Parallelizing Programs with
Recursive Data Structures

Laurie J. Hendren
Ph.D Thesis

TR 90-1114
April 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

PARALLELIZING PROGRAMS WITH RECURSIVE
DATA STRUCTURES

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

by
Laurie J. Hendren
January 1990

© Laurie J. Hendren 1990
ALL RIGHTS RESERVED

Abstract

Interference estimation is a useful tool in developing parallel programs and is a
key aspect of automatically parallelizing sequential programs. Interference analysis
and disambiguation mechanisms for programs with simple data types and arrays
have become a standard part of parallelizing and vectorizing compilers. However,
efficient and implementable techniques for interference analysis in the presence of
dynamic data structures have yet to be developed.

This thesis addresses the problem of estimating interference and parallelizing
programs in the setting of an imperative language that supports dynamic data
structures. By focusing on analysis methods for recursively defined pointer data
structures such as trees and DAGs, we have developed efficient and implementable
interference analysis tools and parallelization techniques.

The interference analysis methods are based on estimating the the relationships
between accessible nodes in a data structure. We define a data abstraction for
estimating relationships that leads to an efficient interference analysis. Analysis
functions are provided for SIL, a simple imperative language that includes condi-
tionals, loops and recursive procedures. The analysis is proven sound with respect
to the standard semantics for SIL. Based on the interference analysis tools, a collec-
tion of parallelization techniques are developed and the coarse-grain techniques are
used to develop a simple system for parallelizing programs for a shared memory ma-
chine. The analysis techniques and parallelization system have been implemented,
and examples illustrating the methods are provided.

Biographical Sketch

Laurie Jane Hendren was born in Peterborough, Ontario, Canada on a frosty winter
day, December 13th, 1958. After a happy childhood spent mostly in Peterborough
and at Chandos Lake, Laurie and her cousin “Susie” Galway launched themselves
into their university careers at Queen’s University in Kingston, Ontario.

Although initially intending to study chemistry, she soon found that she pre-
ferred punching cards and counting columns, to hunting for ions in the “chem lab”.
After two years of computer science, she forgot her experience in the “labs”, and did
a brief stint in medical school. Finally returning to computer science once and for
all, she received her B.Sc. (Honours) and M.Sc. degrees in Computing and Informa-
tion Science from Queen’s University at Kingston, Canada. While at Queen’s she
was a member of the development group for the Nested Interactive Array Language,
Q’Nial.

Laurie arrived in Ithaca in the fall of 1985, only to find that her office was in
yet another chemistry lab. Luckily, this lab was full of computer scientists who
thought that fume hoods were for storing empty coke bottles. Soon after arriving
she had her spot staked out at Oliver’s, the Friday A.l. tradition firmly entrenched,
and the Q-exam jitters. After passing most of the qualifying exams she escaped to
Cambridge for six months where she learned the real meaning of cold and damp, and
learned the joys of programming in ML. Upon returning, to an office that had never
been a “chem lab”, she began her thesis work. Her search for a thesis avoidance
activity quickly ended with the founding of the department’s women’s ice hockey
team, the “Flying Diskettes”. After a 4-2-0 season on the ice, and a 2-1-0 season
on the conference circuit, she finds herself ready to be graduated. Oops, she forgot
to mention that she got married in August 1988!

Acknowledgements

I would first like to thank all of my relatives, and in particular my parents who
have always provided a supportive environment, and have encouraged me in all my
endeavours.

During my career as a computer scientist, I have been fortunate in meeting a
diverse collection of supportive colleagues. I would like to express my appreciation
to all of my friends at Queen’s University who made the study of computer science
interesting and exciting. In particular, I would like to thank Mike Jenkins who
encouraged me to broaden my horizons.

At Cornell, I found my niche working with my advisor Alex Nicolau, who has al-
ways listened to my ideas with an open mind and who has continued to support me
from the far reaches of sunny California. Keshav Pingali has been a helpful member
of my committee as well as providing many interesting and informative lectures in
his courses. I would like to thank the members of the Women’s Studies field who
provided me with an interesting minor and an opportunity to attend classes led by
women. Kathryn March deserves special thanks for serving as the minor committee
member. I would like to acknowledge Prakash Panangaden and Radhakrishnan Ja-
gadeesan for their invaluable help with the semantic formalizations and the “taming
of the soundness proof”. I would also like to thank Anne Neirynck and Anne Rogers
for their careful reading of preliminary papers and thesis drafts.

I would like to thank all those who support the tools of the trade: the members
of the CER who provided ample computing power, John Reppy and Standard ML
of New Jersey support group who provided ever-improving versions of SML, and
the thesis macro writers who came before me.

My stay at Cornell has been made more pleasurable by the many friends that I
have met. Prakash is a special friend who I won’t have to leave. My office mates,
Nax Mendler, Olga Peschansky, Aleta Ricciardi (Ms. A.R.), and Anne Rogers
(Miss. A.R.) have provided a stimulating environment. Special thanks to Nax for
his help during the Q-exam years, to Anne for her interest and help with my thesis,
and to the N.A. Gods for coming through in the clutch.

There are so many others that it is hard to mention them all, but a special
mention to Dan Dan P. Huttenlocher and Bruce-O Donald. Finally, the “hockey
gang” has provided a great diversion from work, and the “Flying Diskettes” provided
an entertaining way of bringing the women in the department together.

To my maternal grandmother Edith Galway (née Lane),
and to the memory of my paternal grandmother Elsie Hendren (née Mcllvena).

Contents

1 Introduction

11 Related Work L
1.2 Our Approach
1.3 Organization of the Thesis
Setting

2.1 SIL . . . e e e e e
22 Treesand DAGs

Interference Analysis Tools

3.1 Data Structure Abstraction
3.1.1 Path Matrices and Path Expressions
3.1.2 Operations on Path Expressions

3.2 Analysing Simple Statements (TREES)
3.2.1 Handle Assignment Statements
3.2.2 Handle Update Statements

3.3 Estimating nilhandles.
3.3.1 Data abstraction for nil handle estimates.
3.3.2 Analysis rules for nil handle estimates.

3.4 Analysing Simple Statements (DAGS)
3.4.1 Data abstraction for reference counts
3.4.2 Analysis Rules for DAG estimates.

3.5 Analysing Compound Statements
3.5.1 Merging Path Matrices

3.6 Analysing Procedure Calls

Formal Description of Interference Analysis

4.1 A Formal Descriptionof SIL

4.2 Path Matrices Revisited
4.2.1 Defining a merge for Path Matrices.

4.3 Abstract Semantics e

44 Soundness Theorem

D Ot N -

-

11
12
12
14
18
18
23
25
27
27
30
33
33
36
38
40

5 Interference and Parallelization 78

5.1 Interference between Basic Statements 78
5.2 Interference between Procedure Calls 81
5.3 Interference between Statement Sequences 84

6 Generating Parallel Programs 88
6.1 Generating Parallel Code for the Butterfly 88
6.1.1 Strategy i e 90

6.2 An example: Adaptive Bitonic Sort 93
6.2.1 Path Matrix Computation 93

6.2.2 Generating the Parallel Program 93

6.23 Speedupresults., 96

6.3 FurtherIssues. 99

7 Conclusions and Further Work 105
A Standard Sematics for SIL 109
Al SemanticDomains 109
A2 Expressions e e e e e e e 109
A.3 Scalar Statements 110
A.4 Handle Statements 110
A5 Compound Statements 111
A6 Procedures 112
AT Programs e 113

B Translating SIL to C 114
B.1 Node Type Definition 114
B.2 Statements 115
B.3 Procedures and Functions 115

C Illustrative Interference Analysis Computations 117
C.1 SILprogram 117
C.2 Analysis of the mainprogram 121
C.3 Analysisof butldlist 123
C4 Analysisof gsort 127

D Generating Parallel C Programs: An Example 132
D.1 Sequential SIL Program 132
D.2 Parallel CProgram. 137
D.2.1 File: bitonicpmodeh. o oL 137

D.2.2 File: bitonicp.procs.h 138

D.2.3 File: bitonicp.c e 138

Bibliography 147

List of Figures

21
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3
4.4

Abstract Syntax of SIL. 8
Examples of recursive handle types. 8
A TREEand a DAG. 10
Structure of the analysis. 11
An example path matrix. 14
Path expression equality, merging, and concatenation. 17
Rules for A :=nil, A :=new(),and A:=B. 19
Example application of the simple handle assignment rules. 20
Rule for A:= B.left. 21
Functions used in the analysisof A :=Blleft. 22
An example of handle assignments. 24
Analysis for Alleft:=mil. oo 25
Analysis for Alleft:=B. 26
Data abstraction for nil estimates. 27
Nil estimate for A := nil, A := new(),and A:=B. 28
Example application of nil estimate. 29
Nil estimate for A:= B.left. 30
Nil estimate for A.left:=nil and Aleft:=B. 31
An example program that creates DAGnodes. 32
Operations on abstract reference counts. 33
Extended rule for A:=B.left. 34
Extended rule for Aldeft:=mil. o o 35
Extended rule for Alleft:=B. 37
Iterative approximation for a simple while loop. 38
An example of the merge operation. 39
Example of a procedurecall. 41
Example of a functioncall. 42
Estimating the path matrices for reverse. 44
Estimating path matrices for tail-recursive FindMin. 45
Semantic domains for SIL. 47
The model for the environment and memory 47
A tree and the corresponding path matrix 48
Partial ordering of path expressions of length 1 49

4.5 Partial ordering of path expressions of length1or2 50

4.6 Partial ordering for nil estimates and reference counts. 52
4.7 Merging path matrices., 53
4.8 Abstract semanticdomains. L. oL 54
4.9 Abstract semantic functions for handle assignment statements. . . . 55
4.10 Abstract semantic functions for compound statements.. 56
4.11 Semantic functions for while loops. 57
4.12 Abstract functions for procedurecalls. 57
4.13 Semantic functions for non-recursive procedures. 58
4.14 Abstract semantic function for recursive procedures. 60
4.15 Unrolling the semantic functions for while. 66
4.16 Recursive procedures in the Standard Semantics. 69
4.17 The k’th unwindingof Rand Q. 70
4.18 The k’th unwindingof F. 71
4.19 The first unwindingof F, FO). 72
4.20 FP™ approximants.t v v e e e e e 75
5.1 Transforming sequential statements to a parallel statement. 78
5.2 Functions for read and write sets of statement s relative to path
MatliX P. vt e e e e e e e e e e e e e e 79
5.3 Examples of interfering statements. 80
5.4 Example program and path matrices. 83
5.5 Parallel version of example program. 85

5.6 Initial path matrix p with two parallel statement sequences U and V. 86
5.7 Relative read and write sets given path matrix p and live handles £. 86

6.1 Current System e 89
6.2 Global/Local memory access times (unloaded switch). 89
6.3 Examplesof unfoldings. 91
6.4 Interval and Pool allocation. 92
6.5 Bitonic Sort and Swap procedures. 94
6.6 Bitonic Merge procedure. 95
6.7 Path Matrix before recursive calls in Bimerge. 96
6.8 Global/Local memory layout. 97
6.9 Parallel C versionof Bisort. 98
6.10 Speedup for 1 ... 32 processors.. « ¢ v v v ot oo e 101
6.11 Speedup for 1,2, 4, 8, 16, and 32 processors. 102
6.12 The effect of locality. 103
6.13 The effect of processor allocation overhead. 104
71 FuturePlans 107
C.1 Diagrammatic outline forgsort. 128

C.2 Iterative Approximation forqsort. 129

Chapter 1

Introduction

The emergence of parallel architectures holds the promise of faster execution of
programs. Unfortunately, dealing with parallelism adds a new dimension to the de-
sign of algorithms and programs, thereby further increasing the complexity of pro-
gramming. Traditional programming languages do not provide any mechanism for
handling this added complexity. One approach to handling parallelism is to design
a language that includes constructs for expressing parallel computations directly.
With this approach, the onus is on the programmer to express which computations
may be done in parallel. A second approach is to use a more conventional program-
ming language, but to provide a parallelizing compiler to extract parallelism. Thus,
a sequential program is converted into an equivalent parallel program in which some
computations may be done in parallel.

When the underlying programming language is imperative, alias analysis and
interference detection are central to both approaches. Two computations interfere
if one computation writes to a location that the other computation reads or writes.
Two sequential computations may be safely executed in parallel when they do not
interfere. In the case of a parallel programming language, interference analysis
can be used to assist the programmer in program development. When develop-
ing a parallel program, the programmer may inadvertently specify computations
that interfere. Such interference may lead to non-deterministic bugs which are ex-
tremely difficult to detect. By incorporating interference analysis into the compiler
for a parallel programming language, interfering computations can be detected at
compile-time and diagnostic information can be reported to the programmer. In
the case of a parallelizing compiler, interference detection is critical in exposing
opportunities for parallelism.

In the setting of functional languages, data structures cannot be updated, and
interference among computations is not an issue. However, when computing with
large aggregate data structures such as trees or arrays, the functional approach may
lead to excessive copying. In such cases, the ability to directly update a large data
structure would be beneficial.

Many imperative programs which use recursive data structures exhibit a regular

1

2 Introduction

updating pattern. We are developing interference analysis tools and parallelization
methods which take advantage of the regular nature of the data structure and the
programs using the structure. By providing interference analysis tools for such
data structures, we allow the programmer to specify imperative programs which
have both the determinate behaviour of functional programs and the efficiency of
updating in place.

Interference detection in the presence of dynamic data structures and pointers
is a difficult problem that has been only partially solved. Intuitively, the difficulty
lies in the lack of compile-time names for all allocated objects. Static scalar struc-
tures are the most straightforward to handle because they can be associated with
an identifier name at compile-time [Ban79b, Bar78]. Aggregate structures such as
arrays are more difficult to deal with. Although entire arrays can be associated with
an identifier name, elements within an array have computed names. Thus, it is rel-
atively easy to determine that two arrays X and Y are disjoint collections of objects
or that the elements X[i] and Y[j] are different objects. However, it is substantially
more difficult to determine that X[i] and X[j] are different objects. Since i and |
are computed values, subscript analysis must be performed. Various techniques
have been developed for analysing simple, regular array references [Ban79a, BC86,
Nic84, Wol82]. As a result, significant progress has been made in parallelizing sci-
entific programs in which the array references occur in a simple, regular manner
[AK87, PW86]. However, with dynamic data structures, objects are allocated and
linked together at run-time. Thus, not only is there no compile-time name for each
individual object, there is also no simple way to name collections of objects. Just
as array alias analysis can be done in many important regular cases, we show that
alias analysis of dynamic structures can be done with recursive data structures such
as trees. Furthermore, we propose that such techniques can be used for interference
detection and parallelism extraction in programs which use dynamic data structures
in a regular (recursive) manner. Our methods apply to imperative programming
languages which have procedures, functions and recursion.

1.1 Related Work

Various approaches have been suggested for analysis of programs in the presence of
dynamic data structures and pointers. Jones and Muchnick suggested one of the
first approaches with a flow-analysis for Lisp-like structures [JM81]. This analysis
was defined on a simple language that did not include procedures, and was de-
signed to statically distinguish among cells that could be immediately deallocated,
cells that could be reference counted, and cells that should be garbage collected.
With this approach they introduced the notion of using k-limited graphs as a finite
approximation to linked structures built by a program. A k-limited graph can have
paths of length at most k, and thus must approximate many nodes in the actual
data structure with one node in the abstract data structure. Although an interest-

1.1 Related Work 3

ing abstraction for statically estimating which cells should be garbage collected, the
information is not precise enough to be used in the context of interference analysis
for parallelization.

Jones and Muchnick [JM82] have also proposed a general purpose framework
for data flow analysis on programs with recursive data structures. This method
uses tokens to designate the points in a program where recursive data structures
are created or modified. A retrieval function is then defined to finitely represent
the relationships among tokens and data-values. By varying the choice of token
sets and approximation lattices, a wide range of analyses can be expressed in this
framework. Although flexible, the method is mostly of theoretical interest and is
potentially expensive in both time and space.

Another approach to static analysis for dynamic structures has been proposed
by Neirynck [Nei88, NPD87]. This method uses abstract interpretation techniques
to provide information about aliasing and side effects in a higher-order expression
language. Within this framework, dynamic data structures are handled by estimat-
ing each linked structure in an abstract store. Each call to a recursive function
that creates a linked data structure is approximated by one entry in the abstract
store. Although this method handles both recursive and higher-order functions, it
also fails to give fine-grain interference information that is useful for parallelization.

Horwitz, Pfeiffer, and Reps [HPR89] have provided an extension of the method
originally presented by Jones and Muchnick[JM81]. This method uses a refinement
of k-limited graphs called k-limited stores. The major innovation is that the cells in
k-limited stores are labeled by the program points that set their contents and this
additional information is used to calculate dependence information. It should be
noted that this method was not extended to handle procedures or functions, and it
suffers from the same problem as the previous methods. That is, using one abstract
location in the k-limited store to approximate many locations in real store leads to
an overly conservative approximation.

The previous methods have been mostly of theoretical interest, and have not
been targeted towards parallel programming languages or parallelizing compilers.
The following methods are more directly applicable to the problems addressed in
this thesis.

Lucassen and Gifford have proposed a language-based approach [Luc87, LG88).
They have defined a language (FX-87) that incorporates an effect system as well as a
type system. The effect of a computation is a summary of the observable side-effects
of the computation. For example, {read(X), write(Y), alloc(Z)} represents the effect
of a computation that reads from region X, writes to region Y, and allocates objects
in region Z. A region describes the area of store in which side-effects might occur.
Two computations interfere when they have interfering effects. Although the effect
system differentiates between totally disjoint linked structures, it does not provide a
way of distinguishing between different parts of a large data structure. For example,
even though the left and right sub-trees of a binary tree do not share any storage,
the effect system forces both sub-trees to be associated with the same region. This

4 Introduction

lack of fine-grain information based on the recursive structure of the object results
in an overly conservative interference analysis.

Another language-based approach, Refined C, has been suggested by Klappholz
et al. [DK85, KKK89]. Refined languages extend conventional languages with
special data partitioning constructs. Thus, rather than rely solely on compile-time
analysis for interference detection, run-time code is associated with the partitioning
constructs, and interference results in run-time errors. The extension of Refined C'to
linked data-structures is recent, and it has yet to be determined if the partitioning
constructs will be useful for programming, and if the run-time checks can be done
efficiently.

In the area of parallelizing compilers, interest is increasing in providing tools for
parallelizing Lisp and C. In both cases accurate analysis of dynamic data structures
is critical.

A technique for parallel restructuring of C programs has been described by
Guarna [Gua88]. Although this technique includes methods for pointer structures,
it does not handle procedures and functions. In addition, the technique assumes
that the structures are trees. If the structure specified by a program is not a tree,
then the interference analysis will not be safe.

Harrison has developed a parallelizing compiler for Lisp [Har86, HP88]. This
approach uses a novel representation for S-expressions to facilitate the parallel cre-
ation and access of lists. However, because of the added complexity of analysing
interference with pointer updates, and restrictions due to the representation of S-
expressions, this work was limited to a subset of Lisp which prohibited pointer
updates. More recently, Harrison has developed a more general interprocedural
analysis method for Scheme programs [Har89]. To solve the update problem, Har-
rison suggests alternate definitions for cons, car, cdr, set-car, and set-cdr which
simulate pointer updates with closures that do not contain any pointer updates
[Har89]. Although examples of parallelizing applicative programs are given, the
utility of the closure approach for updates has not yet been demonstrated.

Another approach, also targeted to restructuring Lisp programs for concur-
rent execution, has been suggested by Larus and Hilfinger [LH88a, LH88b]. Their
method is designed to handle objects composed of structures. A structure is de-
fined as a memory-resident object composed of a collection of named fields where
each field may contain either a pointer to a structure or a non-pointer value. The
analysis uses alias graphs to estimate the relation between variables, structures and
pointers. In order to handle general purpose structures, the alias graphs are com-
plex, and thus operations on alias graphs are potentially expensive. When these
methods are implemented and integrated into their Curare program restructuring
system, further information about their accuracy and practicality will be available.

Other analysis techniques that deal with dynamic data structures, but not specif-
ically with interference analysis and parallelization, include: a semantic model of
reference counting for optimizing applicative programs [Hud86], and lifetime anal-
ysis for dynamically allocated objects [RM88].

1.2 Our Approach 5

1.2 Ouwur Approach

We focused on developing efficient and implementable methods for recursive data
structures that exhibit regular properties (trees and DAGs). By restricting our
method to these regular and widely used data structures, we were able to design
a data abstraction that leads to fine-grain interference analysis. By abstracting on
properties of the data structure, rather than accounting for every cell (node) in the
data structure, we avoided the trap of using one abstract cell to estimate many real
storage locations. Thus, we exploited the regularities of the data structure in order
to obtain an efficient solution which yields more useful and accurate results than
would be possible otherwise.
Our overall strategy was to:

1. design an imperative language that included recursively defined dynamic data
structures, and recursive procedures and functions;

2. develop a data abstraction and associated interference analysis tools for pro-
grams that use dynamic data structures in a regular manner;

3. implement the analysis tools in a prototype system;

4. give a formal description of the analysis and prove soundness of the method;
5. develop parallelization techniques based on the interference analysis;

6. implement an experimental back-end for a shared memory machine; and

7. test the method on a set of representative programs.

In developing the interference analysis methods, we placed particular empha-
sis on reducing the run-time complexity by exploiting the regularities of the data
structure and on choosing an abstract representation of the data structure which
provides useful information for parallelization.

Note that our techniques are defined for an imperative language that supports
recursively defined pointer structures, dynamic allocation, pointer updates, and re-
cursive procedures and functions. Since the natural programming paradigm for
recursive data structures requires recursive procedures and functions, it is critical
to include a mechanism for handling recursion in the interference analysis. By im-
plementing our methods we demonstrated that the techniques are practical enough
to integrate into parallelizing compilers. Furthermore, our implementation was used
to illustrate the effectiveness of the methods on non-trivial examples. As well as
providing an implementation, we also described our methods within a formal frame-
work that was used to prove soundness of the method. Thus, our overall goal was
to demonstrate an effective, safe, and implementable method that is general enough
to be useful in parallelizing compilers.

