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Abstract
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1 Introduction

In this paper we investigate the tail behavior of subadditive functionals of paths of
infinitely divisible (i.d.) processes. We recall that a stochastic process X = {X(?) :
t € T}, where T is an arbitrary index set, is said to be i.d. if all its finite dimensional
distributions are i.d. The class of i.d. processes includes such processes as Gaussian,
stable, Lévy and additive random fields. Important examples of i.d. processes are
harmonizable, moving average, shot noise, fractional processes and others. Since the
influence of the Gaussian component on the tail behavior of subadditive functionals
of i.d. processes is asymptotically negligible in all the cases we consider, we restrict

our study, to i.d. processes with no Gaussian component. The characteristic function
of such a process X can be written in Lévy’s form:

E exp {1 <B,X>}= (1.1)
exp {i<B,b> +/RT[e"<fia> _1-i<B,r(a)>v(da)},B e RO,

where b € R7 and v is the projective limit of the Lévy measures corresponding to
the finite dimensional distributions of X (see Maruyama (1970)). Here R(T) denotes
the space of real functions 3 defined on T such that B(t) = 0 for all but finitely many
t,< B,0 >= Tierf(t)a(t), and T(a)(t) = a(t)/(a?(t) +1).

Our goal is to show that for a large class of i.d. processes X and subadditive
measurable real functions ¢ defined on paths of X, the distribution of ¢T(X(+)) =
-maz{d(X(-)),0} belongs to the class & of subexponential distributions, and also, to
give an asymptotic evaluation for the tail of ¢(X(-)). Natural examples of ¢ include
supremum of the path, supremum of the absolute value of the path, LP-norm (F-norm
if p < 1) of the path, etc., therefore our results characterize the distributions of such
nonlinear functionals of i.d. stochastic ‘processes.

In Section 2 we prove that

P{$(X () > 2} ~vo ¢ ((z,00)), asz— 0, (1.2)

provided v o ¢7*((z,00)) is asymptotically equivalent to the tail of a distribution
‘0 the class S. We recall that a distribution F on [0,00) is said to belong to the
subexponential class S if F(z) < 1 for every = and

1—FxF(x)
| 1-F(z)
The class S contains the distributions with regularly and slowly varying tails, log-
normal distributions (see Embrechts et al. (1979)); other examples of F € S can be
obtained from a theorem of Pitman (1980), e.g. F(z) ~ 1 — exp{z(logz)™™},m >
0,2 — 00, belongs to . Our result (1.2) can also be viewed as a generalization to

— 2, as T — o0. (1.3)
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the multidimensional (in fact, infinite-dimensional) case of a result of Embrechts et
al. (1979) given for a positive random variable and ¢ being the identity mapping.

Most of the examples of i.d. processes can be obtained by the means of a stochastic
integral

X(t) = /S fi(s)M(ds), t € T, (1.4)

“where M is an independently scattered i.d. random measure on a certain set S and,
for each t, f, is a deterministic function on S. In this case the measure v and the
shift b in (1.1) can be given explicitly in the terms of {fi}rer and the parameters of
M. This fact enables us to apply result (1.2) to processes represented by (1.4) to get
some more explicit results in the cases of stable processes, { - radial processes and
others (see Section 3).

In Section 4 we address the question when our assumption on the asymptotic
behavior of v o ¢~1((z,0)) can be easily verified. We show that in certain interesting
cases of processes given by (1.4) this question reduces to another one: when does
the product of two independent random variables have the distribution in the class
S? We conclude this paper quoting a result from a forthcoming paper by Cline and
Samorodnitsky that provides a partial answer to the later question.
~ Finally, we should mention something about the methods in the paper. They
combine certain techniques developed in the study of probabilities in Banach spaces
with some standard methods in the study of subexponential distributions.

2 The main result.

Let X = {X(#) : t € T} be an i.d. process determined by (1.1). In this section we
shall assume that T is a countable set, therefore v in (1.1) is a o-finite Borel measure
on RT. Let ¢ : RT — (—00,00] be a measurable subadditive function, Le.

d(ay + az) < ¢p(ar) + ¢(ary) for every o, a2 € R”. (2.1)
Further we shall assume that there exists a lower-semicontinuous pseudonorm
q:RT — [0, 00] such that
|#(a)| < g(ax) for every ax € R’ (2.2)

(recall that a function ¢ : F — [0,00], where F is a linear space, is said to be a

pseudonorm if ¢(z +v) < ¢(z) +4¢(y),(0) = 0, and g(cz) < g(z) for all 7,y € F, |¢e] <
1). Define H : (0,00) — [0, 00] by

H(z) = v({a € RT : ¢(a) > z}).



