to provide a means of fine-grained interthread and barrier

communication among cores sharing the fabric. Performing communication

through the SPL provides the additional benefit of allowing computation to be

performed on the data while it is in-flight to the recipient. When incorporated

into a heterogeneous CMP, the combined computation and communication abil-

ities of the SPL provide significant benefits over a CMP with only traditional

cores.
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CHAPTER 1

INTRODUCTION

The microprocessor industry is rapidly transitioning to incorporating multi-

ple processing cores on a single time. While the move away from single complex

cores is indisputable, the most profitable way to organize these chip multipro-

cessors (CMPs) is a topic of ongoing debate. Given the variety of single- and

multi-threaded applications that will run on a particular design, it will be ex-

tremely difficult to determine the optimal hardware/software system a priori at

design time.

One attractive approach is to intermix conventional processing cores with

reconfigurable logic that can be programmed to assume multiple specialized

functions. This approach provides a form of reconfigurable heterogeneity that can

be matched to changing workload characteristics at runtime. While the physical

design may be homogeneous, with identical cores and attached programmable

logic fabrics, each fabric can be configured at runtime to perform a different

function according to the tasks assigned to the cores, or in the case of homoge-

neous threads from a parallel application, they may be configured identically.

Numerous proposals [6, 20, 22, 34, 39, 64, 65, 68, 91, 92] exist for integrating

reconfigurable logic with general purpose cores. All of these proposals, how-

ever, were developed during the single core era and so the fabric was only at-

tached to a single processor. As such, these designs typically suffered from a

large area overhead and limited application coverage. The fabric might only

speed up 50% of applications, yet consumed 50-75% of the chip area [34, 41, 68,

90, 91].
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The recent move to chip multiprocessors, along with continued technology

scaling, motivates us to reconsider the integration of reconfigurable logic on

chip. Increased transistor density allows the integration of multiple cores and

reconfigurable logic on the same die and provides the opportunity to share a

single fabric among multiple cores. This amortizes the area overhead, increases

the likelihood of use by at least some of the cores, and opens up optimization

opportunities that are not possible with private fabrics. With this in mind, we

propose RACM1, a Reconfigurable Architecture for Chip Multiprocessors de-

signed for the multicore era. RACM tightly integrates reconfigurable logic with

traditional general purpose cores. Unlike previous reconfigurable proposals,

which were designed for single core processors, RACM, and its associated Spe-

cialized Programmable Logic (SPL), is specifically designed with today’s chip mul-

tiprocessors in mind.

Figure 1.1 provides an overview of RACM, including (a) the integration of

the SPL in a heterogeneous multicore system, (b) a high level view of the SPL

architecture, (c) the design of the SPL computation cells, and (d) the interaction

between the SPL and the RACM cluster manager. As a whole, RACM provides:

• A tightly integrated, row-based reconfigurable fabric to accelerate compu-

tation (Chapter 3);

• Mechanisms to temporally and spatially share the fabric among multiple

cores (Chapter 3);

• Dynamic cluster management policies to manage the assignment of threads

to cores and the partitioning of the fabric (Chapter 4);

• Fine-grained intercore data communication (Chapter 5);

1Pronounced “rack ’em.”
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• Fine-grained barrier synchronization (Chapter 5);

• The ability to perform computation on data that is being communicated

(Chapter 5).

Each of these features will be discussed in the coming chapters.

The next chapter reviews literature related to all of these areas. We first dis-

cuss the numerous proposals for reconfigurable fabrics and architectures, focus-

ing particularly on those that deal with the high level integration of a reconfig-

urable fabric with general purpose processors. Next, we examine prior work

that has investigated thread scheduling and dynamic spatial partitioning as it

relates to other shared structures, especially caches. Finally, we discuss propos-

als for fine-grained interthread communication and synchronization.

Chapter 3 details the design of the SPL and those features that we find to be

particularly amenable to fabric sharing. Multiple dynamic sharing schemes are

proposed and their performance is compared to the performance of providing

each core with its own large, private fabric. We find that, with intelligent control

policies, shared SPL is able to obtain the same performance as large private

fabrics while providing a 4X reduction in fabric area and peak power.

Due to contention and communication issues, the SPL should only be shared

among a limited number of cores. As such, there will likely be multiple SPL

clusters in future many-core CMPs. The mapping of threads to clusters and

the dynamic partitioning of each cluster can play a significant role in the per-

formance obtained by each application. A number of dynamic management

schemes are developed in Chapter 4 which control the assignment of threads

to clusters and the dynamic partitioning of the SPL in order to maximize per-
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formance. The best scheme, Hybrid Heuristic-Hill Climbing (H3C), combines

elements of phase analysis, stability detection, and machine learning. Dynamic

management with H3C outperforms both the per-workload oracle best static

schedule and a system where the SPL is ideally replaced by additional cores.

In addition to reducing area and power overhead, sharing the SPL among

multiple cores allows for optimizations not possible with private fabrics. In par-

ticular, the shared SPL provides a good platform for performing fine-grained

communication between cores. Chapter 5 describes how RACM uses the fab-

ric to allow fine-grained interthread communication and fine-grained barrier

synchronization. This fine-grained communication allows parallelization of al-

gorithms that might not otherwise realize a benefit from the additional cores

provided in today’s CMPs. Using the SPL for communication has the added

benefit that computation can often be performed on the data while it is in flight

to the consumer, providing performance enhancements not possible with ded-

icated hardware communication schemes. We show that, in the context of a

heterogeneous CMP with both traditional and reconfigurable clusters, RACM

can provide significant performance and energy benefits compared to what can

be achieved with an area equivalent set of more powerful cores and idealized

communication hardware.
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CHAPTER 2

RELATED WORK

2.1 Reconfigurable Computing

Several survey papers (e.g., [15, 37, 85]) provide an overview of the contribu-

tions of prior reconfigurable computing projects. We focus on those proposals

that address the design of reconfigurable fabrics tailored to inclusion with gen-

eral purpose cores, the characteristics of prior approaches that we find particu-

larly amenable to shared fabrics, and the integration of the fabric within a CMP.

2.1.1 Fabric Design and Core Integration

Numerous proposals exist for integrating reconfigurable logic with a general

purpose processor. Designs such as PRISC [63, 64], OneChip [92], Proteus [18,

19, 20], CoMPARE [68], Stretch [79], Chimaera [39, 93], and DPGA [21, 22]

tightly integrate the fabric with the processor as a specializable execution unit.

In DISC [90, 91] and NAPA [65] the fabric predominates with the processor serv-

ing largely to feed the reconfigurable hardware. Garp [6, 7, 41], PipeRench [34,

35, 69], and Tartan [56] fall in between.

Garcia and Compton [31] investigate a reconfigurable system in which the

processor and reconfigurable fabric communicate via virtual memory. Carrillo

and Chow [8] and Dales [18, 19, 20] evaluate the high level integration of a

reconfigurable fabric with a single core processor and the overall system perfor-

mance it provides. All of these, however, only investigate the integration with a
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single core, although Garcia and Compton [31] state that their technique could

be extended to a multicore system.

In [32], configuration data for a reconfigurable coprocessor is shared among

multiple cores with the goal of increasing fabric utilization by allowing a larger

number of configurations to concurrently exist in the fabric. Chen et al. [11] in-

vestigate the benefits of including reconfigurable ISA support in a multicore

processor and find that combining program parallelization with custom ISA

support provides larger speedups than the product of the two techniques ap-

plied in isolation.

The aforementioned designs have largely focused on accelerating certain

application classes that see significant benefits from reconfigurable hardware.

In addition to application acceleration, integrated reconfigurable hardware has

been shown to be useful in other areas, such as aiding fault tolerance [74] and

creating instruction path coprocessors to perform trace construction and opti-

mization [14].

Reconfigurable computing has recently been gaining increasing attention

from industry. Both Intel and AMD allow tighter integration of FGPAs with

general purpose processors through HyperTransport, QuickPath, and licensing

of front side bus technology [26, 27]. Convey Computer’s HC-1 pairs an In-

tel processor with a reconfigurable coprocessor and allows different instruction

sets to be loaded into the coprocessor [17].
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2.1.2 Fabric Characteristics for Sharing

Several efforts have developed reconfigurable fabrics whose characteristics – in

particular higher computation granularity, row based design, and virtualization – we

find to be highly amenable to efficient SPL sharing.

Multiple works utilize coarser computation granularities than the bit-level

configurability supported by FPGAs. Garp [41] and PipeRench [34], for exam-

ple, use two and eight bits, respectively, as the smallest computation granularity.

Using larger granularities reduces power, area, and configuration information

at the cost of flexibility and density in design mapping. Most general purpose

applications, however, do not require bit-level manipulation and so the savings

tend to outweigh the costs. While this does not directly ease sharing per se, it

does significantly reduce area and power.

Row based reconfiguration is employed by a number of designs [34, 90, 93]

for several reasons. The cycle time of the fabric is set by the row delay and

thus remains constant for all configurations. Using row based fabrics makes

hardware design and application mapping easier and significantly reduces the

routing complexity over traditional FPGA architectures. It also makes partial

reconfiguration of the fabric easier as designs occupy a certain number of rows;

so long as that number of rows is available in the fabric, it can be reconfigured

by reprogramming only those rows.

Virtualization, such as that employed by PipeRench [34, 35], allows the fabric

to handle configurations that require more rows than are physically available in

the fabric. The costs of virtualization are degraded throughput, since the design
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can no longer be fully pipelined, and higher power. Despite these drawbacks,

virtualization is a key component of efficient shared fabrics.

2.2 Thread Scheduling

The benefits of dynamic thread scheduling in small scale CMP/SMT systems

has previously been explored for a number of purposes, including cache-aware

scheduling [10, 25, 47, 82] and thermal and power management [16]. Most of

these efforts deal with temporally scheduling threads between time slices where

the number of threads is greater than the number of processor contexts.

Cache-aware scheduling aims to minimize contention or maximize sharing

between threads scheduled in the same interval. Tam et al. [82] create sharing

vectors based on performance monitoring unit (PMU) data to cluster threads

that share data in order to minimize long latency cross-core or cross-chip cache

accesses. Fedorova et al. [25] use balance-set scheduling to create L2 conscious

schedules. Chen et al. [10] investigate a parallel depth first task scheduling al-

gorithm to increase data locality for certain parallel algorithms.

Constantinou et al. [16] investigate the performance impact of saving differ-

ent portions of the processor state, including cache and predictor state, when

migrating threads at various scheduling granularities. Such migrations might

be used to minimize thermal variations or, in a heterogeneous CMP, to improve

power efficiency by placing a thread on the core best suited to its current needs.

Thread assignment for a shared reconfigurable fabric shares some similarity

with SMT scheduling. Snavely and Tullsen [76] use a trial based technique of
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sample and “symbios” phases in which they sample the performance of a small

number of possible schedules for a short period and choose the best performing

of these schedules to run for the longer “symbios” phase. El-Moursy et al. [24]

investigate continuous, on-the-fly thread scheduling based on a number of dif-

ferent possible metrics.

In the realm of reconfigurable computing, previous work has investigated

the issue of configuration scheduling [2, 29]. Configuration scheduling tries

to determine which implementation (either software or one of possibly many

hardware implementations) should be employed for a particular function given

current performance, area, and power restrictions. Our work is orthogonal to

configuration scheduling and the two could be combined to further reduce con-

flicts for the SPL and improve performance.

2.3 Dynamic Resource Sharing

Previous research has proposed sharing other architectural components among

multiple cores. L2 caches are likely the most prominent shared component with

numerous works addressing how to best allocate cache space among multiple

threads [12, 46, 80]. Sun’s UltraSPARC T1 [81] shares a single floating point

unit among its eight SMT cores. Kumar et al. [48] investigate sharing floating-

point units, crossbar ports, and L1 instruction and data caches between two

cores. Their work, however, focuses largely on temporal sharing, and does not

consider dynamic spatial techniques such as splitting a cache in half if inter-

thread conflicts are too high.
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Prior work that optimized resource allocation during different program phas-

es [23, 73] focused solely on single, sequential applications. In our multithreaded

environment, each thread has its own current phase and we must deal with

optimizing thread assignment and resource allocation as phases change across

multiple applications.

Our situation is more difficult than any of this previous scheduling and

shared resource work as we must concurrently manage both the assignment

of threads to clusters and the dynamic partitioning of the fabric.

2.4 Fine-Grained Interthread Communication

StreamIt [36, 84] is a programming language and compiler infrastructure aimed

at easing the use of pipeline parallelization. Decoupled Software Pipelining

(DSWP) addresses hardware options for implementing fine-grain communica-

tion [61, 62], automatic extraction of streaming threads [57], data parallelization

of pipeline stages [60], and speculative DSWP [87]. The Synchronized Pipelined

Parallelism Model [88] parallelizes programs into a series of producing and con-

suming threads to keep data on-chip for as long as possible to minimize off-chip

accesses.

SCORE [9] employs a stream computing model and targets reconfigurable

systems. The design incorporates a single CPU and multiple reconfigurable

blocks and streaming occurs between reconfigurable blocks over a dedicated

interconnect. In our work, communication occurs between CPUs and the shared

reconfigurable fabric is used to perform the communication.
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None of this prior work evaluates the energy efficiency implications of

streaming. Energy usage is a non-trivial concern given the fact that streaming

tends to provide less than ideal speedups.

2.5 Fine-Grained Synchronization

Beckmann and Polychronopoulos [3] and Shang and Hwang [72] both pro-

pose hardware mechanisms for performing barriers using dedicated intercon-

nect and hardware tables. IBM’s Cyclops architecture [5] provides dedicated

hardware support for barriers through a special purpose register and wired-

OR. Sampson et al. [67] propose barrier filters to eliminate the dedicated inter-

connect required in most barrier synchronization proposals. The Multi-ALU

Processor [45] provides an explicit barrier instruction in the ISA and supports

register to register communication between clusters.
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CHAPTER 3

SHARED RECONFIGURABLE ARCHITECTURES FOR CMPS

Despite its potential, reconfigurable logic as an attached customizable unit

has not yet been widely embraced by mainstream microprocessor manufactur-

ers. One major impediment is the large power and area costs of FPGA technol-

ogy relative to fixed functionality hardware [50]. While researchers have made

significant progress in devising specialized fabrics to bridge this gap, many mi-

croprocessor architects still view the costs as too high to justify their mainstream

adoption.

RACM addresses this gap by sharing a Specialized Programmable Logic (SPL)

fabric among multiple cores. In this chapter, we describe the microarchitecture

and low-level hardware control for shared SPL. In a multicore system where

each core is coupled with its own fabric there are inevitably periods where one

fabric is highly utilized while another lies largely or even completely idle. Thus,

by sharing SPL fabric resources among multiple processor cores, programmable

logic can be much more efficiently integrated – at far less power and area cost –

into future multicore microprocessors.

In RACM, a number of standard cores share a common pool of SPL. Depend-

ing on the particular needs at any given point in time, each pool is dynamically

partitioned among the cores, either spatially, where the shared fabric is physi-

cally partitioned among multiple cores, temporally, where the fabric is shared in

a time multiplexed manner, or a combination of both. We show in Section 3.3

that pooled SPL configurations guided by effective control policies have little

impact on performance for both parallel and coarse-grain multithreaded work-
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loads – compared to private SPL attached to each core – while significantly re-

ducing SPL area and energy costs.

3.1 SPL Architecture

In this section, we first motivate the need for research in more efficient SPL in-

tegration in CMPs, and quantitatively demonstrate the overall benefits of our

approach. We then describe the RACM architecture, including high level sys-

tem integration, the SPL microarchitecture, and our dynamic sharing control

policies.

3.1.1 Motivating Example

We motivate our work by demonstrating the drawbacks of a straightforward

application of prior SPL approaches to a CMP and the substantial benefits of in-

telligent SPL sharing. Figure 3.1(a) depicts a floorplan – with the L2 omitted but

remaining areas drawn to scale – for a portion of a large-scale multicore chip1

with eight single-issue out-of-order cores, each of which is coupled with an SPL

fabric. Each SPL contains 26 rows of programmable logic, just enough to avoid

virtualization for all eight applications. (Application statistics and modeling

methodology are described in Section 3.2.)

The SPL area is roughly twice that of each core. Granted, a more complex

core would consume more area, and we explore such options later in this chap-

ter. Still, from an area and utilization perspective, there is clearly room for im-

provement. Figure 3.2 shows the utilization (percentage of the total number
1Other regions of the die may contain only cores and no SPL.
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Figure 3.1: Sample floor plans for a portion of a multicore chip with (a) 26-row pri-
vate, (b) 6-row private, and (c) 4-way shared SPL.
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Figure 3.2: SPL utilization for private and shared SPL organizations. *The last set
of bars shows percentage slowdown relative to 26-row private SPL.

of rows that are in use on average) and performance of several SPL configura-

tions for a coarse-grain multithreaded workload of eight single-threaded appli-

cations, each of which runs on one of the eight cores. The leftmost bars for the

individual benchmarks show the utilization of the 26-row configuration of Fig-

ure 3.1(a). The utilization of all eight of the SPL fabrics is less than 10% , and
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the average SPL utilization is only 3.4%. Reducing each SPL to 6 rows (next set

of bars) markedly increases SPL utilization for some benchmarks; moreover, the

area is greatly reduced as shown in Figure 3.1(b). However, this comes at a high

cost: an 18% overall performance loss, since all benchmarks use more than 6

rows.

