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Exotic species introduced to Lake Ontario in the past 100 years have had 

varied effects on the food web.  The exotic cladoceran Cercopagis pengoi is a 

zooplankton predator, and the effects of its establishment (in 1998) were difficult to 

predict without research conducted years since its introduction.  Little to no work has 

been conducted at spatial scales necessary to examine the role of C. pengoi on a 

lakewide basis.  This study was conducted to assess the relative importance of C. 

pengoi as prey and predator by examining its abundance, distribution, and potential 

impacts based on these variables and its trophic interactions with zooplankton and 

fish.      

 Data from a number of field studies were used to develop equations relating 

acoustic size (target strength) to length and mass, which allowed estimation of 

abundance using acoustic surveys.  Target strength varied significantly with length 

and mass.  Target strength equations were significantly different from previously 

published equations. 

 Field collections revealed that C. pengoi was an important prey item for only 

for juvenile and adult alewives > 66 mm total length.  Due to the planktivorous nature 

of C. pengoi and similar distributions of these organisms, alewives and rainbow smelt 

also compete with C. pengoi.  The relative importance of C. pengoi as prey and 

competitor depended on fish size and habitat use; habitat use determined the degree of 

spatial overlap, while fish size and the defensive spine of C. pengoi influenced the 

 



 

degree to which these fish were able to utilize C. pengoi during periods of spatial 

overlap.   

Late summer abundance of bosminids, Diacyclops thomasi, and copepod 

nauplii was significantly lower in 1998-2000 than 1995-1997, while abundance of 

Daphnia retrocurva did not vary significantly.  Other factors that may have 

contributed to this decline were excluded by examination of their seasonal patterns.  I 

concluded that predation by C. pengoi caused the observed declines.  The relative 

magnitude of consumption by C. pengoi and alewives indicated that they were 

important predators and competitors and both were capable of structuring zooplankton 

community structure through predation. 

 



 

 

 

BIOGRAPHICAL SKETCH 

David Warner was born on 18 February 1968 in Alton, Illinois.  After a move to 

Brockport, New York, he graduated from Brockport High School in 1986.  He worked 

at several manufacturing plants and as a painter until enrolling at the State University 

of New York (SUNY) at Cobleskill in 1987.  He obtained an Associates degree in 

Fisheries and Wildlife Technology as well as a Bachelor’s of Technology in Fisheries 

and Aquaculture between 1987 and 1992.  Between 1992 and 1996, he worked as Fish 

Hatchery Manager at SUNY Cobleskill and as a Fishery Technician for the New York 

State Department of Environmental Conservation.  In 1996 he enrolled in the Master 

of Arts in Biology program at SUNY Oneonta.  While a student at SUNY Oneonta, he 

worked as an interpretive guide for students on field trips to the SUNY Oneonta 

Biological Field Station in Cooperstown, New York.  In 1997 he took a job as a high 

school science teacher.  While at Cornell, David enjoyed the many opportunities to 

meet and work with a number of acousticians/scientists in the U.S. and abroad, 

especially Mike Jech, John Horne, Thomas Axenrot, and Tomas Didrikas.  He was a 

member of the Great Lakes Fishery Commission Acoustic Working Group, was a Sea 

Grant Scholar for three of his five years at Cornell, and contributed to research 

published in journals including Journal of Great Lakes Research, ICES Journal of 

Marine Science, Lake and Reservoir Management, Limnology and Oceanography, and 

Transactions of the American Fisheries Society.  David presented his research at four 

national level scientific conferences.  David is employed as a research fishery biologist 

at the U.S. Geological Survey Great Lakes Science in Ann Arbor, Michigan.  David 

enjoys music, reading, kayaking, making beer, architecture, and home renovation. 

 iii



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This manuscript is dedicated to my wife, Emily Grace Warner and my parents, David 

and Dorothy Warner.

 iv



 

ACKNOWLEDGMENTS 

My graduate committee members all played a valuable role throughout this 

project (and others) as well as in my development as a scientist.  Co-Chairs Lars 

Rudstam and Ed Mills allowed me to develop my own approach to dealing with a set 

of questions and problems, they let me know when my ideas fell short or were good, 

and they helped improve my skills as a writer.  Ed and Lars provided a multitude of 

resources at the Cornell Biological Field Station, including their time (in unlimited 

amounts).  Pat Sullivan prodded me to see things differently, to try to see things from 

a more quantitative perspective.  This was a major contribution to my development as 

a scientist, regardless of how far I still must go.  Steve Degloria provided me with my 

first real sense of the spatial nature of natural resources data as well as an introduction 

to a set of tools (GIS) that I could not live without (even though my efforts to add such 

a focus to this project were not successful). 

The research presented here required effort and input from a large number of 

people and agencies.  Brian Lantry (USGS) and Ted Schaner (Ontario Ministry of 

Natural Resources) provided fish at a time of need.  New York State Department of 

Environmental Conservation, U.S. Fish and Wildlife Service, and Cornell University 

Biological Field Station collected zooplankton data that made much of this research 

possible.  Ora Johannsson provided insightful comments on several drafts of portions 

of the manuscript.  Thanks go to Tara Bushnoe, who provided excellent assistance in 

the field, in the lab, and ultimately published a paper on based on our joint efforts to 

understand C. pengoi.  Nate Smith and Micah Dean of the New York Sea Grant 

Salmonid project provided gill net and acoustic data.  JoAnne Getchonis of the Cornell 

Biological Field Station provided an endless supply of assistance and knowledge on 

how to get things done.  Last but not least, thanks to Tom Brooking for unerringly 

fixing equipment I broke.               

 v



 

This project was funded in part by award NA86RG0056 by the National 

Oceanic and Atmospheric Administration (NOAA) to the Research Foundation of 

State University of New York for New York Sea Grant.  Additional funding for my 

tenure at Cornell was provided by the National Science Foundation grant to the 

Cornell Environmental Inquiry Research Partnership (thanks to Marianne Krasny) as 

well as another award from New York Sea Grant (project number R/FTD-8). 

A number of wonderful people made Cornell a great place to be.  The oddities and 

difficulties of graduate school loom large at times, but they were minimized thanks to 

interactions with a number of people including: Robert Klumb, Jeremy Coleman, Nate 

Smith, Brian Weidel, Sandy Parker Stetter and Brian Irwin.  

 vi



 

TABLE OF CONTENTS

 

Biographical sketch         iii 

Dedication          iv 

Acknowledgements         v 

List of Figures                     viii 

List of Tables                     xiii 

List of Appendices         xvi 

Preface                      xvii 

Chapter 1  In Situ Target Strength of Alewives in Freshwater     1 

Chapter 2  Cercopagis pengoi as a New Prey Item for Alewife  

(Alosa pseudoharengus) and Rainbow Smelt (Osmerus    33 

mordax) in Lake Ontario 

Chapter 3  Changes in Seasonal Nearshore Zooplankton Abundance       53 

   Patterns in Lake Ontario Following Establishment of the  

Exotic Predator Cercopagis pengoi 

 

Chapter 4  Zooplankton Production and Consumption in Nearshore        79 

Waters of Lake Ontario 

           

 

 

 

 

 

 

 vii



 

LIST OF FIGURES

Figure 1.1 Relative selectivity curves of the gill nets utilized in this  6  

study.  Each unbroken line represents a net with mesh size 

(from left to right) 6.25, 8, 10, 12.5, 15, and 18.5 mm.  The 

broken line represents the summed selectivity at each size.   

Figure 1.2 Distribution of deviations from mean target strength for   11 

young-of-year (upper panel) and older (lower panel) alewife  

in Lake Ontario collected during stationary surveys on 26  

August 1996 and Otsego Lake on 24 July 2000 and 16  

September 1996.   

Figure 1.3 Target strength (TS) and length-frequency distributions for  13  

surveys on 20-21 July 1999, 12 August 1999, and 16  

September 1996 in Otsego Lake.   

Figure 1.4 Comparison of regression lines for predicting alewife target  18 

strength (TS) from length.  The solid line represents the  

regression with all 37 data points. The heavy broken line  

represents the regression without three high-leverage points  

identified as young-of-year alewives (open symbols).  Both  

closed and open symbols represent the observed data.  The light  

broken lines represent the 95% confidence interval for the  

regression line.  Differences in regression parameters were  

insignificant (P>0.1).   

 

 

 

 

 viii



 

Figure 1.5 Comparison of the TS-length regression from this   21  

study with regression lines for Atlantic herring (Foote 1987)  

and Rudstam et al. (1988).  Also shown for comparison are  

regression lines for cisco (Rudstam et al. 1987), two lines  

from laboratory work with data pooled from several orders and 

species (Love 1971; Love 1977), Osmerus eperlanus (Lindem  

and Sandlund 1984), and a mixture of alewives, rainbow smelt,  

and bloater (Argyle 1992).  Both marine equations are shown in  

20 log L – b form.   

Figure 1.6 Comparison of the length-TS and weight-TS regression lines 23 

determined for alewives in this study with those from a recent  

study of Great Lakes planktivores (rainbow smelt, bloaters, and 

alewives, Fleischer et al. 1997).   

Figure 2.1 Lake Ontario locations sampled for Cercopagis pengoi,   38 

alewives, and rainbow smelt in 1997 to 1999.  Numbers  

adjacent to the symbols correspond to the bottom depth (m) at  

that location.  Open circles represent locations sampled in  

1997, while open squares and open triangles represent locations  

sampled in 1998 and 1999, respectively. 

Figure 2.2 Length frequency distributions of alewife collected in Lake   42 

Ontario in August 1998 and 1999 and October 1999 whose  

stomachs were examined for the presence of Cercopagis pengoi  

spines.  Total bar height corresponds to the number of fish in each  

5-mm size class.  The shaded portion of the bars represents the 

 

 ix



 

number of fish whose stomachs contained C. pengoi spines and the 

unshaded portion the number that did not contain C. pengoi spines.  

The total number of alewife stomachs examined = 167 (empty 

stomachs =4). 

Figure 2.3 Relationship between the percentages of alewives in each size 44 

class that consumed C. pengoi and alewife length.  The line  

represents a 3-parameter sigmoidal model fitted to the observed  

data. 

Figure 2.4 Length frequency distributions of rainbow smelt collected in  45 

Lake Ontario in August 1998 and 1999 and October 1999  

whose stomachs were examined for the presence of Cercopagis 

pengoi spines.  Total bar height corresponds to the number of  

fish in each 5-mm size class.  The shaded portion of the bars  

represents the number of fish whose stomachs contained C.  

pengoi spines and the unshaded portion the number that did  

not contain C. pengoi spines.  The total number of rainbow  

smelt stomachs examined = 115 (empty stomachs =4). 

Figure 3.1 Map of Lake Ontario and the locations (closed circles) at   58 

which biweekly measurements of zooplankton, water  

temperature, total phosphorus, and chlorophyll a measurements  

were made May-October 1995-2000.  Also shown are locations 

sampled by Benoît et al. (2002, closed squares) and Laxson et al. 

(2003, closed triangles). 

Figure 3.2 Seasonal patterns in least squares mean (± SE) water  62  

temperature, total phosphorus, and chlorophyll a at seven  

nearshore locations in southern and eastern Lake Ontario during 

 x



 

May-October in 1995-1997 and 1998-2000.  The date at the  

beginning of each biweekly period is shown on the x-axis.  

Figure 3.3. Seasonal patterns in least squares mean (± SE) of    65 

biweekly C. pengoi density at seven nearshore locations  

in Lake Ontario during May-October of 1998-2000.  The  

date at the beginning of each biweekly period is shown on  

the x-axis. 

Figure 3.4. Seasonal patterns in least squares mean (± SE) density and  66 

length of bosminids, D. retrocurva, D. thomasi, and copepod  

nauplii at seven nearshore locations in southern and eastern Lake 

Ontario during May-October in 1995-1997 and 1998-2000. The  

date at the beginning of each biweekly period is shown on the  

x-axis. 

Figure 4.1 Nearshore locations in Lake Ontario at which zooplankton,  84 

water temperature (1995-2000, closed circles), and acoustic  

data (2000, scd = Sandy Creek Delta) were collected during  

this study. 

Figure 4.2 Seasonal patterns in total crustacean zooplankton production 92 

at six nearshore sites in Lake Ontario between May and October  

1995-2000. 

Figure 4.3 Seasonal patterns in daily production of cladocerans and             94  

cyclopoids at six sites in Lake Ontario in the years 1995-2000. 

Figure 4.4  Estimated in situ tilt angle distributions for alewives tracked 97  

with split beam acoustic gear in nearshore areas of Lake  

Ontario during summer 2000. 

 

 xi



 

Figure 4.5 Daily production by crustacean zooplankton (open squares)   98 

available to the plankton nets used to sample zooplankton  

and C. pengoi biomass at six nearshore sites in Lake Ontario  

between May and October 2000.  Also shown are estimates of  

daily consumption by adult alewives at one site near Hamlin,  

N.Y. between May and July 2000.  Error bars are ±1 SE.      

 xii



 

LIST OF TABLES 

Table 1.1 Mean length (cm; ± 2 SE), mean weight (g; ± 2 SE),   14  

and sample size (in parentheses) for young-of-year  

and yearling alewives in four New York lakes.  Cases 

where young of year were not sampled effectively are  

noted accordingly.  

Table 1.2 Mean length (cm; ± 2 SE), mean weight (g; ± 2 SE), and   15 

sample  size (in parentheses) for adult alewives captured in  

eight inland New York lakes and Lake Ontario. The index of  

suitability for in situ target strength (Nv; Sawada et al. 1992)  

is shown as well.  

Table 2.1  Average lengths, percentage of stomachs with C. pengoi spines, 41  

and sample size for alewives and rainbow smelt collected from  

Lake Ontario in 1997, 1998, and 1999.  Numbers of empty  

stomachs are shown in parentheses next to the total number of 

stomachs examined.  Alewives are separated into YOY and  

adults based on total length because consumption of C. pengoi  

differs between these groups.  Adult alewife refers to age 1 and  

older fish (larger than 105 mm).                                               

Table 3.1 Summary of repeated measures generalized linear mixed  61 

models comparing (Type 3 tests) epoch, and biweekly mean  

water temperature, total phosphorus (µg·L-1), and chlorophyll a 

concentrations (µg·L-1) between May and October 1995-2000  

at seven nearshore sites in Lake Ontario. Values in parentheses  

are F-test degrees of freedom (numerator, denominator).  Values  

in boldface type were significant (P<0.0167) after adjustment  

 xiii



 

for the number of statistical tests were made to achieve an  

experiment-wise α = 0.05. 

Table 3.2 Summary of repeated measures generalized linear mixed  64  

models comparing (Type 3 tests) epoch and biweekly mean 

zooplankton density (ind·L-1) between May and October 1995- 

2000 at seven nearshore sites Lake Ontario.  Values in  

parentheses are F-test degrees of freedom (numerator,  

denominator).  Values in boldface type were significant (P<0.01)  

after adjustment for the number of statistical tests were made  

to achieve an experiment-wise α = 0.05. 

Table 3.3 Summary of repeated measures generalized linear mixed  67  

models comparing (Type 3 tests) epoch and biweekly mean 

zooplankton length (mm) between 1995-2000 at seven sites  

Lake Ontario.  Bosminids include Bosmina and Eubosmina spp.  

Values in parentheses are F-test degrees of freedom (numerator,  

denominator).  Values in boldface type were significant  

(P<0.0046) after adjustment for the number of statistical tests  

were made to achieve an experiment-wise α = 0.05. 

Table 4.1 Energy density (joules · g wet weight) and percent dry  90  

weight (± 95% CI) of alewives captured near the Salmon  

River and Sandy Creek deltas during May, June, and July  

2000. The number of fish whose energy density was measured  

in each month is shown under Ned.  The number of fish whose  

percent dry weight was measured is shown under Ndrywt.     

 xiv



 

 

 

Table 4.2 Summary of repeated measures generalized linear mixed  91 

models comparing (Type 3 tests) annual and biweekly mean 

zooplankton production (g dry wt· m-2) between May and  

October 1995-2000 at six nearshore sites Lake Ontario.  Values  

in parentheses are F-test degrees of freedom (numerator,  

denominator).  Values in boldface type were significant  

(P<0.0125) after adjustment for the number of statistical tests  

were made to achieve an experiment-wise α = 0.05. 

Table 4.3 Mean density (fish· m-2 ±SE, N), Nv, mean weight    96 

(g), daily consumption (g dry wt· m-2·d-1), and mean  

tilt angle (degrees, ±SD, N) of acoustic fish tracks between  

2-35 m depth contours near the Sandy Creek delta  

(Hamlin, NY) between 22 May and 19 July 2000. 

 

 

 

 

 

 

 

 

 

 

 

 xv



 

LIST OF APPENDICES 

 

Appendix 4.1 Coefficients used to estimate the dry weight (W) 105 

 of zooplankton from body length (L) in the model:  

 lnW = α + β*ln(L), where α is the natural logarithm  

 of the intercept from the weight-length regression  

 (E. L. Mills, unpublished data). 

 xvi



  
 

PREFACE 

 The Great Lakes have undergone significant changes in the past few decade

Anthropogenic influences of positive, negative, and uncertain nature have included

management of water quality, control of sea lamprey (Petromyzon marinus) 

abundance, and both intentional and unintentional introductions of exotic species.  

Nutrient loading and nutrient concentrations have declined and stabilized at levels 

lower than in the 1970s (Millard et al. 2003; Johengen 1991).  In Lake Ontario, 

nutrient reductions were accompanied by declines in zooplankton abundance and 

production (Johannsson 2003) as well as alewife biomass (Mills et al. 2003), 

suggesting that nutrient management efforts have had a bottom-up effect on the 

standing stock of forage fish.  In 1998, the planktivorous cladoceran Cercopagis 

pengoi became established in Lake Ontario, and given the already reduced levels o

zooplankton production and alewife biomass, additional predation pressure exerted

C. pengoi may negatively affect alewives if C. pengoi does not replace other 

organisms in the diet of alewives.  Because alewife form the major portion of 

salmonid diets and alewife abundance is related to predation pressure by salmonids

factors that limit alewife abundance and production likely may also affect the carry

capacity of salmonids.  Therefore, understanding the role of C. pengoi (predator, pr

energy source or sink) is an important contribution to management of alewives and

salmonids in the currently more oligotrophic environment of Lake Ontario.   

 As a small predatory cladoceran (Ojaveer 2000), C. pengoi was expected to

prey on zooplankton and compete with alewives and rainbow smelt while at the sam

time serve as prey for these fish species.  These expectations were based on observ

relationship between C. pengoi and Baltic herring (Ojaveer and Lumberg 1995).  T

relative importance of these roles in the food web was expected to be complicated 

because invertebrate predators like the similar Bythotrephes longimanus (and by 
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extension C. pengoi) may utilize multiple antipredator defenses including migratory 

behavior, limited habitat use, and defensive spines (Straille and Hälbich 2000).  

Without significant temporal and spatial overlap between C. pengoi and dominant 

zooplankton (bosminids and cyclopoids), the predatory effect of C. pengoi on the 

zooplankton community will be minimal.  Habitat use may also influence the amount 

of spatial and temporal overlap between C. pengoi and alewives while defensive 

spines may limit their availability as prey during periods overlapping distribution.   