THEOREM 2.1 Let X and ¢ satisfy (1.1), (2.1) and (2.2). Assume P{q(X(‘)) <
oo} =1 and suppose that the distribution function F(z)=1— min{H(z),1} belongs
to the subezpomential class S (recall (1.8)). Then the distribution of ¢+ (X(-)) =
maz{$(X(-)),0} belongs to S and

L PUX() >
Remark Under the conditions of Theorem 2.1 F is a nondefective distribution;
see Lemma 2.1
The proof of Theorem 2.1 is preceded by a proposition and two lemmas. In the
proposition we state several properties of the distributions from S for the sake of
convenient reference in the sequel; we refer the reader to Embrechts et al. (1979) for
the proofs of these properties.

'PROPOSITION 2.1 Let F € S and put F(z) =1 — F(z). Then

(1) limg o0 EI(;(—;L—)’Q = 1 uniformly in y over compact sets;

(#) limg_,00 €*F(z) = 00, for each € > 0;

(ii1) If limg .o %—3 = c € (0,00), where G is a distribution function on [0,00),
then G € S;

(iv) If G(z) = o(F(z)) as v — oo, where G is a distribution function on [0, 00),

then FxG € S and lim,_.o -F?—-((%l =1;

(v) If G(z) = e B AL F* (), then limg oo %g—% = A\

The next two lemmas are well-known in the case when ¢ is a norm on a Banach
space. Since, in our case, ¢ is only semicontinuous and non-necessarily homogeneous
pseudonorm on R7, we provide complete proofs of these lemmas. Notice that the
conclusion of the first lemma is true only for some 79 > 0; an example showing that
this is not true for all ro > 0 can easily be constructed.

LEMMA 2.1 Let X be given by (1.1) and suppose that P{q(X(-)) < oo} = 1. Then
there exists ro > 0 such that v({a € RT : g(a) > ro}) < o0.

Proof. Since {X(t)}ier is a countable sequence of random variables, there exists
a:T — (0,00) such that Sier|a(t)X(t)]? < oo a.s.. Therefore aX = (a(t)X(t))eer is
an £2(T)-valued i.d. random variable. The £*(T)-valued random variable a(X — X/ ),
where X' is an independent copy of X, is i.d. symmetric with the Lévy measure given

by

w(A)=v({a e RT :aa € A}) +v({a € RT :aa € —A}), (2.3)



for every Borel set A in £2(T). Let now {Z(u) : u > 0} be an ¢*(T)-valued stationary
independent increment process with Z(1) 2 a(X — X'). Let p(h) = g(a *h),h €
2(T) ; p is a lower-semicontinuous pseudonorm on (T) and P{p(Z(1)) < oo} =L
Choose now a decreasing to zero sequence my > Mz > ... such that

w{h: |h|lp) =mi} =0 foreveryz=1,2,.... (2.4)

By the lower-semicontinuity of p, the set
A= {h € (_72(T) tm; < HhH£2(T) < m,-_l,p(h) > 7‘}

is open, for every i (mg = 00), and contained in {h : [[hlle) 2 m;}. Thus, for each
i > 1,

lim,_..onP{Z(n™") € Ai} = p(4i).

By (2.4) and Fatou’s lemma we now get

u({h € &(T) : p(h) >r}) DESVIER)
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lim, . 252, P{Z(n™") € A} (2.5)
lim, ,onP{p(Z(n"")) > r}.

I VAN

On the other hand, using Lévy inequality adopted for pseudonorms, we obtain

il

1—[1—P{p(Z(n™")) > r}]" P{ sup p(Z(jn™") = Z((j — Dn7")) > r}

1£3<n

P{lit;gnp(z(jn"l)) > r/2}

2P{p(Z(1)/2) > r/4}
2P{p(Z(1)) > r/4}.

This implies that if ro > 0 is such that P{p(Z(1)) > ro/4} < 1/8, then we have

IN

IAIN

nP{p(Z(n™")) > ro} <log(8/7), foralln=1,2,....

Combining the above bound with (2.5) yields p({h € (T) : p(h) > ro}) < log(8/7).
In view of definitions of x and p, the proof is complete. O

In the proof of the next lemma we adapt a technique of deAcosta (1980) who has
proven a stronger result for Banach space valued random variables (with ¢ being a
norm). Due to the non-homogeneity of ¢, which invalidates a standard use Jensen’s
inequality (cf. the proof of Lemma 2.2 in deAcosta (1980)), and because ¢ is only
semicontinuous, this adaptation is not immediate.



