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Abstract

We study Slepian inequalities for general non-Gaussian infinitely divisible random vectors. Con-
ditions for such inequalities are expressed in terms of the corresponding Lévy measures of these
vectors. These conditions are shown to be nearly best possible, and for a large subfamily of infinitely
divisible random vectors these conditions are necessary and sufficient for Slepian inequalities. As
an application we consider SaS Ornstein-Uhlenbeck processes and a family of infinitely divisible
random vectors introduced by Brown and Rinott.

1 Introduction

Let X and Y be two random vectors in R%. If for any X € R?,

P(X>A)> P(Y > ), (1.1)

then the random vectors X and Y are said to satisfv the right Slepian inequality. If for any A € R,
P(X<A)> P(Y <), (1.2)

then the random vectors X and Y are said to satisfy the left Slepian inequality. (Throughout this paper
the notation x > y for x = (21,...,24), ¥ = (y1,...,¥Yd) means that z; > y; for every 1 = 1,...,d,
while the notation x > y means that z; > y; for every i = 1....,d. and similarily with reverse
inequalities.) If X and Y satisfy both (1.1) and (1.2) then we say that these two vectors satisfy the
two-sided Slepian inequality.

Since probability measures are continuous from above and from below, it is clear that X and Y
satisfy the right Slepian inequality if and only if for any A € R,

P(X > ) > P(Y > \), e
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and they satisfy the left Slepian inequality if and only if for any A € R,
P(X < A)> P(Y < A). (1.4)

As a result, we may switch from one version of the Slepian inequalities to the other depending on the
situation.

Our terminology is (only) slightly unorthodox. Firstly, the original Slepian inequality [15] has been
proved for centered Gaussian vectors. Secondly, (1.1) and (1.2) are equivalent if the random vectors
X and Y are symmetric. But since (1.1) and (1.2) are in general not always equivalent, it is necessary
to consider both inequalities. The right (left) Slepian inequality has the following interpretation: the
probability that the components are X are all very large (very small) is greater than the corresponding
probability for Y. Hence the components of X are “more positively dependent”™ than those of Y.

The original Slepian result for centered Gaussian vectors can be formulated as follows. If X and
Y are two zero mean normal random vectors then (1.1) and (1.2) hold if and only if

" EX?=EY?foreachi=1.....d, (1.5)

E(X,X;) > E(Y}Y;) for every i,j = 1....,d.

This result has been used extensively for studying Gaussian processes, especially their sample paths
(see, e.g., Fernique [7], Adler [1] and Ledoux and Talagrand [10]). Its importance has generated a lot
of interest in extensions to as wide a class of (non-Gaussian) stochastic processes as possible. The
task, however, has turned out not to be easy. The main difficulty seems to be that natural extensions
of the conditions (1.5) do not in general suffice for Slepian inequalities. This is not surprising if one
remembers that ”a few numbers” like those appearing in (1.5) do characterize a Gaussian law, but
this is not usually the case for many other laws of interest.

A weaker version of Slepain ineqaulity, the Sudakov minorization for Gaussian random vectors
(Fernique [7]) was extended to symmetric a-stable random vectors with a > 1 by Marcus and Pisier
[11] and to general type G infinitely divisible random vectors by Samorodnitsky and Taqqu [13].
However, these extensions are not entirely satisfactory, in the sense that the result of Marcus and
Pisier involves a dimension-dependent numerical constant that blows up as the dimension increases,
and the conditions under which the result of Samorodnitsky and Taqqu holds are often difficult to
verify.

The only instance known to the authors of a succesful nontrivial extension of the full Slepian
inequality to non-Gaussian situations is due to Brown and Rinott [3]. It deals with an especially
simple family of infinitely divisible random vectors. Our wish to understand the basic features that
make the Slepian inequality work in this case has led us to the present research. We discuss the Brown
and Rinott family later in the paper.

Our goal is to extend the Slepian inequality, that is the conclusions (1.2) and (1.1) to the class
of all infinitely divisible random vectors. Our conditions involve comparison, not of covariances as in
(1.5), but of Lévy measures. This is, of course, quite natural for these type of random vectors.

Our overall approach is akin to that used in Pitt [12] and Joag-dev et al. [9] under different
circumstances. Professor Pitt kindly pointed to us the potential usefulness of his approach to our
problem.



The paper is organized as follows. In Section 2 we introduce some notation and terminology. In
Section 3 the main results are stated and proved, and Sections 4 and 5 contain examples: in Section
4 we specialize our results to the symmetric a-stable case and treat, in particular, symmetric a-
stable Ornstein-Uhlenbeck processes, while in Section 5 we discuss the Brown and Rinott [3] family of
infinitely divisible random vectors.

2 Infinitely divisible random vectors and semi-groups

A d-dimensional infinitely divisible random vector X = (X;,...,Xy) without a Gaussian component
is usnally characterized by its Lévy measure and shift vector through Lévy-Khinchine representation
of its characteristic function ¢x(8) = Eexp(X.0):

ox(0)=exp( [, (10X =1 (]l < 10X ) + 105}, (2.1)
The Lévy measure of X, v, is a o-finite measure on the Borel subsets of R? — {0} such that fRd_{O}(l A
l|x||?)v(dx) < 20, and the shift vector of X. b, is a constant vector.
We will also consider the important subclass of infinitely divisible random vectors whose Lévy
measure satisfies the additional relation

/ (1A ||x|)p(dx) < 0. (2.2)
R4-{0}

For such random vectors one can integrate out the third term of the integrand in the right hand side
of (2.1) and absorb the result in the shift term. which results in
ox(0) = exp{ (ei(g’x) — Lv(dx) +i(8,¢c)}. (2.3)
R4—{0}
With some abuse of terminology we will also call the vector ¢ in (2.3) (different. in general, from the
vector b in (2.1)) a shift vector. Incidentally, this name is more appropriate for the vector ¢ because
the vector b in (2.1) depends on the somewhat arbitrary compensator 1(||x|] < 1)(8,x).

Infinitely divisible random vectors satisfving (2.2) have the nice property that if K is a closed
convex cone in R? such that the Lévy measure v of X is supported by K and the shift vector ¢ € K
then P(X € K) = 1. Examples include compound Poisson random vectors and a-stable random
vectors with 0 < a < 1.

For a given infinitely divisible random vector X with characteristic function ¢x(8) given by (2.1)
and t > 0, let P! denote the distribution of an infinitely divisible random vector with characterisitic
function (¢x(0))!. Then P!+ P® = P+ for any t,s > 0, where * denotes convolution of probability
measures. Moreover, if X** ~ P! then {X*, ¢ > 0} is a process with stationary independent
increments satisfying X*° = 0 and X* £ X. We refer to {P', t > 0} as the convolution semigroup
generated by the infinitely divisible random vector X, and these semigroups play an important role in
our arguments. Recall that the generator G of the convolution semigroup {P*, ¢ > 0} generated by
X can be written in the form

Gyly)= fRd_{O}(g(x +y)—g(y) - 1(JIx|] < 1)(x,Ag(y))v(dx)+ (b, Ag(y)), (2.4)



for y € RY, where g : R* — R is in the domain D of the generator G. Recall further that any g € C°
(the space of all infinitely differentiable functions R? — R with bounded derivatives) is in the domain
D (see, e,g, Fristedt [8]).