This study was focused on assessing the trophic role of C. pengoi by 1) 

examining its distribution and seasonal patterns in abundance, and hence its overlap in 

habitat use with zooplankton and alewives, 2) determining if alewives and rainbow 

smelt (Osmerus mordax) prey on C. pengoi, 3) determining whether the seasonal 

patterns in nearshore zooplankton abundance and size changed in a predictable way 

reflective of C. pengoi predation following establishment of C. pengoi, and 4) 

comparing the relative magnitude of consumption by C. pengoi and alewives with 

zooplankton production.     

Estimates of zooplankton consumption by alewives required alewife density 

estimates.  Acoustic surveys offered a significant advantage over other gears because 

of the ability to survey large areas quickly.  One weakness of acoustic surveys was the 

lack of a published equations relating alewife target strength to length or mass 

(necessary for accurate estimation of abundance).  Without these equations I would 

have relied on those published for marine clupeids (Foote 1987), a mixed-species 

assemblage of Lake Michigan fish (Fleischer et al. 1997), or a mixed-species equation 

previously used in the Great Lakes (Love 1977) by Brandt et al. (1991) and others.  To 

improve accuracy of surveys, a methodological study was undertaken to develop these 

equations specifically for freshwater alewives.  Data from a number of field studies 

were used to develop equations relating acoustic size (target strength) to length and 
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mass observed in trawl and gill net catches.  I found that alewife target strength varied 

significantly among size or age classes.  Alewife target strength predicted from length 

or mass was significantly higher than values published for Atlantic herring, and values 

predicted for small alewives (<10 cm) were significantly higher than those predicted 

by the equations of Fleischer et al. (1997).  Differences between Atlantic herring and 

alewives may have been the result of differences in buoyancy demands on the 

swimbladder being mitigated in saltwater by the higher lipid content of Atlantic 

herring and the specific gravity of seawater.   

 In order to determine if alewives and rainbow smelt consumed C. pengoi, field 

collections of these fish by midwater trawl provided stomach content data throughout 

Lake Ontario in 1997-1999.  I hypothesized that C. pengoi would not be important in 

the diet of young-of-the-year alewives and rainbow smelt because of limited spatial 

overlap and the defensive tail spine possessed by C. pengoi.  I also hypothesized that 

C. pengoi would be more important in the diet of adult alewives than adult rainbow 

smelt because of a more hypolimnetic distribution of rainbow smelt than C. pengoi.  

Examination of these data revealed that C. pengoi was an important prey item for 

juvenile and adult alewives > 66 mm total length, but was not an important prey item 

in the diet of rainbow smelt.  Due to the planktivorous nature of C. pengoi and the 

absence of C. pengoi in the diet of alewives <66 mm, I concluded that although C. 

pengoi, alewives, and rainbow smelt were competitors, the relative importance of this 

competition was mediated by the ability of these fish to consume C. pengoi. Whether 

C. pengoi is most important to alewives and rainbow smelt as a prey item or 

competitor remains unclear.   

In order to determine if there was evidence for restructuring of the zooplankton 

community after establishment of C. pengoi, I tested hypotheses related to seasonal 

abundance patterns in density and mean length using a data set consisting of 
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fortnightly zooplankton samples collected at seven nearshore locations from May-

October 1995-2000.  Seasonal patterns in zooplankton density and length were 

examined along with water temperature, total phosphorus, and chlorophyll a (as 

potential explanatory variables).  Because of the seasonal abundance pattern of C. 

pengoi observed in Lake Ontario (population peak in late July-September, Laxson et 

al. 2003; Benoît et al. 2002), I hypothesized that late summer abundance of bosminids, 

Diacyclops thomasi, and copepod nauplii would be significantly lower only in late 

summer 1998-2000 (during the seasonal peak in C. pengoi abundance) than during the 

same seasonal period of 1995-1997 and that early summer densities would be similar 

in both groups of years (epochs).   I considered abundance and mean length of 

Daphnia retrocurva as an indicator of fish predation intensity; had decreases observed 

in zooplankton density occurred concurrent with decreases in mean length, I would 

have concluded the changes were the result of fish predation.  Decreased density 

concurrent with increased length was interpreted as indicating that the observed 

changes were the result of invertebrate predation.  The data supported the hypothesis 

that abundance of bosminids, D. thomasi, and nauplii in late summer 1998-2000 

would be significantly lower than late summer 1995-1997 while early summer 

abundance remained unchanged; these organisms were all significantly less abundant 

in late summer 1998-2000 than in 1995-1997, while early summer abundance was 

similar in both groups of years.  Mean length of bosminids was lower in early summer 

1998-2000 than in 1995-1997, but late summer length was similar.  Early and late 

summer abundance of D. retrocurva was similar in both groups of years, suggesting 

changes in other taxa were not the result of fish predation.  Mean length of D. 

retrocurva was significantly lower in early summer and similar in late summer.  Mean 

length of D. thomasi and nauplii were similar in all seasons and years.  Other factors 

(water temperature, TP, and chlorophyll a) that may have contributed to declines in 
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density were excluded by examination of their seasonal patterns.  Exclusion of these 

factors as well as fish predation led me to conclude that predation by C. pengoi caused 

the observed declines.   

Although changes in the zooplankton community (decreased late summer 

abundance of bosminids, D. thomasi, and nauplii) were likely attributable to predation 

by C. pengoi, it was unclear how consumption by C. pengoi compared to consumption 

by alewives and zooplankton production in the nearshore.  Using hydroacoustic 

alewife abundance estimates (including the target strength-size relationship from this 

study) and a bioenergetics model, consumption for yearling-and-older fish was 

estimated fortnightly between May and late July 2000 at one nearshore location in 

western Lake Ontario.  Consumption by C. pengoi was estimated fortnightly at six 

nearshore locations throughout eastern and southern Lake Ontario using biomass and a 

mass-specific consumption rate of 100% of body weight per day.  Production of 

location at the same six locations was estimated from water temperature, biomass, and 

allometric  equations (Shuter and Ing 1997) for predicting production/biomass ratios.  

The relative magnitude of consumption by C. pengoi (9-50% of growing season 

production) indicated that it was an important predator with low early summer 

consumption and high late summer consumption (late July-September).  Consumption 

by yearling-and-older alewives was significant relative to zooplankton production 

(52% of growing season production in 2000).  However, alewife abundance and 

consumption peaked much earlier in the season.  Seasonal patterns of crustacean 

zooplankton production were significantly different (lower in late summer) following 

establishment of C. pengoi than in the three years prior to its establishment.   

One important result of this study was the improved understanding of the 

acoustic size of alewives.  I learned that one equation commonly used in early acoustic 

surveys of the Great Lakes (Love 1977, used in Brandt et al. 1991) was very similar to 
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the one I developed for alewives, while another more recently published equation was 

significantly different for small fish (<10 cm) and likely produced biased density or 

biomass estimates given the lower predicted TS at length.  This study also provided 

several important insights regarding the role of C. pengoi in nearshore areas of Lake 

Ontario.  Cercopagis pengoi abundance and predatory impact appear to peak later in 

the summer than that of yearling-and-older alewives but is likely similar to seasonal 

patterns in YOY alewife abundance.  Consumption by C. pengoi and yearling-and-

older alewives was of similar magnitude.  It is unclear where in the lake peak densities 

of YOY alewives occur in August-September, but given similar seasonal patterns in 

abundance of C. pengoi and YOY alewives, similarities in the magnitude and seasonal 

pattern of C. pengoi density in both nearshore and offshore areas (Makarewicz et al. 

2001), and widespread distribution of YOY alewives throughout the offshore waters in 

1997-1999 (Bushnoe et al. 2003), it does not matter.  Due to the planktivorous nature 

of C. pengoi and similar distributions of these organisms, I concluded that alewives 

and rainbow smelt face competition that they did not face prior to establishment of C. 

pengoi.  The only factor that could reduce competition between alewives, rainbow 

smelt, and C. pengoi is a difference in vertical distribution.    
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CHAPTER 1 

 In Situ Target Strength of Alewives in Freshwater 

ABSTRACT 

 Acoustic estimation of absolute fish abundance depends on knowledge of the 

relationship between target strength (TS) and size for the species of interest. We have 

derived a relationship between in situ TS and both length (L, cm) and mass (W, g) for 

alewives Alosa pseudoharengus in Lake Ontario and eight inland lakes in New York 

to provide equations for predicting one variable from the other. The pelagic fish 

community in these lakes was dominated by alewives (>80% numerically). Target 

strength distributions from fish populations investigated in 25 surveys were 

multimodal, whereas those for individual fish were unimodal, indicating that each 

mode for the populations corresponded to a size-group of alewives (range, 2.5–15.2 

cm).   The positive relationship between mean TS and mean length was highly 

significant (TS =  20.53 log10 Lcm -64.25), as was the relationship between mean TS 

and mean mass (TS = 6.98 log10 Wg -50.07). These equations are similar to one often-

used TS–length relationship but differ substantially from other relationships in the 

literature. Predictions of TS from our equations were 8.2 decibels greater than those 

from commonly used equations for marine clupeids. Our equations also differ for fish 

smaller than 10 cm compared with the equations available for mixed species of Great 

Lakes forage fish (alewives, rainbow smelt Osmerus mordax, and bloater Coregonus 

hoyi). 

 

* Warner, D. M., L. G. Rudstam, and R. L. Klumb.  2002.  In situ target strength of 

alewives in freshwater.  Transactions of the American Fisheries Society 131:212-223. 
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INTRODUCTION 

Acoustics are increasingly used in freshwater lakes for measuring abundance 

and distribution of open-water fish populations and can greatly improve our ability to 

sample fish on a lakewide scale. However, acoustic surveys require knowledge of the 

acoustic reflectivity of the fish species present for the echoes to be translated into 

length stratified absolute fish abundance (MacLennan and Simmonds 1992; Brandt 

1996). Therefore, acoustic target strength (TS) measurements are a necessary step for 

acoustic surveys. The acoustic reflectivity is given by the backscattering cross-section 

(σbs) or its logarithm, TS. For fish with swimbladders, the swim bladder scatters the 

majority of the sound. Thus biological, physical, and behavioral factors that affect the 

swim bladder will directly influence the TS (Ehrenberg 1972; Foote 1979, 1980; Ona 

1990). Because backscattering at frequencies used for fisheries studies is typically in 

the geometric region (MacLennan and Simmonds 1992), backscattering strength is 

dependent on the dorsal swim bladder surface area (Horne and Clay 1998). The TS 

also depends on the fish’s orientation in the sound beam (Ona 1990; MacLennan and 

Simmonds 1992).   

Target strength–length relationships are required for each species in each 

environment for effective use of acoustics in abundance estimates. When in situ target 

information is unreliable or unavailable, knowledge of TS–length relationships allows 

measurement of absolute fish abundance acoustically. The TS–length relationships can 

also be used to derive acoustically based length-frequency distributions. Several 

studies in the Laurentian Great Lakes have estimated pelagic planktivore biomass by 

translating individual TS to fish weight (Brandt et al. 1991; Goyke and Brandt 1993; 

Mason et al. 2000) with use of a general equation for the relationship between TS and 

fish length from Love (1971). However, even though a considerable body of literature 
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exists on TS as a function of fish size (reviews by MacLennan and Simmonds 1992; 

McClatchie et al. 1996), only two studies have reported a relationship between TS and 

fish size for Great Lakes pelagic planktivores, both of which described mixed 

assemblages of alewives Alosa pseudoharengus, rainbow smelt Osmerus mordax, and 

bloaters Coregonus hoyi (Argyle 1992; Fleischer et al. 1997).  Fleischer et al. (1997) 

suggested that the equation used previously for Great Lakes forage fishes (Love 1971) 

was not appropriate and could potentially lead to underestimation of forage fish 

biomass.  However, alewives were a minor component of the catch in both studies, 

even though this species is a major forage fish in many Great Lakes (Brandt et al. 

1991). 

Ideal conditions for in situ studies of TS are found when the study area 

contains only one size class of a single species (MacLennan and Simmonds 1992). 

Although in practice these conditions are rare, the pelagic fish communities in many 

of the New York Finger Lakes are dominated by alewives, which comprise 80–95% of 

gill-net catches (L. G. Rudstam, unpublished data). Lake Ontario is also dominated by 

alewives (O’Gormanet al. 1997). Therefore, these lakes offer good conditions for 

estimation of the in situ TS–size relationship for this species. Objectives of the present 

study were to (1) determine in situ the TS–size relationship for alewives in freshwater 

lakes dominated by this species and (2) assess the applicability of three existing 

equations to estimate freshwater alewife size from TS (Love 1971; Foote 1987; 

Fleischer et al. 1997). These objectives led to an investigation and results that are 

widely applicable to other species or environments. 

METHODS 

Acoustic and catch data were collected between July and November in the 

following eight inland New York lakes: Canadice (2000), Cayuga (1998), Cayuta 

(1995–1996, 2000), Conesus (1996–1998, 2000), Otisco (2000), Otsego (1996, 1997, 
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1999, 2000), Seneca (2000), and Owasco (1997). Lake Ontario embayment and 

nearshore areas were also sampled in 1997–1998.  Surface areas of the inland lakes 

that were sampled ranged from 3.4 to 172 km2 and maximum depths ranged from 7 to 

190 m. 

Fish were collected with vertical gill nets, larval trawl, and an Isaacs–Kidd 

midwater trawl. In all lakes, we used six 3-m long 3 12-m deep or 3-m long 3 20-m 

deep vertical monofilament gill nets, each with a different mesh size (bar mesh of 

6.25, 8, 10, 12.5, 15, and 18.75 mm). Gill nets were set with the upper end at the water 

surface. In most cases, netting and acoustic sampling took place concurrently. Gill nets 

were set immediately preceding acoustic sampling and then retrieved immediately 

after the sampling was completed. In two cases gill-net catches were obtained as much 

as a week before or after acoustic sampling. Because weekly growth of alewives in 

New York lakes is about 0.5 cm (Cornell Biological Field Station, unpublished data) 

the time difference in netting and acoustic sampling was unlikely to introduce a 

significant bias. Gill nets were typically within a few hundred meters of the acoustic 

transect used for TS estimation. Selectivity for each mesh of the gill nets was 

calculated from the size distribution for 733 alewives caught with these nets during 

1994–1996 by using the method of Wulff (1986). Following Hansson and Rudstam’s 

(1995) work on Atlantic herring Clupea harengus in the Baltic Sea, we assumed 

skewed normal selectivity curves, with each mesh size having the same maximum 

selectivity.  The equations are as follows: 

(1)  S(L,m) = exp(-1/2 K2) [(1 – K/2) (S(m)
3/2 (K - 1/3 K3)] 

(2)  K= (L – L0(m))/ S(m)  

(3)  L0(m) = a(m – 1),  

(4)  S(m) = bm, 

where S(L,m)  is the selectivity for a fish of length L in a net with bar mesh size m (both 
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in cm), L0(m)  is the modal length of the selectivity curve, S(m) is the standard deviation 

of the selectivity curve, and K is the skewness constant. Maximum likelihood 

estimates for a, b, and k were 1.1, 0.12, and 0.3, respectively.  The average sizes of 

fish caught in the gill nets were calculated on the basis of the catch and were corrected 

for the size selectivity of the nets. In Cayuta, Conesus, Otisco, and Otsego lakes, we 

also used a larval fish trawl (2-m frame, 0.1-cm stretch mesh cod end). In Otsego we 

also used a modified Isaacs–Kidd midwater trawl (3-m frame, 0.063-cm stretch mesh 

cod end).  Trawls were towed for either 5 or 10 min at a single depth per tow (surface, 

3, 6, and 9 m deep), with trawl depth estimated from cable angle.  Because all fishing 

gears are selective, it is important to consider the potential bias of correlating TS with 

fish sizes that may not be representative of the mean size in the lake. The gill nets used 

were are not efficient at capturing alewives shorter than 5 cm (Figure 1.1). This 

selectivity was confirmed with concurrent gill netting and trawling.  As a result, we 

decided not to include young-of-year in the regression for surveys when trawl samples 

were not available (see method for excluding targets for this age–size-class below).  

We calculated mean length and mass for young-of-year from the trawl catches, 

whereas adult alewife length and mass was determined from gill-net catches. If no 

young-of-year shorter than 5 cm was captured in the trawl (which happened only in 

the fall), we calculated mean length and mass from pooled gill-net and trawl data. 

Differences in fall young-of-year lengths between gill nets and trawls were less than 

0.5 cm during fall. Alewives hatched during June and July in our study lakes and grew 

to maximum of 10 cm by fall. Age-1 fish (determined from otoliths) during June in 

Otsego Lake were 7–9 cm long (D. Warner, unpublished data). Therefore, we 

distinguished young-of-year alewives as fish shorter than 7.0 cm in summer and 

shorter than 10 cm in fall.  
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Figure 1.1.  Relative selectivity curves of the gill nets utilized in this study.  Each unbroken line represents a net with mesh size 

(from left to right) 6.25, 8, 10, 12.5, 15, and 18.5 mm.  The broken line represents the summed selectivity at each size.  
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Acoustic data were collected at night by using a 70-kHz split-beam 

echosounder (Simrad EY500; 0.6- or 0.2-ms pulse length, 11.1º half-power beam 

width). Transects ranged from 0.5 to 5 km in length and surveyed areas within 300 m 

of the gill-net sets. The acoustic system was calibrated with a standard copper sphere 

(32 mm diameter, TS =39.1 dB) either immediately after each survey or within 1 

month after the survey. Simrad EY500 and EP500 software were used for data 

collection and analysis. This software provides the depth and TS (corrected for the 

location in the acoustic beam) to the nearest 0.1 m and 0.1 dB of each target that 

passes the criteria for recognition of single fish. Single-fish criteria were set to accept 

targets with echo length between 0.8 and 1.8 times the pulse length and a phase 

deviation of four steps. We accepted targets with a maximum gain compensation of 4 

or 6 dB (Simrad 1996). Calibrations indicated that the effect of the beam angle on a 

standard target was well described by the beam pattern function applied (typical 

maximum deviation of 0.6 dB from calculated targets after accounting for the beam 

pattern within the 6 dB compensation angle).  Averages were calculated in the linear 

domain (backscattering cross-section) and back-transformed to decibels. Targets 

between -61 dB and -37 dB from surveys that met the single-target criteria were 

included in the analysis of TS distributions. The upper echo threshold was necessary 

because larger fish were present throughout the year in all study lakes. We based the 

upper threshold (–37 dB) on the observed TS distributions; targets in the depth strata 

occupied by alewives were extremely rare above this TS level. We chose –61 dB as 

the lower threshold, based on an ongoing study in Oneida Lake, New York. This study 

shows good agreement between abundance for fish 1.5–2.0 cm long and abundance of 

targets between –61 and -55 dB (Rudstam et al. 2002).  As a measure of risk for 

including multiple echoes as single fish, we calculated the Nv index of Sawada et al. 

