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Fibers are ubiquitous in our visual world. Hair is an important part of our appear-

ance, and we wear and use clothes made from various types of fibers. Computer

graphics models that can accurately simulate light scattering in these materials

have applications in the production of media such as movies and video games.

They can also significantly lower the cost of textile design by allowing designers

to design fabrics entirely in silico, render realistic images for feedback, and then

fabricate final products that look exactly as designed.

Recent research has shown that renderings of the highest quality—those show-

ing realistic reflectance and complex geometric details—can be obtained by model-

ing individual fibers. However, this approach raises many open problems. For hair,

the effect of fiber cross sections on light scattering behavior has never been care-

fully studied. For textiles, several competing approaches for fiber-level modeling

exist, and it has been unclear which is the best. Furthermore, there has been no

general procedure for matching textile models to real fabric appearance, and ren-

dering such models requires considerable computing resources. In this dissertation,

we present solutions to these open problems.

Our first contribution is a light scattering model for human hair fibers that more

accurately takes into account how light interacts with their elliptical cross sections.

The model has been validated by a novel measurement device that captures light

scattered from a single hair fiber much more efficiently than previous methods.



Our second contribution is a general and powerful optimization framework for

estimating parameters of a large class of appearance models from observations of

real materials, which greatly simplifies development and testing of such models.

We used the framework to systematically identify best practices in fabric modeling,

including how to represent geometry and which light scattering model to use for

textile fibers.

Our third contribution is a fast, precomputation-based, GPU-friendly algo-

rithm for approximately rendering fiber-level textile models under environment

illumination. Using only a single commodity GPU, our implementation can ren-

der high-resolution, supersampled images of micron-resolution fabrics with mul-

tiple scattering in tens of seconds, compared to tens of core-hours required by

CPU-based algorithms. Our algorithm makes fiber-level models practical for ap-

plications that require quick feedback, such as interactive textile design.

We expect these contributions will make realistic physically-based virtual pro-

totyping a reality.
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CHAPTER 1

INTRODUCTION

เธอสวย ทุกนาทีที่เคยสัมผัส

รู้ทันทีว่าเธอคือคนพิเศษ

ที่ฉันนั้นรอมานาน ที่ฟ้าให้มาเจอะกัน

ให้ฉันมีเธอ

DOUBLE YOU, เธอสวย

Physically-based rendering is the process of generating images by simulating

the propagation of light inside virtual scenes made up of mathematical models of

physical objects. By taking into account appropriate physical laws and using mod-

els with enough fidelity, the resulting images can be photorealistic. The afforded

realism leads to applications in:

• Media production. Rendering realistic looking characters and environ-

ments are crucial to production of movies and video games.

• Computer-assisted design. Nowadays, various products are typically

modeled entirely in silico before production. Highly accurate simulation

enables predictive rendering, which can significantly lower the cost of the de-

sign process. Instead of a designer having to create a physical prototype to

observe his/her design’s appearance, he/she can render the model for feed-

back, iterate on the design, and then fabricate products that look exactly as

simulated.

As mentioned earlier, physically-based rendering depends on mathematical

models of physical objects. Each of these appearance models must prescribe an
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Wood [45] Animal fur [77]

Paper [86] Fabric [89]

Figure 1.1: Examples of fibrous materials.

object’s shape and light scattering behavior in such a way that, with it, light

transport simulation can be carried out. Creating appearance models that can

mimic real world objects is a rich research field in computer graphics because our

world is full of objects with interesting shapes and light scattering behavior.

One particular class of such objects are those that are made of small—often

microscopic—fibers. It includes natural objects such as wood, fur, and hair; and

man-made objects such as paper and textiles. (See Figure 1.1.) These materi-

als have complex appearance because the fibers themselves give rise to complex

geometric details, and they scatter light collectively in complex ways.

This dissertation concerns appearance models for hair and textiles—two mate-

rials that are integral to the appearance of humans and their surroundings. Despite

the fact that they are made of a large number of fibers, appearance models used
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(1a) (1b)

In (1a), the head of hair is approximated by hair strips [95]. With the help of a texture
with transparent pixels, an illusion that individual strands are present can be achieve.
However, the resulting orderly appearance does not look as realistic as when individual
strands are explicitly modeled as in (1b) [10].
The cloth is abstracted to a flat sheet in (2a), but individual fibers are modeled in (2b).
Consequently, thickness is present in the latter but not the former. Cloth texture also
looks more realistic when fibers are explicitly modeled [109].

Figure 1.2: Modeling hair and textiles with macroscopic shapes (a) versus
modeling their individual fibers (b).

in practice often simplify them to their overall, macroscopic shapes. A head of

hair is often reduced to the shell that covers the fiber mass or to flat strips rep-

resenting several nearby hair strands. Cloth is almost always modeled as a flat

surface, ignoring the fact that its yarns and fibers give rise to non-flat textures.

(Figure 1.2a) While these very simplified models are practical and have been used

to great effect in media production, they cannot reproduce all the geometric and

optical complexities inherent in fibrous materials. Fuzz and flyaway fibers cannot

be represented, and, while some complex reflectance can be approximated, it does

not look as realistic when the models are viewed close-up. The inability of surface

models to reproduce these details makes them unsuitable for predictive rendering
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Figure 1.3: Components of a micro-appearance model.

where realism is of great interest.

In pursuit of a greater level of realism, computer graphics researchers have been

developing micro-appearance models: those that model fibrous materials down to

the level of individual fibers. More specifically, such a model must be made of

(1) fine-scale geometry where the individual fibers are resolved and (2) models of

how the fibers scatter light. (Figure 1.3) The researchers have successfully shown

that high-fidelity renderings exhibiting both geometric and optical complexity can

be obtained from these models. (Figure 1.2b) In creating and employing them,

however, many important research problems must be solved, and many of them

are still open.

The first problem is geometric representation: how exactly to represent the

geometry of fibers. Fiber geometry may be represented by a collection of discrete

surfaces [51, 76] or by volumetric grids of density values [35, 75, 109]. Hair strands

are almost always represented by surfaces because the fibers are large and are often

arranged in non-repeatable ways, making the volumetric representation much less
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efficient. However, textiles contain small fibers bundled together in repeatable

units, so the shapes of individual fibers can afford to be less well-defined. As a

result, it is not clear which geometric representation is better: volumes or large

collections of micron-resolution surfaces.

The second problem is optical representation: how to model how fibers

scatter light. Marschner et al. [49] formulated the bidirectional curve scattering

distribution function (BCSDF), which has become a standard abstraction for a

fiber’s light scattering behavior. For hair, BCSDFs are often created based on the

assumption that hair cross sections are circular [49, 16, 18], but are these models

accurate enough given that hair cross sections are generally elliptical [71]? For

fabrics, one may use the BCSDF if fibers are represented with surfaces [76], but

Zhao et al. [109] also presented a volume-based light scattering model based on

the microflake phase function [32]. Which model is better has remained an open

problem.

The third problem, crucial to predictive rendering, is appearance matching:

once the choice of the appearance model has been decided, how to tune its param-

eters so that the rendered images match the appearance of real materials. In 2009,

Bonneel et al. [6] and Zinke et al. [114] presented two solutions for hair. In 2011,

Zhao et al. presented one for fabrics [109]. However, these solutions are specific

to the models used in their respective papers, and so are not useful as a general

modeling tool. Can we design an algorithm that works on arbitrary appearance

models?

The fourth problem is rendering: how to simulate light transport in micro-

appearance models to generate images. While general rendering algorithms such

as path tracing can be employed, they are often very time consuming when used
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with micro-appearance models because they have to trace rays through fine fiber

arrangements and do so multiple times per image sample to simulate multiple

scattering inside the material. Real-time rendering algorithms that aggressively

approximate multiple scattering exist for hair [116, 70, 101]. For fabrics, Zhao et al.

proposed modular flux transfer in 2013 [108]. However, while it is a magnitude

faster than path tracing, it can still take minutes on a large compute cluster. Can

we design a faster rendering algorithm for cloth?

1.1 Summary of Contributions

This dissertation presents solutions to the above open problems. Our contributions

are as follows:

Our first contribution (Chapter 4) addresses the lack of light scattering models

for hair that take into account elliptical cross sections. We present a new model

that takes into account the effects of cross-sectional ellipticity. We also

present a new, highly efficient measurement device for light scattered

from a single hair fiber, which we used to validate our model. Experimental data

showed features that ours predicts but others could not, but they also contained

one that no models (include ours) had successfully accounted for.

Our second contribution (Chapter 5) addresses two problems on micro-

appearance modeling of fabrics. We propose an optimization-based framework

for estimating parameters of a large class of models from photographs of

real materials. With its help, we systematically compared competing mod-

els and identified the best ones. For the study, we also invented a more

accurate, yet simple light scattering model for textile fibers and an algo-
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rithm for creating surface-based geometric representations of fibers. Our

work, taken as a whole, comprises a complete and practical system for appearance

modeling of fabrics.

Our third contribution (Chapter 6) addresses the prohibitive cost of rendering

fabric micro-appearance models. We present a precomputation-based, fast,

GPU-friendly rendering algorithm that, using a single commodity GPU, can

render high-quality images in tens of seconds that Monte Carlo path tracing and

other CPU-based algorithms can take minutes to complete on a large compute clus-

ter. Our algorithm thus makes micro-appearance models practical for applications

such as interactive textile design, where rapid turnaround is paramount.

1.2 Organization of the Dissertation

This dissertation is organized as follows.

Chapter 2 reviews the background material that is common to all the following

chapters, including the theory of light transport simulation and an abstraction for

light scattering behavior of fibers.

Chapter 3 surveys previous approaches to model and render appearance of

hair and textile.

Chapter 4 describes our new light scattering model for human hair fibers with

elliptical cross section.

Chapter 5 discusses our optimization-based framework for appearance match-

ing and details the study of different competing approaches to micro-appearance
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modeling. We also describe new components of micro-appearance modeling that

we invent for the study.

Chapter 6 describes our fast, GPU-friendly algorithm for approximately ren-

dering fabric micro-appearance models.

Chapter 7 concludes the dissertation and presents potential future works.
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CHAPTER 2

BACKGROUND

ハイハイハイ　分かっています

大体の出番くらい

背景だし　背景だし

歌になってごめんなさい

背景コンビ,

背景放題やりほーだい?

We create appearance models so that we can simulate light transport and gener-

ate images of hair and fabrics. This chapter reviews relevant background material

on light transport simulation and the light scattering behavior of fibers. We start

by stating assumptions about light and light sources (Section 2.1), then discuss

the governing equations that light transport simulators aim to solve (Section 2.2).

Next, we discuss path tracing, a solution technique on which much of our work is

based (Section 2.3). Lastly, we detail the mathematical formulation of the bidi-

rectional curve scattering distribution function (BCSDF), an abstraction for light

scattering behavior of fibers that is used throughout this dissertation (Section 2.4).

2.1 Modeling Light

Light is a complex phenomenon exhibiting such diverse behavior that simulating

every aspect of it is infeasible. It is thus imperative to work with a simplified model

of light that retains only the salient features. Following standard light transport

simulation literature [20, 63], we assume geometric optics, which maintains the

following assumptions:
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1. Light travels in a straight line in any medium with a constant index of re-

fraction.

2. Light may be absorbed, reflected, and refracted.

3. Light is unpolarized and incoherent.

4. Light energy does not transfer from one wavelength to another.

5. Light propagates in space and reaches equilibrium state instantaneously.

While the assumptions preclude many interesting effects such as diffraction, inter-

ference, polarization, fluorescence, phosphorescence, and relativistic phenomena,

they are often adequate for the purpose of synthesizing photorealistic images. They

also make simulating light transport much easier. For example, Assumptions 1 and

2 imply that light travels along straight line segments (given that the scene con-

tains only media with constant refractive indices). Assumption 3 enables treating

light energy as a scalar. Lastly, Assumption 4 implies that different wavelengths

can be treated independently and, consequently, we can act as if there is only one

wavelength.

Radiometry

With the model of light specified, we now discuss radiometric quantities involved

in light transport simulation. Since the main purpose of this section is to introduce

notations and conventions, we refer the reader to Dutre et al. [20] or Preisendorfer

[66] for more complete treatments of the concepts.

The goal of light transport simulation is to determine the distribution of light

energy in a scene. That is, we would like to answer the following question:
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Given a point x ∈ R3 and a unit vector ω ∈ S2, where S2 is the unit

2-sphere, what is the amount of light energy flowing along ω from x

per unit time?

The quantity in question is the outgoing radiance, which we denote by Lo(x, ω). It

can be thought of as a function that maps the tuple (x, ω) ∈ R3 × S2 to a scalar.

The tuple (x, ω) defines a ray, which is the set of points extending from x along ω;

i.e. {x + sω : s ∈ [0,∞)}. As a result, the outgoing radiance can be thought of as

a function of rays. The point x is called the ray’s origin, and ω is called the ray’s

direction. By convention, ω always points away from x. Moreover, we will use the

word “direction” interchangeably with the term “unit vector.”

The related quantity incoming radiance, denoted by Li(x, ω), is defined to be

the light energy that flows to x in direction −ω. The reversal of direction in here

is due to our desire to associate the radiance with the ray (x, ω) instead of a ray

with direction −ω whose origin is unspecified. It allows us to simply denote generic

radiance associated with ray (x, ω) by L(x, ω).

Radiance is light power per unit area per unit solid angle, and so its unit is

watt per meter square per steradian ( W
m2 sr). It can be shown that, under geometric

optics, radiance is conserved along a ray. In other words, L(x, ω) = L(x′, ω) if x′

lies on the ray (x, ω), and there is no light interaction at any point along the line

segment from x to x′.

Another function of interest is the irradiance I. It maps a point x, located on

a surface, to the power of incoming light energy from all directions to x. As it

is power per unit area, its unit is watt per meter squared ( W
m2 ). It is related to
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radiance by the following Lambert’s cosine law:

dI(x, ωi) = Li(x, ωi) cos θi dωi

where dI(x, ω) denotes the infinitesimal irradiance due to the incoming radiance

along ωi, and θi denotes the angle ωi makes with the normal

vector nx of the surface at point x. Intuitively, the cosine factor

arises to correct for the fact that the radiance Li(x, ωi) is defined

with respect to the infinitesimal area that is perpendicular to the

direction ω instead of the area on which x is located, which is

perpendicular to nx.

Light Sources

To start light transport simulation, some scene elements must generate light energy.

We assume two types of light sources:

1. Area light source. For any point x on a surface in the scene and any

direction ω, we let Le(x, ω) denote the radiance emitted by the surface from

x in direction ω. If the surface does not emit light along the ray (x, ω), then

Le(x, ω) = 0.

2. Environment light source. From any point x in the scene and for any

direction ω, if the ray (x, ω) is not occluded by any scene geometry, then the

point receives incoming radiance of Lenv(ω).

The above do not include light sources with delta distributions such as point lights

and directional lights. However, because they can be approximated by small area

light sources or environment light sources with small support, our assumptions do

not introduce significant limitations.
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2.2 Light Transport Equations

Light transport simulation is formulated in terms of finding a solution to an equa-

tion that governs how light interacts with matter. The equation used depends on

the presumed form of matter in the scene. When matter is abstracted with surface

elements, the rendering equation [36] is used. When matter is abstracted with a

volume of light scattering particles, the radiative transfer equation (RTE) [12] is

used. In this section, we discuss the two equations in order.

2.2.1 Rendering Equation

The rendering equation applies in scenes populated by objects with well-defined

surfaces. Space between and inside the objects are filled with vacuum or media

that do not interact with light; for example, clear gas or liquid. In such a scene,

light interaction only happens on object surfaces.

The rendering equation is given by:

Lo(x, ωo) = Le(x, ωo) +

∫
Ωx

fr(x, ωi, ωo)Li(x, ωi) cos θi dωi. (2.1)

According to the equation, the outgoing radiance L(x, ωo) from a surface point x in

direction ωo can be separated into two components: the emitted radiance Le(x, ωo)

and the reflected radiance, which we shall denote by Lr(x, ωo). The latter is given

by an integral that gathers incoming radiance from all directions that are “above”

the surface and convert it to outgoing radiance. More specifically, the integration

domain Ωx is the hemisphere oriented along nx; in other words, Ωx = {ω ∈

S2 : ω · nx ≥ 0}. The function fr, called the bidirectional reflectance distribution

function (BRDF), encapsulates the light reflecting behavior of the material at x.
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Mathematically, fr(x, ωi, ωo) gives the infinitesimal outgoing radiance in direction

ωo produced by reflecting the infinitesimal irradiance coming from direction ωi:

fr(x, ωi, ωo) =
dLr(x, ωo)

dI(x, ωi)
=

dLr(x, ωo)

Li(x, ωi) cos θi dωi

.

Intuitively, the integrand is the result of reflecting radiance from direction ωi, and

the integral gathers the result from all relevant directions.

In the way that the equation is stated in (2.1), there is an implicit assumption

that the material is opaque, so there can be no light coming from below the sur-

face. This assumption breaks down when we deal with refractive materials such as

glass. In this case, we may generalize the BRDF to the bidirectional scattering dis-

tribution function (BSDF), which takes into account light coming from both sides.

The rendering equation remains the same except for the fact that the cos θi term

becomes | cos θi| to take into account the larger range of θi. However, to simplify

subsequent discussions, we will not make this generalization in this dissertation.

The first step towards solving the rendering equation is to reduce the number

of unknowns. Currently, two are present: Lo and Li. We can write Li in terms of

Lo with the help of the ray tracing function R(x, ω), which returns the first surface

point y that the ray (x, ω) intersects as we extend it from x or returns a special

symbol ∅ if the ray does not intersect any surface:

Li(x, ωi) =


Lo(y,−ωi), R(x, ωi) = y

Lenv(ωi), R(x, ωi) = ∅
. (2.2)

In other words, if the ray hits a surface, the incoming radiance is the outgoing light

from the hit point; otherwise, the radiance comes from environment illumination.

We will discuss how (2.2) is used to solve the rendering equation in Section 2.3.2.
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2.2.2 Radiative Transfer Equation

While the rendering equation governs light transport in scenes where light scat-

tering happens only on surfaces of scene objects, the radiative transfer equation

governs light transport in media inhabited by light-scattering particles. It can be

used to render translucent solids (soap, skin, jade), colored liquids (milk, orange

juice, wine), and gaseous phenomena (fog, smoke, clouds) [11, 23].

The RTE specifies the rate of change of radiance along a ray as an observer

moves along it. We consider the ray (x0, ωo) and parameterize it with the function

x(s) = x∗ + sωo, where s denotes the distance from the origin x∗. At a high level,

the RTE is given by:

dLo(x, ωo)

ds = −(absorption)− (out-scattering) + (in-scattering) + (emission).

(2.3)

It says that radiance change is due to 4 types of light interactions with matter:

• Absorption. Light collides with matter and is converted to other forms of

energy, such as heat.

• Out-scattering. Light along ωo collides with matter and changes direction.

• In-scattering. Light along other directions collides with matter and changes

direction to ωo.

• Emission. Matter itself emits light into the environment.

The RTE thus calls for a volumetric model which characterizes the 4 interactions at

all points in space. Typically, the interactions are functions of mainly 3D positions.

However, when rendering hair and textile fibers, it is important that they also take
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the light’s direction into account, so we will follow the treatment by Jakob et al.

[32], which incorporates full directional dependency into the RTE. According to

their treatment, the functions are:

• The absorption coefficient σa(x, ωo) specifies the fraction of radiance along

ωo that is absorbed by matter per unit length. In other words:

(absorption) = σa(x, ωo)Lo(x, ωo).

• The scattering coefficient σs(x, ωo) specifies the fraction of radiance along ωo

that changes direction per unit length. In other words:

(out-scattering) = σs(x, ωo)Lo(x, ωo).

• The phase function fp(x, ωi, ωo) specifies the proportion of radiance from

ωi that scatters to direction ωo relative to radiance from all directions that

scatters to ωo, given that the point x is illuminated by a field constant ra-

diance from all directions. It is by definition a probability distribution over

ωi. Using the phase function, the in-scattering term is given by:

(in-scattering) = σs(x, ωo)

∫
S2
fp(x, ωi, ωo)Lo(x, ωi) dωi.

We note that the above formulation is counterintuitive. It is only valid when

σs and fp satisfy the following reciprocity relation:

σs(x, ωo)fp(x, ωi, ωo) = σs(x, ωi)fp(x, ωo, ωi).

We refer the reader to Jakob et al. [32] for details.

• The emission coefficient Q(x, ωo) specifies the rate of increase in radiance

along the ray due to the matter at x emitting light. In other words,

(emission) = Q(x, ωo).
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Expanding the terms in (2.3), the RTE is given by:

dL(x, ωo)

ds = −σa(x, ωo)L(x, ωo)− σs(x, ωo)L(x, ωo)

+ σs(x, ωo)

∫
S2
fp(x, ωi, ωo)Lo(x, ωi) dωi +Q(x, ωo).

We further make a number of simplifications. First, because our light source

models in Section 2.1 do not include volumetric light sources, we may set Q(x, ωo)

to zero and effectively drop that term from the RTE. Second, we define the ex-

tinction coefficient σt(x, ωo) := σa(x, ωo) + σs(x, ωo) to group similar terms in the

RTE together. Third, we assume that the ratio σs(x, ω)/σt(x, ω) does not depend

on ω, and define the scattering albedo function α(x) := σs(x, ω)/σt(x, ω). Intu-

itively, the extinction coefficient specifies the density of matter, and the scattering

albedo specifies its color. Requiring the scattering albedo to be invariant of di-

rection means requiring the material to have the same color when looked at from

all directions, which is sensible for most media. With the three simplifications, we

may rewrite the RTE as:

dLo(x, ωo)

ds = −σt(x, ωo)L(x, ωo) + α(x)σt(x, ωo)

∫
S2
fp(x, ωi, ωo)Lo(x, ωi) dωi.

The above is a first-order ordinary differential equation, which we can solve to

yield the following volume rendering equation:

Lo(x, ωo) =

∫ s

0

τ(x′,x)α(x′)σt(x′, ωo)

(∫
S2
fp(x′, ωi, ωo)Lo(x′, ωi) dωi

)
ds′

+ τ(x∗,x)Lo(x∗, ωo) (2.4)

where x′ = x∗ + s′ωo, and

τ(a,b) = exp
(
−
∫ ∥b−a∥

0

σt

(
a + u

b − a
∥b − a∥ ,

b − a
∥b − a∥

)
du

)
is the transmittance between a and b, which is the fraction of radiance from a that

survives absorption and out-scattering when it reaches b.
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2.3 Path Tracing

Path tracing is an algorithm for solving the two light transport equations that is

often regarded as the “reference” solution to rendering problems in the computer

graphics community. It works with the integral forms of the equations, namely

(2.1) and (2.4), and employs Monte Carlo integration to compute a stochastic

estimate of the integrals. As it estimates the integrals, it effectively traces paths a

photon may follow backward from the camera to a light source.

In this section, we will review the concept of Monte Carlo integration first and

then detail how path tracing is formulated to solve each of the two light transport

equations.

2.3.1 Monte Carlo Integration

Monte Carlo integration is a technique for probabilistically estimating the value of

a definite integral
∫
A
f(x) dx of some real function f over some domain A. The idea

is to construct a random variable F according to the following random process:

1. Sample a value x according to a probability distribution p.

2. Set F := f(x)/p(x).

A nice property of F is that it is an unbiased estimate of the integral:

E[F ] =

∫
A

p(x)
f(x)

p(x)
dx =

∫
A

f(x) dx.

However, F might be noisy; in other words, it might have high variance. The first

approach to reduce variance is to construct independent, identically distributed
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(i.i.d) random variables F1, F2, . . . , FN , each having the same distribution as F ,

and compute their mean: F̄N = (
∑N

i=1 Fi)/N. The mean F̄N will be much less noisy

than F because the variance drops by a factor of 1/N : Var(F̄N) = Var(F )/N .

Another approach to reduce variance is importance sampling: carefully picking the

distribution p so that it approximates f well. The two approaches are orthogonal

and so can be applied in tandem.

When solving light transport equations, we would like to compute the incoming

radiance Li(xo, ω0) where x0 is a point on the camera’s sensor. We typically imag-

ine a space P of all possible paths that a photon may follow from when it is emitted

from a light source until it reaches x0. More formally, a path x⃗ is a sequence of 3D

positions alternated with directions (x0, ω0,x1, ω1,x2, . . . ,xn−2, ωn−2,xn−1) where

• x0 is a point on the camera’s sensor,

• xn−1 is a point on a light source,

• all other points in between are locations where the photon interacts with

matter, and

• ωi denotes the direction from xi to xi+1.

(See Figure 2.1.) Each path has its associated contribution f(x⃗) which indicates the

amount of radiance the photon, traveling along the path, contributes to Li(x, ωi).

The incoming radiance is then given by:

Li(x, ωi) =

∫
P
f(x⃗) dx⃗. (2.5)

Path tracing describes an algorithm for constructing an unbiased estimator

L̃i for the above integral. As a result, we can obtain a low-variance estimate of

Li(x, ωi) by computing the mean of the results obtained by running it several
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Figure 2.1: A path with 6 vertices with its components marked.

times and averaging the results: Li(x0, ω0) ≈ (
∑N

j=1 L̃i,j)/N . A straightforward

application of Monte Carlo integration suggests that sampling a path x⃗ according

to some probability distribution p(x⃗) and computing f(x⃗)/p(x⃗) is an unbiased

estimate of Li(x0, ω0). However, the variant of path tracing used in this dissertation

samples multiple related-paths instead of a single one.

As it is very hard to describe path tracing without referring to the equation it

tries to solve, we will describe path tracing when applied to the rendering equation

in Section 2.3.2. The description will cover most concepts that path tracing em-

ploys, and we will adapt these concepts to solving the radiative transfer equation

in Section 2.3.3.

2.3.2 Surface Path Tracing

We now discuss how to derive an unbiased estimate of Li(x0, ω0) in surface-based

scenes. Recall that, in this context, the incoming radiance Li(x0, ω0) can be rewrit-

ten in terms of the outgoing radiance and radiance from the environment light

source as in (2.2). As a result, the first step in computing Li(x0, ω0) is to cast a

ray from x0 in direction ω0. If the ray does not hit any surface, we may return

Lenv(ω0) and be done. If it hits a surface point x1, we have to compute Lo(x1,−ω0),
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Surface-Path-Tracing(x0, ω0)

1 Cast a ray from x0 in direction ω0 and then determine the hit point x1.
2 if x1 = ∅
3 L̃dir

i = Lenv(ωo)
4 else
5 L̃dir

i = Le(x1,−ω0)

6 return L̃dir
i + Surface-Reflected-Radiance(x1,−ω0)

Figure 2.2: Pseudocode of the surface path tracing algorithm.

which, according to the rendering equation, is equal to:

Lo(x1,−ω0) = Le(x1,−ω0) +

∫
Ωx1

fr(x1, ω1,−ωo)Li(x1, ω1) cos θ1 dω1. (2.6)

Since computing the emission term is easy (it is included in the scene description),

the main task of path tracing is to compute the integral on the RHS.

Before we proceed with computing the integral, let us take stock and put what

we have described in a more algorithmic from. We shall encapsulate the surface

path tracing algorithm with a function called Surface-Path-Tracing that takes

a point x0 and ω0 as input and returns Li(x0, ω0). The core of the algorithm is

the estimation of reflected radiance, which we shall abstract with the function

Surface-Reflected-Radiance(xj,−ωj). This function takes a point xj on a

surface, and a direction −ωj−1 as input, and it should return Lr(xj,−ωj−1). (We

use the generic index j instead of 1 because this function will be called recursively.)

The pseudocode for Surface-Path-Tracing is given in Figure 2.2.

Reflected Radiance

Now, we proceed to estimate the reflected radiance. In this dissertation, we use

a variant of path tracing that employs next event estimation, a technique which
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significantly reduces variance when light sources are small. It splits the incoming

radiance into two components: Li(xj, ωj) = Ldir
i (xj, ωj)+Lindir

i (xj, ωj). The direct

incoming radiance Ldir
i (xj, ωj) comes directly from a light source without being

scattered by matter; namely,

Ldir
i (xj, ωj) =


Lenv(ωj), R(xj, ωj) = ∅

Le(xj+1,−ωj), R(xj, ωj) = xj+1

.

The indirect incoming radiance Lindir
i (x, ωi) is incoming radiance that is scattered

at least once by matter. In other words,

Lindir
i (xj, ωj) =


0, R(xj, ωj) = ∅

Lr(xj+1,−ωj), R(xj, ωj) = xj+1

With the splitting of the incoming radiance, we may rewrite the reflected radiance

as follows:

Lr(xj,−ωj−1) =

∫
Ωxj

fr(xj, ωj,−ωj−1)(L
dir
i (xj, ωj) + Lindir

i (xj, ωj)) cos θj dωj

=

∫
Ωxj

fr(xj, ωj,−ωj−1)L
dir
i (xj, ωj) cos θj dωj (2.7)

+

∫
Ωxj

fr(xj, ωj,−ωj−1)L
indir
i (xj, ωj) cos θj dωj (2.8)

We approximate (2.7) by sampling a direction ω′
j towards a light source in the

scene according to some probability distribution p′j(ω
′
j). (We refer the reader to

Pharr et al.’s book [63] for how to sample directions to light sources.) With ω′
j, an

unbiased estimate of the integral is given by:∫
Ωxj

fr(xj, ωj,−ωj−1)L
dir
i (x, ωj) cos θj dωj

≈
fr(xj, ω

′
j,−ωj−1)L

dir
i (xj, ω

′
j) cos θ′j

p′j(ω
′
j)

.
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We note that the variance of the estimate can be reduced through multiple im-

portance sampling: instead of estimating (2.7) with a single directional sample,

multiple samples are taken according to different probability distributions, and

the estimates according to these samples are combined with the help of carefully

chosen weights [92]. However, we do not include the technique in our treatment

to keep it simple.

For the integral (2.8), we sample a direction ωj according to another prob-

ability distribution pj(ωj), which is typically chosen to be proportional to

fr(xj, ωj,−ωj−1) cos θj. A Monte Carlo estimate of the integral is given by:∫
Ωxj

fr(xj, ωj,−ωj−1)L
indir
i (xj, ωj) cos θj dωj

≈ fr(xj, ωj,−ωj−1)L
indir
i (xj, ωj) cos θj

pj(ωj)
.

To compute Lindir
i , we cast the ray (xj, ωj) and find its hit point xj+1. If

xj+1 = ∅, then Lindir
i (xj, ωj) is equal to zero. Otherwise, Lindir

i (xj, ωj) is

given by Lr(xj+1,−ωj), which we can approximate by recursively invoking

Surface-Reflected-Radiance(xj+1,−ωj); in other words,

Lindir
i (xj, ωj) ≈


0, R(xj, ωj) = ∅

Surface-Reflected-Radiance(xj+1,−ωj), R(xj, ωj) = xj+1

.

While the estimate of (2.7) may be computed with multiple samples, it is important

that the estimate of (2.8) be computed with only one sample. Otherwise, the

recursion tree’s size will grow exponentially with depth, making computing the

estimate too computationally expensive.
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Terminating the Recursion

The above recursion, however, leads to an infinite loop if the camera is located in-

side a closed surface. To make sure it terminates, we employ the Russian roulette

estimator. Given a random variable X, its Russian roulette estimator with termi-

nation probability 0 < pt < 1 is the random variable

Y =


0, with probability pt

X/(1− pt), with probability 1− pt

.

Because

E[Y ] = pt · 0 + (1− pt)E[X]/(1− pt) = E[X],

Y is an unbiased estimate of X. So, to make sure that the recursion terminates

with probability 1, we compute the Russian roulette estimate of (2.8) instead of

the canonical Monte Carlo estimate we discussed before. More specifically,∫
Ωxj

fr(xj, ωj,−ωj−1)L
indir
i (xj, ωj) cos θj dωj

≈


0, with probability pt

fr(xj ,ωj ,−ωj−1)L
indir
i (xj ,ωj) cos θj

(1−pt)pj(ωj)
, with probability 1− pt

.

Here, the probability that the recursion does not terminate after k recursive

calls is (1 − pt)
k, which tends to 0 as k tends to ∞. The pseudocode for

Surface-Reflected-Radiance with Russian roulette is given in Figure 2.3.

Sampled Paths

It is instructive to identify the paths sampled by the path tracing algorithm. Con-

sider the pseudocode in Figure 2.2. The variable L̃dir
i contains an estimate of the
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Surface-Reflected-Radiance(xj,−ωj−1)

◃ Reflected radiance due to direct incoming radiance
1 Sample direction ω′

j with probability p′j(ω
′
j).

2 Cast ray (xj, ω
′
j) and determine the hit point x′

j+1.
3 if x′

j+1 = ∅
4 L̃dir

i = Lenv(ω
′
j)

5 else
6 L̃dir

i = Le(x′
j+1, ω

′
j)

7 L̃dir
r = L̃dir

i fr(xj, ω
′
j,−ωj−1) cos θ′j/p′j(ω′

j)
◃ Reflected radiance due to indirect incoming radiance

8 Toss a coin that shows head with probability pt.
9 if the coin shows head
10 return L̃dir

r

11 else
12 Sample direction ωj with probability pj(ωj)
13 Cast ray (xj, ωj) and determine the hit point xj+1.
14 if xj+1 = ∅
15 L̃indir

i = 0
16 else
17 L̃indir

i = Surface-Reflected-Radiance(xj+1,−ωj)

18 return L̃dir
r + L̃indir

i fr(xj, ωj,−ωj−1) cos θj/((1− pt)pj(ωj))

Figure 2.3: Pseudocode of the algorithm to compute reflected radiance in
surface-based scenes.

contribution of paths of the form (x0, ω0,x1). However, there is only one such

path, and its contribution is given by Le(x1,−ω0). (Here, we abuse the notation

and let Le(x1,−ω0) = Lenv(ω0) if x1 = ∅.) On the other hand, in Figure 2.3,

the variable L̃dir
i contains an estimate of the contribution of paths of the form

(x0, ω0,x1, . . . ,xj, ω
′
j,x′

j+1). The sampled path’s contribution and probability are
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given by:

f(x0, ω0,x1, . . . ,xj, ω
′
j,x′

j+1) =

( j−1∏
k=1

fr(xk, ωk,−ωk−1) cos θk
)

fr(xj, ω
′
j,−ωj−1)(cos θ′j)Le(x′

j+1,−ω′
j)

p(x0, ω0,x1, . . . ,xj, ω
′
j,x′

j+1) = (1− pt)
j−1

( j−1∏
k=1

pk(ωk)

)
p′j(ω

′
j)

As a result of the above observations, we can say that path tracing de-

composes the space into subspaces of paths according to their lengths: P =

P1 ∪ P2 ∪ P3 ∪ · · · , where Pk denotes the set of all paths from the form

(x0, ω0,x1, ω1, . . . ,xk−1, ωk−1,xk) having exactly k + 1 vertices. Accordingly, the

radiance Li(x0, ω0) may be written as:

Li(x0, ω0) =

∫
P
f(x⃗) dx⃗

=

∫
P1

f(x⃗) dx⃗ +

∫
P2

f(x⃗) dx⃗ +

∫
P3

f(x⃗) dx⃗ + · · · .

In the call to Surface-Path-Tracing, the integral involving P1 is evaluated

exactly. Then, Surface-Reflected-Radiance is called recursively J +1 times

where J is the number of times the coins in Line 9 of Figure 2.3 shows up tail before

showing head. (In other words, J is a geometric random variable with parameter

pt.) The call to Surface-Reflected-Radiance(xj,−ωj) estimates the integral

involving Pj+1 with f(x0, . . . ,x′
j+1)/p(x0, . . . ,x′

j+1). Hence, the estimate that path

tracing computes is:

Li(x0, ω0) ≈ Le(x1,−ω0)

+
J+1∑
j=1

(∏j−1
k=1 fr(xk, ωk,−ωk−1) cos θk
(1− pt)j−1

∏j−1
k=1 pj(ωj)

fr(xj, ω
′
j,−ωj−1)(cos θ′j)
p′j(ω

′
j)

)
.
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Non-Recursive Path Tracing

With the knowledge of the forms, contributions, and probabilities of paths that

path tracing samples, we can rewrite the algorithm to be non-recursive. The

algorithm takes the form of a loop in which it first estimates the direct incoming

radiance (Line 1 to 7 of Figure 2.3) and then samples the direction ωj to extend

the path (Line 12 to 13 of Figure 2.3). The loop terminates when the Russian

roulette fires. Throughout its lifetime, we maintain the throughput variable:

Tj :=

∏j−1
k=1 fr(xk, ωk,−ωk−1) cos θk
(1− pt)j−1

∏j−1
k=1 pj(ωj)

,

which is used to scale the BRDF’s response of the incoming direct radiance before

adding it to the running estimate of Li(x, ω0). The pseudocode of the non-recursive

version is given in Figure 2.4.

2.3.3 Volume Path Tracing

We now turn our attention to how to apply path tracing to the radiative trans-

fer equation. To simplify the derivation, we assume that the scene contains only

volume-based models of matter (Section 2.2.2) and no surface-based ones (Sec-

tion 2.2.1). As a consequence, the only light source available is the environment

light source. We refer the reader to Raab et al. for how to perform path tracing in

a scene with both types of models [67].

Again, given a point x0 and direction ω0 pointing out of it, we would like to

find Li(x0, ω0), which is the same as Lo(x0,−ω0). Fortunately, we shall see that

this quantity can be computed recursively, and so let us abstract the volume path

tracing processing with the function Volume-Path-Tracing(xj,−ωj), which
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Non-Recursive-Surface-Path-Tracing(x0, ω0)

◃ Compute direct radiance to the camera
1 Cast ray from (x0, ω0) to determine the hit point x1.
2 if x1 = ∅
3 return Lenv(ωo)

4 L̃i = Le(x1,−ω0)
5 j = 1 and Tj = 1
6 while true

◃ Reflected radiance due to direct incoming radiance
7 Sample direction ω′

j with probability p′j(ω
′
j).

8 Cast ray (xj, ω
′
j) and determine the hit point x′

j+1.
9 if x′

j+1 = ∅
10 L̃dir

i = Lenv(ω
′
j)

11 else
12 L̃dir

i = Le(x′
j+1, ω

′
j)

13 L̃i = L̃i + TjL̃
dir
i fr(xj, ω

′
j,−ωj−1) cos θ′j/p′j(ω′

j)
◃ Russian roulette

14 Toss a coin that shows head with probability pt.
15 if the coin shows head
16 break

◃ Sample a new direction to extend the path
17 Sample direction ωj with probability pj(ωj)
18 Cast ray (xj, ωj) and determine the hit point xj+1.
19 if xj+1 = ∅
20 break
21 else
22 Tj+1 = Tjfr(xj, ωj,−ωj−1) cos θj/((1− pt)pj(ωj))
23 j = j + 1

24 return L̃i

Figure 2.4: Pseudocode of the non-recursive version of surface path tracing.
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outputs Lo(xj,−ωj).

We would like to apply the volume rendering equation (2.4) to compute

Lo(xj,−ωj). Before doing so, however, we must determine what the ray origin x∗

is. Since the scene does not have any surface that can occlude the environment light

source, the ray origin x∗ should be the point at infinity: x∗
j = lims→∞(xj+sωj). As

a result, we have that Lo(x∗
j ,−ωj) = Lenv(ωj). We also need to rewrite the outer

integral in (2.4) so that the variable of integration measures the distance from xj

instead of the one from x∗, which is not well-defined. Making the assumption that

σt(x, ω) = σt(x,−ω) for all x and ω, the volume rendering equation becomes:

Lo(xj,−ωj) = τ(xj,x∗
j)Lenv(ωj) +

∫ ∞

0

τ(xj,xj+1)σt(xj+1, ωj)α(xj+1)(∫
S2
fp(xj+1,−ωj+1,−ωj)Lo(xj+1,−ωj+1) dωj+1

)
dsj

where xj+1 = xj + sjωj.

We will use Monte Carlo integration to estimate both the outer and the inner

integral, and we will discuss the outer one first. To do so, let us abstract the

estimate of the inner integral with the random variable L̃s so that we may simplify

the volume rendering equation to:

Lo(xj,−ωj) = τ(xj,x∗
j)Lenv(ωj) +

∫ ∞

0

τ(xj,xj+1)σt(xj+1, ωj)α(xj+1)L̃s dsj

It turns out that the whole RHS, not just the integral, can be approximated

stochastically. We sample a value of sj with probability p(sj) while allowing for

the possibility of the event that sj = ∞, which can happen if the scene is finite,

and there is no matter outside its boundary. Then, the following is an unbiased

estimate of Lo(xj,−ωj):

Lo(xj,−ωj) ≈


τ(xj,x∗

j)Lenv(ωj)/Pr(sj = ∞), sj = ∞

τ(xj,xj+1)σt(xj+1, ωj)α(xj+1)L̃s/p(sj), sj ̸= ∞
. (2.9)
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Woodcock-Tracking(xj, ωj)

1 if the ray (xj, ωj) does not intersect the scene’s boundary.
2 return ∞.
3 else
4 Let σmax be at least sup{σt(xj + sωj, ωj) : 0 ≤ s < ∞}.
5 Let ξ0 and ξ1 be two independent, uniform random numbers from [0, 1).
6 sj = − ln(1− ξ0)/σmax

7 if ξ1 < σt(xj + sjωj, ωj)/σmax
8 return sj
9 else
10 return sj + Woodcock-Tracking(xj + sjωj, ωj)

Figure 2.5: Pseudocode of Woodcock tracking.

A simple and popular technique for sampling sj is Woodcock tracking [99], which

was first introduced in the neutron transport community as a means to sample

the distance a neutron travels in a medium before it is absorbed or scattered.