By intelligently sharing the SPL among multiple cores, the average number

of rows for each core can be reduced to six with little performance loss relative to

the private 26-row configuration. Figure 3.1(c) shows a floorplan with two pools

of SPL, each of which contains 24 rows and is shared – using control policies that

we describe in Section 3.1.7 – among four cores. This configuration reduces the

SPL area and peak power costs by over 4X. Furthermore, as shown by the third

AvgUtilization bar2 in Figure 3.2, the average utilization of the fabrics increases

as well. These benefits come with virtually the same performance as the 26-row

private configuration. The rightmost bars show that a single 48-row SPL shared

among all eight cores further improves utilization, and also suffers negligible

performance loss.

The contrast in performance between the private six-row and four-way

shared SPL configurations – which have the same total number of SPL rows

– motivates the need for good sharing policies. The six-row private configura-

tion can be viewed as a spatially shared SPL organization with a naı̈ve control

policy that equally divides the SPL among all cores at all times. The shared con-

figurations use a more intelligent policy that eliminates the 18% performance

loss of the naı̈ve approach.

2We do not show utilization for individual benchmarks since the fabrics are shared among
multiple benchmarks.
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3.1.2 System Overview

Figure 1.1(a) shows an overall depiction of a 20 core CMP with three clusters3,

with the external interface not shown for simplicity. Each of the two clusters

on the left hand side consists of four single issue out-of-order processor cores4

sharing a common pool of SPL. The SPL is a highly pipelined, row-based re-

configurable fabric and is described in more detail in Section 3.1.4. In the “con-

ventional” cluster on the right hand side of Figure 1.1(a), each fabric has been

replaced by two additional cores, giving 12 cores in total. Applications that are

not compiled to use the SPL run on this conventional cluster, while those that

exploit SPL run on one of the two left clusters.

3.1.3 Core/Fabric Integration

As with a number of previous designs [20, 64, 79, 93], the SPL fabric is tightly

integrated with the processor core as a reconfigurable functional unit. How-

ever, rather than consume additional register file ports, we use a queue-based

decoupled architecture to interface the SPL to the memory system. The SPL in-

put queue matches the row input width and special SPL load instructions place

values into the queue at a particular data alignment. Likewise, instead of writ-

ing to the register file, the SPL writes to an output queue that is then written

out to the Store Queue using special SPL store instructions. Since the normal

LSQ/cache datapath is used for data transfer, no additional steps are needed to

handle memory dependences with the processor core.

3Although relative sizes of the cores and SPL are accurate, this is not intended to represent
an actual floorplan.

4An analysis of different complexity cores and the reasons for selection of single issue out-
of-order cores for the final design will be discussed in the following sections.
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As discussed in Section 2.1, row-based designs employing virtualization are

highly amenable to sharing. Figure 1.1(b) shows how our row-based SPL is

modified to enable both spatial and temporal sharing between two cores. For

spatial sharing, additional muxes select input bits at the entry point of the SPL

and at each point where the SPL pool might be partitioned. Furthermore, an

additional set of tristate drivers tap off of each row output to drive the sharer’s

output queue. Finally, there is additional wire overhead to get data to and

from multiple cores. These wires can be pipelined if necessary to match the

SPL clock frequency at the cost of additional pipeline initiation time. However,

with deeply pipelined row-based fabrics, the cost is small and is outweighed by

the efficiency gains.

For temporal sharing, all rows of the fabric are available to all cores in a time

multiplexed fashion. Therefore, only the muxes at the head of the fabric are

required.

3.1.4 Fabric Microarchitecture

An SPL fabric consists of a collection of rows. Each row contains c cells, and

each cell computes b bits of data. Figure 1.1(c) shows the cell and row design.

The major cell components are a main 4-input look-up table (4-LUT), a group

of 2-LUTs (equivalent to one 3-LUT) plus a fast carry chain to compute carry

bits or other logic functions if carry calculation is not needed, barrel shifters to

properly align data as necessary, flip-flops to store results of computations, and

an interconnection network between each row. Within a cell, the same operation

is performed on all b bits. These b-bit cells are arranged in a row to form a
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c×b-bit row. Each cell can perform a different operation on its inputs and a

number of rows are grouped together to execute an application function. The

clock frequency is set such that the longest possible computation within a row

completes in a single SPL clock cycle.

As shown previously [34], several trade offs dictate the optimal choice of cell

width, row width, and number of rows. Increasing the cell bit width decreases

area and power at the cost of less configuration flexibility. Increasing the row

width allows more computation in a single cycle but also increases the likeli-

hood of less than 100% resource utilization if not all of the cells in a row can be

put to use. Furthermore, the fabric width should match the ability of the mem-

ory system to supply data at a fast enough rate. Finally, reducing the number of

rows has linear area and power benefits but increases the number of functions

that must be virtualized.

To quantitatively evaluate these trade offs, we create analytical area, latency,

and power models for SPL in 65nm technology. The model combines estimates

for the different components of the fabric. We use Cacti 4.2 [83] to model LUTs,

Orion [89] for between row interconnect modeling, the models of [42] for local

wiring and between cell wires (such as for the barrel shifter and carry logic not

included in the Orion model), and the work of [40] for the carry chain logic

implementation. Finally, various bit level components, such as transistor delay,

area, and power, used to compute estimates for muxes and small SRAM cells,

are taken from the ITRS [70].

To validate our model, we compare scaled values of area, latency, and power

available from previous reconfigurable fabric designs [41, 69, 39] with predic-

tions by our model for these fabric architectures. The results are given in Ta-
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Table 3.1: Comparison of data from actual reconfigurable fabrics (scaled to 65nm)
and the analytical model.

Scaled Actual Model % Diff
PipeRench - 8-bit, 16-cell, 16-row - 180 nm

Area (mm2) 1.5 1.59 6.0%
Frequency (MHz) 350 460 31.4%
Power (W) 0.929 0.832 -10.5%

Chimaera - 1-bit, 32-cell, 32-row - 0.6 µm
Area (mm2) 0.805 0.751 -6.7%
Frequency (GHz) 1.27 1.06 -16.5%

Garp - 2-bit, 24-cell, 32-row - 0.5 µm
Area (mm2) 1.32 1.06 -19.7%

ble 3.1. The Scaled Actual Area values in this table are derived by scaling the

fabric area of each design by the square of the ratio of the technology factors.

For frequency, the reported values are linearly scaled by the technology ratio.

The Scaled Actual Power value for PipeRench is derived by scaling the reported

power value by the square of the ratio of the PipeRench voltage to the SPL volt-

age, by the ratio of the PipeRench frequency to the SPL frequency, and by the

ratio of the technology factors (to account for capacitance scaling). The model

achieves good correlation except for the frequency in PipeRench and Chimaera

and the area of Garp. For PipeRench, the PipeRench paper notes that the circuit

design was not highly optimized [69], and therefore we expect that a frequency

closer to our higher value could be achieved in an industrial PipeRench design.

Given the seven technology generations between our design and Chimaera, a

16% error is not unexpected. For the area disparity with Garp, the information

available for Garp is limited, making good correlation with the Garp design

difficult. Specifically, only the area of the entire Garp chip is provided and we

determine the area consumed by the fabric by determining the ratio of fabric

area to total chip area from the provided floorplan.
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Figure 3.3: Comparison of latency and area predicted by analytical model to results
reported in [95].

Yehia et al. [95] perform an area and latency design space exploration for pro-

grammable function units with varying number of inputs and outputs (among

other parameters). Figure 3.3 shows area and latency comparisons between our

model and the results presented by [95] for fabrics with different numbers of

row inputs and outputs. The model error is within 15% in all but two cases.

We use our model to estimate the costs of different configurations for the

various functions that we map to the SPL (discussed in Section 3.2). An 8-bit

wide cell with 128-bit wide rows provides a good compromise between flexibil-

ity and area/power cost, and permits significant parallelization. Each SPL func-

tion can take in up to 512 bits of input and can produce up to 128 bits of output.

This organization achieves a reasonably high frequency (500MHz) relative to

the processor core frequency (assumed 2GHz at 65nm, the same as the Pentium

Core2 Duo [43] and the AMD X2 Dual-Core [1], both of which are implemented

in the same 65 nm technology). At this one-quarter clock speed differential, four

quadword load instructions can supply 512 bits to the SPL pipeline every SPL

clock period.

21



Table 3.2: Area and power of different core types and 26-row SPL normalized to IO
area and power.

Area Dynamic Power Leakage Power
IO 1.00 1.00 1.00
OOO1 1.19 1.06 1.05
OOO2 1.82 1.26 1.26
OOO4 4.87 1.66 1.63
SPL 2.49 0.66 3.02

For the baseline 26-row private SPL, we include on-chip storage for eight

configurations to allow for fast switching between different configurations. For

our workloads, this permits all configurations for any phase to reside on-chip.

Thus, reconfiguration latency is not an issue as all configurations are immedi-

ately available after the initial configuration overhead is paid.

To gauge the sensitivity of our evaluation to the exact details produced by

our model we evaluated an SPL design where the SPL is 50% slower than de-

scribed above (i.e., one SPL cycle is equivalent to six processor cycles). Despite

this 50% increase in latency, our workloads experienced only an average 12-

16% lower performance than the 4 cycle baseline depending on the complexity

of the attached core. This confirms that our conclusions are not overly reliant

on the exact results of our model. Even if the SPL opperates a little slower than

predicted, similar performance benefits can still be achieved.

Table 3.2 shows the area and power of a 26-row SPL compared with four

conventional core types: a single-issue in-order core (designated as IO), and

one-, two-, and four-way issue out-of-order cores (OOO1, OOO2, and OOO4).

Results are normalized relative to the IO core. Each core has separate 8 kB L1

instruction and data caches. We adopt the methodology of Kumar et al. [49] to

calculate per-core area and power costs. We note that an OOO1 core augmented
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Table 3.3: SPL configurations and associated area and power costs.

Rows/
SPL

Configs/
Row

Total SPL
Area (mm2)

Dynamic
Energy/
Row (nJ)

Total SPL
Leakage

Power (W)
Eight Private 26 8 23.74 .0600 4.59
Four 2-way Shared 12 8 5.55 .0601 1.06
Two 4-way Shared 24 10 6.03 .0601 1.08
One 8-way Shared 48 12 6.62 .0601 1.10

with SPL has an area that falls between OOO2 and OOO4, while the area of

OOO2 + SPL is slightly less than that of OOO4.

We create shared SPL configurations by pairing OOO1 cores with an SPL

that consumes approximately half the area of the sharing cores. OOO1 cores are

selected as, of the cores investigated, adding SPL to single-issue out-of-order

cores provides the greatest relative benefit (see Section 3.3.1 for further details).

A six row SPL consumes slightly more than half the area of an OOO1 core and

the combination of the two is smaller than OOO2.

Given these constraints, we arrive at the shared SPL configurations shown in

Table 3.3, which also includes the baseline private 26-row SPL organization for

comparison purposes. In terms of total area and leakage power, four two-way

shared SPLs come at slightly less than a quarter of the cost of the eight private

SPLs. The reduced number of rows, however, means that functions will need

to be virtualized more often. Indeed, any function requiring all 26 rows of the

private SPL will be virtualized in both a two- and four-way shared SPL, even

if the other cores are not using the shared SPL at that time. SPL configurations

with a higher degree of sharing consume a slightly larger area than the two-way

shared configuration but they require less virtualization. When several appli-

cations simultaneously reach a point where they do not need the SPL, it can be

allocated among the remaining cores so that virtualization can be avoided. The
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area increase for higher degrees of sharing comes from the additional datapath

hardware and on-chip configurations for higher degrees of sharing, with the lat-

ter contributing most of the increase. As with the private fabrics, the shared SPL

designs provide enough on-chip configuration storage such that, for our work-

loads, all configurations for any set of application phases can reside on-chip.

3.1.5 Virtualization

Virtualizing reconfigurable hardware was proposed by [6] to allow a fabric to

execute a configuration that requires more resources (i.e., rows) than are phys-

ically available. Although this ability comes at the cost of reduced through-

put when the design must be virtualized, virtualization permits the designer to

trade performance for area. As more area becomes available (or for higher-end

chips) larger fabrics can be created without requiring any change to the appli-

cation mappings.

Virtualization is accomplished by using the same physical row to execute

multiple virtual rows. Figure 3.4 shows an example in which a function requir-

ing six virtual rows is virtualized over a fabric with only three physical rows.

Figure 3.4(a) shows the six virtual rows of the function while Figure 3.4(b) shows

the actual physical rows. The number in each cell shows which function row is

currently loaded into that row during that cycle. In the first three cycles new

data is input each cycle. At the end of the third cycle the first piece of data is

ready to move onto the fourth virtual row of the function. Since no more phys-

ical rows are available, the first physical row is reconfigured to virtual row four

and virtual row one is cached for possible later use. As such, new data cannot
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Figure 3.4: Example of a six row configuration being executed on a three row SPL
using virtualization [34]. Numbers inside each block indicate the con-
figuration loaded in each row.

be input during this cycle. This reconfiguration process continues until the last

row of the function is loaded, at which point the fabric loads the first virtual row

of the function again if there is more data waiting to be processed and the se-

quence is repeated. In this example, the cost of virtualization is a 50% reduction

in throughput as results are only output every three out of six cycles.

For shared fabrics the number of rows available to a function is not known

at application design time even for a particular fabric implementation as the

function may not be allocated the entire SPL. As such, virtualization is especially

useful for shared fabrics as it allows all SPL functions to be executed – albeit

with possibly different throughput – regardless of the number of rows that are

allocated to the function at runtime.
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Table 3.4: ISA extensions.

Instruction Description

spl lsize align, offset(reg)
Load data of size size into SPL input
queue at alignment align

spl ssize align, offset(reg)
Store data of size size from SPL output
queue to memory at alignment align

spl init config Invoke SPL using configuration config

spl prefetch config
Prefetch SPL configuration config into
configuration memory

3.1.6 Software Interface

We now describe the instruction set extensions required to utilize the SPL. We

take the position that sharing, like virtualization, should be transparent to the

compiler. Thus, the SPL fabric controller handles sharing conflicts using the

policies we describe in the next section.

Table 3.4 shows the instructions used to access the SPL. The SPL load in-

struction loads an operand of size size from the effective address into the SPL

input queue at position (alignment) align. The instruction executes in the core

pipeline but the data is loaded into the SPL input queue rather than the register

file. With our SPL microarchitecture, four quadword SPL loads, each offset by

a quadword, can fill the full SPL input width in a single SPL cycle (four proces-

sor cycles). SPL stores similarly store an operand of size size at alignment align

from the SPL output queue to the memory system (Store Queue). Here also, the

effective address is calculated in the core pipeline. The instruction waits for the

head SPL output queue Valid bit to be set before performing the transfer.

The spl init instruction invokes the SPL function described by configura-

tion config. The corresponding configuration ID is loaded into the input queue

along with the data. This ID is used to load the appropriate configuration as the
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spl lq 0, 0($6)

spl lq 16, 16($6)

spl init dist1

spl sw 0, 16($sp)

Figure 3.5: SPL assembly code for MPGenc dist1 function. The reference dist1
is a pointer to the SPL configuration information.

data passes from row to row. Once the spl init command is issued the queue

advances such that subsequent loads get placed into the next slot, in preparation

for the next spl init.

If the configuration data corresponding to config is not present in the on-

chip configuration memory, then a delay is incurred while it is loaded from

off-chip. Subsequent invocations of this function will pay no penalty if the pre-

viously loaded configuration is still present. The spl prefetch instruction can

be used to prefetch this information in advance of its first being used [38, 54],

analogous to prefetching memory data into cache.

We provide an example to illustrate the use of these instructions. Figure 3.5

shows the SPL assembly code for the dist1 function from the ALPBench MPGenc

benchmark [52]. This function is used for motion estimation in the encoding

process and computes the absolute difference between two image blocks. The

function operates on eight-bit values. The simplest “if” case requires 16 ad-

ditions, 16 subtractions, and a variable number of negations (to produce the

absolute value). The 16 subtractions and absolute value comparisons can each

be performed in parallel and require a total of four rows. The accumulation of

the 16 values requires an addition tree which needs four more rows to complete,

resulting in a total of eight rows.
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The base address for the 32 bytes of input data is located in register six.

The input data are loaded via two quadword SPL load instructions separated

by memory and input queue offsets of 16 bytes. The dist1 function is then in-

voked using the spl init instruction. The configuration ID associated with

dist1 passes row-by-row with the data. After the data is written into the output

queue, it can pass in the next cycle to the Store Queue if the SPL store instruction

has already issued – a likely scenario.

If the full input width (64 bytes) was required, four quadword loads would

have been needed. To sustain the maximum SPL bandwidth over multiple it-

erations of this function, the load instructions in the core pipeline must overlap

with processing of the spl init instruction (extracting the configuration ID

and placing it in the appropriate queue position). Otherwise, the loads for the

next iteration would be delayed by the spl init and associated store of the

results of the previous function.

3.1.7 Sharing Policies

We explore hardware-level control policies for spatial and temporal SPL shar-

ing. The advantage of spatial sharing is that each core is given dedicated re-

sources and is guaranteed to make forward progress each cycle, although pos-

sibly at a degraded rate due to increased virtualization. In temporal sharing,

all cores vie for the same SPL resources, but those resources are larger and so

virtualization occurs less often, perhaps even less so than with private SPLs. We

discuss each of these approaches in turn and then propose a hybrid approach

that attempts to capture the benefits of both.
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Spatial Sharing Algorithm

The first decision with spatial sharing is how finely to divide up the fabric. One

can choose an equal number of rows based on the number of sharers, i.e., the

SPL is split into n equal sections if there are n sharers, or split according to ex-

pected application usage. These approaches require a large number of interme-

diate muxes. We investigated a simpler alternative that splits by only powers

of two; if, for example, there are 5-8 sharers, the SPL will be broken into eight

partitions and some of these may lie unused.