LEMMA 2.2 Let X be given by (1.1), and suppose that P{q(X(-)) < oo} =1 and
v({a € RT : g(a) > ro}) = 0 for some 70 > 0. Then E exp(eq(X(-))) < oo for some
e > 0.

Proof. We transform the problem to £2(T)-valued random variables in the same
way as in the proof of Lemma 2.1. Having 4, p, and the process {Z(u) : u > 0} already
defined, let us denote the restriction of 4 to the set {h € (T) : |hllem > 6},6 >
0, and let {Zs(u) : u > O} be an ¢2(T)-valued stationary independent increment
process such that Zs(1) has symmetric i.d. distribution with Lévy measure ps and
with no Gaussian component. Since £(Zs(1)) = £(Z(1)), as 6 | 0, and p is lower
semicontinuous, we have

E exp(ep(Z(1))) < lims_oE exp(ep(Zs(1))); (2.6)
for each € > 0. Fix now § > 0, and define

Y,; = { Zs(jn~1) — Zs((G — DoY) i p(Zs(in ) — Zs(( — 1)n™)) < 2o

0 otherwise.

Put S, = E;n___.lYnj, m=1,...,n. We claim that

S.. — Zs(1) in probability, as n — 0o. (2.7)
Indeed, for every 6 > 0,

P{||Snn — Zs(1)]| > 6} P{Sun # Zs(1)} (2.8)

1 — P{p(Zs(n")) < 2ro}",

IA A

and, setting A, = n~ us(£?(T)), we get

1
PIp(Zs(n) 2 20} = S ouit{p(h) = 20}

e
- e ’\”Ekzom s X ... X H&{p(hl +... + hk) 2 27'()}
k

Angoo L
e '\"Ekzom s % ... x ps{p(he) + ...+ p(hx) > 2ro}
k

IA

Angoo L
< eER, (PN

because ps{p(h) > 7o} = 0. We infer from the above bound that

nP{p(Zs(n™')) > 2ro} < ne~ e — 1 — An)
= p[l—e™ = Ae ] =0,



as n — oo. This implies that the last term in (2.8) converges to 0, proving (2.7). By
the lower semicontinuity of p we get, for each € > 0,

E exp(ep(Zs(1))) < limy, .o E exp(ep(Snn))- (2.9)
Now fix n > 1 (§ is fixed as well) and define

A; = {p(Sns) _<_r,i=1,...,j~—l,p(Snj)>T}, jg=1,...,n;

B, = UL 4;,m=1,...,n;
M = sup Eexp(ep(Snm)),
1<m<n

where 7, ¢ > 0 will be specified later. We have

Elexp(ep(Snm))18,] = Zjmi Elexp(ep(Snm))1a;]
< B, Elexp(ep(Sn;))14;1E exp(ep(Snm — Snj));

by the subadditivity of p and independence, and since the terms in Spy, are i.1.d., the
last expression is

< 57, Elexp(ep(Suj))Lay ] M.

J=1
Since on A; we have p(Sn;) < P(Snj-1) + p(Y,;) < v+ 2rg, we obtain the bound
Elexp(ep(Spm))1Bn] < exp(e(r + 2ro))P(Bm)M, and because p(Snm) < r on B, we
conclude that '

E exp(ep(Snm)) < exp(e(r + 2r0))P(Bm)M + exp(er), m=1,...,n.
Using the definition of M, we deduce from the above inequality that

M < exp(e(r + 2ro))P(Bn)M + exp(er). (2.10)
Define now V,;,j = 1,...,n, such that

Yo+ Vg = Zs(in™") = Zs((j = )n ™)
Using the symmetry of the set {h : p(h) < 2ro} we infer that

Ynj - Vn_] é Ynj + Vn_;

'Hence we get

P(B,) = P{swp p(Sh,Yu)> 7}

1<k<Ln

2P{1i:gn p(Zh (Yaj + Viy)) > 1/2}
< 4P{p(Zs(1)) > r/4},

IA
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by Lévy’s inequality. Using Lévy’s inequality again we have

PUp(Za(1) > r/4} < 2P{(Z(1) > /3)
for all § > 0. Choose now r > 0 such that P{p(Z(1)) > r/8} < 1/32. Then
P(B,) < % for all n € N,
which, combined with (2.10), yields

M < 47 exp(e(r + 2ro)) M + exp(er). (2.11)
Choose now € > 0 such that exp(e(r + 2r¢)) < 2. We get by (2.11)

M <27 M + exp(er) < 2-' M + 2,
therefore

E exp(ep(Spn)) < M < 4 for every n € N.
'In view of (2.9),

E exp(ep(Zs(1))) < 4 for every § > 0,
and by (2.6) and the definitions of p and Z(1),

Eexp{eq(X() — X'(-))} = Eexp{ep(Z(1))} < 4
Now a standard use of Fubini’s theorem completes the proof of the lemma.