If the Lévy measure of an infinitely divisible random vector X satisfies (2.2) and its characteristic
function is given by (2.3) then the generator of the convolution semigroup generated by X can be
written in the form

Go(¥)= [, g 00+ = gy )x) + (e Bgly)) (2.5)
fory € R, g€ D.

Since the Lévy measure v of an infinitely divisible random vector is finite outside of a neighbourhood
of the origin, one can transform any infinitely divisible random vector into a one satisfying (2.2) by
restricting its Lévy measure to the complement of such a neighbourhood - a procedure used repeatedly
in this paper. Specifically, given a vector X with characteristic function (2.1) and a Borel set A C R4
such that Bs := {x € R?: ||x|| < 6} C A for some § > 0, we define an infinitely divisible random vector
X4 as having Lévy measure vA = I4cv and shift vector b4 = b. Then its characteristic function can
be written in the form (2.3) with the shift vector ¢ given by

C;A:bi-/ 1(
AC

Ix|]| < Dawp(dx). i=1.....d. (2.6)

3 Main results

In order to maintain the view of the forest bheyond the trees, we describe the basic ideas behind
our results. Looking back at the Gaussian conditions (1.5) one observes that they imply that the
components of the random vector X “cluster together” more than the components of the random
vector Y do. The Slepian inequalities (1.1) and (1.2) may then be regarded as an expression of that
"clustering”. In the non-Gaussian infinitely divisible case. criteria of "clustering” are naturally related
to Lévy measures. Specifically, let X and Y be two infinitely divisible random vectors with Lévy
measures vx and vy and shift vectors bx and by accordingly. If one is interested. say, in the right
Slepian inequality (1.1), it is intuitive then that the appropriate “clustering™ requirement on the Lévy
measures should be

rx{xe R :x> A} >vy{xe R x> A} (3.1)

for every A € R%, or a version of this condition with non-strict inequalities. The condition (3.1),
however, can be awkward when A € R? := {x € R? — {0} : x < 0} because the origin, which plays
a special role for Lévy measures, belongs to the set {x € R%: x > A}. For example, vy and vy may
have an infinite mass in a neighbourhood of the origin. We will therefore suppose

vx{x € R%: x > A} > vy {z € R%: x > A} for every A € R — R?, (3.2)
to which we add the "complementary” condition

vx{x € R¥:x # A} <wvy{xe R':x # A} for every X € R%, (3.3)



where x # y for x ,y in R% means that z; < y; for at least one i = 1,...,d, and similarily with x £ y.

One also has to take into account the effect of the shift vectors. The vectors bx and by are ill
suited for this purpose because, as we have mentioned above, they depend on a somewhat arbitrary
centering. One should compare instead, whenever possible, the shift vectors in the representation
(2.3). We will see in the sequel how to do this in general.

In fact, further reflection on the conditions (3.2) - (3.3) tells us that these conditions should
properly be regarded as corresponding not to (1.1) alone but rather to the right Slepian inequality for
the whole families of infinitely divisible random vectors arising from the corresponding convolution
semigroups. Specifically, let P and P3; be the convolution semigroups generated by the infinitely

divisible random vectors X and Y respectively, and let X*! ~ P§ and Y*' ~ P, fort > 0 (X 4 X1,
Then (3.2) - (3.3) should be regarded as corresponding to the family of right Slepian inequalities
P(X* > X)> P(Y™ > X) for every X € R (3.4)

for all t > 0. The distinction between (1.1) and (3.4) is a critical one, and we will have more to say
about this point in the sequel.

For technical reasons, conditions (3.2) and (3.3) will have to be somewhat modified (strengthened,
in fact), except when the infinitely divisible random vectors satisfy the condition (2.2). We do not
know, at this point, whether this is intrinsic to the problem or stems from our approach only.

DEFINITION 3.1 A sequence {4,, n > 1} of Borel sets in R is said to be deflating to the origin if
(i)A1 DA D ..,
(11) ﬂnZlAn = {0},
(iii) For every n > 1 there is a § > 0 such that Bs = {x € R

x|| < &} C A,.

Remark. A natural way to produce sequences of sets deflating to the origin is to choose sequences
of balls of positive radius decreasing to zero in some norm. not necessarily the Euclidian norm || - |.
All the applications of our results considered in this paper use onlyv sets of this kind. It is conceivable,
however, that the greater generality may turn out to be useful in future applications.

Given an infinitely divisible random vector X with Lévy measure v and shift vector b and a
sequence of sets {A,, n > 1} deflating to the origin, we define a sequence of infinitely divisible
random vectors {X4", n > 1} as described above, by restricting the Lévy measure to the complement
of the corresponding set A,. We record at this point the obvious observation that X4 = X as
n — o0o. The strengthening of the assumptions (3.2) and (3.3) mentioned above amounts to assuming
the following: that these assumptions hold for X and Y restricted as above to the complements of
two (not necessarily identical) sequences of sets deflating to the origin.

THEOREM 3.1 Let X and Y be two infinitely divisible random vectors in R® with characteristic func-
tions (2.1) with Lévy measures vx and vy and shift vectors bx and by accordingly.

(i) Suppose there are two sequences of sets {An, n > 1} and {B,, n > 1} deflating to the origin
such that for every n > 1 the following three conditions hold:

rx{x € A5 :x > A} > vy{x € By : x> A} for every A € RY- RY; (3.5)



vx{x € A° :x # A} < vy {x € BS :x ¥ A} for every X\ € RY; (3.8)
and
c;(” > c%‘ (3.7)

(cf. (2.6).) Then for every X € RY, the right Slepian inequalities (3.4) hold for all t > 0.
(1) Suppose there are two sequences of sets {A,,, n > 1} and {B,, n > 1} deflating to the origin
such that for every n > 1 the following three conditions hold:

vx{x € A5 :x < A} > vy {x € BS : x < A} for every A € RY - Ri, (3.8)
(where RY: = {x € R? — {0}:x > 0});
vx{x € A% :x £ A} < vy {x € BS:x £ A} for every X € RY; (3.9)
and
oy’ <. (3.10)
Then for every X € R%, the left Slepian inequalities
P(X™ < X) > P(Y™ < A) for cvery X € R? (3.11)
hold for all t > 0.

Theorem 3.1 is a simple consequence of the next theorem below. But first some remarks:

Remarks

1. Assuming (3.5) - (3.6) for every n > 1 is. clearly, a stronger assumption than just (3.2) - (3.3)in
the sense that the former imply the latter.