(1993) for each acoustic survey using the following equation: 
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(5)  Nv = 0.5 c τ ψ r2 n, 

where c is the speed of sound underwater (m/s), τ is the effective pulse width (s), ψ is 

the equivalent beam angle (sr), r is the range of the layer (m) to the transducer, and n 

is fish density (defined as mean volume backscattering, Sv/σbs, for the layer of 

interest).  We calculated this index for a single depth stratum (from 2 m to the 

maximum depth fished with nets) for each transect used in TS estimation.  Values less 

than 0.1 indicate suitable densities for measurement of in situ TS with splitbeam echo 

sounders (Sawada et al. 1993).  Because we included all targets of -70 dB or more in 

the Nv calculations, this is a conservative measure of the incidence of including 

multiple targets of –61 dB or more. To calculate the mean TS for the different modes 

in the TS distributions, we had to separate the distributions into two- or three-

component distributions that represented the contribution from young-of-year, 

yearling, and adult alewives.  This step was necessary because of the selectivity of the 

gill nets. Inclusion of all targets between -61 and -37 dB would not be appropriate for 

regression analysis when individual fish within the full size range of alewives present 

were not captured with equal efficiency. The TS modes were separated by using the 

nonlinear curve-fitting feature in S-PLUS 2000 (Mathsoft 1999). A similar approach 

has been used to separate the contribution of different size-classes from TS 

distributions for lake herring (cisco) C. artedi (Rudstam et al. 1987), sockeye salmon 

Oncorhynchus nerka (Parkinson et al. 1994), and in marine systems Atlantic herring 

(Lassen and Stæhr 1985).  Peaks in TS distributions have also been used to separate 

species in a mixture of different sized species (Barange et al. 1994). 

Our method assumed that a given size-class of fish has a unimodal and 

approximately normal TS distribution. To assess this assumption, we examined 

acoustic data for individual fish collected from stationary vessels in Lake Ontario 

(August 1996, July 2000) and Otsego Lake (July 1997).  Mean TS and the deviations 
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from that mean were determined for each fish. These data were then separated into 

two groups, according to whether the mean TS was less than or greater than-49 dB.  

We assumed that if a given size-class of fish exhibited a bimodal TS distribution, this 

characteristic would appear in a histogram of the pooled deviations from all fish in the 

stationary data.  Pooled data from 48 fish of less than -49 dB (317 TS measurements) 

and 36 fish of more than –49 dB (754 TS measurements) indicated that the deviations 

were unimodal and approximately normally distributed (Figure 1.2).  Therefore, we 

used the sum of multiple normal distributions to represent the overall TS distribution, 

with each distribution representing a TS mode. The fitted probability density function 

(f) of targets within the -61 to -37 dB range is as follows: 

(6)  f  = [p1 (N1(µ 1,v1 ))+ p2 (N2(µ 2,v2 ))+ pi (Ni(µ i,vi ))….], 

where Σpi = 1 

where Εpi = 1 and N(m,v) is the normal distribution with mean m and standard 

deviation v.  In cases where two or three TS modes were evident, the modes were 

identified from catch data (and from the seasonal change in TS for a mode in lakes 

with more than one survey per year).  In summer (June through August), three TS 

modes were evident, corresponding to young-of-year, yearling, and adult alewives. In 

the fall, the largest TS mode was considered to be yearling and older alewives, and the 

mode with the smallest TS was considered to be young-of-year. This interpretation is 

based on the catches, observed seasonal growth, and the fact that alewives have a 

protracted spawning period (Smith 1985).  The mean backscattering cross-section was 

calculated in the linear domain from each component distribution and was back-

transformed to TS.  We correlated mean TS from the transect nearest the gill-net set or 

trawl location with the mean size (length or mass) except in Otsego Lake, where we 

used TS data from all transects trawl catch data were representative of the entire lake. 

The relationship between TS and fish size was determined by simple linear regression 
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with SPLUS 2000. We derived equations with TS as the dependent and independent 

variable, because error associated with TS and fish size invalidates the inverse 

property of the equations. Some studies of in situ TS have used functional regression 

techniques (Gal et al. 1999) to address concerns over the errors in both variables or 

assumed that errors were insignificant (e.g., Argyle 1992). Even though error is 

present in both fish size (length and weight) and TS, we used simple linear regression 

to provide an unbiased predictive model (Jensen 1986; Sokal and Rohlf 1995; 

Fleischer et al. 1997).  To assess the model fit and potential biases due to influential 

points, we compared the leverage coefficients (diagonal elements of the hat matrix) 

with the high leverage threshold of 2p/N, where p = the number of parameters to be 

estimated (Belsley et al. 1980; Neter et al. 1996). We also examined the Cook’s 

distance values and the amount by which the model coefficients changed (DFBETAS) 

for each data point excluded (Neter et al. 1996). 

RESULTS 

We observed a wide range of lengths and weights of alewives (Table 1.1). The widest 

range of lengths (0.8–16 cm) was observed in July, when the larval trawl was used in 

conjunction with gill nets. In general, fish were separable into two or three size-classes 

corresponding to young-of-year, yearling, and older fish (Figure 1.3). In September 

the young-of-year size range contained two modes.  In July two groups of older 

alewives could be distinguished, corresponding to yearling and older fish; the 

separation of these two groups was not possible in the fall. From July to September, 

young-of-year alewives increased in size and their overall size distribution broadened.  

Mean lengths and weights for young-of-year alewives included in our model ranged 

from 2.5 to 8.9 cm and 0.2 to 6.0 g, respectively (Table 1.1). Mean lengths and 

weights observed for yearlings ranged from 8.7 to 10.3 cm and 5.2 to 8.8 g, 

 



 

Figure 1.2.  Distribution of deviations from mean target strength for young-of-year (upper panel) and olde

Lake Ontario collected during stationary surveys on 26 August 1996 and Otsego Lake on 24 July 2000 an

Bars depict the observed deviations from mean target strength (TS) for all individual fish in each age grou

normal distribution with the mean and SD of the observed distributions of deviations from mean TS.
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respectively. Yearlings were separable only in surveys conducted from June through 

August (four surveys).  Mean lengths and weights for older alewives ranged from 10.1 

to 15.2 cm and 9.5 to 25.7 g, respectively (Table 1.2). 

Acoustic estimates of fish density were sufficiently low to allow us to 

distinguish individual fish targets. All of the surveys included in this study exhibited 

Nv values less than 0.1, indicating suitable conditions for in situ TS measurements 

(Table 1.2; Sawada et al. 1992). Mean TS values derived from the nonlinear fitting 

procedure ranged from -56.1 to -48.0 dB for the smallest size-group (young-of-year 

alewife), from -45.1 to -43.3 dB for yearlings, and from -43.4 to -39.0 dB for the 

largest size-group (adult alewife). As with length, the average TS of the young-of-year 

fish groups increased and the TS distribution broadened from July through September. 

In nearly all fall surveys, we observed two modes in the TS distribution for the small 

targets that had also been apparent in the length distributions (Figure 1.3).   

The correlations between TS and all fish size (length in centimeters and weight 

in grams) were highly significant. The predictive equations (± SE of coefficients) were 

as follows: 

TS = 20.53(±0.78) log10 Lcm - 64.25(±0.80) (7) 

r = 0.98, P < 0.001, N = 37  

TS = 20 log10 Lcm- 63.61(±0.18)  (8) 

N = 37 

Log10 L = 3.03(±0.077) + 0.046(±0.002) TS (9) 

r = 0.98, P < 0.001, N = 37

TS = 6.98(±0.30) log10 Wg - 50.07(±0.33) (10) 

r = 0.97, P <0.001, N = 37 
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Figure 1.3.  Target strength (TS) and length-frequency distributions for surveys on 20-

21 July 1999, 12 August 1999, and 16 September 1996 in Otsego Lake.  The curve 

super-imposed on the TS histograms represents the non-linear fit for the TS 

distribution. 



 

Table 1.1.  Mean length (cm; ± 2 SE), mean weight (g; ± 2 SE), and sample size (in parentheses) for young

alewives in four New York lakes. Cases where young of year were not sampled effectively are noted accord

Date Lake Mean length (YOY) Mean weight (YOY) Mean length (yearling) 

05 August 1996 Cayuta ineffectively sampled ineffectively sampled 10.3±0.1 (61) 

16 September 1996 Otsego 5.8±0.2 (132) 1.5±0.2 (140) Not separable 

21 July 1999 Otsego 3.0±0.2 (63) 0.3±0.1 (63) 10.0±0.06 (236) 

12 August 1999 Otsego 4.4 ±0.4 (30) 0.5±0.1 (30)b Not separable 

03 June 2000 Otsego Not present Not present 8.7±0.2 (40) 

23 July 2000 Otsego 2.5±0.2 (76) 0.2±0.1 (76) b 9.7±0.2 (28) 

08 September 2000 Conesus 6.8±0.2 (121) 2.6±0.3 (121) Not separable 

14 September 2000 Otisco 8.9±0.2 (41) 6.0±0.4 (41) Not separable 

16 September 2000 Cayuta 7.2±0.2 (279) 3.0±0.2 (279) Not separable 
a Lengths and weights of fish collected on 20–21 July were used for the surveys on 21 
b Weight estimated using a weight-length relationship determined from fish captured 21-22 July 1999
14 

-of-year and yearling 

ingly. 

Mean weight (yearling) 

8.8 (61) 

Not separable 

8.6±0.2 (26) 

Not separable 

5.2±0.3 (40) 

8.1±0.3 (28) 

Not separable 

Not separable 

Not separable 

14 
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Table 1.2.  Mean length (cm; ± 2 SE), mean weight (g; ± 2 SE), and sample size (in 

parentheses) for adult alewives captured in eight inland New York lakes and Lake Ontario. 

The index of suitability for in situ target strength (Nv; Sawada et al. 1992) is shown as well.  

 Date Lake Mean length Mean weight Nv
 

10 October 1995 Cayuta 13.3±0.5 (60) 16.8±0.1 (60) a 0.04 

05 August 1996 Cayuta 11.7±0.4 (103) 11.7±0.1 (103) a 0.01 

16 September 1996 Otsego 10.9±0.1 (146) 10.1± 0.3 (146) 0.02 

24 September 1996 Conesus 10.7±0.5 (95) 10.4±0.1 (95) a 0.03 

01 July 1997 Ontario 15.1±0.4 (72) 25.7±1.6 (72) 0.02 

06 July 1997 Otsego 11.7±0.2 (214) 11.6±0.2 (214) 0.03 

16 August 1997 Owasco 13.3±0.1 (258) 18.0±0.1 (258) 0.03 

17 September 1997 Ontario 10.1±0.2 (4) 14.0±1.0 (4) 0.05 

22 September 1997 Conesus 13.4±0.9 (101) 20.2±0.1 (101) a 0.03 

06 November 1997 Owasco 13.4±0.3 (101) 18.5±0.1  (101) a 0.02 

06 July 1998 Ontario 14.8±0.2 (180) 23.7±0.6 (180) 0.04 

07 July 1998 Ontario 15.2±0.3 (85) 25.4±0.9 (85) 0.02 

23 July 1998 Ontario 10.4±0.8 (24) 14.1± 2.0 (24) 0.02 

17 September 1998 Conesus 12.0±0.4 (118) 15.3±1.1 (118) 0.02 

14 October 1998 Cayuga 12.8±0.2 (67) 17.5±0.6 (67) 0.05 

21 July 1999 Otsego 13.8±3.0 (26) 19.1±1.2 (7) 0.07 

22 July 1999 Otsego 13.8±3.0 (26) 19.1±1.2 (7) 0.04 
a Estimated using a weight–length equation determined from the lake in question. 
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Table 1.2.  (Continued). 

Date Lake Mean length Mean weight Nv 

03 June 2000 Otsego 12.7±0.2 (22) 9.5±1.5 (22) 0.03

23 July 2000 Otsego 12.2±0.2 (27) 12.5±0.5 (27) 0.02

            4 September 2000        Seneca 12.9±0.2 (47) 17.5±1.6 (47) 0.01

            5 September 2000     Canadice 13.1±0.2 (37) 18.4±1.4 (37) 0.02

            8 September 2000      Conesus 11.9±0.1 (79) 14.0±0.9 (79) 0.05

         14 September 2000         Otisco 13.6±0.1 (152) 24.6±0.9 (152) 0.01

         16 September 2000        Cayuta 14.5±0.2 (93) 24.4±2.0 (93) 0.01
a Weight estimated using a weight-length equation determined from the respective 

lake. 
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Log10 L = 3.03(±0.077) + 0.046(±0.002) TS (9) 

r = 0.98, P < 0.001, N = 37 

TS = 6.98(±0.30) log10 Wg - 50.07(±0.33) (10) 

r = 0.97, P <0.001, N = 37 

log10 Wg = 6.79(±0.26) + 0.13(±0.005)TS (11) 

r = 0.97, P<0.001, N = 37 

Regression diagnostics revealed two unusual characteristics of the models. The 

residual variation increased with increasing alewife TS, length, and weight. Leverage 

coefficients indicated that there were three high-leverage data points (leverage >0.11; 

Figure 4). Values for DFBETAS were < 0.5, while Cook’s distance values were < 

0.15. 

DISCUSSION 

Target strength–fish size relationships that are derived in situ have the 

advantage of including the effects of physiology and natural behavior (gut fullness, 

gonad development, and tilt angle) in the TS measurements (MacLennan and 

Simmonds 1992). However, several areas of potential error exist, associated with (1) 

obtaining a representative sample of the fish species and sizes present, (2) acoustic 

detection and discrimination of individual targets, and (3) the statistical techniques 

used. If we can assume these potential errors were minimized here, the results we 

present provide an important first step in developing a robust TS–length relationship 

for alewives in freshwater lakes. 

We minimized the potential bias associated with fish sampling by accounting 

for size selectivity of gill nets. We used knowledge of seasonal changes in size 

distributions of inland lake alewife populations to help determine the expected sizes of 

alewives in a given lake during sampling (which allowed us to determine whether we 
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had captured all sizes effectively). In addition, we included only young-of-year data 

for the lakes where we collected midwater trawl catch data because our gill nets do not 

adequately sample fish smaller than 5 cm (Figure 1.1).   

There are several possible sources of bias in acoustic target recognition and 

discrimination. In situ studies may include non-target species, for example, but 

contamination was reduced in this study because we sampled in lakes with pelagic fish 

communities dominated by alewives. In situ studies also carry the risk of including 

multiple echoes as single-fish TS data. However, the risk of multiple echoes is 

minimal in situations where the Nv index of Sawada et al. (1992) is less than 0.1. 

Another potential acoustical problem was the possibility of one size-class of fish 

exhibiting more than one TS mode. Traynor and Williamson (1983) and Williamson 

and Traynor (1984) observed multimodal TS distributions for single size-classes of 

walleye pollock Theragra chalcogramma and Pacific whiting Merluccius productus. 

If multiple TS modes exist for individual size-classes, our approach to identifying and 

separating modes in the TS distribution would be invalid. However, our analysis of 

stationary acoustic data indicated that individual alewives do not have bimodal TS 

distributions at 70 kHz. Lastly, different acoustic pulse widths can influence TS 

measurements and the rate at which single targets are accepted (Soule et al. 1997).  

However, the differences observed in the number and distribution of targets larger 

than –61 dB in Oneida Lake during June 2000 were very small at the pulse lengths 

used in this study (0.2 and 0.6 ms; L. G. Rudstam, unpublished data).  

The statistical issues faced in TS studies include model choice and the 

distribution/dispersion of data points. Model choice depends on the study objective 

(Jensen 1986; Sokal and Rohlf 1995).  Because we were primarily interested in 

deriving predictive equations, a simple linear regression model was most appropriate, 

despite errors associated with measures of both TS and alewife size (Jensen 1986; 
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Sokal and Rohlf 1995).  We observed a pattern that suggested increased residual 

variability with increasing TS and alewife size. This pattern was most likely a result of 

the fact that most of the smaller fish were collected during the summer in one lake, 

whereas the larger fish were collected during summer and fall in multiple lakes. 

Estimation of the leverage of individual points in our models revealed three influential 

points (corresponding to young-of-year alewives), but none of these points appeared to 

have excessive influence on the estimated parameters (DFBETAS < 0.5 for all data; 

Neter et al. 1996) or on the predictions (Cook’s distance values <0.15 for all data; 

Neter et al. 1996).   

The slope of our equation for the TS–length regression was similar to several 

published equations, but the intercept was higher (Figure 1.5). The Lindem and 

Sandlund (1984) regression, also supported by 70 kHz data in freshwater lakes 

(Bjerkeng et al. 1991), is based on the Craig and Forbes (1969) algorithm for 

removing the beam pattern effect from single-beam acoustic data. The Lindem and 

Sandlund (1984) method may have resulted in TS values that are biased low for two 

reasons.  First, Rudstam et al. (1999a) showed that the modified Craig and Forbes 

(1969) algorithm is biased low by 0.8 dB. Second, Lindem and Sandlund (1984) 

compared  the modes in length and TS distributions, which may allow for correct 

identification of size groups but will result in TS that is biased low because the mode 

of a TS distribution is lower than the average calculated in the linear domain as a 

result of the logarithmic scale of TS.  Our equation had a slightly steeper slope than 

Love’s (1971) dorsal aspect equation used by Brandt et al. (1991) and a greater 

intercept (2.5 dB) than Love’s (1977) average 0–45º tilt angle equation.  Predictions 

with our equations were quite different from those based on existing equations for 

Great Lakes planktivores (Argyle 1992; Fleischer et al. 1997). Predicting TS from our 

observed alewife lengths and using Argyle’s (1992) equation resulted in TS values 
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4.2 to 6.0 dB lower than those predicted from our equation. Fleischer et al.’s. (1997) 

equations had a shallower slope and greater intercept than ours. Although this study 

and the study by Fleischer et al. (1997) predicted similar fish sizes for TS of -41 dB, 

our equations predicted smaller fish sizes for targets of less than -41 dB and larger fish 

sizes for targets of greater than -41 dB (Figure 1.6). One possible explanation for the 

difference observed between our results and those of Argyle (1992) and Fleischer et 

al. (1997) is fish community composition. Argyle (1992) and Fleischer et al. (1997) 

caught primarily rainbow smelt in Lake Michigan. Alewives were a minor portion of 

the fish they sampled, suggesting that their equations may be more representative of 

smelt TS–size relations. Rudstam et al. (1999b) and Burczynski et al. (1987) found the 

TS for smelt to be 3–4 dB lower than our values for alewives of the same length. Also, 

the trawl used by Fleischer et al. (1997) had a 13-mm bar mesh cod end that probably 

limited the capture of small fish.  Lastly, Horne and Jech (1999) found major 

differences in backscattering strength of threadfin shad Dorosoma petenense at 

different frequencies, which suggests that differences between our equations and those 

of Argyle (1992), Fleischer et al. (1997), and Burczynski et al. (1987) could be 

frequency-induced. However, Rudstam et al. (1999a) compared mean in situ TS from 

concurrent sampling with 70 and 120 kHz split-beam echosounders and found that the 

120 kHz system provided TS values only 1dB lower than the 70 kHz echosounder.  