To determine when to merge SPL partitions, per-core idle cycle counters and

an idle count threshold value (1000 in our implementation) are associated with

each shared SPL pool. When a core has no SPL instructions in-flight, its idle

counter is reset. The counter counts up each cycle that the core does not request

use of the SPL. Once the threshold is reached, the SPL checks to see if the num-

ber of threads now using the SPL falls within a different power of two partition.

If so, it waits for all current in-flight functions to finish and then repartitions the

SPL, allocating the core’s partition to the other active sharers.

Figure 3.6 shows an example progression with spatial sharing. Initially, all

SPL blocks are unpartitioned. When a core first requests the SPL, if it is not

in use by any other core, the core is allocated the entire fabric (Figure 3.6(a)).

If the SPL is already in use by another core or cores, and there is not a free

partition, the SPL must be split. When the SPL controller detects a new sharer

it stops issuing SPL instructions from cores currently sharing the SPL, waits for

all current in-flight SPL instructions to complete and then splits the SPL into

the appropriate number of new partitions (Figure 3.6(b)). Once split, all cores

can begin issuing SPL instructions to their respective partitions (Figure 3.6(c)).
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Figure 3.6: Example of spatial sharing. In (a) a single core is using the SPL when
a second core makes a request. The current instructions complete and
then the SPL is split (b). In (c) both cores issue SPL instructions to their
partitions. After some time the second core stops issuing instructions
and its partition empties (d). After the merge threshold has passed, the
in-flight instructions complete and the SPL is merged (e). Finally in (f),
the first core continues using the entire SPL.

At some point, one of the cores may stop issuing instructions to its partition

(Figure 3.6(d)). After the partition has remained idle for a certain period the

SPL is again drained and the partitions are merged (Figure 3.6(e)). Finally, once

merged, the remaining threads can continue to use the SPL (Figure 3.6(f)).

Temporal Sharing Algorithm

For temporal sharing, we share the fabric among the cores in a round-robin

manner on an SPL cycle-by-cycle basis. This ensures that every processor makes

progress but can require the fabric to swap configurations more frequently. An

alternative policy could favor the thread that last used the SPL to reduce the

possibility of configuration thrashing. Depending on how frequently a thread

requests the SPL, however, this could lead to starvation of other processes. We

chose round robin due to our good experience with this policy in other contexts.

Figure 3.7 shows two cores sharing an SPL using round robin temporal shar-

ing. Initially, only one core is using the SPL and these instructions get issued

immediately (Figure 3.7(a)). When the second core begins using the SPL, in-

structions are issued in a round robin manner (Figure 3.7(b-d)). The per-core
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Figure 3.7: Example of temporal sharing. In (a) the first core issues an instruction
which immediately gets issued to the SPL. In the next cycle (b), both
cores issue SPL instructions. With round robin scheduling the instruc-
tion from the second core is issued and the other instruction is placed
in the queue. The next cycle (c), the queued instruction from core 1 is
issued and the request from core 2 is queued. Finally in (d), the queued
instruction from core 2 is issued.

input queues permit each core to prepare multiple SPL instructions while the

core awaits its turn in the rotation.

Hybrid Sharing Policy

We also explore a hybrid combination of the previous two techniques. The pol-

icy uses round robin temporal sharing but splits the SPL spatially when the

overhead due to temporal sharing becomes excessive. To determine when to

spatially split or recombine the SPL we track the average amount of time a

queued SPL instruction spends waiting to be issued.

To implement this policy each SPL input queue tracks over a fixed time in-

terval (1,000,000 cycles in our implementation) the number of SPL instructions

issued and the total queue wait time. At the end of the interval, the average wait

time per SPL instruction is computed. If this value exceeds an upper thresh-

old (4 in our implementation), the SPL is split. Likewise, if the average wait

time is less than a second threshold (0.125), the two clusters are merged. This

split/merge operation is performed in a hierarchical manner such that a cluster
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Table 3.5: Architecture Parameters.

Processor Configuration IO OOO1 OOO2 OOO4
Fetch/Decode Width 2 2 4 8
Issue/Retire Width 1 1 2 4
Branch Predictor gshare + bimodal
BTB Size 512B 512B 1KB 2KB
RAS Entries 32
Integer Registers 32 64 64 64
FP Registers 32 64 64 64
Integer Queue Entries 32
FP Queue Entries 16
ROB Entries X 64 96
Int ALUs 1 1 2 3
Branch Units 1 1 2 3
Int Mult/Div Units 1/1
FP ALUs 1
LD/ST Units 1/1
L1I Cache 8kB WT 2-way, 2-cycle access
L1D Cache 8kB WB 2-way, 2-cycle access
L2 Cache 1MB per core WB 8-way, 10-cycle access
Main Memory Access Time 100 ns

will always merge with the cluster it most recently split with before merging

with any other cluster. Merges must also be performed on clusters of the same

size. Although other split/merge options are possible, we chose these restric-

tions to reduce hardware and control overhead.

3.2 Evaluation Methodology

We use a highly modified version of SESC [71] to perform our evaluation. We

assume processors implemented in 65 nm technology running at 2.0 GHz with a

1.1V supply voltage. The major architectural parameters are shown in Table 3.5.

We use Wattch and Cacti to model dynamic power and Cacti and HotLeakage

to model leakage power.
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3.2.1 Benchmarks

We investigate shared SPL under both coarse-grain multithreaded and paral-

lel workloads. For our coarse-grain workload, we use one benchmark from

SPEC 2006 [78], four benchmarks from MediaBench [51] and three benchmarks

from MediaBench II [28]. For parallel workloads, we select two benchmarks

from the ALPBench suite [52] and a version of the Java Grande [75] crypt bench-

mark ported to C++. We run the ALPBench version of MPGdec with two differ-

ent command line parameters (-o0 and -o3) as they produce different execution

characteristics. Specifically, the o3 version executes additional code that utilizes

the SPL.

Since the SPL versions of each benchmark execute a significantly different

number of instructions than the baseline, we compare execution times for com-

plete program execution as IPC comparisons are meaningless. Due to the long

runtime of 456.hmmer under reference inputs we use Early SimPoints [58] to

approximate whole program execution for this benchmark. We select two 250

million instruction SimPoints from the original source code (i.e., code not uti-

lizing the SPL). We determine where each of the two SimPoints begin and end

and augment the code to fast forward through all but these two intervals. In

this way both the original and SPL versions of the code execute functionally

equivalent amounts of code. We continuously respawn jobs that finish before

the longest running thread in order to maintain a consistent SPL access pattern

from all threads.

Benchmark statistics are given in Table 3.6. All but four of the benchmarks

use at least 20 rows, but few of these occupy the SPL for any great length of

33



Table 3.6: Benchmark, number of SPL functions, maximum rows used by SPL func-
tions, percentage of execution time of optimized regions, percentage of
SPL instructions executed relative to total committed instructions, and
percentage of time with at least one SPL instruction in flight for OOO1
cores.

SPL
Functions

Max
Rows

% Optimized
Exec Time

% Dyn.
SPL Insts

SPL
Usage

cjpeg 5 21 49.9% 1.19% 17.77%
djpeg 3 23 61.9% 0.84% 9.72%
g721enc 1 26 45.5% 0.67% 24.11%
mpeg2dec 3 10 62.9% 1.07% 22.28%
gsm toast 2 16 54.2% 2.83% 28.92%
gsm untoast 1 22 75.8% 2.18% 36.55%
adpcmDec 1 24 95.9% 10.29% 79.22%
456.hmmer 1 10 85.0% 1.15% 40.51%
MPGenc 4 16 69.1% 0.72% 17.23%
MPGdec o0 5 20 44.8% 0.35% 15.30%
MPGdec o3 12 20 47.8% 0.57% 19.25%
crypt 1 298 97.9% 4.48% 99.90%

time. This indicates that for our workloads and architecture, there may be more

opportunity for temporal rather than spatial sharing.

3.2.2 SPL Programming and Function Mapping

The SPL is used to accelerate a wide range of operations. We show one example

function mapping from the SPEC 2006 application 456.hmmer. We accelerate the

P7Viterbi function, which accounts for 85% of the program execution time.

The core loop of the function is shown in Figure 3.8(a). Figure 3.8(b) shows how

the portion of the code that calculates mc is mapped to the SPL. In the optimized

code, the core first loads the input values needed to compute mc into the fabric,

the SPL computes the value of mc, and finally the core receives the result. After

receiving mc, the core computes the values of dc and ic and repeats the loop.
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for (k = 1; k <= M; k++) {
  mc[k] = mpp[k-1] + tpmm[k-1];
  if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
  if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
  if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
  mc[k] += ms[k];
  if (mc[k] < -INFTY) mc[k] = -INFTY;

  dc[k] = dc[k-1] + tpdd[k-1];
  if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
  if (dc[k] < -INFTY) dc[k] = -INFTY;

  if (k < M) {
    ic[k] = mpp[k] + tpmi[k];
    if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
    ic[k] += is[k];
    if (ic[k] < -INFTY) ic[k] = -INFTY;
  }
}

(a) Source code (b) Calculation of mc in SPL

Figure 3.8: Mapping SPEC2006 456.hmmer P7Viterbi to SPL.

Profile program executionProfile program execution

Identify critical sectionsIdentify critical sections

Evaluate SPL suitabilityEvaluate SPL suitability

Map functionality to SPLMap functionality to SPL

Create configuration bitsCreate configuration bits

Is Suitable?Is Suitable?

Yes

No

Figure 3.9: Procedure of mapping functions to SPL.

We modify our workloads by hand to create the SPL mappings. Previous

work has shown that compilers can produce good mappings for reconfigurable

architectures [4, 7, 35, 53, 94], and We believe our design could leverage this

prior art in an actual implementation.

The procedure for identifying and mapping functionality to the SPL is shown

in Figure 3.9. Each application is first profiled to identify the most important

regions of execution. Each of these identified regions is then evaluated for SPL
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suitability in terms of the number of inputs and outputs required, the type of re-

quired operations (e.g., integer addition/subtraction, Boolean operations, and

conditional selection), and inter-operation dependencies. SPL mappings, sim-

ilar to that discussed below, are then generated for the selected regions, and

these mappings are transformed into SPL configuration bits.

3.3 Results

Prior work has shown that SPL coupled with a standard processor can signif-

icantly speed up certain application classes, e.g., multimedia workloads. We

confirm these results for our private SPL design. We further analyze energy con-

sumption, evaluate parallel workloads, and address how well SPL augments

cores of different complexity, important topics that have not been previously

covered in detail. Using these results as a baseline we then evaluate the perfor-

mance of shared SPL.

3.3.1 Characterization of CMPs with Private SPL

The performance of coarse-grained (showing individual benchmark perfor-

mance) and parallel workloads on different complexity CMPs, with and with-

out private SPL, is shown in Figure 3.10. For each benchmark, the values are

normalized to the performance on an IO core without SPL.

In seven of the eight coarse grain benchmarks and three of the parallel bench-

marks, a CMP with an n-way OOO core plus SPL outperforms the next larger
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Figure 3.10: Performance for (a) coarse-grain and (b) parallel workloads relative to
IO cores without SPL.
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Figure 3.11: Performance for (a) coarse-grain and (b) parallel workloads relative to
the same core type without SPL.

OOO core; in six of these cases the OOO1+SPL outperforms the OOO4 core,

which consumes far more area and power.

Figure 3.11 shows SPL performance relative to the performance of the same

base core without SPL. The relative speedup provided by adding SPL gener-

ally decreases as core complexity increases. This occurs due to the higher base-

line performance of the more complex cores, and the limit of one SPL instruc-

tion each cycle independent of the issue width. In a number of cases, how-
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Figure 3.12: Energy consumption for (a) coarse-grain and (b) parallel workloads
relative to IO core without SPL.

ever, adding the SPL to the single-issue OOO core provides larger benefits than

adding it to the single-issue IO core. This is particularly pronounced in adpcm

where adding SPL to the IO core provides only 6% benefit, while adding it to

the OOO1 core yields a 78% performance improvement. This shows that, in cer-

tain cases, there are clear benefits from being able to reorder instructions when

using the SPL. There are also a few instances where the four-way issue core

outperforms the two-way issue core. This is due to the larger ROB, which al-

lows additional SPL instructions to be processed while waiting for earlier SPL

instructions to complete.

In terms of energy, adding SPL tends to decrease energy consumption de-

spite the additional power consumed by the SPL. This reduction results from

both decreased execution time, which reduces total leakage energy, and the

elimination of many dynamic instructions, which reduces dynamic energy.

When using the SPL, a single SPL instruction – albeit, an expensive one in terms

of execution energy – replaces a very large number of conventional instructions,

generally decreasing the total energy consumed. The payoff depends on the
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complexity of the fabric mapping – with operations like multiplication being

particularly costly – versus the number and type of conventional instructions

that are replaced. Figure 3.12 shows the relative energy consumption for our

coarse-grained and parallel workloads normalized to IO cores without SPL. An

n-way OOO core plus SPL achieves a greater energy reduction than the next

larger OOO core in 83% of the cases, and in all but one case OOO1+SPL con-

sumes less energy than OOO4. Energy savings are so significant that, when

considering energy×delay2 (ED2), OOO1+SPL outperforms OOO4 in nine of

the cases compared to only six when considering execution time alone, again

with the aforementioned area savings.

3.3.2 Evaluation of Shared SPL

We now evaluate systems in which the SPL is shared among two, four, and eight

cores. Using the results from the previous section, and relative area and power

comparisons, we pare down the number of reasonable comparison points. We

pair shared SPLs with OOO1 cores since this core plus six rows of SPL consumes

similar area to OOO2 and, of the cores we investigate, OOO1 cores receive the

most benefit (as quantified by energy×delay2) due to the addition of SPL. We

compare the shared configurations to two versions with private SPL: one with

the full 26 rows, and another with six rows, the same per core amount as the

shared cases (Table 3.3). We also compare shared SPL to an alternative where

the SPL has been replaced by additional cores. In our design, four OOO1 cores

consume approximately the same area as the shared SPL, leading to a system

with 12 OOO1 cores. For the coarse-grain multithreaded benchmarks we ide-

ally scale performance by 50% to model the performance of a throughput ori-
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ented system where multiple instances of the same application are running. For

parallel applications we run twelve threaded versions of each benchmark.

For multithreaded workloads with two- and four-way shared SPL, we need

to consider which applications should be scheduled together on the same SPL

pool. Our algorithm statically schedules threads based on the average number

of rows used by each application, with the objective of roughly equalizing total

row usage. We schedule g721enc, the highest utilization thread with mpeg2dec,

the lowest utilization one. We then pair the next highest with the next lowest

on the next SPL pool, and so on until all threads are scheduled. Although this

might seem to be the best possible assignment, thus possibly exaggerating the

benefits of sharing in less ideal circumstances, we found that, although this pro-

duces a good schedule, it is not necessarily the best as other factors, such as wait

time to access the fabric and the frequency of SPL instructions, also impact SPL

sharing.

The performance and energy results for all benchmarks are shown in Fig-

ures 3.13 and 3.14, respectively. Sharing SPL pools reduces energy consumption

by up to 34% overall compared to the use of private SPL, with little or no perfor-

mance degradation with the proper sharing policy. The SPL area is also reduced

by more than 4X.

The private SPL configuration with only six rows is not an acceptable al-

ternative to fabric sharing. For four of the benchmarks – gsmtoast, gsmuntoast,

adpcmDec, and crypt – the performance degradation is significant relative to the

26-row private SPL configuration. Spatial sharing improves slightly upon the

6-row private SPL organization for two of these four cases, but has the limited
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Figure 3.13: Performance for (a) coarse-grain and (b) parallel workloads relative to
OOO1 + 26 row private SPL.
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Figure 3.14: Energy consumption for (a) coarse-grain and (b) parallel workloads
relative to OOO1 + 26 row private SPL.

benefit for crypt and adpcmDec. Crypt, for example, experiences almost a 100%

performance slowdown with spatial sharing relative to 26-row private SPLs.

Temporal sharing, especially four- and eight-way sharing, outperforms spa-

tial sharing overall for two primary reasons. First, all benchmarks but crypt

need a maximum of 26 rows for all functions; thus, with four- and eight-way

temporal sharing, virtualization is rarely required. Second, there are signifi-

cant periods where the benchmarks access the SPL at a slow enough rate to
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intersperse requests from different cores. With eight-way sharing, however, the

performance of several benchmarks degrades due to an increase in input queue

wait time due to increased SPL conflicts. This suggests that too high a degree

of temporal sharing may not be desirable both due to increased wire delay to

reach the SPL and due to increased contention to access the SPL.

Hybrid temporal/spatial sharing addresses the latter problem by adapting

to different SPL usage phases and spatially splitting the SPL when temporal

sharing induces high queue wait times. In this particular instance, an 8-way

shared SPL with hybrid sharing performs 6% better than one using temporal

sharing.

In the end, both four- and eight-way temporal and hybrid sharing achieve

negligible performance loss, and significant energy savings, for every bench-

mark relative to the private SPL organization with far less area overhead. Hy-

brid sharing offers increased flexibility to adapt to different workloads at the

cost of additional hardware to support spatial sharing and control hardware to

determine when spatial sharing should be employed. With one exception, 4-

way sharing provides the best performance, and as such serves as our assumed

sharing degree in later sections.