2. For every n > 1 the pair of assumptions (3.5) - (3.6) is equivalent to the following assumption,
which is in certain circumstances more tractable than the former: for every random vector
W e RY whose coordinates Wy, ..., Wy are atomless,

I}

To see the equivalence, observe that for a fixed n > 1

(P(W < x) - P(W < 0))vx(dx) > / (P(W < x) — P(W < 0))ry(dx). (3.12)

< [
n Bn

/ (POW < x) = P(W < 0))rx(dx) (3.13)
X€AS

= /XEAC {/Rd (10w < x)L(w £ 0) = 1(w £ x)1(w < 0)) Fy(dw)|vx (dx)

= / vx{x € 45 :x > w}Fw(dw) — / vx{x € A}, 1 x } w}Fw(dw),
Rd—Rd R

where Fyy is the probability law of W. The implication (3.5) - (3.6) = (3.12) is now obvious. Let
us check the converse implication. To establish (3.6) (say), pick first a X in R? such that both



A < 0 and X is continuity point of both vx and vy. That is, vx{x : z; = A; for some 2} = 0,
and similarily for vy. (Let us agree to call such points "nice”.) For all € > 0 small enough the
cube C(€) = [T9(X\i — €, A; + €) is entirely in R?. Let W have the uniform distribution over C (€).
Then (3.12) implies

‘/[11]dVX{XEA%2XEA+GY}(ZYS/ l]dl/Y{XEB,CI :XZA‘FGY}(Zy.

Since X is "nice”, we recover (3.6) for all "nice” A € R by letting € go to zero. Observe now that
"nice” points are dense in R?. For any X € R? choose a sequence of "nice” points A;, 1 = 1,2,...
converging to A from below. Then

vx{x € A5 i x 2N Tvx{xe 45 :x 2 A},

and we obtain (3.6) for all A € R%. Oune can show in the same manner that (3.12) imply (3.5)
forall A€ R — R?.

Similarily, for every fixed n > 1 the pair of assumptions (3.8) - ( 3.9) is equivalent to the following
assumption: for every random vector W € R? with atomless coordinates

(P(W >x) - P(W > 0))vy(dx).  (3.14)
B

/Ac (P(W > x)— P(W > 0)>Vx(f1X) > f

<
T

We have mentioned above that when the Lévy measures of the infinitely divisible random vectors X

and Y satisfy (2.2), the assumptions (3.2) - (3.3) are adequate. This is made formal in the following
theorem.

THEOREM 3.2 Let X and Y be two infinitely divisible random vectors in R with Lévy measures vx
and vy satisfying (2.2) with characteristic functions given in the form (2.3) and shift vectors cx and
cy respectively.

(i) Suppose that conditions (3.2) and (3.3} holds and

cx > cy. (3.15)

Then for every A € R%, the right Slepian inequalities (3.4) hold for all t > 0.
(1) Suppose the following conditions hold:

vx{x€e R :x <A} >wvy{xe€ R x < A} for every A € R - R4, (3.16)
vx{x e R*:x £ A} <vy{xe€ R%:x £ A} for every A € RY; (3.17)

and
cx Ley. (3.18)

Then for every A € R?, the left Slepian inequalities (3.11) hold for all t > 0.



Remark. The argument of a previous remark shows. of course, that the pair of assumptions (3.2) -
(3.3) is equivalent to the following assumption: when (2.2) holds,

/Rd-{o} (P(W <x)-P(Wc< 0)>Vx(dx) > /

(P(W < x) - P(W < 0))vy(dx), (3.19)
Ri-{0}

for every W € RY whose distribution satisfies the following Lipschitz condition: for every x,y € RY,
there is a constant C such that

IP(W < x+y) - P(W < )| < Cljx|. (3.20)

This condition is satisfied for example when W has all bounded marginal densities. It ensures, together
with condition (2.2) that the right and left hand sides of (3.19) are well defined.

Similarly, the pair of assumptions (3.16) - (3.17) is equivalent to the following assumption: for
every random vector W € R? satisfying (3.20),

/Rd_{o} (P(W > x)— P(W > 0)>Vx(dx) > /R (P(W >x)— P(W > 0‘))VY(dx). (3.21)

“-{0}

We now prove Theorem 3.2.

Proor: We may and will assume that cx = cy = 0.

(i) It is obviously enough to prove (3.4) for t = 1 (that is, to prove (1.1)).

Fix a A € R4 and let f(x) = [I4,1(x; > ), x € R%. Fix an e > 0. For each i = 1,...,d
there clearly is a nondecreasing function f;, : R — R, in C;° (of R), such that im,_._, fi(z) =
0, lim; o fie(2z) = 1, and such that

|fielz) =1z > X)) < e
for every x ¢ E; ., where E; . is a Borel set such that
P(X;e E;.)<eand P(}; € E;.) <e.

Further, let f(x) = 21___1 fielz;), and observe that f, € Cp° of RY. that | f.(x)| < 1 for every x € R,
and moreover

|f(x) = fe(x)] < ed. (3.22)
for every x ¢ E. := {x € R%:z; € E; for some i = 1,...,d}. We remark further that
P(X € E.)<ed and P(Y € E,) < ed. (3.23)

Write f;(z) = Hi((—oc,z]), where for i = 1,...,d, H; is a probabilitv measure on R with a
bounded density with respect to Lebesgue measure. Then H = H; X...X Hgis a probability measure
on R Let P}t‘I and P{, be the convolution semigroups generated by X and Y accordingly, and let
Gx and Gy be the corresponding generators. Note that for every ¢ > 0 and x € R,

PLfu(x): = Ef(Y™ +x) = E/Rd UZ < Y™ + x)H(dz) = P(W < x), (3.24)

8



where W = Z — Y*, and Z is an Y** R%valued random vector with the law H independent of Y*¢.
We conclude by (2.5) and (3.24) that for every y € R4,

OxPYs()= [, o (P hlcty) = Pyfiy))ox(ax) (3.25)

and Simﬂarﬂy

¢
GxPef= [,
The distribution of W has bounded marginals because it is obtained by convoluting the distribution of
Z which has bounded marginals. As noted in a previous remark. this implies that W satisfies (3.20),
and hence (3.2) - (3.3) are equivalent to (3.19). It then follows from (3.23) and (3.26) that for every

t>0andy € RY,

(P(W <x+y) - P(W <y))ry(dx). (3.26)

Gx Py f(y) > Gy Py f(y). (3.27)
Define h.(t) = P&le{'tfe(O), 0 <t<1. Then for every 0 <t <1,

hl(t) = Px(Gx — Gy )Py ' f.(0).
An immediate conclusion of (3.27) is that hL(¢) > 0 for every 0 < t < 1, and so, in particular,
Ef(X*) = h (1) > h(0) = Ef(Y™). (3.28)
Now (3.22) and (3.23) imply Ef(X*') > Ef(Y~!) - 4ed. That is. for any A € R4,
P(X > X)) > P(Y > A) — 4ed.

Since this is true for every € > 0, (1.1) follows.
The proof of the second part of the theorem is identical. B

Remarks

1. It is, of course, obvious how Theorem 3.1 follows from Theorem 3.2. Indeed, under the assump-
tions of, say, part (i) of Theorem 3.1 we get from part (i) of Theorem 3.2 that for every n > 1
and X € RY,

PU(XA" ) > A) > P((YB") > )
for all ¢ > 0. Since (XA4")* = X** as n — oo and (YP")! = Y*' as n — o0, it follows that
(3.4) holds for every ¢ > 0.