Differences between dual and split-beam methods should be minor, as should 

differences in calibration methods (Foote 1987). 

 An alternative to using the equations of Fleischer et al. (1997) for alewives is 

to use the standard TS–length relationship for marine clupeids (based on Atlantic 

herring; Foote 1987).  However, use of a marine equation for freshwater alewives may 

not be appropriate because TS of Atlantic herring has been shown to vary 2–3 dB with 

salinity (Lassen and Stæhr 1985; Rudstam et al. 1988) and lipid content (Ona 1990).  
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 Lipid content has been shown by Machias and Tsimenides (1996) to influence swim 

bladder surface area (and therefore TS) in the sardine Sardina pilchardus. In addition 

to the obvious difference in salinity of the two environments, the lipid content of 

Atlantic herring (16.8% of wet weight; Ona 1990) is greater than the lipid content of 

freshwater alewives (9.1% of wet weight; Flath and Diana 1985). These differences in 

salinity and lipid content suggest that freshwater alewives may have a greater TS for a 

given fish length than do Atlantic herring. The effect of both lower salinity and lower 

lipid content is a decrease in buoyancy, which may necessitate a larger swim bladder 

to achieve a given buoyancy level in freshwater alewives. 

We observed considerably greater TS for alewives than have been observed in 

situ by others for marine clupeids of similar size. The standard clupeid regression 

proposed by Foote (1987) predicts TS values that are about 8 dB lower than those 

obtained from our equation. Although both Lassen and Stæhr (1985) and Rudstam et 

al. (1988) observed lower TS for Atlantic herring than we observed for alewives of a 

similar size, they observed greater in situ TS (2–3 dB) for Atlantic herring in brackish 

water (Baltic Sea) than was measured in seawater. Differences in specific gravity of 

the occupied water, differences in lipid content, different tilt angle distributions, 

different echosounder frequencies, and differences in depth distribution all may have 

contributed to the observed differences between marine and freshwater clupeids. 

Differences in reproductive state may have been a factor as well (Machias and 

Tsimenides 1996). The greater TS measured here for a freshwater clupeid may be the 

result of the lower specific gravity of freshwater or the lower lipid content of alewives 

relative to Atlantic herring, both of which decrease buoyancy and may necessitate a 

larger swim bladder volume (Ona 1990).  Whether increased swim bladder volume 

results increased TS in alewives is unclear. Although fish anatomy (the spinal column 

and rib cage) may prevent an increase in swim bladder volume from increasing the 
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dorsal swim bladder surface area, Blaxter et al. (1979) found that pressure-induced 

decreases in herring swim bladder volume were accompanied by decreases in dorsal 

surface area.  This response suggests that changes in TS may be correlated with 

changes in swim bladder volume. Fleischer and TeWinkel (1998) and Mukai and Iida 

(1996) suggested that this pattern was present in bloater and sockeye salmon as well. 

Fish tilt angle can have a major influence on TS (Foote 1980), and perhaps the tilt 

angle distribution of Atlantic herring is different; a greater mean tilt angle for these 

fish could result in lower TS values than we observed for freshwater alewives. Lastly, 

the marine studies described above used 38-kHz echosounders. It remains unclear 

whether the observed differences result from different frequencies. Our results suggest 

that salinity may influence TS enough to complicate acoustic estimates of fish 

abundance/biomass along salinity gradients such as the Chesapeake Bay (Luo and 

Brandt 1993) or the Baltic Sea (Orlowski 1998). 

The slope of our TS–length equation was similar to those of other published 

equations (Love 1971, 1977; Foote 1987).  In particular, our equation and Love’s 

(1971) predicted similar TS and length values over most of the observed range for 

freshwater alewives. Our results do not support the contention by Fleischer et al. 

(1997) that use of Love’s equation (1971) for Great Lakes planktivores (e.g., Brandt et 

al. 1991; Goyke and Brandt 1993; Mason et al. 2000) will lead to underestimation of 

biomass when alewives are the dominant pelagic fish species.   

In summary, our results support several conclusions.  First, there was a strong 

positive relationship between TS and both length and weight of alewives, the young-

of-year and older fish having significantly different TS values. The TS differences 

between size-classes allowed acoustic separation of these groups and indicated that in 

some cases length frequency distributions can be derived from acoustics. Second, the 

methods used to acoustically separate size-classes of alewives could be used for other 
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species or to separate two species with size differences. Lastly, freshwater alewives in 

our study lakes exhibited greater TS than similar sizes of Atlantic herring, but the 

reasons for this difference remain to be determined. 
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CHAPTER TWO 

Cercopagis pengoi as a new prey item for alewife (Alosa pseudoharengus) and

rainbow smelt (Osmerus mordax) in Lake Ontario 

ABSTRACT 

Diets of alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mord

were examined before (1997) and after (1998 and 1999) the establishment of the 

predatory cladoceran Cercopagis pengoi in Lake Ontario.  Cercopagis pengoi was 

absent in both fish stomachs and zooplankton samples in 1997, but by August 1998

its distribution was lake-wide and spines of this organism were present in stomachs

both fish species.  Incidence of C. pengoi spines was highest in adult alewives.  Spi

occurred in 72, 100, and 90% of stomachs in August 1998, August 1991, and Octob

1999, respectively.  Spines were found in 15 and 53% of YOY alewife stomachs in

August 1998 and October 1999, respectively.  Cercopagis pengoi spines were least

common in rainbow smelt stomachs (12% in August 1998 and 6% in October 1999

Low frequency of occurrence in rainbow smelt likely resulted from limited spatial 

overlap with C. pengoi.  No C. pengoi spines were found in alewives < 66 mm tota

length (TL) which suggests that consumption of C. pengoi by YOY alewife is limit

by the long caudal spine.  Low consumption of C. pengoi by YOY alewife may 

explain the remarkably rapid population increase of C. pengoi in Lake Ontario in 1

in the presence of a strong alewife year class.  These results indicate that C. pengoi

competitor of YOY alewives for zooplankton during the summer but also a potenti

prey item for larger fish throughout the year and for YOY alewife in the fall. 

*Bushnoe, T. M., D. M. Warner, L. G. Rudstam, and E. L. Mills.  2003.  Cercopag

pengoi as a new prey item for alewife (Alosa pseudoharengus) and rainbow smelt 

(Osmerus mordax) in Lake Ontario.  Journal of Great Lakes Research 29:205-212. 
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INTRODUCTION 

Cercopagis pengoi is a predatory cladoceran endemic to the Ponto-Caspian 

basin (MacIsaac et al. 1999).  It is among the most widely distributed species of the 

genus Cercopagis and has recently been introduced to the Baltic Sea and the 

Laurentian Great Lakes of North America (Ojaveer and Lumberg 1995, MacIsaac et 

al. 1999, Gorokhova et al. 2000).  Genetic similarity between the Baltic Sea and Great 

Lakes populations suggests that colonization of North America was the result of 

transoceanic shipping from the Baltic Sea (Cristescu et al. 2001).  Cercopagis pengoi 

is euryhaline (Mordukhai-Boltovskoi and Rivier 1971) and consequently individuals 

or diapausing eggs of this organism may survive in ballast tanks even if they are 

flushed with salt water.  Cercopagis pengoi was first observed in Lake Ontario in July 

1998 (MacIsaac et. al. 1999).  By 1999, C. pengoi was also documented in Lake 

Michigan, Cross Lake (New York), and five of New York State’s Finger Lakes 

(Charlebois et al. 2001, Makarewicz et al. 2001).  Cercopagis pengoi became a major 

component of the Lake Ontario zooplankton community the same year that is was first 

observed (Ojaveer et al. 2001, Makarewicz et al. 2001). 

 The extent to which planktivorous fish species, such as alewife (Alosa 

pseudoharengus) and rainbow smelt (Osmerus mordax) use C. pengoi as prey has 

important ecological implication and may vary between size classes and species.  

Because of its consistent presence and, at times, high abundance, C. pengoi may 

decrease food availability for planktivorous fish if it substantially decreases the 

density of other zooplankton through predation and does not serve as a suitable 

alternate prey.  Smaller fish may be deterred from consuming C. pengoi by its up to 

10-mm-long caudal appendage that is more than five times longer than its body length.  

Barnhisel and Harvey (1995) found that lake herring (Coregonus artedi) < 70 mm 
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total length (TL) did not consume Bythotrephes longimanus (previously 

cederstroemi), a similar cladoceran that also has a long caudal spine. 

 While the potential for negative impacts exists, C. pengoi may provide an 

additional food source for larger planktivorous fish in Lake Ontario.  After its 

establishment in Lakes Erie and Ontario, Bythotrephes longimanus became a common 

prey item of adult planktivorous fish (Mills et al. 1992, Parker et al. 2001).  In the 

Gulf of Riga, Baltic Sea, C. pengoi accounted for the majority (up to 100%) of 

stomach contents of juvenile and adult Baltic herring (Clupea harengus membras) in 

1994 (Ojaveer and Lumberg 1995).  These authors suggested that an increase in C. 

pengoi could contribute to improved feeding conditions and growth of Baltic herring 

since the Cladoceran is suitable, energetically beneficial, and readily consumed prey. 

Whether the presence of C. pengoi increases or decreases availability of prey 

to planktivorous fish in Lake Ontario will depend both on the impact of C. pengoi on 

other zooplankton the extent planktivorous fish utilize C. pengoi.  In the paper, the 

frequency of occurrence of the readily identifiable caudal spine of C. pengoi was 

investigated in the stomach contents of alewives and rainbow smelt sampled with mid-

water trawls at various location and depths across Lake Ontario.  Differences in the 

proportion of the two species that had consumed C. pengoi, differences in C. pengoi 

consumption between young-of –the-year (YOY) and older alewife, and differences in 

C. pengoi consumption by YOY in August and October were tested for.  Lastly, 

because fish may be more effective samplers of rare large zooplankton than plankton 

nets, the diet of fish captured in 1997 was also investigated to determine if C. pengoi 

was present but not detected in plankton samples in 1997. 

 

 

 



 36

METHODS 

 Fish were collected at night aboard the R/V Seth Green during joint 

trawl/hydroacoustic surveys of Lake Ontario by the Ontario Ministry of Natural 

Resources and New York State Department of Environmental Conservation.  Trawling 

was conducted with a 9 m x 7 m mid-water trawl at depths ranging from the surface to 

44 m.  A depth and temperature sensor was located on the head rope.  Each tow lasted 

15 minutes and tow speed was approximately 6.5 km/h (Schaner and Lantry 2000).  

For each fish, fork length (mm), location, trawl depth, and water temperature at depth 

of capture were recorded.  Fork length measurements were converted to TL using a 

linear regression equation developed from Lake Ontario alewives and rainbow smelt 

(D.M. Warner, unpublished data).  The digestive tracts of all alewives and rainbow 

smelt were removed and preserved in formaldehyde in the field. 

 Zooplankton were collected concurrent with fish samples in August 1997 to 

1999 and October 1999 with a conical 50-cm-diameter, 153-µm-mesh nylon net 

equipped with a flow meter at offshore sites (top 40 m of the water column).  Also 

included were C. pengoi samples collected aboard the USEPA Lake Guardian in 

August 1999 and previously reported by Makarewicz et al. (2002).  They were 

included because when combined with the August 1999 samples collected aboard the 

R/V Seth Green, lake-wide density could be estimated from a larger spatial area.  

Specimens were preserved in the field in 70% ethyl alcohol after they were 

anesthetized with antacid tablets.  Cercopagis pengoi specimens have a tendency to 

clump, and as a result, they were separated (with other large zooplankton) from 

smaller zooplankton with a 1.02-mm-mesh sieve.  Once separated, C. pengoi 

specimens were spread homogenously in a gridded Petri dish, and at least 100 

organisms from a random sub-sample were counted and measured with a 

microprojector at 20x magnification and a digitizer interfaced with a computer. 
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Fish stomachs were examined from fish caught with the same trawl, trawling 

techniques, and using the same preservation techniques in 1997, 1998, and 1999.  

Stomachs were examined from fish caught at five sites in western and central Lake 

Ontario in August 1997, 11 sites throughout the western, central, and eastern portions 

of the lake in August of 1998, one site in the southeastern portion of the lake in 

August 1999, and nine sites within the eastern half of the lake in October 1999 (Figure 

2.1).  Stomach contents from each fish were emptied into a Petri dish and examined 

individually with a stereo dissecting microscope.  Because fish were collected 

throughout the night, and alewives feed primarily during the day, the stomach contents 

were often highly digested.  However, the characteristic chitinous caudal spine of C. 

pengoi was still recognizable because it is more resistant to digestion than other  

structures.  Therefore, only the presence/absence of C. pengoi spines as frequency of 

occurrence (including empty stomachs) is presented.  Alewives were sorted into YOY 

and adult (age 1 and older) age classes while all rainbow smelt were adults.  Statistical 

comparisons of the proportion of stomachs that contained C. pengoi spines were made 

using a t-test of arcsine-transformed data, as recommended by Sokal and Rohlf (1969) 

for testing equality of two proportions.  Trawls were considered the sampling unit to 

decrease the potential for pseudoreplication.  Among-year differences in frequency of 

occurrence of C. pengoi spines in fish stomachs were analyzed using the same 

methods.  Two-tailed tests were used in all cases except when the hypothesis that C. 

pengoi spines occurred in a smaller proportion of small YOY stomachs (August 1998) 

than in large YOY (October 1999) was tested.  Comparison of frequency of 

occurrence of spines in stomachs and C. pengoi density among sites was tested with 

Spearman’s correlation coefficient (Sokal and Rohlf 1995).  A Kruskall-Wallis test 

was used to make comparisons of median C. pengoi density among years.  A 

probability level of < 0.05 was considered significant in all statistical tests. 



 38 

 

 

 

 

T

T
T

T
T

T
TT

T

T

U

U

UU

U
U

U

U

U
U

U

S

S

S

S

S

91

64
101

44

69
67

47

103

126

34

120147

47

131

31
101

47

52

33 47

71
112

192

98
62

152
156

Rochester

Toronto

50 0 50 Kilometers
N

 

 

 

 

 

 

 

 

Figure 2.1.  Lake Ontario locations sampled for Cercopagis pengoi, alewives, and rainbow smelt in 1997 to 1999.  Numbers 

adjacent to the symbols correspond to the bottom depth (m) at that location.  Open circles represent locations sampled in 1997, 

while open squares and open triangles represent locations sampled in 1998 and 1999, respectively.

38 
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RESULTS 

 Cercopagis pengoi was absent in zooplankton samples collected in 1997, but it 

occurred at relatively high densities across Lake Ontario by August 1998, 1 month 

after it was first observed in eastern Lake Ontario (MacIsaac et al. 1999).  Average 

epilimnetic density at night in August 1998 was 450 per m3 (range 30 to 1,190 per m3, 

21 sites).  Similar densities were also found in August 1999 (mean =  448 per m3, 

range 35 to 1,370 per m3, 23 sites).  There was no difference between median C. 

pengoi densities in August 1998 and 1999 (Kruskall-Wallis test: P = 0.68).  Densities 

in October 1999 were lower (mean = 136 per m3, range 0 to 535 per m3, 11 sites), but 

these samples represented a more limited area of the lake. 

 Alewife samples from 1998 and 1999 (years when C. pengoi was present) 

included fish ranging from 35 to 180 mm TL (Table 2.1, Fig. 2.2).  Because age-1 and 

older alewives generally exceed 100 mm TL during their second summer (O’Gorman 

et al. 1997), alewife were separated into adults (>104 mm) and YOY (<104 mm) in 

both years (Table 2.1).  No C. pengoi spines were found in stomachs of alewives 

caught in 1997, but they occurred in a high percentage of adult alewife stomachs from 

1998-99 (Table 2.1).  The proportion of adult alewife stomachs that contained C. 

pengoi spines in 1998 and 1999 were not significantly different (test for equality of 

proportions, t = 1.52, p = 0.14, N = 16 for 1998, 10 for 1999).  A higher proportion of 

adult than YOY alewives had consumed C. pengoi in both years (Table 2.1, Figure 

2.2; 1998: t = 3.84, p < 0.001, N =10 for YOY and 16 for adults; 1999: t = 2.54, p = 

0.02, N = 7 for YOY and 10 for adults).  The occurrence of C. pengoi in stomachs of 

small YOY (August 1998, mean length = 56 mm) was significantly lower than in 

larger YOY (October 1999, mean length = 70 mm, t = 1.92, p = 0.04, N =10 in 1998 

and 7 in 1999).  There was no significant correlation between the frequency of 
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occurrence of C. pengoi in adult alewives and C. pengoi density in either year (1998, r 

= -0.26, N = 17, P = 0.28; 1999, r = 0.36, N = 10, P = 0.28). 

 When the percentages of alewives in each of 16 10-mm size classes 

that consumed C. pengoi in 1998 to 1999 were plotted against alewife length, it 

appeared that alewife size was a good predictor of C. pengoi consumption (Figure 

2.3).  The non-linear regression function was used in SigmaPlot 2000 to develop a 

model for predicting the percentage of alewives consuming C. pengoi.  The resulting 

3-parameter sigmoidal model was: 
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where y = the percentage of alewives at a given length consuming C. pengoi.  The 

model was highly significant (F = 50.6, p < 0.0001, r2 = 0.89). 

 Rainbow smelt captured in 1998 and 1999 ranged in length from 56 to 190 mm 

TL  (Figure 2.4).  Only seven of the 111 fish examined contained C. pengoi, 

precluding any meaningful analysis of differences between fish sizes.  The smallest 

rainbow smelt that was found to consume C. pengoi was 96 mm TL.  No difference in 

rainbow smelt consumption of C. pengoi was detected between years (Table 1.1; t = 

0.67, p = 0.51, N = 11 for both years).  Cercopagis pengoi spines occurred in rainbow 

smelt stomachs at lower frequencies than in adult alewife stomachs in both years 

(Table 1; 1998: t = 4.33, p < 0.001, N = 16 for alewives, N = 11 for rainbow smelt; 

1999: t = 10.29, p < 0.001, N = 10 for alewives and 11 for rainbow smelt).  Frequency 

of occurrence of C. pengoi spines in YOY alewife and rainbow smelt stomachs did not 

differ in 1998 (t = 0.25, p = 0.80, N = 10 for alewives and 11 for rainbow smelt), but 



 41

Table 2.1.  Average length, percentage of stomachs with C. pengoi spines, and sample 

size for alewives and rainbow smelt collected from Lake Ontario in 1997, 1998, and 

1999.  Numbers of empty stomachs are shown in parentheses next to the total number 

of stomachs examined.  Alewives are separated into YOY and adult based on total 

length because consumption of C. pengoi differs between these groups.  Adult alewife 

refers to age 1 and older fish (larger than 105 mm).                                               

  Alewives    

  Length (mm)    

Month/year Age Range Mean % with spines 

Number of 

stomachs 

August 

1997 Adult 101-166 139 0.0 21 

August 

1998 YOY 35-78 56 15.8 29 (1) 

 Adult 118-178 152 71.9 54 (2) 

August 

1999 Adult 124-182 154 100.0 5 

October 

1999 YOY 43-104 72 52.4 31 

 Adult 112-184 141 90.0 48 

  Rainbow smelt    

August 

1998 All 56-190 117 11.9 59 

October All 78-164 115 5.7 56 (4) 
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Figure 2.2.  Length frequency distributions of alewife collected in Lake Ontario in August 1998 and 1999 and October 1999 whose 

stomachs were examined for the presence of Cercopagis pengoi spines.  Bar height corresponds to the number of fish in each 5-mm 

size class.  The shaded portion of the bars represents the number of fish whose stomachs contained C. pengoi spines and the 

unshaded portion the number that did not contain C. pengoi spines.  The total number of alewife stomachs examined = 167 (empty 

stomachs =4). 42 
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in 1999 C. pengoi spines were significantly more common in YOY alewife diets than 

in rainbow smelt stomachs (t = 3.30, p < 0.01, N = 7 for alewives and 11 for rainbow 

smelt).  The dominant prey item in rainbow smelt stomachs was Mysis relicta. 