6 Introduction

1.3 Organization of the Thesis

Chapters 2 through 5 provide a complete description of the interference analysis and
parallelization methods. Chapter 2 specifies the imperative language for which our
analysis is defined and gives a description of the sorts of recursive data structures
we consider. Chapter 3 gives a detailed development of the interference analysis
tools along with many illustrative examples. In chapter 4 we give a formal model of
the interference analysis and abstract domain. In the final section of chapter 4 we
use the formal model to reason about the fixed-point approximation and to prove
soundness of the method. Chapter 4 does not introduce any new analysis methods
and may be skipped by those not interested in the details. Chapter 5 presents three
parallelization methods built on the interference analysis tools presented in chapter
3.

In chapter 6 we use the analyses developed in the previous chapters to develop a
scheme for exploiting coarse-grain parallelism on the BBN Butterfly. We illustrate
our methods by parallelizing a sequential SIL program for adaptive bitonic sort. We
also present concrete speedup results for our example and give experimental data
illustrating various forms of overhead. Finally, in chapter 7 we put forward some
conclusions and give suggestions for areas of future work.

Chapter 2

Setting

In this chapter we outline the setting in which the interference analysis tools and
parallelization techniques are developed. In the first section a simple imperative
language (SIL) is defined, and in the second section we describe the data structures
for which our analysis is defined.

2.1 SIL

To focus our attention on the features relevant to analysis of recursive data struc-
tures, we have defined a simple imperative language that includes basic control flow
statements, recursively defined pointer structures, dynamic allocation, and recursive
procedures and functions.

A SIL program consists of a type definition for specifying a recursive data struc-
ture, a parameterless procedure main and a set of auxiliary procedures and func-
tions. The auxiliary procedures and functions may be recursive. The language is
statically scoped and has call-by-value semantics. An outline of the abstract syntax
for SIL is given in figure 2.1, and the standard semantics is specified in appendix
A.

Two data types are supported, a scalar integer type, and a recursive handle
type. The handle type is specified by a nodedef definition given at the beginning
of each SIL program. Figure 2.2 gives examples of nodedef definitions for linked
lists, binary trees, and 2-3-trees, along with the recursive handle type that each
definition denotes.

Operationally one can think of handles as pointers to nodes in a heap. Thus, with
call-by-value semantics, a procedure call passes integer and heap pointer values to
the called procedure. We provide a built-in function new that allocates new nodes
in the heap. The return value from an invocation of new must be assigned to a
variable with type handle.

The SIL statements of particular interest for interference analysis are those that
access or modify the data structures through the use of handle variables. Given

7

Setting

< Program> ::= program < Progld>
[constant <ConsantList> end;]
nodedef < FieldList> end;
< ProcedureFunctionList>
< MainProcedure>

< Procedure> ::= procedure <Procld> (<ParamList>)
< LocalList>
< Block>

< Function> ::= function <Funcld> (<ParamList>) <ReturnTypeList>
< LocalList>
<Block> => return (<ReturnldList>)

<Block> ::= begin <StmtList> end
<Arg> ::= <IntegerEzpr> | < HandleName>

<Stmt> ::= <ScalarAssignment>
| <HandleAssignment>
| <HandleUpdate>
| if <Ezpr> then <Stmt> [else <Stmt>]
| while <Ezpr> do <Stmt>
| repeat <Stmt> until <Ezpr>
| <Block>
| <ProcedureName> (<ArgList>)
| <IdList> := <PFunctionName> (<ArgList>)

Figure 2.1: Abstract Syntax of SIL.

nodedef type handle =

value: int; nil |

link: handle (value: int, link: handle)
end;
nodedef type handle =

key: int; nil |

left, right: handle (key: int; left, right: handle)
end;
nodedef type handle =

lowofsecond, lowofthird: int; nil |

first, second, third: handle (lowofsecond, lowofthird: int;
end; first, second, third: handle)

Figure 2.2: Examples of recursive handle types.

2.2 Trees and DAGs 9

that a and b are handle variables, h is a handle field, s is a scalar field, and z is an
integer variable, the basic handle statements are of the form:

a := nil;

a := new();
a:=b
a:= b.h;
a.h:=b;

T = a.s;

By focusing on this small set of basic handle statements, we reduce the number
of analysis rules required without losing any expressiveness in the language. More
complex handle statements such as a.left.right := b.right are easily translated into
a sequence of basic handle statements (t1 := a.left; t2 := b.right; tl.right := t2).

There are two further simplifications worth noting. The first is that expressions
in SIL are pure, they cannot have side-effects. The second simplification is that
handle arguments to procedures and functions must be handle identifiers. Thus,
statements of the form f(a.left) must be translated into a statement sequence of
the form t1 := a.left; f(t1).

SIL should be considered a subset of a more complete programming language, or
as a high-level intermediate representation for imperative programs. For example,
there is a direct mapping from SIL to a subset of C and conversely it is quite
straightforward to write a translator that converts programs written in a subset of
C to SIL. The translation from SIL to C is outlined in appendix B and an example
of the translation is found in appendix D. Currently, we are using SIL as a test-bed
for experiments with various analysis and parallelization tools.

2.2 Trees and DAGs

The basic building blocks of our data structures are nodes. Each node consists of
one or more fields and each field is designated as a scalar field or a handle field. A
handle field contains either nil or a handle (pointer) to a node of the same type. In
general, objects built by linking nodes together are directed graphs. We classify two
special types of directed graphs: (1) a TREE is a directed graph in which each node
has at most one parent, and (2) a DAG is a directed graph in which some node has
more than one parent and the graph does not contain a directed cycle.

The potential for parallelism in programs that use trees arises from the following
observation. If a program builds linked structures that are of type TREE, then
unrelated sub-trees, T; and Tj, of tree T are guaranteed to share no common storage.
Thus, a computation on T or any sub-tree of T; will not interfere with a computation
on T; or any sub-tree of T;. In addition, for both TREFE and DAG data structures,
we can make the following observation: if node a is above node b, then node a can

10 Setting

never be accessed starting at b.

rootl root2

/

Figure 2.3: A TREE and a DAG.

As an introduction to the interference analysis presented in the next chapter,
consider the TREE and DAG data structures in figure 2.3. A coarse-grain analysis
may indicate that all the nodes in the structure root! are distinct from the nodes
in root2. However, a more accurate analysis could determine that that root! is a
TREE data structure and therefore any computation on root!.left or a sub-tree of
rootl.left is guaranteed not to interfere with a computation on rootl.right or any
sub-tree of rootl.right. The analysis should also detect that root2 is a DAG. In
this case, root2.left and root2.right point to the same sub-tree, and computations
on root2.left could interfere with computations on root2.right. However, if d is the
only DAG node in the data-structure, computations on d.left will not interfere with
computations on d.right.

Chapter 3

Interference Analysis Tools

In this chapter a collection of structure-based, dataflow analysis tools are developed.
The goals of the analysis are: (1) to check that the data structures built be the
program are the special cases of TREES or DAGS, and (2) to determine when two
handles refer to the roots of unrelated sub-pieces of the data structure. Given
an input program, the analysis computes a set of possible relationships among
handles live at each point in the program. A point refers to a position between two
statements in the program. A handle h is live at a point x if there is some execution
path starting at x that uses h. The structure of the analysis is illustrated in figure
3.1. Given p, an estimate of the relationships among all handles live at point x, we
wish to compute p’, an estimate of the relationships among all handles live at point

y.

X p
Statehent
y O p’

Figure 3.1: Structure of the analysis.

The estimate of relationships among handles captures the relative position of
handles within a tree or forest. Relative information can be used to detect if a
statement creates a data structure that is possibly not a TREE or a DAG. For

11

12 Interference Analysis Tools

example, if node a is a descendant of node b, then the statement a.left := b will
create a cycle and the structure can no longer be considered a TREE or a DAG.
Similarly, relative information can be used to detect when a statement of the form
a.left := b creates a DAG structure in which b has more than one parent. Relative
information may also be used to determine if two handles refer to disjoint sub-trees
in a structure of type TREE. If node a is not a descendant of node b and node bis not
a descendant of node a, then a and b refer to disjoint sub-trees and a computation
on a cannot interfere with a computation on b.

The structure of this chapter is as follows. In section 3.1, we define the data
structure abstraction used to estimate relationships among handles. Using this
abstraction, we present the analysis techniques for simple statements and TREE
data structures in section 3.2. Section 3.3 outlines an improved approximation that
incorporates a simple analysis for estimating whether a handle is a nil pointer, or
a pointer to a node. Extensions to the analysis for DAG data structures is given
in section 3.4. In section 3.5 we use the simple statement analysis rules as building
blocks for the development of analysis for compound statements, and in section 3.6
we present the analysis rules for procedure and function calls.

3.1 Data Structure Abstraction

In choosing an approach to interference analysis, the choice of data structure ab-
straction is critical to both the accuracy and efficiency of the analysis methods. The
data structure abstraction must capture information that is accurate enough to de-
tect unrelated sub-pieces of a data structure, while also providing a representation
that allows for reasonably efficient analyses. If the data structure abstraction is
too coarse, or abstracts the wrong characteristic, then the results of the analysis
techniques will be overly conservative and not useful for parallelization. On the
other hand, if the abstraction is too fine, or abstracts more characteristics than
are required, the resulting analyses will be inefficient and not practical for use with
parallelizing compilers.

3.1.1 Path Matrices and Path Expressions

In choosing our abstraction, path matrices, we concentrated on designing an abstrac-
tion that exploits the regularities found in tree-like data structures. Rather than
estimating the relationships between all nodes in a data structure, path matrices
are designed to capture the important relationships among the nodes to which the
program has access (the live handles at a point in the program). Thus, the paths
between live nodes is the characteristic we abstract. We represent this abstraction
with a path matriz that encodes a path estimate for each pair of live handles. For each
pair of live handles, h; and hj, the relationships between h; and h; are approximated
by a list of path ezpressions stored in path matrix p, at location p[h;, h;].

3.1 Data Structure Abstraction 13

Definition 1. A path ezpression has one of three possible forms:

1. S, denoting the set containing the empty path (the nodes are the same),
2. link_ezpression, denoting a set non-empty paths, or

3. S + link_ezpression, denoting the set containing both the empty path and the
set of non-empty paths given by the link_ezpression.

The links of a link ezpression are determined by the type of the data structure
node. The following definition gives the possible links for binary trees. Links for
other types of nodes are similarly defined.

Definition 2. A link for binary trees is one of:
L': exactly i left edges,

L*: one or more left edges,

R': exactly i right edges,

R*: one or more right edges,

D': exactly ¢ down (left or right) edges, or
D*: one or more down edges.

Note that path expressions are a restricted form of regular expressions. Although
we can write some regular expressions as path expressions, (RLRR+ RLLR is equal
to the path expression R! L' D' R!), we cannot express all regular expressions as path
expressions. For example, we have no path expression for the regular expression
LR + LRR + LRRR. However, we can approximate this regular expression by
L'R*. The restrictions on the path expressions are chosen to represent abstracted
information about paths between handles, while providing efficient operations such
as equality testing and merging.

Each path expression is classified as definite - a path between two nodes is
guaranteed to exist, or possible - a path between the nodes may or may not exist.

Figure 3.2 gives an example of a path matrix that represents the possible rela-
tionships among the live handles a, b, ¢, d, and e. For example, p[a,e] = {R'L'}
specifies that there is a definite, directed path of R'L! from the node pointed to
by a to the node pointed to by e. Note that the entry ple,a] = {} specifies that
there is no path from e to a. Two handles k; and h; are unrelated (refer to disjoint
sub-trees) if p[h;,h;] = p[hj,hi] = {}. In our example, b and c are unrelated and
b and e are unrelated. The path matrix entry, p[c,e] = {S?}, is an example of a
possible path. Handle ¢ may or may not refer to the same node as handle e.

Two sorts of approximation are encoded in path matrices: path length approx-
imation, and path direction approximation. The entry pla,b] = {L'L*L'} is an

14 Interference Analysis Tools

example of a path with an exact direction (left), but an approximate length (3 or
more). The entry p[a,c] = {R'D*} is an example of a path that has an approximate
direction (D may be left or right) and an approximate length (2 or more). Note that
since a path matrix may contain path expressions with approximate length and/or
approximate direction, a path matrix specifies a set of possible data structures.

L lel & | ¢ [d] e |
a |S|LIL*LT| R'D* | R'[R'L?
b S
: c S S?
/(5 d D+t S| I1
Ob éC? e S + Dt S

Figure 3.2: An example path matrix.

3.1.2 Operations on Path Expressions

In developing the analysis tools, three basic operations on path expressions are
required: (1) equality, (2) merging, and (3) concatenation.

Definition 3. A path expression p has a normal form that consists of a concate-
nation of subsequences of the form L‘, Lt, L‘L*, R', R*, R'R*, D', D*, D'D*,
such that no two subsequences of the same kind (L,R,or D) are adjacent, and no
subsequence containing D* is adjacent to a subsequence containing L* or R*.

The normal form of a path expression p is computed by two traversals of p. The
first traversal performs first-order normalization, while the second traversal performs
second-order normalization. First-order normalization reduces a link subsequence
having the same kind (L, R, or D for binary trees) to a subsequence of the form
X', X*, or X*X*. First-order normalization is based on the observation that X* X’
denotes the same set of paths at X+, and that X*X* denotes the same set
as X'X*. Given a subsequence S containing links of the same kind, the reduced
subsequence S,.q is computed as follows. S is divided into Sinx = Xll‘ ...X!™ and
Spius = X{* ... X}, where Siink collects all links of the form X and Spy, collects all
links of the form X'*. Given that ny,, is the number of links in A, and nyqk is
the sum of the I;’s in Sjinx, the reduced subsequence S,q is given by:

3.1 Data Structure Abstraction 15

X mink (nlink > 0, Nplus = 0)
Sred = X(np,u,—l)x+ (nlink = 0, Nplus > 0)
X("plua‘l’"h‘nh-l)x*' (nlink > 0, Nplus > 0).

Given a first-order normalized path expression, second-order normalization re-
duces adjacent subsequences when one subsequence contains L+ or R*, and the
other subsequence contains D*. These reductions are based on the fact that subse-
quences of the form X+ D+ (X =L or R) denote the same set of paths as X*D*, and
similarly Dt X'+ denotes the same set as Dt X’!. The reduction rules for adjacent
subsequences are as follows:

X+Dt = X'D*
XixtDt = xG+ip+
X*D'D* = X'D'D*

X‘x+D'Dt = XxG+Upip+

Dtx* = D*x?

DtXix+t = D+X(i+1)

As an example of normalization, the normal form reduction of D¥*L'L* L3R* R*
proceeds by a first-order normalization giving D¥L*L*R'R* and then a second-
order normalization giving Dt L’R'R*. Similarly, D L*L* L3 R! R* reduces first to
D*LAL*R'R* and then to DY L®R!R*.

Note, that since normalization can be accomplished by two traversals of a path
expression p, the complexity of the normal form computation is O(n), where n is
the number of links in p.

Definition 4. Two path expressions p; and p, are equal if they are of the same
form (S, e, or S + ¢), and the normal forms of their link expressions are identical
(they have exactly the same sequence of links).

The complexity of equality testing of two normalized link expressions e; and e;
is O(min(n,m)), where n is the number of links in e; and m is the number of links
n e;.

Definition 5. Link expression e, is more general than link expression e, if all paths
in the set denoted by e, are also in the set denoted by e; and there exists some path
in the set denoted by e; that is not in the set denoted by e,.

Definition 6. The minimal length of a link expression is the sum of the minimal
lengths of its links, where the minimal length of D*, R*, or L* is 1 and the minimal
length of D', R, or L' is 1.

16 Interference Analysis Tools

Definition 7. The squash of two normalized link expressions e; and e; is a nor-
malized link expression z such that: (1) any path in the sets denoted by e, or e;
is also in the set denoted by z, and (2) the minimal length of z is no greater than
min(n, m), where n is the minimal length of e; and m is the minimal length of e,.

There are many choices for valid squash functions. A coarse-grain, inexpen-
sive squash is of the form: squash(e;,e;) = D*. Certainly this squash function
obeys the properties given in definition 7. However, such coarse-grain approxima-
tion leads to a very conservative analysis, and we usually require a more informa-
tive approximation. The strategy outlined below has complexity O(maz(n,m)),
where n is the minimal length of e; and m is the minimal length of e;. Given
two link expressions e; and e;, ¢ = squash(e;,e;) can be computed by building
r stage-wise from the front and the back. At each stage, the match of the first
subsequences of e; and e; and the match of the last subsequences of e; and e, is
estimated and the subsequence with the best match is squashed using simple rules
defined on small subsequences (for example, squash(LL*, L’L*) = L™"(9) L+ and
squash(D'D*,LIL*) = squash(D™"») Dt)). Each stage is a constant time op-
eration, and there are at most O(maz(n,m)) stages. By varying the matching
estimate and the simple squash functions, a variety of efficient squash functions
have been defined. Some examples of valid squashes are: squash(R*,R!) = R*,
squash(L?*R',L*R?) = L'D'R}!, and squash(L'L*,L'L*L') = L'L*.

We can use the definition of squash to define both merge, a conservative approx-
imation of set union, and concatenation of path expressions. The equal, merge, and
concatenation operations are defined in figure 3.3.

As mentioned previously, there are two kinds of path expressions: possible and
definite. If we represent a definite path expression p with the pair (p,true), and a
possible path expression p? with the pair (p, false), then we can define the following
extensions to the path expression operations.

Definition 8. Eztended operations for equality (=), and-merging (X"), or-merging
(XV), and concatenation (-) of two path expressions (p;, b1), and (p;,b;) are defined
as follows:

Path expressions (p, b)) and (p2, b) are equal & p; = p; and by = b,.

The and-merge of path expressions (p;, b,) and (ps, b2) is defined as:

(p1,b1) ™" (p2,b2) = (p1 X p3, b1 A ba).
The or-merge of path expressions (p;, b1) and (p2, b2) is defined as:
(p1,b1) XY (p2,b2) = (p1 X p2, b1 V by).
The concatenation of path expressions (p1, ;) and (p3, b2) is defined as:
(P1,b1) - (P2, b2) = (P1 - P2, b1 A B2).

Note that the path expression resulting from the concatenation of p; and p, is
definite only when both p; and p; are definite.

3.1 Data Structure Abstraction 17

Path Expression Equality (p; = p,)

e\ | S | &1 I Ste |
S true false false
[false | normal(e;) = normal(e,) false
S + e, || false false normal(e;) = normal(ez)

Path Expression Merging (p; ™ p;)

2\ | S | €1 | S+ea |
S S S + e S + e
€2 | S +e; squash(ey, ez) S + squash(e,, e3)
S+e || S+ex| S+ squash(er,er) | S+ squash(ey,es)

Path Expression Concatenation (p; - p2)

e\ || S | €1 | S+e |
S S (3] S + e
€2 €2 e1€2 ez M (e1€3)
S+e || S+er|en™M(erer) | S+ (e1™ ez ™M (eez))

Figure 3.3: Path expression equality, merging, and concatenation.

18 Interference Analysis Tools

3.2 Analysing Simple Statements (TREES)

Given the description of the data structure abstraction and the basic operations of
path expressions, the overall structure of the analysis can now be more precisely
stated. For each kind of statement, an analysis function is defined that takes as
input an instance of a statement s, and a path matrix p that is a safe estimate of
the relationships among all non-nil handles before execution of statement s, and
produces as output a new path matrix p’ that is a safe estimate of the relationships
after execution of the statement s. Note that each live handle may either be nil, or
a pointer to a node. Since there is never any path from a nil handle to any other
handle, the path matrix analysis only computes the path expressions for the non-nil
case.

Simple statements that result in changes in path matrices can be classified as:
(1) statements that only add new relationships to a path matrix (handle assignment
statements), and (2) statements that change the relationships in a path matrix
(handle update statements).

3.2.1 Handle Assignment Statements

There are four forms of handle assignment statements: A := nil, A := new(),
A := B, and A := B.f. The first three forms are quite straightforward and their
rules are given in figure 3.4. In the case of A := nil and A := new(), the rules
simply state that the output path matrix p’ is the same as the input path matrix p,
except for the column entries p/[h;, A], and the row entries p’[A, hj]. These entries
of p’ are defined such that p'[A, A] = S, and all other entries p'[h;, A] and p'[A, hj]
are empty (there are no paths between A and any other handle).

The rule for A := B is only slightly more complex. As in the previous rules, the
only differences between p and p' occur in the entries p'[h;, A] and p'[A, hj]. Since
A and B refer to the same node, the entries p'[A, B] and p/[B, A] are both S. The
remaining entries for A are just the corresponding entries for B: p'[h;, A] — pl[hi, B]
and p'(4, hj] — p[B, k;j].

An example of the application of the simple handle assignment rules is given in
figure 3.5. Given the input path matrix of figure 3.5(a), the path matrices given
in 3.5(b,c, and d) illustrate the results of analysing the sequence of statements:
¢:=nil, d := new(), and e := a.

Statements of the form A := B.f require a more complex analysis. As an
example, consider the rule given in figure 3.6 for A := B.left. As in the previous
handle assignment rules, p’ differs from p in the column that defines the paths
between the handles h; and A4, and in the row that defines the paths between A and
h;. The basic cases specify that p'[A, A] = {S}, p'[B, A] = {L'}, and p'[A, B] = {}.
For the remaining entries, we construct the relationships p'[h;, A] and p'[A, h;] from
the corresponding entries p[h;, B] and p[B, h;].

Figure 3.7 illustrates the mapping of path expressions from p[h;, B] and p[B, hj]

3.2 Analysing Simple Statements (TREES)

19

A := nil
V hi, h; € H' .
P'lhi, b -
if h; = A and h; = A then
{s}
else if h; = A or h; = A then
{}

else
p[hi, hj]

A = new()
V hi, hj€e H .
P'[hi, hj] —
if h, = A and h; = A then
{S}
else if h;, = A or hj; = A then
{}

else
p[h.’, hj]

A:=B
V hi, hj € H .
P'lhi, hj) —

if h; = A then
ifhj = Bor hj = A then {S} Q.l&P[B,hj]

else if h; = A then
if h; = B then {S} else p|h;,B]

else
plhi, k]

Figure 3.4: Rules for A := nil, A := new(), and A := B.