Compared to replacing the SPL with additional cores, shared SPL provides

better performance, 39% on average, in all but two instances, the exceptions

being djpeg and MPGdec-o0, and provides equal or lower energy consumption

in all cases (34% lower on average).
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3.4 Conclusion

In this chapter, we propose a reconfigurable architecture that uses a shared fab-

ric and control policies to reduce the costs of marrying reconfigurable logic and

processor cores in future CMPs. We find that most applications do not con-

tinuously use the SPL during their execution in neither time nor space. Thus,

providing each core with a private SPL is unnecessarily wasteful. With this in

mind, we develop a shared SPL architecture and associated spatial and tempo-

ral control policies. Using intelligent sharing policies, our approach requires 4X

less area and peak power than private SPL while achieving the same perfor-

mance. Overall we find that four-way temporal or hybrid sharing provides the

best compromise between decreased virtualization from larger SPL pools and

increased contention due to larger degrees of sharing.
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CHAPTER 4

MANAGING MULTIPROGRAMMED WORKLOADS

IN MULTIPLE SPL CLUSTERS

The last chapter showed that, while shared SPL provides significant area

savings with little performance loss, the fabric should not be shared to any ar-

bitrary degree. Since SPL sharing must be limited, and not all applications will

be compiled to use the SPL, we envision multiple clusters on future large-scale

CMPs, those containing only conventional processor cores and others contain-

ing a mix of processor cores and SPL (and potentially others still, although the

overall mix of cluster types is not the focus of this work). Thus, at any given time

of machine operation, there may potentially be many threads from sequential

and parallel applications that are compiled to run on an SPL cluster. Like other

shared resources in a CMP of SMT cores, where the partitioning of resources

among the competing threads on a given SMT core and the co-scheduling of

threads to multiple SMT cores significantly impact performance, the control of

multiple multithreaded SPL clusters must be intelligently managed for good

performance to be achieved.

We envision a management layer that dynamically optimizes the performance

and power efficiency of these SPL-oriented threads in a RACM system with

multiple SPL clusters. Specifically, the manager must make two interrelated

decisions: (1) determine the best match of threads to clusters, considering the

interplay of the different threads (including between those that frequently and

infrequently virtualize the fabric [6, 34]); and (2) decide how best to employ

the built-in SPL feature that permits spatially partitioning the fabric on-the-fly
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to reduce contention among the threads, but at the potential cost of increased

virtualization.

In this chapter, we explore a number of approaches to this complex manage-

ment problem that range in sophistication from simple interval-based heuristic

approaches to more advanced techniques that apply machine learning, multi-

threaded phase-based optimization, and stability analysis. Our algorithms per-

mit the use of very compact SPL fabrics that are performance competitive (on

multiple mixed sequential and parallel workloads with high SPL demand – and

thus many potential shared SPL conflicts) with large private SPL attached to

each core, while consuming several times less die area and energy. Moreover,

we show that replacing the SPL area with additional cores degrades perfor-

mance by 62-143% for our workloads, demonstrating the benefit of dynamically

managed clusters of shared SPL in future large-scale CMPs.

4.1 Large-Scale Cluster-Based CMPs

Figure 1.1(a) shows an overall depiction of an 18 core CMP with three clusters1,

with the external interface not shown for simplicity. Each of the two SPL clusters

on the left hand side consists of four single issue out-of-order processor cores

sharing a common pool of SPL. In the “conventional” cluster on the right hand

side of Figure 1.1(a), each SPL has been replaced by one additional core, giving

10 cores in total. Applications that are not compiled to use the SPL run on this

conventional cluster, while those that exploit the SPL run on one of the two left

clusters. Of course, different mixes of SPL and conventional clusters (as well as
1Although relative sizes of the cores and SPL are accurate, this is not intended to represent

an actual floorplan.
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other cluster types) are possible, but this consideration is beyond the scope of

this work.

Chapter 3 evaluated the use of SPL with a range of in-order and out-of-order

core types and found that a simple out-of-order core coupled with SPL provided

the best area-equivalent performance and power efficiency. Moreover, similar to

SMT processors where adding additional contexts provides limited benefit be-

yond a certain point [86], sharing an SPL among four cores was shown to be the

best trade-off between SPL fabric utilization and contention among competing

threads. We confirm that this result holds true for our set of workloads by eval-

uating systems with both two 4-way and one 8-way shared SPL and find that

in all cases two 4-way shared SPL clusters outperform a single 8-way shared

SPL. Although we assume a 4-way shared SPL in the remainder of this work,

the techniques presented apply to any degree of sharing.

Each SPL, shown in more detail in Figure 1.1(b), is a highly-pipelined row-

based reprogrammable fabric that is temporally shared among four cores. Each

of the two clusters incorporates hardware monitors that capture cycle-level event

counts relevant to application characteristics and SPL usage. As is shown in

Figure 1.1(d), the SPL Cluster Manager periodically reads the monitored infor-

mation in order to assign threads to clusters, and to spatially partition each SPL

as appropriate to optimize performance and power efficiency.

4.1.1 SPL Hardware Microarchitecture

In our SPL design (discussed in detail in Chapter 3), 16 8-bit wide reconfig-

urable cells are combined to form a 128-bit wide row. Rows are clocked at
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Table 4.1: Relative area and power of eight single-issue out-of-order cores, eight
private SPLs, and two four-way shared SPLs.

Rows/
SPL

Total
Area

Peak Dynamic
Power

Total Leakage
Power

Eight Cores N/A 1.00 1.00 1.00
Eight Private SPL 12 0.97 0.29 1.32
Two 4-way Shared SPL 12 0.29 0.07 0.34

500MHz, one-quarter that of the processor core frequency of 2GHz (the same

as the Pentium Core2 Duo [43] and the AMD X2 Dual-Core [1], both of which

are implemented in the same 65 nm technology assumed for the SPL). For our

benchmarks, 12 rows of private (per-core) SPL permits all but one of the configu-

rations, the major loop within crypt, to achieve maximum performance2. Using

the methodology of Section 3.1.4, we arrive at the area and power results for

eight single issue out-of-order cores, eight private 12-row SPLs, and two four-

way shared SPLs (as appears in Figure 1.1(a)) shown in Table 4.1. Although the

area is prohibitive, we use this 12-row private SPL as the baseline against which

we compare our dynamically managed shared SPL architecture. The latter is

much more compact, requiring 4X less area than the private SPLs, and is much

more power-efficient as well. While one might consider shrinking the private

SPL, the previous chapter showed that this yields poor performance.

4.1.2 Temporal Sharing and Spatial Partitioning

The SPL is temporally shared in a time-multiplexed, round-robin fashion among

the four cores sharing the fabric. The SPL also supports spatial partitioning,

which permits private or semi-private operation by dividing the SPL into up

2The major loop in crypt requires nearly 300 rows and so achieves less than optimal speedup
for any reasonably sized fabric.
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to four virtual clusters. Spatial partitioning reduces contention from sharing

threads, but also reduces the amount of resources available to each core, pos-

sibly leading to degraded throughput due to increased virtualization. Fig-

ure 1.1(b) shows the additional multiplexers and tristate drivers necessary to

support both forms of sharing.

4.2 SPL Cluster Management

Having provided background on the fabric architecture, we now turn our at-

tention to the dynamic runtime management of multiple clusters of shared, par-

tionable fabrics. The objective of these policies is to achieve approximately the

same performance of private (per-core) fabrics with the dramatically lower area

and power consumption afforded by shared fabrics. When multiple sequential

and parallel applications that are compiled to use the SPL are simultaneously

executing, the SPL Cluster Manager (Figure 1.1(d)) optimizes overall perfor-

mance through two inter-dependent mechanisms: (1) thread assignment among

the clusters, and (2) spatial partitioning and recombination of the SPL within each

cluster.

There are a number of different factors that contribute to the SPL usage char-

acteristics of an application, including the frequency of SPL accesses and the

number of rows needed by each optimized function. Experimentation revealed

that the applications that are the biggest concern are those that either make fre-

quent accesses to the SPL or require a large number of rows and therefore incur

frequent virtualization. Applications that make frequent SPL accesses can be

substantially impacted by poor scheduling, whereas applications with signifi-
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Table 4.2: Management policy considerations.

Consideration Alternatives
Metrics SPL Accesses, SPL Wait Time, Avg. Rows, Grad. Insts.
Spatial Partitioning Yes, No
Granularity Various fixed intervals, phase change

Algorithm
Split Assignment, Equalize Assignment,

Hill Climbing, Hybrid

Stability
None, after n non-useful changes,

when average degradation < threshold,
after n random intervals

Randomness
Swap SPL threads, swap any threads,

swap with thread or empty core

cant virtualization can substantially degrade the performance of other applica-

tions sharing the same cluster. We implemented and evaluated a wide range of

management policies given the considerations listed in Table 4.2. We limit our

discussion to four representative dynamic management algorithms.

Threads can also be statically assigned to a particular cluster on a CMP

through the OS scheduler (in fact, we assume some initial static assignment

for our dynamic policies). As we show later, the performance of static thread

scheduling varies greatly, with slowdowns ranging from less than 1% to over

1028% compared to a 12-row private SPL. Moreover, static scheduling requires

dependable a priori knowledge about the threads and their potential interac-

tions. Finally, many programs go through different phases during execution

and their use of the SPL can be different in each phase. Static scheduling cannot

exploit this dynamic phase behavior.
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4.2.1 Per Interval Thread Assignment Policies

We first investigated a number of policies that determine the assignment of

threads to SPL clusters every interval based solely on the performance of the

previous interval and make no use of the spatial partitioning capability of the

SPL. From our experiments we found that, although all applications are im-

pacted by poor scheduling choices, certain applications are impacted more than

others. In particular, the largest performance losses occur when threads that re-

quire large amounts of virtualization share an SPL cluster with those that rely

heavily on the SPL. Based on this insight, we explored a number of interval-

based thread assignment policies, the best of which was Average Row Assign-

ment. Average Row Assignment uses the average number of rows used by

the functions of a particular thread as an indicator of its degree of virtualiza-

tion. Functions that require a large number of rows on average will experience

more virtualization, assuming the amount exceeds the number of physical rows

available. Thread assignment based on the number of rows alone, however, is

insufficient; the SPL access frequency should also be taken into account as an

indication of how much each thread relies on the SPL. Threads that heavily uti-

lize the SPL are more likely to be degraded by increased wait time to access the

fabric.

Average Row Assignment allocates threads to clusters based on the ratio of

the average number of rows used by the thread to the number of SPL accesses

within the last interval. Threads with high access rates and low row usage will

have small values while threads with infrequent accesses and high row usage

will have high values. To assign threads to clusters we use a split assignment

policy which aims to schedule threads with high and low values on different
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clusters. The threads are sorted based on the given metric, the first n/c threads

are assigned to the first cluster, the next n/c threads to the second, and so on,

where n is the number of threads and c is the number of clusters.

In order to compute the decision metric, each core maintains counters to

track the number of instructions issued in the last interval. The core also tracks

the number of rows required by each SPL instruction. This latter information is

stored in the configuration information for each SPL function and is therefore

available to the SPL Cluster Manager.

4.2.2 Composite Thread Assignment/Partitioning Policies

Average Row Assignment only considers thread assignment. As described pre-

viously, each SPL can also be spatially partitioned. This can be useful if SPL

instructions are queued for a long time due to virtualization or due to high SPL

usage from the number of threads sharing the SPL. Spatial partitioning can re-

duce stalls due to either of these cases as it reduces the number of threads that

share the same SPL partition. It must be applied intelligently, however, as it can

also increase stall time due to increased virtualization.

When considering both thread assignment and spatial partitioning, the num-

ber of clusters is effectively dynamic, as each SPL can be divided in half, in

quarters, or in one half and two quarters, and thread assignment must account

for this cluster size variability. As before, per-core metrics are gathered to de-

termine how to assign threads to however many clusters currently exist. Ad-

ditionally, the SPL Cluster Manager must further determine when to split and

merge SPL partitions in each cluster.
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To determine thread-to-cluster assignments, this policy, henceforth referred

to as Composite, uses the same SPL access to average row ratio with split as-

signment used by the Average Row scheduler. To determine when to split an

SPL cluster, each core tracks the number of cycles an SPL instruction is stalled

in the SPL queue and the number of its SPL instructions that are issued. If any

thread spends too long on average waiting to issue an SPL instruction, i.e., the

average wait time exceeds a threshold, then the SPL is split. Similarly, to deter-

mine when to merge, each cluster tracks the number of threads whose average

wait time is less than a second threshold. If the sum of this value for the two

clusters is greater than the current number of cores sharing a single cluster, then

the two clusters are merged. Neither a split nor a merge will occur if both split

and merge requests are received for the same cluster in a given interval.

4.2.3 Learning-Inspired SPL Cluster Management

The policies discussed thus far create their mappings of threads to clusters based

solely on the relative ranking of some statistics for each thread during the last

interval. Although this generally leads to good mappings, it may not produce

the best possible mapping. Moreover, these policies make no attempt to learn

from their previous actions. In an attempt to be more intelligent and achieve the

best – or at least a better – mapping, we apply machine learning techniques to

our cluster mapping problem.
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Hill Climbing

Since we desire a fast, purely online approach, we focus on hill climbing. Pre-

vious work by Choi and Yeung [13] investigated hill climbing for SMT resource

allocation among concurrently running threads. Our scheduling problem is sig-

nificantly different, and arguably harder, as we have to deal with both resource

partitioning and determining which threads should share those partitions.

We investigate a number of variations on a stochastic hill climbing man-

ager. At each scheduling interval the manager may perform one of the follow-

ing actions to create a new assignment: (a) swap two threads from different SPL

clusters; (b) split or merge an SPL cluster that is not already at its minimum

or maximum size; (c) create a random number of partitions as well as a ran-

dom mapping of threads to those partitions. The last option adds an element

of stochasticity which aims to escape local minima. Each of these options is

selected with a predefined probability. We investigate a variety of different re-

strictions on thread swapping, from allowing only threads using the SPL to be

swapped, to allowing any threads to be swapped, to allowing a single thread to

be swapped into a cluster with an unused core.

The new assignment is run for the next interval. At the end of the inter-

val, the performance of that interval is compared to the performance of the best

interval to date for the current phase. If the new mapping achieves better per-

formance, then it is set as the new best mapping; otherwise, the mapping reverts

to the previous best mapping. In either case, a new local search step is applied

to the current best mapping. After some number of consecutive unbeneficial

steps, the best schedule is assumed to have been found and the phase is de-

clared stable. All future intervals in this phase use this stable mapping.
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Figure 4.1: Hash function for phase IDs.

To identify phases, we develop a multithreaded/multiprogrammed work-

load phase tracker. We use the phase tracker of Sherwood et al. [73] to identify

phases for each thread. The phase tracker reports the current phase for each

running thread based on the mix of instructions executed during the last phase

interval. This phase information is combined to index into a global management

history table, which contains the best mapping executed so far for the given set

of phases. In order to create a reasonably sized index to access the history ta-

ble, we developed a hash function to map the application and phase IDs of all

currently running threads to a reasonable number of bits. This function takes

three byte groups of phase and application IDs (where each phase or applica-

tion ID is one byte) and XORs them together as shown in Figure 4.1. The IDs

are ordered by application ID. The IDs within every other group are rotated by

four bytes to increase diversity. This hashing scheme produces less than a 3%

average false match rate for our workloads, and more importantly, degrades

performance over a perfect hashing scheme by less than 0.1%.
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To determine the relative performance of different mappings, the manager

tracks the peak number of instructions graduated by each thread on a per phase

basis and calculates the performance degradation for the current phase relative

to this peak performance. The performance degradation of all threads are aver-

aged to produce the overall degradation for the interval. The peak instruction

count is determined by averaging the five highest observed graduation rates in

that phase.

As will be shown in Section 4.4, our best hill climbing algorithm is able to

match the performance of the Composite management scheme, but rarely ex-

ceed it. This is due to the large performance degradation that can occur during

some of the exploration intervals, and so any slight improvement in mapping

over that found by the Composite algorithm is offset by the degradation in-

curred during the exploration period. Unlike typical pipeline resource alloca-

tion, small changes in the thread to SPL assignment can substantially change

performance. This effect not only makes finding the optimal mapping diffi-

cult, it also significantly degrades throughput (by up to an order of magnitude)

during intervals with poor mappings. If too many of these poor mappings are

explored, performance degrades severely. Due to these large jumps, the explo-

ration space is not necessarily nicely hill shaped; it is not only quite “bumpy”

but there are likely to be numerous local minima that may be difficult to escape.

Hybrid Heuristic-Hill Climbing (H3C) Manager

Based on our experience with the previous management schemes, and addi-

tional experimentation, we devised a hybrid approach that addresses three main

sources of performance degradation of the prior approaches. The first two
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sources are present in the heuristic techniques and the last appears with Hill

Climbing. First, most programs experience different phases in their execution,

during which their use of the shared SPL may vary significantly. As such, the

best mapping for one phase may be suboptimal for another, and reaching a new

stable mapping may take multiple intervals using the aforementioned interval-

based policies. Second, even within a phase there can be a small amount of

variability in the performance of a thread. This variation can lead to a ping-

ponging effect where threads are constantly being swapped between two clus-

ters. This is especially true for multithreaded workloads where multiple threads

can be performing the same task and performance can vary slightly depending

on interactions with memory and other threads. This constant swapping can de-

grade performance due to the overhead for context switching threads. Finally,

as mentioned previously, excessive exploration of the assignment space can de-

grade performance due to the significant performance degradation experienced

in certain assignments. To address these issues, we devise a new algorithm that

we call Hybrid Heuristic-Hill Climbing (H3C) that combines elements of the pre-

vious two approaches and incorporates a stability threshold such that further

changes are not made if the performance is within some margin of “optimal.”

