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Abstract 

Let X(t) be a birth-death Markov process. Here it is shown how the expectation 

of the time to absorption and of the integral under X(t) up to absorption time can be 

found by substituting transitions to state 0 by transitions to the initial state of the process, 

provided the stationary distribution of the modified process exists. Examples of 

applications to some special cases of birth-death Markov processes are given. 

STOCHASTIC INTEGRALS; BIRTH AND DEATH PROCESS; MARKOV PROCESSES 

1. Introduction 

Integrals of nonnegative stochastic processes arise naturally in engineering, 

biology and inventories. Functionals of this integral correspond to first emptiness 

problems in queuing, storage and traffic problems and to inventory systems with holding 

cost associated with the stock over a particular period of time (see for instance [3], [5] 

and [12]). In biology it has been associated with total food consumption and production 

of toxins of a bacteria ([15]) and total cost of epidemics ([2], [4], [6], [7]). Limiting 

*Postal address: Warren Hall 324, Biometrics Unit, Cornell University, Ithaca, 
NY., 14853-7801. Electronic address: cmhl @cornell.edu 
Research supported by a Conacyt scholarship (Mexico) and by grant NSF DEB-9253570 
(Presidential Faculty Award) to Carlos Castillo-Chavez, Cornell University. 



properties for the integral have been studied in [1], [8], [9], [16]- [18], whereas integral 

functionals were studied in [11] and [13]. Here we deal with a different approach to 

evaluate the expectation of the integral for a birth-death Markov process as well as of the 

expected time to absorption. 

2. Methodology 

Let X(t) be a birth-death process on a subset of N={0,1,2, ... }, with birth and 

death rates Ai and f.Li respectively for state i. Define 

Zk = inf { t: X(t) = Ol X(O) = k} 

and 

rzk 
Yk = Jo X(t) dt 

thus Zk is the time to absorption given X(O) = k and Yk is the area under X(t) up to 

the time when the process vanishes. 

If we substitute transitions to state 0 by transitions to the initial state k, providing 

that the resulting process is ergodic a stationary distribution exists. Call this distribution 

the Modified Stationary Distribution (MSD) and denote it by II'={ 1r1 ,1f2,1f3···}. Let Sr be 

the random vector corresponding to the total amount of time spent in state r before 

absorption, r = 1, 2, 3, ... Observe that 

(1) 
rzk 

Yk = Jo X(t) dt 

a result pointed out by Puri [14]. 



Let r be an arbitrary but fixed state, r i= 0. If the modified process is ergodic then 

when t--. oo state r will be visited infinitely often. Assume a cycle has been completed 

every time a death occurs with the process being in state 1. Define also E { Sr} as the the 

expected time spent in state r in a cycle. It is clear that E { Sr} equals also the expected 

time spent in state r before the process goes to absorption in the original process. 

Define now Srj be the time spent in state r in the j - th cycle in the modified 

process, j = 1, 2, ... , n. Thus we have: 

j~1Srj} 
lim------

n-->oo n 

Note that in the modified Markov Process 

n 

L:Srj 
lim ~ = 1 = 1rr 

n-->oo L LSij 
j =1 i 

with 1r r being the corresponding element of the modified stationary distribution IT. The 

equality follows from the fact that the numerator is the total time spent in state r trough n 

cycles and the denominator is the equivalent through all states. Observe that 

n 

L:Srj 
j =1 

7r r = lim _n __ _ 

n-->oo L LSij 
j =1 i 

n 
lim n-1 L:Srj 

n-->oo j = 1 

n 
lim n-1 L L:Sij 

k-->oo j =1 i 

Note E{L:Si} is E{ Zk}, thus it follows that: 
i 

E{Sr} 
E{L:Si} 

i 



since E{ 8 1 } = 1/ fL we have: 

(2) 

and then from (1) and (2) it follows that: 

(3) E{f'x(t)dt} = ~) E{s,} = (7rtl'tl-'Li 1r; 
z z 

3. Examples 

The following are applications of (3) to some birth-death Markov processes. In all 

examples the initial state is assumed to be k = 1, and thus the stationary distribution 

corresponds to the "reflecting state 0 approximation to the quasi-stationary distribution". 

(see [10] for details), which satisfies the following system of linear equations: 

0 = 1rn+l fLn+l + Kn-1 >-n-1 - Kn(A.n + /Ln), n = 2,3, ... 

these can be solved recursively to give the well known solution: 

In all following cases assume >. < fL so that the stationary distribution exists. Observe 

that upon defining 

(4) H(n) = >.1 >.2 >.3 ... >-n-1 
f/,2 f/,3 f/,4 .. · /Ln 

then, E{Yl} in birth-death Markov processes with initial state 1 and 0 as an absorbing 

state can be simplified to: 



(5) 
1 00 00 

E{Yi}= -2:iH(i)1r1 = J.i11 LiH(i) 
1f1/-l1 i =1 i =1 

The last equality will be used in the following examples: 

(a) An = A, f.Ln = f-l, k = 1. 

This is theM/ M /1 queue. Let p = .A/ J.L. Yi of equation (1) corresponds to the 

total amount of time waited by all customers during the length of a busy period. From (4) 

we haveH(n) = pn-1. The expected time to absorption is E{Zt} = .-\(1- .A/J.L), and 

applying (5) we have: 

00 

E{y,} -1~. i-1 
1 =J.L ~~p 

i=1 

1 

(b) An= A, f.Ln = J.Ln, k = 1. 

This is the M / M / oo queue or immigration-death process. Yi is again the total 

amount of time waited by all customers during the length of a busy period. In this case 

we have H(n) = pn-1 jn!. E{ Zl} can be shown to be (eP- 1) / p f.L, and 

00 

E{Yi} = f.L-1 L i Pi-1 /i! = f.L-1 e>-.!Jl-
i=1 

(c) An= .An, f.Ln = J.Ln,k = 1. 

This is the linear birth-death process (Yule process). We have H(n) = pn-1 jn . 

Here E { Zl} = - log(1 - .A/ J.L) ,\-1 and 



00 

E{Yi} = J-L -1 Lip i-1 /i 
i=1 

1 

(J-L- .\) 
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