20 Interference Analysis Tools

(a) Initial Path Matrix

| a] b
a| S| Lt
b S

(b) After statement : ¢ := nil

L lal b]c]
ai|S|L*
S
S

(c) After statement : d := new()

L lal b]c|d]
all S| LT
b S
c S
d S

(d) After statement : e :=a

L lalblcld]e]

allS|LY S
b S

c S

d S
ellS|L S

Figure 3.5: Example application of the simple handle assignment rules.

3.2 Analysing Simple Statements (TREES) 21

p[h,‘, hj]

Figure 3.6: Rule for A := B.left.

to the appropriate path expressions for p'[h;, A] and p'[A,hj]. In these functions
the pair (e, d) represents an input path expression where d is true if the path
expression is definite and false if the path expression is possible.

The function above_rule(e,d) is used to map path expressions from p[h;, B] to
path expressions for p'[h;, A]. If h; points to the same node as B, then there is a
path L! between h; and A. Similarly, if there is a path denoted by the link expression
z between h; and B, then there is a path denoted by zL! between h; and A.

The function below_rule(e,d) is used to map path expressions from p[B, kj] to
path expressions for p'[A, h;]. If the path between B and h; begins with L, there is
a shorter path between A and h;. If the path begins with R, then there will be no
path between A and h;. If the path between B and hj begins with a D link, then
it is uncertain whether or not there is a path between A and hj;. Thus, a possible
shorter path is included. Note that when the first link of the path expression e is
D* or L*, there are two possible shorter paths that must be merged.

An example application of the handle assignment rules is given in Figure 3.8.
Figure 3.8(a) illustrates an initial path matrix representing the relationships be-
tween the handles a, b, and c. Figure 3.8(b) shows the path matrix that would
result from the statement d := a.right and 3.8(c) illustrates the resulting path
matrix after the additional statement e := d.left. Note that although the path
matrices in 3.8(a) and 3.8(b) have only definite paths, the path matrix in 3.8(c)
contains some possible paths (denoted by ?). Since both the length and direction

22 Interference Analysis Tools

B, h; B
oo

h; B B
P

A (5 h; é h;

above_rule below_rule

wog\o

above_rule(e, d)

((S,d) = {(L',d)}
(z,d) = {(zL',d)}
(S+z,d) = {(aboverule(S,d)) X" (above-rule(z,d))}

)

below_rule(e, d)

((S,d) = {}
(z,d) = shorten(z,d)
(S+z,d) = shorten(z, false)

)

shorten(e d)

((L4d) = {(S,d)}
(Lmd) = {7,)
(Lhd) = {(S+1%d)}
(L'z,d) = {(z,d)}
(L"z,d) = {(L"'z,d)}
(L*z,d) = {(z ™ L*z,d)}
(DY,d) = {(S, false)}
(D*,d) = {(D"', false)}
(D*,d) = {(S+ D, false)}
(D'z,d) = {(z,false)}
(D"z,d) = {(D""1 , false)}
(D*z,d) = {(z X D%z, false)}
- =]

)

Figure 3.7: Functions used in the analysis of A := B.left.

3.2 Analysing Simple Statements (TREES) 23

of the path between handles d and c is estimated (p[d,c] = D*), the path between
handles e and c is can be S, or D+, or no path at all. Thus, p'[e,] must include
all the possibilities with p'[e,c] = (S + D*)?.

3.2.2 Handle Update Statements

There are two forms of handle update statements: A.f := nil, and A.f := B.
Unlike the handle assignments statements, handle update statements can change
the relationships between handles other than A and B.

We first consider rules of the form A.f := nil by examining the analysis rule for
A.left := nil. The effect of the statement A.left := nil is to break the link between
A and the node pointed to by A.left. This breaking operation not only changes
that relationship between A and its left child, but also the relationships between
all pairs of handles (h;, k;) such that h; is above or equal to A, and k; is below or
equal to A’s left child.

The analysis rule for A.left := nil is given in figure 3.9. In this rule we use
path(A, path_description, B, p) as a predicate to test for certain paths in the path
matrix entry p[A, B]. For example, path(h;,*?, A,p) is true if there is any path
expression (possible or definite) in p[h;, A], and path(h;, *, A, p) is true if there is
any definite path expression in p[h;.A]. Thus the first conditional test in figure 3.9
is true if there is definitely a path between h; and A, and there is definitely a path
starting with a left link between A and h;. Similarly, the second conditional is true
if there may be a path between handle k; and A, and there may be a path beginning
with a left link between A and h;.

Given the description of the function path, we can now examine how the analysis
rule estimates the effect of A.left := nil. The entries p'[h;, h;] are the same as those
of p[hi, h;] except for the entries where h; may be above or equal to A and h; may
below or equal to the left child of A. If h; is definitely above or equal to A, and h;
is definitely below or equal to the left child of A, then breaking the left link of A
will break the path between k; and hj, and p'[h;, hj] will be {}. If the relationships
are not definite, then we must make an approximation of the effect of breaking the
link. A simple approximation is given by the three clauses involving remove_head,
remove_tail, and make_possible. If h; is the same as A, then all paths between h; and
h; that begin with L are broken, paths that begin with D are converted to possible
paths, and paths that begin with R remain intact. Similarly, if h; is the same as
A’s left child, then all paths between h; and h; that end with L are broken. For all
other paths, the paths may or may not be broken, and we must include all paths in
plhi, k], as possible paths in p'[h;, h;].

The last simple update rule is of the form A.f := B. As indicated in the rule
for A.left := B given in figure 3.10, the effect of A.left := B is to produce a data
structure with a cycle, a DAG, or a TREE. In figure 3.10 we outline the case for
TREEs. In section 3.4 we give extensions to the analysis to handle DAGS. In the
case of a cycle, the analysis terminates with a failure indicating that a cycle has been

24 Interference Analysis Tools

(a) Initial path matrix

f)\\a

L el & | ¢ |

/O ? el S| 2T | BD*
5 5

/ b -

Sy b

(b) After statement : d := a.right

A oo

p ?d S| LL* | R'D* | R!
S

4 t S

6/1) b . D+ S

(c) After statement : e := d.left

SHEE a3

X
L llel & | c |d] e |
p O{ sl S| I°Lt | RD* |R|RL
b 5
4 e Ci? O c? ¢ S S?
O/ b b t d D* s It
\ \ e (S + D*)? S

éc? bc?

Figure 3.8: An example of handle assignments.

3.3 Estimating nil handles. 25

A.left := nil
V h;, hj € H’. h;
p'lhi, hj] —

if path(h;,*,A,p) and path(A,L*,hj,p) then

O
¥
0 !
else if path(h;,x?,A,p) and path(A,L*%hj,p) then
if path(h;,S,A,p) then As b
remove_head(L,p[hi,h;])
else if path(A,L,kj,p) then O,
remove_tail(L,p[h;,h;]) i J
else *
make_possible(p[hi,h;])
else CB

plhi, hj

Figure 3.9: Analysis for A.left := nil.

h;

detected. The analysis for A.left := B begins by producing a path matrix p’ that
is an estimate of the effect of A.left := nil. Path matrix p” is produced by adding
to p’ the paths created by linking A.left to B. For all pairs of handles (k;,h;), such
that h; may be above or equal to A, and h; may be below or equal to B, p”[h;, h;] is
the union of p'[h;, h;] and all path expressions created by connecting the entries in
p'[hi, A] and p'[B, h;] with an L link. A subtle aspect of this rule concerns whether
or not B is a nil pointer, or a pointer to a node. If B is nil, then no connections
are required and if B is definitely a pointer to a node, the connections are made by
direct application of the concatenation (-) operation. However, if the nilness of B is
unknown, we must make a conservative approximation, and only consider the path
expressions between B and h; as possible paths. A simple extension to the analysis
to estimate the nilness of handles is presented in the next section.

3.3 Estimating n:l handles.

In the previous section we discussed the analysis rules for each of the basic handle
statements. For statements of the form A.f := B, we found that a more accurate
analysis can be specified if we know whether B is nil or a handle to a node. In this

section we will outline a simple extension to the path matrix analysis for estimating
nil handles.

26 Interference Analysis Tools

Aleft:= B
P — f(A.left:=nilp);

if path(B,*?,A,p’) then
possible_cycle()

else if handle_above(B,p’) then B
possible_dag()
else
Y hi, b € H A
pl [hi, hj] —
if path(h;,*?,Ap)

and path(B,x%,h;,p') then
if is_node(B) then
P'[hi,hj] U
(connect_all

(P'[hi, A])

(L', true),
P'[B, hy]
)
)
else
p'lhi,h;] U A
(connect_all B
(P’[hi, A];
(L, true), V
make_possible(p'(B, h;])
) Cb h;
)
else
p'lhi, hj]

Figure 3.10: Analysis for A.left := B.

3.3 Estimating nil handles. 27

3.3.1 Data abstraction for ni:l handle estimates.

In order to perform the nil handle estimate, we augment our path matrix abstraction
with an estimate for the nilness of each handle. The abstraction is based on a
three-valued domain where o represents nil, e represents a handle to a node, and ®
represents the unknown case (the handle could be either nil or a handle to a node).
The partial ordering on these items is given in figure 3.11.

© (Either)
® (Node) o (Nil)

Figure 3.11: Data abstraction for nil estimates.

For each handle we estimate the nilness of the handle itself, as well as estimat-
ing the nilness for each of its handle fields. Thus, for binary trees estimates are
represented as pairs of the form (handle estimate, field estimates). For example,
the entry p.IsNode[h;] = (8,00) indicates that handle h; is a pointer to a node,
hi;.left is nil, and h;.right is either nil or a pointer to a node. In the following

rules we refer to the components of the estimate for handle h_: in path matrix p as:
p.IsNode[h;].self, p.IsNode[h;].left, and p.IsNode[h;].right.

Definition 9. Given the ordering of e, 0o, and ® as specified in figure 3.11, the
nil_merge of nil estimates (z.self, z.le ftz.right) and (y.self,y.lefty.right)is (z.sel fN

y.self, (z.leftNy.left) (y.right Ny.right)).

3.3.2 Analysis rules for nil handle estimates.

As in the previous path matrix analysis, we first define the analysis rules for the
handle assignment statements, followed by the rules for the handle update state-
ments. Figure 3.12 gives the rules for statements of the form A := nil, A := new(),
and A := B. As expected for the simple statements, these rules are straightforward.
For each statement, the nilness estimate for p’ is the same as that for p, except for
the entry p’.IsNode[A]. After execution of A := nil, A is definitely a nil pointer.
Executing A := new() results in a path matrix where, A is definitely a pointer to a
node, while the left and right fields of A are definitely nil. After executing A := B
the pointer status of A in p’ is just the pointer status of B in p.

Figure 3.13 shows the extended analysis for the example previously given in
figure 3.5. The initial path matrix approximates the relationships between handles
a and b. The nilness estimate for a (e, ee) indicates that a, a.left, and a.right are

28 Interference Analysis Tools

all handles to nodes, while the estimate for b (¢, ©®) indicates that b is a handle
to a node, but b.left and b.right may be handles to nodes or may be nil pointers.
The three statements ¢ := nil, d := new(), and e := a illustrate the three analysis
rules given in 3.12.

A= nil
A4 h,’ € H .
p'.IsNode[h;] —
if h; = A then (0,00) else p.IsNode[h;];
B := new()
V h; € H .
p'.IsNode[h;] —
if h; = A then (e,00) else p.IsNode[h;];
A:=B
Vh;€ H.
p'.IsNode[h;] —
if h; = A then p.IsNode[B] else p.IsNode[h;];

Figure 3.12: Nil estimate for A := nil, A := new(), and A := B.

The final handle assignment statement is of the form A := B.f. We outline
the approach by presenting the rule A := B.left in figure 3.14. For this rule
p'.IsNode[h;] is the same as p.IsNode[h;] except for h; = A, and h; = B. For
p'.IsNode[A], the first component is given by p.IsNode[B].left, and the remaining
field components are specified as unknown (®). In the case of p’.IsNode[b], we know
that B must be a handle to a node for this to be a valid access. Thus, we refine the
entry p’.IsNode[B].self to indicate that B is a handle to a node (o).

The last two analysis rules specify how to estimate the effect of executing the
handle update statements A.f := nil and A.f := B. Executing an update statement
may change the nilness estimate for handle other than A. For example, if X is a
handle that points to the same node as A, then executing the statement X.left :=
nil changes the nilness of both A.left and X.left. In figure 3.15 we define the
rules for estimating nilness for statements of the form A.left := nil. The estimate
indicates that A must be a node (o), A.left must be nil (o), and A.right remains
unchanged. For all handles h; that are definitely the same as A (path(h;,S,A,p) =
true), h;.left is nil (o), and for all handles h; that might be the same as A, h;.left
is the merge of o and the previous value p.IsNode|h;].left. The rule for A.left := B
is essentially the same as for A.left := nil, except that the nilness of the left field of
A and all handles that are the same as A is defined by the value p.IsNode[B].self.

3.3 Estimating nil handles. 29

(a) Initial Path Matrix

| || afe,e0) | b(e,00) |
a S Lt
b S

(b) After statement : ¢ := nil

L L a(e,e0) [b(e,00)] ¢(0,00) |
a S Lt
S

(c) After statement : d := new()

l " a(e,e0) l b(e,00) | ¢(0,00)] d(e,00)]
S Lt
S

SW RS Bl]
W

(d) After statement : e:=a

[[afe,00)] b(e,00) [c(o,00)] d(e,00) | e(o,00) |

a S Lt S
b S

c S

d S

e S L* S

Figure 3.13: Example application of nil estimate.

30 Interference Analysis Tools

A := B.left
VY h; € H .
p'.IsNodelh;] —
if h; = A then

(p-IsNode[B].left, ® ®)
else if h; = B then

(o, (p.IsNode[B).left) (p.IsNode[B).right))
else

p.IsNode[h;];

Figure 3.14: Nil estimate for A := B.left.

3.4 Analysing Simple Statements (DAGS)

The previous section provided an overview of an interference analysis method for
TREES and an extension of the analysis to estimate nil handles. In calculating the
relative positions of live handles at each point in the program, the analysis relies
on the fact that the data structure is a TREE; thus if a possible DAG is detected,
the analysis must fail. In this section an extension of the TREF analysis to handle
DAGS is presented.

Simple imperative programs that process TREES may also create DAGS tem-
porarily. For example, consider the program in figure 3.16. This program operates
on nodes with three handle fields, left, middle, and right. The effect of the pro-
gram is to build a tree rooted at h and then rotate the children of h. Although the
rotation creates a data structure of type TREE, there are intermediate points (B
and C) where the data structure is a DAG.

In order to analyse DAGS it is necessary to maintain more information in the
path matrix. In addition to the relationships among live handles, information about
nodes that have more than one parent is also required. A dag node is a node for
which there may be more than one parent (more than one incoming edge). For each
dag node, the required information is: (1) an estimate of its position relative to the
live handles and other dag nodes, and (2) an estimate of its reference count.

The basic analysis functions for DAGS are straightforward extensions to those for
TREES. Since the number of dag nodes created is not known statically, dag nodes
are approximated by associating a dag handle with each handle update statement
in the program. For example, in the program in figure 3.16, a dag handle would be
associated with the statements h.left := m, h.middle := r, and h.right := l. If the
analysis of the statement indicates that a dag node is possible, then the dag handle
associated with the statement is placed in the path matrix. If analysis of a later
statement indicates that the dag handle now refers to a node that has at most one
parent (reference count < 2), the dag handle can be removed from the path matrix,
and the analysis can continue as in the TREFE case. In the case of the example

3.4 Analysing Simple Statements (DAGS)

31

Adleft := nil
A h,‘ € H .
p.IsNode[h;] —
if h; = A then
(e, o (p.IsNode[A).right))
else if path(h;,S,A,p) then
(p-IsNode[h;].self, o (p.IsNode[h;].right))
else if path(h;,S5% A,p) then
(p.IsNode[h;].self,
(o N(p.IsNode[h;].left)
(p-IsNode[h;].right)

)
else
p.IsNode[h;];
Aleft .= B
Vh;€ H .
p'.IsNode[h;] —
if h; = A then
(o, (p.IsNode|B).self) (p.IsNode[A)].right))
else if path(h;,S,A,p) then
(p.IsNodelh;).self, (p.IsNode[B].self) (p.IsNode[h;].right))
else if path(h;,S?A,p) then
(p-IsNode[h;].self,
((p.IsNode[B].self) N (p.IsNode[h;].left))
(p.IsNode[h;].right))
)
else

p.IsNode[h;];

Figure 3.15: Nil estimate for A.left := nil and A.left := B.

32

Interference Analysis Tools

program DagDemo

nodetype left, middle, right: handle; value: int end;

procedure main()

h,l,m,r: handle
begin

{ ... build a tree rooted at h, let I, m, r be handles to its children }

h := BuildTree();

1 := h.left;
m := h.middle;
r := h.right;

{ rotate children left }

{ & PROGRAM POINT A — path matriz P, }

h.left := m;

{ &« PROGRAM POINT B — path matriz Pg }

h.middle := r;

{ < PROGRAM POINT C — path matriz Pc }

h.right : = 1;

{ & PROGRAM POINT D - path matriz Pp }

{ use hm,Lr
end;

}

Py Pg
AT T [m]+ | [A[1] m [r [moei{z]]
h S| DM R A ST TLLMITRIT LT M

l S
l : S m S S
:n S r S
m:001 S S
Pc b
I [rli]m] r [r101{2} | | ||h|lD|m|r]
1 T pi T pi
;l SSL M,R MR =TS TR
m S l S
r:1@1 S S

Figure 3.16: An example program that creates DAG nodes.

3.4 Analysing Simple Statements (DAGS) 33

program, the analysis of the statement h.left := m causes the dag handle m:0Q1
(with reference count 2) to be added to Pp; similarly h.middle := r causes the dag
handle r:1@1 to be added to Pc. Each of these dag handles is removed when its
reference count is decreased to 1.

3.4.1 Data abstraction for reference counts

A crucial component of the DAG analysis is the abstraction used for estimating
reference counts. An abstracted reference count is either a positive integer, or a
special designation (++) indicating that the reference count is stuck. In figure 3.17
we give the operations to increment, decrement and merge reference counts.

IncrRef(n) =
if n = ++ then ++ else n+1

DecrRef(n) =
if n = ++ then ++ else n—1

grow_-merge(n,m) =
if n = ++ or m = ++ then
++
else

if n = m then n else ++
maz_merge(n,m) =
if n = ++ or m = ++ then ++ else maz(n,m)

Figure 3.17: Operations on abstract reference counts.

3.4.2 Analysis Rules for DAG estimates.

Handle assignment statements of the form: A := nil, A := new(), and A := B
are not changed to handle DAG estimates. However, the analysis rule for handle
assignments of the form A := B.f must be slightly modified. As illustrated for
A := B.left (figure 3.18), we must now consider the possibility that B.left points
to a DAG node (a node with more than one parent). In this case, it is not sufficient
to calculate p'[h;, A] from p[h;, B] (there may be paths from h; to A that do not
go through B). Thus, p'[h;, A] must inherit the paths from the DAG nodes equal
to B.left. If dag node d; is definitely equal to B.left, then the paths from p[h;, d;]
are mapped directly to paths in p’[h;, A], otherwise if d; is possibly equal to B.left,
then the paths from p[h;, d;] are mapped to possible paths in p'[h;, A].

The two forms of handle update statements also require some modification to
extend to the DAG analysis. First consider the modifications for A.left := nil.

34 Interference Analysis Tools

A := Blleft
V h;, hj € H .
P'lhi, hj] -
if h; = A then
if hj = A then
{5}
else if h; = B then
{}
else
map below_rule p[B,h;]
else if h; = A then
if h; = B then
{L'}
else
map above_rule p[h;,B]
else
plhi, hj]

V d; € dags(H) .
if path(B,L,d;,p) then
inherit_entries(p,d;,A,p’)
else if path(B,L?d;,p) then

inherit_possible_entries(p,d;,A,p’)

Figure 3.18: Extended rule for A := B.left.

3.4 Analysing Simple Statements (DAGS)

35

A.left := nil

V hi, hj € H .
P'lhi, k] —
if path(h;,*,A,p) and
path(A,L*,h;,p) and
not (dag-between(A,L?h;,p)) then
{}
else if path(h;*?A,p) and
path(A,Lx? h;,p) then
i_f Path(hbsz)p) .the;n
remove_head(L,p[h;,h;])
else if path(A,L,h;,p) then
remove-tail(L,p[hi,h;])
else
make_possible(p[hi,h;])
else
plhi, hj];

V d; € dags(H) .
if path(A,L,d;,p) or
(path(A,L*,d;,p) and
not (handle_between(A,L?,d;,p))) then
p'.RefCnt[d;] — DecrRef(p.RefCnt[d;])
else
p'.RefCnt[d;] — p.RefCnt|d;]

Figure 3.19: Extended rule for A.left

36 Interference Analysis Tools

There are two differences between the rule presented for TREES in figure 3.9 and
the rule for DAGS in figure 3.19, The first modification is required for the rule that
removes all links between handles h; and h;. In the TREE case it was sufficient
to check that h; was definitely above or equal to A, and that A.left was definitely
above or equal to h;. However, as illustrated by the topmost diagram in figure 3.19,
we must also check that there is no DAG node along the path from A.left to h;.

The second modification calculates the new reference counts for p’. If a dag
node d; is definitely the same as A.left, then executing the statement A.left := nil
reduces the number of parents of d; by 1. Generalizing on this observation, note that
a DAG node d; that is definitely below or equal to A.left may also be decremented
if there are no other live handles or DAG nodes along the path from A.left to d;.
These two situations are illustrated by the bottom diagrams in figure 3.19.

Statements of the form A.f := B may create new DAG nodes. As illustrated
by the rule for A.left := B (figure 3.20), we can easily extend the TREE rule
from figure 3.10 to handle the DAG case. As in the TREF rule, path matrix p’
is an estimate of the effect of A.left := nil, and p” is produced by adding to p’
the effects of linking A.left to B. Note that each handle update statement has
an associated DAG handle, dagname(B). If the execution the statement A.f := B
creates a possible DAG, the appropriate DAG handle entries are used to encode the
relationships between all other live handles and B. If the DAG node has not yet
been used (reference count < 2), then the relationships p”[h;, dagname(B)] are the
same as the corresponding entries for p”[h;, B]. If the DAG node is already in use,
then the old path expressions in p'[h;,dagname(B)] must be merged with the new
relationships for p”[h;, B].