Its pseudocode is given in Figure 2.5. Its only requirement is that we must be

able to find an upper bound on the extinction coefficient along a ray, which is

straightforward if the scene is finite and the matter density in the scene is also

finite. Woodcock tracking yields p(sj) = τ(xj,xj+1)σ(xj, ωj) for all finite values of

sj, and Pr(sj = ∞) = τ(xj,x∗
j). So, employing it greatly simplifies (2.9) to:

Lo(xj,−ωj) ≈


Lenv(ωj), sj = ∞

α(xj+1)L̃s, sj ̸= ∞
.

Having estimated the outer integral, we now turn to the estimate L̃s of the

inner integral. We note that the quantity Lo(xj+1,−ωj+1) may be estimated by

recursively calling Volume-Path-Tracing(xj+1,−ωj+1). Like the surface path

tracing case, we compute the Russian roulette estimate of the inner integral instead

of employing only the standard Monte Carlo integration in order to make sure that
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Volume-Path-Tracing(xj,−ωj)

1 sj = Woodcock-Tracking(xj, ωj)
2 if sj = ∞
3 return Lenv(ωj)
4 xj+1 = xj + sjωj

5 Toss a coin that shows head with probability pt
6 if the coin shows head
7 return 0
8 Sample ωj+1 with probability p(ωj+1).
9 return α(xj+1)fp(xj+1,−ωj+1,−ωj)

(1−pt)p(ωj+1)
× Volume-Path-Tracing(xj+1,−ωj+1)

Figure 2.6: Pseudocode of volume path tracing.

the recursion terminates. More specifically, L̃s is given by:

L̃s ≈


0, with probability pt

fp(xj ,−ωj+1,−ωj)Volume-Path-Tracing(xj+1,−ωj+1)

(1−pt)p(ωj+1)
, with probability 1− pt

where the direction ωj+1 is sampled with probability p(ωj+1), which is often made

to be equal to fp(xj,−ωj+1,−ωj).

The pseudocode of volume path tracing is given in Figure 2.6. Like what we

have done with surface path tracing, we can rewrite it so that it becomes non-

recursive, and the pseudocode of the non-recursive version is given in Figure 2.7.

2.4 Modeling Light Scattering from Fiber Surfaces

In Section 2.2, we have seen that matter can be modeled either by surfaces,

which are inherently two-dimensional, or by volumes, which are inherently three-

dimensional. We shall see later that both representations can model the geometry

of hair and textile fibers well. Nevertheless, when modeling fibers with surfaces,
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Non-Recursive-Volume-Path-Tracing(x0, ω0)

1 L̃i = 0
2 j = 0 and Tj = 0
3 while true
4 sj = Woodcock-Tracking(xj, ωj)
5 if sj = ∞
6 L̃i = L̃i + TjLenv(ωj)
7 break
8 xj+1 = xj + sjωj

9 Toss a coin that shows head with probability pt
10 if the coin shows head
11 break
12 Sample ωj+1 with probability p(ωj+1).
13 Tj+1 = Tj

α(xj+1)fp(xj+1,−ωj+1,−ωj)

(1−pt)p(ωj+1)

14 j = j + 1

15 return L̃i

Figure 2.7: Pseudocode of the non-recursive version of volume path tracing.

we seldom use the BRDF or the BSDF to model their light scattering behavior. In-

stead, we opt for the bidirectional curve scattering distribution function (BCSDF),

which was first proposed by Marschner et al. [49] and then named and generalized

by Zinke and Weber [115]. The benefit of the BCSDF is that it greatly simpli-

fies light transport simulation because it collapses all interactions occurring inside

the fiber—i.e. from light striking the surface to eventually leaving the surface at

another point—into a single scattering event.

In this section, we review the definition and theory of the BCSDF. Our treat-

ment is similar to that of Zinke [113] but simpler. We now start by defining

concepts necessary to define the model.

32



Figure 2.8: Fiber coordinate system as described in Marschner et al. [49].

Angles

We follow the notation of Marschner et al. [49]. All calculations are done in a

coordinate system with right-handed orthonormal basis vectors u, v, and w, and

the axis of symmetry of the hair fiber runs along the u axis. The direction −u

points towards the root, and u towards the tip. A 3D direction vector ω can be

described by two spherical angles: the longitudinal angle θ ∈ [−π/2, π/2] and the

azimuthal angle ϕ ∈ [0, 2π]:

ω =


sin θ

cos θ cosϕ

cos θ sinϕ

 .

(See Figure 2.8.) We let ωi and ωo denote the incoming and outgoing direction,

respectively. The spherical angles of the two directions are denoted by θi, ϕi, θo,

and ϕo.
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ϕϕ

D(ϕ)

s = D(ϕ)/2

s = −D(ϕ)/2

s = 0

D(ϕ)/2D(ϕ)/2

D(ϕ)/2s

Figure 2.9: Projected diameter D(ϕ) and displacement parameter s of a
fiber’s cross section.

Projected diameter

For the purpose of modeling light scattering, we assume that the fiber is a general-

ized cylinder whose cross section (which might not be circular) is constant along its

length.1 The projected diameter along azimuthal angle ϕ is the width of the fiber

when the observer views the fiber from azimuthal direction ϕ. More precisely, it is

the furthest distance between two lines in the normal plane that are tangent to the

cross section and make angle ϕ with the v-axis. (See Figure 2.9.) We denote the

projected diameter by the symbol D(ϕ). For example, for a circular cross section

of radius 1, D(ϕi) = 2 for all ϕi. For an elliptic cross section with minor radius 1

and major radius a, D(0◦) = D(180◦) = 2 and D(90◦) = D(270◦) = 2a.
1The actual geometry might be different, and we will discuss how to handle the discrepancy

later.
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Ray spaces

Define the fiber ray space (FRS) as the set of all rays exiting the surface of the

fiber (that is, the dot product of the ray’s direction with the surface normal at

that point is non-negative). Each ray in the FRS can be parameterized by four

values: the longitudinal angle, θ, the azimuthal angle, ϕ, the displacement along

the fiber’s axis, t, and the displacement along the projected diameter, s, which

ranges from −D(ϕ)/2 to D(ϕ)/2. We will indicate functions defined on the FRS

by a superscript F .

A related space of rays, useful when we wish to ignore the width of the fiber,

is the set of rays originating from a specific point along the fiber’s axis. We call

this space the conventional ray space (CRS). A ray in CRS is parameterized by

one direction ω = (θ, ϕ) and the displacement along the fiber’s axis, t. We will

indicate functions defined on the CRS by a superscript C.

Radiometry

Radiance incident to or exitant from the fiber’s surface is a function of the rays in

FRS. Hence, we may write it as LF (θ, ϕ, s, t) or LF (ω, s, t).

Marschner et al. defined two new radiometric quantities: the curve radiance L

and the curve irradiance E. The curve radiance is power per unit solid angle per

unit projected length of the fiber. The curve radiance is a function of ω and t, so

we may write L(ω, t). It is related to the radiance in FRS by:

L(ω, t) =

∫ D(ϕ)/2

−D(ϕ)/2

LF (ω, s, t) ds.

The curve irradiance is incoming power per unit length of the fiber, which is a
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function of t and thus denoted E(t). It is equal to the integral of the incoming

curve radiance scaled by the cosine of the longitudinal angle:

E(t) =

∫
S2
L(ω, t) cos θ dω =

∫
S2

∫ D(ϕ)/2

−D(ϕ)/2

LF (ω, s, t) cos θ dsdω.

The cosine factor is present as a consequence of Lambert’s cosine law. Note that the

quantity L(ω, t) cos θ dω can be interpreted as the infinitesimal irradiance created

by rays whose directions are within dω of ω.

Curve radiance can be related to ordinary radiance by the following thin fiber

assumption:

LF (ω, s, t) = L(ω, 0, t) = L(ω, t)

for all s. That is, we assume the fiber is so thin that the radiance distribution is

constant across its width. This means all rays have the same radiance as the ray in

the same direction that passes through the fiber axis, so L(ω, t), as well as L(ω, t)

is a function of rays in the CRS. The assumption implies that:

L(ω, t) = D(ϕ)L(ω, t).

In all the discussion that follows, we will make this assumption. For brevity, we will

drop the t parameter from all the radiometric functions, leaving the dependence

on t implicit.

2.4.1 Bidirectional Curve Scattering Distribution Function

Assume that the fiber is struck by incoming curve radiance Li(ωi) = D(ϕi)Li(ωi)

from a differential solid angle dωi around the direction ωi, which produces differ-

ential curve irradiance Li(ωi) cos θi dωi. The fiber scatters this incoming irradiance

into a distribution of differential curve radiance over the outgoing directions, and
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let us denote its value at direction ωo by dLo(ωi → ωo). The outgoing curve radi-

ance along a specific direction ωo, as a result of the whole incoming curve radiance

distribution, is given by:

Lo(ωo) =

∫
ωi∈S2

dLo(ωi → ωo)

The bidirectional curve scattering distribution function (BCSDF), denoted by

S(ωi, ωr) or S(θi, ϕi, θr, ϕr), is the ratio of the outgoing differential curve radi-

ance in direction ωo to the incoming differential curve irradiance from direction

ωi:

S(ωi, ωo) =
dLo(ωi → ωo)

Li(ωi) cos θi dωi

This function and the thin fiber assumption imply the following relationship be-

tween radiance scattered from hair and the incoming radiance:

Lo(ωo) =
Lo(ωo)

D(ϕo)
=

1

D(ϕo)

∫
ωi∈S2

dLo(ωi → ωo)

=
1

D(ϕo)

∫
S2
S(ωi, ωo)Li(ωi) cos θi dωi

=
1

D(ϕo)

∫
S2
S(ωi, ωo)D(ϕi)Li(ωi) cos θi dωi, (2.10)

or, equivalently,

Lo(ωo) =

∫ π/2

−π/2

∫ 2π

0

S(ωi, ωo)
D(ϕi)

D(ϕo)
Li(ωi) cos2 θi dϕidθi. (2.11)

because dωi = cos θi dϕidθi.

A BCSDF is said to be energy conserving if∫
S2
S(ωi, ωo) cos θo dωo ≤ 1

for all ωi. The inequality above implies that the outgoing curve irradiance produced

by the BCSDF does not exceed the curve irradiance coming in.
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Multimodal, Factored BCSDFs

Hair and textile fibers are often made up of dielectric material. This means that

light can reflect externally off the surface or transmit into the fiber. Once inside,

it may reflect off the surface many times before finally transmit out. Marschner

et al. classify all possible sequences of interactions into modes:

1. the R mode means reflecting out at first contact,

2. the TT mode means transmitting into the cross section and then transmitting

out when light hits the surface the second time,

3. the TRT mode means transmitting, reflecting internally, and then transmit-

ting out.

4. The TRRT mode means transmitting, reflecting internally twice, and then

transmitting out,

and so on. (See Figure 2.10.) For brevity, we denote each mode by a non-negative

integer p, where p = 0 denotes the R mode, p = 1 denotes the TT mode, p = 2

denotes the TRT mode, and so on.

To abstract away all the modes into a single interaction, the BCSDF is decom-

posed into a number of per-mode scattering functions:

S(ωi, ωo) =
∞∑
p=0

Sp(ωi, ωo).

Each per-mode scattering function is factored into a product between the longitu-

dinal scattering function (LSF) Mp and the azimuthal scattering function (ASF)

Np:

Sp(ωi, ωo) = Mp(θi, θo)Np(θd, ϕi, ϕo) (2.12)
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This image originally appeared in Marschner et al.’s paper [49]. We modified it to show
only the light interactions and not other extraneous details.

Figure 2.10: The first three light scattering modes out of a model human
hair fiber.

where, depending on the scattering model, θd can be equal to the incoming angle,

θi, or the half angle, |θi − θo|/2. The Marschner model [49] and the d’Eon model

[17] use the half angle, but the model that we will present later uses the incoming

angle.

We say that the whole collection of ASFs is energy conserving if, for all θd and

ϕi, ∫ 2π

0

∞∑
p=0

Np(θd, ϕi, ϕo) dϕo ≤ 1.

That is, the incoming energy from a single direction should be split among

the modes, and no extra energy should be introduced. We say that an ASF

Np(θd, ϕi, ϕo) is reciprocal if

Np(θd, ϕi, ϕo)

D(ϕo)
=

Np(θd, ϕo, ϕi)

D(ϕi)
(2.13)

for all θd, ϕi, and ϕo. We choose this definition because it simplifies the outgoing
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radiance integral in (2.11):∫ π/2

−π/2

∫ 2π

0

∞∑
p=0

Mp(θi, θo)Np(θd, ϕi, ϕo)
D(ϕi)

D(ϕo)
Li(ωi) cos2 θi dϕidθi

=

∫ π/2

−π/2

∫ 2π

0

∞∑
p=0

Mp(θi, θo)Np(θd, ϕo, ϕi)Li(ωi) cos2 θi dϕidθi.

We say that an LSF is energy conserving if∫ π/2

−π/2

Mp(θi, θo) cos2 θo dθo ≤ 1 (2.14)

for all θi. This implies that the LSF by itself does not introduce any extra energy.

For example, if the ASF is diffuse and energy preserving (that is, if there is only

one mode, and Np(θd, ϕi, ϕo) = 1/(2π) for all values of θd, ϕi, and ϕo), then the

per-mode BCSDF is energy conserving. Moreover, provided that θd is equal to θi

instead of the half angle, we can prove that the BCSDF is energy conserving if

both the ASFs and the LSFs are energy conserving.

Lemma 2.1. If both the LSFs and the ASFs are energy conserving, so is the

BCSDF.

Proof.∫
S2
S(ωi, ωo) cos θo dωo =

∫ π/2

−π/2

∫ 2π

0

∞∑
p=0

Mp(θi, θo)Np(θi, ϕi, ϕo) cos2 θo dϕodθo

=

∫ 2π

0

∞∑
p=0

(∫ π/2

−π/2

Mp(θi, θo) cos2 θo dθo
)
Np(θi, ϕi, ϕo) dϕo

≤
∫ 2π

0

∞∑
p=0

Np(θi, ϕi, ϕo) dϕo ≤ 1.

as required.

The full scattering models we shall construct in later chapters satisfy all the

definitions above and therefore are provably energy conserving. The model pro-

posed by Marschner et al. [49], however, is not, and d’Eon et al. later devised a

new model to address this shortcoming [17].
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2.4.2 Simulating Light Transport with BCSDF

The end goal of formulating the BCSDF is to use it in light transport simulation.

However, the light transport equations and the simulation processes discussed so

far were not formulated to directly use it. In this section, we discuss how to modify

components of the simulation processes to incorporate the BCSDF.

Simulating with the BCSDF in Surface-Based Scenes

Recall that light scattering behavior in surface-based scenes is modeled by the

BRDF. While the BCSDF is a bidirectional function like the BRDF, it is not a

drop-in replacement.

The first problem is that their semantics are different. The BCSDF treats

matter as a one-dimensional entity: a curve with no surface area. On the other

hand, the BRDF treats matter as a two-dimensional entity with a well-defined

surface area. To reconcile the difference, we conceptually think of the fiber surface

as a generalized cylinder obtained by sweeping a fixed cross section along a center

curve. In this way, we may think of the surface as if it were made of a continuum

of one-dimensional curves, each of which is obtained by tracking a specific point

on cross section as it moves along the center curve. (Figure 2.11a) Moreover, this

interpretation allows us to simply substitute the BCSDF in place of the BRDF in

the rendering equation.

The second problem is that, in a path tracer, when estimating scattered light

according to (2.11), the sampled incoming direction ωi might point below the fiber

surface. (Figure 2.11b) As a result, if we extend the ray (x, ωi), it would hit the

inside of the fiber surface, and so the incoming radiance along the direction is

41



—–
(a) (b)

(a) When using the BCSDF with a surface-based model of fibers, we think of the surface
as being made of a continuum of curves. (b) When estimating scattered light, we always
skip the first hit along the ray if it hits the fiber from the inside. This allows us to
simulate subsurface scattering behavior that the BCSDF intends to model.

Figure 2.11: How we integrate the BCSDF with a surface-based model of
fiber.

always occluded. To allow for the subsurface scattering behavior that the BCSDF

intends to model, we always skip the first hit along the ray if it hits the inside of

the fiber.

Simulating with the BCSDF in Volume-Based Scenes

In order to simulate light transport in volumetric scenes, we must specify the

extinction coefficient σt, the albedo α, and the phase function fp. Because the

albedo and the phase function govern light scattering behavior (as opposed to

light absorbing behavior), we must convert the BCSDF to them. We can turn the

BCSDF S(ωi, ωo) to a phase function by normalizing it so that it is a probability

distribution with respect to ωi:

fp(ωi, ωo) :=
S(ωi, ωo) cos θi∫

S2 S(ωi, ωo) cos θi dωi

. (2.15)
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However, because we normalize the BCSDF, we lost information related to the

fiber’s color. As a result, we must encode such information in the albedo. A good

albedo should make its product with the phase function as close as possible to the

BCSDF. Hence, we may choose the albedo by solving the optimization problem

below:

α := argmin
α′

∫
S2

∫
S2
(α′fp(ωi, ωo)− S(ωi, ωo) cos θi)2 dωidωo (2.16)

It is important to note that Equations (2.15) and 2.16 are used when a fixed

BCSDF is given, and we would like to convert it to volume rendering parameters.

In Chapter 5, we discuss a related problem of fitting volume rendering parameters

based on an unknown BCSDF to photographs of real fabrics. In that setting, we

optimize for the BCSDF parameters and convert it to a phase function with (2.15).

However, instead of using (2.16), we think of the albedo as a separate parameter

to be fitted independently from the BCSDF.
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CHAPTER 3

PREVIOUS WORK

君の前前前世から僕は

君を探しはじめたよ

そのぶきっちょな

笑い方をめがけて

やってきたんだよ

RADWIMPS, 前前前世

The previous chapter discusses how to simulate light transport given models

of matter without discussing their specifics. This chapter surveys the models that

researchers have used to represent hair and fabrics. We discuss those for hair in

Section 3.1 and those for fabrics in Section 3.2.

Throughout the discussion, the reader will notice several recurring themes.

The first theme is that, for each of the two materials, we will discuss models for its

geometry and models for its light scattering behavior. This is because, as discussed

in Chapter 1, an appearance model has to specify both.

The second theme is that, similar to the classification in Chapter 2, appear-

ance models can be classified as surface-based ones or volume-based ones. Often,

a surface-based light scattering model can only be used with a surface-based geo-

metric model, and the same is true for volume-based models.

The third theme is that, when discussing geometry of hair and fabrics, we

distinguish between two scales. Microgeometry is the shapes of individual fibers,

which can generally be thought of as long and thin rods in 3D space. Macroge-

ometry is the overall shape of the fiber assembly. In hair, it is the hairstyle. In
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fabrics, it is the shape of the fabric piece. While macrogeometry alone is enough

for geometric modeling, microgeometry adds fine and subtle details such as fuzz

and flyaway fibers.

3.1 Hair Models

3.1.1 Hair Geometry Models

Computer graphics practitioners (e.g. media creators) often model hair with sur-

faces that represent its macrogeometry. On the other hand, computer graphics

researchers pursue a greater level of realism and so almost always model hair ex-

plicitly at the fiber level.

A strand of hair can be thought of as a filled cylinder along a curve in 3D space.

A surface-based model represents such a fiber as a collection of discrete surfaces

that approximates its outer shell. Such a model generally has to make two choices:

how to represent the curve, and how to represent the surface that surrounds it.

A popular choice for representing the fiber curve is a polyline, which is a se-

quence of 3D line segments connecting consecutive items in a sequence of 3D

points. In many real-time rendering systems [106, 116, 70, 101, 100], it is used as

the sole representation of microgeometry because it can be readily translated to

GPU-friendly primitives such as lines and camera-facing quads. A fiber curve can

also be modeled as a non-straight curve such as a B-spline [61, 10].

A representation for fiber surface is needed when rendering with a ray tracer.

If the fiber curve is a smooth, the surface can be modeled as a generalized cylinder:
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(a) (b) (c) (d)

(a) A fiber can be thought of as a curved cylinder. (b) The center curve of the fiber is
approximated with a polyline. (c) Then, we cover the polyline’s segments with straight
cylinders of equal radii. Consecutive cylinders meet at miter joints. (d) We do not put
circular caps at the ends of the fiber, so one can see its inside from the ends. We do
so because it makes it easy to integrate this geometric representation with the BCSDF.
(See Section 2.4.2.)

Figure 3.1: The surface-based geometric representation of fibers used in this
dissertation.

the shape obtained by sweeping a 2D shape, typically a circle, along the curve.

Nevertheless, ray intersection becomes a much more complicated problem [8], and

we have not seen any work that renders hair or textile fibers in this way. Instead, we

may tessellate generalized cylinders into polygonal meshes [53]. The most popular

alternative is to represent the fiber curve with a polyline and cover its segments

with simple 3D surfaces. Watanabe and Suenaga uses trigonal prisms [97]. On

the other hand, following Moon et al. [51, 52], we use cylinders having the same

radii and require that consecutive cylinders meet at miter joints in all of our works.

However, we do not put circular caps at fiber ends like they do. While the surface

is not smooth at every point, it does not lead to noticeable artifacts unless the

fibers are viewed at the zoom level of a microscope, which is outside the scopes of

our works.

Because a human head contains above 100,000 hair strands, it is impractical

to generate the fibers manually. Hair curves can be generated procedurally by dis-

tributing hair roots on the scalp and growing the curves according to a hairstyle
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specification, the approaches to which are surveyed in Ward et al.’s article [95].

When hair geometry is obtained through physical simulation, a small number of

guide hairs are generated at the beginning and are used in simulation. They are

then interpolated to generate other strands which form most of the hair volume at

render time [13]. A level-of-detail representation that generates curves to fill larger

hair structures on the fly has also been proposed [96]. In contrast to the afore-

mentioned procedural approaches, Jakob et al. capture individual strands in real

hair samples through the use of multiple photographs taken with shallow depths

of field [33]. Data obtained from thermal imaging [27], photographs taken from

single view point under different lighting conditions [58], multi-view photographs

[98], and a light stage [59] have been used to guide hair curve generation.

Fiber microgeometry can also be modeled with volumetric data; in other words,

a 3D array of density values. However, the representation is not as popular as the

surface-based one. Kajiya and Kay [35] pioneered the approach in the context of

fur rendering. Following Chang et al. [13], Pretrovic et al. represents hair during

simulation with a few guide hairs, but use them to generate volumetric geometry

at render time [61].

3.1.2 Hair Scattering Models

In addition to a volumetric model for hair geometry, Kajiya and Kay also presented

the first analytical light scattering model for hair fibers: a phase function based on

the Phong surface shading model [35]. By explicitly modeling fibers as cylinders,

it captures the linear highlights characteristic of hair and fur, but since the model

assumes hair fibers are opaque, it cannot model effects arising from refraction.

Extensions to incorporate forward scattering into the Kajiya–Kay model have been
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proposed [24, 41].

When hair geometry is modeled by surfaces, light scattering behavior is often

modeled by a BCSDF. Marschner et al. presented one based on treating a hair fiber

as a transparent dielectric cylinder [49]. As discussed in the previous chapter, their

model decomposes the scattering behavior of fibers into scattering modes according

to the number of reflections and refractions that a light ray undergoes as it interacts

with the hair fiber. They factored the scattering function for each mode into a

product of a longitudinal term and an azimuthal term. The former enabled them

to model the longitudinal shifts of highlights, and the latter the glints due to the

fiber’s cross section.

Marschner et al.’s model has been widely used and has generated much subse-

quent research. Zinke and Weber generalized the BCSDF to the bidirectional fiber

scattering distribution function (BFSDF) to make it capable of capturing near-field

appearance [115]. Zinke et al. added a diffuse component to the Marschner model

and provided a procedure for acquiring model parameters from a single photograph

of a hair sample [114]. Sadeghi et al. refined the model to be more intuitive for

artists [73]. Xu et al. gave a fast approximation to the model for interactive ren-

dering and appearance editing [101]. Some research has also gone toward analytic

importance sampling for variants of this model [28, 56].

The Marschner model, however, has two important shortcomings. First, as

mentioned in the last chapter, it is not energy conserving. Second, it deals with

the caustics in one scattering mode in an ad hoc way, which introduces extra

non-physical parameters to the model. d’Eon et al. addressed both problems by

introducing a new longitudinal component designed to conserve energy and an

azimuthal component based on numerical integration [17].
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Researchers have also worked on BCSDFs for animal fur. Yan et al. model a

fur strand as a circular cylinder having two layers with different absorbing mate-

rials, reflecting more accurately animal fur’s anatomy [104]. While all other works

assume circular cross sections, Ogaki et al. presented a model for fur having arbi-

trary user-specified cross-sectional shapes that can even vary along the length of

the fiber. To deal with such geometry, they trace photons through the fiber and

tabulate the resulting density estimates [55].

3.2 Fabric Models

3.2.1 Fabric Geometry Models

In computer graphics research, three approaches have been proposed to represent

fabric geometry. The first approach is to model only macrogeometry by abstracting

the fabric to a two-dimensional surface, which is in turn represented by a mesh

or curved surface [74, 1, 29]. Surfaces can be quite successful in distant views,

but close-up views, especially at edges and silhouettes, look incorrect because the

three-dimensional structure of yarns and fibers is missing.

The second approach is to use volumetric data to model individual fibers. Xu

et al. used the approach to represent yarns in knitwear [103]. Schröder et al. gener-

ate textile fibers procedurally and convert the fibers to a volumetric representation

[75]. Zhao et al. obtained theirs volumetric data from computed microtomography

(micro CT) scans of real cloth samples and were able to reproduce detailed and

irregular appearance of cloth at an unprecedented level [109].
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The third approach is to model fabric as a collection of fibers, each represented

with surfaces covering a center curve. These curves in woven fabrics can be gener-

ated from procedural models that describe their arrangements in a yarn. Two such

models have been used in the computer graphics community: Sriprateep and Bo-

hetz’s [84] and Schröder et al.’s [76]. They have been incorporated in level-of-detail

representions of fabric by Zhang et al. [107] and Wu and Yuksel [100], respectively.

The curves can also be generated from measured data, and we will describe an

algorithm to obtain them from micro CT scans of cloth samples in Chapter 5.

Zhao et al. use the fiber curves generated by our algorithm to fit Schröder et al.’s

model to real yarns [111].

3.2.2 Fabric Scattering Models

To model light scattering based on a macrogeometry-only model, a popular option

is to employ bidirectional texture functions (BTFs) [74]. This approach captures

view-dependent appearance by exhaustive sampling, but often suffers from under-

sampling and shows limited quality at edges and silhouettes and under grazing

illumination.

The second approach, also coupled with the macrogeometry-only approach to

geometry representation, is to use a surface-based BRDF model coupled with tex-

tures. Adabala et al. [1] generated textures from weave pattern data and modeled

scattering behavior with a microfacet BRDF. Irawan and Marschner [29] proposed

a procedural texture model based on weave patterns and a reflectance model based

on the analysis of specular reflection from spun fibers. Sadhegi et al. [72] con-

structed cloth BRDFs from weave patterns and a yarn scattering model. Real-time

cloth rendering systems such as those of Zhang et al.’s and Wu’s and Yuksel’s [100]
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Scattering Geometry model
model Fabric mesh Volume Fiber mesh
BTF Sattler [74]

BRDF
Adabala [1]
Irawan [29]
Sadeghi [72]

Zhang [107]
Wu [100]

Volumetric Zhao [109]

Fiber-based Schröder [75]
Chapter 5

Schröder [75]*
Schröder [76]
Chapter 5

*Schröder et al. used fiber geometry coupled with fiber-based appearance models to
produce ground truth for comparison with their volumetric geometry representation.

Table 3.1: Approaches to fabric appearance modeling.

use simple BRDFs in their implementations.

The third approach is to specify volumetric appearance as dictated by the

radiative transfer equation. Zhao et al. [109] modeled appearance of cloth with an

anisotropic microflake phase function, the foundation of which was laid by Jakob

et al. [32].

The last approach employs the fiber-based scattering functions such as the

BCSDF or the BFSDF. Schröder et al. [75] used the Zinke and Weber’s BFSDF

[115] with fiber-based geometry and a derived volume-based approximation. How-

ever, because the shift to volume rendering caused changes in appearance, they

had to include special corrections in their volumetric rendering algorithm.

Table 3.2.2 summarizes the range of approaches to fabric modeling and situates

our work (Chapter 5) in this space.
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CHAPTER 4

MODELING APPEARANCE OF ELLIPTICAL HAIR FIBERS

เพียงเจอ ไอ้หนุ่มผมยาว

น้องสาวก็ลืมพี่หมดสิ้น

รักเรา เจ้าไม่ถวิล

ไปหลงลมลิ้นเจ้าศิลปินตัวดี

มันเจ็บใจ เจ็บใจเหมือนไม่พอ

เจ้าชมมันรูปหล่อเสียงดี

มันบาดใจ บาดใจเหลือที่

เจอะอย่างนี้หุ่นอย่างพี่ต้องขอลา

โฮ โฮ้โห่โฮ้โอโอโอ่ โฮ้โห่โอ๊ะโอโอโอ่

เจ้าศิลปินผมยาว

ดนู ฮันตระกูล, ไอ้หนุ่มผมยาว

In the last chapter, we see that most previous scattering models for hair fibers

are based on the assumption that hair cross sections are circles. However, human

hair fibers generally have elliptical cross sections. In this chapter, we present a new

light scattering model for elliptical fibers and a study of the effects of elliptical cross

sections to hair appearance. They constitute a step forward in achieving realism

in hair rendering.

This work originally appeared in the paper “Azimuthal Scattering from Ellip-

tical Hair Fibers,” which appeared in ACM Transactions on Graphics in 2017 [38].

It is joint with Steve Marschner.
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4.1 Introduction

The appearance of hair arises from the interaction of light with the geometry of

fibers. The overall cylindrical shape of fibers causes the characteristic linear high-

lights on a head of hair, and the scaly surface of the cuticle covering the hair sep-

arates them into distinct colored highlights. The fibers’ particular cross-sectional

shape controls how scattered light depends on both the locations of the viewer

and light source and the orientation of the fiber, determining whether highlights

appear smooth or glittery. Scattering models that are used to render hair account

for all three phenomena, but research has mainly focused on the first two. This

chapter is about how to improve our models for the effects of cross section on the

distribution of scattered light.

It’s well documented that hair cross sections are generally non-circular, and

often roughly elliptical [71]. However, prior scattering models for hair are all based

on an analysis of light rays interacting with circular cylinders, including the model

of Marschner et al. [49] that includes an approximate correction for eccentricity.

Creating efficient scattering models that properly account for elliptical cross-

sections is a difficult undertaking, and we seek to answer two questions:

• Is cross section important? Are the changes in appearance caused by non-

circular cross-sections significant enough to warrant the effort?

• Are ellipses a correct model? Does an elliptical cross-section predict what

happens in real hair fibers?

To answer the question of importance, we have extended previous hair models

to account for elliptical cross-sections. By contrast to Marschner et al.’s previous
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model, our model accurately describes the geometric optics of elliptical cylinders.

It predicts dramatic changes in scattering behavior, particularly for transmitted

and internally reflected light, as we move from circular to elliptical fibers. These

changes are significant even for mild eccentricity, and the behavior is very different

from the eccentricity correction proposed by Marschner et al.

These predictions of our elliptical theory need to be substantiated: after all,

hairs are not exactly elliptical, and many details of their structure and of the

physics of light are omitted by the model. The elliptical model might predict

features that do not occur because of imperfections in real fibers, or its inherent

assumptions might cause it to miss visually important phenomena.

The experiments of Bustard and Smith [9] and later Marschner et al. provide

promising support for an elliptical model, but their measurements were limited,

being based on small numbers of data points gathered on just a few fibers. No one

has examined the complete scattering function in enough detail to see whether we

have modeled the whole behavior.

Therefore, to answer the question of correctness, we have made new measure-

ments of a range of different types of hair fibers, using a new device designed

to give a very complete picture of fiber scattering functions. Our goal is to cap-

ture the complete function with enough resolution to observe all the important

features, but accuracy in absolute magnitudes is a secondary concern. With this

goal in mind, the measurement system is built around image-based measurements,

capturing tens of thousands of data points with each exposure.

The conclusions of our study are clear, answering both questions in the affir-

mative and introducing a new phenomenon:
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(a) (b)
Here, we show two photographs of Caucasian hair taken from two different angles under
the same lighting, (a) with the sun behind the camera and (b) with the sun roughly 90
degrees to the camera’s left. Bright glints can be observed in (b) but not in (a).

Figure 4.1: Orientation dependent glints in human hair.

• The structured internal-reflection glints predicted by the elliptical model dra-

matically contradict previous models. They also are clearly observable in

real hair, as long as it is light enough in color for internal reflection to be

significant.

• There is a forward-scattering feature present in all hair scattering func-

tions, previously unremarked upon in graphics papers: an ideal-specular lobe,

which we call the E mode, that becomes particularly bright at grazing angles.

For rendering, the key implication of non-circular fibers is that scattering de-

pends jointly on the azimuthal positions of the light and viewer, not only on the

azimuthal difference as in the circular case. The azimuthal component of a scatter-

ing model must be a function of two variables, not one, and the brightness of fibers

depends on their orientation, even when the light and viewer remain fixed. This

leads to a strong glinty appearance in hair under conditions when this orientation

dependence is strong (Figure 4.1).

It should be emphasized that we do not propose a production-ready, practical
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algorithm to efficiently compute scattering from elliptical fibers in a shader. The

renderings in this chapter are made using tabulated scattering functions, which

limits the ability to model continuous variation in fiber properties. Our study has

established what should be modeled to provide a truly high-fidelity hair scattering

model. Models that are more efficient and include the E mode should be developed

in the future.

In the remainder of this chapter, we extend previous models to accurately

account for cross-section (Sections 4.3 and 4.4); examine the predictions of the

theory (Section 4.5); describe our measurement device and its results (Sections 4.6

and 4.7); and examine the agreement between theory and measurements (Sections

4.8 and 4.9).

4.2 Previous Work

Researchers in the optics community have characterized some aspects of elliptical

fibers’ light scattering behavior. Marcuse determined the range of azimuthal angles

of backward scattered light [47]. Adler et al. studied the Fourier transform of

the angle of backward scattered caustics as a function of incoming angle [2]. In

comparison, our work is more comprehensive because we characterize both forward

and backward scattering lobes.

We are only aware of three other works in the graphics community that measure

light scattered from fiber-like structures. The first is Marschner et al. [49], and

the second is Sadeghi et al. [72], and the third is Yan et al. [104]. All three works

used a gonioreflectometer for the task, and so only 1D or coarse 2D slices of the

4D scattering function were feasible to acquire. Our device, on the other hand,
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can acquire the whole hemisphere of scattered light in one exposure, thus yielding

more comprehensive data at greater efficiency than the previous method. However,

the measurements are less accurate due to factors we shall describe in Section 4.6.

As such, it is more suitable for observing qualitative behavior of the scattering

function than for directly acquiring the function itself.

4.3 Background

We model light scattering behavior of hair fibers with the bidirectional curve scat-

tering distribution function (BCSDF), which we discussed in detail in Section 2.4.

We have also discussed previous BCSDFs for hair in Section 3.1.2. In this section,

we shall review common parameters to these models and how to visualize them.

4.3.1 Common Model Parameters

Previous hair scattering models [49, 17] and the model we will present share the

following parameters:

• The index of refraction of the material η.

• The absorption coefficient of the material σ.

• For each mode p, the longitudinal shift αp.

• For each mode p, the width of the longitudinal lobe βp.

• The aspect ratio of the cross section a. If the cross section is an ellipse, the

aspect ratio is the ratio of the length of the major axis to the length of the

minor axis. Hence, the circle has a = 1.
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Note that the Marschner model only covers scattering modes up to p = 2. It

also contains extra parameters such as the glint scale factor kG and the azimuthal

caustic width wc in order to support its ad hoc modeling of the TRT mode. The

d’Eon model requires that βp is the same for all p and calls the single β parameter

the “surface roughness” of the hair fiber. The d’Eon model also only models

circular hair fibers, so a is always 1.

4.3.2 Visualization

We introduce two types of visualization for parts of the scattering models and

measured data.

The first, the (ϕi, ϕo)-plot, shows Np(θd, ϕi, ϕo) for a fixed θd as a scalar field

over the (ϕi, ϕo)-plane. Each point’s color indicates the intensity of light scattered

to ϕo when it arrives from ϕi. The (ϕi, ϕo)-plot allows us to see the complete

picture of how the ASF evolves with ϕi, and it exposes the inherent symmetry due

to reciprocity. It also provides a convenient way of observing how the ASF evolves

with changing θi. Examples of (ϕi, ϕo)-plots are given in Figure 4.2.

The second, the (θo, ϕd)-plot, shows a slice of the whole scattering function

S(ωi, ωo) for a fixed incoming direction ωi. The slice is shown as a color map

over the (θo, ϕd)-plane where ϕd = ϕo − ϕi. Note that, by using the difference

angle ϕd instead of the outgoing angle ϕo, the direction of retroreflection is fixed at

ϕd = 0◦ and the direction of forward scattering is fixed at ϕd = 180◦. In this way,

the (θo, ϕd)-plot does not shift vertically as ϕi changes, making it easier to notice

changes in the scattering function as ϕi changes. Also, as we will see in the next

section, it represents the data that is captured by one snapshot of our measurement

58



Marschner

d’Eon

R TT TRT
360◦

180◦

0◦

360◦

180◦

0◦

0◦ 180◦ 360◦0◦ 180◦ 360◦0◦ 180◦ 360◦

ϕi

ϕo

min max
The (ϕi, ϕo)-plots were generated with the following parameters: η = 1.55, σ = 0, β0 =
β1 = β2 = 5◦, and a = 1 (circle). For the Marschner model, we set kG = 1, wc =
10◦,∆η′ = 0.2, and ∆hM = 0.5. For all plots, θd = 0. The colors between different
modes of the same models are in the same scale, but the plots are not in the same scale
between the models.
Notice that the plots are shift invariant, meaning that each vertical slice of the plot is
a shifted version of other slices. This property arises from the rotational symmetry of
the circular cross section. All observable features in shift invariant plots are slanted bars
along the southwest–northeast direction. One can also see that the d’Eon model is very
similar to the Marschner model for the circular fiber.

Figure 4.2: The (ϕi, ϕo)-plots of the first three modes of the Marschner and
d’Eon scattering models.

system. As examples, (θo, ϕd)-plots of the Marschner and d’Eon models are given

in Figure 4.3.

Inspection of the (ϕi, ϕo)-plots in Figure 4.2 provides us with heuristics on how

to recognize the first three scattering modes in the (θo, ϕd)-plots:

• The R mode has a large support in the (ϕi, ϕo)-plots, covering all but a small

area around the lines ϕo = ϕi ± 180◦. Hence, in (θo, ϕd)-plots, it should

appear as two vertical strips covering the whole range of ϕd except a small
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The (θo, ϕd)-plots were generated with the following longitudinal shifts: α0 = −10◦, α1 =
5◦, and α2 = 15◦. The other model parameters are the same as those in Figure 4.2. For
both plots, θi = 0◦ and ϕi = 0◦. The plots are not to scale with each other.
The R mode manifests as two vertical strips, the TT mode as the brightest lobe at the
vertical center of the plot, and the TRT mode as blobs near the top and bottom ends.

Figure 4.3: The (θo, ϕd)-plots of the Marschner and d’Eon scattering models.

portion around ϕd = 180◦.

• The TT mode has narrower support around ϕo = ϕi±180◦ and is the bright-

est among the three modes. Hence, it should appear as the brightest lobe,

centered vertically around ϕd = 180◦.

• The TRT mode has the narrowest support around the line ϕo = ϕi. Hence,

it should appear as blobs located vertically near ϕd = 0◦ and ϕd = 360◦.

According to Marschner et al. [49], the modes are also separated in θ due to

the tilting of the hair scales. Note that, at the beginning of Section 2.4, we said

that the direction −u points towards the root and u points towards the tip. This

means that the left side of the (θo, ϕd)-plot (−90◦) should correspond to scattering

toward the root, and the right side (90◦) should correspond to scattering towards

the tip. Marschner et al. observe that the R mode is shifted towards the root (i.e.
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to the left), but other modes are shifted towards the tip (i.e. to the right). As

such, the R mode should appear to the left of the ideal specular line (θo = −θi)

while other modes appear to the right as can be seen in Figure 4.3.

4.4 Modeling

Having reviewed the previous models and established our notations, in this section

we construct a scattering model for hair fiber with elliptical cross sections. Our

model is a factored model like that of Marschner et al.:

S(ωi, ωo) =
∞∑
p=0

Mp(θi, θo)Np(θi, ϕi, ϕo) (4.1)

However, we make the ASF depend on θi rather than the half angle |θi − θo|/2 for

the reason we discussed in Section 2.4.1.

4.4.1 Longitudinal Scattering Function

The LSF for Mode p is defined by two parameters: the width of the lobe βp and

the longitudinal shift αp. In the original model of Marschner et al., the LSF

was simply a Gaussian distribution in θ. As observed by d’Eon et al. [17] and

other researchers, this LSF is not normalized on the sphere, and loses energy away

from normal incidence. Although d’Eon et al. proposed an elegant and improved

alternative, we have noticed some problems which we discuss in Appendix A.1.

In this paper, we use a simpler LSF that is a normalized version of the original

Gaussian:

Mp(θi, θo) =
g(θo;µ(θi), βp)

G(µ(θi), βp)
.
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where g(x;µ, σ) = exp(−(x − µ)2/2σ2)/(
√
2πσ) is the Gaussian distribution, and

the normalization factor G is calculated to ensure normalization over the sphere.

In order to achieve a lobe shifted by αp without the lobe becoming excessively

concentrated near grazing, we center the Gaussian at

µ(θi) = clamp(−θi + αp, [−π/2, π/2]).