Proof of Theorem 2.1. By Lemma 2.1 there exists ro > 0 such that
v({a : g(@) > ro}) < co. Hence by (2.2)

H(z) < v({o: g(a) > z}) < 00, for every T = To.
‘Consider now the following decomposition of v :

v=uv+vy+Vs,

where

n(4) = v(AN {a: ¢(a) > ro}),
n(A) = v(An{a:qg(a)>ro,¢(a) <ro}),
vs(4) = v(AN{e:q(a) <ro}).

Notice that »; and v, are finite measures. Let X; = {X;(t):teT},j=1,2,3 be
‘independent stochastic processes such that, for j = 1,2,

8



Eexp{i < 8,X; >} = exp{/RT[eKﬁ’o‘> — 1]y;(da)} (2.12)

and

Eexpli < 8,Xs >} = exp{i < B,b1 > +/RT[ei<ﬁ»a> 1< B,r(c) S]rs(da)},
where by is chosen such that

X4 X; + X + X3,
of. (1.1). We shall first show that

P{$(X;) >z} ~ H(x) as © — o0, (2.13)

Set A = 1 (RT) < oo and let {Y;} be an i.i.d. sequence in RT with the common
distribution A=114. By (2.12) X; can be represented as

X, £2N,Y;,, (2.14)

where N is independent of {Y,} Poisson random variables with parameter A. We
have, by the subadditivity of ¢ and Proposition 2.1(v),

P{¢(X1) >} = P{$(TL,Y;) > q]
| P{ZN ¢+ (Y;) >z} ~ AP{¢* (Y1) > <},

IN

as ¢ — oo. Indeed,

P{¢* (Y1) >z} = A ns({ex: ¢ () > z}) = AT H(z), (2.15)
for z > rg, thus the distribution of ¢*(Y;) belongs to S by Proposition 2.1 (iii) and
the assumption of the theorem. We have shown that

—  P{s(X1) >z}
lim, H(z) <1

To obtain a lower bound we proceed as follows. Fix n > 1, M € (0,00) and consider

(2.16)

Aj(z) = {¢7(Y;) >z + (n — )M, ¢(Yi) < M for all ¢ £35,0=1,...,n},

where z > M. Set A;(z), ..., An(z) are pairwise disjoint and, on each A;(z), we have

(O, Y:) = ¢H(Y)) — DigdT (-Y0)
> x4 (n—1M - Zigq(Y:) 2 =

9



Thus we get

P{¢* (DL, Y:) > o} P(4(z))

Hm, o0 H(z) > n____limx..,oow
) P{¢* (Y1) >z + (n— )M} n—1
= nlim, . H(z) [P(g(Yy) < M)

= nA7[P{g(Y1) < M},
by (2.15) and Proposition 2.1 (i). Letting M — oo we obtain
PSS Y) > 2} |

lim, .o H(z) >

ni~t.

Hence, using Fatou’s lemma, we have

: P{¢*(BL,Yi) > 2} A P{¢*(Z1,Yi) >z}
== > N — > 1.
.hlI__lw——»roo H(.’I)) e En:le n'.];.lln..z—»oo H(.’L’) jut 1
This completes the proof of (2.13).
Now we shall prove that
P{¢T(X;) >z} = o(H(z)), as ¢ — 0. (2.17)

In view of (2.12), X, can be represented in the form (2.14), where Y,’s have now the
common distribution A=z, and A = v2(RT) < co. By the definition of vs, #(Y;) <ro
a.s. Hence

P{¢(Xy) >} = P{4(ZLY;) >z}
< P{roN >z} < exp(-—r5 z)¥(1),
where ¢ is the moment generating function of N. (2.17) follows by Proposition 2.1
(ii).
'~ Now we shall show that
P{¢T(X3) > z} = o(H(z)), as ¢ — oo. (2.18)
First we notice that P{g(Xs) < oo} = 1. Indeed, assume to the contrary that
P{q(X3) = oo} > 0. Since P{X; = X; =0} >0, by the independence we get
0 < P{X; = 0,X; = 0,¢(X;) = 0o} < P{g(X) = oo},

which contradicts the assumption of our theorem. Therefore X3 satisfies all the
assumptions of Lemma 2.2 (with » = w3) and by that lemma we have that
E exp(eq(Xs3)) < oo for some € > 0. Since

10



P{¢*(X3) > z} P{q(X3) > z}

<
< e Eexp(eq(Xs)),

Proposition 2.1 (ii) yields (2.18).