 
DISCUSSION 

 Although the analysis of alewife and rainbow smelt diets presented here was 

limited to quantifying the frequency of occurrence of C. pengoi spines, several 

important conclusions can be drawn from these data.  First, alewives smaller than 66 

mm TL did not consume C. pengoi, probably because these small fish have difficulty 

handling the long caudal spine.  Second, although the relative importance of C. pengoi 

in alewife and rainbow smelt diets remains unknown, it is apparent that consumption 

of C. pengoi by larger alewives is widespread (spines were found in at least 70% of 

fish larger than 70 mm TL).  Consumption of C. pengoi by rainbow smelt was less 

common, probably because of limited spatial over lap between these two species.  

Third, Cercopagis pengoi spines were found in the stomachs of both alewife and 

rainbow smelt in 1998 and 1999, but not in August 1997.  This is consistent with the 

absence of C. pengoi in 1997 zooplankton samples.  Thus, C. pengoi was either rare or 

absent in Lake Ontario in 1997 and expanded rapidly through the whole lake in 1998. 

 Observed densities of C. pengoi in August 1998 and August and October 1999 

were similar to those previously reported for those years in Lake Ontario (MacIsaac et 

al. 1999, Makarewicz et al. 2001, Ojaveer et al. 2001, Benoit et al. 2002).  August has 

been identified as the peak month for C. pengoi abundance in Lake Ontario 

(Makarewicz et al. 2001, Benoit et al. 2002).  Therefore, much of the data presented 

here are for the period when C. pengoi is likely most important as predator 

and prey.
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Figure 2.3.  Relationship between the percentages of alewives in each size class that consumed C. pengoi and alewife length.  The 

line represents a 3-parameter sigmoidal model fitted to the observed data. 44 
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Figure 2.4.  Length frequency distributions of rainbow smelt collected in Lake Ontario in August 1998 and 1999 and October 1999 

whose stomachs were examined for the presence of Cercopagis pengoi spines.  Total bar height corresponds to the number of fish 

in each 5-mm size class.  The shaded portion of the bars represents the number of fish whose stomachs contained C. pengoi spines 

and the unshaded portion the number that did not contain C. pengoi spines.  The total number of rainbow smelt stomachs examined 

= 115 (empty stomachs =4). 45 
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 Young –of –the-year alewives may have difficulty feeding on C. pengoi, as the 

smallest alewife found to consume C. pengoi in 1998 and 1999 had total lengths of 72 

mm and 66 mm, respectively.  None of the stomachs examined from 30 alewives 

smaller than 66 TL mm contained C. pengoi spines (Fig. 2.3).  Other YOY fish species 

have difficulty feeding on the related cercopagid B. longimanus, which also has a long 

chitinous spine (yellow perch, Perca flavescens, Barnhisel 1991, Jarnagin 1998; cisco, 

Coregonus artedi, lake whitefish C. clupeaformis, Barnhisel and Harvey 1995).  In 

Lake Ontario, Mills et al. (1992) found lower numbers of YOY alewives containing B. 

longimanus spines relative to adult alewives and Urban and Brandt (1993) did not find 

any B. longimanus in YOY alewives stomachs.  In the Baltic Sea, C. pengoi has been 

found to be common in adult but not YOY Baltic herring (Clupea harengus) (Ojaveer 

and Lumberg 1995).  Small fish may have problems handling C. pengoi because of 

gape size limitations.  The gape height and width of a 65 mm TL alewife are 7.6 and 

4.5 mm, respectively (Brooking et al. 1998).  Therefore, it is conceivable that the 

ability of a small alewife to consume a C. pengoi with a 7 to 11-mm-long spine is 

limited by gape size. 

  Cercopagis  pengoi spines were found in a larger proportion of both YOY 

alewives and adult alewives than in rainbow smelt.  It is possible that this is due to 

differences in overlap between C. pengoi and these two fish species.  Alewives are 

generally concentrated in the epi and metalimnion at 14 to 24° C (O’Gorman et al. 

1997); whereas, rainbow smelt are found at or below the thermocline at 8 to 14° C 

(Lantry and Stewart 1993).  My observations of capture depth and temperature of 

alewives and rainbow smelt were similar.  In August 1998, the average capture depth 

and temperature for alewife was 16 m (range 3 to 41 m) and 17° C (range 4 to 23° C); 

whereas, similar values for rainbow smelt were 25 m (range 8 to 41 m) and 12° C 

(range 4 to 22° C).  Cercopagis pengoi is primarily found in the epilimnion (Uitto et 
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al. 1999, Ojaveer et al. 2001), often with an abundance peak in the lower epilimnion 

(Benoit et al. 2002).  Of the seven rainbow smelt that did consume C. pengoi six were 

captured in water 17° C or greater which is generally considered outside the normal 

temperature range of rainbow smelt (Lantry and Stewart 1993).  It is possible that the 

lower frequency of C. pengoi in rainbow smelt stomachs is not because rainbow smelt 

avoid C. pengoi but because these fish do not regularly encounter C. pengoi. 

 The rapid expansion of the C. pengoi population in 1998 in the alewife-

dominated environment of Lake Ontario was surprising.  Mills et al. (1992) suggested 

that predation by alewives prevented high abundance of B. longimanus in Lake 

Ontario.  A similar control on C. pengoi abundance by alewives would be expected, 

but densities observed in this study exceeded 1,000 per m3 in 1998.  Makarewicz et al. 

(2001) attributed the rapid expansion in 1998 to low numbers of adult alewife in 

combination with high fecundity, asexual reproduction, and defensive spines of C. 

pengoi.  Young –of –the-year alewives were abundant in 1998 (R. O’Gorman, Oswego 

Biological Station, Oswego, N.Y., personal communication) but the data in this study 

suggest that these fish do not consume C. pengoi until they reach length of over 66 

mm TL and would therefore have little effect on C. pengoi abundance until the fall.  It 

is likely that low adult alewife abundance in 1998 contributed to both the strong YOY 

alewife cohort and the rapid expansion of C. pengoi that year. 

 However, C. pengoi densities remained high in 1999, even though the 

abundance of yearling alewife large enough to consume C. pengoi was high that year 

(R. O’Gorman, personal communication).  It is possible, but not likely, that adult 

alewives only consume a small number of C. pengoi.  The data presented in this study 

did not provide a quantitative assessment of the importance of C. pengoi in the diet of 

alewives, but many of the stomachs examined contained very large number of C. 

pengoi spines.  It is conceivable that spines are retained for some times in alewife 
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stomachs (as observed for rainbow smelt feeding on B longimanus, Parker et al. 2001) 

and spines may therefore be poor indicators of feeding rates on C. pengoi.  However, 

examination of a small number of stomachs from adults alewives collected in August 

2001 indicated that ~80% of the organisms found in the stomachs (based on counts of 

bodies, not spines), were C. pengoi.  Elsewhere, adult Baltic herring heavily utilized 

C. pengoi (Ojaveer and Lumberg 1995).  If predation on C. pengoi is high, C. pengoi 

must be able to maintain high rates of population growth.  Straille and Hälbich (2000) 

found that B. longimanus exhibited multiple antipredator defenses including high 

fecundity, diel vertical migration, and spines.  Cercopagis pengoi is smaller and may 

have shorter generation time then B. longimanus, resulting in faster population growth 

rates.  In addition, the number of C. pengoi present in the lake in the beginning of 

1999 must have been substantially larger than in the beginning of 1998, potentially 

allowing the species to increase despite higher predation rates. 

 The ecological relationship between C. pengoi and planktivorous fish in Lake 

Ontario is dependent on the age and species of fish and the abundance of C. pengoi.  

Benoit et al. (2002) have shown that C. pengoi probably decreased abundance of small 

nauplii and copepodites and possibly small cladocerans, as well as caused some of 

these vulnerable prey to avoid surface waters.  Thus, C. pengoi may depress the 

zooplankton prey of small alewife (< 66 mm) without providing an additional food 

source for these fish.  This may result in decreased growth of YOY alewives, possibly 

leading to lower overwinter survival (O’Gorman et al. 1997).  The interactions 

between C. pengoi and YOY alewife will depend on the timing of alewife 

reproduction and the timing and magnitude of the effect of C. pengoi on other 

zooplankton.  Effects on adult alewife growth remain unclear but could be positive.  

Cercopagis pengoi is larger and may be a more profitable prey than the smaller 
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zooplankton that may decline due to C. pengoi predation.  The effect of C. pengoi on 

rainbow smelt is likely minimal. 
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CHAPTER 3 

Changes in Seasonal Nearshore Zooplankton Abundance Patterns in Lake Ontari

following Establishment of the Exotic Predator Cercopagis pengoi 

 

ABSTRACT 

Cercopagis pengoi, a zooplanktivore first discovered in Lake Ontario in 19

may reduce availability of prey for planktivorous fish.  To determine if the 

establishment of C. pengoi was followed by changes in the zooplankton community

examined seasonal patterns in nearshore zooplankton collected from May to Octob

1995-2000.  Because C. pengoi is most abundant in late summer and fall, I 

hypothesized that abundance of small zooplankton (bosminids and cyclopoids) spe

would decrease at that time.  Early summer density of small zooplankton was simil

or higher in all years while late summer and fall densities were significantly lower 

1998-2000 than in 1995-1997.  The declines of zooplankton coincided seasonally w

the peak in C. pengoi density.  The presence of high levels of fish predation should

have resulted in smaller zooplankton in 1998-2000 than in 1995-1997 and larger 

declines in Daphnia than other groups.  Given that late summer density of D. 

retrocurva and mean zooplankton length was similar before and after C. pengoi 

establishment, it was not likely that fish predation caused late summer declines in 

small zooplankton.   Mean length may have been moderated by selection of smalle

prey by C. pengoi and selection of larger prey by alewives.    Patterns in potentially

important environmental variables were inconsistent with changes in zooplankton. 

Therefore, declines in zooplankton density were most likely the result of C. pengoi

predation.  The effect of added competition for alewives is unclear because C. peng

has likely replaced a significant portion zooplankton biomass and adult alewife die

formerly made up of Diacyclops thomasi and Bosmina longirostris. 
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INTRODUCTION 

 Over the past 30 years, the zooplankton community of Lake Ontario has been 

subjected to important ecological changes including oligotrophication, major 

fluctuations in alewife abundance, and the introduction of exotic species (including 

predators).  Total phosphorus (TP) concentrations declined approximately 50% from 

the 1960s to the mid 1980s (Mills et al. 2003; Millard et al. 2003), which led to a 

similar decline of approximately 50% in zooplankton abundance and biomass 

(Johannsson 2003).  From the mid 1980s to the mid 1990s, TP concentrations were 

relatively constant with no apparent trend.  During this period of relative nutrient 

stability, dreissenid mussels (1989), Bythotrephes longimanus (1982), and Cercopagis 

pengoi (1998) invaded the lake, which added competitive and predatory pressure on 

the zooplankton community and likely increased competition among zooplanktivores.    

Like other size-dependent invertebrate planktivores (sensu Zaret 1980), C. 

pengoi is expected to prey selectively on small zooplankton (Dodson 1974).  The 

effect of predation by C. pengoi has been documented in the Baltic Sea, where 

Ojaveer (2000) correlated the arrival of C. pengoi with a decline in Bosmina 

coregonus maritimus.  Benoît et al. (2002) associated C. pengoi densities >200-300 

ind. m-3 in the Kingston basin of Lake Ontario with significant late summer declines in 

juvenile cyclopoid and calanoid copepods as well as Bosmina.  Similar declines were 

not observed at their study site prior to establishment of C. pengoi or at other sites 

where it was rare or absent.  Laxson et al. (2003) found that consumption by C. pengoi 

exceeded zooplankton production in western Lake Ontario during most of the summer 

and attributed late summer declines in bosminids, Diacyclops thomasi, and Daphnia 

retrocurva to predation by C. pengoi.  However, both these studies were spatially 

limited to either the Bay of Quinte/Kingston Basin (Benoit et al. 2002) or near 
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Brockport, N.Y. (Laxson et al. 2003).  In addition, they provide different conclusions 

about the effect of C. pengoi on Daphnia, an important species selected by fish in 

Lake Ontario.  Results from the invasion of C. pengoi elsewhere do not support either 

of the two previous studies in Lake Ontario.  Ojaveer et al. (2000 ) did not observe 

changes in Baltic Sea copepods associated with C. pengoi invasion.  Given the 

potential importance of C. pengoi predation in Lake Ontario, it is imperative that 

predictions by previous authors be reconciled and tested at a larger spatial and 

temporal scale.   

 Cercopagis pengoi has consistently been present at relatively high density 

every year since it was first observed in Lake Ontario in 1998 (Makarewicz et al. 

2001; Ojaveer et al. 2001; Bushnoe et al. 2003).  Cercopagis pengoi is rare or absent 

from May to early July, but it is abundant from mid-July to October (Makarewicz et 

al. 2001; Benoît et al. 2002; Laxson et al. 2003).  I hypothesized that effects of C. 

pengoi predation should be most prominent during the July to October period when C. 

pengoi is most abundant (Benoît et al. 2002).  Therefore, I compared zooplankton 

abundance and length in two seasonal periods (14 May to 9 July and 10 July to 2 

October) in the years 1995-1997 with abundance and length during the same periods 

in the years 1998-2000.  In this study, I tested for the effects of C. pengoi on 

zooplankton species predicted by Benoît et al. (2002) and Laxson et al. (2003) using a 

data set from seven nearshore sites in Lake Ontario sampled from 1995 to 2000.  The 

ability to compare pre- and post-perturbation conditions is extremely helpful in 

assessing the effects of perturbations (e.g. introductions) on food webs (Carpenter 

1990), and I consider the invasion of C. pengoi as a perturbation to the Lake Ontario 

ecosystem from 1998 to 2000 (and into the future).  Although Benoît et al. (2002) 

conducted such an analysis, it was limited to the Bay of Quinte/Kingston basin, which 

may not be representative of the remainder of Lake Ontario.  I also examined other 
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variables as alternative explanations for the observed patterns in zooplankton 

abundance. 

METHODS 

Zooplankton samples were collected during the day at seven locations in 

eastern and southern Lake Ontario every second week between the middle of May and 

the middle of October 2000.  The sampling locations were located along the 10-m 

depth contour and included Chaumont Bay, Galloo Island, Sandy Pond, Sodus Bay, 

Oak Orchard Creek delta, and the Niagara River delta (Figure 3.1).  At each location, 

1-3 10-m vertical tows were made from just above bottom to the surface with a 0.5-m 

conical plankton net (153-µm mesh).  Filtering efficiency was assumed to be 100%.  

Specimens were preserved in the field in either 4% sugar-formalin or 70% ethyl 

alcohol.  Specimens preserved in alcohol were first anesthetized with antacid tablets.   

Crustacean zooplankton were counted and measured (at least 100 organisms) using1-

ml random sub-samples N=1-3).  Density (ind. L-1) and lengths (mm) from the 

replicate tows were averaged.  In 1995-97, an electronic touch screen was used for 

measuring the zooplankton (Hambright and Friedman 1994).  In later years, a 

microprojector (20x ) was used to project images of zooplankton onto a digitizing 

tablet coupled with a computer.  Starting in 1998 with the appearance of C. pengoi, the 

enumeration technique was altered.  Because C. pengoi specimens form clumps, 

separate analyses were conducted on large (> 1mm) and small (<1mm) zooplankton, 

which were separated using a 1.02 mm sieve.  In addition, once untangled,  C. pengoi 

specimens were enumerated separately.  They were spread homogenously in a gridded 

Petri dish and at least 100 organisms from a random sub-sample were counted and 

measured with the same microprojector system.  Mean individual biomass was 

predicted from a equation 1 in Makarewicz et al. (2001).  The mean of individual 

weights  was used to predict the number of C. pengoi remaining in the 
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uncountedportion of the sample.  Cladoceran lengths were measured from the distal 

point on the head to the base of the tail spine.  Copepod lengths (copepodids were 

included with 

adults) were measured from the distal point on the head to the base of the caudal rami.  

No effort was made to correct for preservative effects on length because Black and 

Dodson (2003) found no siginificant differences in mean length of Daphnia specimens 

preserved with formalin and ethanol.      

Water temperature, TP and chlorophyll a were sampled concurrently with 

zooplankton sampling.  Water samples were collected using an integrated tube 

sampler lowered to approximately 1 m above the bottom.  Water temperature data 

were not available from Galloo Island in 1997; therefore this site was excluded from 

analyses of water temperature.  At other sites, temperature data were collected at 1-m 

intervals with electronic samplers.  Temperatures reported here are the means for each 

profile.  A 50-ml aliquot of unfiltered water was frozen for TP analyses using 

persulfate digestion (Menzel and Corwin 1965).  Chlorophyll a was sampled by 

filtering raw lake water through Whatman 934-AH filters, which were frozen in the 

field and kept dark until analyzed in the laboratory.  Filters were assayed for 

chlorophyll a using the acetone extraction method (Strickland and Parsons 1972).  

  In order to test for evidence of C. pengoi predation on zooplankton, biweekly 

patterns of zooplankton abundance and size in 1995-1997 were compared to those in 

1998-2000.  Similar comparisons were made of mean epilimnetic water temperatures 

and two indices of trophic state (TP and chlorophyll a concentration).  Data from each 

site were divided in two three-year periods (epochs) corresponding to the group of 

years in which C. pengoi was not present (1995-1997) and a second group (1998-

2000) when C. pengoi was present.  Additionally, data within each year were divided 

in 11 biweekly periods (biweek) with all data collected 14-28 May assigned to 
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Figure 3.1.  Map of Lake Ontario and the locations (closed circles) at which biweekly measurements of zooplankton, water 

temperature, total phosphorus, and chlorophyll a measurements were made May-October 1995-2000.  Also shown are locations 

sampled by Benoît et al. (2002, closed squares) and Laxson et al. (2003, closed triangles).      58 
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biweek one, data collected 29 May – 11 June assigned to biweek two, and the 

remaining data assigned accordingly up to biweek 11.  