The normalization factor G is defined to ensure cosine-weighted normalization over

the sphere:

G(µ, σ) =

∫ π/2

−π/2

g(θ;µ, σ)Q(θ) dθ ≈
∫ π/2

−π/2

g(θ;µ, σ) cos2(θ) dθ

where Q is a polynomial that approximates cos2 θ from above1:

Q(θ) = 0.002439θ8 − 0.04301θ6 + 0.3322θ4 − 0.999745θ2 + 1.0001 ≥ cos2 θ.

It can be easily shown that this normalization factor implies the LSF is energy con-

serving in the sense of (2.14). The indefinite integral of the product of a Gaussian

and a polynomial has a closed form, so the integral can be evaluated analytically

as follows.

Lemma 4.1. Let P (x) = p0 + p1x + · · · + pkx
k. The indefinite integral of

P (x)g(x;µ, σ) is given by

A

2
erf

(
x− µ√

2σ

)
− σ2B(x)g(x;µ, σ) + C (4.2)

where B(x) = b0 + b1x+ · · ·+ bk−1x
k−1,

bj =


pk, j = k − 1,

pk−1 + µbk−1, j = k − 2,

pj+1 + µbj+1 + (j + 2)σ2bj+2, 0 ≤ j < k − 2,

1Alternatively, one can also define G more directly in terms of the antiderivative of
g(θ;µ, σ) cos2 θ. However, we found that its closed form involves the imaginary error function, a
special function which is not a part of many libraries. We approximated cos2 θ with a polynomial
because the antiderivative depends only the real error function, whose implementation is more
readily available.
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and A = p0 + µb0 + σ2b1.

Proof. The formula can be verified by simply taking the derivative.

We note that Zinke [113] also defines an LSF that is a scaled Gaussian lobe. The

difference between his function and ours is that his normalization factor G(µ, σ)

does not contain the polynomial Q in the integrand and so is much larger than

ours, implying that his function loses more energy.

4.4.2 Azimuthal Scattering Function

We derive the ASF by tracing rays through the elliptical cross section. Due to

Bravais’s Law [87, 49], the paths of reflected and refracted rays in a cylinder of

any cross section behave the same as rays in 2D interacting with the cross section,

though with a different refractive index that depends on θi. In this 2D world, the

fiber ray space is parameterized by an angle ϕ and a displacement s, which still

ranges from −D(ϕ)/2 to D(ϕ)/2. So, radiance is now written as L(ϕ, s). The

curve radiance, now parameterized only by ϕ, is defined in a similar way as that

of the 3D version:

L(ϕ) =

∫ D(ϕ)/2

−D(ϕ)/2

L(ϕ, s) ds. (4.3)

Characterizing a Cross Section

We assume that each interaction of light with the surface results in perfect spec-

ular reflection or refraction; we will account for surface roughness later. For our

purpose, a cross section is characterized by:
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• the projected diameter D(ϕ), defined in Section 2.4;

• for each mode p, the exit direction ϕe
p(ϕ, s);

• for each mode p, the exit displacement se
p(ϕ, s); and

• for each mode p, the attenuation Ap(ϕ, s);

where ϕe
p and se

p describe the direction and displacement of a ray entering at (ϕ, s)

after it has undergone p+ 1 interactions with the cross section’s surface. Ap(ϕ, s)

is the attenuation of the radiance along the ray as it interacts with the surface and

the material inside the fiber. Reversibility of paths implies that, if ϕo = ϕe
p(ϕi, si)

and so = se
p(ϕi, si), then

ϕi = ϕe
p(ϕo, so), si = se

p(ϕo, so), and Ap(ϕi, si) = Ap(ϕo, so)

The relationship between exiting and incident radiance in mode p is then

Lo,p(ϕ, s) = Ap(ϕ, s)Li,p(ϕ
e
p(ϕ, s), s

e
p(ϕ, s)). (4.4)

Here, Li,p and Lo,p are the incoming and outgoing radiance, respectively, restricted

to mode p. (Unless otherwise stated, the subscript p denotes restriction to mode

p from now on.)

Defining the ASF

Having defined the relationship between Li,p and Lo,p, we want to derive a suitable

relationship between Li,p and Lo,p, which is the ASF. Substituting (4.4) into (4.3)

and assuming Li,p(ϕ, s) ≡ Li,p(ϕ)/D(ϕ) gives

Lo,p(ϕo) =

∫ D(ϕo)/2

−D(ϕo)/2

Ap(ϕo, so)
Li,p(ϕ

e
p(ϕo, so))

D(ϕe
p(ϕo, so))

dso.
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To define a BCSDF requires a change of variables from so to ϕi. As observed

in prior work, this approach has the problem that the change-of-variables factor

|dso/dϕi| is not always finite. In the model of Marschner et al., this was worked

around by explicitly removing the singularities, but for non-circular cross sections

it is not simple to compute where the singularities occur. On the other hand,

surface roughness prevents these singularities from appearing in practice, so we

follow the approach pioneered by Zinke and Weber [115] and d’Eon et al. [17] and

apply a blur to account for roughness before changing variable.

We will make use of an angular kernel function Kγp(ϕ) defined with the per-

mode width parameter γp on the interval [0, 2π). The angular kernel function

obeys the normalization
∫ 2π

0
Kγp(ϕ) dϕ = 1. To maintain symmetry, we convolve

Li,p(ϕi) and Lo,p(ϕo) each with Kγp :

Lo,p(ϕo) =

[
Kγp ∗

∫ D(·)/2

−D(·)/2
Ap(·, so)

[
Kγp ∗ Li,p

D

]
(ϕe

p(·, so)) dso

]
(ϕo)

This equation can be expanded and written as an integral over ϕi:

Lo,p(ϕo) =

∫ 2π

0

Kγp(ϕo − ϕ′
o)

[ ∫ D(ϕ′
o)/2

−D(ϕ′
o)/2

Ap(ϕ
′
o, so)(∫ 2π

0

Kγp(ϕe
p(ϕ

′
o, so)− ϕi)

Li,p(ϕi)

D(ϕi)
dϕi

)
dso

]
dϕ′

o

=

∫ 2π

0

Li,p(ϕi)

D(ϕi)

[ ∫ 2π

0

Kγp(ϕo − ϕ′
o)(∫ D(ϕ′

o)/2

−D(ϕ′
o)/2

Kγp(ϕe
p(ϕ

′
o, so)− ϕi)Ap(ϕ

′
o, so) dso

)
dϕ′

o

]
dϕi

=

∫ 2π

0

Rp(ϕi, ϕo)

D(ϕi)
Li,p(ϕi) dϕi

where

Rp(ϕi, ϕo) =

∫ 2π

0

Kγp(ϕo − ϕ′
o)

(∫ D(ϕ′
o)/2

−D(ϕ′
o)/2

Kγp(ϕe
p(ϕ

′
o, so)− ϕi)Ap(ϕ

′
o, so) dso

)
dϕ′

o,
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and we call this function the blurred response function. In Appendix A.2, we show

that it is reciprocal: Rp(ϕi, ϕo) = Rp(ϕo, ϕi). So the integral on the right hand side

can be written in terms of ϕ′
i and si instead of ϕ′

o and so.

With the blurred response function, we could define the ASF as

Rp(ϕi, ϕo)/D(ϕi), which obeys reciprocity in the sense of (2.13). However, in this

exact form it is difficult to ensure energy conservation, so we define the ASF for

the cross section in a slightly different form:

Np(ϕi, ϕo) =
Rp(ϕi, ϕo)

Dγp(ϕi)
, (4.5)

where the blurred diameter function Dγp(ϕ) is the convolution of the projected

diameter function with the angular kernel:

Dγp(ϕ) =

∫ 2π

0

D(ϕ′)Kγp(ϕ− ϕ′) dϕ′.

The ASF defined above is energy conserving, but it is not reciprocal in the sense

of Equation (2.13). However, it is close to being reciprocal because it satisfies a

similar equation:
Np(ϕi, ϕo)

Dγp(ϕo)
=

Np(ϕo, ϕi)

Dγp(ϕi)
.

That is, instead of the relevant values being equal relative to diameter, they are

equal relative to blurred diameter. We call this property approximate reciprocity.

A proof of energy conservation and approximate reciprocity is available in Ap-

pendix A.2. The property might be exploited in the design of sampling algorithms

of ASFs. However, we did not use it in our implementation.

Discussion

Our ASF is a generalization of d’Eon’s ASF to non-circular cross section. One

difference between their ASF and ours is that their ASF only blurs over the out-
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going direction ϕo, but ours blurs over both the incoming and outgoing directions.

d’Eon’s ASF is reciprocal because it is defined only for circular cross section: it is

a function of ϕi−ϕo, so blurring over either ϕ produces the same result. However,

with a non-circular cross section, blurring over ϕi is different from blurring over

ϕo, so blurring over just one angle would result in significant non-reciprocity.

Note also that, in this section, we only have defined the ASF Np(θi, ϕi, ϕo) in

terms of the functions D(ϕ), ϕe
p(ϕ, s), se

p(ϕ, s), and Ap(ϕ, s), which depend on the

incoming azimuthal angle θi as well as on the specific shape of the cross section.

4.4.3 Complete Description of the Model

The model is defined by the following parameters:

• The aspect ratio of the elliptical cross section.

• The index of refraction η.

• The absorption coefficient σ of the material inside the fiber.

• For each mode p, the longitudinal shift αp.

• For each mode p, the longitudinal lobe’s width βp.

• For each mode p, the angular kernel’ width used in azimuthal scattering γp.

The projected diameter function D(ϕ) is defined by the shape of the cross

section and is unchanged with respect to θi. The three other functions that char-

acterize the cross section depend on Bravais’s effective index of refraction:

η′ =

√
η2 − sin2 θi/ cos θi.
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In particular, ϕe
p(ϕ, s) and se

p(ϕ, s) are defined by tracing the ray (ϕ, s) through

the cross section, substituting η′ for η, and allowing the ray to intersect the cross

section p+ 1 times before going out. For the attenuation,

Ap(ϕ, s) = exp(−σℓp(ϕ, s)/ cos θi)Fp(ϕ, s)

where ℓp(ϕ, s) is the length of the portion of the path that lies inside the cross

section, and Fp(ϕ, s) is the product of the Fresnel factors associated with all the

intersections with the cross section’s surface. If the ray does not emerge from the

cross section due to total internal reflection, we say that Ap(ϕ, s) = 0.

4.4.4 Implementation

We have implemented the full scattering model as a part of a path tracer written

in Java.

Rendering

As previously discussed in Section 3.1.1, we model each hair fiber with a collection

of circular cylinders. Because the actual projected diameter of fibers is a constant,

the outgoing radiance integral (2.11) reduces to:∫ π/2

−π/2

∫ 2π

0

S(ωi, ωo)Li(ωi) cos2 θi dϕidθi

We note that, while the actual cross sections are circular, the BCSDF S above

can be that of an elliptical cross section. The discrepancy between the actual

cross section and the BCSDF’s cross section does not cause an accuracy problem:

when viewed from a distance, the circular fibers will look as bright as elliptical
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fibers. To see why this assertion is true, recall that (1) the BCSDF outputs curve

radiance, which is the total outgoing energy across the projected diameter, and

(2) outgoing radiance is curve radiance per unit projected diameter. Hence, the

outgoing radiance is the curve radiance of an elliptical fiber divided by the projected

diameter of a circular fiber. Thus, if we accumulate radiance across the circular

fiber’s projected diameter (which happens when the viewer is far away from the

fiber), we get the elliptical fiber’s curve radiance, i.e., its total brightness.

Nevertheless, renderings made with circular cylinders can still be different from

those made with elliptical cylinders because different geometry results in different

paths that light propagate through the scene. (For example, elliptical fibers can

cast wider shadows.) Still, we chose to use circular cylinders because it is hard to

join two elliptical cylinders in a way that results in one continuous surface.

Cross Sections

We always use an ellipse whose area is π and whose major axis is the v-axis.

In other words, the equation of the ellipse in the vw-plane is v2/a + aw2 = 1.

We tabulate the projected diameter function D(ϕ) and then evaluate it by linear

interpolation.

Unlike with circular cross sections, closed-form formulae for ϕe
p, se

p, and Ap are

unwieldy for elliptical cross sections, so we compute these functions using a simple

2D ray tracing procedure.
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Computing the ASF

We only evaluate the first four ASFs (that is, up to p = 3). For each mode,

we tabulate the ASF Np(θi, ϕi, ϕo). Because the ASF is an even function in θi

regardless of the cross sectional shape, we only consider θi ranging from 0 to π/2.

On the other hand, we did not consider the symmetry of the cross section and let

the azimuthal angles ϕi and ϕo assume their full range of values: [0, 2π). Our grid

resolution is 128 × 256 × 256. Each entry of the table contains a single-precision

floating point number for each of the three color channels. The total space of the

tables is about 400MB.

To precompute the ASFs, we evaluate Np(θi, ϕi, ϕo) in slices of fixed θi, slice

by slice, by kernel density estimation. For a fixed value of θi, we randomly

generate N = 1, 000, 000 incoming rays (ϕi,1, si,1), . . . , (ϕi,N , si,N) where ray

(ϕi,j, si,j) has power 2πD(ϕi,j)/N . For each ray, we compute ϕo,j = ϕe
p(ϕi,j, si,j),

so,j = se
p(ϕi,j, si,j), and Aj = Ap(ϕi,j, si,j). Then, Np(θi, ϕi, ϕo) is approximated as:

Np(θi, ϕi, ϕo) ≈
2π

NDγp(ϕi)

N∑
j=1

AjD(ϕi,j)K
γp(ϕi − ϕi,j)K

γp(ϕo − ϕo,j)

We use the 1D Gaussian g(ϕ; 0, γp) as our kernel function Kγp (thereby making

Kγp(ϕi − ϕi,j)K
γp(ϕo − ϕo,j) a 2D Gaussian). When evaluating the above sum,

we exclude points that are of 2D Euclidean distance at least 3γp from (ϕi, ϕo).

Because we also take into account that the angles ϕi and ϕo wrap around, our

kernel function approximates the Gaussian detector function introduced in [17].
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Sampling

Efficient evaluation of the outgoing radiance in a path tracer requires importance

sampling of (θi.ϕi) given (θo, ϕo). To do so, we drop the incoming radiance term

and rewrite the integral as:
3∑

p=0

∫ π/2

−π/2

Mp(θi, θo) cos2 θi
(∫ 2π

0

Np(θi, ϕi, ϕo) dϕi

)
dθi.

The rewritten integral suggests we divide the sampling of θi into three steps: (1)

sample the mode p; (2) given p, sample θi; and then, (3) given p and θi, sample ϕi.

To carry out the first two steps, for each mode p, we precompute a 3D table Tp

indexed by θo, ϕo, and θi with

Tp[θo, ϕo, θi] = Mp(θi, θo) cos2 θi
(∫ 2π

0

Np(θi, ϕi, ϕo) dϕi

)
.

In our implementation, Tp has dimension of 128× 128× 256. With the table, the

power of each mode can be computed by summing the Tp[θo, ϕo, ·] entries. We can

then use the power of the modes to sample a mode. After sampling the mode, we

can use the entries in the Tp[θo, ϕo, ·] row to sample a θi. After sampling p and θi,

we can use the table for the ASF to sample ϕi. We use binary search to locate the

sampled table cell. Efficiency, however, may be improved by more sophisticated

probability distribution function inversion techniques [14].

Our implementation entails two space requirements. First, to sample the ASF

efficiently, a table of partial sums of Np(θi, ϕi, ϕo) as a function of ϕi is required,

which incurs 133MB of space in addition to the storage required for Np itself;

thus, the storage pertaining to Np is 533MB. Second, we must build Tp, which is

approximately 67MB in size.
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All the plots were calculated with η = 1.55, and σ = 0. Plots in the same columns
are to scale with one another, but not across the columns. The darkest color (black)
corresponds to the minimum value of plots in the same column, and the brightest color
(white) corresponds to the maximum value.
According to the model, elliptical fibers give rise to many features not present in circular
fibers such as the bright bars in the R mode ( ), the extra lobes in the TT mode ( ),
the eyes in the TRT mode ( ), and the winged blobs in the TRRT mode.

Figure 4.4: (ϕi, ϕo)-plots of the first four modes of the ASF at θi = 0◦ for an
elliptical fiber with a = 1.0 and a = 1.5.

4.5 Prediction

In this section, we compute the ASFs of elliptical fibers and report the predictions

of our model for the first four scattering modes: R, TT, TRT, and TRRT. We only

consider fibers with a ≤ 1.6 and σ = 0. While this is only a small subset of the

possible range of parameters, it is sufficient to illustrate the differences between

elliptical ASFs and circular ones and to show the qualitative trends that the ASF

follows as a and θi change.

We provide two types of visualizations of the ASF. The first type (Figure 4.4

and Figure 4.6) is the (ϕi, ϕo)-plots discussed at the end of Section 4.3. The second

type (Figure 4.5) is a polar plot of the ASF with ϕo as the free variable. Displaying
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The plots are generated from the equation r = Np(0
◦, ϕi, ϕo) with ϕo being the free

variable. They are rotated so that the light is coming from the right. All ASF values
were calculated with η = 1.55, θi = 0◦, σ = 0, and γp = 5◦. Plots in the same row are to
scale with one another, but not across the rows. Due to the symmetry of ellipses, plots
of the ASF with ϕi being a multiple of 15◦ from 90◦ to 360◦ can be deduced from the
plots we show here. In general, one can observe that higher aspect ratios are associated
with brighter lobes in all modes.

Figure 4.5: Polar plots of the ASF of elliptic cross sections with six different
aspect ratios.

the ASFs of different shapes on the same plot makes it easy to compare them. The

polar plots in Figure 4.5 correspond to vertical slices through these images. The

(ϕi, ϕo)-plots allow us to see the complete picture of how the ASF evolves with

ϕi, and they expose the inherent symmetry due to reciprocity. It also provides a

convenient way of observing how the ASF evolves with changing θi.

In Figure 4.4, the four modes of a circular fiber and an elliptical fiber are plotted

separately to show the pronounced effect of ellipticity and the distinct features of

each mode. In Figure 4.6, we plot the sums of the four modes for a number of

combinations of cross sectional shapes and longitudinal angles to show how the

modes evolve with these parameters.
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a = 1.0

a = 1.2

a = 1.4

a = 1.6

θi = 0◦ θi = 15◦ θi = 30◦ θi = 45◦ θi = 60◦ θi = 75◦ θi = 89◦

0 max
All functions were calculated with η = 1.55, σ = 0, and γp = 0◦. All the plots are to
scale with one another. The darkest color (black) corresponds to the value 0, and the
brightest color corresponds to the highest value in all the plots, which is roughly 1.8.
While the R mode gets brighter as θi approaches 90◦, all other modes becomes dimmer
and eventually disappear at grazing angles.

Figure 4.6: (ϕi, ϕo)-plots of the sum of the R, TT, TRT, TRRT modes of
the ASFs of elliptical fibers with four aspect ratios under seven
values of θi.

We now make observations of the modes, one by one.

R mode. From the first row of Figure 4.5, we see that the R mode of elliptical

fibers (colored curves) is quite similar to circular ones (black curves). All the plots

contain two forward lobes. More eccentric ellipses scatter more forward and less

backward than less eccentric ones when ϕi = 0◦, and the reverse holds at ϕi = 90◦.

The (ϕi, ϕo) plot in Figure 4.4 shows that the R mode of an elliptical fiber con-

tains two bands of brighter reflection ( ). More specifically, this brighter reflection

occurs when when ϕi + ϕo ≈ 180◦, which is to say, the half vector is normal to the

flat side of the ellipse.
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However, as can be seen from Figure 4.5, the R mode remains quite dim even

for elliptic fibers, so its visual significance is low when the other components are

present.

TT mode. In Figure 4.5, the plots of the TT mode with ϕi = 15◦ and

ϕi = 30◦ indicate that more elliptical fibers have two lobes in the TT mode. As

in the circular case, there is a lobe that peaks at the forward scattering direction

ϕo ≈ ϕi + 180◦, but there is also an extra lobe, present only when ϕi is near 0◦

or 180◦ (when the incident light is seeing a narrower cross section) that peaks

somewhat to the side. In the (ϕi, ϕo)-plot, the forward scattering lobe manifests as

the two long parallel strips ( ) as their centers are 180◦ “above” the line ϕi = ϕo.

The extra lobe manifests as the small elongated blobs perpendicular to the bars

( ).

Figure 4.5 and Figure 4.6 suggests that the extra TT lobe is the brightest

feature of the ASF (at least for highly transparent fibers). Moreover, as the cross

section becomes more elliptical, the extra lobe gets brighter. The behavior of

the lobes as θi increases is more complicated. The extra lobe gets brighter as θi

increases and then quickly disappears, but the forward scattering lobes seem to

get broader and dimmer slowly as θi increases.

In Appendix A.3, we argue that the extra lobe arises from a group of incoming

rays whose directions become very similar as they exit the cross section. As such,

its origin is similar to that of the glints as described by Marschner et al. [49].

TRT mode. The TRT mode of a circular fiber is dim compared to elliptical

fibers. At θi = 0, it contains two caustic lobes, which are dim and small in extent.

As θi increases, the lobes merge into one brighter lobe, which then becomes broader
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and dimmer as θi continues to increase.

The TRT modes of elliptical fibers have much more complex behaviors. In the

(ϕi, ϕo)-plot, the mode appears to have two components: the two “eyes” ( ) and

the center blob ( ). The center blob is very dim and appears as a single lobe

only when ϕi is near 0◦ or 180◦; that is, when light strikes the narrow sides of the

ellipses. The eyes contain two asymmetric lobes, many times brighter than in a

circular fiber, that appear in the range of ϕi complementary to the center blob.

Our observation is consistent with Marschner et al. [49], who observed that as ϕi

changes, the two TRT lobes seem to merge into a single lobe as the cross section

rotates so that the narrower side faces the light.

Figure 4.6 suggests that the eyes will become brighter as the fiber becomes

more eccentric. The distance between the two eyelids and the curvature also seem

to increase as a increases, so we can say that more elliptical fibers have “wider”

eyes, meaning that the peaks occur farther from the incident direction. On the

other hand, the center blob becomes broader and dimmer.

In fibers with small eccentricity, as θi increases, the eyelids get closer to each

other, eventually collapse into a line, and then quickly become broader and dimmer.

In highly eccentric cross sections (a = 1.6 in particular), the eyelids do not collapse

but seem to maintain their distance while inverting the direction of curvature.

TRRT mode. In the (ϕi, ϕo)-plot, the TRRT mode of an elliptical fiber

manifests as four “winged blobs” that occur near the line ϕi + ϕo = 0, when

the half vector is aligned with the long axis of the ellipse. The TRRT mode is

insignificant in circular fibers, but Figure 4.6 suggests that the blobs should be

observable, particularly since they occur at angles far from where other brighter
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components dominate. When θi is small, the blobs are dimmer than the TT and

TRT modes, but they can remain bright and become brighter as θi increases and

the TT and TRT modes start to disappear. As a result, we include the TRRT

mode in our implementation while other works only include up to the TRT mode

[49, 73].

In general, the blobs of the TRRT mode get larger and brighter as θi increases,

and, after a point, they seem to quickly disappear. The angle θi where the blobs

disappear seems to decrease as a increases.

To summarize, elliptical cross sections give rise to much more structure in the

scattering function than is seen in circular fibers, with bright lobes in the TT and

TRRT modes, which can appear and disappear quickly as ϕi changes. The TRT

lobes, while similarly bright (and much brighter than in circular fibers), are more

stable, but their locations and brightness vary based on eccentricity and orientation

of the fiber. As a result, the model predicts that hair fibers with different aspect

ratios will have glints at different angles.

4.6 Measurement Device

To investigate how the behavior of real fibers compares to the predictions discussed

in the last section, we designed and built a new image-based system for measuring

scattering from individual fibers. This new system provides much higher angular

resolution than previous methods based on 4-axis gonioreflectometers [49], and

thereby produces a more complete picture of the scattering function than has been

seen before. The device, however, was designed for observing qualitative features

of the scattered light and not for accurately measuring the BCSDF.
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We show (a) our measurement
setup, (b) a picture taken by a
camera located directly above the
bowl, and (c) the picture after be-
ing mapped into spherical coordi-
nate (θo, ϕd) where ϕd = ϕo − ϕi.

(c)

Figure 4.7: Device for measuring light scattering from a fiber.

4.6.1 Description

Figure 4.7a shows our measurement system. Its main component is a bowl-shaped

receiving surface which approximates a hemisphere of radius 7.5cm. The top part

of the hemisphere is left out so that the height of the bowl is 7.3cm. The bowl was

created by 3D printing and painted a diffuse gray.

To perform a measurement, we suspend a hair fiber above the bowl, running

along the bowl’s diameter so that the fiber passes through the center of the hemi-

sphere.2 Light from a white LED is channeled through optics to produce a narrow
2Short fibers must be extended—for example, by attaching other fibers to both ends—to be
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beam that illuminates a short length of the fiber at the center. The illuminated

section is between 3mm and 6mm long at normal incidence, and the solid angle of

the beam is adjustable between 7× 10−5 and 2× 10−4 steradian The two ends of

the fiber are attached to two stepper motors, which rotate in tandem around the

hair’s axis to change ϕi, and the bowl rests on a rotating platform so that θi can

be controlled by rotating the whole apparatus relative to the source.

The bowl receives the light scattered by the hair fiber into the lower hemisphere,

and reflects it approximately diffusely. We measure this reflected light by taking

a photograph using a camera mounted on one arm of the gonioreflectometer. The

arm was positioned so that the camera views the bowl from directly overhead. The

relative position between the camera and the bowl was computed by the Caliber

camera localization and calibration system [44]. Because one photograph only

captures a hemisphere of scattered light, we need two photographs to capture a

complete sphere. In particular, if we take a picture where the direction of incoming

light is (θi, ϕi), then we have to take another photograph with light direction

(−θi, ϕi + 180◦) to capture the complementary hemisphere. The motors and the

rotating platform provide two degrees of freedom and the surface of the bowl

provides two more, enabling measurement of the complete 4D scattering function.

A picture taken by the camera is shown in Figure 4.7b, annotated to illustrate

the angles that correspond to ones in the theoretical setting. The intensity of each

pixel of the photograph that corresponds to the bowl’s surface is a point sample of

the hemisphere of scattered light. These point samples are the data produced by

the system. We typically parameterize them with the spherical coordinates (θo, ϕd)

where θo ranges from −90◦ to 90◦, and ϕd = ϕo − ϕi ranges from 0◦ to 360◦. The

at least 20cm long before mounting. This way, we have used the device to measure a short wool
fiber. (See Section 5.4.)
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coordinates can be computed easily from the unit vector from the bowl’s center to

the point on the bowl surface corresponding to the pixel.

In Figure 4.7c, we visualize the sphere of scattered light by plotting the point

samples of the complete sphere on the plane where the horizontal axis is the az-

imuthal angle θo, and the vertical axis is the angle ϕd = ϕo−ϕi. This is equivalent

to the (θo, ϕd)-plot discussed in Section 4.3.

4.6.2 Practical Design Issues

The device is designed to allow the illuminating beam to clear the edge of the bowl

all the way around, so it has a blind spot about 5◦ wide around the equator of the

sphere—all directions for which ϕi ≈ ϕo or ϕi ≈ ϕo + 180◦.

In addition to the desired light, which travels from the source to the hair to

the bowl to the camera, other paths contribute to the image as well. The direct

path from the source to the hair to the camera produces a bright line at the center

of the image, and the path from the source to the bowl to the camera3 produces a

bright area on the rim of the bowl right next to the source. To combat lens flare

these paths are blocked by two occluders; this is important to enable the camera

to record the very dim illumination on the inside of the bowl, but they create two

more narrow blind spots in the data.

Moreover, diffuse interreflection paths from other points on the bowl’s surface

also contribute; these are mitigated by the relatively low reflectance of the bowl

and contribute an approximately constant component that is near the noise floor of
3The source is designed to miss the bowl, but when its aperture is fully open the beam spills

slightly onto the rim, and even when it is closed down further, stray light still produces significant
illumination on the rim.

80



our measurements. We will quantify this diffuse interreflection in the next section.

We wrote earlier that we take a “photograph” to capture an outgoing hemi-

sphere of scattered light. In practice, this is a high dynamic range image acquired

through three exposures typically at 5, 15, and 30 seconds with the QImaging

Retiga scientific camera. The exposure times were chosen so that the brightest

parts of the bowl surface were not overexposed. The image formation model we

used to merge these photographs is detailed in Appendix A.4.

4.6.3 Quantitative Characterization

To characterize the accuracy of our device, we compared our results to direct

measurements of light scattered from a hair fiber using the following procedure.

We mount a Caucasian hair fiber4 on the bowl, rotate the platform so that θi = 90◦,

and take a photograph of the bowl surface. We then rotate the fiber by 180◦ in

θ and in ϕ, so that the incident direction is the same, but the scattered light just

measured using the bowl are visible from above. Subsequently, we acquire 4,048

images of the hair, corresponding to outgoing directions with −26◦ ≤ θo ≤ 26◦ and

20◦ ≤ ϕd ≤ 160◦. From each photograph, we identify the illuminated region, sum

up the pixel values inside, divide the sum by cos θo, and interpret the resulting

value as the amount of light scattered from the hair fiber in the corresponding

direction. This process yields 4,048 unstructured samples of the scattered light.

The data from the above measurement process cannot be directly compared to

the bowl measurement for several reasons:
4We used a fiber from Sample C, the details of which are given in Section 4.7.

81



ϕd

−26◦ 0◦ 26◦
20◦

160◦

90◦

bowl

θo
−26◦ 0◦ 26◦

direct

30◦

50◦

70◦

110◦

130◦

150◦

0 max

ϕd = 30◦ ϕd = 50◦

ϕd = 70◦ ϕd = 110◦

ϕd = 130◦ ϕd = 150◦

bowl direct
A segment around ϕd = 90◦ of the bowl measurement is blacked out because it contains
the blocker, and point samples in the area were removed before the reconstruction of the
smooth function. Our optimization yielded the optimal translation with ∆θo = 0.62◦ and
∆ϕd = −0.85◦, kd = 2.58×10−2, and Ia = 24.23. Here, Ia is in the unit of pixel values at
the time we performed the direct measurement. The camera settings between the bowl
and the direct measurement were identical, except that, in the direct measurement, we
turned the aperture of the camera down so the camera took in 16 times less light, i.e. 32
f-stops.
The comparison shows that the device can locate peaks in the BCSDF, making it suitable
for qualitatively observing light scattering behavior of hair fibers. However, it is not
accurate enough to give definite numerical values of the BCSDF.

Figure 4.8: Comparison between the direct measurement and the measure-
ment made by our device.

1. The numbers of samples are not the same between measurements, and the

samples are not at the same (θo, ϕd) coordinates.

2. The bowl measurement is much more noisy because of the roughness of the

bowl surface.

3. The bowl data represents light reflected off the bowl surface, not the light

directly scattered by the fiber.
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4. Due to uncertainty in the automatic calibration of camera positions when

performing the direct measurement, the data of the two measurements are

not aligned perfectly. (For the bowl measurement, we manually calibrated

the camera so that the vertices of 3D model of the bowl aligned with those

in the photograph.)

To remedy the first two issues, we reconstructed a function from (θo, ϕd)-plane

to the light intensity I by Gaussian kernel smoothing: if the point samples are

(θo,1, ϕd,1, I1), . . . , (θo,N , ϕd,N , IN), then the intensity value at (θo, ϕd) is given by:

I(θo, ϕd) =

∑N
j=1 K(θo, ϕd; θo,j, ϕd,j)Ij∑N
j=1K(θo, ϕd; θo,j, ϕd,j)

where K is a 2D circular Gaussian function with standard deviation of 2◦.

To remedy the third issue, we recognize that the intensity in the direct mea-

surement Idirect is related to the intensity in the bowl measurement Ibowl by:

Ibowl = kd(Idirect + Ia) (4.6)

where kd is the diffuse reflectance of the bowl surface, and Ia is the intensity

of ambient light, which comes from multiple reflection off the bowl surface. We

optimized for kd and Ia by minimizing the square error between the RHS and LHS

of (4.6) at evenly spaced discrete sample points in the rectangle −26◦ ≤ θo ≤ 26◦

and 20◦ ≤ ϕd ≤ 160◦.

To remedy the last issue, we optimized for a translation in the (θo, ϕd)-plane

that, when applied to the direct sample points, minimizes the square error men-

tioned in the last paragraph. The shift in ϕd accounts for error in the rotation of

the turntable, and the shift in θo partially accounts for error in the vertical position

of the hair fiber.
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The plots of the direct and the bowl measurement after all the above adjust-

ments are given in Figure 4.8. We can see that both measurements contain peaks

that appear at approximately the same locations. That Ia is positive is consistent

with the fact that interreflection can only add to the brightness of the reflected

light from the bowl. Now, consider the plot with ϕd = 110◦, which contains a peak

of the R mode whose value is approximately 4. Because kdIa ≈ 0.63, we infer that

interreflection can be as bright as 15% of the R mode, implying that the R mode

and other brighter modes can be clearly distinguished from background. However,

while the peaks can be located and observed easily, their amplitudes in the two

measurements do not match. Taking the direct measurement as ground truth,

relative error can be as large as 101%. (This might be due to the fact that, even

after applying the translations, the measurements did not align well enough.) In

conclusion, we demonstrated that our device is adequate for observing and locating

peaks in the BCSDF but not suitable for quantitatively measuring the function.

Nevertheless, we would like to point out the expediency of our device: the

whole hemisphere of outgoing light can be acquired in less than a minute. On the

other hand, the direct measurement took about 6 hours to perform but yielded

only a small portion of the hemisphere.

4.6.4 Repeatability

We next test the repeatability of our measurements. To do so, we used the device

to capture the scattered light from the same portion5 of a human hair fiber three
5We marked a point 5cm from the root end of a fiber with black ink. When mounting the

fiber on the bowl, we made sure that the marked part just cleared the end of the 3D printed part
we attached to one of the motors’ shaft. The ink mark was about 2mm wide, so the illuminated
part in each measurement could be different, but they will be no further than 2mm apart.

84



Measurement 1 Measurement 2 Measurement 3

0
max
10

Here, we show the (ϕd, θo)-plots of the same sphere of scattered light, acquired 3 times.
While the images appear similar, there are differences in brightness. In creating the
visualization, we rendered all pixels whose brightness is greater than one tenth of the
maximum value to be white. This was done to make the brightness difference in the
TRT blobs near the bottom easy to see. The red lines in the pictures are the 1D slices
graphed in Figure 4.10.

Figure 4.9: Visualization of one of the 180 spheres acquired in the three mea-
surements of the same hair fiber.

times. For each measurement, we set θi = 90◦, rotated the step motors so ϕi

takes 180 equally spaced values in the 360◦ range, and acquired the full sphere of

scattering light for each of the ϕi values. This process results in 180 photos which

constitute a 3D slice of the BCSDF with θi hold fixed.

We visualize one of 180 spheres from the three measurements in Figure 4.9.

It can be seen that, while all three measurements contain the same features at

roughly the same locations, the brightness and shapes of the features do not match

exactly: those of Measurement 2 have the highest magnitude, followed by those of

Measurement 1 and then Measurement 3. We hypothesize that the differences in

brightness is due to differences in positioning the fiber in the beam, which is not

uniform across its vertical extent.

Nevertheless, the measurements generally agree up to a constant factor. To

see this, we also show graphs of a 1D slice of the measurements for several angles
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Here, we show plots of 1D slices of three measurements made by our device. The slices’
locations are indicated by the red lines in Figure 4.9. The x-axis represents ϕd, in degrees.
We throw away data from ϕd = 80◦ to ϕd = 95◦ because they are contaminated by the
blocker. To account for the difference in scale between the measurements, we made the
y-axis represent the ratio of brightness at each point to the sum of brightness across all
points in the same measurement. (That is, we divide the brightness values by their sum.)
The fact that all graphs (after correcting for scale differences) roughly coincide implies
that the device is reliable enough to observe qualitative features in hair BCSDFs.

Figure 4.10: Graphs of 1D slices of three repeated measurements for 6 dif-
ferent values of ϕi.

in the Figure 4.10. Here, the brightness values are divided by the sum of the

values in the same measurements to account for the difference in scale between the

measurements. We can see that the graphs have generally the same shapes.

From the measurements, we can conclude that our device is not reliable at

recording absolute brightness of the scattered light. This is the direct consequence

of our not controlling many factors that can affect the recorded brightness such

as the vertical position of the fiber, the uniformity of the light beam, and the

reflectance properties of the bowl itself. However, because the same features con-

sistently appeared in all measurements, the device is suitable for observing large-

scale features of the BCSDF. We believe that the shortcomings of the device can
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Source Photo
Fiber 1 Fiber 2

SEM image Aspect
ratios SEM image Aspect

ratios

A Caucasian

1.136
1.213
1.469

(x̄ = 1.273)

1.256
1.268
1.411
1.429

(x̄ = 1.341)

B Caucasian

1.446
1.501

(x̄ = 1.473)

1.077
1.195
1.246
1.353
1.436
1.552

(x̄ = 1.310)

C Caucasian

1.603
1.717

(x̄ = 1.660)

1.548
1.553
1.746
1.762

(x̄ = 1.605)

D artificial
wig

1.127
1.385

(x̄ = 1.256)

1.147
1.159
1.233
1.310

(x̄ = 1.212)

E African
1.834
1.923
1.933

(x̄ = 1.897)

1.561
1.647
1.789

(x̄ = 1.666)

F Chinese

1.308
1.361

(x̄ = 1.334)

1.035
1.123
1.142
1.183

(x̄ = 1.121)

G Indian

1.310
1.482

(x̄ = 1.396)

1.503
1.524
1.609
1.616
1.780
1.839

(x̄ = 1.645)

Table 4.1: Hair samples.

be overcome by better engineering, but, as it stands, the device is adequate for our

purpose.
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4.7 Measurements

In this section, we present measurements of a broad range of hair fibers and discuss

features that we observed.

4.7.1 Hair Samples and Measurement Setups

We measured hair fibers taken from 7 hair samples, which are identified by letters

from A to G. We took 2 hair fibers from each hair sample, for a total of 14 fibers.

The details of each fiber are given in Table 4.1.

The setups for all the measurements are almost the same, but with differences

in the setting of the aperture in the light source optics. We measured all fibers

that are numbered “1” first with the aperture fully open. As noted previously,

this setup results in increased stray light. To reduce contamination of the data, we

measured the fibers that are numbered “2” with the aperture closed to roughly one-

third of the maximum area. This resulted in less stray light and sharper scattering

patterns, but required longer exposures to capture the dimmer signals.

For each fiber, we performed three types of measurements.

Aspect Ratio Estimation

As this chapter seeks to study the effect of ellipticity on the scattering behavior of

hair fibers, we also made measurements to directly determine the fibers’ ellipticity.

After the scattering measurements for each fiber, we cut the fiber at 2 to 6 locations

near the illuminated spot and used a scanning electron microscope to image the
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cut ends. This procedure images the fiber’s cross sections at locations up to 3cm

from the illuminated spot. For each of the micrographs, we identified 20–60 points

on the boundary of the cross section and fit an ellipse6, taking the ratio between

the major and minor axes of this ellipse to be the aspect ratio of the cross section.

All the resulting aspect ratios and their averages can be found in Table 4.1. The

full set of micrographs and fitting data is given in the supplementary material of

[38].

This process produces several samples of the aspect ratio of each fiber, but

the data show that the aspect ratio can vary considerably along the length of a

single fiber. Therefore they give only a rough indication of the aspect ratio at the

scattering point. Several other factors also contribute to error in the measurements,

including: (1) the cut might not be exactly perpendicular to the fiber’s axis; (2)

the cutting might have distorted the cross section’s shape; and, (3) in some images,

the cross sections were viewed at an angle 10◦ to 20◦ from the fiber axis, which

had to be estimated manually. Despite these uncertainties, the data still provide

useful information about how elliptic each fiber is.

4.7.2 (θo, ϕd)-Measurements

We start with (θo, ϕd)-measurements as they are easily derived from a single photo-

graph of the bowl. The measurements allow us to identify the observable features

in the scattered light. To study how these features evolve as the incoming scatter-

ing angle θi changes, we varied the incoming longitudinal angle θi from 80◦ to −80◦

with the resolution of 2◦. For each fiber sample, we chose the azimuthal angle ϕi

so that the features characteristic of the TRT mode can be observed. For each
6We used the fitting algorithm described in [22] and the code from [91].
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(a) Fiber B2 (b) Fiber E2
The two (θo, ϕo)-plots were generated from measurements at θi = −30◦.
Observed features marked by colored rectangles: R mode is green, TT mode is cyan,
and TRT mode is magenta. Fiber E2 has dark color, so the TT and TRT mode are not
present. The red rectangle surrounds the E mode, a phenomenon not predicted by any
hair scattering models including ours.

Figure 4.11: Observable features in the (θo, ϕo)-plot of Fiber B2 and Fiber
E2.

θi, we captured a (θo, ϕd)-plot, resulting in 81 plots. From these plots, we created

videos (available in the supplementary material of [38]) that show the evolution

of the scattering function as a function of θi. We also provide a sampling of these

plots in the supplementary material of [38].

Observable features

We found four different features in the generated plots, not all present in all fibers,

which we attribute to different modes of scattering from the fibers. The features

are identified for an example plot of Fiber B2 in Figure 4.11a. The features are:

• A bright, horizontally narrow, forward scattering line that always occurs at

θo = −θi (within the accuracy of our image registration). The feature is
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surrounded by the red rectangle in Figure 4.11.

• Two vertical strips; one originating from the top edge of the plot and the

other from the bottom edge. Both strips curve towards the previous forward

scattering line. (Green.)

• One or more forward scattering lobes that are horizontally wider than the

previous features. (Cyan.)

• Two small blobs, one appearing near the bottom edge, and the other near

the top edge. (Magenta.)

According to the heuristics discussed at the end of Section 4.3, we believe the

green and magenta features are the R and TRT modes, respectively.