Now we can complete the proof of the theorem. In view of (2.13) and Proposition
2.1 (iii), the distribution of ¢+ (X,) is subexponential. Therefore by Proposition 2.1
(iv) we get ‘

P{$(X) >z} < P{gH(Xy) + 6" (Xa) + 67 (Xs) > 2}
~ P{¢+(X1) > SE},

‘as T — 00. This establishes
—  P{¢X) >z}
rog————= < L.
limg H(o)

Now, using again subadditivity of ¢, Fatou’s lemma and Proposition 2.1 (i) we get

P{¢(X) > z} lim P{$(X;) — ¢(—X; — X3) >z}
—*  H(x) - - H(z)
. P{¢(X;) >z + ¢(a)}
= /RT lm oo ")

lim,

p(da) =1,

where p is the distribution of —X; — Xs. This completes the proof of Theorem 2.1.
O

3 Infinitely divisible processes given by a stochas-
tic integral.

In this section we apply the results of Section 2 to i.d. stochastic processes; it is
the possibility of this application that motivated the present research. Specifically,
we consider i.d. processes given in the form

X(t) = /S £(t,s)M(ds), t€ T, (3.1)

~where (S,.A) is a measurable space and M is an i.d. random measure on (S,A)
with Lévy measure F' and shift measure vo. That is, F is a o-finite measure on
(5 x R, A x B) and v, is a o-finite signed measure on (S, A). The random measure
M is a stochastic process of the type {M(A), A € Ag}, where

11



Ao ={A e A: MA) = |wl|(4) + /A/Rmin(l,:z:z)F(ds,dx) < oo},

such that M is independently scattered (i.e. for any disjoint Ag sets A, ..., An,
M(Ay),...,M(A,) are independent), o-additive (i.e. for any disjoint Ag sets
Ay, A,, ... such that U2, A; € Ao we have M(UE,A) = 2, M(4) a.s.) and for
every A € Ao, M(A) is a real i.d. random variable with

E exp(i0M(A)) = exp{ifvo(A) + /A /R(eiem_1_iaT(m))F(ds,dx)}, (3.2)

where 7(z) = z/(1 + z?).

We refer the reader to Rajput and Rosinski (1987) for more details on i.d. random
measures and on conditions on the kernel f(t, 5) in (3.1) ensuring that the stochastic
integral is well defined. We record at this time that the Lévy measure v of the i.d.
process {X(t),t € T} is given by v = FoV-! whereV:S xR — R7 is defined
by T(s,z) = {zf(t,s),t € T}

The following theorem follows immediately from Theorem 2.1.

THEOREM 3.1 Let {X(t),t € T} be an i.d. process given by (8.1), where T is a
countable set. Let ¢ and q satisfy (2.1), (2.2) and let P{q(X(-)) < 0o} = 1. Define
H(y) = F({(s,z) € S xR d(zf(-,s)) > y}),y > 0. If the distribution function
1—min{H(y),1}, y > 0, belongs to the subezponential class S, then the distribution
of $*(X () s in S and P($(X(:)) > y) ~ H(y), asy — oo

Example. Lévy motion. Let X = {X(t): 0t < 1} be a stationary independent
increment process without Gaussian component and let p be the Lévy measure of

X(1). Clearly

1
X () =/0 Log(s)M(ds), 0 <t <1,

where M is a random measure induced by X and F = Leb® p. Berman (1986) has
proved that if X is also symmetric and the right tail of the Lévy measure p, p((y,00)),
is regular varying of index -a, 0 < a <2, then, as y — o0,

P(sup X(t) >y) ~ P(X(1) > y) ~ p((y,0))-

0<t<1
Using Theorem 3.1 with

$la) = sup oft), gla)= sup |a(t)|
tefo,1] tef0,1]
t rational t rational

and computing easily H(y) = p((y, 0)), we extend immediately the above asymptotic
equivalences to all (not necessarily symmetric) Lévy processes for which the right

12



tail of the Lévy measures p,p((y,0)), are subexponential. (It has been shown in
Willekens (1987) that the first part of the equivalence above extends, actually to
all Lévy processes with Lévy measure with a “long” right tail (i.e. limy e p((y +
L,0))/p((y,00)) =1 for every L > 0). O

Since the shift measure v does not enter either the condition or the conclusion
of Theorem 3.1 (other than its role in the assumption that the integrals in (3.1) are
well defined), we will assume in the remainder of the paper that, unless specified
otherwise, 1o = 0. ‘

The structure of the i.d. random measure M and of the i.d. stochastic process
{X(t), t € T} becomes, usually, more transparent when we represent the measure F
in the form

F(Ax B) = /A o(s, B)A(ds), A€ A,B€B, (3.3)

where ) is a probability measure on (S,.A) and p(s,-), s € S is a family of Lévy
measures on R. We regard A and p(s,-), s € S as a parametric representation of
the random measure M. This representation is, obviously, not unique, and we refer
(adding, therefore, another usage to the name) to the probability measure A in (3.3)
as a control measure of the random measure M.