2. In the important particular case when the infinitely divisible random vectors X and Y are
symmetric, it is trivial (but useful) to note in the context of Theorem 3.1 that any choice of the
sequences {A,, n > 1} and {B,, n > 1} such that the sets 4,’s and B,s are symmetric around
the origin, makes the conditions (3.7) and (3.10) unnecessary. Moreover, in the symmetric case
the two parts in each of Theorems 3.1 and 3.2 coalesce, in the sense that the assumptions of
either part of the former imply the conclusions of both parts, and the same is true for the latter
theorem with the difference that, in this case, even the assumptions of the two parts become
identical.



We now turn to necessary conditions for Slepian inequalities.

THEOREM 3.3 Let X and Y be two infinitely divisible random vectors with Lévy measures vx and vy
correspondingly.

(i) Suppose that for every X € R?, the right Slepian inequalities (3.4) hold for every t > 0. Then
(3.2) and (3.3) hold. Moreover, if vx and vy satisfy (2.2) and cx and cy are the corresponding shift
vectors in the representation (2.3) of the characteristic functions, then (3.13) holds as well.

(i) Suppose that for every X € R%, the left Slepian inequalitics (3.11) hold for every t > 0. Then
(3.16) and (3.17) hold. Further, if vx and vy satisfy (2.2) and cx and cy are the corresponding shift
vectors in (2.3), then (3.18) holds as well.

Proor: (i) Let W be any random vector in RY. Define f(x)= P(W < x). x € R?. Since for every
t>0,

PLf(0) = Ef(X™) = EELIW < X*) = /d PIX™ > w)Fy(dw)
R

and

Py f(0)= | POY™ > w)Fy(dw).

we conclude by (3.4) that
Py f(0) > Py f(0) for every t > 0. (3.29)

Suppose now that W has a C7° density with respect to the d-dimensional Lebesgue measure. Then
f € C°, and so it is in the domains of both generators Gx and Gy. It follows from (3.29) and
P%f(O) = f(0) = PP f(0) that there is a sequence t, | 0 such that

(P)t(f(O))’l > (Pg,f(()))'l n=1.2....

t=tn t=tp

That is,
PYGx f(0) > Py Gy f(0)

for every n = 1,2,.... Letting n — oo, we obtain
Gx f(0) > Gy f(0). (3.30)

Using the representation (2.4) of the generators. we conclude that for every random vector W € R4
with a C3° density

/Rd (P(W < x) - P(W < 0) - 1(|Ix]| < 1)(x, AFw(0) )rx (dx) + (Z)X,AFW(O)> (3.31)

> /R (POW < x) = P(W < 0) ~ 1(|[x]| < 1)(x, AFwl(0))vy (dx) + (by. AFw(0)).

We first prove (3.2). An earlier argument shows that it is enough to prove it for A € R - R?
which is a continuity point of both vx and ry. Let Ay = € > 0 (say).

Define ¥x(y) = vx{x:x >y} and ¢¥y(y) =vy{x:x>y}.y € R¢. Observe that ¥x and ¢y
are bounded on [€/2,00) x R*! and continuous at y = A.

10



Let W* = X a.s., and choose a sequence {W", n > 1} of random vectors in R? satisfying

W™ = W™ as n — o0, (3.32)
W™ has a Cp° density, (3.33)
Wi >e€/2as.n=1,2..... (3.34)

Then it follows from (3.34) that AFw.(0) =0, n =1,2,..., and so (3.31) takes in this case the form

/ P(W™ < x)rx(dx) > / P(W" < x)uy(dx), n=1,2.....
R4 Rd

Equivalently,
Ed)x(wn) > Ehy(wn), n=12,....

Taking the limits as n — oo we conclude that
Evx(W™) > Edy(W),

which is exactly (3.2).

We now turn to verification of (3.3). Of course, it is enough to check it for A < 0 which is,
in addition, a continuity point of both vx and ry. We pursue a strategy similar to that used in
the proof of (3.2). Define ox(y) = vx{x : x # y} and éy(y) = vy{x : x ¥ y},y € R%. Let
€ = min;=_4(—A;) > 0. Observe that 6x and dy are bounded on (—>c. —€/2]¢ and are continuous
aty = A

Let again W* = X a.s., and choose a sequence {W", n > 1} satisfying (3.32), (3.33), and

Wi < —¢/2foreveryi=1,....dand n=1.2,... (3.35)

Then again AFwn»(0) =0, n =1,2,..., and so we immediately obtain from (3.31) that

P(W" £ x)vx(dx) < / P(W™ £ x)vy(dx), n=1.2,...,
R4 ) Rd

which is equivalent to

Now take the limits as n — o0o; we obtain
Eéx(W™) < E¢py(W™),

thus proving (3.3).

It remains, therefore, to prove (3.15) under the assumption that the Lévy measures vx and vy
satisfy (2.2).

Since we need to compare the vectors cx and ¢y componentwise, we may as well restrict ourselves
to the case d = 1. We have by (3.30) and (2.5)

/_oo (P(W < 2) = P(OW < 0))wx(da) + (ex = ev) fiw(0) (3.36)

oo
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e /‘00 (P(VV <z)-P(W< 0))1/;:('(1.’6)

for every random variable W with a C{° density fi.
Let W ~ N(0,c0?%). Observe that

/°°(P(W < z) = P(W < 0))vx(de) = /Oo P(0 < TV < 2)vy(dz) (3.37)
0 0

= /:o(@(g') - %)Vx(dx) < /1 (‘I’(;) - %)”X(dilf) +vx([1,00))

0

=o(c™ ) aso — 0

by the boundedness of the density and (2.2). Applying the same argument to the other half of the
integral in the left hand side of (3.36) we conclude that

/oo (P(W <z)—-PW < 0))1/);((11') =o(c™") as 0 — 0. (3.38)
Similarily,
/ (P(W’ <z)-P(W< O))uy(idx) =o(c™ ) as o — 0. (3.39)

Recalling that fi(0) = 1/0+/27, we conclude immediately from (3.36), (3.38) and (3.39) that cx > cy.
This completes the proof of part (i) of the theorem, and the proof of part (ii) is identical. W
When the Lévy measures of the infinitely divisible random vectors X and Y satisfy (2.2), Theorems

3.2 and 3.3 imply that (3.2), (3.3) and (3.15) are the necessary and sufficient conditions for the right

Slepian inequality (3.4) and (3.16), (3.17) and (3.18) are the necessary and sufficient conditions for

the left Slepian inequality (3.11)

Assuming only (1.1) instead of assuming (3.4) for all ¢+ > 0 is not, in general, sufficient for the
conclusions of Theorem 3.3, even under the assumption (2.2). We show this through the following two
examples.