The four features are not present in all the plots. As can be seen in Figure 4.11b

and the supplementary material of [38], the cyan and the magenta features cannot

be observed in plots of fibers from Samples E, F, and G, all of which are strongly

pigmented fibers that appear black. This fact suggests that these two features are

caused by light being transmitted through the fibers while the other two are not.

As such, we believe that the cyan feature is the TT mode.

There are some disagreements between the data and the predictions made by

previous models. The first is that previous models predict that the TT mode

should appear more or less as one contiguous lobe. This prediction matches the

wider forward scattering blobs of all light colored fibers except those from Sample

C where there seem to be two separated blobs: one in the top hemisphere and

the other in the bottom. On the other hand, the elliptical model allows the TT

mode to manifest as two lobes: one for the slanted bar and one for the extra lobe

discussed in the last section.
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The second is that previous models predict that TRT blobs should appear only

for values of ϕd that are within 20◦ of 0◦—that is, quite close to the top or bottom

of the plots. However, in the measurements such blobs appear as far as almost

90◦ from the plane of incidence. We showed through modeling of ASFs of elliptical

fibers in Section 4.4 that with an elliptical cross section these blobs can still be

explained by the TRT mode.

However, all models, ours included, do not predict the red feature.

The E Mode

The feature marked in red appears even for black hair, and its intensity increases

at grazing angles. As such, it seems to be caused by reflection from the surface;

therefore we consider it part of the R mode. However, it is distinct enough to need

its own name, so we refer to it as the “E” mode. Here, E stands for “equi-angle

peak” (EAP), a feature of light scattered from human hair reported by Stamm

et al. [85] which we believe is the same as our red feature.

In particular, Stamm et al. observed a faint peak at the ideal specular angle

which grows brighter as θi increases in magnitude. Nevertheless, they only mea-

sured light scattered backward (ϕd = 0◦) while we measured the whole range of ϕd.

This enables us to see that the E mode is the brightest around forward directions

and is very sharp in the θo direction. It is clearly separated from the rest of the

R mode, and it grows stronger as θi approaches grazing angles, just like Stamm’s

EAP. Hence, Stamm’ EAP was the part of the E mode that crosses the ϕd = 0◦

line. Note that Marschner et al. also measured a full hemisphere of scattered light,

but not with high enough resolution to distinguish the E mode from other modes.
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(a) (b)
Here, we show (a) a (θo, ϕd)-plot of Fiber D2, which is artificial, and (b) an SEM micro-
graph showing the surface of the artificial hair, which has no scales. Notice that all the
modes’ centers are aligned horizontally.

Figure 4.12: The absence of longitudinal shifts in a fiber without scales.

The cause of the E mode is unclear. Stamm et al. provided an explanation

in terms of reflection from subsurface interfaces, but it does not fit our full 3D

observations. We conjecture that the E mode may be a wave optics effect related

to the phenomenon of emerging specularity on flat surfaces [26], but a proper

explanation will have to await further investigation.

Longitudinal Shifts

With the exception of fibers from the artificial wig, we found that all fibers exhibit

longitudinal shifts of the R, TT, and TRT modes, consistent with what has been

observed in previous works. That is, the R mode shifts to one side of the θo = −θi

line while other modes shift to the other side. On the other hand, as can be seen in

Figure 4.12a, all the modes of fibers from the artificial wig are centered horizontally

at θo = −θi. This observation can be explained by the fact that fibers from the

artificial wig have no scales (see Figure 4.12b) and behave like smooth cylinders.

Consequently, all modes of scattered light are contained in the cone defined by
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θo = −θi.

Evolution with respect to θi

With more detailed measurements than previously available, we can more com-

pletely characterize how the features change with respect to θi. For brevity, we

discuss the evolution in detail in the supplementary material of [38]. The general

trend is that the R mode and the E mode are bright near grazing angles but dim

where θi is low in absolute value. In contrast, other modes behave in the exact

opposite way.

4.7.3 (ϕi, ϕo)-Measurements

To get a more complete picture of the azimuthal scattering behavior, we created

(ϕi, ϕo)-plots like the ones in Section 4.3.2. To do so, we set the rotating platform

to a fixed position to hold θi constant and then rotate the fiber to achieve 180

equally spaced ϕi values from 0◦ to 360◦. For each ϕi value, we captured the two

photographs to cover the complete sphere and warped the photos into spherical

coordinates as explained previously. To counteract the contribution of interreflec-

tion, we subtracted from each pixel 0.5% of the maximum intensity of all images

taken with the same θi. From each of these 180 processed images, we selected a

fixed column, corresponding to a particular value of θo, and arranged the columns

to form a (ϕi, ϕo)-plot.

When conducting the measurements, we did not have means to determine the

absolute ϕi angle. As such, the generated (ϕi, ϕo)-plot is a shifted version of the

plots in Section 4.3. To make comparison with scattering models easier, we selected
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Fiber θo locations E Mode
(Red)

R Mode
(Green)

TT Mode
(Cyan)

TRT Mode
(Magenta)

A1

θo = 0.00◦

not separated
from E mode

not separated
from E mode

θo = −13.29◦

A2

θo = 0.00◦ θo = 4.93◦ θo = −6.42◦ θo = −14.67◦

B1

θo = 0.00◦ θo = −4.76◦ θo = 4.24◦ θo = 16.44◦

B2

θo = 0.00◦ θo = 5.96◦ θo = −7.10◦ θo = −15.01◦

C1

θo = 0.00◦ θo = 5.16◦ θo = −4.07◦ θo = −10.26◦

C2

θo = 0.00◦ θo = −6.65◦ θo = 3.67◦ θo = 10.43◦

min max
None of the plots are to-scale with one another. For the first three modes of Fiber C1,
due to the large spill on the far rim of the bowl, we clamp the maximum pixel value to
about 50% of the real maximum pixel value to make it possible to observe the features
more clearly. For the E mode of Fiber C2, we excluded the bright narrow band around
the backward scattering direction when computing the maximum pixel value because it
was also caused by spilled light. The complete set of plots with θi = −30◦ and −60◦ is
given in the supplementary material of [38].

Figure 4.13: (ϕi, ϕo)-plots of light-colored human hair fibers (Sample A to C)
generated at θi = 0◦.

95



Fiber θo
locations

E Mode
(Red)

R Mode
(Green) Fiber θo

locations
E Mode
(Red)

R Mode
(Green)

D1

θo = 0.00◦

not
separated
from E
mode

D2

θo = 0.00◦

not
separated

from E mode

E1

θo = 0.00◦ θo = 5.50◦

E2

θo = 0.00◦ θo = −6.13◦

F1

θo = 0.00◦ θo = 4.58◦

F2

θo = 0.00◦ θo = 3.95◦

G1

θo = 0.00◦ θo = 4.07◦

G2

θo = 0.00◦ θo = −5.84◦

min max
All (ϕi, ϕo)-plots were generated with θi = 0◦. None of the plots are to-scale with one
another. Only the E and R modes are shown because other modes are either (1) not
separated from the two in case of the wig fiber or (2) not visible at all in case of dark hair
fibers. The complete set of plots with θi = −30◦ and −60◦ is given in the supplementary
material of [38].

Figure 4.14: (ϕi, ϕo)-plots of fibers from the artificial wig (Sample D) and
dark-colored human hair (Sample E to G).

this unknown ϕi offset to align the observed features across the measurements and

with the model in Section 4.4. Then, for convenience, we consider the left side of

the generated plots to correspond to ϕi = 0◦.

For each fiber, we created three sets of (ϕi, ϕo)-plots corresponding to θi = 0◦,

−30◦, and −60◦ for each fiber to see the effect of longitudinal angle on the ASF.

We chose negative angles instead of positive ones because the area with most of

the scattered energy (around θo = 30◦ and 60◦, respectively) does not contain one
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a = 1.00 a = 1.05 a = 1.10 a = 1.15 a = 1.20 a = 1.25 a = 1.30

min max
The (ϕi, ϕo)-plots were generated using the Marschner model [49] with parameters η =
1.55, θd = 0, kG = 1, wc = 10◦, ∆η′ = 0.2, and ∆hm = 0.5. The plots are not to
scale with one another. The original paper only recommends using the model for only
0.85 ≤ a ≤ 1/0.85 = 1.176, but we show plots with a outside the range as well.
The Marschner model with low aspect ratio approximates the TRT mode of Fiber A2
and B2 well though the variations in brightness are incorrect. At higher aspect ratios, it
cannot produce the bright, separated eyelids seen in real fibers.

Figure 4.15: The (ϕi, ϕo)-plots of the TRT mode of the Marschner model for
a number of aspect ratios.

of the light blockers.

We choose four different values of θo so that they align with the features we

believe to be the E, R, TT, and TRT modes. We identified the R, TT, and TRT

modes using the heuristics discussed at the end of Section 4.3. For the E mode, we

use θo = −θi. As we did not generate a plot when the corresponding mode is not

present or when it is not well separated from other brighter modes, this process

resulted in at most 12 plots being generated for each fiber. The plots are available

in Figure 4.14, Figure 4.13, and the supplementary material of [38].

The above measurements, which are intended to explore the ASF, actually

do not measure the ASF directly. According to the separable model discussed

in Section 4.4, these plots should show M(θi, θo)Np(θd, ·, ·), which differs from

Np(θd, ·, ·) only by a constant, with additive contamination from other modes.

However, in reality, the shifts and widths of the lobes modeled by M also change

as a function of ϕi: the non-constant shifts cause some parts of the ASF to appear

dimmer or even not to be observable in the slices we took, and the changing width
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produces a change in intensity. These effects are especially significant in the R

mode, which, as we previously observed, curves quite noticeably in the (θi, ϕd)-

plots.

It is important to keep these considerations in mind when comparing the mea-

surements to the theoretical N function: qualitative agreement in location and

shape of features can be expected, but intensities are not expected to match, and

some features can be missing from the measured ASFs.

We now make observations of the scattering modes. While we list the E mode

first in the figures, we will describe it last because it is usually contaminated by

other modes.

R mode. All the fibers except those from Samples D and F exhibit two bands

of brighter reflection that are predicted by the elliptical model but not previous

circular models.

TT mode. Fibers A1, B1, C1, and C2 exhibit both the two slanted bars ( )

and the small elongated blobs ( ). Note that previous circular models predict the

slanted bar but not the small blobs, so the elliptical model is more accurate. Fiber

A2 and B2 exhibit only the strips, so their cross sections might be close to circular.

As with the R mode, contamination from the TRT mode is sometimes visible in

these plots.

TRT mode. The two eyes ( ) predicted by the elliptical model can be ob-

served. In fibers where the eyes open narrowly (A2 and B2), there exists a band

along the ϕi = ϕo line joining the two eyes. In other fibers, the eyes are completely

separated.
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On the other hand, circular scattering models predict that the TRT mode

appears as a narrow band of uniform width around the ϕi = ϕo line. The Marschner

model, with its approximation of elliptical fibers, can predict the TRT modes of

Fiber A2 and B2 reasonably well (though it puts too much energy at retroreflection

and not enough in the “eyelids”), but not those of other fibers. (See Figure 4.15.)

E mode. The E mode consists of narrow and bright bands around the forward

scattering lines, which get broader with increasing θi. The E mode plots also show

features resembling the TT mode, including slanted bars (particularly fibers C1

and C2) and perpendicular blobs (especially for θi = −60◦ in more elliptical fibers;

see supplementary material of [38]), which we interpret as contamination from the

TT mode.

Conclusions. From these observations, it is clear that real hair fibers exhibit

features that are better explained by elliptical cross sections. These features include

(1) the brighter bands in the R mode, (2) the small blobs in the TT mode, and

(3) the eyes in the TRT mode.

4.8 Model Evaluation

In this section, we further evaluate the elliptical scattering model by comparing

the model (ϕi, ϕo)-plots against the measured data. We also present renderings

produced by the model so that its visual impact can be assessed.

99



a (ϕi, ϕo)-plots of TRT mode
Fiber Measured Fitted Measured Fitted

A1
1.136
to

1.496
1.51

A2
1.256
to

1.429
1.13

B1
1.446
to

1.501
1.35

B2
1.077
to

1.552
1.17

C1
1.603
to

1.717
1.65

C2
1.548
to

1.762
1.42

min max
Here, we only show the (ϕi, ϕo)-plots of the TRT mode at θi = 0◦. Plots of other modes
at other θi values are shown in the supplementary material of [38]. The plots’ colors are
not to scale with one another.
The generated plots match well to the measured plots, and the fitted aspect ratios are
close to the measured ones.

Table 4.2: Results of fitting fiber aspect ratios for Fiber A to C to match the
captured (ϕi, ϕo)-plots of the TRT mode.
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a (ϕi, ϕo)-plots
Fiber Measured Fitted Measured Fitted

R+TT+TRT mode

D1
1.127
to

1.385
1.00

R+TT+TRT mode

D2
1.147
to

1.310
1.00

R mode

E1
1.834
to

1.933
1.56

R mode

E2
1.561
to

1.789
1.99

R mode

F1
1.308
to

1.361
1.07

R mode

F2
1.035
to

1.183
1.00

R mode

G1
1.310
to

1.482
1.26

R mode

G2
1.503
to

1.839
1.81

min max
For fibers from Sample D, we show the sum of the first three modes because all the
modes are present in all the measured (ϕi, ϕo)-plots. For other dark-colored fibers, we
only show the R mode as it is the only visible mode that the model covers. All plots
are for θi = 0◦. Plots of other modes at other θi angles are given in the supplementary
material of [38]. The plots’ colors are not to-scale with one another.

Table 4.3: Results of fitting fiber aspect ratios for Fiber D to G (those that do
not show clear TRT modes) to match the captured (ϕi, ϕo)-plots.
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4.8.1 Comparison with Measured Data

To validate our model’s ability to predict scattering behaviors, we fit the model to

the measured (ϕi, ϕo)-plots and then compared the plots generated from the fitted

parameters with the original data. We:

• used the θi values from the measurements,

• fixed σ to be 0 (perfectly transparent fibers),

• fixed η to be 1.55, and

• fixed γp to be 5◦ for all p.

This leaves the aspect ratio as the only parameter to be determined.

For each fiber, we pick a mode that is visible and varies the most as a changes:7

• the TRT mode for light-colored human hair fibers (Sample A, B, and C),

• the TT mode for artificial fibers (Sample D), and

• the R mode for dark-colored fibers (Sample E, F, and G).

Selecting a mode limits us to work with three measured plots: one for each of three

values of θi. We then find a for which the three corresponding (ϕi, ϕo)-plots are the

most similar to the three measured plots. To do so, we iterate through values of a

ranging from 1.00 to 1.99 by increments of 0.01. For each a, we generate three plots

with θi being 0◦, −30◦, and −60◦. Next, all plots, including the measured plots,
7It is possible to fit the aspect ratio using a (ϕi, ϕo)-plot that contains more than one mode.

However, the problem to solve becomes more complicated because the contribution of each mode
is scaled by an unknown factor, which has to be optimized for. We chose to involve only one
mode because it yields a much simpler optimization problem.
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are normalized so that the pixel values add up to 1. (That is, they are regarded

as probability distributions over the (ϕi, ϕo)-plane.) The score associated with this

a value is the sum of the L1-distances between the three pairs of generated and

measured plots. The a value with the lowest score is regarded as the best fit for

the fiber. The plots of the mode being fitted at θi = 0◦, generated from the best

aspect ratios, are shown in Table 4.2 and Table 4.3. The supplementary material

of [38] contains plots of other modes at other values of θi.

For light-colored human hair fibers, the model can be fitted well to the TRT

mode. We invite the reader to consult the supplementary material of [38] to see

that the fitted aspect ratios yield reasonable plots for the TT mode too. Moreover,

the fitted aspect ratios either fall within or close to the range of measured aspect

ratios. The successes of matching to the TRT mode tells us that, while fibers

are not perfectly elliptical, their TRT modes usually behave like those of elliptical

fibers.

As fibers from Sample D do not separate the scattering modes in the θo di-

rection, we could only match the parameter against the TT mode, which is the

brightest and completely obscures other modes. Because the TT modes of fibers

from Sample D behave much like a perfectly circular fiber, the matching process

results in a = 1.00 being the best fit aspect ratio. However, SEM micrographs

indicated that the fibers are not perfectly circular, and the (ϕi, ϕo)-plots generated

using the average measured aspect ratio would display perpendicular blobs, which

are not present in the measured plots. This discrepancy might be caused by the

artificial fiber’s index of refraction being lower than that of human hair fibers.

For dark-colored fibers, we could only match against the R mode. While our

model can capture the two bright bands and can somewhat match the sizes of the
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bands, the best-fit aspect ratios can be far from the measured values, especially for

Fibers E1, E2, and F2. Moreover, the generated plots generally do not look like

the measured data. The two bands are not symmetric to each other as predicted,

indicating that the R mode is sensitive to the asymmetry in the shape of the

cross sections. We also observe dark bands around the forward scattering lines in

the measured plots, but this is caused by the R mode curving away from the fixed

longitudinal angle we used to create the (ϕi, ϕo)-plot, a phenomenon not accounted

for by our model, and so doesn’t indicate a disagreement in the ASF.

In conclusion, our elliptical ASF model can predict the azimuthal behavior

in the TT and TRT modes well and can capture some important features of the

R mode, indicating that changing from a circular to an elliptical model for the

cross section can produce models much more faithful to real fibers. However, some

important effects seen in the measurements, including curving of the R mode in

θo direction and the existence of the E mode, require additional improvements

in scattering models beyond upgrading the ASF to account for elliptical cross-

sections.

4.8.2 Rendering Results

To compare azimuthal scattering behavior of our models to older models, we show

single scattering behavior of a planar array of vertical hair strands whose cross sec-

tions are rotated by 0◦ to 360◦ from left to right in Figure 4.16. We also provide,

in Figure 4.17, renderings with full multiple scattering of hair geometries illumi-

nated by a constant environment light source and an area light source positioned

at various horizontal angles around them. The renderings were done at roughly

half a megapixel resolution with 512 samples per pixel. An image typically took 15
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Marschner
a = 1.0

Marschner
a = 1.2 d’Eon

Ours
a = 1.0

Ours
a = 1.2

Ours
a = 1.6

0◦
—TRRT
—TRT
—TT
—R

39◦
—TRRT
—TRT
—TT
—R

66◦
—TRRT
—TRT
—TT
—R

135◦
—TRRT
—TRT
—TT
—R

180◦
—TRRT
—TRT
—TT
—R

We show renderings of an array of vertical hair fibers whose cross
sections are rotated by 0◦ to 360◦ from left to right. We compare
(1) our model with aspect ratio 1.0, 1.2, and 1.6, (2) the circular
model from [17], and (3) the classic model from Marschner et al.
[49] with aspect ratio 1.0 and 1.2. (We do not show the Marschner
model with aspect ratio parameter of 1.6 because the model was
claimed to work with aspect ratio up to about 1/0.85 ≈ 1.18.)

The scenes all have one directional light source with a horizontal
direction. The angle that this direction makes with the line from
the eye to the center of the image plane is indicated in the leftmost
column of the table. In this way, 0◦ indicates that the light’s
direction is the same as the viewing direction, and 180◦ indicates
that the light’s direction is anti-parallel to the viewing direction.
We chose the tilt angles of the 4 modes so that they separate
into distinct horizontal bands whose altitudes are indicated by
the labels to the right to the table. The renderings only take into
account single scattering.

Figure 4.16: Comparison between renderings of different hair scattering mod-
els in a simple scene with parallel hair strands.
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to 30 minutes on a 192-core compute cluster, depending on hair geometry. Videos

comparing different models being lit by revolving an area source are available in

the supplementary material of [38].8

From the single-fiber measurements and model predictions, we know that the

most important effects of eccentricity on the azimuthal distribution are (1) that

the TRT highlight occurs at a larger difference in ϕ, (2) that the TRT highlight

occurs over a wider range of angles, and (3) that the TRT and TT highlights vary

substantially in brightness with the orientation of the fiber.

The most obvious result of these effects is that the TRT component, which is

a relatively subtle effect in circular hair, produces a bright, glittery highlight that

occurs at a large scattering angle. In Figure 4.16, this effect manifests as bright

blobs produced by our elliptical models when the light angles are 39◦ and 66◦

away from the camera. Moreover, in Figure 4.17, elliptic fibers with aspect ratio

1.2 become much brighter at 39◦, and those with aspect ratio 1.6 at 66◦. These

bright, colorful glints create a strong texture in the image, with an almost metallic

appearance, that is not seen in circular hair. Previous models for hair scattering

have never reproduced glints with any serious attempt at accuracy. (While the

Marschner model does produce some brightness variation in the TT mode, the

glints it produces are generally too dim to notice in real scenes.) The ability to

render them correctly will enable more natural looking and realistic results.

This glint angle for aspect ratio 1.6 is confirmed by a simple experiment of

illuminating the swatch that was the source of two of our hair samples (Sample 3)

from the same angles (bottom row in Figure 4.17). The photographs illustrate the

occurrence of glints at angles between 60 and 80 degrees. The glints in photographs
8The video frames are rendered with 128 samples per pixel instead of 512.
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Marschner
a = 1.0

Marschner
a = 1.2 d’Eon

Ours
a = 1.0

Ours
a = 1.2

Ours
a = 1.6

Photos
1.5 ≤ a ≤ 1.7

15◦

39◦

66◦

135◦

15◦

39◦

66◦

135◦

15◦

39◦

66◦

135◦

We show renderings with full multiple scattering of three pieces of hair geometry lit by
an area source rotating around them. The leftmost column contains the angle, in the
horizontal plane, that the light makes with the camera’s view direction. Observe that our
model with a = 1.2 becomes brighter than other models at 39◦, and so does our model
with a = 1.6 at 66◦. The final column shows photographs of Sample C for reference;
note glints appearing at 66◦. The supplementary material of [38] contains the parameters
for the models and the uncropped renderings. (While we attempted to find absorption
parameters that would match the overall color of Sample C, the real hair is considerably
more absorbing.)

Figure 4.17: Comparison between full globally illuminated renderings of dif-
ferent light scattering models in scenes containing full heads of
hair.
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do not increase the overall brightness as much as in renderings, and they occur

over a wider range of angles. They show up in short segments in the photographs

while whole hair strands seem to light up in the renderings. We surmise that this

effect is caused by real hair having natural variation that is lacking in our models:

both eccentricity and orientation likely vary from fiber to fiber and along fibers.

We randomized the orientation of each hair strand in our models at the root, but

eccentricity is perfectly constant and the fibers do not twist.

A second difference can be seen in the TT component. One can observe that,

in Figure 4.16, some fibers with our elliptical models become much brighter than

surrounding fibers when the light source is at 135◦ from the camera. Such an

effect is also present at 180◦ in the model with aspect ratio 1.6. It is the result

of the TT component’s focusing light strongly for a narrow range of orientations

(that is, when one of the perpendicular blobs appears), leading to another, subtler

glint effect. These TT glints have not been reported in previous measurements or

modeled by any previous scattering models. However, they are hard to observe in

less contrived rendering situations as we see minimal differences between forward

scattering highlights between the models in Figure 4.17.

When the hair appearance is dominated by the R component and by multi-

ple scattering, the effects of eccentricity are not as dramatic as the glints. They

amount to moderate change in the overall hair color because eccentricity changes

the distribution of path lengths through the fibers, resulting in different colors of

modes other than the R mode. This suggests that approximate methods for mul-

tiple scattering that have been developed for the circular case [116, 80] can likely

be used with elliptical fibers.
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4.9 Conclusions

We have presented presented a study of the scattering behavior of hair fibers,

focused on azimuthal effects. We designed a new measurement device that enabled

us to observe a more complete picture of the light scattered by a fiber, which

showed that real hair fibers behave differently from what was predicted by previous

scattering models. Features not previously predicted include the two bands in the

R mode, the perpendicular blobs in the TT mode, the eyes in the TRT mode,

and the E mode itself. Using geometric optics to model light scattered from ideal

rough elliptical fibers, we learned that the features in the R, TT, and TRT modes

are products of the geometry of the cross section. However, the geometric optics

analysis does not predict the E mode, and we conjecture that this mode is a wave

optics phenomenon. Rendered images made using a model built on the new cross-

section analysis better reproduce the glittery appearance that can be observed in

real hair fibers.

4.9.1 Limitations and Future Work

While we did not model the E mode, light scattering behavior of small circular

cylinders has been studied by physicists [90], and their work might inform us on

how to model the E mode of elliptical fibers.

We are primarily concerned with azimuthal effects, but the measured data also

motivate improvements to the longitudinal component of the model. In particular,

the curving of the R mode needs to be addressed, and many components become

more longitudinally blurred than the simple constant-β model predicts. The recent

work of d’Eon et al. [18] on non-separable BCSDF can potentially handle these

109



phenomena, but it only deals with circular cross sections.

Our implementation currently requires big tables to be built for each combi-

nation of hair parameters. This makes it inconvenient to render a head of hair

where fibers have different parameters or where parameters vary along each fiber.

A scheme to compactly compress the ASFs or efficient algorithms to analytically

evaluate and sample them would enable rendering of more complex and realistic

hair.

Lastly, our measurement techniques can be used with any type of fiber. As a

result, they can be used to study fibers such as cloth fibers and animal fur.
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CHAPTER 5

MODELING AND MATCHING APPEARANCE OF FABRICS

ใส่ตามสบาย ม่อฮ่อมใส่แล้วสมชายชาญ

ใส่ไปทํางานหรือเตรียมใส่ไปแอ่วสาว

ใส่ไปไร่นาป่าเขา ใส่ไปกินเหล้ากินข้าว

ไพร่ผู้ดี เศรษฐี ขี้ข้า หรือเจ้า

ใส่ม่อฮ่อมสีความเป็นเงา

วัฒนธรรมหมู่เฮาจาวเหนือ

จรัล มโนเพ็ชร, ม่อฮ่อม

In the last chapter, we saw how we can design a light scattering model for

hair fibers from first principles so that it captures some characteristic behavior

of their cross sections. However, the light scattering model’s description alone is

never enough to produce renderings. We must also specify geometry and model

parameters. This chapter presents a framework for obtaining these components

when creating micro-appearance models for cloth.

The material in this chapter originally appears in the paper “Matching Real

Fabrics with Micro-Appearance Models,” which has been published in ACM Trans-

actions on Graphics in 2015 [39]. The work is joint with Daniel Schroeder, Shuang

Zhao, Steve Marschner, and Kavita Bala.

5.1 Introduction

Appearance models that can reproduce the rich appearance of fabric are important

in a wide range of applications including textile design, product visualization,
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retail, and entertainment. Yet, photorealistic rendering of fabrics remains very

challenging. Recent research that models fabrics at the scale of fibers [109, 76] has

produced the most realistic renderings to date. By directly modeling the geometric

arrangement of fibers, these methods can reproduce distinctive specular highlights

caused by woven structures, subtle diffuse effects of multiple scattering, and details

like fuzz and flyaway fibers.

These appearance models are instances of an approach we call micro-appearance

models, which combines an explicit model of a material’s microgeometry with a

simple light scattering model. Previous work has shown that these components

together can reproduce the subtle and complex light-scattering behaviors seen

at larger scales. The approach is also general enough to encompass all types of

textiles, including traditional weaves and knits as well as non-woven fabrics.

Using micro-appearance models entails answering a number of questions, which

previous work still left open:

• How to represent microgeometry? Microgeometry can either be repre-

sented by volumes (e.g., [109]), or collections of individual fibers (e.g., [76]).

It is unclear which approach is better.

• How to model light scattering? Zhao et al. [109] proposed a simple

microflake phase function, but it does not capture scattering behavior in

grazing configurations correctly. Schröder et al. [76] used a scattering func-

tion derived from that of hair fibers, which may handle grazing behaviors

better. However, its effectiveness in this regard has never been assessed

against measurements.

• How to compute model parameters? Zhao et al. [109] employs a simple

binary search to fit their model, but it cannot be generalized to more com-
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plicated ones. Most other previous work specifies parameters manually with

the exception of Schröder et al. [76] which automatically derives the diffuse

color from cloth photographs. To our knowledge, there has been no general

framework for fitting model parameters.

This chapter attempts to answer the above three questions. To do so, we

introduce a number of innovations. To identify the best microgeometry model,

we develop an algorithm that converts a micro CT scan of cloth fabric to an

explicit mesh of the fibers that compose the fabric so that we can compare the

effectiveness of the two approaches. To identify the best light scattering model,

we use the methodology for developing hair scattering function [49] to develop an

improved scattering model for textile fibers that takes into account reflection from

and refraction through fiber surfaces. To compute the parameters of the model,

we develop an appearance matching framework which takes into account multiple

fabric observations under different lighting conditions. It uses stochastic gradient

descent to optimize the parameters, so it is general enough to fit any parameter

with respect to which the partial derivative of a single path tracing sample can be

computed.

These innovations enabled us to systematically evaluate micro-appearance

modeling approaches against one another and against measurements. In general,

we gather ground-truth data in the form of gonioreflectometric measurements of

real cloth samples. The appearance matching framework uses some of the data to

optimize for parameter values. Performance can then be assessed by comparing

the rest of the ground-truth data to renderings yielded by the models and the fitted

parameters. We believe that this evaluation procedure is essential to developing

and effectively testing new models. Using the procedure, we provide an extensive
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evaluation of the effectiveness of our appearance matching pipeline and the rela-

tive performance of different microgeometry and light scattering models using six

fabrics with very different characteristics.

The conclusions we draw from our investigation are:

1. A scattering model based on previous models for hair scattering works much

better than the microflake model, especially at reproducing bright grazing

highlights.

2. In choosing between fiber- and volume-based models for cloth microgeome-

try, there is no clear winner: both are capable of matching measurements

when used with the right scattering model. However, we did find that smooth

orientation fields are important to achieving good results with volume mod-

els.

3. Our system worked well for a number of fabrics, but we also experienced

a number of difficult cases, which point out venues for improving both the

system itself and the light scattering model.

Our work as a whole comprises a complete and practical appearance modeling

system which we believe is an important step forward in achieving predictivity

and photographic realism for textiles. It can generate fabric models that capture

both far-field reflectance properties and near-field fine textures of different types

of textiles.

The system implemented in this chapter, however, does not cover all aspects of

fabric appearance. The experiments we shall present focus on light reflected from

fabric and do not examine light transmitted through the fabric. Moreover, our

system currently only handles fabrics with a single yarn type and color. While it
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can be readily extended to address these aspects, the extension is not in the scope

of this dissertation and is left for future work.

5.2 Previous Work

5.2.1 Parameter Estimation

For the volume-based cloth model of Zhao et al. [109], the authors selected ren-

dering parameters for the scanned cloth volumes by binary searching the values of

single parameters in sequence to match statistics of a reference image of the cloth

sample. By contrast, our method recovers all parameters of the fiber scattering

model simultaneously, and compares the rendered cloth to several photographs un-

der different lighting and viewing conditions. As in our approach, Gkioulekas et al.

[23] recover the unknown parameters of their scattering model through stochas-

tic gradient descent. Their method combines gradient descent and Monte Carlo

rendering to recover linear combinations of predefined materials from a material

dictionary for a wide range of translucent media. Recently, Schröder et al. [76]

introduced an image-based technique to reverse engineer physical fabric samples.

Their approach, however, focuses on recovering weave patterns and diffuse yarn

colors and requires many other parameters needed for rendering to be specified

manually. Sadeghi et al. [72] estimated parameters in two stages. They first de-

termined their yarn scattering model’s parameters to match to a dense sample

of yarn BSDF measurements, and then they determined parameters of the yarn

curves. Both stages, however, were carried out manually.

We note that there are two approaches to the number of training data used
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for parameter fitting. On one hand, works such as Zhao et al.’s and ours use a

sparse sampling of appearance. Indeed, Zhao et al. uses one photograph whose

pixel values are then averaged into 3 numbers. We use 16 (as will be discussed

in Section 5.5.2) and the images are averaged in the same way. On the other

hand, Sadeghi et al.’s and Gkioulekas et al.’s use a dense sampling.1 One criticism

to the sparse sampling approach is that the samples might not be representative

enough to capture all the details of the fabric’s scattering behaviors. For example,

Sadeghi et al. documented that fabrics exhibit multiple highlights due to weave

patterns, and not including such highlights may lead to incorrect parameter values,

especially lobe widths.

It is instructive to compare our approach to that of Sadeghi et al. [72]. Appear-

ance is produced by a combination of microgeometry and optical properties, and

both methods seek to determine geometry and scattering properties separately.

Sadeghi et al. consider the yarn as the basic unit, so they begin by measuring the

optical properties of a yarn very accurately and then finish by adjusting the geom-

etry to match the overall appearance. We consider the fiber as the basic unit and

proceed in the opposite order. We establish geometry first—both the arrangement

of fibers within yarns and also the geometry of yarns in the cloth—using micro

CT scanning and then adjust the scattering properties to match appearance. In

a sense, we rely on detailed microgeometry to give rise to complex structures in

fabric’s scattering behaviors such as multiple highlights and to compensate for

approximated lobe widths values. Encouraged by the success of Zhao et al. and

constrained by the need to render images during the fitting process, we have taken

the approach of fitting the optical properties to the far-field BRDF. As discussed

in Section 5.7, this approach produced excellent results for many fabrics, but there
1Gkioulekas et al. takes only 18 photographs, but each pixel of each photograph is considered

a measurement, so the sampling is in fact very dense.
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are others where additional training configurations may be helpful.

5.2.2 Derivative Estimation

Our appearance matching framework extends a path tracer to estimate derivatives

of images with respect to parameters. We use the same mathematical formulation

for derivatives of a path-traced pixel as that described in the work of Pfeiffer and

Marroquim [62], which we were unfortunately not aware of when our paper [39]

was published. There is a slight difference between their work and ours in the

way the derivatives are computed, but the main differences are in the optimization

algorithm used to compute the optimal parameters: Pfeiffer and Marroquim use

the Gauss–Newton–Krylov method, but we use the simpler stochastic gradient

descent. Since stochastic gradient descent is designed to tolerate noisy gradients,

it can be said that our algorithm is more robust to noise in theory.

Hašan and Ramamoorthi [25] estimate derivatives with respect to the albedos

of volumes. Pfeiffer and Maroquim’s formulation reduces to the same form when

applied to estimate derivatives with respect to albedo, but supports other parame-

ters as well. The operator-theoretic method of Gkioulekas et al. [23] considers the

full set of rendering parameters of an isotropic volume, but only obtains deriva-

tives with respect to the coefficients of a convex linear combination of predefined

materials. By comparison, the approach in Section 5.5 can individually estimate

derivatives with respect to any rendering parameter that has a differentiable effect

on the samples used to render the image.
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5.2.3 Fiber Generation

We have reviewed a number of techniques for generating hair and textile fibers in

Chapter 3. Since, the work in this chapter proposes an algorithm for generating

fibers from volumetric data, we review previous works on this problem.

Constructing fiber geometry from volumetric data has been well studied in the

neuroscience community for the purpose of understanding the brain’s networking.

Approaches include tracing particles through a direction field [4], growing a level

set [60], and simulating water diffusion in the volume [37].

While Shinohara et al. used micro CT images to extract yarn positions in fabric

[79], we are not aware of any previous works, especially in the graphics community,

that generate cloth fibers from micro CT images.

5.3 Overview

Our appearance modeling pipeline is outlined in Figure 5.1. Our appearance

matching process takes as input a set of photographs of a fabric under different

lighting and viewing configurations, together with the corresponding scene geom-

etry, and finds fits for the parameters of our new light scattering model. The light

scattering model is described in Section 5.4. The appearance matching process is

introduced in Section 5.5. The appearance matching process takes input as pho-

tographs and fiber microgeometry, the latter of which is constructed as described

in Section 5.6.

We now describe each part of the pipeline in more detail. First, in Section 5.4,
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Appearance
matching
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Fiber model
parameters Full appearance

model

Figure 5.1: Appearance modeling pipeline.

we introduce a new light scattering model for textile fibers. The scattering model

has two terms. The first term models light reflected directly off fiber surfaces,

and contains a Fresnel term that makes the reflection brighter at grazing angles to

address the inaccuracy observed in Zhao et al.’s model. The second term models

light transmitted forward through the fibers, accounting for the fact that textile

fibers are generally translucent. While the scattering model is conceptually simple,

it cannot be fitted using the simple iterative binary search method described in

Zhao et al. [109]. Therefore, we introduce a new appearance matching process in

Section 5.5.

The appearance matching is done using gradient descent optimization to find

values for the parameters of the scattering model that achieve the best match be-

tween the photographs and physically-based renderings of the cloth microgeometry

model. Multiple scattering contributes significantly to the renderings (the major-

ity of the reflected light is due to multiple scattering in most cases). Thus, the

optimization has to account for it. To do so, we extend our renderer, a Monte
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Carlo path tracer, to compute derivatives of the output image with respect to the

parameters of the scattering model. The derivatives are computed as unbiased

estimates of the true derivatives and are used in a stochastic gradient descent op-

timization method, which converges to a minimum despite the uncertainty in the

individual estimates of pixel values and their derivatives (under the condition that

the objective function is convex). Our process is agnostic both to the microgeome-

try model and to the scattering model, allowing us to directly compare the abilities

of different models to recover cloth appearance.

A goal of this chapter is to study the effectiveness of two representations of

fabric microgeometry. While previous work has been able to create micron-scale

volumetric representation from micro CT images of real fabrics, no work has ad-

dressed the creation of fiber mesh representations from such data. To enable di-

rect comparison of the two approaches, we develop an algorithm to construct fiber

meshes from micro CT images in Section 5.6. The method is based on identifying

fiber centers in slices of micro CT volumes and connecting them.

Finally, in Section 5.7 we present the results of our investigation into fabric

appearance models, carried out using the tools developed in the earlier sections,

and draw conclusions about which methods should be used.

5.4 Fiber Scattering Model

In this section, we describe a fiber scattering model, developed with the goal of

addressing the shortcomings of the microflake scattering function used by Zhao

et al. [109]. Our model builds upon the considerable research in scattering mod-

els for rendering hair [49, 115, 17]. Like hair, textile fibers are long cylindrical
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structures made of dielectric material, so they can be expected to exhibit similar

specular reflection geometry. However, because textile fibers are smaller and less

visible individually, as well as more irregular in cross section, we use a simpler

model than the full hair model.

Like many other light scattering model for fibers, our model is a multi-modal,

factored BCSDF whose mathematical foundation was laid out in Section 2.4. In

agreement with previous BSDF models for cloth [29, 72], informal measurements

of individual fibers suggest an azimuthally uniform R mode and a TT mode with

a single forward scattering lobe. Moreover, the more detailed TRT mode that

appears in hair fibers does not appear to be important for textile fibers. Below, we

provide pictures taken with the bowl device in Chapter 4, warped into the (θo, ϕo)-

plane, showing the scattered light from a Caucasian hair (used in the previous

chapter), a fiber of the Silk sample used in this chapter, and a fiber from a wool

fabric.

Hair Silk Wool

We emphasize the TRT mode, present in scattered light from the hair, with a

red rectangle. We can see that such a structure is not visible in the scattered light

from the silk fiber and the wool fiber. We might say that the blob surrounded by

the green rectangle is the TRT mode of the silk, but observe that it is very small

when compared to the TRT blot of the hair. (The two big blobs on the top and
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Figure 5.2: The two modes of our scattering function.

the bottom edges of the silk fiber’s image are light spilt directly on the device from

the light source. They are not part of the scattered light.)

The above casual observation motivated us to include only the first two modes

in our model:

S(ωi, ωo) =
MR(θi, θo)

2π
+MTT (θi, θo)NTT (θi, ϕi, ϕo). (5.1)

The two modes are depicted in Figure 5.2.

Our model has five parameters that determine the intensities and widths of the

two modes:

• CR: the color of the R mode

• CTT : the color of the TT mode

• βR: the longitudinal width of the R mode

• βTT : the longitudinal width of the TT mode

• γTT : the azimuthal width of the TT mode

We make use of two differently normalized Gaussian-like functions. One is ḡ,
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a renormalized Gaussian in θ:

ḡ(θ;µ, σ) =
g(θ;µ, σ)

G(µ, σ)
(5.2)

where g(θ;µ, σ) denotes the Gaussian distribution with mean µ and standard de-

viation σ, and G(µ, σ) is a normalization factor defined in Section 4.4.1.

The other is the von Mises distribution f (also used in [29]), which is the analog

of the Gaussian distribution on the circle:

f(ϕ;µ, σ) =
exp(σ−2 cos(ϕ− µ))

2πI0(σ−2)
(5.3)

where I0(x) is the modified Bessel function of order 0.

5.4.1 The R Mode

The R mode accounts for light that reflects specularly from the surface of the

fiber. The total amount scattered into this mode depends on θ due to Fresnel

reflection; we model this dependence using a heuristic formula, since the surface is

not planar and the actual fraction transmitted depends on the cross section and

surface properties, neither of which we wish to model. We introduce a parameter

CR that specifies the reflectance at θi = 0, then use Schlick’s approximation to let

reflectance increase to 1 as the incident direction becomes parallel to the fiber:

FR(θi) = CR + (1− CR)(1− cos θi)5. (5.4)

In the absence of a particular cross section, we assume that the reflected light is

distributed uniformly in ϕ, so that

NR(θi, ϕi, ϕo) =
1

2π
.
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Moreover, it is scattered to a small range of θ that increases with surface roughness,

which we model using the normalized lobe ḡ:

MR(θi, θo) = FR(θi)ḡ(θo;−θi, βR). (5.5)

Because the values of CR may be different among the red, green, and blue channels,

our model allows reflection from fiber surfaces to be colored. Although Fresnel’s

equations do not predict this, we deliberately make the reflection colored as we

found empirically that this led to the model being better at reproducing the color

of some fabrics.

5.4.2 The TT Mode

The TT mode represents light that transmits into the fiber and then out. It is

responsible for the remaining fraction 1 − FR(θi) of incoming light. It is colored

(via the parameter CTT ) to account for light absorbed by colorants in the interior

of the fiber.