Zooplankton abundance and size (as well as water quality variables) in Lake 

Ontario vary spatially and at both short-term (seasonal) and long-term (annual) 

temporal scales (Hall et al. 2003).  In order to account for this variation while testing 

for significant differences in zooplankton density, I employed a generalized linear 

mixed model with repeated measures using SAS (GLIMMIX macro and PROC 

MIXED, Littel et al. 1996).  Site was treated as a random variable for all analyses 

because sites were chosen to encompass the gradient of TP, chlorophyll a, and 

shoreline exposure that occurs in Lake Ontario.  Because biweekly zooplankton 

densities were auto-correlated, a first-order autoregressive covariance structure was 

assumed.  Epoch and biweek were treated as fixed factors.  Zooplankton densities 

were not normally distributed; like other count data, the densities were approximately 

Poisson-distributed (variance similar to the mean, large number of low values).  

Therefore, density was assumed to have a Poisson error structure and it was further 

assumed that a log link function was appropriate.  The link function relates the linear 

predictor of the general linear model to the mean response (Neter et al. 1996).  Normal 

error structure and identity link functions were assumed to be appropriate for all other 

variables.  The GLIMMIX macro corrected for effects of over-dispersion and under-

dispersion by scaling the deviance and adjusting the F-statistics.  Scaled deviance was 

used to assess model fit.  In cases where the epoch x biweek interaction was 

significant, a test for simple effect of epoch on the biweekly mean of each variable 

was used to compare least-squares means of zooplankton density, zooplankton size, 

water temperature, TP, and chlorophyll a to determine which biweeks were different 

among epochs.  In attempt to reduce the occurrence of Type I errors, an experiment-

wise significance level of 0.05 was employed by correcting for the number of tests 
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using the formula α/n where α is the experiment-wise error rate (0.05) and n is the 

number of statistical tests.   

RESULTS 

 Differences in water temperature among epochs were not significant.  There 

were significant differences among biweeks because of the seasonal pattern in water 

temperature (Table 3.1).  The epoch x biweek interaction term was not significant, 

indicating that seasonal patterns in water temperature were similar in both epochs 

(Figure 3.2). 

Both TP and chlorophyll a exhibited significant variability. Differences in TP 

concentrations among epochs and biweeks were significant (Table 3.1), but the 

interaction term was not significant.  Total phosphorus values were higher in the 1998-

2000 than in 1995-1997.  The significant biweek effect was the result of the seasonal 

pattern in TP, with low early and late summer concentrations and higher midsummer 

concentrations. The epoch x biweek interaction was not significant. Chlorophyll a 

concentrations did not differ significantly among epochs, but there were significant 

biweekly differences that reflected the general pattern of higher midsummer 

concentrations and lower early and late summer concentrations (Table 3.1).  The 

epoch x biweek interaction was not significant, indicating that the seasonal pattern did 

not differ among epochs (Figure 3.2).     

Cercopagis pengoi was not present until 1998.  Therefore, it was not possible 

to include an epoch term in the model for C. pengoi abundance.  There were not 

significant differences among years, but there were significant differences among 

biweeks (Table 3.2, Figure 3.3).  Cercopagis pengoi density was highest in late 

summer.   

Bosminid density and length exhibited significant variability.  The epoch x 

biweek effect for density was significant (Table 3.2), indicating that the seasonal 
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Table 3.1.  Summary of repeated measures generalized linear mixed models 

comparing (Type 3 tests) epoch, and biweekly mean water temperature, total 

phosphorus (µg·L-1), and chlorophyll a concentrations (µg·L-1) between May and 

October 1995-2000 at seven nearshore sites in Lake Ontario. Values in parentheses are 

F-test degrees of freedom (numerator, denominator).  Values in boldface type were 

significant (P<0.0167) after adjustment for the number of statistical tests were made to 

achieve an experiment-wise α = 0.05.  

Response variable 

 

Epoch Biweek Epoch x biweek 

Water temperature 

 

F 

P 

0.03 (1, 122) 

0.85 

58.15 (10, 297)

<0.0001 

1.58 (10, 298) 

0.11 

Total phosphorus 

 

F 

P 

9.46 (1, 90) 

0.003 

2.37 (10, 332)

0.012 

1.41 (10, 333) 

0.17 

Chlorophyll a F 

P 

0.25 (1, 108) 

0.62 

3.46 (10, 333)

0.0002 

1.60 (10, 334) 

0.10 
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Figure 3.2.  Seasonal patterns in least squares mean (± SE) water temperature, total 

phosphorus, and chlorophyll a at seven nearshore locations in southern and eastern 

Lake Ontario during May-October in 1995-1997 and 1998-2000.  The date at the 

beginning of each biweekly period is shown on the x-axis. 
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pattern in density differed among epochs.  Late summer density was significantly 

higher in 1995-1997 than in 1998-2000.  Early summer density was similar in both 

epochs with the exception of late June/early July, when density was significantly 

higher in 1998-2000 than in 1995-1997 (Figure 3.4).  Bosminid length also exhibited 

significant biweekly differences among epochs (the epoch x biweek interaction term 

was significant, Table 3.3).  Mean length was significantly higher in biweeks during 

early summer 1995-1997 than in 1998-2000.  However, during late summer biweekly 

mean length was similar in both groups of years. 

Density and mean length of Daphnia retrocurva exhibited variability within 

seasons (density) and seasonal variability among epochs (mean length).  Density was 

significantly higher in late summer than in early summer in both groups of years.  

Seasonal patterns in mean length exhibited significant differences among epochs; 

mean length was significantly higher in May-June of 1995-1997 than in 1998-2000, 

while during the remainder of the season lengths were similar. 

Density of Diacyclops thomasi exhibited significant variability, while mean 

length did not.  The seasonal pattern of D. thomasi density differed significantly 

among epochs (the epoch x biweek interaction was significant), with late summer 

densities in 1995-1997 significantly higher than in 1998-2000 (Figure 3.4, Table 3.2).  

Mean length was similar throughout the year in both epochs, and neither the epoch, 

biweek, nor interaction terms were significant. 

The main effect of biweek and the epoch x biweek interaction were significant 

in comparisons of naupliar density (Table 3.2), while mean length exhibited only 

seasonal differences.  The epoch x biweek interaction for density was significant 

because the seasonal pattern in 1995-1997 was relatively flat, whereas in 1998-2000 
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Table 3.2.  Summary of repeated measures generalized linear mixed models 

comparing (Type 3 tests) epoch and biweekly mean zooplankton density (ind·L-1) 

between May and October 1995-2000 at seven nearshore sites Lake Ontario.  Values 

in parentheses are F-test degrees of freedom (numerator, denominator).  Values in 

boldface type were significant (P<0.01) after adjustment for the number of statistical 

tests were made to achieve an experiment-wise α = 0.05. 

Response   Epoch Biweek Epoch x biweek 

Bosminids             F 

P 

12.3 (1, 203) 

0.23 

7.0 (10, 338) 

<0.0001 

4.9 (10, 338) 

<0.0001 

D. retrocurva  F 

P 

0.11 (1, 258) 

0.74 

3.4 (10, 338) 

0.0003 

2.3 (10, 342)  

0.019 

D.  thomasi F 

P 

22.9 (1, 119) 

<0.0001 

1.77 (10, 332) 

0.065 

4.6 (10, 332) 

<0.0001 

Nauplii F 

P 

5.8 (1, 91) 

0.018 

3.73 (10, 345) 

<0.0001 

2.7 (10, 344) 

0.004 

C.  pengoi1 F 

P 

4.3 (2, 80) 

0.017 

2.62 (10, 175) 

0.006 

NA 

1Results in the epoch column for C. pengoi correspond to comparison of densities                             

among years (1998, 1999, and 2000), not epochs.  
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Figure 3.3.  Seasonal patterns in least squares mean (± SE) of biweekly C. pengoi density at seven nearshore locations in Lake 

Ontario during May-October of 1998-2000.  The date at the beginning of each biweekly period is shown on the x-axis. 65 
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Figure 3.4.  Seasonal patterns in least squares mean (± SE) density and length of 

bosminids, D. retrocurva, D. thomasi, and copepod nauplii at seven nearshore 

locations in southern and eastern Lake Ontario during May-October in 1995-1997 and 

1998-2000. The date at the beginning of each biweekly period is shown on the x-axis. 
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Table 3.3.  Summary of repeated measures generalized linear mixed models 

comparing (Type 3 tests) epoch and biweekly mean zooplankton length (mm) between 

1995-2000 at seven sites Lake Ontario.  Bosminids include Bosmina and Eubosmina 

spp.  Values in parentheses are F-test degrees of freedom (numerator, denominator).  

Values in boldface type were significant (P<0.0046) after adjustment for the number 

of statistical tests were made to achieve an experiment-wise α = 0.05. 

Response   

 

Epoch Biweek Epoch x Biweek 

Bosminids          F 

P 

12.3 (1, 63) 

0.0008 

2.2 (10, 324) 

0.020 

2.43 (10, 324) 

0.008 

D. retrocurva  F 

P 

37.6 (1, 79) 

<0.0001 

2.2 (10, 252) 

0.022 

4.19 (10, 252) 

<0.0001 

D. thomasi F 

P 

0.5 (1, 91) 

0.47 

2.2 (10, 331) 

0.016 

1.6 (10, 332) 

0.11 

Nauplii F 

P 

0.3 (1, 92) 

0.58 

2.4 (10, 312)   

0.010 

0.87 (10, 313) 

0.56 
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there was a distinct decreasing trend from early summer to late summer (Figure 3.4).  

Comparisons of simple effects (biweeks among epochs) revealed that of the 11 

biweeks, three were significantly different among epochs.  Density during the biweek 

including the last half of May 1998-2000 was significantly higher than in May 1995-

1997, while density during the first half of August and the first half of September was 

significantly higher in 1995-1997 than in 1998-2000.  Naupliar length did not vary 

significantly among epochs, but there were significant differences among biweeks 

(Table 3.3) across epochs, with lower mean lengths in mid summer.  The epoch x 

biweek interaction was not significant for naupliar length. 

DISCUSSION 

My primary hypothesis was that late summer abundance of small copepods and 

cladocerans would decline as a result of predation by C. pengoi because C. pengoi is 

most abundant from mid-July to October. Results support this hypothesis.  I observed 

significant declines in abundance of bosminids, D. thomasi, and copepod nauplii 

during peak C. pengoi abundance in 1998-2000 relative to the same seasonal period 

(mid-July to October) in 1995-1997.  Additionally, the decrease in density I observed 

between the 1995-1997 and 1998-2000 periods occurred only during the months when 

C. pengoi was abundant (July-September).  Early summer densities (May to early 

July) of bosminids and D. retrocurva in 1998-2000 were similar to those observed in 

1995-1997, while the abundance of D. thomasi and nauplii in late May was 

significantly higher in 1998-2000 than in 1995-1997.   

Mean zooplankton lengths observed in this study indicated a mixture of 

vertebrate and invertebrate predation was responsible for structuring the zooplankton 

community.  Considering that both alewives and invertebrates prey on the taxa 

examined in this study, this is not surprising.  Mean lengths of bosminids and D. 

retrocurva were significantly lower in early summer 1998-2000 than in 1995-1997, 
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suggesting higher levels of vertebrate planktivory in spring during the latter three 

years of this study.  Decreases in zooplankton abundance and mean length have been 

correlated with alewife spawning migrations in the past (O’Gorman et al. 1991), and 

relatively strong year classes of alewife in 1995 and 1998 (Owens et al. 2003) could 

have resulted in higher yearling and adult alewife abundance in 1999-2000 than in 

1995-97.  Even so, alewife density was relatively low in the nearshore area of Hamlin, 

NY during early summer 2000 (~0.01 fish·m-2, Warner 2004) and both mean density 

and length of D. retrocurva in late summer were similar in both epochs.  Other factors 

like food quality may have contributed as well.   

I observed significantly lower density of several zooplankton groups during 

peak C. pengoi abundance but not in its absence.  While this is indicative of predation 

by C. pengoi, other factors could have produced similar results.  For example, 

zooplankton abundance, community composition, and size structure are influenced by 

such factors as water temperature, availability of food, and predation.  Temporal 

patterns in these factors, however, did not indicate that they were connected with 

observed changes in the zooplankton community.  For instance, seasonal water 

temperature patterns during the post-C. pengoi years of our study period were similar 

to those during pre-C. pengoi years (1995-1997).  Therefore, I concluded that the 

declines observed in late-season bosminid, D. thomasi, and nauplii densities were not 

the result of an altered thermal regime.  Total phosphorus and chlorophyll a 

concentrations did not show late summer declines; TP and chlorophyll a 

concentrations were slightly higher in 1998-2000 than in 1995-1997.  These findings 

suggest that zooplankton were not deprived of algal food resources. 

Lake Ontario has several invertebrate predators in addition to Cercopagis 

pengoi including Mysis relicta (Johannsson et al. 2001), the predatory cladocerans 

Bythotrephes longimanus and Leptodora kindtii, and the cyclopoid copepods (e.g. 
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Diacyclops thomasi, Leblanc et al. 1997).  Because the nearshore sites studied have no 

Mysis relicta during summer, and biomass of predatory copepods (with the exception 

of D. thomasi) and predatory cladocerans other than C. pengoi was extremely low, C. 

pengoi was the invertebrate predator most likely to affect the nearshore zooplankton 

community. Cercopagis pengoi biomass was between 5-200 times greater than that of 

L. kindtii and 9-138 times greater than the biomass of B. longimanus.  Although D. 

thomasi was numerically a large component of the zooplankton community and has 

been identified as predaceous (McQueen 1968; LeBlanc et al. 1997), the consumptive 

demand of this species was lower in 1998-2000 (i.e. due to significantly lower 

densities) than in 1995-1997.   

Relationships between vertebrate predators and the Lake Ontario zooplankton 

community have been studied extensively, with the majority of previous work focused 

on the most abundant planktivorous fish, the alewife (Rand et al. 1995; Urban and 

Brandt 1993; O’Gorman et al. 1991; Johannsson et al. 1991).  Alewives selectively 

feed on large zooplankters and cause a shift in community size structure towards 

smaller organisms (Brooks and Dodson 1965, Harman et al. 2003).  Although D. 

retrocurva length was lower in early summer 1998-2000 than in 1995-1997, late 

summer (when density of other taxa declined) D. retrocurva abundance and lengths 

were similar in the two time periods, suggesting the decreased late summer abundance 

of other taxa was not the result of predation by alewives.   

Young-of-the-year alewife biomass and therefore plankton consumption 

increases over the summer, suggesting this planktivore could cause a late summer 

decline of zooplankton.  Diets of alewives are believed to be similar at all life stages 

(Strus and Hurley 1992) and consist primarily of bosminids, cyclopoid copepods, and 

daphnids, while nauplii are a much smaller proportion of the diet (Norden 1968; 

Urban and Brandt 1993; Mills et al. 1995).  By mid-August, high predation by young-
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of-the-year alewives should cause shifts in zooplankton community structure similar 

to predation by adults (decreased zooplankton size, decreased abundance of Daphnia). 

This was not observed.  Others argue that larval alewife may select the smaller 

specimens or species of zooplankton (Zaret 1980; Nigro and Ney 1982), and nauplii 

have been identified as important alewife prey in at least one study (Leslie and Moore 

1985).  If larval alewife feed in this manner, this dichotomy in prey selection between 

larval and adult alewife could result in a zooplankton community size structure similar 

to that resulting from invertebrate predation (reduced abundance of smaller 

individuals, Dodson 1974).  Larval alewife abundance may have been high in 1998, 

because catch of the 1998 cohort as yearlings was high. (Robert O’Gorman, U.S.G.S. 

Oswego Biological Station, Oswego, N.Y., personal communication).  However, 

Klumb et al. (2003) found that June-August densities of larval alewives in the 

nearshore and embayments (Chaumont, Sodus, and Irondequoit Bays) were similar in 

both 1997 and 1998, and that larval densities in both years were similar to those 

observed in the late 1970s.  Yearling abundance in 2000 and 2001 did not suggest 

unusually high abundance of alewife larvae in 1999 and 2000, and the observed 

changes in zooplankton abundance was consistent for all three post-C. pengoi years.  

Therefore, I concluded that vertebrate predation cannot account for the observed 

changes in late summer zooplankton abundance.   

There were several limitations of the dataset that could influence the 

interpretation of our findings.  First, I encountered missing values in the dataset (52 

out of 462 possible).  Missing values can lead to biased variance estimates using 

standard ANOVA techniques, but generalized linear mixed models are generally more 

robust to missing values (Littell et al. 1996).  Second, zooplankton collections were 

made without use of flow meters, and as a result, density was likely underestimated 

because filtering efficiency was <100% (McQueen and Yan 1993).  Filtering 
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efficiency of plankton nets can vary seasonally and annually (McQueen and Yan 

1993), but it is unlikely that the observed decline in bosminids, D. thomasi, or nauplii 

resulted from seasonal variation in net efficiency because other species did not decline 

at the same time.  Third, the plankton nets used in this study (153 µm mesh) are not as 

effective as nets with smaller mesh at sampling copepod nauplii (Johannsson et al. 

1999).  However, all sampling throughout the study was done with the same mesh size 

and therefore comparisons among years are valid even if nauplii density was biased 

low.  

Our study supports the hypothesis presented by Benoît et al. (2002) and 

Laxson et al. (2003) that predation by Cercopagis pengoi has caused large late- 

summer decreases in several smaller zooplankton groups in Lake Ontario including 

bosminids, D. thomasi copepodites, and nauplii.  However, our results do not support 

the conclusion by Laxson et al. (2003) that predation by C. pengoi has resulted in 

seasonal declines in D. retrocurva density.  Laxson et al. (2003) based this conclusion 

on data from a small area of the lake.  Our comparison of pre- and post-C. pengoi 

seasonal patterns in D. retrocurva abundance occurred over a larger spatial scale and 

is less sensitive to local variation in zooplankton dynamics.   

Additional predation pressure on the nearshore zooplankton community in 

Lake Ontario may have a negative impact on the growth and overwinter survival of 

alewives.   Survival of YOY alewives through the winter of 1998-1999 was high, but 

may have been aided by mild winter water temperatures.  Ability of C. pengoi to 

depress zooplankton abundance could ultimately impact alewife recruitment during 

winters with average or high severity.  Cohorts of C. pengoi that are numerically 

abundant in August and September are likely to suppress available zooplankton 

resources for the smallest YOY alewife.  Although young alewife can subsist on small 

zooplankton and C. pengoi, growth is likely suppressed when zooplankton densities 
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decline because YOY alewives do not eat C. pengoi until they are >6 cm (Bushnoe et 

al. 2003).  As more years with C. pengoi, alewife, and piscivorous salmonines in Lake 

Ontario unfold, the extent to which competition and predation on zooplankton 

indirectly impacts energy transfer to top piscivores will become more evident.  
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CHAPTER FOUR 

Zooplankton Production and Consumption in Nearshore Waters of Lake Ontario 

ABSTRACT 

Recent evidence suggests predation by Cercopagis pengoi in Lake Ontario 

leads to depressed abundance of bosminids, Diacyclops thomasi, and nauplii during 

late summer.  The added competition and predation resulting from the establishment 

of the C. pengoi population occurred at a time when zooplankton abundance and 

production had decreased from historic levels due to a reduction in nutrient loading to 

the lake.  These factors may result in lower food availability for alewives. The 

objectives of this study were to estimate nearshore crustacean zooplankton production, 

to compare seasonal patterns in production among years, and to contrast crustacean 

zooplankton production with predatory demands of C. pengoi and adult alewives.  