ExXAMPLE 3.1 ((1.1) smplies neither (3.2) nor (3.3))
We modify an example of Samorodnitsky and Taqqu [13] as follows. Let d = 1, and let ¥ be a
mean 1 Poisson random variable. Let X be a (nonnegative) infinitely divisible random variable such

that X £ X1+ X5, where X; and X, are independent infinitely divisible random variables with Lévy
measures

vx, (dr) = néyjy(dz), (3.40)
vx,(dz) = cl(x > 1)exp(—z(log r)l/z)dm.

where n is a positive integer to be specified later. and ¢ > 0 is chosen in such a way that vx,([1,00)) =
1/2. (The two random variables have zero shifts c¢x, and cx,.)
Observe that as A — oo (through integer values)

1/2

P(Y > A~ P(Y = A) = (eA!)™! = 0(e~Mlog )7y

12



Oun the other hand, [{° vx,(dz) < oo and hence X3 is compound Poisson. that is, X = Z;, +...+ Zn
where N is a Poisson random variable and the Z;’s are i.i.d. random variables independent of N.
Since the distribution of Z; is (vx,(R)) " lvyx,, there is a constant C such that. as A — oc,

1/2

P(X32> M) > P(Z, > ) > CeMogh)

Therefore
P(Y > A)=0o(P(X; > )) (3.41)

as A — 0o. Hence there is a Ag > 0 such that for every A > Aq,
P(X>AN)>P(X;>A)>P1Y >\
On the other hand one can choose n so large that
PIX>MN2PX;>A)2>2PY >0)>PY >\
for every 0 < A < A, implying (1.1). However.
vx((3/4,00)) = vx,((3/4.20)) = 1/2 < 1 = vy ((3/4. <)),

and so (3.2) fails.
By taking X = —Y, ¥ = —X. we have an example of a situation where (1.1) holds in the absence
of (3.3).

EXAMPLE 3.2 ((1.1) does not imply (3.15))

We take once again d = 1. Let E be a mean 1 exponential random variable. Let X = E, Y =
—FE +log2. Then the Lévy measures of X and Y, are vy(dz) = v~ 1e™¥1(2 > 0)dz and vy(de) =
lz|~'e"1(z < 0)dx (Feller [6], XVIL3(d)) They satisfv (2.2). and moreover. cy = 0 < log?2 = ¢y,
which means that (3.15) fails. However, it is elementary to verify that (1.1) holds in this case.

Remarks

1. Example 3.2 notwithstanding, (1.1) DOES imply (3.15). in the case (2.2) under the additional
assumption that the Lévy measures vx and vy are concentrated on the same quadrant of RC.

To see this, suppose, for example, that vx and vy are concentrated on Ri. Then X7 = Uy +(ex )
and Yy = Uy 4 (cy )2 where U; > 0 and U3 > 0. Since {2.2) holds. we have P(U; > 8) < 1
because Uy is a limit in distribution of compound Poisson variables. If (ex); < (cy ) (say), then
P(Y1 > (cy)1) =1, but P(X; > (ey)1) < 1. contradicting (1.1).

2. In view of Theorem 3.3, Examples 3.1 and 3.2 illustrate situations where the right (say) Slepian
inequality (3.4) holds for some t > 0 and fails for other ¢+ > 0. In the strictly a-stable case with
0 < a < 2 (including centered Gaussian case a = 2) because of the relation X*! 4 t1/aX | all the
distinction between (1.1) and (3.4) disappears. In particular. strictly a-stable random vectors X
and Y with 0 < o < 1 satisfy the right Slepian inequality (1.1) if and ouly if (3.2), (3.3) and
(3.15) hold, and similarily with the left Slepian inequality (1.2).
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4 Symmetric a-stable case; Ornstein-Uhlenbeck processes

In this section we specialize the results of Section 2 to the symmetric a-stable (SaS Ycase, 0 < @ < 2.
In this case the Lévy measure v of a random vector X is given in the form

= / /OO 1{rs € A)r‘(“‘))drf(ds‘), (4.1)
s Jo
where T is a finite symmetric measure on Borel subsets of the nnit sphere S = {x € B¢ : [|x|| = 1}
in some norm || - || on R?. The measure I' is commonly called the spectral measure of X.
Unless stated otherwise we will use in this section the maximum norm ||x|| = max;=,.q|zi|, as

this norm is the most natural to use in our context.

Let, therefore, X and Y be two SaS random vectors, 0 < a < 2, with spectral measures I'x and
I'y accordingly. We will choose the following sequences {4,. n > 1} and {B, n > 1} of sets deflating
to the origin:

d d
H nza nz and Bn - H(”gnl . z) (4‘2)
i=1 i=1
where for a fixed i € {1,...,d},{6,.:}2%, and {0, ;)22 are two sequences of positive numbers decreas-

ing to zero (refer to the remark following Definition 3.1). Since these sets are symmetric around the
origin, conditions (3.7) and (3.10) hold automatically (see Remark 2 following the proof of Theorem
3.2). We will now obtain a more explicit form of the conditions (3.5) and (3.6).

For every n = 1,2,...and A € RY - R,

vx{x e AL x> A} (4.3)
= /d/ 1((r]si] > 6, for some i € {1,...,d}) and rs; > A; forall 7 € {1... L d}) (T x (ds).
S¢Jo

For an x € R? let
Px = {i:2; > 0}.
Then the right hand side of (4.3) becomes

6ni >‘ . Ai~ ,
/ 1(P, C ’Ps)/ (r> min ——. r>max—. 7 < min ——)7“(1+“)dr1‘x(\ds)
Sd

i=1,...d |$;] i€P) S i¢Ps S
)\' 6 J\ )\ —Cy
-1 ! n,. . i .
=« 1 - X — V — — T ds).
“ /Sd (PA - IPS)[(%%‘/\( $; :E?lnnd} !510 <z12}’1; S,‘) }_*_ X(( S)

(In order to prevent the occurence of expressions of the type 0/0 we will consider, unless mentioned
otherwise, only XA € R? with non-zero coordinates.) Similarily, for every A € RY,

vxixe AS i x 2 A}

bni v
/ / (r > mm = ¢ > min —-)1 (+a) 4, T x (ds)
sd 1 léps 8

A 6, i —a
= o~} n — vV mi n.a T (ds).
* /Sd (3271’1; st ieliond) {.ﬂ) x(ds)

This proves
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PRrROPOSITION 4.1 In the Sa$S case, conditions (3.5) and (3.6) take respectively the following forms.
For every A € R — R4,

Ai A . Aiy—e
Jurm e g im0 - ()] i (i)

Ai : iy~ . Aiy—e
> [ (mp v i, 207 - ()] rvies

and for every A € RY ,

Ai Oni=0 . . Ad O i\ —
v min ) Ix(ds) < [ (min v pin )Ty (ds) 4.5
Sl SV i o) x9S [ (i 5 i o) Ty 09

As a particular case consider the situation where the spectral measures I'yy and I'y are concentrated
on R% U Ri. In this case (4.4) reduces to

Ai On,i\~ Ai o by e
—V i — T'x(ds) > X —V - T'v(d 4.6
Jog o,y v min, 22) "Oxtis > [ (o, TV min ST (0 (40)

for every XA € R4, where §¢ = S9N R, while (4.5) reduces to
+ +

Ai On.i\ —« A Opin—a_
in =V min ) Tx(ds)< in —v min —) Ty(d 4.7
Jefing 5V eping o) et < [ (pin, S uin, ) Tvte) a0

for every A € Ri.