As with the R mode, we model the longitudinal spread using a normalized

Gaussian, but since transmitted light is generally focused forward, we model the

dependence on ϕ using the von Mises distribution centered at ϕi + π:

MTT (θi, θo) =CTT (1−FR(θi))ḡ(θo;−θi, βTT ) (5.6)

NTT (θi, ϕi, ϕo) =f(ϕo;ϕi + π, γTT ) (5.7)

where γTT controls the azimuthal width of the forward scattering peak.

The two components of the model together define a simple but expressive model

for scattering from fibers. It can model rougher fibers like cotton or wool compared
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to smoother fibers like nylon or silk by adjusting βR and βTT ; it models the color of

fibers primarily using CTT , and the effects of different cross sections that produce

more or less strongly forward-directed scattering are modeled by adjusting γTT .

5.4.3 Volumetric Appearance Model

The scattering model can be adapted into a volumetric appearance model com-

patible with the anisotropic RTE [32]. To do so, we need to specify a normalized

phase function, an albedo, and a directionally varying coefficient of attenuation.

To specify a phase function, consider a single color channel. For each value of

ωo, we can construct a probability distribution over the sphere of incoming direc-

tions that is proportional to S(ωi, ωo) according to (2.15) and use this distribution

as the (direction-dependent) phase function. Our implementation uses the prob-

ability distribution, computed by tabulation of both ωi and ωo, for importance

sampling of the fiber scattering model as the phase function. However, because

CR and CTT can have different values in different channels, we construct a separate

phase function for each channel. When rendering, we render three monochrome

images for each channel before combining them to a single colored image.

We constrain the albedo α = σs/σt to be a constant throughout the fabric

volume, and leave it as a parameter to be fit by our fitting process.

For the extinction coefficient, we choose a function such that σt is maximal

when the light’s direction is perpendicular to the local fiber direction and decreases

smoothly to 0 when the light’s direction is parallel to the local fiber direction. In
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particular, we choose:

σt(ω) = σt,max
√
1− (ω · d)2 (5.8)

where d is the local fiber direction, and σt,max is the maximum coefficient of ex-

tinction, which is a parameter to the model. In theory, σt,max is a parameter our

fitting process can fit. However, we set it to constant as will be discussed in the

next section.

5.5 Appearance Matching

In this section we explain our appearance matching method. As outlined in Sec-

tion 5.3, the method receives as input photographs of a material and corresponding

scenes with the same geometric configuration of camera, cloth sample, and light

source. Its goal is to find model parameters that result in renderings that match

the photographs. The method quantifies the differences between photographs and

renderings with an objective function, and minimizes its value through stochastic

gradient descent on the model parameters.

To implement this method, we must obtain derivatives of the objective function

with respect to the model parameters, which in turn requires differentiating the

rendered images with respect to the parameters. We begin with an introduction

to a derivative estimation method from stochastic simulation and its application

to path tracing. We then discuss the choice of objective function and the gradient

descent optimization.
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5.5.1 Derivative Estimation

In the path integral formulation of physically based rendering (Section 2.3.1), the

pixel intensity is proportional to the incoming radiance to a point on the camera’s

sensor. Consider a scattering model parameter ϑ. The incoming radiance depends

on ϑ as follows:

Li(x0, ω0;ϑ) =

∫
P
fϑ(x⃗) dx⃗.

where x0 is a point on the camera’s sensor, ω0 is a direction, P is the space of all

paths starting with (x0, ω0), and fϑ(x⃗) is the contribution of the path x⃗, with the

dependence on ϑ being made explicit.

Assuming that fϑ is Lipschitz continuous2, it is possible to compute the deriva-

tive of I(ϑ) by passing the derivative operator through the integral:

dLi(x0, ω0;ϑ)

dϑ =
d
dϑ

∫
P
fϑ(x⃗) dx⃗ =

∫
P

dfϑ(x⃗)
dϑ dx⃗.

This integral, then, can be estimated by Monte Carlo integration:

dLi(x0, ω0;ϑ)

dϑ =

∫
P

(dfϑ/dϑ)(x⃗)
p(x⃗) p(x⃗) dx⃗ = EX⃗

[
(dfϑ/dϑ)(X⃗)

p(X⃗)

]
where p is any fixed probability distribution, and X⃗ is a path random variable with

distribution p.

Now, we want to evaluate the derivative at ϑ = ϑ0. Since p is an arbitrary

fixed probability distribution, we can use importance sampling based on the value

ϑ0 to pick an efficient probability distribution pϑ0 . Then, an unbiased estimator of

I ′(ϑ0) is given by:

(dfϑ/dϑ)|ϑ=ϑ0(x⃗)
pϑ0(x⃗)

(5.9)

2A function f : X → Y is Lipschitz continuous if, for all x1, x2 ∈ X, we have that
dY (f(x1), f(x2)) ≤ KdX(x1, x2) for some constant K ≥, where dX and dY are metrics on X and
Y , respectively.
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where x⃗ is a path sampled according to pϑ0 .

From Section 2.3, f consists of a product of terms such as BSDF evaluations,

volume transmittances, and radiance from emitters. Abstracting the origins of the

individual terms, this may be written as:

fϑ(x⃗) =
K∏
k=1

fk,ϑ(x⃗).

As a result,

dfϑ(x⃗)
dϑ = fϑ(x⃗)

K∑
k=1

(dfk,ϑ/dϑ)(x⃗)
fk,ϑ(x⃗)

.

Substituting the above into (5.9), the expression evaluated by the estimator for

dLi/dϑ is:

fϑ0(x⃗)
pϑ0(x⃗)

[ N∑
k=1

hk,ϑ0
(x⃗)︷ ︸︸ ︷

(dfk,ϑ/dϑ)|ϑ=ϑ0(x⃗)
fk,ϑ0(x⃗)

]
.

Implementation

Instrumenting a path tracer to estimate dLi/dϑ is relatively straightforward. First,

we must extend the implementations of the BCSDF and the phase function so that

they can output the (partial) derivatives with respect to the model parameters (i.e.,

CR, βR, and so on). How we compute derivatives depends on how different parts

of the BCSDF are evaluated. When a part is evaluated directly (for example, the

term for the Rmode), we symbolically differentiate the expression for that part and

write another piece of code to carry out the derived calculation. Other parts, such

as the probability distribution in the derived phase function, are tabulated. For

these parts, we also tabulate the derivatives with respect to relevant parameters

as we tabulate the parts.
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Second, we must modify the path tracing algorithm so that it computes both the

estimate for the incoming radiance Li and the estimate for its derivative dLi/dϑ

at ϑ0. This modification is the simplest when we work with the non-recursive

versions of the path tracing (Figure 2.4 and Figure 2.7). The idea is to maintain

the running sum

Hj :=

j∑
k=1

hj,ϑ0(x⃗) =
j∑

k=1

(dfk,ϑ/dϑ)|ϑ=ϑ0(x⃗)
fk,ϑ0(x⃗)

in addition to the throughput variable Tj. The derivative can be obtained by

multiplying Tj, Rj, and some other appropriate terms together. The pseudocode

for the derivative-computing surface path tracer is given in Figure 5.3 and one for

the derivative-computing volume path tracer is given in Figure 5.4.

What we have described so far is how to estimate the derivative with respect

to one parameter. However, to optimize for the best parameters, we need the

gradient, which is the vector of partial derivatives with respect to all parameters.

Computing partial derivatives is equivalent to finding the derivative of each pa-

rameter independently, so we can modify the path tracing algorithm to compute

all partial derivatives in parallel by simply maintaining the derivative estimate d̃Li

and the running sum Hj separately for each parameter.

As examples of outputs that the modified path tracer produce, Figure 5.5 shows

visualizations of the (partial) derivatives of images of the Fleece fabric model under

two lighting/viewing configurations.

5.5.2 Measurements

To derive a model that matches a real piece of fabric, we need measurements of

that fabric to match against. For each fabric, we took 16 photographs of a flat

129



Derivative-Computing-Surface-Path-Tracing(x0, ω0, ϑ0)

◃ Instead of the BRDF fr, we use the BCSDF S as the light scattering model.
We also assume that all fibers has the same BCSDF.

◃ This function returns two values: the estimate of Li(x0, ω0)
and its derivative (dLi/dϑ)|ϑ=ϑ0 where ϑ is a parameter of S.

1 Cast ray from (x0, ω0) to determine the hit point x1.
2 if x1 = ∅
3 return (Lenv(ωo), 0)

4 L̃i = Le(x1,−ω0) and d̃Li = 0
5 j = 1 and Tj = 1 and Hj = 0
6 while true
7 Sample direction ω′

j with probability p′j(ω
′
j).

8 Cast ray (xj, ω
′
j) and determine the hit point x′

j+1.
9 if x′

j+1 = ∅
10 L̃dir

i = Lenv(ω
′
j)

11 else
12 L̃dir

i = Le(x′
j+1, ω

′
j)

13 L̃i = L̃i + TjL̃
dir
i S(ω′

j,−ωj−1) cos θ′j/p′j(ω′
j)

14 d̃Li = d̃Li + TjL̃
dir
i S(ω′

j,−ωj−1) cos θ′j/p′j(ω′
j)
(
Hj +

dS(ω′
j ,−ωj−1)/dϑ|ϑ=ϑ0

S(ω′
j ,−ωj−1)

)
15 Toss a coin that shows head with probability pt.
16 if the coin shows head
17 break
18 Sample direction ωj with probability pj(ωj)
19 Cast ray (xj, ωj) and determine the hit point xj+1.
20 if xj+1 = ∅
21 break
22 else
23 Tj+1 = TjS(ωj,−ωj−1) cos θj/((1− pt)pj(ωj))

24 Hj+1 = Hj +
(dS(ωj ,−ωj−1)/dϑ)|ϑ=ϑ0

S(ωj ,−ωj−1)

25 j = j + 1

26 return (L̃i, d̃Li)

Figure 5.3: Pseudocode of the derivative-computing surface path tracing al-
gorithm.
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Derivative-Computing-Volume-Path-Tracing(x0, ω0, ϑ0)

◃ We assume all points in the volume has and the same albedo α and
the same phase function fp, which is derived from the BCSDF.

◃ This function returns two values: the estimate of Li(x0, ω0)
and its derivative (dLi/dϑ)|ϑ=ϑ0 with respect to parameter ϑ.
Here, ϑ is a parameter of fp or one of the components of the albedo α.
We do not differentiate with respect to parameters related to σt.

1 L̃i = 0 and d̃Li = 0
2 j = 0 and Tj = 1 and Rj = 0
3 while true
4 sj = Woodcock-Tracking(xj, ωj)
5 if sj = ∞
6 L̃i = L̃i + TjLenv(ωj)

7 d̃Li = L̃i + TjHjLenv(ωj)
8 break
9 xj+1 = xj + sjωj

10 Toss a coin that shows head with probability pt
11 if the coin shows head
12 break
13 Sample ωj+1 with probability p(ωj+1).
14 Tj+1 = Tj

αfp(xj+1,−ωj+1,−ωj)

(1−pt)p(ωj+1)

15 Hj+1 = Hj +
d(αfp(xj+1,−ωj+1,−ωj)/dϑ|ϑ=ϑ0

αfp(xj+1,−ωj+1,−ωj)

16 j = j + 1

17 return L̃i

Figure 5.4: Pseudocode of the derivative-computing volume path tracing al-
gorithm.

sample of the cloth illuminated by a 10cm×10cm square light source located about

61cm from the sample. Between measurements, we move the camera and the light

source around hemispheres centered at a point on the fabric. Each photograph

is cropped to a square covering roughly 1cm × 1cm area of the material around

the center point of the camera’s orbit. Figure 5.6 visualizes the 16 measurement

configurations we use for appearance matching, with the corresponding cropped

photographs of Fleece.
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image CR CTT βR βTT γTT

32,32

80,80

For two view configurations, we show the rendered Fleece and visualizations of its deriva-
tives with respect to each parameter of the scattering model of Section 5.4. In the
derivative images, gray (shown in the borders) indicates a value of zero, while lighter
and darker values in each channel indicate positive and negative values, respectively. For
scalar parameters, the image shows how each channel changes with respect to the pa-
rameter. For the color parameters, each channel of the parameter affects a single channel
of the rendering, so the image visualizes the derivative of each channel of the rendering
with respect to the color parameter in that channel. Derivative magnitudes are not to
scale across images.

Figure 5.5: Renderings and derivatives with respect to fitted parameters of
the Fleece model.

A number of factors influenced our choice of using 16 measurements. First,

because there are 12 parameters to fit3, there must be at least 12 observations

to have a well-posed problem. Second, we generally would like to use as few

measurements for fitting as possible because rendering detailed geometry with full

light transport simulation is time consuming. Third, however, we would like enough

diversity in lighting and viewing configurations. We settled on 16 measurements,

which allows us to include 4 types of light/camera elevations (the columns of

Figure 5.6), 2 types of fabric rotations (the odd rows versus the even rows), and

whether the light source and the camera are in the same plane or not (Row 1 and

2 versus Row 3 and 4).
3The number of parameters comes from the combination of using the volumetric microge-

ometry model and the phase function derived from the fiber scattering function in Section 5.4.
The parameters are CR (3), βR (1), CTT (3), βTT (1), γTT (1), and α (3), so in total there are
3 + 1 + 3 + 1 + 1 + 3 = 12 parameters.
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80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

The icons indicate the orientation of the material (bolded edges), the light source (brown),
and the camera (blue); the normal angles to the camera and light are given beneath. Due
to limitations of the measurement apparatus, normal angles of 80 degrees in the final row
are constrained to 64 degrees.

Figure 5.6: Measurements used in fitting process.

5.5.3 Objective Function

To optimize for parameter values, we need an objective function, which is a scalar

valued function that summarizes the difference between the photographs and the

corresponding renderings. We denote the objective function by f(R⃗ϑ⃗, M⃗) where

ϑ⃗ is the vector of values of all the rendering parameters, R⃗ϑ⃗ is the vector of pixel

intensities of the rendered images when the parameters are set to ϑ⃗, and M⃗ is the

same vector of the photographs.

The photographs and the rendered images show views of the material under

matching conditions, but do not show the same piece of fabric, so the objective

function must compare the images without depending on the details being the

same. The simplest way to do this is to average the whole image so that differences

in the spatial details do not matter. Therefore, we form the measurement vector

M⃗ by concatenating the average intensities of the 16 measured images in each
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color channel. In effect, we rely on fiber-level microgeometry to ensure a texture

that is at least plausible. We optimize only against the average intensities of our

measurements, guaranteeing that the base color and highlight of the material,

which are visible at near and far scales, are captured accurately.

We now discuss our choice of the objective function f . Recall that the rendered

measurements R⃗ϑ⃗ and their derivatives are only available as unbiased estimates

from the renderer, so we will not be able to calculate f or its gradient exactly.

Moreover, if one desires the theoretical convergence properties of stochastic gradi-

ent descent, we must calculate an unbiased estimate of f and its gradient. Thus,

f must interchange with expectations as follows:

E[f(R⃗ϑ⃗, M⃗)] = f(E[R⃗ϑ⃗], M⃗). (5.10)

We observe that all multivariate polynomials in the components of R⃗ϑ⃗ satisfy the

above property, as long as any rendered values R⃗ϑ⃗(i) that occur in the same product

are uncorrelated, e.g., by being calculated in separate renderings.

Our objective function takes the form of a weighted sum of terms fimage calcu-

lated per image:

f(R⃗, M⃗) =
N∑
i=1

wifimage(R⃗(i), M⃗(i)) (5.11)

where R⃗(i) and M⃗(i) contain the average intensities in each channel of the render

and photograph of configuration i, respectively. The per-image terms are:

wi =
1

max(ai, τ)2

fimage(R⃗(i), M⃗(i)) =
∑

c∈{r,g,b}

(R⃗(i)c − M⃗(i)c)
2. (5.12)

The weight wi is chosen such that each term of the sum in (5.11) approximates

the square of the relative error between fimage and M⃗(i). For simplicity, we use
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the average intensity ai = (M⃗(i)r + M⃗(i)g + M⃗(i)b)/3 of photograph i instead of

assigning different weights to different channels. We calculate the relative error of

each measurement to avoid overfitting the intensities of particularly bright images

such as when the camera views the specular highlight produced by the light source

at grazing angles.

Additionally, we threshold the weights of dark photographs to not be lower than

1/τ where τ is set to 0.02 for all the fittings. Introducing the threshold prevents

the optimization from overfitting the intensities of very dark images, where even

differences due to the dark current noise produced by the camera may result in a

large relative error in intensity.

As mentioned earlier, we want to evaluate an unbiased estimate of f , given the

unbiased estimates of average intensities obtained from the renderer. Because fimage

contains squares of the per-channel average intensities Ri,c of the rendered images,

each image must be rendered twice independently to make them uncorrelated. In

this way, we may compute the squared difference without introducing bias.

5.5.4 Stochastic Gradient Descent Optimization

We now wish to explore the space of rendering parameter configurations ϑ⃗ to

minimize the value of f . For convenience, consider f as a direct function of the

parameters ϑ⃗. In stochastic gradient descent, we start with an initial parame-

ter value ϑ(0). We then iteratively modify the parameter values in the opposite

direction of the (estimated) gradient:

ϑ⃗(i+1) = ϑ⃗(i) − αi ∇f
(
ϑ⃗(i)

)
, (5.13)
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where αi is a scaling factor, often called the learning rate, that changes as the

iteration proceeds. Despite the noise in the gradient estimate, it can be shown

that the iteration converges to the global optimum given that f is convex over

the search space and that the learning rates decrease at the appropriate speed:

namely, if
∑∞

i=1 α
2
i < ∞ and

∑∞
i=1 αi = ∞ [7].

In our implementation, we choose the harmonic series αi = a/i as the learning

rates, where a is a constant. While the choice of a has no effect on the convergence

guarantee, choosing a value that makes the optimization converge quickly is critical

in practice. To make finding one possible, we non-linearly scale the parameter space

using the process described in Section 5.5.5.

We perform the gradient descent as follows. Initializing ϑ⃗ to a starting value ϑ⃗

(defined in the next section), we run six different stochastic gradient descent itera-

tions for exponentially bracketed choices of the learning rate multiplier a, running

each for 60 iterations. To slow the 1/i decay of the step size while preserving the

convergence guarantees of SGD, we initialize the iteration number i to 50. We

select the optimized parameters with the lowest reported objective function value

f(R⃗ϑ⃗, M⃗) as our result. In some instances, the gradient descent yielding the least

residuals continued to oscillate intensely around a local minimum of the objective

function after 60 iterations; in such cases, we performed a final 10 iterations at one

tenth the last learning rate to descend to the local minimum.

5.5.5 Parameter Rescaling and Ranges

A suitable learning rate is hard to find when regions in parameter space have large

differences in their gradient magnitudes. Such a situation complicates the selection
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Parameter Lower Bound Upper Bound ϑ
CR 0.001 0.999 0.1
CTT 0.001 0.999 0.85
βR 1.0◦ 10.0◦ 5.0◦

βTT 10.0◦ 45.0◦ 10.0◦

γTT 1.0◦ 45.0◦ 10.0◦

α 0.001 0.999 0.85
γ 0.005 1.5 N/A
d N/A N/A 4000.0

The final column lists the default parameter values comprising the ϑ⃗ of the rescaling
process described in Section 5.5.5. α and d denote the albedo and density multiplier
when rendering volume geometry (the latter is held fixed). Parameter fitting for the
microflake model by the method of [109] use the stated ranges for α and γ. For the black
Velvet, a lower bound of 0.04 was used for CR.

Table 5.1: Fitting domains of rendering parameters.

of the learning rate because:

• The process may enter a neighborhood where gradients have small magni-

tude. If the learning rate is too small, it will spend a long time moving in

short increments through this region.

• The region surrounding a local optimum may have gradients with large mag-

nitude. If the learning rate is too large, the optimization process will repeat-

edly overshoot the local minimum many times before converging.

For example, a rendering of cloth will change much more dramatically with respect

to the TT mode color, CTT , when the parameter value is large than when the value

is small. As such, a large learning rate is needed when CTT is small, and a small

learning rate is needed when CTT is large. A situation might arise where no single

learning rate works well on all regions.

We mitigate the effect of disparity in gradient magnitudes by automatically

defining a mapping r from the rendering parameters ϑ⃗ to a space of search pa-
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rameters r(ϑ⃗). The stochastic gradient descent is performed in this rescaled space

instead of the space of rendering parameters. Our goal is to find a mapping such

that a unit change in the remapped space r(ϑ⃗) corresponds to a constant change

in the objective function value. To approximate this, we choose a starting con-

figuration ϑ⃗ of the rendering parameters and rescale each parameter individually

based on its effect on the objective function near this configuration.

For each parameter ϑ⃗p, we define a mapping rp for the parameter as follows.

We fix all other parameters to the values specified by ϑ⃗, and calculate the average

intensities R⃗ obtained by setting parameter ϑ⃗p to an ascending sequence of values

c1, . . . , ck spanning the range we will permit the optimization to explore for this

parameter. We then define rp at the values cj as shown below, and extend it to a

piecewise linear function on the domain [c1, ck]:

rp(c1) = 0

rp(cj+1)− rp(cj) =
N∑
i=0

wi

√
fimage(R⃗ϑ⃗,ϑ⃗i=cj

(i), R⃗ϑ⃗,ϑ⃗i=cj+1
(i)). (5.14)

As ϑ⃗p increases from cj to cj+1, the increase in the function rp(ϑ⃗p) is equal to the

change in the averages R⃗, though we actually compute the square root to counter

the nonlinearity of fimage. Consequently, regions of the domain of permitted values

of ϑ⃗p that correspond to a large change in R⃗ are mapped to larger regions in

the space of search parameter values rp(ϑ⃗p). Figure 5.7 visualizes the calculated

rescaling curves rp for parameters of the scattering model of Section 5.4 that have

large disparity between derivative magnitudes in different regions.

The rescaling function r for all the parameters, a vector function, is formed by

assembling the per-parameter functions rp. However, we treat scalar parameters

(βR, γR, and γTT ) differently from color parameters (CR and CTT ). For each scalar

parameter p, we compute rp as detailed above and use the same function in the

138



0 1 2 3
·10−2

0

0.5

1

r(CTT )

CTT

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·10−2

0

20

40

r(γTT )

γTT

The curves relate the parameters r(ϑ) optimized by the gradient descent to the rendering
parameters ϑ. The starting parameter configuration ϑ⃗ is given in Table 5.1.

Figure 5.7: Calculated rescaling curves for the CTT and γTT parameters of
the scattering model of Section 5.4 for Fleece.

assembly of r. On the other hand, we treat a color parameter p as three separate

scalar parameters that always have the same value when computing the rescaling

curve rp. Consequently, changing the (scalar) value of p is equivalent to changing

the value of three scalar parameters at the same time. Thus, when assembling r,

we set the per-channel function rred
p , rgreen

p , and rblue
p to rp/3 instead of rp.

Compared to not rescaling the parameters, our approach handles the images’

different sensitivity to unit change of different parameters better. For example, we

found that the rendered images are much more sensitive to changes in CTT than in

γTT , so at least a component-wise linear rescaling was essential. However, adding

non-linearity was also very important. Before employing the rescaling method we

proposed, we found it difficult to fit to a material that was relatively bright in at

least one channel in grazing configurations. As a specific example, the rendered

images were so sensitive to CTT in the grazing configurations that, unless the initial

condition was very near to the correct value, the gradients were large enough to

push the CTT value to both extremes of the domain unless the step size was very

small.
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Table 5.1 lists the ranges of values we permit each parameter to take during

the optimization. The varying ranges permitted for the lobe widths are due to

practical considerations. We observed that values of βR greater than 10 degrees

led to an implausibly diffuse fiber-level appearance without significantly affecting

the average intensities fitted against by the optimization. Moreover, values of

βTT less than 10 degrees led to instability in the fitting process, as they greatly

increased the sensitivity of the rendered images to the CTT parameter in grazing

views with intense highlights. For the black Velvet, we constrained CR to be at

least 0.04.

The rightmost column of Table 5.1 lists the default parameter values used when

rendering images to define the rescaling functions rp. We chose values we believed

would be typical of an “average” material, so that the rescaling is defined relative

to a region of the parameter space we expect to be most heavily explored by the

optimization. For each parameter, we choose a nine-value sequence c1, . . . , c9 for

use in defining the function r, assigning values cj more finely towards the upper

bound of CTT and towards the lower bounds of CR, βR, βTT , and γTT , capturing

the greater sensitivity of the rendered images to values of the parameters in those

regions. More details on these values can be found in Appendix B.1.

For volume geometry, we include the single-scattering albedo α in the fitting

process but leave the density multiplier d fixed. As shown in Figure 5.8, we ob-

served that when fitting against the photographs, all of which place both the

camera and light source above the plane of the material, the value of d did not

significantly affect the ability of the optimization to match the photographed ap-

pearance. Under draped configurations, though, fitted parameters with a low d

resulted in an unacceptably “thin” appearance.
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(a) (b) (c)

When the camera and light are both above the plane of the material, reducing the density
from (a) 4000 to (b) 2000 to (c) 1000 has minimal effect on the ability of the optimization
to recover the same appearance. In draped configurations, though, a scale of 1000 leads
to an unrealistically thin appearance.

Figure 5.8: Fitted Fleece results for volumes of different density scales d.

5.6 Fabric Geometry Construction

In this section, we show how to construct fabric microgeometry. We construct

two representations: a surface-based one and a volumetric one. The surface-based

representation is a collection of discrete surfaces modeling the surfaces of individual

fibers, while the volumetric representation stores density and fiber direction in a

high resolution voxel grid.

Both representations are created from micro CT scans of cloth samples ac-

cording to the pipeline in Figure 5.9. We use Zhao et al.’s [109] image processing

pipeline to compute a preliminary volumetric representation, a voxel array contain-

ing (1) the density of the material in each voxel, and, (2) the local direction of the

fiber at that voxel. From this volume, we infer locations of textile fibers and then
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Micro CT
images

Image
processing

pipeline
[Zhao 2011]

Volumetric geometry

Fiber geometry construction
(Section 5.6.1 to 5.6.5)

Fiber mesh geometry

Transferring fiber directions
(Section 5.6.7)

Volumetric geometry with
consistent fiber directions

Figure 5.9: Fabric geometry creation pipeline.

construct cylindrical surfaces to cover them. This gives us the surface-based fiber

representation. Lastly, we use this fiber model to improve the consistency of the

preliminary fiber direction volume, resulting in the final volumetric representation.

We first focus on the process that converts the volumetric representation to

fibers. The input to this process is a voxel array with density and direction, and

the output is fiber geometry in the form of a collection of 3D polylines. Each

segment of polyline acts as the axis of symmetry of a cylinder with circular cross-

section, and consecutive cylinders sharing a vertex are joined with a miter joint,

producing a continuous 3D surface for rendering.

We assume that the input volume is roughly axis-aligned; i.e., the weft fibers

are roughly along the x-axis, the warp fibers along the y-axis, and in case of fabrics

such as velvet, vertical fibers along the z-axis.

To produce fiber geometry, the following steps are taken:

1. Volume decomposition. The input density volume is decomposed into three

volumes corresponding to the x-, y-, and z-axis. In this way, the warp, weft,
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and vertical fibers can be processed separately along their length.

2. Fiber center detection. The 2D slices of each volume along the corresponding

axis are processed independently to detect cross sectional centers for fibers

going through the slices.

3. Polyline creation and smoothing. Nearby fiber centers in adjacent slices are

linked together to form chained polylines in 3D. These polylines act as skele-

tons of the reconstructed fibers. Short polylines are removed, and the union

of all polylines from the three volumes become the polylines for the entire

volume. These polylines are then smoothed.

4. Radius determination. The single radius of all the cylinders constituting the

fiber surfaces is then determined.

We now discuss each of these steps in more detail.

5.6.1 Volume Decomposition

The first step is to separate the model into three subvolumes containing only

the fibers oriented (approximately) along the warp, the weft, and the vertical

directions. The three subvolumes are created simply by associating each voxel

with the coordinate axis closest to its direction vector (determined by selecting

the component of the direction vector that is largest in absolute value). The three

subvolumes are later processed independently to recover fibers that run primarily

in each volume’s associated direction.

Figure 5.10 depicts the result of decomposing a micro CT scan volume of Velvet,

which has pile fibers sticking up perpendicular to the overall plane of the fabric.
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original x-dominant y-dominant z-dominant

Figure 5.10: The density volume obtained from a micro CT scan of Velvet
and its three decomposed volumes.

We see that the x- and y-dominant volumes primarily contain voxels in the woven

part (one for the warp, the other for the weft), and the z-dominant volume mostly

contains the pile fibers. Noise voxels can be observed in all the volumes and can

give rise to short extraneous fibers, which are removed later in the pipeline.

5.6.2 Fiber Center Detection

Each subvolume is processed in 2D slices perpendicular to its dominant direction,

with the goal of locating where each fiber crosses each slice. Since fibers are roughly

perpendicular to the slices, they appear as compact blobs of higher density. To

determine the centers of these blobs, we apply the standard blob detector which

convolves the slice image with Laplacian-of-Gaussian filters at several scales, and

then finds the local minima of the response in both scale and spatial domain

[43]. Figure 5.11 shows fiber centers detected in a slice of the z-dominant axis

of the Velvet volume in Figure 5.10. The result is a collection of fiber locations

{(i1, j1), (i2, j2), . . . , (im, jm)} for each slice, which must be matched up across slices

to produce 3D fibers.
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(a) (b) (c)
(a) A slice of the z-dominant subvolume of Velvet in Figure 5.10 in 3D view, (b) the slice
viewed as a 2D image, and (c) the result of the convolution of the Laplacian of Gaussian
filter to the slice image with the detected blob positions depicted as small red squares.

Figure 5.11: Processing a slice of the Velvet volume.

5.6.3 Fiber Building

In this step, we connect the detected fiber centers to create polylines representing

the individual fibers. Contrary to previous approaches to fiber detection that grow

fibers one after another [33, 46], we view this as a matching task: we first decide

which detected centers in all pairs of neighboring slices belong to the same fiber,

then extract maximal paths in the resulting graph to determine the polylines to

generate.

We connect fibers across slices by solving a series of bipartite graph matching

problems, each matching the fiber centers detected in slice k to the centers in slice

k+1. These fiber centers become vertices in a weighted bipartite graph. Edges are

constructed between vertices on different slices with weights inversely proportional

to the in-plane distance between the end points. In particular, between point a in

slice k and point b in slice k + 1, there is an edge with weight:

w(a, b) = exp(−d(a, b)2/(2σ2))

d(a, b) =
√

(ia − i′b)
2 + (ja − j′b)

2.
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or zero if d(a, b) > σ. We used σ = 5 voxels for all the fabric volumes we processed

in this chapter.

The maximum weighted bipartite matching can be solved to an approximation

ratio of 1/2 using an O(n2 logn) greedy algorithm [19], which is much faster at our

problem size than the optimal but O(n3) Hungarian algorithm. We found that the

greedy algorithm worked well with our data.

Due to noise, this process generates many short polylines in addition to the

long polylines corresponding to well-tracked fibers. We retain only polylines with

at least 10 vertices when we collect the results from the x, y, and z volumes

together. Figure 5.12 shows the result of this step on the Velvet volume.

5.6.4 Polyline Smoothing

Because fiber centers are located independently per slice, the raw polylines are

noisy (see Figure 5.12). To reduce noise we smooth them as described in [46]. New

vertex positions p1, p2, . . . , pn are computed to minimize the energy:

E =
∑
i

α∥pi − p
(0)
i ∥2 + ∥pi−1 − 2pi + pi+1∥2

where p
(0)
i is the original 3D position of the ith vertex, and α = 0.1.

5.6.5 Radius Determination

Given the collection of polylines determined above, we now need to compute a

value for the fiber radius to fully define the set of 3D cylinders that represent the

146



x-dominant

y-dominant

z-dominant unioned polylines

before smoothing after smoothing

Figure 5.12: Polylines generated by the fiber growing process and the effect
of smoothing on some generated polylines.

fibers. We choose the radius to match the volume covered by the fibers to the

voxels that is occupied by fibers in the original volume.

More concretely, we first upsample the original volume by a factor of 4. Then,

given a candidate value r of the radius, we rasterize cylinders of radius r around

all polylines into a volume of the same resolution. The score for the value r is

given by:

score(r) = |C(r) ∩ V | − |C(r)⊗ V |

where,

• C(r) is the set of voxels contained in one of the cylinders when the radius
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Cotton Fleece Gabardine Silk Twill Velvet

original
volume

fiber
geometry

Figure 5.13: Visualizations of original micro CT scan volumes of six pieces
of fabric and their reconstructed fibers.

is set to value r,

• V is the set of non-empty voxels in the original volume, and

• ⊗ is the symmetric difference operator:

A⊗B = (A ∪B)− (A ∩B).

The radius values are found by trying out 20 evenly spaced values between w to

4w, where w is the width of a voxel in the original volume.

5.6.6 Results and Discussions

Figure 5.13 compares renderings of the original micro CT scan volumes of six

fabrics with the constructed fiber geometry. In general, the fibers agree with the

geometry of the volume but look a bit thinner because (1) the pipeline filtered out

many short fibers, and (2) the radii were determined in part by trying to minimize

the number of voxels covered by the cylinders but not the original volumes.

We note that our pipeline can break highly curved fibers into disconnected

pieces when different parts of the fiber belong to different decomposed volumes.
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We do not attempt to reconnect the fibers, since, as we shall see in the final

rendering of the fabric model, some broken fibers are acceptable at typical viewing

distances where fibers are not clearly resolved.

Our pipeline requires a scan resolution that resolves individual fibers well. It

also requires that the fiber cross sections appear circular or elliptical at the scanned

resolution, which might not be true for synthetic fibers such as Rayon, Nylon, and

acetate.

5.6.7 Improving volume direction fields

In real cloth, fine-scale irregularities in the fibers have a major effect on luster:

smooth, well aligned fibers (as in many silks and synthetics) reflect coherently and

produce bright highlights, whereas kinky and irregularly arranged fibers (cotton,

wool) reflect to a range of directions, producing a less shiny appearance. In fiber or

volume models, noise in the fiber curves or the direction volumes can introduce a

similar change in appearance—noise makes it impossible to match the appearance

of smooth fibers as seen in Silk or Velvet.

Smoothing of polylines is very effective in removing this noise without disturb-

ing fabric structure or over-smoothing less organized fabrics. But when smoothing

directions in a volume, naïve approaches can easily smooth out important features

by mixing the directions belonging to different fibers. Rather than pursuing more

complex noise-reduction methods for the volume direction fields and to keep the

comparison between fibers and volumes on an equal footing, we smoothed the vol-

ume direction fields by simply transferring the directions from the fiber models

onto the volume model. This is implemented by setting the direction of any voxel
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Before direction
improvement

After direction
improvement

Fabric
swatch

Draped
fabric

Rendering

Rendering
zoom-in

The first two rows depict the local fiber direction at the first interaction between the
eye ray and the volume, visualizing the absolute values of the x, y, and z components
of direction as an RGB color. The volume in the second row is obtained by tiling the
swatch from the first row and then warping the tiled volume with a shell map, as done
in [109].

Figure 5.14: The effect of fiber direction consistency on appearance.

contained in a fiber cylinder to a unit vector parallel to the fiber. To increase cov-

erage, we use cylinders of radius 2r instead of r, where r is the radius determined

in Section 5.6.5.

The result of the above process can be observed in the second column of Fig-

ure 5.14. We can see that the direction field becomes much less noisy, and the

highlight in the rendering becomes much more prominent relative to the base color
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of the material.

In summary, we have shown how to compute a surface-based fiber representa-

tion from the micro CT data, and how to transfer the smoothed directions from this

representation to create a volumetric representation. We will now compare these

two representations to evaluate their ability to represent real fabrics accurately.

5.7 Results

In this section, we present the results of our appearance matching pipeline and

compare various model representations for a range of fabrics. We first detail our

use of the geometry processing pipeline. Then, we present the matching results

and evaluate our appearance-matched models against the photographed materials

in different configurations to validate our approach.

5.7.1 Data Acquisition and Processing

We processed 6 cloth samples whose details are given in Table 5.2. All samples,

except for Gabardine, were scanned with the XRadia VERSA XRM-500 scanner

at the Cornell Imaging Multiscale CT Facility. Gabardine’s scan was made at the

High-Resolution X-ray Computed Tomography Facility at The University of Texas

at Austin. Each volumetric scan, except Fleece, was rotated so that the fibers are

aligned with the x-, y-, and z- axis according to the requirement in Section 5.4.

The volumes were then cropped so that they can be easily tiled.
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Name Material Weave Color Voxel size Data size s t h ϵd ϵJ Fiber radius
Fleece N/A unwoven∗ blue 6.60 µm 500× 540× 586 2.00 3.00 11 0.23 −14 8.68 µm

Gabardine wool twill red 5.00 µm 671× 457× 233 1.00 2.00 16 0.45 −10 16.05 µm
Silk silk satin red 1.40 µm 780× 530× 160 1.00 2.00 11 0.55 −30 4.72 µm

Velvet N/A unwoven black 3.03 µm 430× 478× 524 0.25 0.75 15 0.58 −155 9.25 µm
Twill N/A twill green 2.51 µm 570× 715× 165 1.00 2.00 11 0.46 −16 4.88/7.27 µm
Cotton cotton gauze white 5.50 µm 461× 440× 160 0.25 0.75 13 0.41 −5 8.97µm

Note: The data sizes were computed after the rotation and cropping were performed. The s, t, h, ϵd and ϵJ are the
parameters for the image processing pipeline described in [109]. Twill fabric has two fiber radii because the warp and
the weft fibers are of different sizes. ∗Fleece is a knit fabric processed so that the visible surface is similar to felt.

Table 5.2: Cloth samples, volumetric model parameters, and fiber radii.
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Some volumes and their associated fibers received the following special process-

ing:

• The Silk volume was sheared to align the warp and weft yarns with the x-

and y- axes, respectively.

• The warp and weft yarns of Twill are composed of different types of fibers

with different radii. To capture this difference, we independently ran the

radius determination procedure for fibers generated from the x-dominant

and y-dominant subvolumes.

• To reduce seams when tiling fabrics with evident regular structure — i.e.,

Silk, Gabardine, and Twill — we created Wang tiles [15] of the volumes

based on their top-down views and used the Wang tiles as source volumes to

generate fibers instead of the original volumes.

• Some x- and y-slices of the Cotton volume were removed to ensure that the

spacing between the warp and weft yarns roughly match the photographs

taken for parameter fitting. This is done so that the area of the rendered im-

age that is covered by a fiber is roughly the same as that of the photographs.

Since the weave pattern of the material is quite loose, the inter-yarn spacing

may change locally depending on the handling of the material.

The photographs of cloth samples were taken using the Cornell spherical gantry

equipped with a Canon EOS 50D camera and a 10cm×10cm LED area light source.

The fabrics were mounted on a turntable whose top is a black metal plate. As a

result, the photographs did not capture the appearance of the fabrics alone but

the appearance of the fabrics with the metal plate underneath them. We simulate

this condition by inserting a black mesh underneath all the fabrics being rendered.
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For each of the fabric samples, we created three complete fabric models:

• The first uses the fiber mesh geometry we reconstruct (Section 5.6) and our

fiber scattering model (Section 5.4). This model allows us to explore the

capability of the fiber geometry/fiber appearance approach. We refer to this

combination as “Fiber/BCSDF”.

• The second uses the volumetric geometry representation with improved di-

rection field (Section 5.6.7) and the phase function derived from the fiber

scattering function (Section 5.4.3). This model allows us to assess the vol-

umetric geometry/fiber appearance approach. We refer to this combination

as “Volume/BCSDF”.

• The third uses the same volumetric geometry representation as the second

approach with the microflake-based phase function as specified in [109]. This

model allows us to compare the above two new approaches against Zhao

et al.’s work. We refer to this combination as “Volume/microflake”.

We compute the scattering parameters for the Volume/microflake model by

adapting the fitting procedure from Zhao et al.’s work to the measurements used

for the other models we evaluate. Zhao et al. photograph a curved sample of

the material, isolate a region of the image with varied appearance, and assign

microflake model parameters to match the mean and variance of the pixels in the

region. To approximate this, we concatenate the images used by our appearance

matching method and treat the concatenated image as the region to optimize.

As shown in Figure 5.15, the microflake model is incapable of reproducing the

extreme highlights seen in two of the fitting images, so we omit these when fitting

the model.
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We performed all appearance matching using PCs with 2.27 GHz Intel XEON

CPUs and at least 64 GB of RAM. A scene configuration is rendered into a 64×64

image at 64 samples per pixel. An iteration with 16 configurations, each rendered

two times, took about 14 minutes to complete on a single core. We performed

60 iterations, and the whole process took about 14 core-hours for a fabric sample

modeled with either the Fiber/BCSDF and Volume/BCSDF models. The Vol-

ume/microflake fitting took 2 core-hours because the microflake model was faster

to compute and 27 binary search iterations were performed.

5.7.2 Validation

Validation in planar configurations Figure 5.19 shows the photographs used

by the appearance matching process for each material alongside renderings pro-

duced by the three models. Figures 5.20 and 5.21 show the scatter plots of the

average pixel values of the photographs versus the renderings. The supplementary

material of [39] contains 492 more validation configurations that were not used for

fitting. The corresponding fitted parameter values are given in Table 5.3.

Validation in non-planar configurations To evaluate the qualitative appear-

ance in more natural configurations, Figure 5.22 shows the fabrics wrapped around

a cylinder of radius 1.5cm and the renderings of the three models in the same con-

figuration. Figures 5.23 and 5.24 plot the average pixel values of each column of

the images in Figure 5.22, allowing us to quantitatively compare the methods.4

Figure 5.25, and Figure 5.26 shows the renderings of the fabrics in a simple draped
4The photographs and the corresponding renderings are not aligned horizontally. As a result,

we shift the photograph in the x-axis so that the peak in the ϕi −ϕo = 162◦ configuration aligns
with the peaks of the renderings.
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The camera and light source are at a normal angle of 80 degrees and in a
plane with the imaged point on the Fleece volume. Bracketing the density
scale multiplier d and microflake standard deviation γ, no configuration is
able to match the intensity of the photograph. The albedo is left fixed at
0.999 as the image brightens monotonically with albedo.