Production estimated biweekly (May-October) at six nearshore sites showed 

significant seasonal and annual variability.  Late summer production in 1998-2000 

was significantly lower than in 1996-1997, but not 1995.  Mean growing season 

production was between 3.3 g dry wt m-2 in 1999-2000 and 24.8 g dry wt· m-2 in 1997.  

Mean biweekly Cercopagis pengoi abundance (all sites) ranged from 0-10 ind · m-2, 

with densities at some sites reaching >25 ind · m-2.  Growing season consumption 

estimates for C. pengoi ranged from 0.53 g dry wt m-2  in 1998 to 1.74 g dry wt· m-2 in 

1999 (9.6-56% of growing season production).  Alewife density ranged from 0.01 –

0.12 fish· m-2.  Between May and July, consumption by yearling and older (YAO) 

alewives in 2000 was 1.8 g dry wt m-2 (52% of production).  Alewife consumption 

peaked in mid-June, while consumption by C. pengoi peaked in mid-July and late 

August.  Although C. pengoi and YAO alewives had similar daily consumption rates, 

C. pengoi was abundant in the nearshore for a longer portion of the growing season.   
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INTRODUCTION 

 Zooplankton occupy a pivotal role in aquatic food webs, reflecting patterns in 

both bottom-up (nutrients) and top-down (predation) forces (McQueen et al. 1986; 

McQueen et al. 1992).  In Lake Ontario, they form the largest part of the alewife diet 

(Mills et al. 1992), and this important species is believed to exert high levels of 

predation pressure on the zooplankton community (Rand et al. 1995).  Anthropogenic 

influences on the Great Lakes including overfishing, cultural eutrophication, and 

introduction of exotic species all had significant effects including near extinction of 

major native fish stocks by the early 1970s, (Christie 1972), degradation in water 

quality (Schelske 1991), and modification of the food web (Mills et al. 2003).  

Management efforts in the Great Lakes led to a reduction in phosphorus loading and 

total phosphorus (TP) concentrations of approximately 50% by 1981 (Johengen et al. 

1994).  The decrease in TP was accompanied by a reduction in zooplankton biomass 

and production (Johannsson 2003) as well as a 42% reduction in alewife abundance 

between the early 1980s and early 1990s (Mills et al. 2003).   

The establishment of Cercopagis pengoi coincided with the occurrence of 

large-scale, late summer declines in the density of bosminids, Diacyclops thomasi, and 

nauplii as well as later stages of oligotrophication of Lake Ontario.  These declines 

have been attributed to predation by C. pengoi (Benoît et al. 2002; Laxson et al. 2003; 

Warner et al submitted).  Laxson et al. (2003) found that consumption rates of C. 

pengoi were high enough to account for the late summer decrease in abundance of 

bosminids, Diacyclops thomasi, and nauplii at two sites in western Lake Ontario, 

which supported the conclusions drawn by Benoît et al. (2002) from an earlier study in 

a limited area of Lake Ontario.  Neither of these studies compared consumption by C. 

pengoi with that of other major planktivores.  The organisms whose abundance 

declined during peak C. pengoi abundance are important prey for alewives (Norden 
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1968; Strus and Hurley 1992; Mills 1995), and because alewives <66 mm in total 

length do not consume C. pengoi (Bushnoe et al. 2003) estimates of the relative 

magnitude of planktivory by C. pengoi in nearshore nursery areas (Klumb et al. 2003) 

may provide some insight as to the importance of this new competitor relative to 

young-of-year alewives.     

The relative importance of Mysis relicta, B. longimanus, and C. pengoi as 

alewife competitors is dependent on several factors including diet composition and 

degree of spatial overlap.  Because of low abundance of M. relicta (Johannsson 1995) 

and B. longimanus (Warner, Chapter 3) in the areas sampled for this study, only C. 

pengoi consumption is considered here.  However, it should be noted that B. 

longimanus might become more important if alewife abundance drops to levels low 

enough to allow this species to become more abundant.  The primary objectives of this 

study were to (1) estimate daily production by the nearshore zooplankton community, 

(2) estimate and compare nearshore zooplankton consumption by C. pengoi with 

zooplankton production estimates, and (3) estimate nearshore zooplankton 

consumption by adult alewives, and 4) estimate surplus production available for YOY 

alewife.  Production estimates and comparisons were based on data from widely 

separated sites representative of the range of nearshore environmental conditions 

present in Lake Ontario (Hall et al. 2003).  The focus on nearshore areas was based on 

the conclusion by Klumb et al. (2003) that nearshore areas of Lake Ontario are 

important as a nursery area for alewives.  Although we did not measure consumption 

rates by C. pengoi, we assumed a conservative consumption rate in comparisons with 

production at the same sites and with alewife consumption at one site.  Consumption 

by C. pengoi has been examined in only one study; Laxson et al. (2003) studied C. 

pengoi-zooplankton interactions in southern Lake Ontario but their data were collected 
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from only two sites quite near each other.  There are no existing comparisons of 

consumption by C. pengoi with consumption by alewives.   

METHODS 

Zooplankton samples included in the nearshore analyses were collected during 

the day every second week between 14 May and 15 October 1995-2000 at six 

locations in eastern and southern Lake Ontario (Figure 4.1).  At each location, 10-m 

vertical tows from just above bottom to the surface were made with a 0.5-m conical 

plankton net (153 µm mesh).  Specimens were preserved in the field in 70% ethyl 

alcohol after they were anesthetized with antacid tablets.  

Crustacean zooplankton were counted and measured (at least 100 organisms) 

from 1-ml random sub-samples (N=1-3).  Density (individuals/m-3) and lengths (mm) 

from the replicate tows were averaged.  Because C. pengoi specimens form clumps, 

separate analyses were conducted on large (> 1mm) and small (<1mm) zooplankton, 

which were separated using a 1.02 mm sieve.  Once untangled, C. pengoi specimens 

were spread homogenously in a gridded Petri dish and at least 100 organisms from a 

random sub-sample were counted and measured with a microprojector at 20X 

magnification and a digitizer interfaced with a computer.  Mean individual weight was 

estimated using the weight-length equation in Makarewicz et al. (2001).  Cladoceran 

lengths were measured from the top of the head to the base of the tail spine.  Copepod 

lengths were measured from the distal point on the head to the base of the caudal rami.   

Individual biomass (µg) was estimated from linearized allometric functions relating 

total length to dry weight (E. L. Mills, Cornell Biological Field Station, Appendix 

4.1).  Biomass of a given species was calculated as the product of individual biomass 

and density.  Volumetric biomass was converted to areal biomass (g·m-2) abundance 

by multiplying the number of individuals·m-3 by the depth of each tow.  
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Daily production (g dry wt. ·m-2 ·d-1) was estimated for three taxonomic groups 

(cladocerans, cyclopoid copepods, and calanoid copepods) with the taxa-specific P/B 

–water temperature models of Shuter and Ing (1997).  All organisms captured except 

C. pengoi were included in the production estimates.  Mean water column water 

temperature for each site was calculated as the mean of measurements made at 1m  

intervals from the surface to just above bottom.  Biweekly estimates of daily 

production by zooplankton were made from biomass and temperatures grouped in one 

of 11 biweekly periods according to collection date with the first period ranging from 

14-28 May.  A repeated measures generalized linear mixed model (SAS PROC 

MIXED and the GLIMMIX macro) was used to compare seasonal and multi-annual 

patterns in production and consumption.  Year (1995-2000), biweek, and year x 

biweek interaction terms were the fixed effects.  Site was included as a random effect 

because the sites sampled were chosen as representative of the range of conditions in 

nearshore areas of Lake Ontario (Hall et al. 2003).  The model assumed that 

measurements within a site and year were serially correlated and an autoregressive 

covariance structure was used to account for this serial correlation.  The nature of 

count data (in this study production and consumption were derived from density) and 

examination of production histograms by site, week, and year suggested that the data 

should be modeled with a Poisson error structure and a log link function (Little et al. 

1996).  Least-squares biweekly means of zooplankton production and consumption 

were calculated for each year with the model described above.  The mean biweekly 

values for all sites combined were used to estimate production and consumption for 

the growing season (14 May – 14 October) by integrating the area under the 

production vs. day of sampling period curve.  If the year x biweek interaction was 

significant, a test of simple effects was used to determine the biweekly periods for 

 

 



 

Figure 4.1.  Nearshore locations in Lake Ontario at which zooplankton, water temperature (1995-2000, cl

data (2000, scd = Sandy Creek Delta) were collected during this study. 
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which production varied among years.  Because four response variables were tested 

(total, cladoceran, cyclopoid, and calanoid production), an experiment-wise α =0.05 

was approximated by employing α =0.0125 (0.05/number of statistical tests) to reduce 

the probability of a Type I error. 

Zooplankton consumption by C. pengoi was estimated from biomass on each 

date by assuming a constant mass-specific consumption rate.  Although field 

consumption rates of C. pengoi are unavailable, Laxson et al. (2003) found that C. 

pengoi consumed 2.8 Daphnia or Bosmina per day.  Given a mean mass of 5.6 µg for 

C. pengoi and a mean mass of 0.8 and 1.5 µg  for Bosmina longirostris and Daphnia 

retrocurva respectively, this number of prey is equivalent to 40-70  of body mass per 

day.  Estimates for similar predators like B. longimanus, Leptodora kindtii  range from 

6-200% of individual body mass per day (Pichlová and Brandl 2003; Wojtal et al. 

1999; Yurista and Schulz 1995; Lehman and Branstrator 1995; Luecke et al. 1992; 

Branstrator and Lehman 1991).  Given this wide range, I assumed C. pengoi 

consumed 100% of it’s own mass daily.  Use of a constant assumed consumption rate 

provided no information about the actual consumption rates, but it was effective as a 

tool to 1) compare assumed consumption rate with estimated zooplankton production 

and 2) compare assumed consumption rates of C. pengoi with energetic model 

estimates of alewife consumption.  Total consumption for the growing season (May-

October) in each year at each site was calculated by integrating the area under the 

mean biweekly consumption (all sites) vs. day of sampling period.   

 Alewife abundance was estimated acoustically on five dates from 22 May to 

19 July in the nearshore area at Sandy Creek delta.  The location was sampled 

approximately every second week.  Acoustic data were collected using a Simrad 

EY500 70 kHz split beam echosounder (11.1° half-power beam width and 0.2 ms 

pulse length).  This acoustic system was calibrated three times between late May and 
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late July 2000 using 32-mm copper calibration sphere (theoretical TS -39.1 dB) and 

the Simrad Lobe program.  On each of these occasions, the measured value of the 

calibration sphere on a given date was typically within 0.6 dB of the theoretical value, 

and Warner et al. (2003) found that this unit was relatively consistent between 1996-

2000.  Echo integration and single target data were recorded with a laptop computer 

running Simrad EY500 collection software.  Echo integration and single target 

thresholds (–80 and –67 dB respectively) were employed during data collection.  

Acoustic surveys typically consisted of two or three transects perpendicular to the 

shoreline and separated by approximately 2-4 km and 2-4 km in length.  Bottom 

depths in the areas surveyed ranged from 2-35 m. Each transect was treated as an 

independent sample of fish density in the surveyed area, and the mean water column 

density of all transects was treated as the mean density in the survey area.     

 Acoustic data were analyzed using Echoview 3.0.  Areal density of all 

scatterers (individuals/m-2) for the whole water column was estimated for two or three 

transects on each date by dividing the area backscattering coefficient (m2 ·m2) for each 

transect by the mean backscattering cross-section (linearized mean target strength, in 

m2) of all targets between –67 and –15 dB.   

 Young-of-year alewives were not likely to be present on most of the dates, but 

other similarly-sized species were present, including spottail shiners (Notropis 

hudsonius), emerald shiners (Notropis atherinoides), rainbow smelt (Osmerus 

mordax) were present.  Therefore; allocation of total density to the larger alewives 

present would have resulted in densities that were biased high.  To avoid 

overestimation of adult alewife density, the total density was reduced to reflect the 

expected TS distribution of adult alewives by multiplying absolute density and the 

proportion of total individual targets that fell within the expected TS range for adult 

alewives.  Determination of this TS range was based on the length-TS equation of 
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Warner et al. (2002), acoustic observations of caged alewives, a theoretical scattering 

model of caged adult alewives 12-14 cm in length (J. Horne, University of 

Washington School of Fisheries, personal communication), and the tilt angle 

distributions of tracked fish on each date.  Tracks were accepted if they had at least 

four individual target measurements, four pings, and a maximum ping gap =1.  The TS 

range was determined from the scattering model as the minimum and maximum TS of 

a fish over a range of tilt angles equal to the mean tilt angle ± 2 SD for fish tracked on 

that date.  The range of fish sizes in the scattering model was almost identical to the 

mean lengths from netting, and TS predicted from the scattering model at a given tilt 

angle was within 0-4 dB of TS predicted from length with the Warner et al. (2002) 

equation.  The lower TS threshold used was either –54 or –53 dB (depending on the 

date) and the upper threshold was –37 dB.   

 Three additional techniques were employed to aid in the interpretation of in 

situ target strength data.  First, the Nv index of Sawada et al. (1993) was calculated to 

provide an indication whether fish densities were high enough to bias in situ TS 

estimates.  High fish densities can lead to poor resolution of individual targets and in 

situ TS values that are biased high (Sawada et al. 1993).  This type of TS bias would 

have resulted in density estimates that were biased low.  Second, fish tracking was 

used to estimate tilt angle distributions.  This step was taken to provide a measure of 

the likelihood that fish TS values were measured at or near dorsal aspect.  Third, water 

column alewife densities were corrected for the proportion of fish above the depth of 

the vertically-oriented transducer using vertical distribution data from the gill nets.  

The proportion of total alewives caught in the upper 2m was multiplied by the acoustic 

density.  This product was then added to the acoustic density to provide a corrected 

water column density.  
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 Fish community composition and size distribution were sampled using variable 

mesh monofilament vertical gill nets.  Gill nets were deployed prior to the start of each 

acoustic survey and retrieved at the end of the survey.  The nets measured 6-m high 

and 60-m wide and were comprised of equal areas of seven different mesh sizes (6.25, 

8, 10, 12.5, 15, 18.75, and 25 mm bar mesh).  One or two of these nets was deployed 

at each of the 6, 12, and 25-m depth contours.  At the 6-m contour, one net fished from 

the surface to a depth of 6 m on all dates.  At the 12 m contour, one net fished from 0-

6 m while a second was fished from 6-12 m on all dates but 7 June, when only the 6-

12 m panel was used.  At the 25 m contour, one net fished from 0-6 m while a second 

fished from 19-25 m on 22 May and 29 June.  On 7 June only one net was used to fish 

the 19-25 m stratum at the 25 m contour.  On 19 June, only one net was used to fish 

the 0-6 m stratum at the 25 m contour.  Fish were also collected from shore with a 30 

m seine.  

 Daily zooplankton consumption (g dry wt · d-1) by adult alewives was 

estimated using an individual-based bioenergetics model (Hanson et al. 1997), using 

the parameters developed by Stewart and Binkowski (1986) and applied to Lake 

Ontario by Rand et al. (1995).  The model output provides consumption in units of 

prey wet weight, which was converted to dry weight assuming that dry weight was 

11% of wet weight (Hewett and Kraft 1993; Kraft 1993).  Daily consumption by the 

survey area population was estimated as the product of areal density and daily 

individual consumption.  Daily individual consumption was modeled assuming a 

maintenance diet (minimal growth).  This is likely an underestimate of the period 

during which growth occurs, but an increase in this time period results in the 

implementation of a maintenance diet in the model. Diet composition was assumed to 

be constant and to consist of crustacean zooplankton with an average energy density of 

1,987-joules· g-1 wet wt., which was the mean of the energy densities of cladocerans 
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and copepods used by Hewett and Stewart (1989).  Energy density of alewives was 

measured with a bomb calorimeter during May, June, and July (Cunningham 2000). 

RESULTS 

 Total zooplankton production exhibited significant biweekly, annual variation, 

and the interaction of biweek and year was significant (Table 4.2).  Total daily 

production in early August was significantly higher in 1997 than in 1998.  

Additionally, total daily production in early September was significantly higher in 

1996 and 1997 than in 1998, 1999, and 2000.  Peak daily total production occurred 

during September in four of the six years (1995, 1996, 1997, and 2000).  In 1998- 

1999, peak daily production occurred in mid-July.  There were taxonomic differences 

in the seasonal pattern of production as well (Figure 4.3).  Cyclopoids generally 

dominated early summer production and cladocerans dominated production from mid-

June through October.  Calanoids were generally a minor part of the community.  

Cladoceran production varied significantly among years, with production in 1996 

significantly higher than in 2000 (Table 4.2).  Cyclopoid production also exhibited 

significant differences among years, with production significantly higher in 1995-1997 

than in 1998.  Cyclopoid production was also significantly higher in 1996 than in 

1999-2000 (Table 4.2).  Calanoid production differed significantly among years, with 

production in 1996 significantly higher than in 1998-1999. 

Abundance and consumption by C. pengoi (daily) was temporally variable.  

Daily consumption estimates ranged from 0-0.07 g dry wt·m-2.  The biweekly means 

of daily consumption (all six sites) ranged from 0-0.04 g dry wt·m-2, with a peak in 

late July and again in early September.  Consumption by C. pengoi exceeded 

zooplankton production on at least one occasion during 1999 and 2000 and peaks in 

consumption by C. pengoi were generally accompanied by local minima in 

zooplankton production.  Total consumption by C. pengoi during the growing season  
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Table 4.1.  Energy density (joules · g wet weight) and percent dry weight (± 95% CI) 

of alewives captured near the Salmon River and Sandy Creek deltas during May, June, 

and July 2000.  The number of fish whose energy density was measured in each month 

is shown under Ned.  The number of fish whose percent dry weight was measured is 

shown under Ndrywt     

Date Energy density  Ned Ndrywt % dry weight 

22 May 2000 7,677 5 59 20±3 

30 May 2000 5,927  11 25±1 

13 June 2000 4,998 6 35 22±2 

26 June 2000 5,291  20 23±1 

11 July 2000 4,630 4 22 22±1 

25 July 2000 4,759  12 22±1 
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Table 4.2.  Summary of repeated measures generalized linear mixed models 

comparing (Type 3 tests) annual and biweekly mean zooplankton production (g dry 

wt· m-2) between May and October 1995-2000 at six nearshore sites in Lake Ontario.  

Values in parentheses are estimated F-test degrees of freedom (numerator, 

denominator) determined with the Kenward-Rogers method.  Values in boldface type 

were significant (P<0.0125) after adjustment for the number of statistical tests were 

made to achieve an experiment-wise α = 0.05. 