Stationary SaS moving averages are stationary SaS stochastic processes that are important in
applications (e.g Cambanis [4], see also Surgailis et al. [16] for a receut studv). Thev can be represented
as

X(t):/oo F(t+ 2)M(d). —0 < t < x. (4.8)

where f € L%(—00,), and M is an independently scattered SaS random measure on (—oc, 00) with
Lebesgue control measure. The d-dimensional random vector (X (t1),....X(tq)), t1,...,tq4 € R, is
SaS with spectral measure given by

D(4) = ()my(T (A4)) + (3 )m (T~ (- 4)), (4.9)
where mq is a finite measure on Borel subsets of R defined by
my(da)y = ||f(- + 2)||%dx.
Hf(-+2)|| = max;=y,_q|f(t; + 2)] and T : R — S%is given by
(F+ )G+ 2o flta+ 2)/ILFC+ D A [+ o)l # 0,
T(z)=
(1,0,...,0) it || £(-+ 2)l] = 0.

See, e.g. Samorodnitsky and Taqqu [14]. In particular, if f(x) > 0 for all z € R then the spectral
measure given by (4.9) is concentrated on R U RY. Substituting (4.9) into (4.6) and (4.7) , we get:
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COROLLARY 4.1 Let{X(t), t € R} and {Y(t), t € R} be two SaS moving averages as in (4.8), defined
by two nonnegative functions f and g in L%(—~,x). For given t1,...,tq € R consider the two SaS
random vectors X = (X(t1),...,X(ta)) and Y = (Y(t1),....Y(tq)). Then the Slepian inequalities
(1.1) and (1.2) hold for these vectors, if for every A > 0 andn = 1.2....

/oo< max —>l‘i—v min —-—(S—rﬁ—)—adr>/oo( max ———i\i———v min —&’—’—i————)~adm
oo Ni€{Lnd} f(ti+ ) ie{l,..d} f(ti + ) T T o Nie{londay glti ) ie{tdy g(t + T)

(4.10)
and

6n,i -
) ,

/OO ( min —ﬁ———v min -t A v Ju_’) K
—oo Ni€{l,d} f(ti + ) deftl,...d} f(t; + ) )

dr < / ( min ———— min -
oo NE{Ldy gt + ) ie{l,..d} g(ti + )
(4.11)

EXAMPLE 4.1 SaS Ornstein-Uhlenbeck processes. The conditions of the corollary are relatively easy
to verify for SaS Ornstein- Uhlenbeck processes. These are stationary SaS moving averages of the type
(4.8), with

flz) = 71/“6“”1(‘1' > 0) and g(z)= ul/(‘e'“xl(.z‘ > 0), (4.12)

with v, ¢ > 0. (The purpose of the normalization ~1/2 and p'/® is to give the two processes the same
scale.) The Ornstein-Uhlenbeck processes are also Markov: (see Adler, Cambanis and Samorodnitsky

(2.
We will see that if 0 < 5 < p, then the two processes satisfy Slepian inequalities in the sense that
for every ¢1,...,fg € R and all real numbers Ay,..., Ag,

P(X(t1) > Moo X () > M) 2 PY (1) > M) o0 Y () > M), (4.13)

(and by symmetry the left Slepian inequality as well). This result is known in the Gaussian case
because for Gaussian Ornstein-Uhlenbeck processes,

E(X(H)X(s)) = el > emplt=sl = E(Y ()Y (5))

for all t, s € R, and so (1.5) are trivially verified. Intuitively, a large s causes Y'(¢) to be affected mainly
by the increments of the random measure 3/ "near t°. Thus. independence of the increments of M
leads us to suspect that the components of the process Y "cluster together” less than the components
of X do.

For a rigorous verification, assume that —sc =ty < t; < ... <ty < tgy; = > and choose
611,i = 6116‘7(ti—t1)~,
—paft;—t
all,i = 5716 Ml 1)’

6, | 0and i = 1,...,d. In the subsequent computations we will drop the subscript n.
In our case the left hand side of (4.10) is

/—t1 Qe%ﬁfd} yl/ag—itita) v z‘e{nll,lf.l,d} A 1/"(‘"“f(’ﬁ“”)) o
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o0 — Y
-_—/ 7@"“”( max A,vé"“Véf“‘“) dr

-t ie{l,...d}

= a”l( max A; elti—t) 5) ‘a.
ie{l,...d}

Since the last expression is clearly non-increasing in v, (4.10) follows.
We now check (4.11). Since tg = —o0, the left hand side of the latter equals

d—1 —t; s . €—"r’“i~f1) —a
. 1
min e \/ min B e dz 4.14
J};‘;[.% i€ {j41,...d}y Y/ ee=tite) © ey gy y i/ ae= +1)> ( )

~tj . t: 4\~
= Z/ "7ax min })\i€7‘ Ve ‘) dz

t]+1 LG{J+1v-"v

~fs ot \ T
-1 E (€7atJ+l e‘/“%) ( Illln "\iC vt V be ,?Ll)

€{j+1....d}

Now (4.11) follows from (4.14) and the following lemma.

LEMMA 4.1 Let —00 < t1 < ... < tg < o, Aj, 1 = 1,...,d positive numbers. Then for every § > 0
and u,v < ty the function

d—-1
: ‘el 5 . ~ 1y YU -
k)= L (07 =) (i vty ) (419

with ty = v is non-decreasing in v > 0.
Proor: The proof is by induction in d. For d = 1 we have
k(v) = (e“’m‘ - 6’7(1”) (/\167“ v (367“> -
— (1 _ 6—70(’51**0)) </\1 vV 56—7(1141))—“

and this is non-decreasing in vy because t; > u V v.
Suppose now that the statement of the lemma is true for a d > 1. and let us prove it for d + 1. We

have now J
k() = (e"o‘tj‘“ - e7°‘t«7> ( min  Ae?tiv 66"’") -
() JZZ% €4l nd)
Counsider two cases.
Case 1. \je™ < min;efy . 4} et
Then
—CY d —
E(y) = (e“""tl - 6'7‘“’) (/\167“ % 56711) + Z(e7at5+1 - e""”f) ( min Ay 667“)
= ie{j+1,...d}
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The fact that the first term in the sum above is non-decreasing has been proved when we considered
the case d = 1, while the second term is non-decreasing by the assumption of the induction with
v=1.
Case 2. Aie"™ > min;eqy gy Aie?".