H3C evaluates performance and maintains current assignments using the

same phase-based approach as Hill Climbing. Unlike Hill Climbing, no change

is made to the assignment for the next interval if the previous interval is deter-

mined to be stable. An interval is considered stable if the average performance

degradation (as indicated by the graduation rate relative to peak, same as Hill

Climbing) for all threads is less than some threshold.
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Figure 4.2: H3C Cluster Manager.

When not stable, the assignment for the next interval is determined by one of

two methods. During the first x intervals of a particular multithreaded/multi-

programmed phase the threads are assigned using the Composite algorithm

from Section 4.2.2. The goal of this step is to create a generally good mapping

that can be fine tuned in the next step. During the next y intervals a learning-

based local search like that described in Section 4.2.3 is used to try to improve

upon the mapping produced by the Composite algorithm. After this step it is

assumed that the “best” mapping has been found and no further exploration is

performed for this phase, even if the average degradation is not less than the

stable threshold in some future intervals. The complete set of H3C state tran-

sitions are shown in Figure 4.2. At each interval, the management table keeps

track of the best mapping found so far and H3C reverts back to that mapping

as a starting point for the next management interval if the previous interval did

not improve upon the performance.

57



Table 4.3: Architecture parameters.

Branch Predictor gshare + bimodal
BTB Size 512B
RAS Entries 32
Fetch/Decode/Rename Width 2
Issue/Retire Width 1
Integer Registers 64
FP Registers 64
Integer Queue Entries 32
FP Queue Entries 16
ROB Entries 64
Int ALUs 1
Branch Units 1
Int Mult/Div Units 1
FP ALU/Mult/Div Units 1
LD/ST Units 1
L1 Inst Cache 8kB 2-way, 2-cycle access
L1 Data Cache 8kB 2-way, 2-cycle access
L2 Cache 1MB per core, 10-cycle access
Coherence Protocol MESI
Main Memory
Access Time (ns) 100
Phase History Entries 256

4.3 Evaluation Methodology

We use a highly modified version of SESC [71] to evaluate our proposed shared

SPL cluster management policies. We assume processors implemented in 65 nm

technology running at 2.0 GHz with a 1.1V supply voltage. The major architec-

tural parameters are shown in Table 4.3. We use Wattch and Cacti to model

dynamic power and Cacti and HotLeakage to model leakage power.

To model the overhead associated with performing thread management, in-

struction fetch for all cores is stopped for 1000 cycles at the end of each interval.

This value was determined by executing code approximating the scheduling al-

gorithms on our simulator to get an accurate cycle estimate. After this period,

the instructions for any threads being migrated are drained and execution is
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Table 4.4: Parameters for dynamic management policies.

Scheduling Policy Parameter Value
Composite Split threshold 16×avg. rows used by core
Composite Merge threshold 2×avg. rows used by core
Hill Climbing Probability of splitting SPL 20%
Hill Climbing Probability of merging SPL 20%
Hill Climbing Probability of random mapping 10%
Hill Climbing Threads to consider swapping All
H3C Intervals of Composite Scheduling 5
H3C Intervals of Hill Climbing 5
H3C Stability threshold Avg. Deg. < 4%
All Interval granularity 100k cycles

stopped for an additional 500 cycles (again determined by running the requisite

code in the simulator) to model the time necessary to context switch all state –

including internal SPL state – to the new core. Finally, the threads are started on

their new cores, where warm-up of caches and TLBs is modeled. The processor

undergoes a similar sequence when the SPL is spatially split or merged by the

manager, although in this case the context switch and cache and TLB warm-up

are not needed as threads continue to execute on the same core.

We investigated a number of management interval granularities ranging

from 100k up to 20M cycles. We report results for the finest granularity of 100k

cycles and discuss the effect of coarser intervals in Section 4.4.2.

We experimentally determined the best parameters for the dynamic policies,

which are shown in Table 4.4.

4.3.1 Phase Tracking

We use the same parameters for our phase tracker as Sherwood et al. [73] with

the exception of the phase interval length. We use a smaller 1 million instruction
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interval due to the shorter phases of some of our applications. Given these

parameters, we estimate that the tracker would require less than 1 kB of storage

per core. Actual phase changes in the program as detected by the phase tracker

may not exactly coincide with management interval boundaries as management

intervals are based on cycles whereas phase tracking is based on instructions.

The global SPL Cluster Management history table contains 256 entries. Each

entry contains the phase IDs for each thread, the mapping of threads to clusters,

the size of each cluster, and the best performance seen to date for this phase. We

estimate this table would require 4 kB worth of storage.

4.3.2 Benchmarks

We create four workload mixes to evaluate the performance and power effi-

ciency of our approach. Each workload consists of a combination of parallel

and sequential benchmarks. These mixes reflect the type of workloads sys-

tems are apt to see in the future as different applications are likely to be paral-

lelized to different degrees. We choose three single threaded benchmarks from

SPEC2006 [78], one from SPEC2000 [77], and one from MediaBench [51]. Our

multithreaded workloads consist of two benchmarks from ALPBench [52] and a

version of the JavaGrande [75] crypt benchmark ported to C++. We run the ALP-

Bench version of MPGdec with two different command line parameters (-o0 and

-o3) as they produce different execution characteristics. Specifically, the o3 ver-

sion enables additional processing within the application which makes use of

the SPL, leading to increased overall SPL usage. A complete list of the bench-

60



Table 4.5: Benchmark description, number of SPL functions, maximum number of
rows used by SPL functions, percentage of execution time of SPL opti-
mized regions, percentage of SPL instructions executed relative to total
committed instructions, and percentage of time with at least one SPL in-
struction in flight. For MPGdec, o0 or o3 indicates which command line
parameter is used in the run.

SPL
Functions

Max
Rows

% Exec Time
Optimized

% Dyn.
SPL Insts SPL Usage

300.twolf 1 21 32.7% 0.10% 3.8%
456.hmmer 1 10 99.5% 1.15% 40.2%
462.libquantum 1 11 40.1% 2.19% 13.5%
473.astar 1 2 33.7% 0.79% 2.7%
cjpeg 5 21 49.9% 1.22% 20.6%
MPGenc 4 16 69.1% 0.72% 17.2%
MPGdec-o0 5 20 44.8% 0.35% 15.3%
MPGdec-o3 12 20 47.8% 0.57% 19.3%
crypt 1 298 97.9% 4.48% 99.9%

Table 4.6: Workload composition. For parallel workloads the number after the
name indicates the number of threads spawned during the run.

Name Benchmarks
Mix A MPGenc-2, MPGdec-o0-2, crypt-2, 456.hmmer, 473.astar
Mix B MPGdec-o3-2, crypt-2, 456.hmmer, 300.twolf, 473.astar, 462.libquantum
Mix C MPGdec-o3-4, crypt-2, 300.twolf, 462.libquantum
Mix D MPGenc-4, crypt-2, cjpeg, 462.libquantum

marks as well as the SPL usage characteristics of each can be found in Table 4.5.

Table 4.6 lists the benchmarks in each workload mix.

In order to create SPL mappings, we profile each benchmark to determine

which functions consume the largest portion of total execution time. Following

this, we examine each of the functions in order to determine which ones can

be efficiently mapped to our SPL fabric. Mappings, which include the number

of rows needed, input values to be loaded, and results to be stored, are then

created for those functions. Mappings are done by hand, although previous

work has shown that compilers can produce good mappings for reconfigurable

architectures [4, 7, 35, 53, 94].
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Since dynamic thread scheduling is most useful when applications experi-

ence phase changes, we need to make sure we run our benchmarks long enough

to witness these phase changes. The best option is to run benchmarks to comple-

tion. Due to the long running time of SPEC benchmarks with reference inputs,

however, we are only able to run our non-SPEC benchmarks to completion. For

our SPEC benchmarks we use Early SimPoints [58] to select two 250 million

instruction SimPoints from the original source code (i.e., code not utilizing the

SPL). Since using the SPL changes the number of instructions executed, we de-

termine where each of the two SimPoints begin and end and augment the code

to fast forward through all but these two intervals. In this way both the original

and SPL versions of the code will execute functionally equivalent amounts of

code. We select relatively long intervals to capture phase changes within an in-

terval. In order to make our comparison fair, we continuously respawn threads

that finish early so that longer running threads still experience contention for

the SPL due to the shorter running threads. We stop the simulation when the

longest running benchmark completes and report the execution time for each

benchmark averaged over all completed runs.

4.4 Results

We first motivate the need for dynamic thread assignment and spatial partition-

ing by showing the varied performance achieved with static thread assignment

relative to large private SPLs. We then compare dynamic management to the

best, worst, and median-case static assignments. We also compare our approach

with the performance and energy×delay2 that would be ideally achieved by re-

placing the SPL with additional cores.
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Figure 4.3: Performance of (a) Mix A and (b) Mix B for shared SPL with all possible
static schedules relative to private 12-row SPL.

4.4.1 Static Assignment Performance

The OS scheduler could assign threads to clusters statically (i.e., maintain the

schedule throughout execution) using information regarding expected SPL us-

age gleaned from the compiler. For each workload, we simulate all 35 possible

static assignments, and extract the best, worst, and median static assignments

based on the mean of the relative execution time of all benchmarks. This infor-

mation tells us what an oracle static scheduler could achieve, the worst perfor-

mance that could occur if SPL usage is not taken into account by the scheduler

at all, and the margin for error, i.e., whether most schedules are closer to the

best or the worst schedule.

Figure 4.3 shows the performance of each benchmark for two workloads for

all static assignments (results for the other two workloads show similar overall

trends). The labels on the x-axis indicate the cluster, 1 or 2, to which each thread

is assigned. A label of 12112212, for example, indicates the first spawned thread

is assigned to cluster 1, the second thread to cluster 2, the third thread to cluster

1, etc.
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Figure 4.4: Performance of shared SPL with dynamic scheduling algorithms and
best, worst, and median static schedules relative to private 12-row SPL.

Performance with static assignment is highly variable, varying by as much

as 1028% between the best and worst static schedules for some benchmarks.

The best, worst, and median static schedule performance for each benchmark in

each workload relative to the 12-row private SPL baseline is shown in Figure 4.4

(first, second, and third bars)3. The mean performance for the four workloads is

shown in Figure 4.5. While in some cases the best (oracle) static scheduler per-

forms reasonably well, the results for the worst schedule indicate that a static

scheduler that is oblivious to SPL usage may perform poorly relative to the

private 12-row SPL organization. Moreover, Figure 4.5 shows that the median

schedule is much closer to the worst case schedule than the best case schedule.
3Note that the best static schedule is based on mean performance, and therefore might not

be best for an individual benchmark.
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Figure 4.5: Average execution time for each workload relative to 12-row private
SPL.

Thus, there is little margin for error in static scheduling; such errors could easily

arise due to the lack of static information regarding the fabric contention among

applications.

4.4.2 Performance of Dynamic SPL Cluster Management

The individual benchmark and average workload performance of the four rep-

resentative management policies presented in Section 4.2 relative to the perfor-

mance of private 12-row SPL is shown in Figures 4.4 and 4.5, respectively.

Average Row and Composite Policies

Overall, the Average Row and Composite policies outperform the best possible

static assignment by 21.9% and 23.6%, respectively. The benefits of permitting

the manager to control spatial partitioning as done in the Composite policy are

demonstrated in the overall results for both policies (Figure 4.5). Compared
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with the much higher overhead private 12-row SPL organization, the Average

Row approach experiences a 7.0% slowdown and the Composite policy experi-

ences a 5.3% slowdown on average.

For a few of the benchmarks, the dynamic algorithms occasionally improve

performance relative to the 12-row private SPL. This occurs because we simu-

late private L2 caches. When scheduled on several different cores, threads may

make use of multiple L2 caches. Thus, on an L2 cache miss, the data might be

sourced from another L2 cache rather than the slower main memory. To ensure

that this effect is not the primary reason for the improvement of our policies, we

run tests where all L2 misses are forced to access main memory. We find that the

cache “sharing” effect on performance is negligible in comparison to the effect

of the Cluster Manager.

H3C Policy

As mentioned previously, and shown in the results, the Hill Climbing manager

typically does not outperform the simpler Composite approach due to the per-

formance loss incurred during exploration.

The H3C manager achieves the best all around performance, outperform-

ing all other options in all but one case. In the one exception, Mix C under

the Composite manager, the performance with H3C is less than 1% worse than

the Composite scheduler. Overall the H3C policy achieves 25.3% better perfor-

mance than the best static schedule. Compared to the 12-row private SPL, the

H3C management approach experiences only a 3.6% slowdown while consum-

ing 4X less area.
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Figure 4.6: Average energy×delay2 for each workload relative to 12-row private
SPL.

When energy×delay2 (ED2) is considered (Figure 4.6), the benefits of shared

SPLs incorporating both scheduling and spatial partitioning are further accen-

tuated. The H3C manager achieves 5.4% better ED2 than the 12-row private

baseline on average (again with a 4X lower area cost due to the shared fabrics).

By contrast, the best static schedule experiences an average 179% worse ED2 than

the 12-row private SPL. H3C is the only approach that provides better ED2 than

the 12-row baseline for all four workloads.

Another benefit of the dynamic policies is fairness. For most of the best static

schedules, some of the threads achieve near optimal performance while others

experience significant slowdown. With the dynamic policies, the performance

impact is quite uniform across the threads.

H3C Component Analysis In Section 4.2.3 we detailed a number of factors

that limit the performance of the Composite and Hill Climbing managers and

how the H3C manager incorporates techniques to address these issues. To

assess the importance of each, and also confirm that the proposed solutions
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Figure 4.7: Performance degradation relative to H3C.

achieve their stated goals, we run simulations where one or more of the fea-

tures of the H3C manager are modified. In particular we look at cases where

the stability threshold is eliminated (No Stability), where hill climbing is elim-

inated (No Hill), and where additional hill climbing is performed (Extra Hill).

We also look at a case where Composite scheduling is performed at every in-

terval (essentially adding phase information to the base Composite manager)

(Composite+Phase).

Figure 4.7 shows the performance loss of each case relative to the H3C man-

ager. The H3C manager outperforms all of these alternatives in every instance.

This confirms that hill climbing, stability detection, and phase analysis are all

important and that eliminating any one of them degrades the quality of the

manager. The most important of the factors is the stability threshold, without

which performance loss increases by 2.3% on average. Continuously running

the Composite scheduler with phase information leads to similar losses. Both

indicate the benefits of limiting unnecessary exploration.

Phase Analysis One of the key features of our management schemes is their

ability to dynamically adapt to different application phases. Figure 4.8 shows
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Figure 4.8: Thread-to-core assignment and SPL accesses for Mix D with H3C.

an example of the thread scheduling and cluster partitioning for a section of Mix

D with H3C management. The graph shows the thread-to-core assignment for

the four main threads along with the SPL access patterns of the two threads that

change phases during the given period. The horizontal dotted lines in the graph

show which cores share a SPL partition and the vertical line indicates when one

of the clusters is partitioned.

At the start of the example, four threads are actively using the SPL. The

two crypt threads share one cluster and the two single threaded applications

share the other in order to minimize conflicts. Around 134M cycles, MPGenc

starts a section that uses the SPL. The H3C manager monitors SPL usage and

determines how to schedule threads and partition the fabric to adapt to this

change. In particular, one of the clusters is divided so that crypt still has its

own partition, and the assignment of threads to clusters is rearranged based on

current usage statistics.
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The figure also shows how the manager can adapt to the changing access

pattern of cjpeg. During phases when its access rate increases, cjpeg is resched-

uled on the larger cluster to achieve better performance. Unlike the Composite

manager, however, which always makes the same change, we can see in the last

two access peaks for cjpeg that the H3C manager explores other options in an

attempt to find an even better mapping.

Replacing the SPL with Additional Cores

Figures 4.5 and 4.6 also show results for each workload in which each shared

SPL is replaced by one additional single issue core; in other words, the work-

loads are run on the conventional cluster on the right side of the chip diagram

of Figure 1.1(a). These results were obtained by simulating a given workload

using the original benchmarks (no SPL code) with eight cores (one per thread),

and then ideally scaling the results to 10 cores. This ideal scaling is achieved

by linearly reducing the execution time by 1/5, but optimistically increasing the

energy by only 12.5% (even though there are now 25% more cores).

A comparison of the Ideal 10 Core and all of the dynamic scheduling results

in these graphs substantiates previous work that demonstrated significant ben-

efits with SPL on particular applications. Performance degrades by 62-143%

when the workloads are run on the 10-core cluster rather than the two with

shared SPL, and the ED2 differences are even more pronounced: up to 34X

worse ED2 for Ideal 10 Core. We emphasize again that on a large-scale CMP,

those applications that are not compiled to use the SPL can be scheduled on a

non-SPL cluster. For those threads that are compiled to use the SPL, effective

assignment of threads to clusters, coupled with judicious dynamic spatial parti-

70



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

Mix A Mix B Mix C Mix D

R
el

at
iv

e 
Ex

ec
 T

im
e

1.9 2.2

Composite-100k
Composite-500k
Composite-1M
Composite-10M
Composite-20M
H3C-100k
H3C-500k
H3C-1M
H3C-10M
H3C-20M
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tioning of the SPLs, is crucial to achieving good performance, power efficiency,

and area efficiency with integrated shared SPL on large-scale CMPs.

Coarser-grain Dynamic Management

Our results thus far assume that SPL management occurs at a 100k cycle gran-

ularity. We also investigated larger management granularities, which might be

more amenable to implementation at the OS level. Figure 4.9 shows the aver-

age execution time for the Composite and H3C policies for intervals of 100k,

500k, 1M, 10M, and 20M cycles. As would be expected, the relative execution

time tends to increase as the management granularity increases. The degra-

dation with the 500k and 1M cycle intervals is relatively small, but increases

substantially for the longer 10M and 20M cycle intervals. With longer inter-

vals the SPL manager cannot respond as quickly to application phase changes.