3.5 Analysing Compound Statements

Analysis functions have been defined for each kind of basic handle statement. In
this section we use these basic functions as building blocks in developing analysis
functions for blocks (statement sequences), conditional statements, and while loops.
In discussing while loops, an overview of the fixed-point calculation and merging (<)
of path matrices is given. A more complete discussion of merging and fixed-point
computations is given in chapter 4.

Given an input path matrix po and a sequence of statements s;; s3;...; s, from
a block, the final path matrix p, is produced as follows: for each statement, s;, for
¢ = 1..n, the statement analysis function is applied to p;_; and s; resulting in p;.

Given an input path matrix p and a conditional statement of the form if (expr)
then (stmt;) else (stmt,), a pair of path matrices (Pthen, Petse) is produced as follows:
the statement analysis function is applied to p and stmt; to produce pihen, and the
statement analysis function is applied to p and stmt, to produce pee. The analysis
may continue with the pair of path matrices (pihen, Peise), Or With one merged path
matrixX Prhen > Pelse-

3.5 Analysing Compound Statements 37

Aleft .= B
P — f(A.left:=nil,p);
if path(B,x?,A,p') then
possible_cycle()
else
Vhi,hje H .
p" [hi, hj] —
if pa,th(h.-,* ?;A)p’)
and path(B,*?,h;,p') then
if is_node(B) then
p'[hi,hj] U
(connect_all
(pl[hi; A];
(L', true),
P'(B, hj]
)
)

else
p’[hhhi] U
(connect_all
(p'[h.', A])
(L, true),
make_possible(p'[B, h;])
)

)
else
P'[hi, hj);
if handle_above(B,p') then
if unused_dag(dag_name(B),p’) then
p".RefCntldag-name(B)] — 2
init_entries(p”,Br,dag-name(B))
else
p".RefCntldag-name(B)] — ++;
merge_entries(p”,B,dag-name(B));
V d; € dags(H) .
if path(B,S%d;,p’') then
p".RefCnt[d;] — IncrRef(p'.Re fCnt[d;])

Figure 3.20: Extended rule for A.left:

38 Interference Analysis Tools

Given an input path matrix and a while loop of the form while (ezpr) do
(stmt), the analysis produces a pair of path matrices, (po,p+). The path matrix
Po represents zero iterations of the while loop and is equal the input path matrix
p. The output path matrix p, approximates one or more iterations of the while
loop, and is computed using a fixed-point iterative approximation. The statement
analysis function is applied to p and stmt to produce the first estimate, p;. For
each iteration i, the analysis function is applied to p; and stmt to produce p.. The
next iteration begins with p;;1, where p;;; = p; > pi. The iterative approximation
terminates when p; = p;;,. Figure 3.21 illustrates the iterative approximation for a
simple while loop.

l:= h;
while Lleft # nil do
l:= Lleft
LIalt] Al 8] (Al] [[A[1]
hi{S|S R{S|L! hiS|L* R||S|Lt
lL|S|S l S l S l S
Po h p2 D3 = P+

Figure 3.21: Iterative approximation for a simple while loop.

3.5.1 Merging Path Matrices

The merge of two path matrices p; and p, is calculated as follows. Each entry in m,
and m, is simplified by squashing all path expressions into one representative path
expression using the or-merging (XV) operation. The merge path matrix, pmerged =
P1 ™ pa, is then calculated by the item-wise and-merging given by: pmerged[hi, hj] =
p1[hi, hj] M py[hi, hj]. An example of the path matrix merging operation is given
in figure 3.22.

Given the merge operation, it is possible to show that the iterative approxima-
tion for the while loop terminates. Path matrix p; equals path matrix p, when
p1(hi, k) = pa(hi, hj) for all entries. Let p,, ps, ..., pn be the sequence of path matrix
estimates calculated by the iterative approximation. Given the previous definitions
of merge and squash, we know that the representative path expression for any ele-
ment px(hi, h;) can only be the same or more general than the representative path
expression of the same element in pg_;(h;, h;). Also, the minimal length of the rep-
resentative path expression in pi(h, h;) must be no larger than the minimal length
of the representative path expression in pi_;(hi, h;). Thus, the series of approxi-

3.5 Analysing Compound Statements

39

Original path matrices

L llae] b c | [[a] b | ¢ |
al|S|L'RTY, L'LT | L! al| S| L'DYL!, L'D*R' | R?
b S S b S
c S S S

Simplified matrices, each item squashed
[fal & [c] [fla] b [c]
al S| L'DY | L! all S| IL'D*D' | R!
b S S b S
c S S c S

Result of merging the two simplified matrices

[el & [c|
allS|L'Dt| D!
b S S?
c S? S

Figure 3.22: An example of the merge operation.

40 Interference Analysis Tools

mations for each element p;(h;, k;), p2(hi, hj), ..., pa(ki, h;) is finite, and the iterative
approximation for while loops terminates.

3.6 Analysing Procedure Calls

We now complete our description of the interference analysis by presenting an
overview of the analysis function for procedure and functions calls. This section
provides an operational view of the methods and is intended to give some insight
into the our approach to handling procedures and recursion. A more complete,
formal presentation is given in chapter 4. Also note that a selection of interference
analysis examples for programs using linked lists given in appendix C.

First, consider the case of a call to a non-recursive procedure. Given an input
path matrix p and a procedure call of the form f(hy,...,h,), the resulting path
matrix p’ is produced as follows. The body of procedure f is analysed with an
input path matrix ¢, where ¢ is a path matrix that combines path information of
the handles live at the point of the call to f and the handles which correspond to
formal parameters of f. Note that by including the handles live at the point of the
call in ¢, we are effectively encoding the context of the call.

Consider as an example the call SwapChildren(root) in figure 3.23. In this exam-
ple, the call to SwapChildren changes the relationships between handles root, I_child
and r_child by swapping the left and right sub-trees of root. Figure 3.23 illustrates
four stages of the path matrix computation. P, represents the path matrix at the
point just before the call SwapChildren(root). Pg, the path matrix at the beginning
of the body of SwapChildren, combines the relationships of calling context handles
and the parameter handles. In our example, the handles I_child and r_child must
be included in the calling context since they are below the handle root. In Pg,
[_child@2 and r_child@2 capture the context information of the call, h*! is used as a
symbolic name for the argument handle (root), and h is a local handle whose initial
relationships are the same as those of hx1. P illustrates the path matrix resulting
from the analysis of the body, while Pp is the final result of the call.

Note that it is not always necessary to include all of the information about the
context. We need include only handles which may be affected by the evaluation of
the body of the procedure. For example, if we know that the data structure is a
TREE, then handles that are above the argument handles cannot be reached by a
computation in the body of the procedure, and therefore they need not be included
in the context. Thus, we can reduce the complexity of the computation by using
properties of the data structure.

As illustrated in figure 3.24, the analysis for function calls is similar to the
analysis for procedures. In the case of functions, a function call is of the form
T1y.-oyTm = f(h1,...,hn), where ry,...,r, are variables that receive the results
of evaluating the function call. When r; is a handle variable, we must compute
the relationships between r; and all other handles live after the call to f. These

3.6 Analysing Procedure Calls

41

program DemoProcCall
nodedef left, right: handle; value: int end;

procedure SwapChildren(h: handle)

1, r: handle

begin

{ <= PROGRAM POINT B - path matriz Pg }
1 := h.left;
r := h.right;
h.left := r;
h.right :=1
{ <= PROGRAM POINT C - path matriz P }

end;

procedure main()
root, 1_child, r_child: handle

begin
{ ... create a tree at root }
l_child := root.left;

rchild := root.right;

{ < PROGRAM POINT A — path matriz P, }
SwapChildren(root);
{ < PROGRAM POINT D — path matriz Pp }

{ ... use l_child, r_child, root ... }

end
P4 Pa

B [oot [Lokitd | r-chiid | (' | Lchild@2 | r_child@2 [he1 | 1 |
— 5 A i l_chz.ld Q@2 S
Tohild 5 r-child@2 S

- hx1 L! R! S
r_child S A T 2 5
Pc Pp

[| Lchild@2 | r_child@2 | hx1 | | | root | i_child | r_child |
Lchild@2 S root S R! L!
r_child@2 S l_child S
hx1 R! JA S r_child S

Figure 3.23: Example of a procedure call.

42

Interference Analysis Tools

program SimpleFunction
nodedef left, right: handle; value: int end;

function FindMin(h: handle) handle

m : handle
begin

{ & PROGRAM POINT B - path matriz Pg }

m := h;

while m.left # nil do

m := m.left

{ < PROGRAM POINT C — path matriz Pc }

end => return(m);

procedure main()
root, min: handle
begin
{ create a tree at root }
{ &« PROGRAM POINT A — path matriz P4 }
min := FindMin(root);
{ <« PROGRAM POINT D — path matriz Pp }

{ use root and min }

end;
Pg
Py
L [h3[m]
S HE
m S |S
Pc Pp

L_[he3] m | [[root| min |

ms] S [(S+LT) root]| S | (S +L7)

m S? S min || S? S

Figure 3.24: Example of a function call.

3.6 Analysing Procedure Calls 43

relationships are encoded in the path matrix valid at end of the body of f. As an
example, consider the call min := FindMin(root) in figure 3.24. At program point
Pc, hx8is a symbolic name corresponding to root in the caller’s context, and m
represents the resulting handle. Thus, path matrix Pp is constructed from Pp by
associating h*8 with root, and m with min.

Analysis of calls to recursive procedures and functions requires a combination
of the techniques used in non-recursive procedure calls and the techniques used for
fixed-point approximations. Consider a procedure f which contains one or more
recursive calls to f in its body. We can define analysis functions for the recursive
calls as an iterative approximation of the pair of path matrices (p_in;, p-out;). The
path matrix p_in; represents the merge of all possible path matrices at the beginning
of the body of f, while p_out; represents the merge of all possible path matrices
at the end of the body of f. The iterative approximation terminates when p_in; =
p-tni41 and p_out; = p_outji,.

As an example of the iterative approximation for the recursive procedures, con-
sider the approximation for reverse given in figure 3.25. In this case, the first input
approximation p_in; is due to the call reverse(root) and the initial output approx-
imation p_outoy is UNDEFINED. The first defined output approximation p_out; is
computed by analysing all non-recursive paths in the body of reverse. In this case
the only non-recursive path is the empty statement, and thus p_out; is trivial to
compute from p_in;. The second input approximation p_in, is due to the recursive
call reverse(l). Note that at this point, path matrix p4 captures all the relation-
ships among h, [, and r. Since, ! does not have any live handles below it, we need
only consider the effect on l. Encoding the call reverse(l) gives p_in,. Since p_in, is
equal to p €, p_out, can be used as an estimate of the effect of the call to reverse(l),
and similarly for the call to reverse(r). The resulting path matrix at the end of
the body of reverse is p_out;. Since both p_in, = p_out;, and p_out, = p_outs, the
iterative approximation terminates and p_out; is used to build the result of the call

-~ =rav ag recursive procedures. Con-
i - 4asll

4.1 A Formal Description of SIL

€ : Ezpression — (Env — (Mem — Value))
M : Statement — (Env — (Mem — Mem))
D : Definition — (Env — Env)
P : Program — (File — File + error)

— © v

((onpp A — wajpy) auy) — uorssaudzry @ 3

Ly T1IS jo uondisaq rewiog v 1%

nodedef left, right: nauu.-,

procedure reverse(h:handle)
1, r: handle
begin
{ < p-in; (a merge of all input path matrices) }
if h # nil then
begin
1 := h.left;
r := h.right;

< pa (before recursive cal bA
feverse(l(); V) | [Aet [h] L] 7 |
reverse(r); hx1]l S [S|L'|R!
h.left := r; h S |S|L'| R
h.right : =1 l S
end r S
{ < p-out; (a merge of all output path matrices) }

end;

procedure main()
root: handle

begin
{ ... build a tree at root ... }
root := BuildTree();
reverse(root) ;

{.... use root }
end;

([[hx1]h]

[piny,poutg)]= | [hx1]] § [S|, UNDEFINED
| | A SIS
(L [A1 [h]]

[p-iny, p-outy] = hx1 |l S |S],
" [5 [s]

[p-ing, pouty] = hx1 || S [S|,

i) 5 |
N e 177
A

- P

Figure 3.25: Estimating the path matrices for reverse.

3.6 Analysing Procedure Calls 45

program RecursiveFunction
nodedef left, right: handle; value: int end;

function FindMin(h: handle) handle
t, m : handle

begin

{ < p-in; (a merge of all input path matrices) }
if h.left = nil then

m:=h
else
begin DA
t := h.left; I " hx3 | t]
{ < pa (before the recursive call) } hesl S 1 LT
m := FindMin(t) n 3
end
{ « p-out; (a merge of all output path matrices) }
end => return(m);
procedure main()
root, min: handle
begin
{ ... build a tree at root ... }
min := FindMin(root);
{ use min, root }
end;
[[h*3] k]
[p-iny, pouty] = h3] S [S|,UNDEFINED
[| A -S|
a9 [eln)
[p-iny, pouty] = hx3 || S | S|, |h«3)|| S | §
[| A S |S m S |S
ri Theol 1 T ThesT o m 1

4.1 A Formal Description of SIL

€ : Ezpression — (Env — (Mem — Value))
M : Statement — (Env — (Mem — Mem))
D: Definition — (Env — Env)
P : Program — (File — File + error)

where

%, % ' . [FUIoL Y Iy

.pter 4

Formal Description of Interference
Analysis

In this chapter, we provide a formal presentation of the interference analysis. In
particular, we develop a semantic framework for the method, and present the ab-
stract rules including a detailed discussion of the fixed-point approximation for while
loops and recursive procedures. We argue that the method is sound with respect
to a denotational semantics and that the method is efficient.

In section 4.1 we give a formal description of SIL, and in section 4.2 we give a
formal description of the data structure abstraction along with the definition of im-
portant properties of path matrices. Section 4.3 contains an outline of the abstract
semantics with particular emphasis on the rules for while loops and procedures, and
in section 4.4 we establish soundness of the method.

4.1 A Formal Description of SIL

In chapter 2, we defined a simple imperative language that captures the important
features of imperative languages that support recursively defined pointer structures.
We define a standard semantics for SIL using the semantic domains and functions
outlined in figure 4.1. The standard semantics is quite straightforward and is similar
to semantic presentations in [Gor79, Sto77, Ten81]. The three domains of interest
are: (1) the environment which maps identifiers to locations or procedures, (2) the
store which maps locations to values, and (3) the heap which maps node pointers
to nodes. A memory is defined as a six-tuple containing a store, a heap, a stack
pointer for the store, a heap pointer, an input file and an output file. There are
four semantic functions: £ for expressions, M for statements, D for definitions, and
P for programs. The complete definitions for the semantic functions are given in
appendix A. -
The model of the environment and memory is illustrated in figure 4.2. We see
that a memory has both a store and a heap as components. The space allocated for
variables is modelled with the store, while the nodes of pointer data structures are

46

4.1 A Formal Description of SIL 47

€ : Ezpression — (Env — (Mem — Value))
M : Statement — (Env — (Mem — Mem))
D : Definition — (Env — Env)
P : Program — (File — File + error)

where

Env = Id — Loc + Procedure
Store = Loc — Value
Heap = NodePtr — ((Int + undef) x (NodePtr 4 nil) x (NodePtr + nil))
Value = Int + NodePtr + nil + undef
Procedure = Value™ - (Mem — Mem)
File = Int list
NodePtr = Int
Loc = Int
Mem = (Store x Heap X Loc x NodePtr x File x File) + error

Figure 4.1: Semantic domains for SIL.

ENV STORE HEAP
- EEE CEEE a,e
10
a/”' \\‘u /’, 4 \
bf" ’4 N >< X l‘
Ry RS O“
\ e

’/ ’l L 4 \
N
T AN 3y b
\
o N
’

Figure 4.2: The model for the

escription of Interference Analysis

N ap. The tree in figure 4.2 gives a more abstract view of the
con . the environment and memory. In chapter 3 we discussed the
interte ysis as estimating the paths between each pair of live handles h;
and hj. . < semantic model this is equivalent to estimating the paths between

store(env(h;)) and store(env(h;)) in the heap.

4.2 Path Matrices Revisited

The purpose of our analysis is to approximate the reachability relationships among
accessible nodes in the heap. We represent this approximation with a path matrix
that gives the relationships between all pairs of live handles. Given an environment
defined on a set of variables, we call the set of variables with type handle the
handles to the heap. The set of live handles are those variables which may be used
in the remaining computation. For each pair of live handles A and B, we wish to
approximate the path between the heap node accessed via handle A and the heap
node accessed via handle B. We say that there is a path 8 from handle A to handle
B if B connects the heap node store(env(A)) to the heap node store(env(B)). A path
is denoted by either S (the heap nodes are the same), or by a non-empty sequence
of field indicators (L or R for binary trees).

O ae
O c

[[albfc[d [e]
S| |R RIS
S

S | L!
S
S|{L'|R'|RL'|S

LEE-YEs R 2l k)

Figure 4.3: A tree and the corresponding path matrix

Figure 4.3 gives a path matrix that approximates the relationships between
live handles in the heap pictured in figure 4.2. Note that this path matrix gives
exactly the pathsin the associated heap. In general, the path matrices calculated for
programs with conditionals, while loops, and recursion must contain path estimates.
Path estimates are captured by path ezpressions which denote sets of paths. The
definitions for path expressions and operations on path expressions were given in
chapter 3.

4.2 Path Matrices Revisited 49

An important aspect of path expressions is that they can be given a natural
partial order that represents their information content. A path expression is more
informative (less general) if it encompasses fewer actual paths. The partial ordering
is in the direction of increasing generality, not increasing information. Figure 4.4
gives the partial ordering for the path expressions of length 1, while 4.5 gives the
partial ordering for path expressions of length 1 or 2. Note that all path expres-
sions with the same normal form have been grouped together. The introduction of
D’s (dashed lines) represents direction approximation, while the introduction of *
superscripts (solid lines) represents length approximation.

rmathn. dlStjnglljsh the twob

Deﬁnition 10. [

relation < ; T€ Path ex ;
D1 1 Pres, .
S &lven b.Y: (1 D < ;IOI;;)WI out questiop k
=& D1 < n.? _ S marks and ,. ~

The ordering cqy, ,, .

wd _ -

50

Formal Description of Interference Analysis

Figure 4.5: Partial ordering of path expressions of length 1 or 2

4.3 Abstract Semantics

55

M[A:=nil] aenv p = p’, where
Y h;, hj € H .
P'lhi, kj) -
if h; = A and hj = A then
{5}
else if h; = A or hj = A then
{}
else
plhi, h;]
Vh; € H.
p'.IsNodelh;] —
if h; = A then (0,00) else p.IsNode[h,];

M[A := new()]| aenv p = p’, where
Y h;, hj € H .
P'lhi, hj) —
if h; = A and h; = A then
{5}
else if h; = A or h; = A then
{}

else
plhi, hj)
V h; € H.
p'.IsNode[h;] —
if h; = A then (e,00) else p.IsNode[h;];

M[A:=B] aenvp = p’, where
V hi, hj € H .
P'[hi, hj] —
if h; = A then
if h; = Bor h; = A then {S} else p[B,h;]
ifh; =A then
B then {S} else p[h;,B]

=¥
b~

€

1

. [
o =

L)
b=l

i

B

p[hb hJ]
Vh; € H .
p'.IsNode[h;] —
if h; = A then p.IsNode|B] else p.IsNode[h;];

Figure 4.9: Abstract semantic functions for handle assignment statements.

Formal Description of Interference Analysis

A[begin end | aenvp = p

A[begin s; ;82 ;...; s, end]| aenv p =
A[begin s; ;... ; s, end] aenv (A[31] aenv p)

A[if ezp then s; else s; | aenv p =

(A[s1] aenv p) = (A[s2] aenv p)

A[while edo s] aenvp=Ap
where
A=)p.
let
new.p = (A[s] aenvp) = p
in
if new.p = p then p else A new_p

A[repeat s until e]| aenv p = A (A[s]] aenv p)
where
A=)p.
let
new.p = p < (A[s] aenv p)
in
if new_p = p then p else A new_p

Figure 4.10: Abstract semantic functions for compound statements.

4.3 Abstract Semantics 57

we can bound the number of iterations at O(mn?), where m is the longest path in
the input path matrix, and n is the number of live handles. In practice, we observe
that only a small subset of the live handles are affected by the loop, and the handles
that are affected tend to be related. Thus, the number of iterations is usually small.

M[while e do s] env mem = fis(W) mem
where
W=AT.m.
if [e] env m then T(M[s] env m) else m

A[while edo s] aenvp=Ap
where
A=)p.
let
new.p = (A[s] aenv p) = p
in
if new.p = p then p else A new_p

Figure 4.11: Semantic functions for while loops.

In figure 4.12, we give the abstract semantic function for procedure calls and in
figure 4.13 we give the semantic functions for the definition of non-recursive proce-
dures. A call to procedure ¢ simply looks up the definition of ¢.D in the abstract
environment and applies D to the handle arguments. The abstract definition of
a procedure ¢ causes the name ¢.D to be bound to a function D in the abstract
environment.

Al g(a1,a2, ... ,a,)] aenv P =
let hy...hn = handles(a, ...a,) in
aenv(q.D) hy ... hy aenv P

Figure 4.12: Abstract functions for procedure calls.

In figure 4.13, we give the standard function D and the abstract function F for
non-recursive procedure definitions. The standard semantic function maps an input
environment to an output environment in which ¢ is bound to a function @, where
Q@ maps n input values and a memory, to a memory. If we examine @ more closely,
we see that the body of ¢ is evaluated with a local environment and a local store.
Also note that the final result is a memory containing the initial store and stack
pointer (sp), but a possibly updated heap and heap pointer (f1).

The abstract semantic function maps an input abstract environment to an out-
put abstract environment in which ¢.D has been bound to a function D, where D
maps n handles and a path matrix, to a path matrix.