An important class of functionals ¢ consists of homogeneous functionals, satisfying,
in addition to (2.1 ),

d(ca) = cp(a), ¢> 0, a € RT.

Examples of such functionals ¢ include seminorms on RT (eg. ||-llpp 1 Sp <=
00), SUPsers iMnosoo®(tn), €tc.

For homogeneous functionals ¢ we now proceed to develop conditions sufficient for
the conclusion of Theorem 3.1 in terms of a particular parametrization of the random
measure M. It will be seen subsequently that these conditions are more explicit in

_the sense that they exhibit explicitly the role of the kernel f(¢,s) in (3.1) and the
parameters A and p(s,-),s € S. We will also be able to express the property of

subexponentiality in a natural language of random variables.
For s € S and u # 0 define

R(u,s) = inf{z > 0: p(s, (z,00)) < u} if u>0,
8} = inf{z > 0: p(s, (—o0,—z)) <u} i u<O.

Let now ¢, U and V be three independent random variables: let ¢ be a Rademacher
random variable, U be uniformly distributed on (0,1) and A be S-valued with distri-
bution A. For an a > 0 let

Za = ¢t (ef(-,V))R(acU, V). (3.4)
A straightforward calculation shows that fory >0
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P(Z, > y) (3.5)
! y _TY WA alnds).
- ot gy oD A ks (oo Fay) A )

Comparing (3.5) with an alternative (when ¢ is homogeneous) expression for H (y)

Y —Y
H(y) = / s, (——=——,00)) + p(8, (=0 =7y YA(ds), (3.6)
)= Jete Gaggrray =)+ o o ey
“we notice that it is natural to state sufficient conditions for the conclusion of Theorem
3.1 in terms of the random variable Z,.

The following statement, of course, does not require a proof.

PROPOSITION 3.1 Suppose that ¢ is homogeneous. [ 'f Z, belongs to the subexponential
class S and P(Zy > y) ~ = H(y) asy — 0o, then P(#(X()) >y)~ H(y) asy — 0.

In many cases dealing with subexponentiality of Z, in (3.4) rather than with subex-
ponentiality of H(y) directly can greatly facilitate verifying the latter. We will return
to this point in the sequel.

Example: Stable Processes:

A typical representation of a stable process is that of (3.1) with random measure
M being an a-stable random measure with control measure m and skewness intensity
3. That is, for any A€ Ay = {B € A: m(B) < oo}, M(A) is an a-stable random
variable with scaling parameter m(A)§ and skewness parameter R%T Ja ﬁ(s)m(ds).

It is straightforward to verify that, in the language of ca,nonicai representation
(3.3), it amounts to taking A ~ m, and p(s,dz) = (dA/dm)(s)acs 1+§ g=(etl)dy
for £ > 0 and (d)\/dm)(s)acakgifl(—-a:)‘("‘“)dac for ¢ < 0, where ¢, =
(fe° = sinzdz)~".

Now, for any homogeneous subadditive functional ¢, we obtain immediately from
(3.6) and Theorem 2.1 that

P(¢(X () >y) ~ Ky™®, (3.7)

provided P(¢(X(-)) < oo) = 1 ; where K = ca fs[l—"l—’giﬂqb+ (f(,8)> +
1801 g+ (— £(., )] m(ds).

" "We now consider an application in which (3.6) is only partly of help. Let {X(t),
t € T} be a measurable a-stable process on a separable metric space T'; we assuine, as
before, that the process is given by (3.1) (with T no longer countable). Moreover, we
assume that the kernel f(t,s) : is jointly measurable in t and s (this introduces no loss
of generality, see Proposition 6.1 of Rosinski and Woyczynski (1986) and Proposition
3.1 of Samorodnitsky (1990)). Let v be a o-finite Borel measure on T'. Let p > 0.
Assume that
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LX) = ( /T X (£)Pr(£)) P < oo as. (3.8)

We will show using Theorem 3.1 that

P(I,(X) > y) ~ Ky™UN/P, as y — oo, (3.9)

where K = ¢o [s(Jr |F(t,s)|Pv(dt))*/Pm(ds).