Figure 5.15: Insufficient brightness of microflake phase function at grazing
angles.

configuration. In Figure 5.16, we also show Velvet in a more elaborate draped

configuration which better reveals the fabric’s characteristic highlights.

5.7.3 Discussion

We now discuss the results of each fabric in turn before drawing conclusions.

Fleece. The appearance of Fleece is matched well by the Fiber/BCSDF and

Volume/BCSDF models. The Volume/microflake model also performs well in non-

grazing configurations, but it is unable to reproduce the brightness in grazing
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Fibers/BCSDF Volume/BCSDF Volume/microflake

Our appearance matching process yielded parameters that resulted in different highlight
brightness between the images. However, the highlight consistently emerges as the fabric
turns away from the camera in all models.

Figure 5.16: Renderings of Velvet in a draped configuration.

configurations (i.e., the first two rows of the first column in Figure 5.19 and the ϕi−

ϕo = 126◦ and 162◦ in Figures 5.22 and 5.23). The second row of Figure 5.25 shows

that this discrepancy has a large impact on appearance particularly when the light

source and the camera are on the opposite side of the fabric. Because the microflake

model has no transmission component, it produces an opaque appearance, so the

microflake Fleece looks less soft than our models.

Gabardine. In Figure 5.19 and Figure 5.22, our two models are able to match

the appearance in all configurations well while the Fiber/BCSDF performs some-

what better in the (80◦, 80◦) grazing configurations in Figure 5.19. On the other

hand, the Volume/microflake still cannot produce bright highlights in these grazing

configurations. Figure 5.22 and 5.23 also exhibit the same trends. All models are

close to the photographs when the fabric is in retroreflection configurations (θi−θo

low). The Volume/microflake model, however, becomes too dark in grazing con-

figurations (θi − θo high), but the other two models become somewhat too bright.

This indicates that the new models are improvements over the previous approach

for Gabardine.
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Silk. Our model still performs better than the Volume/microflake at grazing

configurations. However, in Figure 5.19, the grazing highlights rendered with our

models have a slight cyan tint. Additionally, in Figure 5.23, the BCSDF models

performs less well in the green and blue channel in configurations with low θi − θo

in contrast to their good performance in the red channel.

These behaviors are because the red channel of CR in the two BCSDF models is

much higher than the blue and green channels. The parameters cause light reflected

off fibers to be very bright in the red channel and dim in the others. They also

cause the light transmitted through fibers to have a cyan tint. We surmise that

the fitting process arrived at these values because it needs to set the red channel

of CR high to match the chromaticity of the dim training configurations, which

are weighted higher by the objective function: we can see in Figure 5.20 that

the two BCSDF models match the red channel of the dim configurations better

than brighter ones. As such, the behaviors are likely to be caused by the models’

additional expressiveness and our choice of objective function.

However, in Figures 5.22 and 5.25, the three models look very similar in retrore-

flection configurations, and the cyan tint of the highlight is very hard to notice.

Thus, the suboptimal behaviors of the BCSDFmodels do not have a significant neg-

ative impact, but the inability of the Volume/microflake model to become bright in

forward scattering configurations takes away a large part of the overall appearance.

Velvet. Velvet was a challenging material to fit because its fitting residuals were

higher than for other materials. As a result, the optimization with the settings

used for the other materials did not consistently recover the highlights and speckled

appearance that characterize it. These effects are more likely to arise from the R
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mode, given the dark base color of the material, so we constrained CR to be at

least 0.04 for Velvet, to force the high-residual fit towards a region more likely to

produce acceptable results.

In Figure 5.19, the Fiber/BCSDF model matches the training data better than

the two volumetric models, which are too bright in many configurations. Nev-

ertheless, Figure 5.21 suggests that all models fit poorly to validation examples.

This indicates that more training data might lead to parameters that generalize

better to the observed data.

In all draped configurations (Figures 5.16, 5.22, and 5.26), the largest differ-

ence between the models is the brightness of the highlights. Note though that all

the highlights appear at the same locations: where the fabric turns away from the

camera. Moreover, the 10◦, 126◦ and 162◦ columns of Figure 5.24 are evidence that

all models can predict the locations of bright highlights under cylindrical configura-

tions despite magnitudes being off. This suggests that all 3 models, together with

a consistent direction field, can model Velvet’s appearance, but the appearance

matching process needs to be improved to obtain better parameter values.

Still, we note that Velvet is a tricky material because its pile fibers move when

touched, and we did not control their directions both when the micro CT scanning

was performed and when the photographs were taken. While using more training

examples can improve results post hoc, controlling the microgeometry might be

required to get truly good results.

Twill. According to Figure 5.21, our BCSDF models can quantitatively match

the training data better than the Volume/microflake. However, there are three

problems with the result. The first is that all models generalize rather poorly to
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the validation configurations.

The second is that our models are worse at reproducing the fabric’s texture

than the Volume/microflake. The photographs feature alternating bright yellow

and dark brown stripes, but our models do not yield as much color contrast. On

the other hand, the Volume/microflake produces more contrast between stripes,

but does not capture the BRDF well in Figure 5.19.

Low texture contrast was caused by the fibers’ being made transparent, as can

be seen by low CR values and high CTT values. However, the fibers still reflect back

some light in reality. Indeed, setting CR higher makes the texture more prominent

but worsens the overall color matches. (See Figure 5.17.) A cost function that

considers contrast between different image parts might be able to trade BRDF

correctness with texture correctness and is left for future work.

The third is that there is a feature in photographs of the cylindrical configura-

tions that none of the models could capture. The photographs get brighter around

the cylinder’s edges in the 10◦, 50◦, and 90◦ configurations while the models get

dimmer.

The fact that our models can fit the training data well but not the validation

data might be explained by overfitting. However, the fact that we have to trade

BRDF correctness with texture contrast and that none of the models can account

for the bright cylinder’s edges suggest rather that the models are not expressive

enough to represent all aspects of Twill’s appearance. The reason may be that the

warp and weft yarns, while appearing to be dyed the same color, might actually

have different optical properties.
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(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

(a)

(b)

(c)

(d)

The parameters for the models were derived manually from the fitted parameters with
CR changed to (0.472, 0.460, 0.218) and CTT changed to (0.540, 0.435, 0.310). Under
configurations used for parameter fitting, we compare (a) the photographs with (b) the
alternative parameters and (c) the parameters fitted by our process. Additionally, we
provide a photo and renderings of the fabric in the cylindrical configuration where ϕo −
ϕi = 10◦. For completeness, we also provide the Volume/microflake model (d) in the
cylindrical configuration. While the alternative parameters and the microflake are inferior
at the BRDF level, they produce more contrast in the texture.

Figure 5.17: An alternative set of scattering parameters of the Fiber/BCSDF
model for Twill.

Cotton. Photographs in Figure 5.22 show that Cotton is a rather diffuse ma-

terial, and all 3 models can capture this appearance as well as provide realistic

geometric details. Nevertheless, measurements in Figure 5.19 indicate that the

fabric gets extremely bright at the 80◦ grazing configurations, and none of the

models could imitate this behavior. Moreover, they could not match the color of

the photographs in any of the remaining configurations. Compared to the other

materials, the recovered Cotton fiber geometry and volume are unusually sparse

within the threads of the material, suggesting that too many small fibers were

161



thresholded away by the volume processing, limiting the ability of the models to

reflect sufficient light back to the viewer.

Highlights. While we matched against a sparse sample of the fabric’s BRDF

under flat configurations, Figures 5.23 and 5.24 suggest that our model produced

highlights at the right locations and could imitate the complex highlight shapes

such as those of Silk and Velvet in the 10◦ configurations. Our models always

match the magnitude of the highlights better in the grazing configurations than

the Volume/microflake model. Nonetheless, there are some cases where the lat-

ter performed better in non-grazing configurations; for example, Fleece and Silk

in the blue and green channels. However, as can be seen in Figure 5.22, cases

where our models perform worse than the Volume/microflake do not lead to dras-

tic differences from the reference photographs like the dim grazing highlights of

the Volume/microflake.

The lobe widths our system produces may not be accurate. In Table 5.3, many

lobe width values are at their extremes, especially the βR and βTT values of the two

BCSDF models. We observed that decreasing βR and βTT led to brighter images

in grazing configurations, so these parameter values tend to get pushed to their

lower bounds. We also surmise that the extra degrees of freedom introduced by

the albedo α in the Volume/BCSDF model caused more of the model’s βR and

βTT values to be at the extremes. As such, adding more training examples might

alleviate this problem. Still, note that, while the individual lobe widths might not

be accurate, the overall appearances are good in cases as Fleece, Gabardine, and

Silk. Moreover, the problems of Twill and Cotton do not seem to be related to

lobe widths at all.
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We now draw conclusions from the discussions above.

Comparison with microflake model. For Fleece, Gabardine, Twill, and Silk,

our new models—the Fiber/BCSDF and the Volume/BCSDF—are able to produce

results that match the far-field photographed appearance across the images used

for fitting. By comparison, the Volume/microflake model produces renderings

that vary less in intensity from image to image, and fail to recover the intense

highlights as the camera and light approach grazing angles. Thus, we conclude

that our models are superior to the the microflake model. We believe the Fresnel

term, which makes the R mode considerably brighter at grazing angles, accounts

for much of its advantages.

Fiber versus volume. Except for Velvet, the Fiber/BCSDF and the Vol-

ume/BCSDF models produce very similar results. Nevertheless, in Figure 5.19,

the Fiber/BCSDF model generally produces slightly brighter images in grazing

configurations. Still, the difference in brightness of grazing highlights is very hard

to notice in draped configurations of Figures 5.22, 5.25, and 5.26. We therefore

conclude that, in practice, the fiber geometry and volume geometry are similarly

good when used with our light scattering model.

Areas for Improvement. While we consider Fleece, Gabardine, and Silk to be

success cases, the results on the other three fabrics indicate a few potential areas

of improvement.

• Number of training examples. Velvet indicates the small number of

training examples may yield parameters that generalize poorly. Few training
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examples might lead to lobe width values’ being pushed to their extremes,

especially when there are extra degrees of freedoms in the scattering model.

• Texture correctness. Our objective function only considers correctness

at the BRDF level, ignoring texture correctness. As seen in Twill, optimiz-

ing according to the function led to parameters that do not reproduce the

material’s texture contrast.

• Microgeometry correctness. We currently have no means to test whether

the microgeometry is accurate, and the inaccuracy could have caused prob-

lems in Velvet and Cotton.

• Model correctness. Our models seem to be not expressive enough to

capture Twill’s appearance. Moreover, while performing much better than

the Volume/microflake, our models still could not precisely reproduce the

extremely bright grazing highlights of Silk, Twill, and Cotton.

• Non-physical behaviors. The cyan tint in Silk’s grazing highlight, while

not a major issue on the overall fitted appearance, shows that our light

scattering model can produce non-physical appearance. This issue arises from

our allowing the R mode to have color to achieve better matching results.

A model where expressiveness is retained and physics-based behaviors are

strictly observed is a possible future work.

5.7.4 Optical Thickness

As we focused on reflection from fabric rather than transmission, our results do

not address the correctness of back-lit appearance. The density scale for the vol-

umes was arbitrarily fixed because it had little effect on the appearance from the
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illuminated side. (This was also done in [109].) As a result, the renderings may

appear optically thicker or thinner than the actual fabrics. Also, while our fiber

reconstruction algorithm tries to make the generated fibers cover the micro CT

volume well, some volume is always lost because the algorithm throws away fibers

to remove noise.

The optical thickness has a significant impact on appearance when the fabric

is not draped over an opaque object. Figure 5.8 illustrates the effect of density on

the appearance of volume models. Figure 5.18 shows the change in appearance of

the draped fiber models when the underlying black meshes are removed. Notice

that the fabrics become much brighter after removal due to multiple scattering in

and through their layers.

We emphasize that transmission is not a fundamental limitation, but rather a

part of the appearance space we have not yet measured. It is entirely within the

scope of our optimization and appearance models, but it is currently unknown how

well the models will fit under back-lit configurations.

While the fiber and volume microgeometry representations are similar in their

abilities to capture fabric reflectance, the optical thickness of the volume geometry

can be controlled easily just by setting the density scale. The density of fiber-based

geometry can be manipulated by changing the fiber radius, but how to compute

derivatives with respect to it is unclear. Therefore it is currently not possible to

optimize radius in our system, so the volume geometry is advantageous in this

regard. How to control the parameters to achieve the right optical thickness is left

for future work.
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With underlying black mesh Without underlying black mesh

Figure 5.18: Appearance of Gabardine and Twill with and without the un-
derlying black meshes.
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(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Fleece
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Gabardine
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Silk
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Velvet
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Twill
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Cotton
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

For all of the viewing configurations used by the fitting process, we show (a) the pho-
tographs, (b) renderings produced by the fiber/BCSDF model, (c) renderings produced
by the volume/BCSDF model, and (d) renderings produced by the Volume/microflake
model. The icons indicate the orientation of the material (bolded edges), the light source
(brown), and the camera (blue); the normal angles to the light and camera are given be-
neath. Comparisons across all 492 photographed configurations are in the supplementary
material.

Figure 5.19: Results for all materials and rendering methods on fitting con-
figurations.
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Material Fiber scattering model, fibers
CR CTT βR βTT γTT

Fleece 0.040, 0.087, 0.087 0.452, 0.725, 0.948 7.238 10.000 25.989
Gabardine 0.185, 0.047, 0.069 0.999, 0.330, 0.354 2.141 10.000 23.548

Silk 0.745, 0.008, 0.070 0.620, 0.553, 0.562 1.000 10.000 19.823
Velvet 0.044, 0.040, 0.040 0.076, 0.058, 0.057 1.577 24.933 44.881
Twill 0.001, 0.001, 0.024 0.987, 0.975, 0.825 1.367 23.509 26.419
Cotton 0.989, 0.959, 0.874 0.999, 0.999, 0.999 1.000 27.197 38.269

Material Fiber scattering model, volume
CR CTT βR βTT γTT α

Fleece 0.032, 0.049, 0.055 0.759, 0.622, 0.999 3.786 10.000 21.865 0.631, 0.840, 0.972
Gabardine 0.110, 0.035, 0.048 0.868, 0.633, 0.592 5.034 10.000 23.902 0.993, 0.651, 0.698

Silk 0.992, 0.001, 0.034 0.002, 0.690, 0.570 1.000 10.000 13.900 0.940, 0.746, 0.773
Velvet 0.969, 0.985, 0.986 0.006, 0.003, 0.003 10.000 10.000 45.000 0.388, 0.310, 0.316
Twill 0.001, 0.001, 0.016 0.999, 0.999, 0.693 1.000 19.759 21.156 0.974, 0.969, 0.878
Cotton 0.447, 0.486, 0.251 0.171, 0.125, 0.279 10.000 10.000 41.464 0.999, 0.999, 0.999

Material Microflake, volume
α γ

Fleece 0.137, 0.416, 0.812 0.013
Gabardine 0.967, 0.160, 0.230 0.013

Silk 0.936, 0.051, 0.214 0.013
Velvet 0.490, 0.381, 0.412 0.005
Twill 0.843, 0.812, 0.463 0.013
Cotton 0.999, 0.999, 0.999 0.013

Note: Parameter values that are at an extreme of their permitted range are bolded. For volumes, the density
multiplier d is fixed at 4000.

Table 5.3: Scattering model parameters fitted by appearance matching pro-
cess for all materials and rendering models.
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5.8 Conclusions

Reproducing the appearance of fabrics is critical for many applications. While

progress has been made on increasingly sophisticated appearance models for fab-

rics, matching the appearance of real fabrics remains very hard. In this chapter,

we made two contributions to creating fabric renderings that match real fabrics.

First, we introduced an appearance matching framework based on differentiation

and optimization to match rendered images with photographs. Second, we in-

troduced a simple fiber-based scattering model (BCSDF), and coupled this with

new approaches to reconstruct fiber-based geometry and better volumetric mod-

els of fabrics. Finally, we matched the appearance of these new models against

real photographs and evaluated their strengths and weaknesses. We found that

having a fiber-based BCSDF scattering model was critical to match appearance in

grazing configurations. Once we use such a scattering model, both the fiber-based

geometry and volume models were approximately similar in quality. Both these

approaches proved superior over the prior state-of-art volume based models with

microflake scattering.

Additionally we believe the approach we propose maps a way forward in the

field of appearance models based on microgeometry. With our new methods for

differentiation and optimization, different models can be systematically tested and

compared on an equal basis, providing a clear way to identify deficiencies in existing

models and to evaluate a range of possible improvements in order to design the

next generation of models for a given material. This general approach can be

applied to other problems where it is desirable to test the ability of a model to

match measurements, but there is a complicated global illumination process in

between the parameters and the data.
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Fabric R G B

Fleece
(Training)

Fleece
(Validation)

Gabardine
(Training)

Gabardine
(Validation)

Silk
(Training)

Silk
(Validation)

+++ — Fiber/BCSDF +++ — Volume/BCSDF +++ — Volume/microflake

The first row of each material shows the plots for the training configurations, which are
the images in Figure 5.19. The second row shows those for the validation configura-
tions, whose images are available in the supplementary material. Because there are 492

validation configurations, we plot the contours of the points instead.

Figure 5.20: Scatter plots of the average values of the photographs versus
those of renderings of Fleece, Gabardine, and Silk.
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Fabric R G B

Velvet
(Training)

Velvet
(Validation)

Twill
(Training)

Twill
(Validation)

Cotton
(Training)

Cotton
(Validation)

+++ — Fiber/BCSDF +++ — Volume/BCSDF +++ — Volume/microflake

The setting of these plots are the same as in Figure 5.20.

Figure 5.21: Scatter plots of the average values of the photographs versus
those of renderings of Twill, Velvet, and Cotton.
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Fabric ϕi−ϕo Photographs Fiber/BCSDF Volume/BCSDF Volume/microflake
Fleece 10◦

50◦

90◦

126◦

162◦

Gabardine 10◦

50◦

90◦

126◦

162◦

Silk 10◦

50◦

90◦

126◦

162◦

Velvet 10◦

50◦

90◦

126◦

162◦

Twill 10◦

50◦

90◦

126◦

162◦

Cotton 10◦

50◦

90◦

126◦

162◦

The fabric is wrapped around a cylinder of radius 1.5cm whose axis is vertical and corresponds
to the longitudinal angle θ = 0◦. The camera was fixed in all images with the light source
arranged so that its location spans from a retroreflection configuration (ϕi−ϕo = 10◦) to being
close to the opposite of the camera (ϕi − ϕo = 162◦). The longitudinal angles of both the
camera and the light source were set to θ = 80◦ in all images, except those with ϕi−ϕo = 162◦

where the light source was lifted to θ = 76◦ to avoid being seen by the camera.

Figure 5.22: Comparison between photographs and renderings produced by
the three fabric rendering methods for the six fabrics.
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Fabric Channel 10◦ 50◦ 90◦ 126◦ 162◦

R

Fleece G

B

R

Gabardine G

B

R

Silk G

B

—— Fiber/BCSDF —— Volume/BCSDF —— Volume/microflake —— Reference photo

Plots in the same columns are to scale with one another.

Figure 5.23: Plots of per-column average pixel values of photographs and
renderings in Figure 5.22 for Fleece, Gabardine, and Silk fabrics.
Plots in the same columns are to scale with one another.
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Fabric Channel 10◦ 50◦ 90◦ 126◦ 162◦

R

Velvet G

B

R

Twill G

B

R

Cotton G

B

—— Fiber/BCSDF —— Volume/BCSDF —— Volume/microflake —— Reference photo

Plots in the same columns are to scale with one another.

Figure 5.24: Plots of per-column average pixel values of photographs and
renderings in Figure 5.22 for Twill, Velvet, and Cotton.
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Fabric Fiber/BCSDF Volume/BCSDF Volume/microflake

Fleece

Gabardine

Silk

In all the images, the fabrics are draped over a black mesh to reduce the effect of light
passing through the fabrics themselves. In the first row of each fabric, the light is on the
same side as the camera while, in the second row, the light is on the opposite side.

Figure 5.25: Renderings of Fleece, Gabardine, and Silk fabric in a simple
draped configurations.

The results of our application to cloth appearance also provide crucial knowl-

edge about which models work best, which can be leveraged by future work in

this area. In the future our framework can be extended to handle more cases,

for instance to reason about parameters, such as fiber radius or other geometric

parameters, that cause discontinuous changes to path contributions.
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Fabric Fiber/BCSDF Volume/BCSDF Volume/microflake

Velvet

Twill

Cotton

Figure 5.26: Renderings of Twill, Velvet, and Cotton in the same configura-
tions as in Figure 5.25.
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CHAPTER 6

FAST, APPROXIMATE RENDERING OF FABRICS

もっと早く君のもとへ

たとえ羽が千切れようとも

歪む世界走り抜けて

感覚のその向うへ

「真実」と加速してく

KOTOKO, →unfinished→

We have discussed in the previous chapter a complete and practical system for

constructing micro-appearance models that imitate the appearance of real fabrics.

However, the models do not yet have widespread use due to the immense cost of

simulating light transport with them. In this chapter, we present an algorithm for

approximately rendering fabric micro-appearance models that significantly lowers

rendering cost in practice.

This work originally appears in an unpublished paper “Fast Approximate Ren-

dering of Fabric Micro-Appearance Models Under Directional and Spherical Gaus-

sian Lights.” It is joint with Rundong Wu, James Noeckel, Steve Marschner, and

Kavita Bala [40].

6.1 Introduction

As we have discussed in Chapter 5, micro-appearance models have achieved high fi-

delity by coupling fiber-level light scattering models with fiber geometry acquired

from micron-resolution CT images of real fabric samples. However, using path
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tracing is prohibitively slow because tracing rays through the complex microge-

ometry is costly, and long paths must be evaluated to capture multiple scattering

inside the material. The process can take tens of core-hours per frame.

This chapter presents a fast, precomputation-based algorithm for approxi-

mately rendering fabric micro-appearance models under directional and/or spher-

ical Gaussian lights, which can be used to approximate environment illumination.

Because our algorithm traces only eye rays through microgeometry, it is very suit-

able for GPU implementation. In particular, our implementation is able to render

high-resolution, supersampled images of micron-resolution fabrics in tens of sec-

onds, using only a single commodity GPU.

Our approach is enabled by focusing on fabrics with regular structure and

limiting our attention to the effects of multiple scattering inside the fabric volume,

in contrast to global interreflections.

The key features of our algorithm are (1) it computes shadowing for single

scattering using precomputed visibility; and (2) it approximates multiple scattering

using precomputed transfer. Precomputation is done once per fabric type and

weave pattern, then can be reused across changes to viewpoint, lighting, and cloth

geometry.

We identify representations for visibility and multiple scattering transfer func-

tions that perform well while preserving quality. For visibility, we use the spherical

signed distance function for sharp spherical Gaussian lights, while for soft lights

we introduce a new approximation of visibility as a sum of spherical Gaussians

arranged over the sphere. For multiple scattering, we approximate the indirect

radiance field by low order spherical harmonics.
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We demonstrate high fidelity results, individually rendered in under a minute,

for fabrics ranging from regularly structured woven textiles to a knitted fleece

with unorganized surface structure. Our approach makes micro-appearance models

practical for applications that require quick turnaround, such as interactive textile

design.

6.2 Background and Previous Work

Fabric Modeling

We model fabrics with micro-appearance models whose components were discussed

in Chapter 3. Our modeling process (Figure 6.1) starts with an exemplar: a small,

rectangular piece of fabric modeled with explicit fibers. The exemplar is divided

into blocks, and larger fabrics are synthesized by tiling instances of these blocks

according to weave patterns, then deforming them into arbitrary shapes using shell

mapping [110, 65].

We do precomputation and CPU rendering with a surface-based representation,

in contrast to the volumetric representation of Zhao et al. however, when using a

GPU, we rasterize the fibers into a volume to better match the strengths of that

architecture.

A fiber is represented by a 3D polyline of multiple

straight segments. The kth segment’s midpoint is de-

noted by µk. Light scattering from fibers is modeled by

the two-term BCSDF by Khungurn et al. [39].
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Exemplar Exemplar
blocks

Exemplar
weave pattern

Fabric weave pattern Tiled fabric

Figure 6.1: The micro-appearance fabric model that is the target of our ren-
dering algorithm.

Accelerated Rendering of Fiber Assemblies

A fiber assembly is challenging to render because its overall color arises from mul-

tiple scattering, requiring a path tracer to recurse to high depths [108]. Two-pass

algorithms using photon maps [51] and spherical harmonics [52] have been used

to accelerate multiple scattering. Modular flux transfer (MFT) [108] stores flux

obtained from photon tracing in a spatial grid. After path tracing 2 to 6 bounces,

it switches to a random walk on the transfer matrices before looking up the stored

fluxes. While long paths are eliminated, the initial bounces can still take tens of

minutes on multi-core machines. Moreover, photon tracing and recursive eye-ray

tracing make MFT GPU-unfriendly.

Like dual scattering [116], our algorithm seeks to approximate multiple scat-

tering in one pass without tracing rays other than eye rays and shadow rays.

Originally, dual scattering could only handle directional lights. Subsequent work

enabled rendering under environment lights [70] and interactive editing of BCSDF

parameters [101]. While the algorithm is not well suited to our application, we

similarly approximate multiple scattering with smooth functions defined locally.

Iwasaki et al. [31] presented an interactive algorithm for rendering fabrics mod-
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eled by the microcylinder model of Sadeghi et al. [72] under environment lights.

However, the algorithm does not handle full multiple scattering; and, using essen-

tially a BRDF model, it offers no geometric details.

Precomputed Radiance Transfer

Our algorithm is a PRT algorithm because it precomputes radiance transfer func-

tions and uses them to bypass expensive path tracing at render time. A transfer

function is represented as a transformation in some bases such as spherical har-

monics [82], piecewise bilinear functions on the outgoing directions [42], wavelets

[54, 94], and spherical Gaussians [88, 93]. Because a transfer function typically is

precomputed for every mesh vertex in the scene, the whole collection is often too

large to reside in GPU memory. As a result, researchers have proposed compres-

sion algorithms such as clustered principal component analysis (CPCA) [81] and

clustered tensor approximation (CTA) [88]. For a more complete survey of PRT

techniques, we refer the reader to the paper by Ramamoorthi [68].

Our algorithm differs from other standard PRT algorithms in two ways. First,

standard PRT algorithms consider static scene geometry, but we precompute on a

flat fabric that is then warped into the final geometry. In this way, ours is similar

to in goals to the local, deformable PRT algorithm [83], but we do not use a special

representation to make rotating the incoming light easier.

Second, we separate between single and multiple scattering components of scat-

tered radiance while standard PRT algorithms either do not separate them or only

deal with single scattering. As just discussed previously, separating single and

multiple scattering is a widely used strategy when rendering fiber assemblies be-

cause it allows us to compute different components differently. Two-pass rendering
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algorithms [51, 52, 108] compute single scattering exactly with ray casing but ap-

proximate multiple scattering with photon mapping or low-frequency functions.

On the other hand, we approximate single scattering with precomputed visibil-

ity functions (which will be discussed in a moment) and multiple scattering with

transfer functions specialized to indirect illumination. The transfer functions are

represented by a bidirectional spherical harmonics (SH) structure, similar to the

interreflection transfer function proposed by Pan et al. [57].

Visibility Decomposition

When computing single scattering, we decompose visibility into local and global

visibility. Local visibility involves occlusion by nearby fiber microgeometry and

global visibility involves occlusion by faraway parts of the fabric or other objects

in the scene. Only local visibility is precomputed, and we regard it as a univariate

function of directions stored at each fiber segment.

Our decomposition is similar to the one used in the work of Schröder et al.

[75], which is primarily concerned with representing fabrics with coarse volumes.

Visibility around a point in a voxel is decomposed into the local visibility term,

which represents occlusion by geometry inside the voxel, and the global visibility

term, which represents occlusion by geometry outside the voxel. The local visi-

bility term is a bidirectional function called the bidirectional visibility distribution

function (BVDF), which can be thought of as an average of visibility functions

at individual fiber segments in the voxel. While the BVDF would be the same

as our visibility function when the voxels become fine enough, the BVDF’s rep-

resentation in Schröder et al.’s paper only works well with lights that have delta

distributions (i.e., directional lights or point lights). We, on the other hand, in-
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troduce representations for local visibility that also work with spherical Gaussian

lights.

Spherical Harmonics

We denote a real spherical harmonic (SH) basis function with Yj(ω) where ω ∈ S2,

and j serves as a single index. SH functions are classified into orders with 2k + 1

functions having order k. Thus, a representation using SH of order up to k has

(k + 1)2 coefficients.

Spherical Gaussians

A spherical Gaussian (SG) with axis ξ ∈ S2 and sharpness λ ∈ R is given by

G(ω; ξ, λ) = exp(λ(ω · ξ − 1)). The mass function M(θ;λ) is the integral of an SG

with sharpness λ over the spherical cap C(θ, ξ) = {ω : ω · ξ ≥ cos θ}:

M(θ;λ) =

∫
C(θ,ξ)

G(ω; ξ, λ) dω =
2π

λ
(1− eλ(cos θ−1)).

We call the mass function evaluated at θ = π the mass M(λ) of the SG, and it is

equal to 2π(1− e−2λ)/λ. Two properties of SGs make them attractive for shading

calculations: (1) they can be easily rotated, and (2) the product of two SGs is

another SG.

Wang et al. used SGs to represent glossy BSDFs and environment illumina-

tion at all frequency scales in static scenes [93]. Later works adapt SG-based

representations to dynamic scenes [30], improve shadowing [112], and incorporate

anisotropy [102]. Our work similarly represents environment illumination with

SGs. Moreover, we introduce sums of SGs as a new visibility representation.

183



6.3 Overview

The benefits of micro-appearance models depend on simulating multiple scattering,

which is responsible for much of the appearance and overall color of fabrics. Doing

so with path tracing is expensive. However, since multiple scattering’s effects are

quite smooth, we aggressively approximate them by precomputing the indirect

radiance distribution.

Although global interreflection between distant surfaces is important, this paper

focuses on local multiple scattering within the fabric volume. We also assume both

the camera and the light sources are above the fabric, ignoring cases involving the

side and bottom faces. Our algorithm could be adapted to handle these cases.

Figure 6.2 gives an overview of our algorithm. We rely on two main types of

precomputed functions to accelerate rendering:

• The segment visibility function (SVF) encodes whether a ray starting from a

given fiber segment escapes the fabric volume in any given direction.

• The incoming indirect radiance transfer function (IIRTF) encapsulates how

indirect illumination to a point in the fabric volume depends on the illumi-

nation to the fabric as a whole.

While there is a SVF associated with each fiber segment, we precompute the

average of the IIRTF over cells—further subdivisions of exemplar blocks that may

contain multiple fiber segments.

At rendering time, we must first intersect eye rays with the fabric. On the

CPU, this involves casting rays through shell maps [65]. While an equivalent
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Figure 6.2: An overview of our approximate rendering algorithm.

process exists for the GPU [34], Section 6.5.1 discusses our simpler volume ray

casting approach. After identifying the hit point, we compute the out-scattered

light, splitting it into single and multiple scattering components.
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For single scattering, we compute the triple product integral between the SVF,

the incoming radiance from the light source, and the BCSDF. This process is non-

trivial for spherical Gaussian lights, and we show that our new way of representing

the SVF yields good approximation over the whole range of SG sharpness. The

integral, however, only accounts for occlusion by nearby fiber microgeometry, so we

incorporate macro-scale occlusion by other geometry using ray casting or shadow

mapping against the fabric’s shell. The single scattering process is discussed in

Section 6.5.2.

For multiple scattering, we evaluate the IIRTF with the light source as an

argument and convolve the result with the BCSDF to obtain the multiple scatter-

ing response to illumination unoccluded by macroscale geometry. To incorporate

shadowing and to simulate subsurface scattering effects, we filter the shadow sig-

nal used in the single scattering computation with a spatial kernel, and scale the

multiple scattering response by the result. Section 6.5.3 covers multiple scattering

computation.

6.4 Precomputation and Parameters

The first phase of our algorithm is a series of precomputations carried out once

for each type of fabric (that is, once per exemplar and weave pattern) on a large,

flat section of fabric synthesized in the same way as the material to be rendered.

The main results of these precomputations are the segment visibility function (per

fiber segment) and the indirect radiance transfer function (per fabric grid cell).

We also precompute tables of projections of the BCSDF and the SG lights into the

SH basis. At the end of this section, we list all parameters of our algorithm.
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6.4.1 Segment Visibility Function

Light occlusion by local fiber microgeometry is approximated using the precom-

puted segment visibility function Vk : S2 → R associated with each fiber segment

k. Vk(ω) = 1 if the infinite ray originating from µk in direction ω does not hit any

fiber other than the one segment k is a part of, and Vk(ω) = 0 otherwise.

We use two representations for Vk and choose between them based on whether

the fabric is being shaded under a high or low frequency light source. Under

high frequency lights (directional lights and SG lights with λ ≥ 100), we use

the spherical signed distance function (SSDF) [93], denoted by dk(ω). Under low

frequency lights (SG lights with λ ≤ 200), we represent visibility with a weighted

sum of (normalized) SGs:

Vk(ω) ≈ V ssg
k (ω) =

Q∑
q=1

wk,q
G(ω; ξk,q, λsvf)

M(λsvf)
.

where the axes ξk,q are derived from the spherical Fibonacci point sets [48], and

all the SGs in the representation has the same sharpness λsvf. Figure 6.3 contains

images of the SVF of a fiber segment and its representations.

SSDF implementation. To compute the SSDF of Segment k, we locate the

copy of the exemplar block containing it that is the nearest to the center of the

flat fabric, so as to avoid any boundary effects. With ray casting, we then render a

128×128 binary visibility image over the (θ, ϕ)-parameterization of the sphere and

compute the SSDF from the resulting image by finding, for each pixel, the closest

pixel having the opposite value. The whole collection of SSDFs is compressed with

PCA using 48 principal components.
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(a) (b) (c) (d)
In Mercator projection: (a) visibility as a 128 × 128 binary image; (b) the PCA-
compressed SSDF (yellow = positive, blue = negative); (c) the sign of the SSDF as
a binary image, and (d) the sum of SGs representation.

Figure 6.3: The segment visibility function of a segment in the Silk fabric
and its approximate representations.

Sum of SGs implementation. The number of SGs, Q, is chosen to be 48, the

same as the number of PCA components of the SSDFs. As will be discussed in

Section 6.5.2, the sharpness parameter, λsvf, should be at least 100, and we use

λsvf = 128 for all the renderings in this paper. The axes ξk,q should ideally be

uniformly distributed over the north hemisphere. For this reason, we derive them

from the spherical Fibonacci point sets:

ξk,q = Rkξ
′
q

ξ′q = (
√

1− z2q cos(ϕq),
√

1− z2q sin(ϕq), zq)

zq = 1− (q − 1)/Q

ϕq = 4πq/(1 +
√
5)

where Rk is a random rotation per segment around the z-axis to mask aliasing

artifacts that might arise from using the same set of axes for all segments. To

compute the weights wk,q, we utilize the visibility image used to compute the

SSDFs and set wk,q to the total solid angle of all the visible pixels closer to ξk,q

than any other axis.
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6.4.2 Indirect Incoming Radiance Transfer Function

We use the IIRTF to convert the raw energy from the light sources to the incoming

radiance at a point of interest after the light scatters one or more times from fibers.

We get the radiance due to local multiple scattering—the quantity we want to

compute—by convolving this incoming radiance with the BCSDF. Formally, the

IIRTF T (ω0, ω1, x) equals the incoming radiance arriving at point x in direction

−ω1 through paths that (1) originate from a directional light source that emits

radiance of magnitude 1 in direction −ω0 and (2) contain at least one point on a

fabric fiber.

To make sure an IIRTF accurately describes the illumination in all instances of its

cell in the fabric, we need a regularity assumption: for all instances of a given cell,

the weave pattern in neighboring cells should be the same. This is is obviously

satisfied when the weave pattern across the whole fabric is the same as in the ex-

emplar, but the method can also be applied to fabrics with varying weave patterns

as long as local neighborhoods can be matched. As a result, patterned fabrics can

be supported with more precomputation, and handling them is left as future work.

Working in the spherical harmonics domain, we represent the IIRTF—which

transforms the SH expansion of a scalar function on S2 to the expansion of another
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scalar function on S2—as a matrix Ax of entries ax[·, ·] where

ax[j0, j1] =

∫
S2

∫
S2
T (ω0, ω1, x)Yj0(ω0)Yj1(ω1) dω0dω1.

Computation. Since the representation is space-consuming (O(L4) for SH of

order L), we cannot afford to store one IIRTF for each fiber. Instead, we divide

exemplar blocks into cells of equal size and average the IIRTF over each cell. The

per-cell IIRTF is the average of the IIRTF at all segment midpoints inside the cell:

T (ω0, ω1, C) =
1

|C |
∑
k∈C

T (ω0, ω1, µk).

Here, C is a cell, and C is the set of segments with midpoints in C. The coefficient

aC [j0, j1] of the cell’s transfer function can be estimated by sampling k, ω0, and ω1

independently and computing:

1

|C |
T (ω0, ω1, µk)Yj0(ω0)Yj1(ω1)

p(k)p(ω0)p(ω1)
.

We sample all ks with equal probability (p(k) = 1/|C |), ω0 uniformly from the

upper hemisphere (p(ω0) = 1/(2π)), and ω1 uniformly from the whole sphere

(p(ω1) = 1/(4π)). The value T (ω0, ω1, µk) is estimated by tracing 50, 000 paths

per cell.

Choosing cell dimensions. The cell size is an important parameter to our

algorithm. Larger cells require less storage but yield lower quality renderings.

As we will see in Section 6.6, too coarse IIRTFs lead to non-smooth and dark

renderings.

We found that setting the side lengths of the cells as close as possible to the

mean free path ℓ of a path traced through the fabric yielded consistently good
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results, with only a minor drop in visual quality with cells of size up to 2ℓ. The

supplementary material discusses the specifics of how we estimate ℓ.

We estimate ℓ by averaging the distances between adjacent vertices from the

5th bounce onward when a flat piece of fabric is rendered under several viewing

and illumination conditions. Employing the 16 configurations used for parameter

fitting in Chapter 5, we set the image resolution and number of samples per pixel

so that we collected about 10, 000 to 20, 000 vertex positions from the 5th bounces

for each configuration.

Ideally, the fibers should have the BCSDFs that are used in the final rendered

images. However, we found that the ℓ-estimates produced with diffuse BCSDFs

are generally larger than the ground truth (thus resulting in smaller IIRTF data)

and already yield good rendering results, we simply used them when estimating ℓ.

6.4.3 Function Expansions into the SH Basis

We must compute the convolution between the BCSDF, the light source’s radiance

distribution, and the IIRTF, the last of which is expressed in the SH basis. This

computation can be accelerated by expanding the first two into the same basis.

BCSDF. This expansion is defined in the coordinate system

where the shading integral is performed: the fiber-based coor-

dinate system used by Marschner et al. [49]. The x-axis must

coincide with the fiber segment’s direction, but we are free to

choose the y-axis so that the outgoing direction ωo is in the

xy-plane. Let us call this coordinate system the ωo-space.
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We precompute a table CS[θo, j] where:

CS[θo, j] =
∫
S2
Yj(ωi)S(ωi, ωo) cos θi dωi

where S is the BCSDF in Chapter 5. We use 512 equally-spaced values of θo from

[−π/2, π/2]. For each value of θo, we compute the expansion up to the SH order

of the IIRTF.

Spherical Gaussians. One of our goals is to render fabrics with local multi-

ple scattering under SG lights, so we also express SGs in the SH basis too. In

particular, we precompute a table

CG[λ, j] =
∫
S2

G(ω; (0, 0, 1), λ)

M(λ)
Yj(ω) dω,

which stores the SH coefficients of normalized SGs with various sharpness aligned

with the z-axis. We store only the coefficients of the zonal harmonics because all

others are zero. Appendix C.1 discusses how we choose the λ values and how we

interpolate the entries.

6.4.4 Parameters

The parameters of our algorithm include the number of PCA components used to

compress the SSDFs, the number and sharpness of SGs in the sum-of-SG visibility

representation, the size of the fabric grid cells, and the SH order used for the

IIRTF.

There is another parameter, σglo, which is the standard deviation of the 2D

Gaussian kernel used to approximate the effect of occlusion on local multiple scat-

tering. Its role is discussed in Section 6.5.3.
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6.5 Rendering Algorithm

We now describe how to use the precomputed data to render fabrics. Suppose that

the eye ray is along the direction −ωo. We first intersect the ray with the fabric

(Section 6.5.1), giving the hit point x. We then compute the radiance leaving x

in direction ωo, Lo(x, ωo) = Lsingle
o (x, ωo) + Lmulti

o (x, ωo), in separate processes for

single (Section 6.5.2) and multiple (Section 6.5.3) scattering.

6.5.1 Eye Ray–Fabric Intersection

On the CPU, primary visibility can be efficiently computed by tracing rays through

the shell map and intersecting fibers stored in a spatial hierarchy. On the GPU,

the more regular memory access of volume ray casting makes it a better approach,

so we rasterize the fabric exemplar into a 3D volume. Each non-empty voxel stores

the ID of the fiber segment whose midpoint is nearest to its center. The segment’s

direction and the ID of its BCSDF are stored in a separate texture indexed by

segment ID. This volume is partitioned into blocks, tiled, and shell mapped as

described in Section 6.2.

To render a shell-mapped fabric volume, we rasterize the front facing triangles

of all tetrahedra in the shell. For each resulting fragment, we transform the eye

ray into the flat fabric’s space and sample the volume at a fixed number of linearly

spaced points along the relevant ray segment to find the first non-empty voxel.