This can lead to spending more time in suboptimal cluster mappings, which

can lead to significant performance loss. The H3C policy can be further im-
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pacted by longer intervals do to its hill climbing phase. While performing hill

climbing the manager makes random changes to the schedule in the pursuit of

better performance. These random changes can sometimes yield a significantly

worse mapping. The longer the management interval, the longer the applica-

tions spend in this bad mapping, and the more performance degrades. For the

longest intervals, the simpler Composite scheme actually performs better on

average because it avoids these bad mappings.

In the end, for a 20 million cycle (10 ms) interval we find that the Composite

policy experiences a 21.6% slowdown relative to the large private SPL baseline.

While this is still significantly smaller than the 252% degradation of the median

static schedule, it is notably larger than the 3.6% degradation produced by H3C

with a 100k cycle interval.

4.5 Conclusion

In this chapter, we propose dynamic SPL cluster management policies for future

large-scale CMPs with integrated reconfigurable fabrics. We examine a range of

policies that vary in their approach to mapping threads to clusters, as well as

how they exploit the ability to spatially partition each SPL to mitigate inter-

thread conflicts.

Of the four representative approaches that we present, our best policy judi-

ciously combines elements of machine learning, phase-based analysis, and sta-

bility detection to assign threads to clusters and spatially partition the SPLs on-

the-fly. This approach outperforms an oracle static scheduler, and experiences

only a small slowdown compared with much larger private SPLs dedicated to
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each core. We also show dramatic improvements over allocating the SPL area

to additional cores. Overall, we demonstrate that sharing reconfigurable fab-

rics and managing their resources on-the-fly are key to making reconfigurable

fabrics an attractive, cost-effective, option for future CMPs.
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CHAPTER 5

FINE-GRAINED COMMUNICATION IN A HETEROGENEOUS CMP

As already discussed, incorporating reconfigurable fabrics into commodity

CMPs is more cost-effective than past monolithic proposals. This is especially

true in light of the fact that future large-scale CMPs are likely to be heteroge-

neous in nature, with different areas of the die dedicated to accelerating partic-

ular types of applications. The amount of die area dedicated to reconfigurable

fabrics may be sized in proportion to the expected proportion of applications

that will benefit. As the industry moves to more cores on a die, the proportional

cost of incorporating a reconfigurable fabric decreases, as does the proportion of

applications needed to justify the presence of the fabric. Cost-effective integra-

tion is further enhanced by sharing the fabric among multiple cores, amortizing

the area of power costs of the fabric and forming a cluster of cores+fabric. With

the intelligent fabric management policies previously described, such sharing

can increase fabric utilization and reduce overall fabric area and power costs,

while achieving nearly the same performance as providing each core with its

own, much larger, private fabric.

Sharing the reconfigurable fabric among multiple cores also creates opti-

mization opportunities not possible with per-core private fabrics. In particular,

shared fabric clusters – in addition to amortizing the fabric area and increasing

power efficiency – can be organized on-the-fly in multiple ways to accelerate

both multithreaded applications and the sequential applications that have tra-

ditionally been the focus of reconfigurable architectures. Figure 5.1 depicts a

portion of a heterogeneous CMP and provides a simplified view of the three

ways that the RACM architecture is dynamically organized to accelerate multi-
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Figure 5.1: Shared SPL being used for (a) individual computation, (b) producer-
consumer communication with computation, and (c) barrier synchro-
nization with computation.

ple threads. Figure 5.1(a) depicts four threads, each of which is independently

performing a function (each function fi may be unique or identical) within the

fabric without communication. In Figure 5.1(b), the fabric is being used for two

instances of fine-grain producer-consumer communication with integrated cus-

tomized computation. In each instance, the producer thread feeds inputs into

the fabric; the inputs pass through the fabric to perform the function; and the

function output, which may be queued using any remaining fabric resources

if necessary, is then passed to the consumer thread. Finally, Figure 5.1(c) de-

picts four threads synchronizing at a barrier within the fabric with a global

function, e.g., a global minimum, computed in the fabric after the synchroniza-

tion point. Synchronization for more than four threads is supported through an

inter-cluster network.

While all of these cases show the individual threads or producer-consumer

thread pairs temporally sharing the fabric, if necessary due to high fabric con-

tention, the fabric manager can dynamically partition the fabric, giving each
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thread a smaller private fabric1. Dynamic fabric partitioning can also serve to

simultaneously configure the fabric for multiple purposes, e.g., for independent

use by one set of threads in one partition, and producer-consumer communica-

tion in another.

Unlike previous proposals [3, 9, 36, 62, 67], RACM supports multiple com-

munication models and also provides the ability to perform customized compu-

tation on communicated data. The latter provides performance improvements

beyond what is possible with previous communication-only options and tradi-

tional fixed computation alternatives.

5.1 RACM Architecture

As described previously, RACM pairs a specially designed Specialized Pro-

grammable Logic (SPL) fabric with multiple cores of a CMP. An example RACM

heterogeneous CMP with integrated SPL is depicted in Figure 1.1(a). The figure

shows a 20 core RACM CMP with two SPL clusters on the left. Each cluster

consists of four single issue out-of-order processor cores sharing a SPL fabric,

which is shown at a high level in Figure 1.1(b) and explained in more detail

in the next section. The fabric is temporally shared in a round-robin fashion

among the cores in the same cluster and can be spatially partitioned as needed

to reduce contention among the threads. Contention is further reduced by lim-

iting the degree of fabric sharing, which also limits the maximum wire delay.

In this particular example, the proportion of applications that benefit from the

fabric is such that two shared fabric clusters are implemented. In a large-scale

heterogeneous CMP with many tens or hundreds of cores, there may be several

1As we explained in Section 3.1.5, virtualization of the fabric makes this dynamic division of
the fabric transparent to software.
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Table 5.1: Relative area and power of four single-issue out-of-order cores and four-
way shared RACM fabric.

SPL Rows Total Area
Peak Dyn.

Power
Total Leak.

Power
Four Cores N/A 1.00 1.00 1.00
4-way Shared SPL 24 0.51 0.14 0.67

SPL clusters as well as many other different cluster types, such as the traditional

many-core cluster shown on the right hand side of Figure 1.1(a), on the die. Ap-

plications are mapped to a SPL cluster during phases that use the fabric and are

mapped to other clusters during other phases in order to obtain the best overall

performance.

5.1.1 SPL Organization

The computational substrate of RACM is the highly-pipelined, row-based SPL

described in Section 3.1. The SPL is composed of 24 rows, in which each row

contains 16 cells and each cell computes 8 bits of data. The SPL is clocked at

a fixed 500 MHz. This is one-quarter the 2 GHz core frequency (the same as

the Pentium Core2 Duo [43] and the AMD X2 Dual-Core [1], both of which are

implemented in the same 65nm technology assumed for RACM) and allows

each row to complete the longest permissible computation in a single cycle. Ta-

ble 5.1 shows the relative area and power consumption of the SPL and associ-

ated single-issue cores.

The SPL is integrated with the processor core as a reconfigurable functional

unit and interfaces to the memory system via a queue-based decoupled archi-

tecture as shown in Figure 1.1(b). Special SPL load instructions place values

into the input queue at a particular data alignment. For output, the SPL simi-
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larly writes to a local output queue that is then written out to the Store Queue

using special SPL store instructions.

The SPL is temporally shared in a time-multiplexed, round-robin fashion

among the cores sharing the fabric. The SPL also supports spatial partition-

ing where the fabric is divided into up to four virtual clusters. Spatial parti-

tioning reduces contention from sharing threads, but also reduces the amount

of resources available to each core, possibly leading to degraded throughput

due to increased virtualization. Figure 1.1(b) shows the additional multiplex-

ers and tristate drivers necessary to support both forms of sharing. Figure 1.1

also shows the barrier and thread-to-core tables, input queue valid bits, and

row destination IDs added to support interthread and barrier communication,

which are discussed in the upcoming sections.

5.1.2 RACM Communication

Most multithreaded applications use some form of communication to coordi-

nate their activity. At a high level, communication requires the exchange of

information between threads, be it a notification that a thread has arrived at a

barrier, a notification that a thread is acquiring or releasing a lock, or a produc-

ing thread passing results to a consuming thread. We design RACM to facilitate

efficient communication among those threads sharing the fabric, focusing on

fine-grained interthread communication and fine-grained barrier synchroniza-

tion.
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Fine-Grained Interthread Communication+Computation

Fine-grained interthread communication enables threads to communicate with

each other much more frequently than would be possible using the traditional

memory system. Such fine-grained communication is typically targeted at pipe-

lined/streaming applications [9, 62]. To perform this type of communication, a

queue, either in software or hardware, is established between the two commu-

nicating threads. The producing thread places data into the queue and the con-

suming thread reads data from the queue. Unless the queue is full/empty, the

two threads can continue to produce/consume data without concern for how

the other thread is progressing.

Since the SPL is shared between multiple cores, sending data to a different

core simply requires writing the data to the output queue of the consuming

core. The input and output queues provide queuing slots and the pipelined fab-

ric serves as both a computational substrate and as additional on-demand queue

slots. The baseline design already takes care of stalling the producer thread or

fabric if slots are not available in either the fabric or output queue, respectively,

and also stalls the consumer if the output queue is empty. If desired, the output

can be sent to multiple cores by specifying multiple destinations in the configu-

ration.

Figure 5.2 details the steps involved in interthread communication. First,

the producing thread loads data to send to the consumer into its input queue

(Figure 5.2(a)). Once all of the necessary data is loaded, the producer issues

the SPL instruction (Figure 5.2(b)). The data progresses through the fabric to

perform the computation programmed into the fabric. Once any computation

is complete, the results are bypassed to the output queue of the consuming core
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Figure 5.2: Walk through of intercore communication.

(Figure 5.2(c)). Finally, the consuming core stores the data from the queue to

memory (i.e., cache) (Figure 5.2(d)).

Two features ease intercore communication via RACM. First, in order to

fully utilize the queuing capacity of the fabric, instructions that have completed

their computation but cannot yet be allocated an output queue slot continue

to progress through the rows of the fabric, simply passing their output data

through to the next row. This continues until either an output queue slot be-

comes available, at which point the data is immediately written to the output

queue (bypassing any remaining rows in the fabric) or the instruction reaches

the end of the fabric, at which point it stalls. When the fabric is stalled, instruc-

tions immediately following the stalled instruction stall as well. Bubbles in the

SPL pipeline, however, are allowed to collapse and so some progress may con-

tinue to be made even if the head instruction is stalled. If the entire fabric is

full, then the producing thread will stall if it attempts to issue additional SPL

instructions.
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The second feature is a small table to maintain a mapping of threads to cores

in order to virtualize the selection of the destination core (see Figure 1.1(b)). If

the thread to core mapping was known a priori, then the consuming core could

simply be hard coded into the SPL configuration. Since this is unlikely in any

real system, a dynamic method is needed to obtain the current location of the

receiving thread. To achieve this, each SPL is augmented with a small table

that provides the current mapping of threads to cores for that cluster. In our

proposed 4-way shared fabric, each table has four entries. Each entry contains

the thread and application ID currently running on each core as well as a count

of the number of in-flight instructions destined for that core (the need for which

will be described shortly). Assuming a limit of 256 thread and application IDs

and a maximum of 24 in flight instructions (as the fabric has 24 rows), each

per-SPL table requires a 11.5B CAM (16 bits for IDs, 5 bits for number of in

flight instructions, and 2 bits for hard coded core ID). When an SPL instruction

is issued, it obtains the core currently assigned to its destination thread (which

may be either itself or another thread) from the table and stores its results to the

appropriate output queue upon completion.

A side benefit of this table based approach is that instructions will not is-

sue to the fabric if the destination thread is not available (i.e., not present in the

table). This prevents the producing thread from filling up the fabric if the con-

sumer is not even present, which could impact other threads sharing the fabric.

If both threads are present but not well balanced, it is possible the fabric could

still be full most of the time. However, assuming that the program is even re-

motely well written, the consumer would still be consuming values, even if at

a slow rate, and, because of the SPL’s round robin issue policy, other threads

would continue to be able to utilize the fabric, albeit at a possibly slower rate.
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Even with the table, however, SPL instructions could accumulate in the fab-

ric if the consumer thread is switched out while data is in flight to it, which

would require the consumer to be switched back into the same core to receive

the values. To prevent this situation, the thread-to-core mapping table main-

tains a count of the number of in-flight SPL instructions destined for each core.

On a request to switch out, the consumer checks for in-flight SPL instructions

bound for that core. If these exist, the fabric is blocked from accepting any

new instructions destined for the consumer and the consumer continues to ex-

ecute until the in-flight counter reaches zero. At this point the consumer can be

switched out and the fabric unblocked.

Barrier Synchronization+Computation

Barriers are one of the most frequent synchronization operations. However,

with a typical memory-based implementation, the overhead of executing a bar-

rier can be significant, especially as the number of threads increases. This over-

head prevents the use of barriers at fine granularities. To address this drawback,

various proposals [3, 5, 67, 72] have suggested dedicated mechanisms to reduce

this overhead, thereby allowing parallelization of applications that would not

otherwise be possible.

To implement barriers in RACM, SPL barrier instructions (indicated by a flag

in the configuration information for the SPL function), must not be allowed to

issue to the fabric until all participating cores have arrived at the barrier. To

achieve this, each core participating in the barrier loads some value(s) into its

SPL input queue. Once the loads from all of the cores have reached the head

of their respective input queues and all threads have indicated arrival at the
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barrier by executing the SPL initiate instruction, the loaded values from each

core are passed into the fabric. The valid bits associated with every byte in

the input queues are used to determine which values from each core should be

loaded into the fabric. Once any computation is complete, results are placed

into the output queue of each participating processor and the processor stores

the data as appropriate. Participating cores are indicated by flags that travel

through the fabric with the data (see top right of Figure 1.1(c)). A memory

fence is executed following the stores to ensure that no subsequent memory

operations are performed until the barrier is complete.

To determine that all threads have arrived, each SPL cluster maintains a ta-

ble with information related to each active barrier. Each table (see Figure 1.1(b))

contains as many entries as cores attached to a RACM cluster, as each could

be participating in a different barrier. Each entry contains the barrier ID, the

current number of arrived threads, flags indicating which processors are par-

ticipating in the barrier, IDs of participating threads, and the total number of

threads involved in the barrier (stored as part of the configuration). A table en-

try is switched out when all threads associated with the barrier are switched

out.

Figure 5.3 illustrates the steps involved in a RACM barrier. To start, cores

load data into the input queues as normal (Figure 5.3(a)¶). When an SPL barrier

instruction is issued, RACM checks the barrier table for an associated entry. If

no entry is present, a new entry is allocated, the arrived count is set to one (Fig-

ure 5.3(a)·), and the destination flag and thread ID for the participating core is

set ¸. The former indicates to which output queues results are written when

the function completes. The latter is used to make sure that all participating
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Figure 5.3: Walk through of barrier synchronization.

threads are running when the barrier is released. If an entry already exists for

the barrier then the number of arrived threads is incremented (Figure 5.3(b)¹).

The appropriate destination flag and thread ID in the barrier table is set º and

the arrived and total number of threads are compared ». If the arrived num-

ber now equals the total, the SPL controller issues an instruction to the fabric,

passing in the data from the participants’ input queues (Figure 5.3(c)). Once

any computation is complete, the results are written to the output queues of all

participating cores (Figure 5.3(d)) as indicated by the destination core bits in the

barrier table. All participating output queues must have a slot available before

the results will be output. Finally, each core stores data from the queue to cache

memory (similar to Figure 5.2(d)).
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In a system with multiple SPL clusters, each cluster communicates updates

on the number of arrived threads with all other clusters (even though other clus-

ters may not have participating threads). An alternative is to have clusters only

monitor those barriers in which they have threads actively participating. This,

however, requires that clusters obtain the number of currently arrived threads

from another cluster each time a locally new barrier arrives, which increases

the complexity of the intercluster network. Since the table is localized and is

small in either case, whereas the increase in interconnect complexity has global

impact, we choose to track all active barriers in every cluster to reduce intercon-

nect overhead at the cost of an increase in table size.

A dedicated bus communicates barrier updates among clusters. The bus

transmits the barrier ID as well as the associated application ID (as different

applications might use the same barrier ID). With a limit of 256 IDs, the shared

bus requires only 16 data lines plus control. Each table entry requires 8 bytes:

16 bits for IDs; 4 for number of arrived threads; 4 for total number of threads; 4

to indicate participating cores; 32 for participating thread IDs; and 4 to indicate

if each participating thread is currently active. In a 16 core system, this requires

a 128B table for each cluster.

Since the SPL input and output queues are saved on a context switch, all

threads participating in a barrier must be actively running in order for all in-

put data to be available. Each table entry maintains a list of the IDs of the local

threads that are participating in the barrier as well as a bit indicating if they

are actively running. If a barrier is ready to be released but not all participating

threads are active, the RACM controller triggers an exception to switch the miss-

ing threads back in. Once all threads are available, the barrier can proceed. Since
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RACM barriers are primarily intended for fine grain synchronization, switching

out a thread that arrives early should be avoided in any event for performance

reasons.

5.2 Communication Examples

We propose using the SPL to perform both fine-grained interthread communica-

tion and fine-grained barrier synchronization. In this section we show example

applications that benefit not only from the enhanced communication, but also

receive additional benefits due to the computational power of the SPL that could

not be achieved with communication alone.