Response   Year Biweek Year x biweek 

Total production  F 

P 

2.1 (5, 91) 

0.08 

3.8 (10, 271) 

<0.001 

1.62 (50, 258) 

0.01 

Cladocera F 

P 

0.46 (5, 93) 

0.80 

4.28 (10, 273) 

<0.001 

1.51 (50, 258) 

0.022 

Cyclopoida F 

P 

5.4 (5, 114) 

0.002 

0.72 (10, 261) 

0.70 

2.3 (50, 257)  

0.065 

Calanoida F 

P 

3.7 (5, 84) 

0.0041 

1.1 (10, 272) 

0.34 

1.3 (50, 258) 

0.092 
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Figure 4.2.  Seasonal patterns in total crustacean zooplankton production (excluding C. pengoi) at six nea

Ontario between May and October 1995-2000. 
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ranged from 0.53 g dry wt·m-2 in 1998 to 1.74  g dry wt·m-2 in 1999.  These 

consumption values corresponded to 9.6% and 56% of growing season production. 

Gill net data indicated that alewives were the dominant species observed in the 

catch between the shoreline and 25 m contours.  The percentage of the gill net catch 

that was available to acoustic sampling (deeper than 2 m) ranged from 30-100% and 

was on average about 77%.  A total of 1,882 alewives were captured in gill nets 2,311 

were captured by seine.  Several species were captured, including alewives, spottail 

shiners (Notropis hudsonius), emerald shiners (Notropis atherinoides), rainbow smelt 

(Osmerus mordax), slimy sculpin (Cottus cognatus), and three spined stickleback 

(Gasterosteus aculeatus), smallmouth bass (Micropterus dolomieui), rock bass 

(Ambloplites rupestris), brown trout (Salmo trutta), lake trout (Salvelinus namaycush), 

and Chinook salmon (Oncorhynchus tshawytscha).  However, alewives made up 

between 90-98% of the gill net catch.  Rainbow smelt were only captured at the 12 m 

contour, while alewives were caught at all contours.   

Alewives ranged in size from 8-18 cm and 4-46 g.  The peak in numbers of 

fish caught with the gill nets occurred on 29 June 2000, while the peak with the seine 

occurred on 7 June 2000.  The seasonal pattern Numbers of fish caught (sum of catch 

from both gears as a relative index) agreed well with acoustic densities on the dates on 

which both gill nets and seines were used.  On average, 79% of the alewife catch was 

at the six and 12-m contours, but in May more than half the catch was further offshore 

at the 25-m contour.       

Acoustic data indicated conditions were good for estimation of alewife density 

and consumption.  Individual transect Nv values ranged from 0.002-0.020, well below 

the Nv threshold recommended by Gauthier and Rose (2001).  Tilt angle distributions 

for tracked fish were approximately normal with mean tilt angle near zero on each 

occasion (Figure 4.4).  Adult alewife density ranged from 100-1,200 fish ·ha.  

 



 

Figure 4.3.  Seasonal patterns in daily production of cladocerans and cyclopoids at six sites in Lake Ontar
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Consumption by adult alewives ranged from 0.006 and 0.039 g dry wt· m-2·d-1, with 

the lowest value observed on 22 May and the highest value on 19 June (Table 4.3).   

These consumption rates corresponded to between 24 and 38% of maximum 

consumption.  Consumption exceeded production in late May and early June, but 

declined to a level much lower than production after 19 June (Figure 4.6).  The mean 

daily consumption for the dates surveyed (±SE) was 0.027±0.018 g dry wt m-2·d-1, 

which was similar to that observed for C. pengoi on the dates it was present.  Total 

YAO alewife consumption between May and July was 1.76 g dry wt m-2·d-1, which 

corresponded to 56% of growing season production. 

DISCUSSION 

The results of this study support several conclusions.  First, zooplankton 

production was significantly lower after establishment of C. pengoi than prior to its 

establishment.  Nearshore total zooplankton production was generally lower in 1998-

2000 than in 1995-1997.  The decrease in production was driven primarily by a 

decline in the production of cyclopoid copepods.  Second, consumption estimates for 

C. pengoi (42-56% of growing season production) indicate that predation by C. pengoi 

was a plausible explanation for the decline in production during 1999-2000, but not in 

1998 (9.6% of growing season production).  Third, nearshore planktivory rates of 

YAO alewives and C. pengoi are likely of similar magnitude and in concert are 

sufficient to greatly reduce the availability of crustacean zooplankton prey to YOY 

alewives.         

Two localized studies have suggested that predation by C. pengoi has resulted 

in seasonal alteration of the Lake Ontario zooplankton community (Benoît et al. 2002; 

Laxson et al. 2003).  Results of this study generally concur with those of Laxson et al. 

(2003), who found that predation by C. pengoi was sufficient to reduce the abundance  
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Table 4.3.  Mean density (fish· m-2 ±SE, N), Nv, mean weight (g), daily consumption 

(g dry wt· m-2·d-1), and mean tilt angle (degrees, ±SD, N) of fish tracks between 2-35 

m depth contours near the Sandy Creek delta (Hamlin, NY) between 22 May and 19 

July 2000. 

 

Date 

 

Density  

 

Nv 

 

Mean Weight1

 

Consumption 

 

Tilt angle 

22 May  0.014±0.002 (3) 0.003 22.4 0.003 0.3±5.3 (71) 

7 June  0.071±0.006 (2) 0.007 19.8 0.019 -4.6±7.0 (124) 

19 June  0.126±0.099 (2) 0.004 25.8 0.040 -0.8±4.2 (166) 

29 June  0.061±0.001 (2) 0.006 21.1 0.020 -1.5±4.8 (297) 

19 July  0.020±0.007 (2) 0.013 19.82 0.007 -1.1±3.9 (239) 
1Mean weight was predicted from mean length using the equation ln (weight, g) = 

  -11.37+2.9 ln (length, mm) 
2 Fish length was estimated from shore seine data because gill nets were not used on 

this date 
 

 

 

 

 

 

 



 97 
 

-36 -30 -24 -18 -12 -6 0 6 12 18 24 30
Theta (degrees)

0.00
0.10
0.20

0.00
0.10
0.20

0.00
0.10
0.20

P
ro

po
rti

on
 o

f t
ra

ck
s

22_May

07_June

19_June

29_June

19_July

Figure 4.4.  Estimated in situ tilt angle distributions for alewives tracked with split beam acoustic gear in 

Ontario during summer 2000. 
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Figure 4.5.  Daily production by crustacean zooplankton (open squares) available to the plankton nets used to sample zooplankton 

and C. pengoi biomass at six nearshore sites in Lake Ontario between May and October 2000.  Also shown are estimates of daily 

consumption by adult alewives at one site near Hamlin, N.Y. between May and July 2000.  Error bars are absent to preserve visual 

clarity.    98 
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of bosminids, cyclopoids, and Daphnia retrocurva at two locations in southern Lake 

Ontario.  Warner (Chapter 3), who examined data from seven locations over a larger 

geographical area, observed changes similar to those observed by Benoît et al. (2002) 

and like Benoît et al. (2002) did not detect any change in the abundance of D. 

retrocurva.  However, the abundance of C. pengoi at the locations studied by Laxson 

et al. (2003) was higher than the nearshore average in this study.  

The majority of nearshore crustacean zooplankton biomass produced between 

May and October 2000 would have been required to meet the energetic needs of both 

YAO alewives and C. pengoi.  Consumption by YAO alewives occurred primarily in 

early summer, while consumption by C. pengoi occurred in late summer.  Assuming 

the density of YAO alewives at Hamlin Beach N.Y. was similar to that occurring 

elsewhere in the nearshore, total growing season consumption by alewives was similar 

to that estimated for C. pengoi in nearshore waters.  However, based on the results of 

Laxson et al. (2003, Figure 6), it was likely that consumption by C. pengoi in 2000 at 

the location of the acoustic surveys presented in this study was higher than that of 

alewives.  This suggests that C. pengoi and adult alewives may exert a similar top-

down influence on the nearshore crustacean zooplankton community.  The predatory 

demand of C. pengoi was variable in 1998-2000, with the highest growing season 

consumption occurring in 1999.  However, consumption in both 1999 and 2000 were 

similar and corresponded to a large proportion of growing season production (40-

52%).             

Several assumptions and methodological limitations inherent to the acoustic 

methods of this study warrant discussion here.  Rose and Gauthier (2000) found that 

factors such as species, distribution of fish, variation in target strength, detectability, 

and species identification contributed to uncertainty in density estimates.  The primary 

effect of fish distribution is likely to be on the variance estimate for the area surveyed,
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not the mean density (Rivoiard aet al. 2000).  Although the level of uncertainty in 

alewife biomass was somewhat lower than for C. pengoi biomass, the former variable 

was measured at one location, while the latter variables were measured at six 

locations.  Variation in target strength can result in biased density estimates if the 

mean tilt angle is less than or greater than that at maximum scattering aspect.  

Simultaneous in situ measurements of tilt angle for tracked alewives 2-15 cm long in 

Otsego Lake, NY with two frequencies (70 and 120 kHz) suggests that summer 

nighttime tilt angle is normally distributed with mean near zero (D. M. Warner, 

unpublished data).  A similar pattern with little seasonal variation was observed for 

tracked fish in this study.  Detectability was probably high and had little influence 

because at night alewives are typically not associated with bottom in the Great Lakes 

(Jansen and Brandt 1980).  However, gill net data indicated that acoustic density was 

underestimated because only 77% of the catch was at a depth below the detection 

depth of the echosounder.  This resulted in consumption estimates that were biased 

low.  Species identification was probably not a major problem because alewives 

accounted for 89-98% of the catch (in numbers).   

All methods used for prediction of zooplankton production have limitations 

and inherent error (Huntley and Lopez 1992).  Egg ratio methods suffer from being 

prohibitively labor intensive for the purpose of estimating community production at 

large spatial scales and from uncertainty in egg development times (Huntley and 

Lopez 1992).  Regressions to predict production from individual growth rates require 

both mass-specific growth rates and biomass (Huntley and Lopez 1992; Shuter and 

Ing 1997).  Kleppel et al. (1996) and Stockwell and Johannsson (1997) suggested that 

these models could be inaccurate because they may not take into account the effects of 

food limitation on individual growth rates and reproductive capacity.  However, 

Huntley and Lopez (1992) showed that variability in individual growth was low 
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relative to temporal and spatial variability in biomass and suggested that individual 

growth of zooplankton is rarely limited by food in nature. Although not explicitl in the 

Shuter and Ing (1997) model, variation in reproductive capacity due to limitations in 

food quantity or quality should have been integrated by the zooplankton community 

and detected by measuring biomass frequently (every two weeks) for a period of 

months (approximately the scale of life cycles).  Furthermore, meta-analyses by 

Huntley and Lopez (1992) and Shuter and Ing (1997) found that most (80-90%) of the 

variation in weight-specific production was explained by water temperature alone.   

 Estimates of consumption by C. pengoi presented here were not dependent on 

temperature (other than the unknown temperature effect on C. pengoi abundance).  

Poikilotherm metabolic rates are typically temperature dependent.  Therefore, it seems 

likely that at higher temperatures the consumption estimates presented here are low, 

while at low temperatures they are probably high.  Because C. pengoi is most 

abundant when water temperatures are above 12-14 ºC, it is likely that overall the 

consumption was under-estimated in this study.   

Bioenergetic estimation of consumption by alewives was also dependent on 

important assumptions.  This study and others (Hewett and Stewart 1989; Rand et al. 

1995) were potentially hampered by the lack of a validated model. As a result, it is 

difficult to draw conclusions as to its accuracy.  In addition to model parameters, 

results are sensitive to input data including diet composition, prey energy content, 

alewife energy content, growth rate, and water temperature.  The diet composition 

assumed in this study was an oversimplification, but was probably representative of 

alewife diet (solely zooplankton).  Energy density of prey items was assumed 

constant. This is somewhat unrealistic, but without seasonal prey energy density 

measurements there was no alternative.  Alewife energy density was measured several 

times during the sampling period so any influence of this variable was present in situ
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and in the model.  Alewife growth was assumed negligible, a reasonable assumption 

during the reproductive period, which can last from May to August.  Consumption 

estimates may have been somewhat low because energetic costs of reproduction were 

not included in the model.  Water temperatures used in the model were measured in 

the environment encountered by alewives in the nearshore zone.  

Mean seasonal zooplankton production at the nearshore sites studied in 1995-

2000 ranged 3.3 g dry wt m-2  in 1999-2000 to  23.8 g dry wt m-2 in 1997.  Mid-lake 

production levels from 1986-1995(8-19 g dry wt m-2, 1986-1995) and those in the 

Kingston basin from 1993-1995 (7-13 g dry wt m-2, 1993-1995) reported by 

Johannsson (2003) were similar to those observed in 1995-1997 in this study but were 

somewhat higher than in 1998-2000.  The results of this study are not directly 

comparable to the Johannsson (2003) study because in this study 153-µm plankton 

nets were utilized, whereas Johannsson (2003) used a 64 µm net.  However, because 

of the potential errors associated with these production estimates and the assumption 

that a 153 µm net underestimates abundance of smaller taxa, nearshore production 

estimates from this study should most likely be viewed as similar to those from the 

Kingston Basin in the early 1990s.  Historical estimates of nearshore zooplankton 

production in Lake Ontario do not exist, but the production estimates presented in this 

study were similar to or slightly higher than Johannsson et al. (2000) observed in the 

nearshore of Lake Erie in 1993 and 1994 in spite of differences in plankton nets used 

(153 vs. 64-µm).   

The magnitude of seasonal consumption by YAO alewives was comparable to 

estimates for alewives and Baltic herring in previous studies.  At the individual level, 

consumption by alewives (14-22% of body weight d-1) was somewhat higher than the 

1-5% of body weight d-1 observed for Baltic herring (Clupea harengus, Möllman and 

Köster 1999) but was more similar to the 10-20% per day observed by Rudstam et al. 
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(1992) for age-1 Baltic herring between 8.5 and 13.1 cm in length.  This difference 

can be explained in part by the smaller body size of alewives in Lake Ontario and 

potentially warmer water temperatures they occupy.  At the population level, YAO 

alewives consumed a proportion of zooplankton production (57%) within the range 

observed for Baltic herring by Möllman and Köster (41-57%, 1999) and the range of 

30-60% observed by Rudstam et al. (1994).  The estimate from this study was also 

similar to the range for alewives in Lake Michigan (60-80%, Rand et al. 1995).  

However, Rand et al. (1995) found that alewife consumption exceeded zooplankton 

production in Lake Ontario in 1990.  If both YOY and YAO alewives occupied the 

nearshore areas concurrently, it is likely that total consumption by alewives and C. 

pengoi would have exceeded nearshore zooplankton production (excluding C. pengoi) 

in 2000.  However, it is also likely that in 1998-2000 C. pengoi replaced other 

organisms in the diet of YAO alewives (Bushnoe et al. 2003).        

Although there were limitations to the approach used to compare zooplankton 

consumption and production, several conservative conclusions can be made from the 

results presented here.  First, it appears that there is a seasonal progression in the 

magnitude of planktivory. Second, the dominant planktivore varies seasonally.  

Yearling and older alewife are the dominant nearshore planktivores in early summer, 

while C. pengoi and YOY alewives are the primary consumers of zooplankton in late 

summer.  Although it was not possible to estimate consumption by YOY in this study, 

much of it likely occurs during peak consumption by C. pengoi and it is likely that 

planktivory rates in the nearshore of Lake Ontario are highest in late summer when 

both of these organisms are abundant.  Second, based on consumption estimates for C. 

pengoi, it is likely that YOY alewives face energetic limitation until they begin to feed 
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on C. pengoi.  The consequences of such a limitation are not clear, but reduced growth 

early in life may reduce overwinter survival (O’Gorman et al. 1997).  Third, it appears

possible for predation by C. pengoi to have caused late summer declines in abundance 

of bosminids, D. thomasi, and nauplii observed by Benoît et al. (2002) and Warner 

(Chapter 3).  Fourth, it appears that on a daily basis, consumption by YAO alewives 

and C. pengoi is of similar magnitude.   There is mounting evidence that C. pengoi is 

important as a predator {(this study; Benoît et al. 2002; Warner (Chapter 3)} and as 

alewife prey (Bushnoe et al. 2003).  Additional research will be necessary to develop a 

better understanding of how C. pengoi has influenced energy flow in the nearshore of 

Lake Ontario and whether growth and survival of YOY alewives has been affected.  

Key to this understanding will be examination of temporal and spatial patterns in the 

abundance of alewives and habitat overlap between alewives and C. pengoi.    
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Appendix 4.1.  Coefficients used to estimate the dry weight (W) of zooplankton from 

body length (L) in the model: lnW = α + β*ln(L), where α is the natural logarithm of 

the intercept from the weight-length regression (E. L. Mills, unpublished data). 

Species Parameter 

 α β 

 Bosminids  

Bosmina longirostris 2.3700 2.1200 

Eubosmina coregoni 3.2810 3.1300 

 Daphnids  

Daphnia galeata mendotae 1.6090 2.840 

D. longiremis 1.6090 2.840 

D. pulicaria 1.6090 2.840 

D. retrocurva 1.6090 2.840 

D. schødleri 1.6090 2.840 

 Copepods  

Acanthocyclops vernalis 1.6557 2.1463 

Diacyclops thomasi 1.7050 2.4600 

Diaptomus ashlandii 1.7050 2.4600 

D. minututs 1.7050 2.4600 

D. oregonensis 1.7050 2.4600 

D. sicilis 1.7050 2.4600 

D. siciloides 1.7050 2.4600 
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Appendix 4.1 continued.  Coefficients used to estimate the dry weight (W) of 

zooplankton from body length (L) in the model: lnW = α + β*ln(L), where α is the 

natural logarithm of the intercept from the weight-length regression (E. L. Mills, 

unpublished data). 

Species Parameter 

 α β 

   

Epischura lacustris 2.1095 2.7319 

Eucyclops spp. 1.7050 2.4600 

Eurytemora affinis 1.7050 2.4600 

Harpacticoida 1.7050 2.4600 

Mesocyclops edax 1.7050 2.4600 

Limnocalanus macrurus 1.8960 2.8900 

Tropocyclops prasinus mexicanus 1.7050 2.4600 

Calanoid copepodites 1.7050 2.4600 

Cyclopoid copepodites 1.7050 2.4600 

Nauplii 1.4350 2.4800 

 Other Cladocera  

Alona spp. 1.3910 3.4800 

Bythotrephes longimanus 2.4100 2.7700 

Cercopagis pengoi 1.7164 2.3703 

Ceriodaphnia quadrangular 2.2370 2.2590 
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Appendix 4.1 continued.  Coefficients used to estimate the dry weight (W) of 

zooplankton from body length (L) in the model: lnW = α + β*ln(L), where α is the 

natural logarithm of the intercept from the weight-length regression (E. L. Mills, 

unpublished data). 

Species Parameter 

 α β 

  

   

Chydorus sphaericus 1.3910 3.4800 

Diaphanosoma spp. 1.6090 2.8400 

Holopedium gibberum 2.4170 3.0400 

Leptodora kindtii -0.8210 2.6700 

Polyphemus pediculus 1.9360 2.1500 

Sida crystallina 1.6090 2.8400 
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