In the case p > 1 this can be obtained also from Corollary 6.20 of Araujo and Giné
(1980). In the case 0 < p <1 (3.9) improves upon Theorem 5.1 of Samorodnitsky
(1980).

We start with recalling that (3.8) implies that

]S ( /T |F(, 8)[Pw(dt))*/Pm(ds) < oo. (3.10)

In particular, for m-almost every s, Jr | f(t,s)Pr(dt) < oco. Let p be a Borel probabil-
ity measure on T, equivalent to v, and let h(t) = Z‘;ﬁ . Let {r, : n > 1} be a sequence
of i.i.d. T-valued random variables with common istribution p, living on another
probability space (21, F1, Py). Tt follows by the Strong Law of Large Numbers that,

for almost every w € (2,

() = Jim (-1, (X () Ph(r) (3.11)

By Fubini’s theorem, for almost every wy € 0y, (3.11) holds P-a.s. Another
application of Fubini’s theorem shows that there is an event Q9 C Q; with P;(Q}) =0
such that for every wy ¢ 00 both (3.11) holds P-a.s. and for m-almost every s € S

P -
i (S e PR = ([ 1A Pv@) e (312
To simplify notation, we consider the case 0 < p < 1in the sequel. The case p > 1
can be treated in an identical way.

Fix once and for all an wy ¢ Q9, and consider an a-stable process {X(r;),i > 1}
Define ¢ : R{r#21} — [0, 00] and ¢ : R{I21} — [0, 00] by

dl@) = sup = la(r)Ph(r),
He) = TnoorBlal(rPh(ri).

Obviously, ¢ and ¢ satisfy (2.1) and (2.2). The function H(y) is easily computable,
it is equal to

H(y) = y=ea [[( [ 1£(t,9)Pv(d)/Pm(ds)
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Applying Theorem 3.1 in this setting we get (3.9) for the case 0 < p < 1. The
case p > 1 can be treated similarly; ¢ is homogeneous in this case, s0 that (3.6) can
be used to find H.

Example ¢ — radial processes

The notion was introduced by Marcus (1987) and it refers to the i.d. processes
(3.1) such that

1) sup,er | f(t,8)| =1 for every s € 5,

2) p(s,-) = p(-) (independent of s) in (3.3).

This class of i.d. processes includes, in particular, symmetric o-stable processes
with bounded sample paths, 0 < a < 2.

Let ¢(a) = supyer |a(t)]. It follows from (3.6) that

H(y) = p((y,00)) + p((—00,=¥)); ¥ > 0.

We obtain immediately the following conclusion. Let {X(t),t € T} be a &-radial
i.d. process with bounded sample paths. If the tail of p((y,00)) + p((—o0,—Y))
belongs to the subexponential class S, then

lim P(supser |X(t)| > y)
v= p((y,00)) + p((—00, —~¥))

Marcus (1987) has obtained this conclusion in the symmetric case under more

restrictive conditions (including regular varying tail of the Lévy measure).

=1

Example Oscillation of i.d. processes

Let {X(t),t € T} be a stochastic process on a separable metric space (T, d), and
let T, be a countable dense subset of T'. Given a nonempty set C C T the oscillation
_of the process {X(t),t € T} on C is defined by

Wx(C) = Iim|X (t) — X(#2)],

where the limit is taken over t1,t, € To, d(t1,C) — 0 and d(t1,t2) — 0. We may
regard Wx (C) as the highest jump of X on the set C.

Obviously if {X(t),t € T} is an i.d. process with bounded sample paths, our
results apply with g(@) = 2super, lo(t)] and ¢(a) = Wa(C), a € R™0.

As an example, let us consider oscillation of i.d. moving averages that is of i.d.
processes given by (3.1) with T C R, § = (=00, +00), f(t,s) = f(s — t) for some
measurable f : R — R, and the measure F' of the form F(Ax B) = [,p(s,B)ds, A
and B Borel sets. Let {X(t),0 <t < 1} be an i.d. moving average with bounded
sample paths. If the function f is continuous, then Wx(C) is a degenerate (constant)
random variable (Cambanis, Nolan and Rosinski (1990)). Let us examine the case
when f has one discontinuity, and it is of the first kind. That is, for some ug € R,

A= {u}grol_ f(u) — lim f(u)| > 0.

u—rug+

Define for y > 0 and C C (0,1),
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Golw) 1= [lpls + o, (4,00)) + pls + o, (=00, —y)lds,

where T is the closure of C. We will show that, if the tail of G¢(y) belongs to the
subexponential class S, then

P(Wx(C) > y) ~ Gely/A), asy — oo. (3.13)