58 Formal Description of Interference Analysis

Dlproc g(zi:t;...5zat) izt ... 5 lnit; 8] env = env [g — Q)
where @ =
Avy . Avg Av, . A (storeheap,sp,fl,in,out) .
let
local_env =
env| z1—8p+1, ..., To—sp+n,

lLi—sp+n+1, ..., ly—sptnt+m]
local_store =
store[local_env(z,)—vy, ..., local_env(z,)—v,,
local_env(ly)—undef, ..., local_env(ly) undef |
new-mem = M|[3] local_env (local_store, heap, sp+m+n, fl, in, out)

in
if new_mem = error then
error
else
let
(local_store ,heap’,sp',fU ,in' ,out’) = new-mem
in
(store,heap’,sp,fl',in’,out’)
F|[proc ¢ (z;:handle ; ... ; z,:handle)
l;:handle ; ... ; l,:handle ; s | aenv = aenv [¢.D — D]
where
D=Mhy..... Ah, . Xe. \P.
let
(Pyar, Piny) = split P [hy, ..., hy)
Py = rename([hy — z1, ..., hn — Zn], Pyar)
P, =FeP
P3 = rename([zy — hq, ..., Tn — hy], P3)
in
Join(Piny,P3) [h1, .., hn]
F=)Xe. \P.
let
P = insert([zy — 21, ..., Tp > Tn, lh — ndl, ..., I — ndl], P)
P} = A[s] aenv P| :
in

remove([Z1, ..., Tn, l1, -+, lm], P3)

Figure 4.13: Semantic functions for non-recursive procedures.

4.3 Abstract Semantics 59

The first step in D splits the input path matrix P into two path matrices P,
and Py,. Pin, represents the relationships between all handles that cannot reached
through paths starting from any of the argument handles, while P,,, represents the
relationships between handles that can be reached via an argument handle. Note
that handles that are inaccessible from the arguments cannot have their relation-
ships with other inaccessible handles modified. Thus, in order to get the effect of
executing the procedure call on path matrix P, it.is only necessary to compute the
effect on P,,,.

The second step in D is to create P, from P,,, by renaming the caller’s argument
handles to names local to the procedure call?>. P, results from executing the body
of the procedure on P; (as modelled by the function F'), and P; is just renaming
the local names back to the caller’s names. Note that the function F' just allocates
local copies of the arguments and local variables, executes the body, and deallocates.
Finally, the overall result is given by joining P;,, and P;. The joining of P;,, and
Pj3 reconstructs the entire resulting path matrix by connecting all handles in the
invariant part with those in the variant part. More specifically, if a, ...a, are the
argument handles, h; is a handle in in P,,,, and k, is a handle in the variant part,
all paths from A; to h, can be constructed by concatenating all paths from h; to a;
in P;,,, with all paths from q; to h, in the variant part.

The rule for recursive procedure calls (figure 4.14) uses the same basic strategy
as the non-recursive case, but has a more complex rule for F, and a slightly different
rule for D. Note that for the recursive case we must define insert carefully. If a
handle is inserted into a path matrix in which it already exists, the relationships
for both cases must be merged. However, it is important to note that this merging
is often not required because a reused handle name is often in the invariant part of
the input path matrix.

This rather daunting rule for recursive procedures has two novel aspects. First of
all, one needs to configure the base case rather carefully. This is done by computing
the changes to the path matrix that are produced by all traversals through the
procedure body that do not encounter a further recursive call. This is the role of the
- function base.

The second fact worth noting is how we approximate functions. As is well known
from denotational semantics the meaning of a recursively defined function or proce-
dure is given by the fixed point of a higher-order functional. Thus the approximants
to the fixed point live in the function space. Normally in abstract interpretations,
strictness for example, these functions are between small finite lattices and hence one
can use “tabular” representations or perhaps optimized representations thereof. In
our case this is not true since the abstract domain is infinite. We use step functions
written as pairs to represent a finite piece of information about these approximants.
More precisely, the environment associates with each recursive procedure r a recur-
sively defined function r.D, an estimate written r.est and a boolean flag r.new_est

2We assume that all parameter names and local variables are uniquely named (implemented by
tagging them with their procedure number).

60 Formal Description of Interference Analysis

Flrecproc r(zyit ;... 5zt) izt ... lmit; 8] aenv =
aenv [r.D v D, r.new_est — true, r.est — (,2)] where
D=Xhy..... k. de. AP.
let

—(Rvar; Pinu) = Split P [hI; ceey hn]

Py = rename([hy — 1, ..., hn — Zn], Poar)

P, = if e(r.new_est) then F e[r.est — (Py, base(P,))] P, else F e P,
P3 = rename([z1 — hq, ..., Tp — ha], P3)
in
join(P;,,,,,Pg) [h], ooy hn]
F=)e.)\P.

let (Pin, Pout) = e(r.est) in
if e(r.new_est) then
{ ———— CASE 1 (generalize output?) ————}
let
P, = insert([z1 — 1, ..., Tn — Tn,
Iy = nil, ..., ln — ni], P)
Py = A[s] e[r.new_est — false] P,
NP,,; = remove([zy, ..., Tn, 1, ..., Im], P2)
in
i_f NPout (; Pout m
Pow {-—1(a) ——}
else
F e[r.est — (P, (NPyy < Poy))] P{ —— 1(b) ——}
else
{ ———— CASE 2 (generalize input?) ———-}
i_f P E Pin M
Por { ——2(a) ——}
else
let)
NP;, = (P~ P;,)
in { —— 2(b) ——}
F e[r.new_est — true, r.est — (NP;i,, base(NP;,))| NPin

base = AP .
let
P, = insert([z; = x4, ..., T — T, 1 — 2dl, ..., Iy — nil], P)
P, =A[s6 r] aenv P,
in

remove([zy1, ..., Tn, l1, .-+, lm], P2)

Figure 4.14: Abstract semantic function for recursive procedures.

4.3 Abstract Semantics 61

that will be explained below. The estimate is a pair of path matrices (Pjn,Pout)-
Such a pair says that if the input path matrix to the procedure call is less general
than P;, then the output path matrix is less general than P,,, in other words, Poy:
can be used safely as the output.

One can now operationally understand the working of the rule above. When
procedure r is defined it is initialized with a completely uninformative estimate
r.est, written (2,), and the flag r.new_est set to true. The first time r is called,
r.est is initialized with an estimate computed by base. The function base is defined
to compute the effect using the nonrecursive paths through the body (s), this is
represented by s©r. This may be implemented by constructing a pruned parse tree
that contains only the sub-trees that do not contain a recursive call, or by propa-
gating a special undefined path matrix through all paths encountering a recursive
call.

The first part of the conditional (case 1) in F is called when a fresh computa-
tion begins (r.new_est = true). If the recursive invocations do not cause the new
output path matrix NP,,; to generalize beyond the stored estimate P,,;, one need
not invoke the abstract function further; but if it does, then the estimate must
be iteratively refined by invoking F again with the output estimate suitably gen-
eralized. Superficially this may seem to be all that is needed. Unfortunately our
estimates are only valid for some inputs, i.e. those that are specializations of the
input path matrix at the original point of call. Thus we cannot use our estimates
at any point where a recursive call is made. One must merge together all the input
path matrices at all points of call or at least at all points along a given chain of calls.
The final conditional (case 2) in the definition of F is designed to handle this. If
the current input is not less than the estimated input then the input is generalized
and the successive approximations to the output are recalculated. The boolean flag
basically tells us whether we are generalizing the input or the output.

- The proof that F terminates follows from the fact that both the input and the
output component are being generalized, at least one of them is generalized at each
invocation of F', and the fact that the ascending chains have finite height.

A less precise (but more efficient) fixed point estimation has also been imple-
mented. The major difference lies in the treatment of the case when P is not
contained in the stored estimate P;, (case 2(b)). In the previous fixed-point esti-
mate (figure 4.14), a new invocation of F(new-est = true) is started each time the
input needs to be generalized. A more efficient method is to terminate the current
estimation of F' and restart it with the generalized input®. With the more efficient
fixed-point analysis, we can give a reasonable bound on the number of iterative ap-
proximations. As with the while loop case, the number of possible generalizations
of the input path matrix is O(mn?), where m is the length of the path expres-
sions and n is the number of handles. For each input generalization, there are also
O(mn?) possible output generalizations, giving a total number of generalizations

3This is easily implemented with the ML exception mechanism

62 Formal Description of Interference Analysis

of O(m?n*). It should be noted that this is an upper-bound, and since not all
handles are affected, and those that are affected tend to be related, the number of
generalizations is usually quite small.

4.4 Soundness Theorem

In order to establish the soundness of the estimate one needs a relationship between
the abstract values (path matrices), and the state of the memory, as defined by the
standard denotational semantics. Recall that a path matrix expresses connectivity
relations between live handles, which are identifiers. Thus in order to state the
desired safety relationship one needs to include the environment as well as the
memory. The following definitions relate a memory and environment pair in the
standard semantics to path matrices in the abstract semantics.

Definition 13. For a heap H, and heap pointers h; and h;, H[h; ~ h;] denotes the
set of paths connecting h; to h; in H. That is, Vr € (L + R)* . if r connects h; and
hj in H, then r € H[h, ~ h]]

Definition 14. Suppose that X = ((di,...,dm),(a1?,...,c.?)) is a list of path
expressions, H is a heap, and h; and h; are heap pointers. We say that X safely
estimates the paths between h; and h; in H, written X Q H[h; ~ h;], if:

1. Vr€ Hlhi~ hj]. (Tie {1...m}red))or (i€ {1...n}.r € ¢);
2. Vi e {1...m}.3r€d,-.r€H[h,~~> h,]
The first condition states that the set denoted by X must contain all paths actually

in the heap. The second condition states that each definite path expression d; must
denote a set that contains at least one path r such that r is a path in the heap.

Definition 15. Suppose that P is a path matrix, M is a memory with a heap H,
and env is an environment. Suppose also that D = (d,...,dy) lists all the heap
pointers to DAGnodes in H, and that L = (I;,...,1,) lists all the non-nil, live handle
variables in env. We say that P safely estimates (M, env), written P 4 (M, env) if:

4.4 Soundness Theorem 63

(I) P is defined for all handles in L;

(II) There exists dag handles X = (z,,...,zmm) in P that can be associ-
ated item-wise with D = (d,,...,d,,) in H such that:

Vi, l; € L. P[l;,1;] 9 H[store(env(l;)) ~» store(env(l;))]

Vi;€ L,d; € D. P[l;,z;] Q H|[store(env(l;)) ~ d;]

Vd; € D,l; € L. Plz;,1;] Q H[d; ~ store(env(l;))]

Vd;,d; € D . Plz;,z;] 9 H[d; ~ d;]

Vd; € D . RefCnt(d;) < P.RefCnt|z;]

6. Vi; € L. Nilness(env(l;)) < P.Nilness|l;].

A

Condition I states that P must contain the relationships for all live handles in
env. Condition IT (1-4) states that there must be a list of dag handles z; in P
such that each z; can be associated with a d; in a manner such that P safely
estimates all the relationships between all live handles !; and dag nodes dx in M.
Note that not all the z,’s need to be distinct. We can use one dag handle in P
to approximate the relationships for many dag nodes in M. Conditions IT (5 and
6) state that the reference count estimates and nilness estimates in P must be
conservative approximations of the nilness and reference count in (M, env).

The link between the definition of safety and the ordering on path estimates and
path matrices is given by the following lemmas.

Lemma 1. If X Q H[k; ~ h;] and X C X', then X’ 9 H[h; ~ h;].

Proof: Suppose that r is a path in H[h; ~ hj]. Suppose also that X =
(1, rdi), (17, &), a0d X' = ((fureo s fu)y (@172 Gn7)). Because X <
H{[h; ~ hj] holds we know that r € (U; di)U(U; €;). The first condition in definition
11 state that ((U;di) U (U;e;) € (Ui £i) U (U; g))s thus r € ((Us £) U (U; 95))-
Consider any f;, by the second condition in the definition of C there is some d; with
d; C fi. By the second condition in the definition of J, we know that there is a
path t € d; that connects h; to hj in H. Thus we have t € f; satisfying the second
required condition for X’ 4 H[h;, hj] to hold. B

Lemma 2. If P 4 (M,env) and P C P’ then P’ 4 (M, env).

Proof: Suppose P, P', M and env are as in the statement. Since P and P’ must
be defined on the same handles, condition I holds for P’ 4 (M, env). For condition
II, we choose the same handles X for P’ as were used for the safety of P. By con-
dition 1 in definition 2 we know that Vh;, b; € (L U X), P[h;, h;] C P'[h;, h;]. Thus,
using lemma 1 we know that the < conditions II(1-4) hold for all entries P[h;, h;]

64 Formal Description of Interference Analysis

and P’[h;, h;]. Finally, conditions II(5-6) hold because the nilness and reference
count estimates in P’ must be at least as general as those is P. i

In discussing soundness we need to look at how statements are interpreted in the
two semantics. In the standard semantics they are interpreted as partial functions
from memories to memories, we call such functions memory transformers, whereas in
the abstract semantics they are interpreted as (total) functions from path matrices
to path matrices. We call the latter path-matriz transformers. The notion of safety
extends naturally to memory transformers and path matrix transformers. We will
use the symbol 4 for this also.

Definition 16. Suppose that T is a map between memories and that R is a map
between path matrices. We say that R safely estimates T if, for any choice of

path matrix P, memory M and environment env satisfying P 4 (M, env) we have
RP 4 (TM, env) provided TM is defined.

Similarly we can define safety between abstract and real environments.

Definition 17. Suppose that aenv is an abstract environment and env is an envi-
ronment. Suppose also that ¢ is a procedure name defined in the environment env.
Then we say that aenv 4 env if:

1. q is also defined in aenv;

2. if hy,..., hi arelive handles in env and P and M satisfy P4 (M, env)
then [aenv(q)h; ... heP] 4 ([env(g)(env(hy))... (env(hi))M], env).

A key property of the safety relation on transformers is that it is w — inclusive?.
The memory transformers are partial functions and are ordered by inclusion of their
graphs.

Lemma 3. Suppose that {T;}cn is an increasing sequence of memory transformers
and that R is a path-matrix transformer. If Vi.R 4 T; then R 4 UT;. If R; is an
increasing sequence of path matrix transformers and T is a memory transformer

such that Vi.R; 94 T then UR; 4 T.

Proof: Suppose that P, M and env satisfy P 4 (M, env). Suppose that UT; is
defined on M. Since the least upper bound of chains is given by union, then there
is some k such that T} is defined on M and, in fact, (UT;)M = Ti M. Since R is safe
for T we immediately have RP d (Ti M, env). The proof of the second statement
follows immediately from the fact that there can be only finite ascending chains of
path matrices and from lemma 2. il

We are now ready to state and prove the main soundness theorem.

4We use this term to mean that a relation, viewed as a function to the domain of booleans is
continuous.

4.4 Soundness Theorem 65

Theorem 1. For any statement s and any pair of environments env and aenv such
that aenv 4 env

Als] aenv a4 (M[s] env , env).

Proof: The proof proceeds by structural induction on statements. The soundness
of the basic handle analysis rules has already been discussed informally in chapter
3. The main point of this proof is to use the machinery for the fixed-point semantics
to show that the soundness of the abstract semantic functions for while loops and
recursive procedures. This part of the proof is quite independent of the specific
analysis rules for the basic statements. We illustrate one simple base case and
then discuss the case of while loops, which requires a simple fixed-point induction,
nonrecursive procedures and finally recursive procedures.

Simple cases

These cases have all been discussed informally in chapter 3, we treat one case
more formally to illustrate the style of the proof.

A[A := B] aenv P = P’

where
(s} hi=Ah;=B
P[B,hj] hi=Ah;# A, B
Vhandles h,',hj. Pl[h,’,hj] — {S} h = B h =A
Plhi,B] hi# A B h;=A
P[hi’hj] hnh #A

According to the standard semantics, store(env(A)) = store(env(B)) after exe-
cution of the above statement. Thus the relations between A and any live handle,
X, other than A or B should be exactly the same as that of B and X. The relations
between live handles, neither of which are A, are clearly unaffected. Finally the
entries for A and B must now say that they are the same, as the entry {S} signifies.

While loops

Here we need to unroll the two fixed-point definitions given in figure 4.11 and
compare them “stagewise” (figure 4.15). Recall that the standard semantics for the
while loop is given by the fixed-point of a functional, W, from memory transformers
to memory transformers. We write W) for the kth approximant to fiz(W). Thus
W is everywhere undefined and W) is the approximant that is defined on those
memories for which the while loop terminates immediately because the condition
is false. Similarly, the abstract semantics is defined through a sequence of approx-
imants, the main difference being that rather than taking the least upper bound
(which may not be defined) of the path expressions we use the merge operator,
>, to determine an upper bound. We call the successive stages in the computa-
tion of A[while e do s], A%¥) in analogy with the approximants to the while loop.

66 Formal Description of Interference Analysis

WO = \m . L
W = m . if][e] env m then 1 else m
WE) = dxm . if €[e] env mthen WED (M[s] env m) else m

A® =)Xp.p
AR+ = \p
let
new.p = (A[s] aenv p) = p
in
if new_p = p then p else A®) new_p

Figure 4.15: Unrolling the semantic functions for while.

Note that A(®) represents the effects of zero traversals of the loop body and hence
corresponds to W(1) rather than to W),

First we show that, for any positive integer k, A®) @ W*+1)_ This proceeds by
induction on k. The base case, k = 0, is immediate from the definitions. For the
inductive case we assume that

ARV P g (WD M env)
for all M, P and env that satisfy P < (M, env) and W*-DM #1 and prove that
AR P q (WD M env).

Thus, we have both a fixed-point induction hypothesis (FIH), and a structural
induction hypothesis (SIH) as below:

(FIH): AV P q (WEHD M, env).

(SIH) : A[s] aenvP 4 (M[s] env M), env)
We will consider two cases, E[e] env M = false, and E[e] env M = true.

Suppose that E[e] env M is false.

In this case we have W*+2)M = M. Since P is one of the path matrices merged
to give A**) P, we know that P C A*+)P. Therefore, A+ P 4 (M, env), which
can be restated as A+ P g (Wk+2 M, env).

Now suppose that E[e] env m is true.

By SIH we have A[s] aenv P 4 (M[s] env M, env).

Consider new.p in the body of A%*1), Since new_p is the result of P < (A[s] aenv P),
we know that A[s] aenv P C new-p, and therefore new.p 4 (M[s] env M, env).

4.4 Soundness Theorem 67

Now let us consider the result of A**VP. If new_p = P, then the result of Ak+V P
is P=A®P = AFpew_p.

If new_p # P, then the result of A**DP is also AF)new_p.

Applying FIH to new_p 4 (M[s] env M, env) gives

ABnew_p a4 (WED(M[s] env M, env),

which is the same as the desired result A+ P q (W*k+2 M, env).

Since the abstract domain is of finite height we conclude that the sequence of
approximations, A%¥) is finite. Thus we need to show that the last one of these,
call it A, safely estimates fix(W). We know by the last paragraph that A safely
estimates all the W) the desired result now follows from lemma 3.

Nonrecursive Procedures

The next case is nonrecursive procedures. Here we wish to prove that the op-
erations on the environments, both abstract and standard, preserve safety. From
this the soundness of the rule for procedure calls follows directly from the structural
induction hypothesis. The new ingredient that we need to consider is the role of
the abstract environment and the fact that the environment gets modified when the
procedure body is executed.

In order to examine the procedure definition case, we must first examine the
auxiliary functions split and join. Note that when a procedure call is made we do
not pass the entire path matrix to the procedure body but only that portion of it
that contains handles whose relationships may be affected. The relevant operations
are carried out by the auxiliary functions split and join. We need the following
condition on split that follows from its definition.

Condition 3. Suppose that (Py, P;) = split(P, x) then for X a handle in P and
Y € x we have P[Y, X] = {} or {S}.

We also require the following lemma for the safety of path matrix transformers that
use split and join.

Lemma 4. Suppose that we have P, M and env with P 4 (M, env). Suppose that
T4 is a path matrix transformer and T is a memory transformer with T4 < Tys.
Suppose that all the handles accessed by T4 are included in a set of handles x. We
define a new path matrix transformer T by the following equation

T, = AP. let (Py, Pr) = split(P, x) in join(Pr, Ta(Pv), x)-
Then T} 4 Ty.

Proof: Suppose that X and Y are two handles that are in P;. First we note that
Ty cannot affect a handle outside x since P < (M, env). Second, we claim no path
from X to Y can be affected by T since there are no paths from the handles that

68 Formal Description of Interference Analysis

T can affect to any node on a path between X and Y. Suppose there was some
node Z on a path from X to Y such that Z is below one of the handles in y. This
would mean that Y is below some node in x which is impossible. Thus T gives
the right relationships between pairs of handles both of which are in x or neither
of which are in x. If we have a handle, X, above x and a handle Y below y then,
because we are looking at tree structures, we can see that a path from X to Y must
go through x. Thus join gives a safe estimate in this case also. W

Note that in procedure calls we know precisely which handles the procedure
body has access to so the situation described in the lemma applies. In view of this
fact we can ignore further discussion of the role of split and join in the rest of the
proof. 7

In demonstrating soundness for definitions we need to compare the effects of F
and D rather than A and M. We recall the semantic functions for a procedure
definition for both the standard and abstract semantics (figure 4.13). We need to
show that D is safe for @ when they are applied to the appropriate arguments. We
assume, therefore, that env(h;) = v; and strip out the n leading lambda abstractions
in @ and D. We see that the abstract function D performs three actions. First,
it splits off the portion of the path matrix that cannot be altered. Because the
procedure call does not have handles to this invariant part, we know that this is
safe because of lemma 4. The next action is to rename the caller’s handles to
special names local to the procedure body (P,), and then add new entries to the
path matrix to represent the parameters and the local variables (P;). Clearly the
effect of building P| in F is precisely analogous to the construction of local_env
and local_store in Q. Note that the role of rename is to ensure that there is an
extra copy of the parameters so that when the procedure returns the relationships
that originally held between the parameters is unaltered. Thus we know that P| <
((local_store,...),local_env). Now the structural induction hypothesis applied to s
gives us that P} ((local_store’, heap',...),local_env). Finally the effect of returning
store in the standard semantics and restoring the original environment is mimicked
by the renaming of P; to P; in D. Thus P; is a safe result.)