(The number of points used can be found in Table 6.1.) If no such voxel is found,

we discard the fragment. Otherwise, we save information about the hit point,

including its shell texture coordinate and the fiber segment’s ID, to a G-buffer for

deferred shading.
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6.5.2 Single Scattering

Having identified the hit point x on Fiber k, we are now ready to compute the

out-scattered light from the fabric. This section describes its single scattering

component. We first discuss the directional light case and then continue with the

SG light case.

Directional Light

Let ωd denote the direction toward the light source, and let us say that the radiance

along ωd is 1. The outgoing radiance due to single scattering is given by

Lsingle
o (x, ωo) = V (x, ωd)S(ωd, ωo) cos θd

where S is the BCSDF, and V is the visibility function. Evaluating V by tracing

shadow rays is expensive because each ray has to be traced through many fibers.

To avoid this, we split V into the local visibility term, which deals with occlusion

by nearby fiber microgeometry, and the global visibility term, which deals with

occlusion by macroscopic objects in the scene: V (x, ωd) = V loc(x, ωd)V
glo(x, ωd).

The local visibility term is approximated with the precomputed SVF:

V loc(x, ωd) ≈ Vk(ωd). In this case, we use the sign of the SSDF (Figure 6.3(c))

to determine visibility.

The global visibility term V glo(x, ωd) is approximated by tracing a shadow ray

in direction ωd, intersecting only against the fabric shell and other macroscopic

objects in the scene.

The shadow ray starts at x, the point on the top surface of the shell that is

directly above the fiber hit point x. This choice enables computing global visibility
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(a) (b)
(a) uses the hit point x (and skips the first intersection with the shell), and (b) uses the
shell’s top surface point that is directly above x.

Figure 6.4: Effects of the choice of shadow ray origin.

on the GPU using a shadow map. It also prevents unintuitive hard shadows that

are the result of tracing rays from x itself (See Figure 6.4). Our GPU implementa-

tion uses percentage-closer filtering (PCF) for shadow map anti-aliasing [69], but

many other more sophisticated techniques are available for this purpose.

On the CPU, x can be computed by a

shell map lookup, which involves traversing the

bounding volume hierarchy of the shell tetra-

hedra to identify the tetrahedron that contains

the point with the given shell texture coordi-

nate. On the GPU, we render a texture X[u, v]

that maps the 2D shell texture coordinate (i.e. ignoring the depth component) to

the world position of the top surface of the shell map. Given a hit point x, we can

recover its shell texture coordinate (u, v, w) from the G-buffer. We then look up

X[u, v] to determine x.

Generalization to other types of light sources. On the CPU, the single

scattering computation can be easily extended to any type of environment light
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source that can be efficiently sampled. We first sample the incoming direction ωd

and the radiance L(ωd) along it. We then compute the single scattering response

and scale it by L(ωd)/p(ωd) where p(ωd) is the probability of sampling ωd. The

definition of visibility and incoming light may be changed to accommodate point

lights and, by extension, area light sources.

Spherical Gaussian Light

While random sampling can convert any arbitrary environment light—including

any SG light—into a directional light, it does not work well on the GPU because

of the lack of native support for tracing arbitrary shadow rays. Moreover, the

approach will yield noisy renderings, particularly when the support of the SG

light is large. Our goal is to design a GPU-friendly algorithm that shades micro-

appearance models under SG lights without noise. We achieve this by exploiting

the structure of both the precomputed visibility and the BCSDF.

Let the scene be illuminated by a single normalized SG light G(ω; ξ, λ)/M(λ).

The single scattering component is given by:∫
S2
V glo(ωi)V

loc(ωi)
G(ωi; ξ, λ)

M(λ)
S(ωi, ωo) cos θi dωi. (6.1)

We will first describe how we approximate global visibility under SG lights to

simplify the problem. We will then discuss how to compute single scattering while

taking into account the complex occlusion by nearby fibers.

Global visibility under SG lights. We recognize that accurate shadowing un-

der area lights, including SG lights, is a challenging problem that currently has no

solution without significant compromises. Approaches based on SSDFs [93, 112]
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require expensive precomputation of the SSDFs of macroscale geometry, making

them impractical in rendering cloth animation. The integral SG approach [30]

requires rasterizing thin shell meshes at each fragment and so does not scale well

in our setting. As a result, we settle on plausible shadow computation through

percentage-closer soft shadow (PCSS) mapping [21], which scalably handles com-

plex, changing geometry while producing visually pleasing shadows. Recent tech-

niques [3, 105, 78] speed up PCSS by enabling prefiltering. However, we only use

the original PCSS in our implementation. One drawback of PCSS is the need

to determine parameters such as the sizes and positions of the light sources. We

picked these parameters manually.

Specifically, we compute the global visibility term V glo(x) by PCSS. The global

visibility term is then used to scale the power of the SG light down without chang-

ing the distribution. Namely, (6.1) becomes:

V glo(x)

M(λ)

∫
S2
V loc(x, ωi)G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi.

Our problem thus reduces to the triple product integral between the local visibility,

an SG, and the BCSDF.

We first describe the solution to the above problem with an approximation

to the integral when the SG light is unoccluded and sharp (λ ≥ 100). We then

discuss how to use our two SVF representations to incorporate local visibility into

the integral.

Unoccluded, sharp SG lights. The BCSDF we use is a sum of two terms:

S(ωi, ωo) = SR(ωi, ωo) + STT (ωi, ωo) [39]. We first rewrite its convolution with the
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(unnormalized) SG as:∫
S2
G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi

=

∫ π/2

−π/2

g

(
θi;−θo,

1

2β2
R

)
gc(θi; θ

′, λ)BR(θi, λ cos θ′) dθi

+

∫ π/2

−π/2

g

(
θi;−θo,

1

2β2
TT

)
gc(θi; θ

′, λ)BTT (θi, λ cos θ′, ϕ′) dθi

where g(x;µ, λ) = exp(−λ(x−µ)2) is the ordinary Gaussian function, gc(x;µ, λ) =

exp(λ(cos(x − µ) − 1)) is the circular Gaussian function, and βR and βTT are

the standard deviation of the Gaussians in the longitudinal scattering functions

of SR and STT , respectively. The exact forms of BR and BTT are given in the

Appendix C.2.

When λ ≥ 10, the circular Gaussian gc(θi, θ
′, λ) is well approximated by the

ordinary Gaussian g(θi, θ
′, λ/2). Hence, the product between the ordinary Gaus-

sian and the circular Gaussian in the integrand may be approximated by a single

ordinary Gaussian:

g

(
θi;−θo,

1

2β2
R

)
gc(θi; θ

′, λ) ≈ aR g(θi; θR, λR)

where λR = β−2
R /2 + λ/2,

θR =
−β2

Rθo + λθ′

β−2
R + λ

, aR = exp
(
− β−2

R λ

β−2
R + λ

(θo + θ′)2

2

)
.

Similar equations exist for the TT term.

When this single ordinary Gaussian is sharp, i.e. when λ ≥ 100, the integral

of the product between the Gaussian and the B functions is well approximated by

198



factoring B out of the integral:∫ π/2

−π/2

g(θi; θR, λR)BR(θi, λ cos θ′) dθi

≈ aRBR(θR, λ cos θ′)
∫ π/2

−π/2

g(θi; θR, λR) dθi

= aR
BR(θR, λ cos θ′)

2

√
π

λR

[
erf(

√
λR(θi − θR))

]π/2
−π/2

.

In summary, we approximate the convolution between the unoccluded SG and the

BCSDF as:∫
S2
G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi

≈ aR
BR(θR, λ cos θ′)

2

√
π

λR

[
erf(

√
λR(θi − θR))

]π/2
−π/2

(6.2)

+ aTT
BTT (θTT , λ cos θ′, ϕ′)

2

√
π

λTT

[
erf(

√
λTT (θi − θTT ))

]π/2
−π/2

.

Let us denote the RHS of (6.2) with Γ(ξ, λ).

Local visibility under soft SG lights. The approximation Γ only works with

unoccluded and sharp SG lights. To shade a soft SG light occluded by nearby fiber

segments, we use the fact that the product of two SGs reduces to an SG, which

implies that the sum-of-SGs representation of the SVF can “break” the soft SG

light into many sharp ones:

V loc(x, ωi)G(ωi; ξ, λ) ≈ V ssg
k (x, ωi)G(ωi; ξ, λ)

=

Q∑
q=1

wq

M(λsvf)
G(ωi; ξk,q, λsvf)G(ωi; ξ, λ)

=

Q∑
q=1

wq

M(λsvf)

G(ωi; ξ̂
sum
k,q , ∥ξsum

k,q ∥)
exp(λsvf + λ− ∥ξsum

k,q ∥)

where ξsum
k,q = λsvfξk,q + λξ, and ξ̂sum

k,q = ξsum
k,q /∥ξsum

k,q ∥. So,∫
S2
V loc
k (x, ωi)G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi ≈

Q∑
q=1

wq

M(λsvf)

Γ(ξ̂sum
k,q , ∥ξsum

k,q ∥)
exp(λsvf + λ− ∥ξsum

k,q ∥)
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A remarkable feature of the above expression is that, when Γ is inaccurate—that

is, when ∥ξsum
k,q ∥ < 100—it is divided by exp(λsvf +λ−∥ξsum

k,q ∥), which is large given

than λsvf is suitably large. With our choice of λsvf = 128, we have that

λsvf + λ− ∥ξsum
k,q ∥ > 128 + λ− 100 ≥ 28.

So, the erroneous approximation is scaled down by a factor of at least e−28 ≈

7 × 10−13, meaning that we aggressively suppress cases where Γ does not work

well.

A problem with the sum-of-SGs visibility representation is that it can produce

renderings that are too bright when the SG light is sharp, especially in shadowed

areas. The reason is that the representation is inherently soft: the Gaussians in

the representation is a continuous function. As such, they yield positive function

values at directions that are supposed to be occluded in the ground truth visibility

function. Figure 6.5 illustrates this problem.

Local visibility under sharp SG lights. To combat the above problem, we

gradually fall back to using the SSDFs to represent local visibility as λ increases

from 100. Since the SG is sharp, we factor out the visibility term into a new one

and approximate the double product integral with Γ as:∫
S2
V loc(x, ωi)G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi

≈ Ṽ loc(x, ξ)

∫
S2
G(ωi; ξ, λ)S(ωi, ωo) cos θi dωi

≈ Ṽ loc(x, ξ)Γ(ξ, λ).

The new visibility term Ṽ loc(x, ξ) is similar to the SSDF calculation for the direc-

tional case, but with an error function serving as a smoothed step function:

Ṽ loc(x, ξ) =
1

2

[
erf

(√
λ

2
dk(ξ)

)
+ 1

]
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λ (a) (b) (c) (d)

10

400

All images only contain single scattering and do not take into account global visibility.
Exposures of all images are set to 8 to make differences clear. Images in Column (a) are
reference renderings produced by the CPU version of our algorithm, which accurately
convolves the light using Monte Carlo integration. Column (b) uses the sum-of-SGs
visibility representation. It works well when λ = 10 but yields shadowed areas that
are too bright when λ = 400. Column (c) uses the error-function-based visibility term
coupled with the sharp SG light approximation, both discussed in Section 6.5.2. The
scheme yields wrong results when λ = 10 but matches the reference well when λ = 400.
Column (d) uses the SSDF coupled with Wang et al..’s visibility term. It yields renderings
darker than all other approaches at both λ values. Our conclusion is to use (b) when λ
is low and (c) when λ is high.

Figure 6.5: Problematic regions of various single scattering approximations.

where dk is the SSDF of the fiber segment. The standard deviation of the error

function is
√

2/λ, motivated by the convolution of a sharp SG with a straight edge

visibility function.

We note that the above visibility term is different from the one used by Wang

et al. [93], which is equal to M(λ, dk(ξ))/M(λ) if θd(ξ) > 0 and is equal to 0

otherwise. We empirically found that this term yielded fabric renderings that are

too dark. See Figure 6.5.

To make the transition between the sum-of-SGs and the SSDF smooth, we

linearly interpolate the single scattering results of the two schemes when λ ∈
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[100, 200], using λ itself as the interpolation parameter.

According to the measurements available in the supplementary material, using

the SSDF with the error-function-based visibility term can make the algorithm

1% to 3% slower than the directional light case on the GPU. However, using the

sum-of-SGs visibility can make it up to 13% slower. As such, when interpolating

between the two schemes, the extra cost is dominated by the sum-of-SGs. The

worst slowdown we observed is 16%.

6.5.3 Multiple Scattering

While single scattering accounts for non-smooth variation in fabric appearance,

most of the fabric color comes from multiple scattering. We approximate multiple

scattering as a product between (1) the multiple scattering response L̃multi
o (x, ωo)

of the fabric to unoccluded illumination from the light source and (2) a visibil-

ity factor V̄ glo(x); i.e. Lmulti
o (x, ωo) = L̃multi

o (x, ωo)V̄
glo(x). The former relies on

the precomputed IIRTF, and the latter employs Gaussian filtering of the global

visibility discussed in the last section. We will now discuss the terms in order.

Multiple Scattering Response to Unoccluded Light

Directional light. Recall that we assume a directional light that emits unit

radiance in direction −ωd. If the light is not occluded in the neighborhood of x,

then it causes the incoming radiance field T (ωd, ωi, x) around x, and the outgoing

light due to multiple scattering is:

L̃multi
o (x, ωo) =

∫
S2
T (ωd, ωi, x)S(ωi, ωo) cos θi dωi.
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After identifying the cell C containing the midpoint of the fiber segment on which

x lies, we approximate T (·, ·, x) using the precomputed IIRTF matrix AC . The

convolution above can be computed as a dot product of SH coefficients. Evaluat-

ing the IIRTF involves projecting the directional light into SH basis by evaluating

the vector cd = (Y0(ωd), Y1(ωd), . . . ) and then multiplying it with the IIRTF matrix

to obtain the vector cT = ACcd. Using the precomputed table of BCSDF expan-

sion, we have S(ωi, ωo) cos θi ≈
∑

j CS[θo, j]Y (ωi). Let cS = (CS[θo, 0], CS[θo, 1], . . . ).

Conceptually, L̃multi
o (x, ωo) is the dot product between cS and cT .

However, we cannot compute the dot product directly because the BCSDF’s

expansion is defined in the ωo-space, but the IIRTF’s expansion and thus cT are

defined in the fabric’s object space. To solve this problem, we transform cT into

the ωo-space. Let Rωo be the rotation matrix that transforms spherical harmonics

expansion from the fabric’s object space to the ωo-space. Then, we have that

L̃multi
o (x, ωo) = cS · (RωocT ). We compute the matrix using the technique described

by Pinchon and Hoggan [64].

Spherical Gaussian light. The computation is essentially unchanged. To com-

pute the fabric’s response to the SG light G(ωi; ξ, λ), we look up the precomputed

SG expansion table to get the vector cG = (CG[λ, 0], CG[λ, 1], · · · ), which represents

the expansion of the SG with axis (0, 0, 1) and sharpness λ. We then rotate the

coefficient vector by a rotation Rξ to align the axis with ξ. The rest of the process

then applies. We multiply the rotated coefficient with the IIRTF matrix, rotate

the result to the ωo-space, and dot the rotated result with the SH expansion of the

BCSDF: L̃multi
o (x, ωo) = cS · (RωoACRξcG).
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Visibility for Multiple Scattering

We now estimate the effect of occlusion on multiple scattering. Since the IIRTF, by

definition, has taken into account occlusion by local geometry, we only need to deal

with occlusion by macroscopic geometry. We observe that, around shadowed areas

on a piece of cloth, the shadow is not sharp due to light that propagates through the

fabric volume into the occluded area; i.e., cloth exhibits subsurface-scattering-like

behavior. We approximate this effect by multiplying the response-to-unoccluded-

light term with a kernel-smoothed global visibility over the area near the shaded

point x:

V̄ glo(x, ωd) =

∫
A
K(x, x′)V glo(x′, ωd) dx′∫

A
K(x, x′) dx′

where A is the area of the (flat, before shell mapping) fabric surface, and K is the

kernel function that depends only on the distance between x and x′ in the fabric’s

plane. The global visibility term V glo is computed by ray tracing or standard

shadow mapping in the directional light case and by PCSS in the SG light case.

The effects of the visibility term can be seen in Figure 6.6.

We chooseK to be a 2D Gaussian kernel (with standard deviation σglo) because

it enables efficient implementations. How we implement filtering depends on the

target hardware.

On the CPU, we sample x′ according to the 2D Gaussian distribution in the

flat fabric’s space and use the global visibility term V glo(x′, ωd) as the unbiased

estimate of V̄ glo(x, ωo).

On the GPU, we compute the visibility texture V [u, v] := V glo(X[u, v]) by look-

ing up the shadow map at each position stored in the top surface position texture

previously discussed in Section 6.5.2. We can then filter V by a 2D Gaussian
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(a) (b) (c)
We show renderings by (a) path tracing, (b) using the (hard) global visibility term V glo

to scale down the multiple scattering response, and (c) using the (soft) global visibility
term V̄ glo for the same purpose. Exposure of 4 is used to highlight the difference between
shadowed and unshadowed areas. Notice that the shadowed regions in (b) have sharp
edges, while those in (a) and (c) have softer edges.

Figure 6.6: The effect of the multiple scattering visibility term V̄ glo.

kernel corresponding to K to obtain the average visibility texture V̄ , which can

be done efficiently because the Gaussian kernel is separable. The global visibility

term V̄ glo(x) is simply a lookup into V̄ using the shell texture coordinate of x.

(However, our implementation actually performs Monte Carlo integration with 40

samples per fragment with the help of a random number texture.)

6.6 Results

We implemented two versions of our algorithm according to the hardware they run

on. The CPU version employs Monte Carlo sampling of the light source discussed

at the end of Section 6.5.2. As a result, it treats environment light sources as if

they were directional lights, and does not use approximation specific to SG lights

in Section 6.5.2. The GPU version employs all GPU-specific computation and

the entirety of Section 6.5.2. The algorithms were implemented in Java and the

OpenGL Shading Language (GLSL). We performed experiments on 8 fabrics, which

are derived from micro CT scans except for the shot silks, which are procedural
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ℓ̃ = 0.5ℓ ℓ̃ = ℓ ℓ̃ = 1.5ℓ ℓ̃ = 2.0ℓ ℓ̃ very large

Figure 6.7: The effects of the dimensions of IIRTF cells on renderings of the
Silk (top) and the 2/3 Satin fabrics (bottom).

fiber models. Their details are given in Table 6.1.

We will first describe the effects of the two parameters that are the most impor-

tant to the appearance of the rendered fabrics: the dimensions of the IIRTF cells

and the SH order used in the IIRTF. After fixing these parameters, we compare

our algorithm against other algorithms. We then lastly discuss its limitations.

Effects of the dimensions of the IIRTF cells. As discussed in Section 6.4.2,

we subdivide an exemplar block into cells whose side lengths are as close as possible

to a number which we now call the target cell length ℓ̃. We consider a sequence of

5 target cell length values for each fabric. The first four are 0.5ℓ, ℓ, 1.5ℓ, and 2ℓ,

where ℓ is the mean free path. We picked the fifth so that the numbers of cells in

all dimensions are close to 1 in order to see effects of very coarse subdivisions. We

then generated 5 IIRTF data according to the sequence and used them to render a

draped piece of fabric with the CPU version of our algorithm. The SH order used

was 5 in all renderings, which is the maximum SH order that we use in this paper.

The renderings of the Silk and the 2/3 Satin fabrics are shown in Figure 6.7. The
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Fleece Gabardine Silk 4/1 Satin

Swatch

Tiled

#Fibers 31,091 8,377 7,681 21,953

#Segments 580,660 120,121 112,294 318,882

Fiber radius 0.00087 cm 0.00161 cm 0.00047 cm 0.00150 cm
Mean free path ℓ 0.03550 cm 0.00668 cm 0.00250 cm 0.01257 cm
Target cell length ℓ̃ ℓ 2.0ℓ 2.0ℓ 2.0ℓ

SH Order used 4 4 5 4

IIRTF file size 7.87 MB 11.38 MB 9.01 MB 11.44 MB
SSDF file size 218.71 MB 50.05 MB 47.19 MB 122.84 MB
Sum-of-SGs file size 54.27 MB 11.23 MB 10.50 MB 29.80 MB
#Samples/tetrahedron 32 32 32 32

2/3 Satin 1/4 Satin Shot Silk A Shot Silk B

Swatch

Tiled

#Fibers 16,357 18,507 2,005 2,005

#Segments 244,420 290,149 75,550 56,518

Fiber radius 0.00150 cm 0.00150 cm 0.00010 cm 0.00010 cm
Mean free path ℓ 0.01438 cm 0.01693 cm 0.00135 cm 0.00119 cm
Target cell length ℓ̃ 1.5ℓ 1.5ℓ 2.0ℓ 2.0ℓ

SH Order used 4 5 5 5

IIRTF file size 10.52 MB 21.05 MB 25.97 MB 29.96 MB
Sum-of-SGs file size 95.57 MB 112.32 MB 33.73 MB 26.76 MB
Sum-of-SGs file size 22.84 MB 27.12 MB 7.06 MB 5.28 MB
#Samples/tetrahedron 32 32 64 64

Table 6.1: The fabric models.
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complete set of results are given in the supplementary material.

We observed that, in all fabrics, there are virtually no differences between

the renderings of the target cell lengths of 0.5ℓ and ℓ, showing that the mean

free path provides a good starting point for finding the right target cell length.

The renderings generally become darker as cell dimensions become larger. This is

because the IIRTFs of fiber segments deeper below the fabric surface are averaged

with those near the top. Larger cell sizes also yield blockier, less smooth renderings

in fabrics with multiple yarn colors.

For each fabric, we choose the coarsest subdivision that yields smooth render-

ings that are similar in color to the renderings of the finest subdivisions. The

choices we made are listed in Table 6.1.

Effects of IIRTF SH order. We used the CPU version of our algorithm to

render all the fabrics, varying the SH order of the IIRTF from 0 to 5. We show

renderings of the 4/1 Satin and Shot Silk A fabrics in Figure 6.8. The complete

set of results can be found in the supplementary material.

In general, as we increase the SH order, we see more “directionality.” That is,

the highlights become more defined and sharper, and shadows also become darker.

Color changes start to stabilize after SH of order 3.

The fabrics can be divided into two groups based on their responses to the

SH order. In the Fleece, Gabardine, 4/1 Satin, and 2/3 Satin fabrics, we observe

smaller changes between consecutive pairs of SH orders as we move through higher

SH orders. In this group, differences between renderings of SH order 4 and 5 are

minor and limited to highlight structures. In the 1/4 Satin, the Silk, and the Shot
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L = 0 L = 1 L = 2 L = 3 L = 4 L = 5

Figure 6.8: Effects of the IIRTF’s SH order, denoted by L, on renderings of
the 4/1 Satin (top) and Shot Silk A (bottom) fabrics.

Silk fabrics, however, significant changes can be observed between SH order 4 and

5. For this reason, we choose to use SH order 4 for the first group, and SH order

5 for the second group.

Quantitative match in flat configurations. We compare between dual scat-

tering1 and the two version of our algorithm. We rendered flat pieces of the 8

fabrics under 492 scene configurations used to validate fitted models in [39]. We

rendered each configuration as a 64 × 64 images with 128 samples per pixel. For

the GPU version of our algorithm, we also vary the number of volume samples per

shell tetrahedron (32, 64, and 128).

For each image rendered, we computed the average intensity, resulting in 3 ×

492 = 1,476 values per algorithm and per fabric. The root mean squared errors
1See the details of our implementation of dual scattering in the supplementary material. We

use the value 1.0 for all scattering density factors, but it still produced images that are not as
bright as the path tracing references for most of the fabrics.
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We show RMSEs when compared to path tracing references of the average intensities
of the 492 images rendered by dual scattering (DS), the CPU version of our algorithm
(OC), and three runs of GPU version (OG) using 32, 64, and 128 volume samples per
tetrahedron. The supplementary material of [40] contains numerical values of the RM-
SEs.

Figure 6.9: Accuracy of dual scattering and the two versions of our algorithm.

(RMSE) of these values when compared to those produced by path tracing are

graphed in Figure 6.9. The data show that, if the GPU version uses enough volume

samples, both versions of our algorithm are more accurate than dual scattering.

The result can be attributed to the assumptions that dual scattering (which was

designed for rendering hair) makes—for example, that all fibers have the same

BCSDF and nearby fibers are parallel to one another—which are violated in fabrics.

The CPU version of our algorithm is generally more accurate than the GPU one

because of its accurate ray intersection. As we increase the number of volume

samples per tetrahedron, the GPU version becomes more accurate, except when

rendering the Silk fabric, which might be because the rasterized Silk volume is the

coarsest among all the volumes.

Renderings. We rendered the 8 fabrics in a draped configuration under 5 differ-

ent lightings. To prevent algorithms from picking up illumination from underneath
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the fabric, we put a black mesh of the same shape as the shell underneath the fab-

rics. The images are rendered with 256 samples per pixel at resolution 1024×1024.

We compare between four algorithms: path tracing, dual scattering, and both ver-

sions of our algorithm. Some of the renderings are available in Figure 6.11.

Our algorithm generally produced images whose colors are similar to path trac-

ing references, while dual scattering yielded images that are generally too dim. (For

the Shot Silk fabrics, however, it overly amplified the green color.) The renderings

of our GPU algorithm under the SG light with λ = 10 are darker than those of

other algorithms because PCSS overestimates shadows when the light source is

large. Our algorithm also produced noticeable changes in highlights in all fabrics,

especially in the Fleece and the Shot Silks. Subtleties in the shadows yarns cast on

one another are missed in the Satin fabrics. These deviations might be caused by

low order spherical harmonics’ inability to capture all the features of the incoming

radiance field in the fabric volumes. We emphasize, though, that our renderings

look plausible and have similar colors to the ground truth. Moreover, our GPU

algorithm produced essentially noise-less images as it does not rely heavily on

stochastic sampling.

We ran the first three algorithms on a cluster of 5 machines equipped with a

total of 192 cores in Intel Xeon X7560 processors, each clocked at 2.27 GHz. Our

GPU algorithm was run on an Nvidia GeForce GTX 980 graphics card with 4 GB

of RAM. Both the cluster and the GPU are controlled by a PC equipped with a

4-core Intel Xeon E5-2637 processor clocked at 3.5 GHz. We report the wall clock

time, measured on the controller PC, used by all algorithms in Table 6.2. The wall

clock time does not include loading and preparation of data (e.g. construction

acceleration structures) but does include network communication with the cluster
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while rendering.

The table clearly shows that our GPU algorithm could render in tens of seconds

the images a compute cluster needs several minutes to render, all with a single

commodity GPU.

Our CPU algorithm is the fastest among all the CPU-based algorithms, but

its speedup over path tracing depends on the rendered fabrics. Path tracing is

efficient in fabrics that result in low average path length. For example, the Silk

has a strong reflective component, so light tends to reflects off it rather than going

inside. Moreover, the 2/3 Satin has a black yarn, so Russian roulette tends to

terminate paths early. Even in these cases, our CPU algorithm achieves a speedup

of 2. For the other fabrics, light tends to remain in the fabric volume due to the

fibers’ strong transmission, so multiple scattering is more visually important for

these fabrics. When rendering them, our algorithm achieves significant speedups.

As we did not implement MFT, we could not compare to it directly. Instead,

we compare against conservative estimates of MFT’s running time, computed as

described in Table 6.2. In the fabrics that are difficult for path tracing, our running

times are 2 to 4 times better than MFT’s estimates. We also include running times

of dual scattering for completeness. However, as we did not implement the GPU

version of dual scattering, they do not represent how efficient the algorithm can

be.

Limitations. The memory usage and speed of our algorithm depend strongly on

the size of the data used. In particular, the GPU implementation does not perform

well when rendering dense fabrics: those whose mean free path is small relative to

the exemplar’s size. A short mean free path leads to large IIRTF data, which can
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(a) (b)
(a) In a microscope view, which is beyond our intended range of application, it is plain to
see that on each segment, all pixels in the same block have the same color. (b) However,
at a magnification closer to what can be seen by the naked eye, the blockiness is invisible.
The supplementary material of [40] contains an animated version of (b), showing that
the artifacts do not cause temporal flickering.

Figure 6.10: The Shot Silk B fabric at two magnifications.

thrash the GPU memory bandwidth or might not fit in GPU memory altogether.

We note that this is a problem faced by any algorithm that performs volumetric

precomputation on a uniform grid: dense material means appearance changes fast

spatially, so such an algorithm needs a fine grid to be accurate.

Our algorithm yields blocky artifacts at zoom levels where fiber segments oc-

cupy multiple pixels because all fragments from the same segment use the same

SVF and IIRTF. However, these artifacts are at the level of fiber segments, so

they are not visible as long as the zoom level is not that of a microscope (see

Figure 6.10). Moreover, they do not cause any flickering on animated fabrics (see

supplementary videos).
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Directional light SG light λ = 400 SG light λ = 150 SG light λ = 10

OG OC PT DS

22.58 s 2.73 m 24.79 m10.36 m

OG OC PT DS

23.11 s 2.70 m 24.14 m 9.42 m

OG OC PT DS

25.57 s 2.74 m 24.59 m10.30 m

OG OC PT DS

24.97 s 2.69 m 25.12 m16.55 m

OG OC PT DS

12.92 s 2.67 m 5.15 m 4.30 m

OG OC PT DS

12.73 s 2.66 m 5.18 m 4.29 m

OG OC PT DS

14.99 s 2.64 m 5.60 m 4.39 m

OG OC PT DS

14.57 s 2.61 m 6.00 m 5.19 m

OG OC PT DS

17.13 s 2.71 m 7.39 m 6.82 m

OG OC PT DS

17.23 s 2.74 m 8.26 m 6.80 m

OG OC PT DS

18.86 s 2.70 m 8.29 m 7.08 m

OG OC PT DS

18.41 s 2.66 m 8.58 m 7.99 m

From top to bottom, renderings of the Fleece, Silk, and 2/3 Satin fabrics under 4 lighting configurations. We
compare results by path tracing (PT), dual scattering (DS), and the CPU and GPU versions of our algorithms
(OC and OG, respectively). The times on top of the renderings are the wall clock times used to render the full
images. The supplementary material of [40] contains the complete set of results.

Figure 6.11: Comparison of renderings of a draped fabric model produced by
our algorithms, a path tracer, and the dual scattering algorithm.
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Fleece Gabardine Silk 4/1 Satin
Time Speedup Time Speedup Time Speedup Time Speedup

PT 24.59 m 1.00x 16.21 m 1.00x 5.60 m 1.00x 25.74 m 1.00x
DS 10.30 m 2.39x 6.88 m 2.36x 4.39 m 1.28x 9.94 m 2.59x

MFT∗ 11.88 m 2.07x 7.70 m 2.10x 5.09 m 1.10x 9.72 m 2.65x
Ours (CPU) 2.74 m 8.99x 2.54 m 6.38x 2.64 m 2.12x 2.72 m 9.46x

2/3 Satin 1/4 Satin Shot Silk A Shot Silk B
Time Speedup Time Speedup Time Speedup Time Speedup

PT 8.29 m 1.00x 19.48 m 1.00x 11.11 m 1.00x 8.17 m 1.00x
DS 7.08 m 1.17x 10.46 m 1.86x 8.11 m 1.37x 6.32 m 1.29x

MFT∗ 6.12 m 1.35x 9.47 m 2.06x 6.33 m 1.75x 6.16 m 1.33x
Ours (CPU) 2.70 m 3.07x 2.81 m 6.93x 2.67 m 4.16x 2.71 m 3.02x

Fleece Gabardine Silk 4/1 Satin 2/3 Satin 1/4 Satin Shot Silk A Shot Silk B
Ours (GPU) time 25.57 s 13.98 s 14.99 s 18.86 s 18.86 s 22.47 s 29.26 s 25.52 s

� Smaller values are better � Larger values are better
In addition to path tracing (PT), dual scattering (DS), the CPU version of our algorithm, and the GPU version,
we also provide a conservative estimate of the time used by MFT. (*MFT’s running time is estimated by running
path tracing up to 6 accurate scattering events. We do not estimate the time MFT needs for photon tracing and
stochastic matrix inversion and simply set it to 0.) The CPU-based algorithms ran on a 192-core cluster while
the GPU version of our algorithm ran on a single GPU. We separate out the timings of the GPU algorithm
since it uses different hardware from the rest. Note that rendering is very fast, taking from 14 seconds to 30
seconds on a single GPU compared to minutes on 192 CPU cores.

Table 6.2: The wall clock time used to render the draped fabrics under an
SG light with λ = 150.
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6.7 Conclusion

We have described a GPU-friendly algorithm for approximate rendering of micro-

appearance models of fabrics. It allows a commodity GPU to render, in tens of

seconds, high-quality images with multiple scattering that a sizable CPU cluster

needs to spend several minutes on. The efficiency gain is possible through the use

of appropriate precomputation. In particular, we employ the IIRTF to compute

indirect illumination in a single step. We also introduce a new representation for

visibility around a fiber segment—the sum of spherical Gaussians on Fibonacci

points—that can exploit both the structure of the fiber’s scattering function and

the spherical Gaussian light source.

Future directions. Our algorithm requires regular weave patterns, so a pre-

computation scheme that allows multiple scattering to be approximated in fabrics

with complex weave patterns would expand its applicability. An efficient com-

pression scheme for precomputed data is necessary to enable multiple fabrics to be

rendered all at once. It is also interesting to see whether the sum-of-SGs visibility

representation can be applied in other rendering contexts.
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CHAPTER 7

CONCLUSION

จบแล้ว รักนี้ที่ทนมา

เหนื่อยล้า เพราะรักที่ยาวไกล

หนึ่งคําที่อาจจะฝืนใจ

แต่วันนี้ต้องพูดมันออกไป ลาก่อน

อัสนี วสันต์ โชติกุล, ลาก่อน

Hair and textiles play a major role in human appearance and therefore are

important materials to model well in computer graphics. While simplified models

that abstract them to flat surfaces often suffice for media production, they are not

enough to capture the complex shapes and optics that arise from the multitude of

fibers that constitutes the materials. To capture all such complexity, researchers

have proposed micro-appearance models in which individual fibers are modeled

explicitly. The hope is that, by distilling the materials to their fundamental ele-

ments, the correct aggregate appearance would arise automatically from physical

simulation. Moreover, the behavior of these elements would be simpler to specify.

Creating and deploying micro-appearance models, of course, are not straightfor-

ward, and many research questions have to be answered. At the level of individual

fibers, we need to know how exactly to represent the fibers’ geometric and optical

properties. At the level of the fiber assemblies, we need to know how to con-

trol and efficiently reproduce the aggregate appearance that arises from the fibers’

interaction with light.

In this dissertation, we have presented research that contributed answers to the

above questions. We hope that we have expanded insights on micro-appearance
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models for hair and fabrics and have made them more practical in computer graph-

ics applications.

Chapter 4 confirms that cross-sectional shape has significant impact on a hair

fiber’s light scattering behavior. An elliptical cross section gives rise to features

such as the bright lobes in the TT mode that cannot be predicted by models

that are based on circular cross section. We have also observed the E mode—a

bright, perfect specular reflection that occur only at grazing angles—that cannot be

explained by geometric optics. It is thus imperative to take into account both cross-

sectional shape and wave properties of light if we would like to create more accurate

light scattering models of hair and other types of fibers. Additionally, while our

new measurement device is not accurate enough to extract BCSDF values, it can

serve as a guide on which BCSDF features are important to model.

Chapter 5 contributes a number of tools for modeling appearance of fabrics.

We present an optimization-based algorithm for parameter fitting that works on

any models whose contribution can be differentiated with respect to model pa-

rameters, which allows a large class of models to be fitted to photographed ap-

pearance of fabrics in a systematic way. We also expand the means to create

micro-appearance models by introducing (1) an algorithm for converting micro

CT scans of cloth samples to fiber meshes and (2) a new and simple BCSDF for

textile fibers. Comparison between the BCSDF and the microflake phase function

shows that accounting for Fresnel reflectance is important to faithfully modeling

light scattering behavior of fabrics.

Chapter 6 presents a GPU-friendly algorithm for rendering a micro-appearance

models of textiles under environment illumination. While rendering such a model

with multiple scattering typically takes multiple core-hours with CPU-based algo-
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rithms, our algorithm shortens the rendering time to under a minute using only

a commodity GPU, thus making micro-appearance models practical for interac-

tive design. In designing the algorithm, we make use of two insights. The first is

that multiple scattering inside a fabric volume is smooth and can be approximated

with smooth functions such as low-order spherical harmonics. The second is that

shading under large spherical Gaussian lights can be approximated efficiently if

we represent visibility as a sum of spherical Gaussians with appropriate sharpness.

These insights should prove useful in designing other fast rendering algorithms.

7.1 Future Directions

We see many opportunities for building on our proposed models and algorithms to

increase their effectiveness and capability.

The light scattering model we proposed in Chapter 4 is not yet practical for

production rendering. It requires a large precomputed table that is specific to

a setting for the hair’s cross section. However, a head of hair contains fibers

with different colors and cross sections, and these attributes might also change

along a fiber. As a result, modeling hair with all its complexity would require us

to precompute the tables for all attribute configurations. A model that requires

minimal storage while still being able to handle a wide range of parameters is

needed. For many tasks such as rendering for media production, it is enough that

the model be plausible instead of being highly accurate. Hence, it is interesting

to explore how we may trade accuracy for efficiency when designing models under

the constraint that the features due to ellipticity are still conveyed in a plausible

manner.
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The appearance matching process in Chapter 5 is hard to deploy outside a

laboratory because it requires a gonioreflectometer. It is also inefficient in the

sense that an input photograph only yields a single data point to fit against. How

may we design an acquisition process that requires only off-the-shelf equipments, is

deployable in the field, and yields higher data density per photograph? An inter-

esting approach to explore is to wrap a piece of fabric around a curved surface like

in the works of Marschner et al. [50] and Zinke et al. [114] so that one photograph

contains multiple lighting configurations.

A real piece of fabric can have multiple types of yarn, but we only tested our

appearance matching process on fabrics containing a single yarn type. While the

process is theoretically applicable to the multiple-yarn-type case, what is actually

required to apply it—including how to align photographs with 3D models and what

objective function to use—is unknown. An answer to this problem would greatly

expand the types of materials the algorithm can handle in practice.

Our rendering algorithm in Chapter 6 also suffers the same problem as the

elliptical hair scattering model: it needs precomputed data that are specific to a

certain parameter setting. This requirement makes it difficult to render multiple

types of fabrics at once. Moreover, an interactive design session that uses our

algorithm can change only the fabric’s macrogeometry but not the color or other

light scattering behavior. This problem may be attacked on multiple fronts. We

may research better compression schemes for the precomputed data, or we may

design novel precomputations that allow us to approximate multiple scattering on

the fly as some fabric parameters change. There already exists a body of works

that allow editing of light scattering model parameters in real time [5, 101, 25], and

it would be interesting to see whether we can achieve similar goals when rendering
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fabric micro-appearance models.

Lastly, the main reason that our rendering algorithm is still not fast enough to

be real-time is that it explicitly renders all microgeometry details. Consequently,

it needs high sample count per pixel to avoid aliasing when the fabric is viewed

from far away. This problem calls for a level-of-detail representation of fabric

appearance that takes into account internal multiple scattering. Such a represen-

tation would greatly expand the realism afforded by interactive applications. It

would make environments in games and virtual reality applications more believ-

able and immersive, and it would also make virtual objects integrate to real-world

visuals more seamlessly in augmented reality. Moreover, it would bring real-time

feedback with accurate visuals to interactive prototyping of textiles, making the

process greatly more responsive and rapid to designers. Due to these wide-ranging

impacts, we think that more research should be done on not only the level-of-detail

representation but also on efficient simulation the appearance of micro-appearance

in general.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

A.1 Problems with d’Eon’s Longitudinal Scattering Func-

tion

d’Eon et al. [17] introduced the LSF

Mp(θi, θo) =
csch(1/β2

p)

2β2
p

exp
(
sin(−θi) sin θo

β2
p

)
I0

(
cos(−θi) cos(θo)

β2
p

)
which satisfies the following energy conservation property:∫ π/2

−π/2

Mp(θi, θo) cos θo dθo = 1.

The exponent of the cosine factor is 1, not 2, because their LSF already has a

cosine factor folded in. d’Eon et al. briefly noted that Mp(θi, θo − αp) can be used

to incorporate the longitudinal shift. However, if αp ̸= 0, it is not true that∫ π/2

−π/2

Mp(θi, θo − αp) cos θo dθo ≤ 1.

For example, if θi = −π/2, βp = π/15, and αp = −π/15, then the integral above

evaluates to 2.662.

The extra energy problem can be fixed by using M∗
p (θi, θo) = Mp(θi − αp, θo)

instead, and this might have been what d’Eon et al. intended. Nevertheless, this

definition causes the function to achieve its maximum at unintended locations

when αp ̸= 0. Here, the sensible behavior of the M∗
p as a function of θo should be

that the function’s peak should occur at θo = −θi + αp. In case −θi + αp > π/2,

the peak should occur at θo = π/2 because it is the boundary of θo’s range.
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d’Eon’s LSF, however, does not follow the above property. For example, when

αp = π/9 and βp = π/15, we have that M∗
p (−π/2, θo), which is equal to M(−π/2−

π/9, θo), achieves its maximum at another location which is not π/2. In general,

when αp > 0, as θi approaches −π/2, the peak of the LSF approaches π/2 and

then “bounces back” from θo = π/2 towards θo = 0. We believe this behavior is

not physically plausible. As a result, we use the LSF detailed in Chapter 4, which

yields sensible peak locations when αp ̸= 0.