5.2.1 Interthread Communication+Computation Example

To illustrate interthread communication, we show an example parallelization

of the SPEC2006 application 456.hmmer. We optimize the inner loop of the

P7Viterbi function, which implements the dynamic programming Viterbi

algorithm. The original code for the optimized section is shown in Fig-

ure 5.4(a) along with a flow chart summarizing the computation being per-

formed. This high level description will be used to show how the function is

optimized for computation alone, communication alone, and for the combined

computation+communication case.

We first look at how the SPL can be used to accelerate a portion of the com-

putation, specifically the calculation of mc. As shown in Figure 5.4(b), the core

loads the input values needed to compute mc into the fabric, the SPL computes
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Compute ic
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Receive mc

Compute dc
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Compute mc

for (k = 1; k <= M; k++) {
  mc[k] = mpp[k-1] + tpmm[k-1];
  if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
  if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
  if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
  mc[k] += ms[k];
  if (mc[k] < -INFTY) mc[k] = -INFTY;

  dc[k] = dc[k-1] + tpdd[k-1];
  if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;
  if (dc[k] < -INFTY) dc[k] = -INFTY;

  if (k < M) {
    ic[k] = mpp[k] + tpmi[k];
    if ((sc = ip[k] + tpii[k]) > ic[k]) ic[k] = sc;
    ic[k] += is[k];
    if (ic[k] < -INFTY) ic[k] = -INFTY;
  }
}

Compute mc

Compute dc

Compute ic

(a) Original Sequential Version

Send mc inputs

Compute ic

Compute dc

Compute mc

Receive mc

(b) Computation Only

Figure 5.4: Parallelization of SPEC 2006 456.hmmer P7Viterbi.

the value of mc, and the core receives the result. After receiving mc, the core

computes the values of dc and ic and repeats the loop. Figure 5.5 shows the

general functionality performed within each row of the SPL for the optimized

section.

The next implementation creates a producer/consumer thread pair that uses

the SPL solely for communication (Figure 5.4(c)). The producer thread is respon-

sible for calculating the values of mc and ic and sending the value of mc from

the previous iteration to the consumer through the SPL. The consumer receives

this value and uses it to compute dc.

Finally, Figure 5.4(d) shows how computation and communication can be

combined in the SPL. The producer thread computes ic and loads the inputs

needed to compute mc. The SPL computes the value of mc and sends it to the

consumer. The consumer receives this value and uses the value of mc from

the previous iteration to compute dc. Computing mc in the fabric reduces the
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Figure 5.5: SPL mc calculation mapping.

amount of work for the producer, which better balances the threads and further

improves the performance of the parallelization (see Section 5.4.1).

5.2.2 Barrier Synchronization+Computation Example

To show the operation of RACM barrier synchronization, we consider a paral-

lel version of Dijkstra’s Shortest Path Algorithm. Parallel versions of Dijkstra’s

Algorithm have previously been proposed. These algorithms, however, tend to

provide limited or no speedups for small to moderate graph sizes. By using the

SPL to perform the barrier synchronization, we can improve the synchroniza-

tion while also using the fabric to perform computation during the barriers to

further improve performance.
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(a) Software Barriers

for(int k = 0; k<NUM_NODES; k++){
  getLocalMin(); //get min dist of my available nodes
  localMins[myId] = myLocalMin; //place min in global location
  barrier();
  mem_fence();
  if(myId == 0){
    globalMin = localMin[0];
    for(int n = 1; n<NTHREADS; n++){
      if(localMins[n] < globalMin)
      globalMin = localMins[n];
    }
  }
  barrier();
  mem_fence();
  if(globalMin == localMin[myId])
    removeMin(); //remove node from my queue
  for(int i = min; i<max; i++){
    //get cost between i and global min
    cost = getCost(globalMin, i);
    if(currDist > (globalMinDist+cost){
      currDist = globalMinDist+cost;
    }
  }
}

Compute global min

Update distances

Compute local min

BarrierBarrier

BarrierBarrier

Update distances

Compute local min

BarrierBarrier

BarrierBarrier

Main Thread Helper Threads

(c) Barrier+Computation

Compute local min

Barrier

Update distances

Input local min

Receive global min

Compute global min

Compute local min

Update distances

Input local min

Receive global min

(b) Barrier Only

Compute local min

Barrier

Update distances

Compute global min

Compute local min

Update distances

Barrier

Figure 5.6: Parallelization of Dijkstra’s Shortest Path Algorithm.

In the parallel version of Dijkstra’s Algorithm, each thread is given a portion

of the entire graph to maintain. Figure 5.6(a) shows pseudocode of the basic

parallel algorithm and the high level flow of the main and helper threads. The

code consists of three sections, delineated by code before, between, and after the

two barriers. In the first section, each thread determines the minimum value of

all unvisited nodes among its subset and places this value in a global location.

In the next section, the main thread computes the global minimum from these

local minimum values and makes this value globally available. Finally, each

thread reads the global minimum and updates the distances for all of its nodes.

The first optimization that can be made is to replace the software barriers

with RACM barriers, as shown in Figure 5.6(b). As with previous dedicated

barrier techniques [3, 72], replacing the software barriers with RACM barriers

provides significant performance improvements. Performance can be further

improved beyond that possible with previous techniques by using the compu-
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tational power of the SPL to compute the global minimum within the fabric.

Figure 5.6(c) shows this optimization for the case where all threads share a sin-

gle SPL cluster. Each thread computes its local minimum as before and then

loads this value into the SPL. While performing the barrier, the SPL computes

the minimum of the input values. Each participating core receives the global

minimum from the SPL and updates the distances for its nodes. Since the SPL

outputs the global minimum directly, one of the barriers is eliminated.

If the threads are spread across multiple clusters, the fabric still helps com-

pute the minimum; however, this operation is performed in multiple stages and

requires an extra barrier to ensure proper execution. The first stage computes

regional minimum values (minimum values of all cores in a single cluster). The

second barrier ensures that all clusters have finished storing these results. At

the final barrier each cluster loads the regional minimum values and the fabric

computes the final global minimum. Despite the extra barrier, performance is

still improved over using the SPL for communication only (see Section 5.4.3).

5.3 Evaluation Methodology

We use a modified version of SESC [71] to evaluate our proposed communica-

tion schemes. We assume processors implemented in 65 nm technology running

at 2.0 GHz with a 1.1V supply voltage. The major architectural parameters are

shown in Table 5.2. We use Wattch and Cacti to model dynamic power and Cacti

and HotLeakage to model leakage power.
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Table 5.2: Architecture parameters.

Fetch/Decode/Rename Width 2
Issue/Retire Width 1
Branch Predictor gshare + bimodal
RAS Entries 32
BTB Size 512B
Integer/FP Registers 64/64
Integer/FP Queue Entries 32/16
ROB Entries 64
Int/FP ALUs 1/1
Branch Units 1
LD/ST Units 1
L1 Inst Cache 8kB 2-way, 2-cycle access
L1 Data Cache 8kB 2-way, 2-cycle access
L2 Cache 1MB per core, 10-cycle access
Coherence Protocol MESI
Main Memory Access Time (ns) 100

5.3.1 Benchmarks

We use benchmarks from the SPEC2006 [78], SPEC2000 [77], MediaBench [51],

MiBench [30], and Livermore Loops [55] suites along with the Unix utility wc

to analyze the three usage modes from Figure 5.1. A complete list of the bench-

marks used for each operation mode, the functions we optimize in each, and

the percentage of total program execution time consumed by the functions are

listed in Table 5.3. Cjpeg makes use of two operation modes, computation-only

and computation+communication, and is evaluated with other communicating

workloads. We execute two 250 million instruction Early SimPoints [58] for

SPEC workloads with reference inputs and run all other workloads to comple-

tion.

To evaluate barrier synchronization we use parallel versions of Livermore

Loops 2, 3, and 6 and Dijkstra’s Algorithm, the latter using inputs from Mi-

DataSets [30]. Two of the benchmarks, specifically Livermore Loop 3 (LL3),
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Table 5.3: Benchmark details.

Benchmark Functions Optimized % Exec Time
Computation Only

g721dec fmult 48%
g721enc fmult 46%

mpeg2dec store ppm tga, conv422to444,
conv420to422

63%

mpeg2enc dist1 70%

gsmtoast Calculation of the LTP parameters,
Weighting filter

54%

gsmuntoast Short term synthesis filtering 76%
462.libquantum quantum toffoli, quantum cnot 40%

Communication+Computation
wc wc 100%
unepic read and huffman decode 22%
cjpeg rgb ycc convert, jpeg fdct islow 50%
adpcm adpcm decoder 99%
300.twolf new dbox a 30%
456.hmmer P7Viterbi 85%
473.astar regwayobj::makebound2 33%

Barrier Synchronization
Livermore Loop 2 (LL2) 100%
Livermore Loop 3 (LL3) 100%
Livermore Loop 6 (LL6) 100%
Dikjstra’s Algorithm 100%

which is transformed to operate on integers, and Dijkstra’s algorithm, include

computation in the fabric after synchronization. In Dijkstra’s Algorithm, com-

putation is performed during the synchronization operation (as in Figure 5.1(c)).

LL3 makes use of two RACM modes of operation: performing computation on

the data within the loop (Figure 5.1(a)), and using the SPL to accelerate synchro-

nization between iterations (Figure 5.1(c)).
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5.3.2 RACM Programming

We modify our workloads by hand to create the producer/consumer pairs and

SPL mappings. Previous work has shown that compilers can produce good

mappings for reconfigurable architectures [4, 7, 35, 94] and good partitionings

for pipelined applications [36, 57]. We believe our design could leverage this

prior art in an actual implementation.

5.4 Results

We first evaluate RACM in the context of a heterogeneous CMP executing entire

programs and then look at the performance of the optimized regions to show

the source of the improvements.

5.4.1 RACM in a Heterogeneous CMP

To show the benefit of including SPL clusters in a heterogeneous CMP, we com-

pare the performance of a RACM system to a system with larger cores and

dedicated communication hardware, while executing entire applications. The

RACM system is composed of clusters of four OOO1 cores plus a 24-row SPL

coupled with clusters of 2-way issue out-of-order (OOO2) cores (the organi-

zation shown in Figure 1.1(a)). The second system is composed of clusters of

OOO2 cores with a dedicated communication network, similar to previous pro-

posals [9, 62]. Assuming zero hardware cost for the communication network,

four OOO2 cores with this idealized communication support (OOO2+Comm)
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Figure 5.7: Performance relative to single threaded baseline.

consumes approximately the same area as an SPL cluster. In the RACM con-

figuration, regions of code that utilize the SPL are run on the SPL cluster while

other regions are run on an OOO2 core. The migration overhead is accounted

for by draining in-flight instructions and stopping execution for 500 cycles (de-

termined by running the requisite code in the simulator) to model the time nec-

essary to context switch all state to the new core.

We compare the two schemes with workloads that use the SPL for compu-

tation alone and workloads that use the SPL for computation+communication

(results for barrier synchronization are discussed separately in Section 5.4.3).

Computation-only workloads are run concurrently with other computation-only

workloads to include appropriate SPL contention. Communicating workloads

are run separately, but are given access to only half of the SPL, making it area

equivalent to the OOO2+Comm alternative (the SPL is assumed to be partitioned

and the other half is in use by other threads). The performance improvement

of the two configurations relative to executing the original sequential code on

a single-issue core is shown in Figure 5.7. Computation-only benchmarks are
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Figure 5.8: Energy×delay relative to single threaded baseline.

shown on the left side of the figure and computation+communication bench-

marks are on the right side.

RACM performs as well or better than the alternative in all but one case. On

average it provides 49% better performance than OOO2+Comm for computation-

only workloads and 41% better performance for communicating workloads. In

the one exception, twolf, the time between sequential and parallel regions is

short enough to prevent migration to the 2-way issue core during the sequential

regions. The benefit of executing on the 2-way issue core during the sequential

regions is enough to outweigh the performance benefit of executing on the SPL

during the parallel sections.

While adding RACM communication and computation improves perfor-

mance relative to a single threaded implementation, energy efficiency may

degrade given the energy costs of the extra core and SPL. Figure 5.8 shows

energy×delay (ED) for the two configurations relative to the single threaded

baseline. RACM provides better (i.e., lower) ED than both the baseline and

OOO2+Comm configurations in all but one case. The one exception is again

twolf, where both alternatives achieve worse ED than the baseline, indicating

that twolf should be run as a single thread on a simple core if energy is a sig-
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Figure 5.9: Performance improvement of optimized functions relative to perfor-
mance of single threaded baseline.

nificant concern. OOO2+Comm also generally provides better ED than the base-

line, but only marginally so in many cases (such as cjpeg, astar, and libquan-

tum). With the exception of twolf, RACM provides both better performance (45%

better on average) and lower energy consumption (35% less on average) than

OOO2+Comm for all benchmarks.

5.4.2 Analysis of Optimized Regions

We now look at the performance of just the code regions optimized for RACM

to see the source of the above improvements. Figure 5.9 shows the performance

improvements relative to the single threaded baseline of a single thread us-

ing the SPL for computation (1Th+Comp) and (where appropriate) dual threads

with the SPL used for communication (2Th+Comm) and dual threads with the

SPL used for computation+communication (2Th+CompComm). We also show

the performance of running on the system of OOO2 cores with idealized com-

munication hardware (OOO2+Comm). Using the SPL for computation only
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(1Th+Comp) provides significant performance improvements (289% and 105%

on average for computation-only and communicating workloads, respectively).

Focusing on the workloads employing communication, using the SPL for

producer-consumer communication alone provides a 38% improvement in per-

formance for the optimized region relative to the single core baseline. By adding

the speedups obtained from communication and computation alone, we would

expect to achieve an average speedup around 143% when the two techniques

are combined. The results for 2Th+CompComm, however, show an average im-

provement of 223%. The reasons for this behavior will be discussed in the next

section.

It is only with the combination of computation and communication that

RACM outperforms the OOO2+Comm alternative in all cases (by 79% on aver-

age), showing the clear benefit of integrating SPL computation and communica-

tion. The results for twolf also show that computation+communication does in-

deed perform better OOO2+Comm for the optimized region, confirming the ear-

lier statement that the performance loss is due to RACM’s lower performance

compared to OOO2+Comm on the sequential regions between the optimized

sections.

To confirm the need for hardware-based communication, we also ran the

benchmarks with software queues, with and without SPL computation, and

found that these experience more than a 180% slowdown on average relative

to the single threaded baseline.
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Contributing Factors

We analyzed the benchmarks to identify the factors that contribute to the per-

formance improvements for combined SPL communication+computation. Pri-

mary among these factors is that the combination of SPL computation and com-

munication reduces the amount of time between successive SPL requests rela-

tive to using either technique in isolation, often by 2X or more. In wc, for exam-

ple, the average time between SPL requests drops from 62 and 19 cycles with

communication and computation in isolation, respectively, to 12 cycles when

the two techniques are combined. This increased access rate improves perfor-

mance by increasing the amount of concurrent processing in the SPL.

Relative to the single threaded case, splitting the application into a pro-

ducer/consumer pair allows us to place sections of code with poor branch or

load performance in their own thread to reduce or eliminate their impact on

performance. In unepic, for example, the consumer if responsible for a section

of code with both an unpredictable branch as well as a pointer chasing load. By

placing just this code in the consumer and the rest in the producer, the consumer

can start processing these unpredictable instructions earlier. This reduces the

impact of the unpredictability of these instructions and improves performance.

With RACM communication we can also perform computation during the com-

munication, meaning that each core is now responsible for approximately half

of the SPL instructions (either the loads or the stores). This reduces the num-

ber of instructions that both threads need to process, which can lead to reduced

pressure on the ROB and other related structures. This leads to fewer pipeline

stalls and therefore better performance.

98



Compared to just communicating data, performing computation on the data

while in flight to the consumer provides multiple sources of improvement. For

one, the SPL computation removes instructions from one or both threads. This

can help to better balance the work done by both threads and allow for more

efficient pipelining. Both astar and adpcm, for example, are consumer bound

with just communication. By performing computation in the SPL, computation

previously performed by the consumer is now performed in the SPL, leading

to more balanced producer/consumer threads. For these two cases, of the 12

slots available, the average number of occupied queue slots decreases from 11.5

and 10.9 to 2.5 and 3.1 for astar and adpcm, respectively. These more balanced

threads spend less time waiting on a full/empty SPL queue, which improves

performance. Removing instructions from one or both of the threads can also

reduce pressure on the ROB and related structures, again improving perfor-

mance. Cjpeg and unepic are two examples that see reduced ROB stall time with

integrated computation, with ROB full time decreasing from 27% and 30% to

11% and 0%, respectively. Finally, moving computation inside the SPL can im-

prove branch prediction in one or both threads by moving conditional oper-

ations into the SPL. Adpcm and wc are two cases that see such a reduction in

misprediction rate with the prediction rate improving from 85% to 97% for ad-

pcm and from 80% to 99.9% for wc. The improved branch prediction improves

processor efficiency which again improves performance.

Energy Efficiency Results

Figure 5.10 shows the ED of the three SPL implementations and the

OOO2+Comm alternative relative to the single threaded baseline without SPL.
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Figure 5.10: Energy×delay relative to single threaded baseline.

While adding computation or communication in isolation reduces ED in many

cases, neither is able to provide enough performance benefit to overcome the

added power consumed by the extra core and/or SPL in all cases. RACM

communication+computation always improves performance and reduces en-

ergy consumption compared to OOO2+Comm and is the only option to provide

better ED than the the single threaded baseline in all cases.