Recursive procedures

The manipulations of the environment and the abstract environment are very
similar to the non-recursive case so we will not discuss them except when they differ.
Our main point in this case is to show safety by fixed-point induction. We compare
the function D (figure 4.14) in the abstract semantics with @ (figure 4.16) in the
standard semantics and will ignore rename, split and other things that we know to
be safe.

One subtle aspect of the abstract semantics is that the environment carries a
stored estimate (Pin, Poy) of the desired path matrix transformer. We need to carry
in our induction hypothesis the fact that P,,, gives a safe output if the input is less
than P;,. The proof involves relating the unwindings of D, and the estimates stored

4.4 Soundness Theorem 69

in the environment, to the standard function Q. The proof relates D to @ by fixed-
point induction. Since safety is w-inclusive this amounts to relating D®*) to Q%)
where each of these denote the kth approximant in the unwinding of the recursive
definitions. '

We begin with a discussion of the unwindings of the recursive function Q in the
standard semantics, and the recursive functions F' and D in the abstract semantics.
The meaning of a recursively defined procedure in the standard semantics is shown
in figure 4.16. Let R stand for fix(R). Using the fixed-point rule on R(env) gives

(AT.Xe.e[r — Q])(R)env
and carrying out the indicated S-reductions gives
env[r — (Q[T — R])].

Using these “unwound” expressions we see that the approximants to R and Q are
as shown in figure 4.17.

Dl recproc r(zyit; ...zt) liit; ... 5 lnit; 8] env = fiz(R) env
where
R=AT . Xe. e[r— Q]
Q= Avy . Avy dv, . A (storeheap,sp,fl,in,out) .
let
local_env =
(T e)| z1—~sp+1, ..., z,—sp+n,
Li—sp+n+1, ..., lu—sp+n+m]
local_store =
store[local_env(z,)—vy, ..., local_env(z,)—v,,
local_env(ly)—undef, ..., local_env(ly)—undef]
new_mem = T T
M][s] local_env (local_store, heap, sp+n+m, fl, in, out)
in
if new_mem = error then
error
else
let

ot @~

local_store' ,heap’,sp’,fl',in/ ,out’) = new_mem
in

(store,heap’,sp,fl',in’,out’)

Figure 4.16: Recursive procedures in the Standard Semantics.

Similarly, we can define the unwindings of the functions in the abstract seman-
tics. We define a sequence of F(*)s and D(®s as in figure 4.18.

70 Formal Description of Interference Analysis

R¥+1(env) = env[r — QW]

Q® = dvy . Mg Av, . A (storeheap,sp,fl,in,out) .
let
local_env =
(R*) env)[zy—sp+1, ..., To—sp+n,
li—sp+n+1, ..., la—sp+n+m]
local_store =
store[local_env(z,)—vy, ..., local_env(z,)—v,,
local_env(ly)—undef, ..., local_env(ly)— undef |
new.mem = T
M([s] local_env (local_store, heap, sp+n+m, fl, in, out)
in
if new_mem = error then error else
let
(local_store ,heap',sp’,fl',in' ,out’) = new_mem
in
(store,heap’,sp,fl',in’ ,out’)

Figure 4.17: The k’th unwinding of R and Q.

The base case case of the fixed-point induction, k = 1, is straightforward. The
inductive case is rather more complicated. In this case, we need to examine the
unwindings of the auxiliary function F. This function, however, combines two
quite different actions; it refines the estimate stored in the environment both by
making the input path matrix more general and by making the output estimate
more general. These interact in a fairly complicated way and it is not easy to
relate a given F*) with some number of refinements of each kind. Accordingly, we
introduce a labeled family of approximants to F' written F?™ where m indicates the
number of times the output estimates may be refined, and n indicates how many
times the input estimate may be refined. We use these approximants to argue that
the estimators are being refined appropriately and, finally, we argue that the F?'™
have the same least upper bound as the F¥), so that one can safely use FP'™ rather
than F®*) in the fixed-point induction. The rest of this subsection spells out the
details of this proof.

First we discuss the base case and the associated auxiliary functions in the
abstract semantics. We display the first unwinding F(!) and D) in figure 4.19. We
introduce the symbol Q to stand for a hypothetical “least general path matrix”.
From the information point of view it represents inconsistency; in terms of the
ordering C it is bottom and hence serves as the starting point of recursive unfoldings.
The definition of the abstract semantics does not involve 2 so it will not appear in
any estimate, it merely serves as a convenient way to denote the partial unwindings

4.4 Soundness Theorem 71

D® = Xhy Mhp . de. AP .
let
(Pvar: Pinv) = Spl'lt P [hl; ceey hn]
P, = rename([hy — z1, ..., hn — 4], Pyar)
P, = if e(r.new_est) then
F®) ¢[r.est — (P;, base(P,))] P,
else F®) ¢ P,
P3 = rename([zy — hy, ..., Tn — h,], P2)
in
jOin(Pim);P3) [hI) SERS] hn]
Fk+1) —)¢ AP .
let (Pin, Pout) = e(r.est) in
if e(r.new_est) then
{ ———— CASE 1 (generalize output?) ————}
let
Py = insert([z, — z1, ..., Tn — Tn,
ll'—').n_ily"‘) ImHn—il]; P)
P, = A[s] e[r.new-est — false, r.D — D*)] P,
NP, = remove([zy, ..., Tn, l1, .-+, lm], P2)
in
if NP,y; C P,y then
Pouw {--1(a) ——}
else
F®) e[r.est + (P, (NPyy b4 Poy))] P{ —— 1(b) —— }
else
{ ———— CASE 2 (generalize input?) ————}
i_f P [; Pa'n m
Pour {——2(a) ——}
else
let
NP;, = (P P;,)
in{--2(b) ——}
F®) e[r.new_est — true, r.est — (NP;,, base(NP;,))] NP,

Figure 4.18: The k’th unwinding of F.

Formal Description of Interference Analysis

DW) = Ahy Ak, . de . AP .
let
(Puar, Piny) = split P [hq, ..., h,]
Py = rename([hy — 1, ..., hn — Z4], Pyar)
P, = if e(r.new_est) then
F() e[r.est — (Py, base(Py))] P,
else F ¢ P,

P3 = rename([z1 — hy, ..., Tp — hy], P2)
in
jOin(Pinu;PIS) [hl; sy hn]
F) = Xe . AP .

let (Pin, Pout) = e(r.est) in
if e(r.new_est) then

{ ———— CASE 1 (generalize output?) ———— }
let
Py = insert([z1 — 1, ..., Tn > Tn,
llHﬁ'i_l,...,lmHn_ﬂJ;P)

P, = A[s] e[r.new_est — false, r.D — D] P,
NP,,, = remove([z1, ..., Tu, l1, ..., lm], P2)
in
i_f NPout E Pout m
Por {—--1(a) ——}
else
Q@ {--1(b)--}
else
{ ———— CASE 2 (generalize input?) ————
i_f P l; Pin m o
Por { ——2(a) ——}

else
Q {——2() -}

Figure 4.19: The first unwinding of F, F().

4.4 Soundness Theorem 73

of the recursive definition. The termination of A guarantees that it is everywhere
defined. The function base estimates the effect of a procedure call on all computation
paths that do not involve a recursive call. The construct s©r represents the body of
the procedure with all calls to r replaced with a new syntactic construct w, a path

matrix transformer that maps any path matrix to 2. In compound statements it is
handled as follows:

1. ssw=w;s =w,

2. if b then s else w = s, and similarly for the else case,

-

3. if b then w else w = w,
4. while b do w = skip.
5. repeat w until e = w.

Note that the while loop yields skip, since the body may never be executed,
whereas the repeat loop yields w.

Recall that Q(V) is the function that defines the effect of the procedure call provided
there are no recursive calls. If we use F(!) instead of F in D we get D(!). We claim
that D) applied to aenv gives a safe path matrix transformer for the first non-
trivial unwinding, Q(1), of the recursive definition in the standard semantics. To see
this note that Q() is a memory transformer that diverges if any subsequent call to
r is made but otherwise terminates. In other words Q() terminates exactly when
DM returns a non-§ result. The former, when it converges, results from applying
M[s6r] to a suitable local environment and local store whereas the latter, when
it is not §, results from applying A[s © r] to the corresponding path matrix. Thus,
by the structural induction hypothesis D(V) is safe for Q).

The property of F' that we need to prove by induction is somewhat delicate. We
need to say not only that F' returns safe results but that the estimates “stored in
the envirgnment by F” are safe. The proof proceeds in two stages. First we show,
by fixed-point induction, that the estimates are refined correctly, then we establish,
again by fixed-point induction, that the function F computes a safe path matrix.
The latter step uses the former.

The way F is defined, it performs modifications of the estimates in the envi-
ronment in two ways. First, if the input path matrix to F is not less general than
the estimated input, the computation is restarted with generalized input and the
base case as the output estimate. Second, if the output produced is not less general
than the estimated output, then the output estimate must be redefined. In order to
carry out this fixed-point induction perspicuously we need to define a triply-indexed
family of approximants to F. We do this by using a labeling technique similar to,
but much simpler than, that used in the analysis of the A-calculus [Bar84]. Note
that the definition of F contains two recursive invocations of F. We define Fy*° to
be the function that just returns 2, the totally undefined path matrix. We show the

74 Formal Description of Interference Analysis

inductive definition of FP™ and DT in figure 4.20. We define F2™ by replacing,
in the definition of F, the first recursive invocation by FP~!™ and the second by
F™T. In the computation of P, we use an environment that has r.D bound to
D7™-1. We define D™ analogously to D using F;»™ instead of F. Thus, we are
defining the labeled expressions F?™ and D} together. Intuitively, F?'™ represents
the approximant to F obtained by permitting n refinements of the input estimate
and for each such refinement permitting m refinements of the output estimate.

In order to discuss the correspondence between the standard semantics and the
abstract semantics we need a convenient way to refer to the portions of the unwound
terms. In general, the approximants to a given recursively defined function can be
expressed as labelled terms. Suppose that H is some recursively defined function.
The partial unwindings of the recursive definition of H are typically denoted by H (n)
as we have been doing with Q and D. These partial unwindings are approximants
to H, where a given approximant, H (") can be obtained by substituting H (n-1),
for occurrences of H, in the recursive definition of H. In calculating the effect of
H™ on an argument we encounter calls to H®=1) H(®=2) an so on. We call the
collection of such lower approximants encountered during the evaluation of H (g,
where a is the argument to H"™, the call tree of H™a. One can use such operational
notions to discuss the fixed-point approximation process in view of the well known
correspondence between fixed-points of recursive functionals and computation by
substitution into recursive definitions [Man74]. In the following discussion, we will
establish properties of the indexed approximants to F by referring to the call trees
that result when the FP™ are applied to path matrices.

Lemma 5. Suppose that P is a path matrix, M a memory and env an environment
with P < (M, env). Suppose that aenv is an abstract environment such that aenv <
env and that aenv has Q as the input estimate for calculating the effects of r.
Consider the call tree of the expression F?™ aenv P and suppose that it contains a
term of the form Fy™ aenv’ P'. Let the input estimate stored in aenv’ be P;. Now
consider the corresponding call tree of R(™ env arising as the nth approximant to
M([r(ay,...,a,)]JenvM. Consider any memory M’ that occurs in the call tree in a
term of the form Qv ...v, M’ where k < n. Let env’ be the environment at this
point in the call tree. For all such (M’, env') we have P, 4 (M’, env').

Proof: Note that the statement is independent of ¢ and m. The base case is
obvious since we are comparing an undefined memory to an undefined path matrix.
We analyze the structure of the call tree. When FP™ makes a call to F,-T" we are
in case 2(b). This is the only way to diminish the lower label so we must enter this
case n times in order to eventually reach a call to F;™. To get to this case we must
be in a recursive invocation of r in the body s. By updating the input estimate to
P < P,, we have incorporated the effect of one more level of nesting of recursive
calls to r than is captured by P;,. The inductive hypothesis states that when the
term F3'™ appears in the call tree generated by F2'7, the abstract environment has
an input estimator, in this case P, that incorporates the effect of n — 1 levels of

=1

ot

4.4 Soundness Theorem

D =Ahy Ay . de . AP
let
(Pvar; Pinv) = spht P [hl; (XY hn]
P, = rename([hy — z1, ..., hn — Z4], Puar)
P, = if e(r.new_est) then
F7™ e[r.est — (P, base(P,))] P,
else F;'™ e P,
P3 = rename([zy — hy, ..., Ta — hy], P3)
in
join(P,-,w,Pg,) [hl, ooy hn]
Fpm™ = Xe . AP .

let (Pin, Pout) = €(r.est) in
if e(r.new_est) then
{ ———— CASE 1 (generalize output?) ————}
let
Py = insert([z, — 21, ..., Tn — Zq,
i mnid ... I, — ni, P)
P, = A[s] e[r.new_est — false, ».D — D7~'] P,
NP,,: = remove([z, ..., Tn, l1, ..., lm], P2)
in
.i_f NPout E Pout M
Por {——1(a) ——}
else
Fe=1m e[r.est — (P, (NPoyt 4 Poyt))] P { —— 1(b) —— }
else
{ ———— CASE 2 (generalize input?) ————}
i_f p g Pin m
Pour {——2(a) —-}
else
let
N'P.',1 = (P B P.',,)
in { —— 2(b) —— }
F e[r.new_est — true, r.est — (NP;,, base(NP;,))] NP;,

Figure 4.20: FP™ approximants.

76 Formal Description of Interference Analysis

nesting of recursive calls of . Thus, F*'™ incorporates the effect of any computation
that encounters at least n nested calls. B

Because the domains are of finite height we will reach a general enough input
estimate in some finite number of iterations of F. Now we can consider a family
of iterates, F»™ with n assumed fixed and p and m varying. We assume that
n has been chosen large enough that in all subsequent iterations-of F' the input
estimates in the environment do not need to be generalized. We say that n is large
enough for FP™ to cover all the memories encountered in the call tree describing
the unwindings of the standard semantic definition of the recursive procedure.

We say that an environment e has a m-safe estimator, e(r.est) = (Pin, Poyt) for
r if for any path matrix P that is safe for M,env and P C P,, we have that P,
is a safe estimate for the memory and environment after Q(™) has been applied to
(M,env). We call an environment that has (2,§2) as the estimator an initialized
environment. The key fact that we need to prove is the following.

Lemma 6. Suppose that P 4 (M, env). Suppose that aenv 4 env and that aenv
is an initialized environment. Suppose n is chosen large enough that F?'™ covers
Qu;...uy M, where the v, ...v are fixed arguments to the procedure r. Then the
following statements hold.

1. FP™aenvP <4 (QPv; ...y M, env).

2. Any leaf in the call tree of F?™aenvP is either undefined or has an
abstract environment containing an p-safe estimator.

Proof: Note that Part 1 follows immediately from part 2 because the only
way that F' only returns results that are stored estimators. We need, however, to
carry both assertions in our inductive hypothesis since the proof of part 2 relies on
the safety asserted in part 1.

The proof is by induction on p. The first part of the base case (the fact that
the estimate is safe) has been done above. The second part of the base case (the
statement that the estimator stored at the end of the base case is 1-safe) is as follows.
Note that the pair stored in the environment as e(r.est) is essentially (P, base(P)).
Thus, if the stored estimate is used to compute the effect of a procedure call it will
give the correct result for the first unwinding of the standard semantics provided
the input is less than P. In other words it is a 1-safe estimator.

Assume both assertions true for p—1. Now consider the call tree of F2'™ aenv P.
Any path through this tree that terminates in mn or fewer steps. If the end of
such a path is undefined, then the corresponding path through the call tree of the
corresponding expression in the standard semantics is also undefined. Note that our
assumption on n assures us that we will not produce an undefined estimate because
of an insufficiently generalized input approximation.

Consider the case where the last expression in the path through the call tree is a
final path matrix. The last conditional encountered in the path must have resulted

4.4 Soundness Theorem 77

in case 1(a) or 2(a). In case 1(a), NP, results from evaluating the body s in an
environment that contains a p — 1 safe estimator. Using the structural induction
hypothesis on the body s and the induction hypothesis for recursive calls to » within
s we see that NP, is safe for Q). Since NP,y T Poyu:, Pou is also safe for Q(?)
and, in fact, P, is a p-safe estimator. In case 2(a), the path through the call tree
is via a call to r embedded in the body s. Thus P,,; needs to be safe for Q(*~!) only,
which it is by the inductive hypothesis.

Finally, we need to show that we have safe estimators at the leaves of the call tree.
Consider the call tree for FP™ aenv P. Note that the first conditional encountered
in the call tree must be case 1, where e(r.new_est = true). Thus, all paths through
the call tree must either terminate here in one step (case 1(a)) or continue with
further refinements (case 1(b)). We have already discussed case 1(a). Now consider
the term for case 1(b)

FP=1™ genu[r.est = (P, (N Poy < Poye))] P.

By the inductive hypothesis, FP~!'™ will produce at the leaves of the call tree rooted
at it estimates that are p — 1 safer than the initial estimate. The initial estimate
at this term is, however, itself 1-safe because we heve merged in the effect of eval-
uating the body, s, of r. Thus, the leaves of the call tree contain p-safe estimators. i

Unfortunately the FP™ do not correspond to F*) in any simple way. It is the
latter that arise when we compare the effects of the D*) and the Q(¥) by induction on
k. We require the more complex FP™ because F*¥) gives us insufficient information
about the quality of the estimators used. We handle this in the following way. First,
we note that by choosing n sufficiently large we can say that F¥* is safe for Q)
this is lemma 6. Lemma 5 assures us that such an n exists. Thus in effect we fix
n and work with F%*. This does not tell us that F is safe for @ because we do
not know that the FP™ converge to F; we only know that the F(*) converge to F.
Thus, to complete the argument, we establish the following lemma.

Lemma 7. The least upper bound of the FP'™ is F.

Proof: We work with terms of the form F™™ as these certainly converge to the
same least upper bound as the F»™. First note that the F™™ are a directed set

as, clearly, F;7*™ and F2»™ C F, :((,:' f,‘::)’)'"'“(""""’). Thus the F™™ have a least

upper bound. Now we claim that the F™™ dominate the F(*). Given any k, pick
an n large enough for the input estimate to have become general enough and pick
m to be bigger than k, clearly we have F(*) C F™™, Thus, the least upper bound
of the F(¥) (i.e. F) is less than the least upper bound of the F™™. Finally, each of
the F™™ is clearly less than F so the least upper bound of the F*™ is F .l

The desired safety result now follows from the fact that safety is an w-inclusive
relation. The overall structural induction is now complete. il

Chapter 5

Interference and Parallelization

In this chapter we present three methods for interference analysis and parallelization
of SIL programs. These methods use the path matrices computed by the interference
analysis tools described in the previous chapters.

5.1 Interference between Basic Statements

The first interference analysis method is used to determine if n basic handle state-
ments interfere. As illustrated by figure 5.1, we can use such an interference analysis
method to determine if several sequential statements can be transformed into a sin-
gle parallel statement.

= [Eisn ... iis,]
Y

?

Figure 5.1: Transforming sequential statements to a parallel statement.

We first consider interference between two statements. More precisely, given two
handle statements s; and s; and a path matrix p, we determine if one statement
writes to a location that the other statement reads or writes. We then extend this
method to handle n statements.

For this analysis, we define the following abstraction for a location. A location
is denoted by a pair (name, kind), where name is the name of a variable and kind is

78

5.1 Interference between Basic Statements 79

either the special designation var (variable), or a field name. For binary trees the
possible kinds are: var - a variable, left - the left field of a node, right - the right
field of a node, or value - the value field of a node.

We also define an alias function, A(a, f,p). Given a name aq, a field kind f, and
a path matrix p, the alias function returns the set of locations that may be aliased
to location (a, f). Location (z, f) is an element of A(a, f,p) iff the path matrix
entry p[a, z] contains the path expression S, (S +¢€), S?, or (S +¢€)?. Note that the
path S indicates that locations (z, f) and (a, f) are definite aliases, while the other
three possibilities indicate that locations (z, f) and (a, f) are possible aliases.

For each kind of basic handle statement, we have defined functions R(s, p) and
W(s,p). Given a statement s and a path matrix p, R(s, p) defines a set of locations
possibly read by s. Similarly, W(s, p) defines a set of locations possibly written by
s. These functions are presented in figure 5.2.

Statement | Read Set | Write Set
R(s,p) W(s, p)

a :=nil {} {(a,var)}
a:=new() | {} {(a,var)}
a:=b {(b,var)} {(a,var)}
a:=bf | {(bvar)}UA(b, f,p) | {(a,var)}
a.f:=b {(a,var),(b,var)} A(a, f,p)

Figure 5.2: Functions for read and write sets of statement s relative to path matrix
p.

The interference set, I(s;, s;,p), is defined as the set of locations through which
statements s; and s; may interfere when executed at a program point with path
matrix p. If Z(s;, s;,p) = {}, then there is no interference between s; and s, and it
is safe to execute s; and s; in parallel.

I(S,', Sj,p) =
[W(si,)N (R(s5,2) UW(s5,p))]

U [WsinN (Ris,p)UW(si,p))]

Three examples of interfering statements are given in figure 5.3. The first ex-
ample illustrates variable interference; the statement = := a.left writes variable z,
while the statement y := z reads variable z. The second example illustrates two
statements that interfere by accessing the left field of the same node. Since a and
b are handles to the same node, the statement z := a.left reads the same location
that statement b.left := nil writes. The third example illustrates the conservative
nature of the interference analysis. Note that handles ¢ and d may be handles to

80

Interference and Parallelization

A tree and corresponding path matrix
a,b
L lajblc]| d |
¢, d? O a[S|S[Z']| DF
b[s|s|L D+
c S | S, R*?
d S? S
a?
Example 1

| | Statement | R(s;,p)

[W(si,p) || Z(s1,32,p) |

81 | x := aleft | {(a,var),(a,left),(bJeft)} | {(x,var)} || {(x,var)}
S2 |Y:=X {(x,va.r)} {(y,var)}
Example 2
|| Statement [R(s;,p) [W(si,p) [Z(s1,52,p) |
81 | x := aleft | {(a,var),(aleft),(bleft)} | {(x,var)} {(a,left),(b,left)}
sy | b.left := nil | {(b,var)} {(b,left),(a left)}
Example 3
| | Statement | R(s;,p) | W(si,p) Il Z(s1,82,p) |
s1 | n := d.value | {(d,var),(d,value),(c,value)} | {(n,var)} {(c,value),
s3 | c.value := 0 | {(c,var)} {(c,value),(d,value)} (d,value)}

Figure 5.3: Examples of interfering statements.