A.2 Properties of Azimuthal Scattering Function

In Section 4.4.2, we define the blurred response function as:

Rp(ϕi, ϕo) =

∫ 2π

0

∫ D(ϕ′
o)/2

−D(ϕ′
o)/2

Ap(ϕ
′
o, so)K

γp(ϕe
p(ϕ

′
o, so)− ϕi) dso Kγp(ϕo − ϕ′

o) dϕ′
o

=

∫ 2π

0

∫ D(ϕ′
o)/2

−D(ϕ′
o)/2

Ap(ϕ
′
o, so)K

γp(ϕe
p(ϕ

′
o, so)− ϕi)K

γp(ϕo − ϕ′
o) dsodϕ′

o.

In this section, we show that the function is energy conserving and almost recip-

rocal.

To reduce clutter in the proofs, we introduce compact notations for integrals.

we shall abbreviate
∫ 2π

0
as

∫
}, and

∫ D(ϕ)/2

−D(ϕ)/2
as

∫
ϕ
. So, the function can be written

as follows:

Rp(ϕi, ϕo) =

∫
}

∫
ϕ′
o

Ap(ϕ
′
o, so)K

γp(ϕe
p(ϕ

′
o, so)− ϕi)K

γp(ϕo − ϕ′
o) dsodϕ′

o.

One important property of this function is that it is reciprocal.

Lemma A.1. Rp(ϕi, ϕo) = Rp(ϕo, ϕi) for all values of ϕi and ϕo.

223



Proof. We first note that

Ap(ϕ
′
o, so)K

γp(ϕe
p(ϕ

′
o, so)− ϕi)

=

∫
}

∫
ϕ′
i

A(ϕ′
i, si)K

γp(ϕ′
i − ϕi)δ(ϕ

′
i − ϕe

p(ϕ
′
o, so))δ(si − se

p(ϕ
′
o, so)) dsidϕ′

i

where δ(x) is Dirac delta function. As a result,

Rp(ϕi, ϕo)

=

∫
}

∫
ϕ′
o

(∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)K

γp(ϕ′
i − ϕi)δ(ϕ

′
i − ϕe

p(ϕ
′
o, so))δ(si − se

p(ϕ
′
o, so)) dsidϕ′

i

)
Kγp(ϕ′

o − ϕo) dsodϕ′
o

=

∫
}

∫
ϕ′
o

∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)K

γp(ϕ′
i − ϕi)K

γp(ϕ′
o − ϕo)δ(ϕ

′
i − ϕe

p(ϕ
′
o, so))δ(si − se

p(ϕ
′
o, so)) dsidϕ′

idsodϕ′
o

=

∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)

(∫
}

∫
ϕ′
o

Kγp(ϕ′
o − ϕo)δ(ϕ

′
i − ϕe

p(ϕ
′
o, so))δ(si − se

p(ϕ
′
o, so)) dsodϕ′

o

)
Kγp(ϕ′

i − ϕi) dsidϕ′
i.

Consider the middle integral, the delta functions are not zero only when ϕ′
i =

ϕe
p(ϕ

′
o, so) and si = se

p(ϕ
′
o, so). By reversibility of path, the previous two conditions

imply that ϕ′
o = ϕe

p(ϕ
′
i, si) and so = se

p(ϕ
′
i, si). So, the middle integral evaluates to

simply Kγp(ϕe
p(ϕ

′
i, si)− ϕo), and

Rp(ϕi, ϕo) =

∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)K

γp(ϕe
p(ϕ

′
i, si)− ϕo)K

γp(ϕ′
i − ϕi) dsidϕ′

i = Rp(ϕo, ϕi)

as required.

To prove that our ASF is energy conserving, we first interpret the blurred

response function as a response of the cross section to some incoming light distri-

bution convolved with the kernel (and thus its name).

Lemma A.2. Let ϕi and ϕo be fixed azimuthal angles. Let Li be the incoming

radiance distribution in the FRS such that Li(ϕ
′
i, si) = Kγp(ϕ′

i − ϕi) for all ϕ′
i

and si. Let Lo(ϕ
′
o, so) be the outgoing radiance distribution in the FRS that is

the result of the fiber scattering Li, and let Lo(ϕ
′
o) be its associated curve radiance
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distribution. Then,

Rp(ϕi, ϕo) = Lo ∗Kγp =

∫
}
Lo(ϕ

′
o)K

γp(ϕ′
o − ϕo) dϕ′

o

=

∫
}

∫
ϕ′
o

Lo(ϕo, so)K
γp(ϕ′

o − ϕo) dsodϕ′
o.

Proof. Because Lo is the response of the cross section to Li, we have that

Lo(ϕ
′
o, so) =

∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)δ(ϕ

′
o − ϕe

p(ϕ
′
i, si))δ(so − se

p(ϕ
′
i, si))Li(ϕ

′
i, si) dsidϕi

=

∫
}

∫
ϕ′
i

Ap(ϕ
′
i, si)K

γp(ϕ′
i − ϕi)δ(ϕ

′
o − ϕe

p(ϕ
′
i, si))δ(so − se

p(ϕ
′
i, si)) dsidϕi.

From the last proof, we know that Lo(ϕ
′
o, so) = Ap(ϕ

′
o, so)K

γp(ϕe
p(ϕ

′
o, so) − ϕi).

Substituting, we have∫
}

∫
ϕ′
o

Lo(ϕo, so)K
γp(ϕ′

o − ϕo) dsodϕ′
o

=

∫
}

∫
ϕ′
o

Ap(ϕ
′
o, so)K

γp(ϕe
p(ϕ

′
o, so)− ϕi)K

γ(ϕ′
o − ϕo) dsodϕ′

o

= Rp(ϕi, ϕo)

as claimed.

The next lemma gives the normalization constant we need to define the ASF.

Before proceeding, we note that in the 2D world setting, the curve irradiance E is

given by

E =

∫
}
L(ϕ) dϕ =

∫
}

∫
ϕ

L(ϕ, s) dsdϕ.

Lemma A.3. ∫
}
Rp(ϕi, ϕo) dϕo ≤ Dγp(ϕi).
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Proof. From Lemma A.2, we have that∫
}
Rp(ϕi, ϕo) dϕo =

∫
}

∫
}
Lo(ϕ

′
o)K

γp(ϕ′
o − ϕo) dϕ′

odϕo

=

∫
}
Lo(ϕ

′
o)

(∫
}
Kγp(ϕ′

o − ϕo)dϕo

)
dϕ′

o

=

∫
}
Lo(ϕ

′
o) dϕ′

o = Eo

where Eo is the outgoing curve irradiance. Because the attenuation function never

increases energy Ap, we have that the outgoing radiance must be less than the

incoming curve radiance Ei. Hence,∫
}
Rp(ϕi, ϕo) dϕo ≤ Ei =

∫
}

∫
ϕ′
i

Li(ϕ
′
i, si) dsidϕ′

i

=

∫ 2π

0

∫ D(ϕi)

−D(ϕ′
i)/2

Kγp(ϕ′
i − ϕi) dsidϕ′

i

=

∫ 2π

0

D(ϕ′
i)K

γp(ϕ′
i − ϕi) dϕ′

i

= Dγp(ϕi).

Theorem A.4. The ASF Np(ϕi, ϕo) = Rp(ϕi, ϕo)/D
γp(ϕi) is energy conserving in

the sense that ∫ 2π

0

Np(ϕi, ϕo) dϕo ≤ 1

for all ϕi. It is also approximately reciprocal in the sense that

Np(ϕi, ϕo)

Dγp(ϕo)
=

Np(ϕo, ϕi)

Dγp(ϕi)
.

Proof. By Lemma A.3, we have that∫ 2π

0

Np(ϕi, ϕo) dϕo =
1

Dγp(ϕi)

∫ 2π

0

Rp(ϕi, ϕo) dϕo ≤
Dγp(ϕi)

Dγp(ϕi)
= 1.

Moreover, because Rp is reciprocal, we have

Np(ϕi, ϕo)

Dγp(ϕo)
=

Rp(ϕi, ϕo)

Dγp(ϕi)Dγp(ϕo)
=

Rp(ϕo, ϕi)

Dγp(ϕo)Dγp(ϕi)
=

Np(ϕo, ϕi)

Dγp(ϕi)
.

as claimed.
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A.3 Origin of Perpendicular Blobs in the TT Mode

In Section 4.5, we observe that the TT mode of an elliptical fiber contains two

features: the “parallel strips” ( ) and “perpendicular blobs” ( ) that appear for

limited ranges of ϕi. This perpendicular blobs can be explained by the fact that

elliptical cross sections causes a group of incoming rays to have very similar out-

going directions as seen in Column (a) of Figure A.1. The figure also shows plots

of s versus the outgoing direction ϕo of the ray (ϕi, s) in Column (b). We can see

that the two s-versus-ϕo plots in Figure A.1 have intervals where the curves are

relatively flat, implying light energy will concentrate at the azimuthal angle that

is the vertical offset of the flat area. Looking at the polar plots in Column (c), we

can verify that the location of the peak of the blob coincides with the ϕo at which

the s-versus-ϕo is flat.

While the perpendicular blobs are similar to caustic lobes as defined in [49], we

note though that the perpendicular blob is not actually a caustic. The reason is

that Marschner et al. defined a caustic as a location where dϕo/ds is zero. However,

the relatively flat areas in the graphs of Figure A.1 do not have slope of exactly 0.

A.4 Image Formation Model for Photographic Acquisition

As noted in Section 4 of the paper, we take three photos at different exposure

times and merge the photos into a single HDR image. To do so, we assume that

the camera has a linear response curve, and employ the following image formation

model:

Y = ty +Nr +Nd +Ns
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(a) (b) (c)

s

ϕo

123◦

303◦

−D(ϕi)/2 D(ϕi)/2

149◦

0

90180

270

149◦

a = 1.25, ϕi = 33◦

s

ϕo

109◦

289◦

−D(ϕi)/2 D(ϕi)/2

162◦

0

90180

270

162◦

a = 1.50, ϕi = 19◦

We show two situations in which the perpendicular blobs are present in the TT mode.
For each situation, we give (a) an illustration of ray paths that have very similar outgoing
directions, (b) the plot of s versus ϕo = ϕe

1(ϕi, s) along with the interval where the curve
is flat, which roughly corresponds to the group of rays in (a), and (c) the polar plot of
the ASF as a function of ϕo.

Figure A.1: Origin of the perpendicular blobs in the TT mode.

where

• Y denotes the measured pixel value,

• y denotes the power coming into the sensor, which is the quantity we want

to infer,

• Nr denotes the read noise,

• Nd is the dark current noise, and

• Ns denotes the shot noise.

We chose to use the above image formation model because our photographs are

usually dark and thus contaminated significantly by dark current noise and read

noise. The noise terms are modeled as follows:
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• The read noise Nr is modeled as a Gaussian random variable with mean µr

and variance σ2
r .

• The dark current noise Nd is modeled as a Gaussian random variable with

mean µdt and variance σ2
dt.

• The shot noise is modeled as another Gaussian random variable with mean

0 and variance σ2
sty.

We performed a number of experiments and numerical optimizations to determine

values of the above parameters. The values are: µr = 1.708274, σ2
r = 4.454967,

µd = 0.014256, σ2
d = 0.039172, and σ2

s = 0.423542. The units of these values

are based on pixel intensity. (For example, µd has the unit of pixel intensity per

second.)

We now describe the HDR merging process. Suppose we take n photographs

with exposure times t1, t2, . . . , tn with the corresponding readouts y1, y2, . . . ,

yn. Also, let Yi denote the random variable corresponding to the ith exposure.

Assuming that the measurements are independent, the probability of the readouts

given the parameters is

Pr(y1, . . . , yn|y) =
n∏

i=1

Pr(Yi = yi)Pr(y1, . . . , yn|y) =
n∏

i=1

Pr(Ni = yi − tiy)

where Ni is the noise component of Yi, which is a Gaussian random variable with

mean µr + tiµd and variance σ2
r + σ2

dt+ σ2
stiy as noted above. As a result,

Pr(y1, . . . , yn|y) =
n∏

i=1

1√
2π(σ2

r + σ2
dti + σ2

stiy)
exp

(
−(yi − tiy − µr − tiµd)

2

2(σ2
r + σ2

dti + σ2
stiy)

)
.

Merging the photos into a single HDR image is just finding y that yields the

maximum value of the above conditional probability. This can be done through a

numerical optimization at each pixel, but can be very time consuming given the
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number of pixels and photos we have to process. To make the calculation faster,

we assume that yi ≈ tiy (i.e., the noise is small compared to the readouts) and

changes the variances of the noise components to be σ2
r + σ2

dti + σ2
syi. This leads

to the following approximation:

Pr(y1, . . . , yn|y) ≈
n∏

i=1

1√
2π(σ2

r + σ2
dti + σ2

syi)
exp

(
−(yi − tiy − µr − tiµd)

2

2(σ2
r + σ2

dti + σ2
syi)

)
.

Thus, the log likelihood has the form:

logPr(y1, . . . , yn|y) =
n∑

i=1

−(yi − tiy − µr − tiµd)
2

2(σ2
r + σ2

dti + σ2
syi)

+ C.

Taking the derivative with respect to y, we have:

d
ds(log Pr(y1, . . . , yn|y)) = −

n∑
i=1

(yi − tiy − µr − tiµd)ti
σ2
r + σ2

dti + σ2
syi

=

( n∑
i=1

t2i
σ2
r + σ2

dti + σ2
syi

)
y −

( n∑
i=1

(yi − µr − tiµd)ti
σ2
r + σ2

dti + σ2
syi

)
.

Setting the derivative equal to 0, we have that

y =

∑n
i=1(yi − µr − tiµd)ti/(σ

2
r + σ2

dti + σ2
syi)∑n

i=1 t
2
i /(σ

2
r + σ2

dti + σ2
syi)

.

Note that this estimate is biased because we made the approximation yi ≈ tiy, but

we use it because of its expediency and ease of implementation.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

B.1 Evaluation Points for Parameter Rescaling Curves

In Section 5.5.5, we define a rescaling function rp for each parameter p in the hope

that, after applying each to the corresponding parameter, it becomes easier to

find a good learning rate for the optimization. The definition of rp requires an

increasing sequence of values c1, c2, . . . , ck, where [c1, ck] should cover the domain

of parameter p. In this section, we discuss what this increasing sequence is for each

parameter.

In general, ci takes the form ci = a + b ·mi−1 for some constants a, b, and m.

We fix k = 9. We use the aforementioned formula to compute the elements only

from c2 to c8. We set c1 and c9 to be the lower bound and the upper bound of

the parameter’s domain, respectively. The values of the constants are given in the

table below:

Parameter a b m c1 c9

C∗
R 1.02296 −0.032255 1.5403 0.001 0.999

βR −7.0◦, 8.0◦ 1.1 1◦ 10.0◦

CTT 1.02296, −1.02197 0.64922 0.001 0.999

βTT −0.91◦, 1.9◦ 1.5 1◦ 45.0◦

γTT −0.91◦, 1.9◦ 1.5 1◦ 45.0◦

*We use 1− (a+ b ·mi−1) instead of a+ b ·mi−1.

The values computed from the above process are given in the following table:
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CR βR CTT βTT γTT

c1 0.001000 1.000000 0.001000 1.000000 1.000000

c2 0.026722 1.800000 0.359470 1.940000 1.940000

c3 0.053566 2.680000 0.592206 3.365000 3.365000

c4 0.094913 3.648000 0.743304 5.502500 5.502500

c5 0.158599 4.712800 0.841401 8.708750 8.708750

c6 0.256696 5.884080 0.905087 13.518125 13.518125

c7 0.407794 7.172488 0.946434 20.732187 20.732187

c8 0.640530 8.589737 0.973278 31.553281 31.553281

c9 0.999000 10.000000 0.999000 45.000000 45.000000

However, we stated that the range of βTT is from 10◦ to 45◦. This means that,

when performing optimization, we clamp the βTT value to 10◦ if it gets lower than

10◦. The scaling curve is independent of this clamping and was computed using

the above sequence of numbers.

B.2 Processing of Cloth Photographs

Here, we briefly describe the processing we performed on our photographs so that

they could be compared directly to renderings of our cloth models. We began

by exporting linearized images from the camera raw data for each photograph.

After normalizing for differences in exposure and ISO between photographs, we

derived a color matrix to account for characteristics of the camera sensor and

the light source as follows. We photographed a Macbeth chart placed on our

measurement apparatus and rendered a corresponding model of the chart under

the same geometric configuration with accurate spectral reflectance.
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Rendering Photograph

Figure B.1: Rendered Macbeth chart and photograph after applying color
matrix.

We then fit a matrix to apply to our photographs to minimize the sum of

squared differences between the chart colors in the photo (after applying the ma-

trix) and the render, constrained to exactly match the color of the white square of

the rendered chart. The resulting color match is shown in Figure B.1.

233



APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER 6

C.1 SG Sharpness Values for Precomputation

In Section 6.4.3, we generate a table CG of projections of SG lights of various

sharpness λ into the SH basis. This section details how we choose the sequence of

λ values to create the table.

We do so with the help of the mass of an SG. Recall that the mass of the SG

is given by the integral of the SG over the sphere:

M(λ) =

∫
S2
G(ω; ξ, λ) dω =


2π
λ
(1− e−2λ), λ > 0

4π, λ = 0

.

We pick a sequence of λ so that the masses of the SGs roughly follow an arithmetic

sequence from M(0) = 4π to M(∞) = 0. That is, if the table has m + 1 entries,

the sequence λ0, λ1, . . . , λm is given by:

M(λi) ≈
m− i

m
M(0).

That is,

λi ≈ M−1

(
4π(m− i)

m

)
.

Computing the inverse of M is not trivial when the given mass is small. So, instead

we approximate M with the following function:

M̃(λ) =


2π[0.5 + 1.5((λ− 2)/2)2], 0 ≤ λ ≤ 2

4π/λ, λ > 2

.
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Figure C.1: The graph of M(λ) and M̃(λ).

The graph of M and M̃ are given in Figure C.1. We see that M̃ approximates M

well when λ ≥ 2, but not quite so when λ < 2. Nevertheless, the inverse of M̃ is

very easy to compute:

M̃−1(y) =


2π/y, y < π

2− 2
√

(y/(2π)− 0.5)/1.5, y ≥ π

.

More concretely, when precomputing the table CG, we first compute the sequence

λ0, λ1, . . . , λm where:

λi = M̃−1

(
4π(m− i)

m

)
.

Then, we produce to compute the table entries

CG[λi, j] =

∫
S2

G(ω; (0, 0, 1), λi)

M(λi)
Yj(ω) dω

with Monte Carlo integration.

At render time, we’re given an unseen λ. We solve for the index i of the table

cell such that λi is the greatest lower bound of λ:

i = floor
(
m− m

4π
M̃(λ)

)
.
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We then linearly interpolate the table entries with the following equation:

interpolated value ≈ (1− α)CG[λi, j] + αCG[λi+1, j]

where

α =
M(λi)−M(λ)

M(λi)−M(λi+1)
.

Note that we use the masses instead of the λs to compute the interpolation factor.

C.2 Shading Unoccluded, Sharp Spherical Gaussian

Section 6.5.2 discusses how to compute the triple product integral between an SG

light, the BCSDF, and the segment visibility function (SVF). It starts the discus-

sion with an approximation to the double product integral between the BCSDF

and a sharp SG light with λ ≥ 100. In this section, we give details on how the

convolution is carried out. In particular, we give the full forms of the functions

BR and BTT that appear in the approximation.

First, let us establish the BCSDF that we are going to convolve. We use the

one described in Chapter 5, and it has the following parameters:

• CR: the color of the R mode,

• βR: the longitudinal lobe width of the R mode,

• CTT : the color of the TT mode,

• βTT : the longitudinal lobe width of the TT mode, and

• γTT : the azimuthal lobe width of the TT mode.
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The BCSDF is given by:

S(ωi, ωo) = SR(ωi, ωo) + STT (ωi, ωo)

where

SR(ωi, ωo) =
1

2π

FR(θi)

G (−θi; β
−2
R /2))

g(θo;−θi, β
−2
R /2)√

2πβR

STT (ωi, ωo) =
(1− FR(θi))CTT

G (−θi; β
−2
TT/2)

g(θo;−θi, β
−2
TT/2)√

2πβTT

exp(γ−2
TT cos(ϕo − ϕi − π))

2πIo(γ
−2
TT )

FR(θi) = CR − (1− CR)(1− cos θi)5

G (µ;λ) =

√
λ

π

∫ π/2

−π/2

g(θ;µ, λ) cos2 θ dθ

g(x;µ, λ) = exp(−λ(x− µ)2)

Note that I0 denotes the 0th modified Bessel function of the first kind.

Now, we would like to compute the double product integral:∫
S2
G(ωi, ξ, λ)S(ωi, ωo) cos θi dωi

=

∫
S2
G(ωi, ξ, λ)SR(ωi, ωo) cos θi dωi +

∫
S2
G(ωi, ξ, λ)STT (ωi, ωo) cos θi dωi.

where ξ = (θ′, ϕ′) when written in the fiber-based spherical coordinate system [49].

C.2.1 R Mode

We have that:∫
S2
SR(ωi, ωo)G(ωi; ξ, λ) cos θi dω

=

∫
S2

FR(θi)

2πG (−θi; β
−2
R /2)

g(θi;−θo, β
−2
R /2)√

2πβR

G(ωi; ξ, λ) cos θi dωi

=

∫ π/2

−π/2

∫ 2π

0

FR(θi)

2πG (−θi; β
−2
R /2)

g(θi;−θo, β
−2
R /2)√

2πβR

G(ωi; ξ, λ) cos2 θi dϕidθi.
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Using Lemma C.8, we have that∫
S2
SR(ωi, ωo)G(ωi; ξ, λ) cos θi dωi

=

∫ π/2

−π/2

∫ 2π

0

FR(θi)

2πG (−θi;β
−2
R /2)

g(θi;−θo, β
−2
R /2)√

2πβR

gc(θi; θ
′, λ)gc(ϕi;ϕ

′, λ cos θi cos θ′) cos2 θi dϕidθi

=

∫ π/2

−π/2

g(θi;−θo, β
−2
R /2)gc(θi; θ

′, λ)
FR(θi) cos2 θi

2π
√
2πβRG (−θi;β

−2
R /2)

(∫ 2π

0

gc(ϕi;ϕ
′, λ cos θi cos θ′) dϕi

)
dθi

By Lemma C.1,∫ 2π

0

gc(ϕi;ϕ
′, λ cos θi cos θ′) dϕi =

2πI0(λ cos θi cos θ′)
eλ cos θi cos θ′ .

So,∫
S2
SR(ωi, ωo)G(ωi; ξ, λ) cos θi dωi

=

∫ π/2

−π/2

g(θi;−θo, β
−2
R /2)gc(θi; θ

′, λ)
FR(θi) cos2 θi

2π
√
2πβRG (−θi; β

−2
R /2)

2πI0(λ cos θi cos θ′)
eλ cos θi cos θ′ dθi

=

∫ π/2

−π/2

g(θi;−θo, β
−2
R /2)gc(θi; θ

′, λ)
FR(θi) cos2 θi√

2πβRG (−θi; β
−2
R /2)

I0(cos θi(λ cos θ′))
ecos θi(λ cos θ′) dθi.

Let

BR(θi, λ) =
FR(θi) cos2 θi√

2πβRG (−θi; β
−2
R /2)

I0(λ cos θi)
eλ cos θi

.

We have that the integral becomes:∫ π/2

−π/2

g(θi;−θo, β
−2
R /2)gc(θi; θ

′, λ)BR(θi, λ cos θ′) dθi.
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C.2.2 TT Mode

We have that:∫
S2
STT (ωd, ωo)G(ωd; ξ, λ) cos θi dωd

=

∫ π/2

−π/2

∫ 2π

0

(1− FR(θi))CTT

G (−θi;β
−2
TT /2)

g(θi;−θo, β
−2
TT /2)√

2πβTT

exp(γ−2
TT cos(ϕo − ϕi − π))

2πIo(γ
−2
TT )

G(ωd; ξ, λ) cos2 θi dϕidθi

=

∫ π/2

−π/2

∫ 2π

0

(1− FR(θi))CTT

G (−θi;β
−2
TT /2)

g(θi;−θo, β
−2
TT /2)√

2πβTT

exp(γ−2
TT cos(ϕi − (ϕo − π)))

2πIo(γ
−2
TT )

G(ωd; ξ, λ) cos2 θi dϕidθi

=

∫ π/2

−π/2

∫ 2π

0

(1− FR(θi))CTT

G (−θi;β
−2
TT /2)

g(θi;−θo, β
−2
TT /2)√

2πβTT

exp(γ−2
TT cos(ϕi − (ϕo − π))− 1)

2πIo(γ
−2
TT )e

−γ2
TT

G(ωd; ξ, λ) cos2 θi dϕidθi

=

∫ π/2

−π/2

∫ 2π

0

(1− FR(θi))CTT

G (−θi;β
−2
TT /2)

g(θi;−θo, β
−2
TT /2)√

2πβTT

gc(ϕi;ϕo − π, γ−2
TT )

2πIo(γ
−2
TT )e

−γ2
TT

G(ωd; ξ, λ) cos2 θi dϕidθi

=

∫ π/2

−π/2

∫ 2π

0

(1− FR(θi))CTT

G (−θi;β
−2
TT /2)

g(θi;−θo, β
−2
TT /2)√

2πβTT

gc(ϕi;ϕo − π, γ−2
TT )

2πIo(γ
−2
TT )e

−γ2
TT

gc(θi; θ
′, λ)gc(ϕi;ϕ

′, λ cos θi cos θ′) cos2 θi dϕidθi

=

∫ π/2

−π/2

(1− FR(θi))CTT cos2 θi
G (−θi;β

−2
TT /2)2π

√
2πβTT Io(γ

−2
TT )e

−γ2
TT

g(θi;−θo, β
−2
TT /2)g

c(θi; θ
′, λ)(∫ 2π

0

gc(ϕi;ϕo − π, γ−2
TT )g

c(ϕi;ϕ
′, λ cos θi cos θ′) dϕi

)
dθi.

Let’s work on the integral involving ϕi. To simplify matters, let’s ϕ0 = 0. Using

Lemma C.6, we have that:

gc(ϕi;−π, γ−2
TT )g

c(ϕi;ϕ
′, λ cos θi cos θ′)

= eλm(θi,λ cos θ′,ϕ′)−(γ−2
TT+λ cos θ′ cos θi)gc

(
ϕi;ϕm, λm(θi, λ cos θ′, ϕ′)

)
where ϕm is an angle which doesn’t matter in the resulting integral, and λm is

given by:

λm(θi, λ, ϕ) =
√

γ−4
TT + λ2 cos2 θi − 2γ−2

TTλ cos θi cosϕ.
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So, ∫ 2π

0

gc(ϕi;−π, γ−2
TT )g

c(ϕi;ϕ
′, λ cos θi cos θ′) dϕi

= eλm(θi,λ cos θ′,ϕ′)−(γ−2
TT+λ cos θ′ cos θi)

∫ 2π

0

gc(ϕi;ϕm, λm(θi, λ cos θ′, ϕ′)) dϕi

= eλm(θi,λ cos θ′,ϕ′)−(γ−2
TT+λ cos θ′ cos θi)2πI0(λm(θi, λ cos θ′, ϕ′))

exp(λm(θi, λ cos θ′, ϕ′))

=
2πI0(λm(θi, λ cos θ′, ϕ′))

exp(γ−2
TT + λ cos θ′ cos θi)

.

As a result,∫
S2
STT (ωd, ωo)G(ωd; ξ, λ) cos θi dωd

=

∫
S2
g(θi;−θo, β

−2
TT/2)g

c(θi; θ
′, λ)(

(1− FR(θi))CTT cos2 θi
G (−θi; β

−2
TT/2)2π

√
2πβTT Io(γ

−2
TT )e

−γ2
TT

2πI0(λm(θi, λ cos θ′, ϕ′))

exp(γ−2
TT + λ cos θ′ cos θi)

)
dθi.

In the same way as the previous section, we let:

BTT (θi, λ, ϕ) =
(1− FR(θi))CTT cos2 θi

G (−θi; β
−2
TT/2)2π

√
2πβTT Io(γ

−2
TT )e

−γ2
TT

2πI0(λm(θi, λ, ϕ))

exp(γ−2
TT + λ cos θi)

=
(1− FR(θi))CTT cos2 θi√

2πβTTG (−θi; β
−2
TT/2)Io(γ

−2
TT )

I0(λm(θi, λ, ϕ))

exp(λ cos θi)

so that the integral becomes:∫
S2
g(θi;−θo, β

−2
TT/2)g

c(θi; θ
′, λ)BTT (θi, λ cos θ′, ϕ′) dθi.

C.3 Some Useful Mathematical Identities

In this section, we list some identities involving Gaussian-like functions and prove

some of them. These identities are used throughout this appendix and in Sec-

tion 6.5.2. Important lemmas include:
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• Lemma C.1 gives the masses of spherical Gaussians and circular Gaussians.

• Lemma C.5 shows that the product of two spherical Gaussians is another

spherical Gaussian. It is used in Section 6.5.2.

• Lemma C.6 shows that the product of two circular Gaussians is another

circular Gaussian. It is used in Section C.2.

• Lemma C.7 shows that the product of two (ordinary) Gaussians is another

(ordinary) Gaussian. It is used in Section 6.5.2.

• Lemma C.8 allows us to decompose a spherical Gaussian to a product of

two circular Gaussians. It is what makes the algebraic manipulation in Sec-

tion C.2 possible.

• Lemma C.9 states that a circular Gaussian may be approximated by an

ordinary Gaussian. It is used in Section 6.5.2.

These lemmas are used in many previous works such as [93] and [31], often without

proof. We collect them here in the hopes that other practitioners might find them

useful.

In this dissertation, we deal with a number of Gaussian functions. They are:

G(ω; ξ, λ) = exp(λ(ω · ξ − 1)) (spherical Gaussian)

gc(x;µ, λ) = exp(λ(cos(x− µ)− 1)) (circular Gaussian)

g(x;µ, λ) = exp(−λ(x− µ)2) (ordinary Gaussian)

There are also related directional probability distributions.

fvMF(ω; ξ, λ) =
λ exp(λ(ω · ξ))
4π sinh(λ) (von Mises–Fisher distribution)

fvM(x;µ, λ) =
exp(λ cos(x− µ))

2πI0(λ)
(von Mises distribution)
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The first thing to notice is that the above distributions are Gaussians in disguise:

G(ω; ξ, λ) = exp(λ(ω · ξ − 1)) = e−λ exp(λ(ω · ξ))

=
4π sinh(λ)e−λ

λ

λ exp(λ(ω · ξ))
4π sinh(λ) =

4π

λ

eλ − e−λ

2
e−λfvMF(ω; ξ, λ)

=
2π

λ
(1− e−2λ)fvMF(ω; ξ, λ)

gc(x;µ, λ) = exp(λ(cos(x− µ)− 1)) = e−λ exp(λ cos(x− µ))

= 2πI0(λ)e
−λ exp(λ cos(x− µ))

2πI0(λ)

= 2πI0(λ)e
−λfvM(x;µ, λ)

Lemma C.1. We have that∫
S2
G(ω; ξ, λ) dω =

2π

λ
(1− e−2λ)∫ 2π

0

gc(x;µ, λ) dx = 2πI0(λ)e
−λ

Lemma C.2.

G(ω; ξ, λ) = exp
(
−λ

2
∥ω − ξ∥2

)
= exp

(
−λ

2
(ω − ξ) · (ω − ξ)

)
Proof. We have that

ω · ξ − 1 = −(1− ω · ξ) = −2− 2(ω · ξ)
2

= −(ω · ω) + (ξ · ξ)− 2(ω · ξ)
2

= −(ω − ξ) · (ω − ξ)

2
= −∥ω − ξ∥2

2
.

The rest is obvious.

Definition C.3. Let p(θ) denote the unit vector
0

cos θ

sin θ

 .
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Lemma C.4.

gc(x;µ, λ) = G(p(x); p(µ), λ)

Proof. The lemma follows from the fact that:

p(x) · p(µ)− 1 = cosx cosµ+ sinx sinµ− 1 = cos(x− µ)− 1.

Lemma C.5.

G(ω1; ξ1, λ1)G(ω2, ξ2, λ2) = e∥λ1ξ1+λ2ξ2∥−(λ1+λ2)∥G

(
ω;

λ1ξ1 + λ2ξ2
∥λ1ξ1 + λ2ξ2∥

, ∥λ1ξ1 + λ2ξ2∥
)
.

Proof.

G(ω; ξ1, λ1)G(ω, ξ2, λ2)

= exp(λ1(ω · ξ1 − 1)) exp(λ2(ω · ξ2 − 1))

= exp(λ1(ω · ξ1 − 1) + λ2(ω · ξ2 − 1))

= exp(ω · (λ1ξ1) + ω · (λ2ξ2)− λ1 − λ2)

= exp
(
∥λ1ξ1 + λ2ξ2∥

(
ω · λ1ξ1 + λ2ξ2

∥λ1ξ1 + λ2ξ2∥

)
− (λ1 + λ2)

)
= exp

(
∥λ1ξ1 + λ2ξ2∥

(
ω · λ1ξ1 + λ2ξ2

∥λ1ξ1 + λ2ξ2∥
− 1

)
+ ∥λ1ξ1 + λ2ξ2∥ − (λ1 + λ2)

)
= e∥λ1ξ1+λ2ξ2∥−(λ1+λ2)G

(
ω;

λ1ξ1 + λ2ξ2
∥λ1ξ1 + λ2ξ2∥

, ∥λ1ξ1 + λ2ξ2∥
)
.

Lemma C.6.

gc(x;µ1, λ1)g
c(x;µ2, λ2)

= e
√

λ2
1+λ2

2+2λ1λ2 cos(µ1−µ2)−(λ1+λ2)

gc
(
x; tan−1

( λ1 sinµ1 + λ2 sinµ2

λ1 cosµ1 + λ2 cosµ2

)
,
√
λ2
1 + λ2

2 + 2λ1λ2 cos(µ1 − µ2)

)
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Proof.

gc(x;µ1, λ1)g
c(x;µ2, λ2)

= G(p(x); p(µ1), λ1)G(p(x); p(µ2), λ2)

= e∥λ1p(µ1)+λ2p(µ2)∥−(λ1+λ2)G

(
p(x);

λ1p(µ1) + λ2p(µ2)

∥λ1p(µ1) + λ2p(µ2)∥
, ∥λ1p(µ1) + λ2p(µ2)∥

)
.

We have that:

λ1p(µ1) + λ2p(µ2) =


0

λ1 cosµ1 + λ2 cosµ2

λ1 sinµ1 + λ2 sinµ2

 .

As such,

∥λ1p(µ1) + λ2p(µ2)∥2

= (λ1 cosµ1 + λ2 cosµ2)
2 + (λ1 sinµ1 + λ2 sinµ2)

2

= λ2
1 cos2 µ1 + λ2

2 cos2 µ2 + 2λ1λ2 cosµ1 cosµ2 + λ2
1 sin2 µ1 + λ2

2 sin2 µ2 + 2λ1λ2 sinµ1 sinµ2

= λ2
1 + λ2

2 + 2λ1λ2(cosµ1 cosµ2 + sinµ1 sinµ2)

= λ2
1 + λ2

2 + 2λ1λ2 cos(µ1 − µ2).

So,

∥λ1p(µ1) + λ2p(µ2)∥ =
√
λ2
1 + λ2

2 + 2λ1λ2 cos(µ1 − µ2).

Moreover, consider now the unit vector λ1p(µ1)+λ2p(µ2)
∥λ1p(µ1)+λ2p(µ2)∥ . The angle that it makes

with the y-axis is given by:

tan−1 λ1 sinµ1 + λ2 sinµ2

λ1 cosµ1 + λ2 cosµ2

.

Hence,

λ1p(µ1) + λ2p(µ2)

∥λ1p(µ1) + λ2p(µ2)∥
= p

(
tan−1 λ1 sinµ1 + λ2 sinµ2

λ1 cosµ1 + λ2 cosµ2

)
.
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In conclusion,

gc(x;µ1, λ1)g
c(x;µ2, λ2)

= e
√

λ2
1+λ2

2+2λ1λ2 cos(µ1−µ2)−(λ1+λ2)

gc
(
x; tan−1

( λ1 sinµ1 + λ2 sinµ2

λ1 cosµ1 + λ2 cosµ2

)
,
√
λ2
1 + λ2

2 + 2λ1λ2 cos(µ1 − µ2)

)

Lemma C.7.

g(x;µ1, λ1)g(x;µ2, λ2) = exp
(
− λ1λ2

λ1 + λ2

(µ1 − µ2)
2

)
g

(
x;

λ1µ1 + λ2µ2

λ1 + λ2

, λ1 + λ2

)
Proof.

g(x;µ1, λ1)g(x;µ2, λ2)

= exp(−λ1(x− µ1)
2) exp(−λ2(x− µ2)

2)

= exp(−(λ1x
2 − 2λ1µ1x+ λ1µ

2
1 + λ2x

2 − 2λ2µ2x+ λ2µ
2
2))

= exp
(
− [(λ1 + λ2)x

2 − 2(λ1µ1 + λ2µ2)x+ λ1µ
2
1 + λ2µ

2
2]
)

= exp
(
− [(λ1 + λ2)x

2 − 2(λ1µ1 + λ2µ2)x+ λ1µ
2
1 + λ2µ

2
2]
)

= exp(−(λ1µ
2
1 + λ2µ

2
2)) exp

(
− [(λ1 + λ2)x

2 − 2(λ1µ1 + λ2µ2)x]
)

= exp(−(λ1µ
2
1 + λ2µ

2
2)) exp

(
− (λ1 + λ2)

[
x2 − 2

λ1µ1 + λ2µ2

λ1 + λ2
x
])

= exp(−(λ1µ
2
1 + λ2µ

2
2)) exp

(
− (λ1 + λ2)

[
x2 − 2

λ1µ1 + λ2µ2

λ1 + λ2
x+

(
λ1µ1 + λ2µ2

λ1 + λ2

)2

−
(
λ1µ1 + λ2µ2

λ1 + λ2

)2])
= exp(−(λ1µ

2
1 + λ2µ

2
2)) exp

(
− (λ1 + λ2)

[(
x− λ1µ1 + λ2µ2

λ1 + λ2

)2

−
(
λ1µ1 + λ2µ2

λ1 + λ2

)2])
= exp(−(λ1µ

2
1 + λ2µ

2
2)) exp

(
− (λ1 + λ2)

(
x− λ1µ1 + λ2µ2

λ1 + λ2

)2

+
(λ1µ1 + λ2µ2)

2

λ1 + λ2

)
= exp

(
− (λ1µ

2
1 + λ2µ

2
2) +

(λ1µ1 + λ2µ2)
2

λ1 + λ2

)
exp

(
− (λ1 + λ2)

(
x− λ1µ1 + λ2µ2

λ1 + λ2

)2)
= exp

(
−λ2

1µ
2
1 − λ1λ2µ

2
1 − λ1λ2µ

2
2 − λ2

2µ
2
2 + λ2

1µ
2
1 + λ2

2µ
2
2 + 2λ1λ2µ1µ2

λ1 + λ2

)
g

(
x;

λ1µ1 + λ2µ2

λ1 + λ2
, λ1 + λ2

)
= exp

(
−λ1λ2µ

2
1 − λ1λ2µ

2
2 + 2λ1λ2µ1µ2

λ1 + λ2

)
g

(
x;

λ1µ1 + λ2µ2

λ1 + λ2
, λ1 + λ2

)
= exp

(
− λ1λ2

λ1 + λ2
(µ1 − µ2)

2

)
g

(
x;

λ1µ1 + λ2µ2

λ1 + λ2
, λ1 + λ2

)
.

245



Lemma C.8.

G(ω; ξ, λ) = gc(θ; θ′, λ)gc(ϕ;ϕ′, λ cos θ cos θ′).

Proof. First, let us write:

ω =


sin θ

cos θ cosϕ

cos θ sinϕ

 and ξ =


sin θ′

cos θ′ cosϕ′

cos θ′ sinϕ′

 .

We have that

ω · ξ − 1 = sin θ sin θ′ + cos θ cosϕ cos θ′ cosϕ′ + cos θ sinϕ cos θ′ sinϕ′ − 1

= sin θ sin θ′ + cos θ cos θ′ cosϕ cosϕ′ + cos θ cos θ′ sinϕ sinϕ′ − 1

= sin θ sin θ′ + cos θ cos θ′(cosϕ cosϕ′ + sinϕ sinϕ′)

= sin θ sin θ′ + cos θ cos θ′ cos(ϕ− ϕ′)− 1

= sin θ sin θ′ + (cos θ cos θ′ − cos θ cos θ′) + cos θ cos θ′ cos(ϕ− ϕ′)− 1

= (sin θ sin θ′ + cos θ cos θ′ − 1) + [cos θ cos θ′ cos(ϕ− ϕ′)− cos θ cos θ′]

= (sin θ sin θ′ + cos θ cos θ′ − 1) + cos θ cos θ′(cos(ϕ− ϕ′)− 1)

= (cos(θ − θ′)− 1) + cos θ cos θ′(cos(ϕ− ϕ′)− 1).

As a result:

λ(ω · ξ − 1) = λ(cos(θ − θ′)− 1) + λ cos θ cos θ′(cos(ϕ− ϕ′)− 1)

exp(λ(ω · ξ − 1)) = exp(λ(cos(θ − θ′)− 1)) + exp(λ cos θ cos θ′(cos(ϕ− ϕ′)− 1))

G(ω; ξ, λ) = gc(θ; θ′, λ)gc(ϕ;ϕ′, λ cos θ cos θ′)

as desired.

Lemma C.9. gc(x;µ, λ) ≈ g(x;µ, λ/2)

Proof. By graphing. The graphs become closer as λ increases. We have very good

approximation when λ ≥ 10, but poor approximation otherwise. See Figure C.2.
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Figure C.2: Circular Gaussians and ordinary Gaussians of various sharpness
parameters.
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