Then combining together the first two terms in the sum we obtain

d
—Y . . . . A b ® 4
k(v) = (67“‘2 - e”‘“’) ( min _Ae" v 66“’") + Z(e""t”l - e’“’f) ( min eV 66“") ,
iE{Z,...,d} j=2 ¢E{j+1q---vd}

and this is non-decreasing once again by the assumption of the induction (we preserve the same u and
v, delete ¢; and let ¢; play the role of t;).
This completes the proof of the lemma. W

5 The Brown-Rinott family

In 1988, Brown and Rinott [3] obtained Slepian inequalities for a particular family of infinitely divisible
random vectors. The authors of the present paper have wanted to understand for some time how to
place their result in a general theory of Slepian inequalities for infinitely divisible random vectors.
We show in this section where the results of Brown and Rinott fit in the general theory, and we also
provide some extensions.

Brown and Rinott consider a particular subclass of the infinitely divisible distributions, defined by
29 _ 1 numbers, labeled t4, where A # 0 runs through all subsets of the set {1,2,...,d}.

Let @ be an infinitely divisible probability law on R, not necessarily symmetric, and let {Qt, t >0}
be the corresponding convolution semigroup. The Brown-Rinott family BRq of infinitely divisible
random vectors in R? is constructed as follows. Let A = {4 : 4 C {1,...,d}}. Choose a vector of
nonnegative numbers t = {t4, A € A, 4 # 0}, and let {Z4, 4 € A, 4 # 0} be independent (real
valued) random variables, with Z4 ~ Q!4 A c A, A# 0. Then define an infinitely divisible random
vector X = (Xy,...,Xq) by

X; = Z Za, 1=1,...,d. (5.1)

AneAd

The family BR is obtained by allowing t to vary. It is indeed, a family of infinitely divisible random
vectors because any linear combination of components of members of the family can be expressed
as a linear combination of independent infinitely divisible random variables. It is easy, moreover, to
identify the parameters of the random vector X in BRg for fixed t. Namely, suppose that the infinitely
divisible law Q has (in the representation (2.1)) one-dimensional Lévy measure p and shift a. Then
the d-dimensional Lévy measure v of X is given by

v=" taut?, (5.2)

AEA
A7¢

where for an A € A, A # 0 u(4) is the measure p placed on the line 4 = {x € R : z; = 0 Vi ¢
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A, z; = z;, Viy,iz € A}. That is, for every nonnegative measurable function b : Ri{ S R

/Rd—{O} h(x)v(dx) = Z 1‘4/ h{.. .0,...,2,...,0,..)u(dz),

AEA

A#D
when the arguments of & in the integral under the sum are equal to z for all i’s in A and to 0 for all
i’s not in A. Further, by (5.1), the shift vector b of X is given by

b, =a Z ta (5.3)

(if the norm || - || in (2.1) is chosen to be the maximum norm as well).

Brown and Rinott give as example the multivariate Poisson distribution (X4,...,Xy4) which is
defined by (5.1) with Z4 Poisson with mean t4. They also consider the AM/G/oc queue (Poisson
arrivals, general service time, infinite number of servers). If X (7) denotes the number of customers in
the queue at time 7, then (X (71),...,X(74)), 0 < 71 < ... < 74 is multivariate Poisson with t4 # 0 if
A counsists of consecutive numbers and ¢4 = 0 otherwise. (They give an explicit expression for t4 that
involves the rate of the Poisson arrival process and the distribution of the service times.)

Let X and Y be two infinitely divisible random vectors in BRq defined by vectors t and t*
accordingly. We want to use our results to derive Slepian inequalities for X and Y based on a proper
comparison of the vectors t and t*.

We start by obtaining an explicit form of (3.5) and (3.6) in this case. Choose A, = B, = {x €
RY :||x|| < 6} with § = 6, > 0 and || || our usual maximum norm. It turns out to be somewhat more
convenient to work with the equivalent condition (3.12) here. For every random vector W € RY we
have by (5.2) '

/ (POW < x) = P(W < 0))rx(dx) (5.4)

d
=Yt / [ (N <zHN(N Wi < o})) - P(O{m < o})]u(dx)

ii{; €A i¢A
d
=3t / [ (MW <zH NN W < oh) = (N1 < o})}u(dm
ﬁ% i€A i¢A i=1
~yuf P n{wz <o) = (N7 < DN < o)) utae)
ﬁig =1 €A igA

=y / N{o<w; <2 {W: < 0})>u(d:1:‘) z t4
BeA B

B0 ‘e i¢B 4:ADB
—Z/ (N{z <wi <o <aP)utdr) S ta.
Bea ieB i¢B A:ANB#D
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We immediately conclude that if for all B € A and B # 0, the following two conditions
Yootaz >t (5.5)
A:ADB A:ADB

and

Yoota< Y th (5.6)

A:ANB#D A:ANB#0

hold, then (3.12) holds. Moreover, use (5.5) and (5.6) with B running over singletons to conclude,
using (5.2) and (5.3), that (3.7) holds (with > replaced by an equality). In the same way omne can
easily check that for any random vector W € R? we have

/c (P(W >x)— P(W > O’)) vx(dx) (5.7)

Z/ (ﬂ{w<W <o {wi> o0} );L dey Yt

ee i€B i¢B AADB
- [TR((Q o<W DT> aD)utdn) Tt
o i€B i¢B A:ANB#£0

We conclude that that (5.5) and (5.6) imply (3.14) and (3.10) as well. Applying Theorem 3.1, we
recover Theorem 1.1 of Brown and Rinott:

PROPOSITION 5.1 Relations (5.5) and (5.6) imply the right and left Slepian inequalities (3.4) and
(3.11) for allt > 0.

Furthermore, suppose that the distribution Q is supported by [0,oc). This is well known to be
equivalent to: (i) p satisfies (2.2) and is supported by (0,>) and (i) a > 0 (Feller [6]. XV11.3(f)).
By using (5.4) and (5.3) (with B once again running over the singletons). we recover the direct part
of Theorem 1.2 of Brown and Rinott:

PROPOSITION 5.2 If the distribution Q is supported by [0,00), then
(5.5) = (3.4) for allt > 0;
(5.6) = (3.11) for allt > 0.

Turning to converse statements and using onr Theorem 3.3 we obtain the following refinement of
the results of Brown and Rinott:

PROPOSITION 5.3 Suppose that the right Slepian inequalities (3.4) hold for all t > 0. Then
w((0,00)) > 0 = condition (5.5),
p((=00,0)) > 0 = condition (5.6).
Suppose that the left Slepian inequalities (3.11) hold for all t > 0. Then
u((0,00)) > 0 = condition (5.6),
p((=00,0)) > 0 = condition (5.5).

20



PROOF: Setting W = X in the identity (5.4), we get: for any A € R — R?,

vx{x e R :x>A= > tap{r>0: r>max)} (5.8)
AADPy ‘EPA
and for any A < 0,
rx{xeR :x ¥ A=Y > tap{e<0:z<\VieB.z>\Vig¢ B} (5.9)

BEA 4.
A A:ANB+#9

We can now apply Theorem 3.3. Because of (5.8), the right Slepian inequalities (3.4) for all ¢ > 0
implies (5.5) provided u((0,00)) > 0. It is almost as easy to see that hecause of (5.9), they also
imply (5.6) provided u((—00,0)) > 0: for a fixed B € A. B # 0 use (5.9) with A\; | —oco Vi ¢ B and
A; TOVie B.