5.2 Interference between Procedure Calls 81

the same node, or handle d may be some number of right links below handle ¢. In
the first case, the statements n := d.value and c.value := 0 would interfere on the
value field. However, in the second case ¢ and d refer to different nodes, and the
statements would not interfere. Thus, uncertainty in the path matrix results in a
conservative approximation of interference.

We can generalize this method to determine if n basic statements [sy,..., Sy
interfere. R,., W,, and 7, are defined as follows.

Ra([s1,---58a)sp) = U R(si,p)

i=1,n

Wﬂ([sl,“-asn],p): U W(Sl',p)

i=l,n

In([-S), PN ,Snlssj’p) =

Wtk (P9)| 0

r ' Rn([sl,""S"]’p)U
-W(Spp)n(Wo([s1,.--,8a),P))I

Statements [sy,...,s,] do not interfere at a program point with path matrix p if

(U In([sl,-~-,8£],8.'+1,p)) ={}.

i=l,n-1

Note that we can incrementally build the set of statements that can be executed
in parallel by first computing the interference set for s; and s,. If this set is empty,
then we can schedule s, and s, in parallel. We can continue to add statements to the
parallel schedule until we reach a statement that results in a non-empty interference
set.

5.2 Interference between Procedure Calls

In the previous section we outlined a fine-grain analysis that is used to detect
interference among single statements. In this section we outline a coarse-grain
approach to interference analysis between procedure calls. Given two procedure
calls f(z1,z2,...,2m) and ¢g(y1,¥2,---,Yn) at a program point with path matrix p,
we wish to determine if the calls to f and g interfere.

A first approximation of the analysis can be obtained by examining the rela-
tionship between the handle arguments of f and the handle arguments of g at the
program point just before the procedure call. The only nodes that a procedure

82 Interference and Parallelization

can access are those accessed via a path from a handle argument. Recall that data
structures of type TREE have the property that if two handles h; and h; are unre-
lated, then all of the nodes accessed from h; are unrelated to those accessed from h;.
Thus, if all handle arguments z; of the call to f are unrelated to all of the handle
arguments y; of the call to g, we can conclude that the two procedure calls do not
interfere. Since the path matrix at the point before the procedure calls is guar-
anteed to contain all possible relationships among handles, we can conclude that
handles z; and y; are unrelated if p[z;,y;] = plyj, z:] = {}. I the data structure is
a DAG we must also check that there is no DAG handles di such that d; is related
to both z; and y;.

As an example of using this method, consider the program presented in fig-
ure 5.4. This program adds 1 to the left sub-tree, adds -1 to the right sub-tree
and then reverses the whole tree. Note that the procedure add_n updates the
nodes of a tree and that reverse actually changes the structure of the tree. The
three critical program points for parallelization of procedure calls occur at pro-
gram points A, B, and C. First, consider the path matrix p4 at program point
A. By examining p4 we can determine that handles /_side and r_side are not re-
lated (pa[l-side,r_side] = pa[r-side,l_side] = {}). Therefore, the procedure calls
add_n(l_side,1) and add-n(r_side, —1) may be executed in parallel.

A more interesting sort of parallelism is exhibited at program points B and C.
Consider the path matrix pg at program point B. The handles in pg can be divided
into two groups: (1) h*2is used as a symbolic name for the calling procedure’s
argument handle, and (2) h, I, and r contain information about the handles local
to the current invocation of add.n. The path matrix pg summarizes all possible
relationships between handles for the recursive calls of add_n. Since handles [and r
are not related in pp, it is always safe to execute the recursive calls add_n(l,n) and
add_n(r,n) in parallel. A similar result is obtained for the recursive calls to reverse
at program point C.

A more accurate analysis of procedure call interference can be performed by
using further information about how handle arguments to a procedure are used
in the body of the procedure. With the previous method, we assumed that nodes
accessed through a handle argument may be updated. This is an overly conservative
assumption, since some procedures may only read nodes. By adding further analysis
it can be determined that a handle argument is either a read-only argument or an
update argument. Handle argument z; is read-only if all nodes accessed through
z; are read and not written, otherwise z; is an update argument. The interference
analysis can now be restricted to checking for interference due to update arguments.
Let fupdate be the set of update arguments of the call f(z1,...,Zm) and gupdate be
the set of update arguments of the call g(y1,...,yn). The calls to f and g will not
interfere if all handles in f,pdate are unrelated to all arguments of g and all handles
N gyupdate are unrelated to all arguments of f.

Using the technique for detecting basic statement interference presented in the
previous section and the technique for detecting procedure call interference pre-

5.2 Interference between Procedure Calls

83

program add_and_reverse
nodedef left,right: handle; value: int end;
procedure main()
root,l side,r_side: handle; i: int
begin
{ ... build a tree at root ... }

PA

l_side := root.left; |
rside := root.right;

[root | Lside | r_side |

S L! R!

{ & PROGRAM POINT A — p, }

add-n(l_side,1); l_side

S

add n(r_side,— 1); r_side

S

reverse(root)
end;

procedure add_n(h:handle; n: int)
Lr: handle
begin
if h # nil then
begin
h.value := h.value + n;

PB

1 := h.left; I

[het] 0] r |

r := h.right;

{ < PROGRAM POINT B - pp }

hx1 S

Rl

addn(l;n); I

add_ n(r,n) r

end
end;
procedure reverse(h:handle)
Lr: handle
begin
if h # nil then
begin

1 := h.left; l

r := h.right;
{ « PROGRAM POINT C - pc }

reverse(l);

reverse(r);

h.left := r; r

h.right :=1
end
end;

Figure 5.4: Example program and path matrices.

84 Interference and Parallelization

sented in this section, the example program of figure 5.4 can be transformed into
the parallel program shown in figure 5.5.

5.3 Interference between Statement Sequences

In this section we examine the problem of determining if two statement sequences
interfere. As illustrated in figure 5.6, we want to determine if it is safe to execute
statements sequences U and V in parallel (given the same initial program point).
More precisely, given statement sequences U = [uy,...,Um] and V = [vy,...,v,] at
an initial program point with path matrix p, we want to determine if one statement
sequence writes to a location that the other statement sequence reads or writes. This
sort of analysis is useful both in checking that the parallel specification of U || V is
safe and in determining that the statement sequence U; V can be transformed into
the parallel statement U || V.

For this analysis we require a new notion of location. Let £ be the set of
handles that are used before they are defined in either U or V. All nodes that can
be accessed in both U and V must be accessed along some path from a handle in £
!, Therefore, we will refer to locations by their access path from handles in £. A
relative location is a triple (name,field_type,access_path) where name is the name of
a handle in C, field_type is one of var, left, right, or value, and access_path is a set
of path expressions describing the path from name to the node which is being read
or updated.

The relative read and write functions W"(s,p, £) and R (s, p, L) are defined as
in figure 5.7. In these rules we use the relative alias function A". Given a handle #,
a field name f, a set of live handles £, and a path matrix p, A"(h, f, £, p) returns
the set of relative locations which are possibly aliased to the location referred to by
h.f. A"(h, f, L, p) contains the relative location (I, f,r) iff [is one of the handles in
L and the path matrix entry p[l, k] contains the path expression r.

We define R.([s1,-- -, Sn), [P1,- - - ,Pn), L) to be the relative read set for statement
sequence [sy,...,S,] and Wi([s1,..-,3a], [P1,---,Pn], £) to be the relative write set
for statement sequence [sy, ..., Sn].

R;([Sl,...,Sn],[pl,...,pn],ﬁ)= U R'(s;,p;,ﬁ)

i=1l,n

Wi([s15- -5 8n)s [P1s---spa)s £) = | W (si,pi, £)

i=1l,n

Let P = [py,...,pm] be the sequence of path matrices associated with the state-
ments u; of U, and Q = [¢1, - . ., gqn] be the sequence of path matrices associated with

1For ease of presentation, we will assume that the handles in £ are not redefined in U or V. This
restriction can be lifted by automatic renaming of variables.

5.3 Interference between Statement Sequences

85

program add_and_reverse
nodetype left right: handle; value: int end;

procedure main()
root,l_side,r_side: handle; i: int

begin
{ ... build a tree at root ... }
lside := root.left || rside := root.right;
add n(lside,?) | add_n(rside,—1);
reverse(root)

end;

procedure add n(h:handle; n: int)
L,r: handle
begin
if h # nil then
begin
h.value := h.value + n;
1 := h.left || r := h.right;
addn(l,n) || addn(r,n)
end
end;

procedure reverse(h:handle)
Lr: handle

begin
if h # nil then
begin
1 := h.left || r := h.right;
reverse(l) || reverse(r);
h.left := r || h.right :=1
end
end;

Figure 5.5: Parallel version of example program.

86

Interference and Parallelization

Figure 5.6: Initial path matrix p with two parallel statement sequences U and V.

Statement | Relative Read Set | Relative Write Set
R"(s,p, L) Wr(s,p, L)
a :=nail {} {(a,var, S)}
a:= new() | {} {(a,var, S)}
a:=b {(b,var, S)} {(a,var,S}
a:=bf {(b,var, S)}u {(a,var,S)}
A"(b, £, L, p)
a.f:=b {(a,var,S), A'(a, f, L, p)
(b,var, S)}

Figure 5.7: Relative read and write sets given path matrix p and live handles L.

5.3 Interference between Statement Sequences 87

the statements v; of V (as illustrated in figure 5.6). The relative interference set,
I7(U,P,V,Q, L), is defined as follows.

I(U,PV,Q,L) =
WU, P,o)N (R7(V,Q, £)UW"(V,Q,£))] U
W (v,Q,.0)n (R (U, P,O)UW'(U, P, L))]

If the data structure is a TREF at the program point just before U || V, then U
and V do not interfere if (U, P,V,Q, L) = {}. The proof of this observation is an
induction on the height of the tree. To extend this method to DAGS it is necessary
to include all handles to DAG nodes in the set of live handles L.

Chapter 6

Generating Parallel Programs

In the previous chapters we presented interference analysis methods and paralleliza-
tion techniques to support automatic parallelization of sequential SIL programs. As
illustrated in figure 6.1, interference analysis and parallelization form the first two
stages of our parallelizing system. To provide a complete experimental system, we
implemented a back-end that translates parallelized SIL programs into parallel C
programs for a shared memory machine. The complete parallelizing system provides
a concrete use of our interference analysis and parallelization techniques. In addi-
tion, the system provides an experimental framework in which we can investigate
further areas of research.

In the first section of this chapter, we present our approach to generating parallel
programs for the BBN GP1000 (Butterfly!) Parallel Processor running Mach 1000.
In the second section we present, as an example, the parallel program generated for
adaptive bitonic sort [BN89]. In the final section, we discuss new areas of research
that were suggested by the results of these experiments.

6.1 Generating Parallel Code for the Butterfly

The GP1000 parallel processor is an MIMD shared memory machine [BBN88a].
Each processor has a local memory, and may access any other processor’s memory
through the Butterfly switch. The switch is a collection of switching nodes that
interconnects processor nodes and provides each processor with access to shared
memory. Some important timing information for memory accesses is given in figure
6.2[BBN89]. Note that global reads and writes are substantially slower than local
reads and writes. Synchronization on the Butterfly is supported through a collection
of atomic operations. A 16-bit atomic operation takes about 30 microseconds, or
approximately 30 times as long as a local memory access.

1Butterfly is a trademark of Bolt Beranek and Newman Inc.

88

6.1 Generating Parallel Code for the Butterfly

Sequential ooTTTTTTTT T K
SIL - = - - - 4 PROGRAMMER ,
Program ' '
Lemmmcccccceeem J
Interference
Analysis
SIL Program

augmented with
Path Matrices

Parallelization

Parallel
SIL
Program

Code Generation/
Static Scheduling

Parallel C
Program for
BBN Butterfly

Figure 6.1: Current System

Global Local Global/
(microseconds) | (microseconds) || Local
Read 8.12 1.22 | 6.7
Write 3.52 81 | 4.3

Figure 6.2: Global/Local memory access times (unloaded switch).

90 Generating Parallel Programs

6.1.1 Strategy

The basic strategy is to exploit coarse-grain parallelism at the procedure and func-
tion call level. More specifically, if there are two procedure calls f(z) and g(y) that
do not interfere, we wish to execute these in parallel. Since our main objective
was parallelizing programs that use recursive data structures, we were particularly
interested in designing code generation strategies that handle recursive unfoldings
of parallel procedure calls in a reasonable manner.

Two common types of unfoldings have been identified. Examples of procedures
exhibiting these types of unfoldings are given in figure 6.3. The first example is a
procedure that reverses trees. Note that each invocation of reverse leads to another
opportunity for parallel procedure calls (reverse(l) | reverse(r)). Thus, the total
number of possible parallel procedure calls is unbounded (denoted by *). We refer
to the recursive unfolding in reverse as (x, x)-unfolding.

The second procedure, process_nezt, processes a data-structure that has two
links, a head link and a tail link. For each invocation of process_nezt, procedure
foo is executed on the head, and a recursive call to process_nezt is executed on
the tail. If foo contains no parallel procedure calls, then each invocation of pro-
cess-nezt gives one more opportunity for a parallel call. We refer to the unfolding
of foo(h)||process-next(t) as (1, *)-unfolding.

Given these two types of unfoldings, we designed a strategy for statically gener-
ating programs that dynamically schedule reasonable unfoldings of parallel pro-
cedure calls. For (*,x*)-unfoldings we use an interval-based processor allocation
scheme which is similar to the team-split mechanism in PCP [Bro88]. For the (1, *)-
unfoldings we use a pool-based allocation scheme.

Figure 6.4(a) illustrates the interval approach. Each processor p is associated
with an interval that indicates the set of idle processors. Initially processor 0 is
allocated the set of all processors, and as each parallel procedure call is encountered
the interval is split. For example, given an initial interval of [0-7], the recursive
calls in reverse would split such that reverse(r) would continue on processor 0
with interval [0-3], and reverse(l) would be given to processor 4 with interval [4-7].
When the intervals become singletons, no more interval subdividing is possible, and
execution reverts to the sequential case. This method is obviously well suited to
problems which naturally sub-divide into equal sub-tasks. By allocating intervals to
processors, the cost for scheduling processors is minimized by avoiding contention
for synchronization locks, and a breadth-first expansion of the parallel call graph is
obtained.

Clearly, the interval scheme is not well-suited to all sorts of unfoldings. In the
case of (1, *)-unfoldings, we use the pool-based method. In this case, all processors
in an interval are put into a pool, and processors are removed from and inserted
into the pool. For example, in process_next each invocation of foo(h) requests
a processor from the pool, and when the invocation terminates the processor is
returned to the pool. As indicated in figure 6.4(b), the interval and pool-based

6.1 Generating Parallel Code for the Butterfly

nodedef left, might: handle; value: int end;

procedure reverse(h: handle)

l,r: handle
begin
if h # nil then
begin
l:= h.left;
r:= h.right;
reverse(l) || reverse(r);
h.left .= r;
h.right := 1
end
end

nodedef head, tail: handle; value: int end;

procedure process_nezt(l: handle)
h,t: handle
begin
if | # nil then
begin
h := Lhead;
t .= l.tail;
foo(h) || process_nezt(t)
end
end

Figure 6.3: Examples of unfoldings.

92 Generating Parallel Programs

(a) Interval allocation

(b) Interval and Pool allocation

4 B ©

Figure 6.4: Interval and Pool allocation.

6.2 An example: Adaptive Bitonic Sort 93

methods may be combined, with any interval being treated as a pool.

6.2 An example: Adaptive Bitonic Sort

The adaptive bitonic sort program, which is used to sort binary trees, consists of two
main procedures: a recursive sort procedure Bisort, and a recursive merge procedure
Bimerge. The Bisort procedure (figure 6.5) has three arguments: a TREE with n-1
nodes (root), a TREFE with 1 node (sp.r), and an integer direction (dir). Bisort
recursively sorts two smaller problems, and then merges the result using Bimerge.
The procedure Bimerge (figure 6.6) is more complex. The computation consists of
two steps. The first step is to traverse down two paths in the tree, and at each step
in the traversal possibly swap sub-trees. The second step consists of recursive calls
to Bimerge on two smaller sub-problems.

The adaptive bitonic sort program is a good representative test of our inter-
ference analysis because it includes nested recursion, while loops, and nested con-
ditionals. In addition, it relies on imperative tree updating for the swapping of
sub-trees in SwapLeft and SwapRight, and it illustrates the problem of temporary
DAGS being created (see the comments in SwapLeft).

6.2.1 Path Matrix Computation

For each statement in the program, our analysis gives the relationships among all
live handles. This information can be used to determine that the recursive calls in
Bimerge can be safely executed in parallel, and that the recursive calls in Bisort can
be safely executed in parallel. Consider the recursive calls Bimerge(rl,sp_l,dir) and
Bimerge(rr,sp_r,dir) in the body of the procedure Bimerge. Our analysis produces
the path matrix given in figure 6.7 for the program point just before the recursive
calls. The relationships in this path matrix indicate that the handles i, rr, sp_l, and
sp_r are all unrelated, and that there are no DAG nodes. From this information, we
use the coarse-grain parallelizing rules from chapter 5 to infer that the two recursive
calls do not interfere and it is safe to execute them in parallel. A similar result is
easily obtained for the recursive calls of Bisort(l,sp_l,dir) and Bisort(r,sp_r,!dir) in
the body of the procedure Bisort.

6.2.2 Generating the Parallel Program

Given a parallelized SIL program in which the recursive calls to Bimerge and Bisort
have been scheduled in parallel, we automatically generated a parallel C program
for the Butterfly. Both the sequential SIL program and the parallel C program are
given in appendix D. The generated program uses the facilities provided by the BBN

Generating Parallel Programs

procedure SwapValue(l,r: handle)

temp: int
begin

temp := l.value; l.value := r.value; r.value := temp
end; { Swap Value }

procedure SwapLeft(l,r: handle)
II,rl: handle
begin
I := Lleft; rl := r.left;
Lleft := 1l; { at this point rl will have two parents: r and | (DAG) }
rleft :=11 { rl now has only one parent. | (TREE) }
end; { SwapLeft }

procedure SwapRight(l,r: handle)
Ir,rr: handle

begin
Ir := Lright; rr := r.right;
L.right := rr; r.right :=Ir

end; { SwapRight }

procedure Bisort(root,spr: handle; dir:int)
1, r, sp1: handle
begin
if root.left = nil then
begin
if (root.value > sp_r.value) xor dir then
Swap Value(root,sp.r)
end
else
begin
1 := root.left; r := root.right;
spd := NewNode(root.value);
Bisort(l,spd,dir); Bisort(r,spr,!dir);
root.value := sp_.value;
Bimerge(root,sp_r,dir)
end
end; { Bisort }

Figure 6.5: Bitonic Sort and Swap procedures.

6.2 An example: Adaptive Bitonic Sort

95

procedure Bimerge(root: handle; sp_r:handle ; dir: int)
rightexchange, elementexchange, temp : int;
spd, pl, pr, 1, rr: handle
begin
rightexchange := (root.value > sp_r.value) xor dir;
if rightexchange then SwapValue(root,sp.r);
pl := root.left; pr := root.right;
while (pl # nil) do
begin
elementexchange := (pl.value > pr.value) xor dir;
if rightexchange then
if elementexchange then
{ swap values and right subtrees, search path goes left }
begin
Swap Value(pl,pr); SwapRight(pl,pr);
pl := plleft; pr := pr.left
end
else
{ search path goes right }
begin pl := pl.right; pr := pr.right end
else
if elementexchange then
{ swap values and left subtrees, search path goes right }
begin
Swap Value(pl,pr); SwapLeft(pl,pr);
pl := pl.right; pr := pr.right
end
else
{ search path goes left }
begin pl := pl.left; pr := pr.left end
end; { while }
if (root.left # nil) then
begin
1l := root.left; rr := root.right;
spd := NewNode(root.value);
Bimerge(rl,spl,dir); Bimerge(rr,spr,dir);
root.value := spl.value
end
end; { Bimerge }

Figure 6.6: Bitonic Merge procedure.

96

Generating Parallel Programs

rootx9

sp-r*9 root sp-r sp-l rl T
(0,00) | (0,00) | (6,00) | (0,00) | (8,00) | (0,00) | (0,00)

root*9 S S L! R!
sp-r*9 S S
root S S L! R!
sp-r S S
sp-l S
rl S
rr S

Figure 6.7: Path Matrix before recursive calls in Bimerge.

Uniform System? to organize the memory and data structures as illustrated in figure
6.8. Note that each processor’s memory is divided into one section local to that
processor, and another section that may be accessed by other processors. The stack
and program code reside in the local section, while the heap and data structures
required for synchronization and communication reside in the global section. The
heap is managed as a distributed structure with locks. Each processor allocates
from all the heaps in a round-robin fashion. Thus, the nodes in the data structures
are evenly distributed over all processors.

Since both Bisort and Bimerge are (*, *)-unfoldings, the interval-based method
is used in the generated code. Figure 6.9 gives the parallel procedure gener-
ated for Bisort. The body of the procedure supports two modes. If the inter-
val allocated to the processor executing call to Bisort contains only one processor
(my_index == my_endpoint), then further recursive calls use the sequential version
(SS_Bisort), and no further scheduling overhead is incurred. When the interval
contains more that one processor, the interval is divided between a parallel call
to Bisort(l,spl,dir) and a local call to Bisort(r,sp.r,!dir). Note that the
overhead for starting the parallel call is quite small. It consists of some integer
arithmetic to calculate the intervals, a small number of global memory writes, and
an atomic operation to signal the processor to start.

6.2.3 Speedup results

The results of running the parallel program is given in figures 6.10, 6.11, 6.12, and
6.13. The parallel program was run on 1 to 32 processors. For each run, 10 random
trees of sizes 128, 512, and 8192 were sorted.