In particular, if p(s, B) = p(B) for some fixed Lévy measure p (which implies, in
particular, that X is stationary), then (3.13) reduces to

PWx(C) > y) ~ L@ [pl(%, ) + pl(—o0, Z Ny = o0

and, similarly, for X being Lévy motion, where we have f(u) = 1(~o0,0)(u) and
p(s,B) = p(B) if s >0 and = 0if s <0, we obtain

P(Wx(C) > y) ~ Leb(T)[p((y,00)) + p((—00, =y))], ¥ =

provided, of course, the assumption of subexponentiality holds.
To prove (3.13), note that in our case,

-0

I s — Y 00 §,(—o0 . S
H) = [ Il (=g )+ plos (oo gy ey M

(use (3.6) with A(ds) = %e“‘s‘ds (say) and p redefined accordingly). Obviously,
Wi—)(C)=Alifs € T + ug and = 0 if s ¢ C + uo. Thus,

) = [, [p(ss (%000 + s, (o0, = F)ds = Tl

Therefore, if the tail of Go(y) belongs to the subexponentialial class S, the tail of H
also does so, and thus Theorem 3.1 applies. O

4 Tail of $(X) and subexponentiality of the
product of independent random variables.

In the previous section we have exhibited numerous examples of applications of our
general result to particular i.d. processes. Of course, there are situations in which it is
not easy to verify whether or not the tail of H belongs to the subexponential class S.
Even in the case of a homogeneous ¢ with H(y) given by (3.6) this verification might
be technically involved. In this section we describe an important situation in which we
are able to “separate terms”, and to obtain sufficient conditions for subexponentiality
of H which are easier to verify.
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Assume, therefore, that ¢ is a homogeneous functional. Assume, MOreover, that
the F(A x B) = A(A)p(B) in (3.3) for some fixed Lévy measure p (thus, we are
including all £-radial processes in this discussion). We will also assume, for simplicity,
that the Lévy measure p is symietric.

In the notation of (3.4) we have then R(acU,V) = R(al) (independent of € and
V), and so we obtain

L= 6T (ef(, V))R(aU), (4.1)
a product of two independent random variables.
THEOREM 4.1 Under conditions of Theorem 3.1 assume additionally that ¢ 18 homo-

geneous and that F(A X B) = A(A)p(B) in (8.8), where A is @ probability measure.
Letn = ¢t (ef(-, V). If Za belongs to the subezponential class S and the following

condition holds

/RO(‘;) P(n> u~ly)p(du) ~ [:o P(n > u"'y)p(du), asy — oo, (4.2)

then (X (+)) belongs to the subezponential class S, and
P($(X () >y) ~2aP(Za > y) ~ H(y) asy — oo
Proof. We have only to check that conditions of Proposition 3.1 hold. Since by (3.5)

PZu>y) = 2 P>yl + Pl > yR@ ™) = o), )

1 o0
l P -1
; /R(a) (n > uw'y)p(du),

v

and by (3.6)

Hy)=2 [ Pl >uy)eldv)

it follows that P(Z, > y) ~ 5-H(y), as y — o0, and we may now appeal to Proposi-
tion 3.1. O

Example. Suppose that p((y,0)) € RV_p,p 2 0, a8 y — 0 If for some

§ >0, E((nt)P*?) < oo and J& aPtép(dz) < oo then for any a > 0 P(Z, >y)~
Lo((y, o)) E((n*)P) as y — oo. It is trivial to check that (4.2) holds. Therefore,

PG(X() >y) ~ 20P(Zu>y)
~ ply00) 6T () + 8 (=) INds). O
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In the previous example it was easy to check that Z, = T)R.(C.LU) belongs to the
class RV_p, thus also to the subexponential class S. Applica,bﬂlty of .The(.)rem :4.1
is greatly enhanced by the fact that, in general, there are many situations in which
one can relatively easily verify that the product of two independent random variables
belongs to the subexponential class S. The following result is quoted from Cline and
Samorodnitsky (1991).

THEOREM 4.2 Let X and Y be independent random variables such that X belongs to
the subezponential class S.
If there is a function a(t) : (0,00) — (0,00) such that, ast — o0,

(i) a(t) T o0
(i) t/a(t) T 00,
i) P = 1, |
(in) P(Y > a(t)) = o( P(XY > 1))
then the product XY belongs to the subezponential class S.

Example. Suppose that o(ly, o)) € S and that 7 is a bounded random variable.
Then Theorem 4.2 implies that Z, € S for any a > 0. Also (4.2) holds trivially for
any a > 0. Thus, Theorem 4.1 applies. O
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