The other statements follow in a similar way if we start with (5.7) and set W =X. N

Brown and Rinott [3] also discuss the extent to which (1.1) alone implies (5.5), and (1.2) alone
implies (5.6), when Q is supported by [0,>). Although we do not have a complete answer to this
problem, we are able to shed some additional light. The following proposition generalizes Proposition
1.3 of Brown and Rinott and Theorem 1 of Ellis [5]: we remove the compound Poisson assumption
(while retaining, in the first part, the assumption of existence of exponential moments of the Lévy
measure).

PROPOSITION 5.4 Suppose that Q is supported by [0,20), and that p((0,2)) > 0.
(i) Assume that for all 8 >0

/ e p(de) < 0. (5.10)
1

Then the right Slepian inequality (1.1) implies (5.5).
(11) Assume that the shift a = 0, and that the Lévy measure pi has slowly varying tails at 0, that is
for any r >0

) ;c((r:z:, oo‘))

lim ~—e—™

=0 u((z,00))
Then the left Slepian inequality (1.2) implies (5.6).

= 1. (5.11)

PRrOOF: Since p satisfies (2.2), so do vx and vy. We will assume. therefore, that all relevant
characteristic functions are given in the form (2.3). In particular. we assume that a is the shift
corresponding to the representation (2.3). Then by analogy with (5.3) we conclude that the shift
vector cx is given by

(ex)i=a Y ta, : (5.12)

An€A
and similarily with cy. Now, choose 8 > 0. For part (i), observe that (5.10) implies

Ee(G,X) = exp </ (E(O,X) — 1)1/X((lx‘) 4 (9 cx)) (5.13)
R~ (0}
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= exp{ 3t Uoo (erZieA % 1)ulde) +a Y 9;)}} < .

AEA 0 €A
A0

Since (1.1) implies
d d
Ee(O,X) = Hei/ e(g*x)P(X > x)dx > H Hi/ 6(9’X)P(Y > x)dx = Ee(e’Y),
=1 Rd i=1 R

we conclude by (5.13) that

Z ta [/oo (ezZeeAei - 1)u(da:)+a§:0,;)} > Z t [/Ooo (GIZ,-EAG;’ - 1)/1(([1‘)—{—&2 6,-)]. (5.14)

A€A Y icA A€A icA
A#D A#Q

Take now any B € A, B # 0, and choose
g ific B
b; =
0 ifi¢ B,

6 > 0. Then (5.14) reduces to

(3 ta) UO“ (=81 — 1) () + aewq + 3ty UOOO (0Pl 1) () + bl A N B]} (5.15)

ADB AR2B

A#£Q
> <A§; t’;;) UOOO (ew'B* ~ 1)u(dx) + aé’lBl] + %g £ [/Om («,-f”lf‘“ﬁ' - 1),,.((1.7;) +aflAN B[],

where |A| stands for the cardinality of 4. Setting
cn(8) = / (ew" — 1);1((1‘1:) +afn, §>0, n=0.1,2....,
0

we can rewrite (5.15) as

aB|(0) D tat+ Y cuans(0)ta = cp(0) D 1+ D cpanp ()t

ADB A2B ADB A2B
= A#0 AZD

Now (5.5) follows from the easily verifiable fact

. Cngl
lim —*+L

n—oo ¢,

by letting 6 T oco.
For part (ii) we have Ee~(0X) > Ee“(O’Y), and hence an argmment identical to that leading to
(5.15) shows that (1.2) implies in our case that for every § > 0,

Z ta [/Ooo (1 - e"zel“mB[)u(da’)} < Z t [/Ooo (1 - e““‘e"th)u(dw)}. (5.16)

ANB#£0 ANB#0
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Denote b(8) = [°(1 — e~%%)u(dz), 6 > 0. Using (5.11) one can easily check that for every ¢ > 0

. bet) I e"tu( . oo{))dt
hm = n = 1.
o= BO) 0= ety ((§,00))

Now (5.6) follows from (5.16) upon letting 6 T ~. W

Remarks

1. If Q is supported on [0, 00) and is compound Poisson, then it is the distribution of the random
variable V = "N | U;, where the {U;} are i.i.d. non-negative with distribution p/u(R4) (p is the
Lévy measure of V), and N is a Poisson random variable independent of the U;’s. Then (5.10)
reduces to EeUt < oo which is the assumption of Proposition 1.3 of Brown and Rinott [3] and
Theorem 1 of Ellis [5].

[ ]

. For the BRg family,

(1.1) = (5.5) [Proposition 5.4(i)]
= (3.4) for all t > 0 [Theorem 3.3]
= 2

(3.2) and (3.3).

In general, however, (1.1) does not imply (3.2) or (3.3) even in the presence of all ezponential
moments, as Example 3.1 demonstrates.

In their Theorem 1.2 (ii), Brown and Rinott [3] state that for the BR¢ family, conditions (1.2)
and (5.6) are equivalent when @ is supported by [0, ~) without any additional assumptions. We do
not find their proof convincing, and the following example seems to provide a counterexample to that
statement.

EXAMPLE 5.1 Let d = 2 and p(dz) = z7te~"dz, z > 0, with shift « > 0 to be chosen later. (u is the
Lévy measure of a unit mass exponential random variable.) Let

tl = t2 - 3, t12 =0 (5.17)
f=13=0, t5,=5.

Observe that (5.6) fails for B = {1,2}. Let T'(5), I'1(3) and I'y(3) be independent random variables
with Gamma (5), Gamma (3) and Gamma (3) distributions accordingly (all with the scale parameter
equal to 1). Then we can represent the vectors X and Y (in law) as follows:

X1 = P1(3) + 3(1, Xz = FQ(B) + 3(1, Yi = Y:g = I‘(S) + 5a.

We claim that one can choose a > 0 so large that for every A € R? (1.2) holds.



Since ¥; = Y, a.s., the "worst case” for (1.2) is the case A\; = A; = A. In that case (1.2) reduces to
P(X1 < X\, X3 < A\) > P(Yq < A) or, equivalently, to

(P(D1(3) +3a < 1)) > P(T(5)+ 50 < ). (5.18)

Observe that (5.18) holds trivially for every A < 5a. We need. therefore. only to consider the case
A > 5a. Letting £ = A — 5a > 0 we see that we only need to exhibit an @ > 0 for which

(P(I’l(B) <+ 2(1))2 > P(T(5) < ) (5.19)
for every z > 0. Choose an zg > 0 such that for every z > 2o
P(T(5)>z)> é—}lgf"‘r‘r"* and P(Ty(3)> r) < el (5.20)
Let 21 = 2o V V/96. Choose now a so large that
(P(T:(3) < 20))" 2 PT(3) < )
Then (5.19) holds trivially for all 0 < z < z;, wkile its truth for @ > 2 1s a simple consequence of

(5.20).
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