5.4.3 Fine-Grained Barrier Synchronization

We evaluate the performance of software (SW) versus RACM barriers for our

four barrier applications when executing 2, 4, 8, and 16 threads. Figure 5.11

shows the performance for SW and RACM barriers (with and without compu-

tation where appropriate) for the 8 and 16 threaded cases (2 and 4 threads show

similar trends and are omitted for graph clarity).

Similar to other fine-grained synchronization techniques [3, 67, 72], perform-

ing barriers via RACM significantly improves performance over SW barriers.
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Figure 5.11: Per iteration execution time for Livermore loops (a) 2, (b) 6, and (c) 3
and (d) Dijkstra’s Algorithm.

For the Livermore Loops, the RACM versions start outperforming the sequen-

tial code for much smaller vector lengths. For instance, in LL6 with 16 threads,

RACM barriers start outperforming the sequential case at a problem size be-

tween 8 and 16 whereas SW barriers only start outperforming the sequential

case at a size of 64, demonstrating the benefits of finer-grain synchronization.

Fine-grained synchronization also makes larger thread counts useful for smaller

problem sizes. In LL2, for example, the 16 threaded version starts outperform-

ing the 8 threaded version at a problem size of 256, but the 16 threaded SW

version never outperforms the 8 threaded case for the problem sizes we investi-

gate. In dijkstra, RACM barriers not only outperform software barriers with the

same number of threads but also outperform software barriers with two or four

times the number of threads in some cases.
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Figure 5.12: Performance improvement of barriers + computation over barriers
alone for (a) LL3 and (b) dijkstra.

Fine-Grain Barrier Synchronization with SPL Computation

Certain parallel benchmarks, such as LL3 and dijkstra, also benefit from the

computational capabilities of the SPL. This computation is either performed as

part of the barrier operation, as is done in dijkstra (see the discussion in Sec-

tion 5.2.2), or in a separate SPL function that only performs computation, as

in LL3. The execution time and performance improvement relative to barri-

ers alone of barriers+computation for the two benchmarks are shown in Fig-

ures 5.11(c-d) and 5.12, respectively.

For dijkstra, where the computation is performed as part of the barrier, the

benefits of adding computation are most pronounced as the number of threads

increases and at finer synchronization granularities. This is due to the fact that

thread synchronization, which is the portion of code accelerated by RACM com-

putation, consumes more time with smaller problem sizes and as the number of

threads increases. In the 16 threaded case, adding computation provides up to

a 9% improvement versus hardware barriers alone.
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In LL3, on the other hand, where the computation is a separate function, the

most benefit is received with a smaller number of threads and/or coarser syn-

chronization granularities. In either of these cases, each thread has more work

to do between barriers. This means that the computation section makes up a

larger percentage of the execution time and so speeding it up provides greater

relative benefit. When there are an extremely small number of loop iterations

per thread, the Barrier+Comp case can actually perform worse than synchro-

nization alone as there are not enough SPL instructions to take advantage of

the pipelined nature of the fabric. This can be seen in Figure 5.12(a) for small

problem sizes and large thread counts. In each of these cases each thread has

only 2 or 4 iterations to perform and so little pipelining occurs. For the larger

problem sizes, however, the performance improvement is significant, ranging

from 15-26%.

Energy Efficiency Results

Figure 5.13 shows energy×delay (ED) results for the four synchronization work-

loads relative to the single threaded case. In general, the break even point for ED

– the point at which the ED of the parallel case drops below the sequential case –

for both SW and RACM barriers requires a larger problem size (coarser grained

synchronization) than the performance break even point. This occurs since,

especially at very fine granularities, the performance improvement achieved

by increasing the number of threads is not ideal (i.e., doubling the number of

threads does not halve the run time). For 16 threaded LL2 and LL6, SW barriers

never break even for the problem sizes we investigate. RACM barriers always
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Figure 5.13: Energy×delay for Livermore loops (a) 2, (b) 6, and (c) 3 and (d) Dijk-
stra’s Algorithm relative to sequential execution.

achieve better ED than their SW counterparts, despite the additional energy

consumed by the SPL which is not present with SW barriers.

We also evaluate the performance achieved by replacing the SPL with addi-

tional cores and dedicated fine-grain barrier support [3, 72]. Since the SPL con-

sumes as much area as two single-issue cores, we simulate a system where each

SPL is replaced by two additional cores (yielding a total of 24 cores for the case

that originally had 16 cores+SPL) and the cores are connected with a dedicated

barrier network that incurs no hardware cost. We find that, compared to such

a homogeneous cluster, RACM barriers+computation achieves up to 25.9% and

62.5% lower ED for dijkstra and LL3, respectively, demonstrating the benefits of

RACM custom computation with fine-grain barrier synchronization.
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5.5 Conclusion

This chapter proposes using the SPL to perform multiple forms of fine-grained

communication in a heterogeneous CMP. In addition to accelerating compu-

tation like traditional reconfigurable fabrics, RACM can be configured to fa-

cilitate multiple forms of fine-grained communication. In contrast to previous

fine-grain communication approaches, RACM enables custom computation to

be integrated with communication. Combining these multiple modes leads to

a significant 45% performance improvement relative to what could be achieved

with an area equivalent system with larger cores and free hardware communi-

cation. Similarly, we also show that RACM provides better energy efficiency

than can be achieved by using the area consumed by the SPL for either addi-

tional or more powerful cores, providing a 44% reduction in ED. These results

demonstrate the significant advantages of incorporating reconfigurability into

future heterogeneous CMPs.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis investigates reconfigurable architectures for chip multiprocessors

(RACM). In particular, it focuses on how the recent shift to multicore processors

allows more efficient integration of reconfigurable logic on-chip than possible

with previous monolithic single-core designs. In addition to exploring the ben-

efits of shared reconfigurable logic for sequential applications, which were the

almost exclusive focus of previous reconfigurable works, we also evaluate the

advantages of reconfigurable logic for parallel applications and for parallelizing

otherwise sequential applications.

This work makes the following contributions:

• Shared Reconfigurable Fabric for CMPs – We design a tightly integrated, row-

based reconfigurable fabric that is specially tailored for sharing among

multiple cores of a chip multiprocessor. This Specialized Programmable

Logic (SPL) fabric is shown to provide significant performance an energy

benefits compared to what could be achieved by dedicating the fabric area

to more powerful cores;

• Multiple SPL Sharing Schemes – We propose mechanisms to temporally and

spatially share the fabric between multiple cores. It is shown that, with

proper sharing, the size of the SPL can be drastically reduced while still

achieving the same performance as much larger per-core private fabrics;

• Dynamic Cluster Management Policies – Shared SPLs must be intelligently

managed if they are to achieve optimal performance. We create multi-

ple dynamic cluster management policies to manage the assignment of
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threads to cores and the partitioning of the SPL. The best of these, the Hy-

brid Heuristic-Hill Climbing (H3C) manager, achieves significantly better

performance than the oracle best static schedule and consumes less en-

ergy, with only minor performance degradations, relative to large private

fabrics;

• Fine-grained Intercore Communication – We extend the SPL to facilitate fine-

grained intercore communication, by which one thread can send data to

one or more receiving threads. This fine-grained communication allows

parallelization of applications that would not be possible with typically

memory based communication;

• Fine-grained Barrier Synchronization – We augment the SPL to support fine-

grained barrier synchronization. By performing barriers through the SPL,

threads can synchronize much more frequently than possible via memory,

allowing new, and more efficient, parallelization of algorithms;

• Integrated Computation during Communication – RACM interthread com-

munication and barrier synchronization both allow computation to be

performed on the data while it is in flight the the receiving cores. This

provides optimization opportunities not possible with previous hardware

communication techniques and can provide superlinear speedups com-

pared to performing either computation or communication in isolation.

Overall, we show that, in the context of a heterogeneous CMP, RACM

provides significant performance and energy benefits relative to what can be

achieved by allocating the SPL area to either more or more powerful cores for a

range of sequential and parallel applications. This work demonstrates that, with
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the integration of ever more cores on die, integrating reconfigurability within

some portion of the chip is indeed a worthwhile consideration.

6.1 Future Work

The analysis in this work focuses on a single design point in the reconfigurable

computing space: a pipelined, row-based reconfigurable functional unit. Nu-

merous other proposals [6, 20, 22, 34, 39, 64, 65, 68, 91, 92] have investigated

various other points in the space. Each of these designs has their own set of

advantages and disadvantages. Surveys such as [15, 37, 85] have provided a

qualitative analysis of the trade-offs involved in the different design points. To

our knowledge, however, no work has performed a unified, quantitative analy-

sis of the design space in an attempt to analyze the strengths and weaknesses of

the different designs relative to each other.

If reconfigurability is every to make its way into mainstream microproces-

sors, work is needed that quantitatively compares of a range of reconfigurable

architectures, considering factors such as area, power, and breadth of applica-

bility. This exploration should take into account such issues as

• Computation granularity - bit-, subword-, or word-level computation;

• Level of integration - functional unit, coprocessor, external coprocessor;

• Fabric width and depth - single word wide or multiple words wide, how

many concurrent and sequential operations are supported;

• Number of fabric inputs and outputs;
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• Can the fabric aid more than just pure computation - communication, fault

tolerance, profiling, etc.;

• Amount of on-chip configuration storage;

• How the fabric is controlled - fine-grain direction by core or self control.

It is unclear whether it makes more sense to first perform the exploration

for private fabrics and then expand the exploration to shared fabrics or to start

immediately with shared fabrics. Different design points may require different,

and possibly yet unexplored, styles of sharing. Coprocessor style reconfigurable

fabrics, for example, which typically have their own control and often perform

streaming type operations, may have to be shared at a coarser granularity than

investigated for the SPL. The relative merits of different designs may shift when

considering private versus shared usage. A design may have many advantages

in a private context, but may offer limited sharing opportunities. Knowledge of

these trade-offs will be important when determining what type of reconfigura-

bility to include in future CMPs.
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APPENDIX A

DYNAMIC PARTITIONING MANAGER

In addition to the dynamic partitioning algorithms described in Chapter 4,

we also investigated a Dynamic Partitioning Manager (DPM) that aims to find

the best partitioning of a single SPL while minimizing energy consumption. To

minimize energy consumption, the DPM power gates sections of the SPL so

long as performance is not significantly degraded. In the end, the management

policies from Chapter 4, the best of which was H3C, take a more holistic system

view and so we concentrated on them. H3C and related policies, however, do

not include any power reduction techniques, and so the power management

portion of the DPM could provide a simple extension to something like H3C.

The DPM would attempt to power down sections of the SPL once H3C had

reached its final decision for a given phase. In this situation the DPM would

only explore power gating the already established clusters and would not deal

with partitioning the fabric any further.

A.1 Dynamic Spatial Partitioning for Performance and Power

As with other shared resources, such as caches, sharing the SPL among multi-

ple applications can lead to performance degradation. When two dual-threaded

applications employing interthread communication share a fabric, one applica-

tion may be producer-bound while the other is consumer-bound. In such a case,

messages to the consumer of the latter thread could fill up the fabric as they wait

for the slower consumer to process them. This would impede the progress of

the producer-bound thread as it could not issue messages as quickly as if run in

isolation due to frequent stalls waiting for queue slots to become available.
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Figure A.1: SPL row with power gating support.

RACM addresses this shortcoming via spatial partitioning (described in Sec-

tion 3.1.7) to create two virtual fabrics, one for each thread, to separate the

consumer- and producer-bound threads. Splitting the fabric, however, is not

always beneficial as it reduces the number of rows and therefore the number

of queue slots available to each application, and may increase the amount of

virtualization during computation.

Power gating is already in use in today’s microprocessors [33, 66], and in

many cases it can virtually eliminate the static power consumed by the gated

circuit with minimal impact on active cycle time [59]. Figure A.1 shows a sin-

gle row of the SPL with an NMOS gated-Vdd transistor [59] that allows power

gating the entire row. Since the DPM is responsible for both spatial partition-

ing and row power gating, we perform power-gating at the spatial partitioning

granularity, i.e., one-quarter (6 rows), one-half (12 rows), or three-quarters (18

rows) of the SPL can be powered off.

A.1.1 DPM Design

The DPM controls spatial partitioning and row power gating to minimize

energy×delay (ED) while keeping the performance loss within some bound.
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Figure A.2: Operation of the Dynamic Partitioning Manager.

With a 4-way shared fabric and four single-threaded applications, there are 28

possible configurations when fabric partitioning, power gating, and assignment

of threads to partitions are taken into account. Although we focus on two dual-

threaded applications in this section, where there are only seven possible config-

urations, we design the DPM for the general case of many more combinations.

The operation of the DPM is shown in Figure A.2. The DPM starts in the

Unstable state waiting for the performance, as indicated by the number of in-

structions graduated during a fixed interval (one million cycles in our case), of

all threads using the fabric to stabilize. Performance is considered stable if the

relative number of instructions graduated between two successive intervals is

within some percent, in our case 10%. Once performance is stable, the manager
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moves into the Exploration state and begins exploring the different possible fab-

ric configurations. Each configuration is run for a single interval and at the end

of the interval the performance and ED are compared to the best configuration

found so far. If the average slowdown relative to the baseline is less than some

threshold (2% in our case), and the ED is better than the ED of the current best

configuration, then the current configuration is set as the new best.

From the viewpoint of an entire program run, energy consumption typi-

cally increases when performance decreases as the program will execute longer.

Within a fixed interval, however, energy consumption often decreases as per-

formance decreases because less work is being done. To address this, we use

power per instruction as a proxy for energy in our ED calculations. We assume

that power can be estimated using performance counters, similar to what has

been proposed in [44].

Due to the relatively large number of possible configurations, a full search

of the configuration space during the exploration phase is undesirable. To re-

duce the number of explored configurations, we perform the exploration in two

steps. In the first step, all spatial partitionings and thread assignments are ex-

plored. For four single-threaded workloads there are 11 possibilities (for two

dual-threaded workloads there are only 2 possibilities, shared or split). At the

end of this step, the configuration that produces the best ED is selected. In the

second step, all possible power gatings of this partitioning are explored, for a

maximum of three additional configurations. This yields 14 total intervals, or 5

with two dual-threaded workloads.

Once all configurations have been explored, the DPM configures the SPL

to the best configuration and enters the Stable state. While in the stable state
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no changes are made to the SPL configuration. To allow adaptation to phase

changes, the DPM continues to monitor the relative performance between suc-

cessive intervals. If the difference between two intervals exceeds the aforemen-

tioned stability threshold, then a 3-bit saturating counter is incremented and

the last interval performance values are not updated. If the average perfor-

mance falls within the stable range, the saturating counter is decremented. If

the counter saturates, the DPM returns to the Unstable state and starts the pro-

cess anew.

To split, merge or power on/off the SPL, instruction issue to the fabric is

halted and all in-flight instructions are allowed to complete. The appropriate

change to the fabric configuration is made and instructions are again allowed to

issue.

A.2 Results

Figure A.3 shows the energy consumption of 2Th+CompComm (CC) with and

without the DPM enabled relative to the single threaded baseline and breaks

the energy into the energy consumed by the SPL and the energy consumed by

the processor core (including L1 caches). Enabling the DPM (CC+DPM in the

figure) reduces SPL energy consumption by more than 50% on average with

no performance loss. As a whole, this leads to a 6.6% reduction in total power

dissipation compared to the 2Th+CompComm case without the DPM.
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Figure A.3: Energy consumption relative to single threaded baseline.

A.2.1 Multiapplication Workloads

With only a single application running, the DPM only has to consider power

gating the SPL. When multiple applications concurrently share an SPL, the DPM

must consider both fabric partitioning and power gating.

To analyze the performance of the DPM under multiapplication workloads

we pair every communicating application from Section 5.3.1 with every other

one, for a total of 21 different workload combinations. We run each pairing

under three different configurations. In the first, the applications share the en-

tire 24-row fabric. In the second, the fabric is statically partitioned and each

application has access to 12 rows of private fabric. The final option employs

the DPM to dynamically determine the best configuration to minimize energy

while still obtaining good performance. The performance results for all pairings

of 2Th+CompComm (CC) workloads are shown in Figure A.4. The performance
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Figure A.4: Performance of two-application interthread communication+computa-
tion workloads with 24-row shared, 12-row private, and 24-row dy-
namically managed SPL, relative to 24-row private SPL per application.
The first three bars refer to the first application in the pair and the sec-
ond three bars refer to the second application.

of each application is normalized to the performance of that application running

on a private 24-row SPL.

In almost a third of the pairings, one of the two threads experiences a sig-

nificant slowdown (>40%) with no DPM. The DPM reduces the degradation

relative to large private fabrics to less than 14% in all cases and less than 1%

overall. In all cases, the dynamic scheme closely matches the performance of

the better of the two static configurations, Shared or Private, with a performance

degradation of less than 0.2% on average and a maximum degradation of 1.5%.

When two dual-threaded workloads share the fabric, there is typically less

opportunity for power gating due to higher fabric demand. In cases where spa-

tial partitioning is required to achieve good performance, the maximum possi-

ble fabric leakage reduction is 50% as at least two SPL sections must be left on,

one for each partition. Despite this limitation, with DPM, SPL power consump-

tion decreases by 27% on average, and up to 62%, over the best static configu-

ration per pairing. This translates to total energy savings of 3% on average, and

up to 7.9%, for the whole system (see Figure A.5 for details) with the aforemen-
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Figure A.5: Total energy consumption with DPM relative to best performing static
partitioning per workload.

tioned negligible 0.2% average performance degradation. In some cases, fabric

power savings with DPM exceeds 50%. The primary reason is that when the

fabric is not partitioned, up to 75% of the fabric can be powered down. Also, by

turning off rows, queued instructions have fewer queue slots to pass through,

which saves dynamic energy.
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