First consider figures 6.10 and 6.11. In these graphs speedup is the ratio (execu-

2The Uniform System is a collection of macros and functions that support global memory allo-
cation, data sharing, task generation, and synchronization [BBN88b)].

6.2 An example: Adaptive Bitonic Sort

97

HEAP

pt’r

info | lock |
\

L1 4

busy loc

HEEEENE .

Lf argument space }q~
ULLTT - [47

| return space J

[pending locks 1

HEAP

,,l ptr info J lock l

[[[T

|- |busy lock

— 1 [[[~ 1]

,7[argument space J

\
1 [[[~ [

| return space |

| pending locks |

S L

fe o> > - w - -

fo o= - > - - - - -

e - - - - - -

e ae w --w -----

PROCESSOR 0

PROCESSOR (N-1)

Figure 6.8: Global/Local memory layout.

98 Generating Parallel Programs

int my_index, my_endpoint; /* interval */

void
VALIIII I I L L st L2l Vs
Bisort(root,sp_r,dir)
[H*kkkkkkkhbhhhhhhkk/
HANDLE #*root, #*sp_r;
int dir;
{ HANDLE #*1, *r, *sp_l;
it ((root->left == NIL))
{ it (((root->value > sp_r->value) - dir))
SwapValue(root,sp_r);
}
else
{ 1 = root->left; r = root->right;
sp_1l = NewNode(root->value);
{ int input_endpoint;
input_endpoint = my_endpoint;
it (my_endpoint == my_index) /* only 1 proc */
{ ss_Bisort(1,sp_1,dir); SS_Bisort(r,sp_r,(! dir));

}
else /* more than one proc, fork off a procedure call */
/% ======= set up for fork of Bisort(l,sp_l,dir); s=s======== %/

{ int p, p_endpoint, *p_arglist, interval; short *p_pending;
p-endpoint = my_endpoint;
interval = (my_endpoint - my_index + 1) >> 1;
my_endpoint -= interval; p = my_endpoint + 1;
GET_PENDING(p_pending,1); /* get pending lock for p */
/* set up proc num, interval, and args for call */
p-arglist = arg_list_ptrs[pl;
*((short **) p_arglist)++ = p_pending;
((int) p_arglist)++ = DD_Bisort;
((int) p_arglist)++ = p_endpoint;
*((HANDLE **) p_arglist)++ = 1;
*((HANDLE *#*) p_arglist)++ = sp_1;
*((int *) p_arglist)++ = dir;
START(p); /* let processor p start */
Bisort(r,sp_r, (! dir));
WAIT_ZERO(*p_pending);
RELEASE_PENDING; /* release pending lock #*/
}
my_endpoint = input_endpoint;

}

root->value = sp_l->value;

Bimerge(root,sp_r,dir);

}

Figure 6.9: Parallel C version of Bisort.

6.3 Further Issues 99

tion time for 1 processor) / (execution time for n processors). In figure 6.11 we plot
only the points for 1,2,4,8,16, and 32 processors. For each run, the nodes in the
tree were allocated equally to each processor involved in the run. This means that
the 1-processor run accesses only local memory, while all other runs must access
some non-local memory. Even with the increased activity to non-local memory, we
see that speedup is achieved for all problem sizes. For trees of size 128, maximum
speedup is achieved at 16 processors. At this point the sub-problems given to each
processor are of size 8. For sub-problems smaller than 8 the overhead of starting a
new processor is prohibitive. For larger problem sizes, we see that the speedup is
still increasing at 32 processors. It should be noted that these data sets are rela-
tively small, and it is quite encouraging to see sustained speedup for 32 and more
Processors.

In order to study the effect of non-local memory accesses, we ran an experiment
where the data structure nodes were always equally distributed among the 32 mem-
ories. Thus, the time to access the data is equal for all test cases, regardless of
the number of processors involved in the test. Figure 6.12 gives the comparison of
speedups for this test, and the previous case (where data was allocated only on the
processors actually involved in the test). Note that the test in which all memory
accesses are equally expensive gives us a better speedup. From this we conclude
that locality of reference is an important factor that should be considered.

The final graph (figure 6.13) gives the execution time for on 1 processor, versus
the execution time on 32 processors. Note that a problem size of at least 32 is
required before the 32-processor case exhibits speedup over the 1-processor case.
With problem sizes of 512 or more, scheduling overhead is insignificant and the
32-processor executes about 7 times faster than the 1-processor case. This graph
demonstrates that there is some minimal problem size that is required before the
benefit of adding a new processor to the problem outweighs the overhead associated
in starting a new computation.

6.3 Further Issues

As outlined in the previous section, there are two major problems that need to
be addressed. The first problem concerns the lack of locality of data. Since the
data structures are dynamically allocated and imperatively updated, it is difficult
to exploit any locality of reference. Thus, when comparing the parallel program
(many heaps) to a sequential program (one local heap) there is a large penalty
for non-local memory accesses in the parallel case. The second problem concerns
the overhead associated with allocating a task (parallel procedure call) to an idle
processor. Allocating idle processors to work on a problem is only beneficial when
the amount of work (problem size) is large enough to mask the overhead.

Dealing with these issues is difficult in the presence of dynamic data structures.
Unlike arrays, the size and shape of the recursive data structures is unknown at

100 Generating Parallel Programs

compile-time, and in fact may vary drastically throughout the execution. In addi-
tion, small changes to the data structure, like swapping sub-trees can greatly affect
locality of data.

6.3 Further Issues 101

Speedup(S) vs. Number of Processors (P)

(o) n=128, (x) n=>512, and (s) n=8192

0 ' T ' T] T ' L] T T ' T T T] L] T Ll I T T T ' T T T [1 1 T]

12 4 8 12 16 20 24 28 32
P
Figure 6.10: Speedup for 1 ... 32 processors.

102

Generating Parallel Programs

Speedup(S) vs. Number of Processors (P)
((0) n=128, (%) n=>512, and (e) n=8192

1 T T T 1 T T LI L L T T T T T T T T T T T T T

4 8 16
P
Figure 6.11: Speedup for 1 ,2, 4, 8, 16, and 32 processors.

6.3 Further Issues 103

Speedup(S) vs. Number of Processors(P)

o - nodes allocated on all 32 processors
e - nodes allocated only on P processors
n=8192

Figure 6.12: The effect of locality.

104 Generating Parallel Programs

Time(T) vs. Problem Size (n)
(o) P=1, (s) P=32

100000

10000 -

1000

100

10

T T T T T T T
2 8 16 32

T T | 1
128 512 2048 8192
n

Figure 6.13: The effect of processor allocation overhead.

Chapter 7

Conclusions and Further Work

In this thesis, we have presented a new approach to interference analysis and par-
allelization of imperative programs with dynamic data structures. Our approach
concentrates on providing compile-time analyses that approximate the relationships
between accessible nodes in large aggregate data structures. These relationships are
represented by path expressions, a restricted form of regular expressions, that pro-
vide both useful information, and efficient operations such as merging and equality
testing. The relationships calculated by the interference analysis, encoded in path
matrices, are used to determine that the data structures built by a program are in
the special classes of TREE or DAG. In addition, the relationships are used for par-
allelization. We presented three parallelization methods: (1) a fine-grain analysis
to determine if n basic handle statements can be executed in parallel, (2) a more
coarse-grain analysis to determine if procedure calls can be executed in parallel,
and (3) an analysis to detect if two statement sequences interfere.

We have provided both an informal description of the techniques and a formal
model for describing the interference analysis as an abstract interpretation. Using
the formal model we demonstrated soundness of the method with respect to a
standard semantics.

By focusing our approach on data structures with regular properties, we were
able to provide an efficient abstract representation (path matrices) for recursive
data structures and we were able to develop effective parallelization methods based
on the abstract representation. A prototype of the system dealing with TREES and
DAGS is operational. We illustrated one use of the parallelization information by
implementing a back-end that uses the coarse-grain parallelization information to
generate parallel C programs for the BBN butterfly. As well, we provided numerous
examples of the interference analysis, and we illustrated the effectiveness of our
system with concrete examples.

The overall structure of the parallelizing system presented in this thesis is il-
lustrated in figure 6.1. Although originally intended as an experiment in analysing
programs with recursive data structures, we can view the system as providing a
kernel of interference analysis and parallelization techniques. Our future work in-

105

106 Conclusions and Further Work

volves building upon this kernel to provide parallelization systems for languages
less constrained than SIL. Consider the system outlined in figure 7.1. The top-level
lists various programming languages that support recursively defined data struc-
tures, while the bottom-level lists some parallel architectures. Interference analysis,
parallelization, and code generation/scheduling connect the two levels. If we view
SIL as a high-level intermediate representation of C, then we have provided a major
piece of the path from sequential C to parallel Butterfly C. However, there are many
opportunities for extensions and further work at each level.

First consider the interference analysis level. We would like to express our
analysis in terms of an intermediate representation that can be related to other
languages. Some obvious extensions to the method include other forms of parameter
passing (call-by-reference), and support for higher-order functions.

At the parallelization level we have provided three parallelization methods. We
would like to extend the use of path matrices to develop more sophisticated paral-
lelization techniques such as partial overlapping and pipelining of procedure calls,
and pipelining of loop iterations.

At the code generation level, we have provided some basic techniques for exploit-
ing coarse-grain parallelism on a shared memory machine. As outlined in chapter
6, there are still many issues to address. Scheduling the parallel computations in
a balanced fashion, and maximizing locality of reference, are both important prob-
lems. As was the case with static estimation of interference, the dynamic nature of
the size, shape, and connectivity of the data-structures makes static scheduling and
exploiting locality particularly difficult.

Another important issue is programmer interaction at various levels. In the sys-
tem outlined in this thesis, the programmer specified a sequential program, and the
interference analysis, parallelization, and parallel code generation was performed
by the compiler without further interaction with the programmer. We would like
to investigate how the programmer can guide the parallelization. One possibility
is to augment the programming language so that the programmer can specify ad-
ditional information about the computation. Such an approach has been used in
the context of domain decomposition for scientific programs using arrays [RP89,
CK88, KMR87]. In these systems, the programmer specifies both the program
and a mapping for the data, and the compiler produces a parallel program based
on that mapping. By allowing the programmer to encode some knowledge about
the problem (what mapping leads to good locality of reference), the compiler can
generate efficient parallel programs. We would like to explore the possibilities of
analogous mechanisms for programs with dynamic data structures. Is it possible
to specify more information about a dynamic data structure so that the compiler
can perform more precise interference analysis, improve locality of reference, or
produce a better parallel schedule? Other levels of programmer interaction have
been developed in the context of parallelizing FORTRAN compilers. Programming
environments such as Faust [GGGJ88], PAT [SA88], Superb [ZBG88], Parafrase-2
[PGH*89], and ParaScope [BKK*89] allow the programmer to interact with the

7. Conclusions and Further Work 107
C Pascal Scheme ? N
\\
\
Translation Y
‘\
\
\\
High-level Intermediate \
Representation \
\\
\\
Interference Analysis ~~__ :-' \
r-:::=___l-_,
) |
. [}
Augmented ‘Intermedxate ' PROGRAMMER!
Representation : '
t.....::,,.___,_...l
- - /I
l Parallelization “-~ ?]
,I
[,
Parallelized Representation /) !
,I
Code Generation/ 4
tatic Scheduling
IButterﬂy C Lisp/Futures VLIW ?

Figure 7.1: Future Plans

108 Conclusions and Further Work

interference analyzer and parallelizing transformation system. However, unlike the
FORTRAN environments that deal mostly with loops and arrays, we need to de-
termine what tools would be useful in the context of recursive data structures, and
recursive programs. Programmer interaction with the scheduling strategy is one
instance of potentially useful programmer input.

In summary, we have developed the core of an interference analysis and par-
allelization system for programs containing recursive data structures. Our initial
experiments with the methods have been very encouraging and have suggested in-
teresting new areas of research.

Appendix A

Standard Sematics for SIL

A.1 Semantic Domains

£ : Expression — (Env — (Mem — Value))
M : Statement — (Env — (Mem — Mem))
D : Definition — (Env — Env)
P : Program — (File — File + error)

where

Env = Id — Loc + Procedure
Store = Loc — Value
Heap = NodePtr — ((Int 4 undef) x (NodePtr + nil) x (NodePtr + nil))
Value = Int + NodePtr + nil + undef
Procedure = Value™ — (Mem — Mem)
File = Int list
NodePtr = Int
Loc = Int
Mem = (Store x Heap x Loc x NodePtr x File x File) + error

A.2 Expressions
E[constant]| env mem = constant
E[X] env (store, heap, sp, fl, in, out) = store(env(X))

E[X.f] env (store, heap, sp, fl, in, out) =

let
. h = (store(env(X))
_—heap(h).f

109

110 Standard Sematics for SIL

E[€1 op e2] env mem =

let
vi = (& e1] env mem)
ve = (€[e2] env mem)

in
if v; = undef or v, = undef then

undef o

else

V1 0D V2

A.3 Scalar Statements

M([s] env error = erro

<

M[X := e] env (store, heap, sp, fl, in, out) =
let
v = E[[e] env (store, heap, sp, fl, in, out)
in
(store[env(X) — v], heap, sp, fl, in, out)

M[X := get()] env (store, heap, sp, fl, in, out) =
(store[env(X) — first(in)], heap, sp, fl, rest(in), out)

M(put(e)] env (store, heap, sp, fl, in, out) =
let
v=E[e] env mem
in
(store, heap, sp, fl, in, out::v)

A.4 Handle Statements

M[A := nil] env (store, heap, sp, fl, in, out) =
(store[env(A) — nil], heap, sp, fl, in, out)

M[A := new()] env (store, heap, sp, fl, in, out) =
(store[env(A) — fl], heap[fl — (undef, nil, nil)], sp, fl+1, in, out)

M[A := B] env (store, heap, sp, fl, in, out) =
(store[env(A)— store(env(B))], heap, sp, fl, in, out)

A.5 Compound Statements 111

M[A := B.f] env (store, heap, sp, fl, in, out) =
let
h = store(env(B))
in
if h = nil then error else (store[env(A)— h.f], heap, sp, fl, in, out)

M[A.f:= e] env (store, heap, sp, fl, in, out) =
let
h = store(env(A))
v=E[ezp] env mem

in
if h = nil or v = verror then
error
els

e
(store, heap[h.f— v], sp, fl, in, out)

A.5 Compound Statements

M[begin end] env mem = mem

M[begin s; ; 82 ;... ; 3, end]| env mem =
M[begin s; ;... ; s, end] env (M[31] env mem)

M[if e then s, else s; | env mem =
if £ e] env mem then
M[s1] env mem
else
M[s2]| env mem

M[while e do s] env mem = fiz(W) mem
where
W=AT.m.
if [e] env mthen T(M[s] env m) else m

M[repeat s until e]| env mem = fic(W) mem
where
W= AT. m.
let my = M[s] envmin
if £ e] env m; then m, else T(M][s] env m,)

112 Standard Sematics for SIL

A.6 Procedures

M[p(ar,as ...,a,)] env mem =
let
vy = & a1] env mem

vp = E[an] env mem
in
env(p)(vy ... v,) mem

Dlproc g (zi:t ;... ;20:t) izt ... 5 lmit; s] env = envg— Q]
where Q =

Avy . Avg Av, . A (storeheap,sp,fl,in,out) .
let
local_env =
env[z1—sp+1, ..., T sp+m,

li—sp+n+1, ..., l,—sp+n+m])
local_store =
store[local_env(z,) vy, ..., local_-env(z,) v,

local_env(ly)—undef, ..., local_env(ln)— undef]

new-mem = M| s] local_env (local_store, heap, sp+m+n, fl, in, out)

in
if new_.mem = error then
error
else
let
(local_store ,heap',sp',fl' in',out') = new_mem
in

(store,heap’,sp,fl',in,out’)

D[recproc r (zy:t 5 ... 5 xait) Lzt ... 3 lmit; 8] env = fiz(R) env

where
R= AT . Xe. e[r— Q]
Q= Avy . Az dv, . X (store,heap,sp,fl,in out) .
let

local_env =
(T e)[z1—~sp+1, ..., za—sp+n,
li—sp+n+1, ..., lp—sp+nt+m]
local_store =
store[local_env(z,)—vy, ..., local_env(z,)— v,
local_env(ly)—undef, ..., local_env(ly)—undef]
new-mem = :
M(] s] local_env (local_store, heap, sp+n+m, fl, in, out)

A.7 Programs 113

in
if new_mem = error then
error
else
let
local_store' ,heap’,sp’,fl',in ,out') = new_mem

=)

(store,heap’,sp,fl',in’,out’)

D[di;da; ...;5dn] env =
D[dz; - . -; dn]| newenv
where newenv = D[d;] env

A.7 Programs

P[program id def-list]| in_file =
let
final_mem =
M[main() J
(D[def-list]| empty_env)
(empty_store,empty_heap,0,0,in_file,[])

if final_mem = error then
error
else
final_mem.out_file

Appendix B

Translating SIL to C

In this appendix, we outline the correspondence between SIL and C. The following
sections give the SIL-to-C translations for node type definitions, statements, and
procedures and functions.

B.1 Node Type Definition

struct node {

int si;
nodedef ..
8 : int; int sn;
e struct node *hi;
Sn ¢ int;
hy : handle; struct node *hm;

};

hm ¢+ handle

t def struct node HANDLE;
end ypece

#define NIL ((HANDLE *) 0)

114

B.2 Statements 115

B.2 Statements

Q= a=b
a:=bf a = b->f
a.f:= a->f = b
begin
sg. { s1;
15 g2;
82; e o o
an;
Sn }
end
if ezp then if (exp)
S1 si
else else
Sa s2
while ezp do while (exp)
S1 si
repeat do
31 si
until ezp while (! exp)

B.3 Procedures and Functions

The following rules give the translations for procedures, functions returning one
value, and functions return more that one value. Note that functions returning one
value map directly to C functions, while functions returning more than one value
in SIL are translated to C procedures with reference parameters.

p(z1,22,. . .,Tn) p(x1,x2, ... ,xn)

r = f(z1,T2,...,Zn) ri = f(x1,x2, ... ,xn)

Tl «eoy Tm i= f(1,22,. . ,Zp) f(x1,x2, ... ,xn,&rl, ... ,&rm)

116

Translating SIL to C

void p(x1,x2, ,Xn)
procedure p(z;:ty,...,z,:t,) 1 51. T tn xme
Lt It { 1t1 11;
Im? ltm 1tm 1lm;
begin
813 si;
St st;
end }
rt f(x1,x2, ,Xn)
function f(z;:t,...,z.:t,) 7t tl x1; ...; tn xn;
11! ltl; { 1t1 11;
lns It ltm 1lm;
begin
813 si;
st;
St turn(r);
end => return(r) } re ’
void f(x1,x2, ,Xn,
r._1, ., T_q)
ti x1; ...; tn: xn;
functlon f(a:lztl,. . .,:z:,,:t,,) tr_1 *r_1; .3 tr_q *r_q;
Tt1, ..., Tl { 1t1: 11;
11: ltl; oo
- l1tm: 1lm;
s Ut
begin 81;
813 -
st;
St

end => return(ry, ...

*xr_1 =1i;

*r_q = rq;

Appendix C

Illustrative Interference Analysis
Computations

Our interference analysis tools include a trace facility! for path matrix computa-
tions. In this appendix we present portions of traces to illustrate the analysis for a
wide variety of program constructs.

C.1 SIL program

The following program defines a linked list node type, and defines functions for
building, sorting, and printing lists.

program quicksort

constant
RANDOMDIV = 100000
end;

nodedef
value: int;
next: handle
end;

function new_node(v: int) handle
{ Allocate a new node, initialize value field to v, }
{ Ulnk field to nil }
h: handle
begin
h := new();
h.next := nil;

h.value := v

ncluding a latex mode which is useful for thesis writing.

117

118 Illustrative Interference Analysis Computations

end => return(h);

function build_nonnil list(n:int) handle
{ build a random list of at least one element }
next_val: int;
root, last_node, next_node : handle
begin
next_val := random();
next_val := next_val /| RANDOMDIV;
root := new_node(next_val);
last_node := root;
while n > 1do
begin
next_val := random();
next_val := next_val / RANDOMDIV;
next_node := new_node(next_val);
last_node.next := next_node;

last node := next_node;
n:=n - {1
end;

end => return(root);

function build list(n:int) handle
{ build a random list }

list: handle
begin
ifn > 0then
list := build_nonnil list(n)
else
list := nil

end => return(list);

procedure print list(h: handle)
{ print a linked list }
begin
while h # nil do
begin
put(h.value);
h := h.next
end;
puts(”\n");
end;

function link_up(a-head,a_tail,b_head,b_tail:handle) handle, handle

C.1 SIL program

{ given two lists with head and tail pointers, }
{ link them together and return the head and tail }
{ pointers to linked result }
res_head, res_tail: handle
begin
if a_head = nil then
begin
res_head := b_head;
res_tail := b_tail
end
else if b_head = nil then
begin
res_head := a_head;
res_tail := a_tail
end
else
begin
a_tail.next := b_head;
res_head := a_head;
res_tail := b_tail
end
end => return(res_head,res_tail);

function partition(h:handle) handle,handle,handle,handle
{ partition a non—nil list into three pieces, }
{ return pointer to head of left list (< v), head and tail of }
{ middle list (= v), and head of right list (> v) }
left_h left_t, p_h, p_t, right_h, right_t: handle;
next_node, last_node: handle;
v: int
begin
{ h is first item of list, next_node is rest, v is partition value }
v := h.value;
next_node := h.next;
h.next := nil;

{ initialize left list to empty, partition list to first item, }
{ right list to empty }

left_h := nil; left_t := nil;

p-h :=h; p_t := h;

right _h := nil; right_t := nil;

{ partition into three lists }

while next node # nil do
begin

119

120 Illustrative Interference Analysis Computations

{ chop head of list off }
last_node := next_node;
next_node := next_node.next;
last_node.next := nil;

{ append to correct list, left, partition, or right }
if last_node.value < v then
if left_ h = nil then
begin
left_h := last_node;
left_t := last_node
end
else
begin
left_t.next := last_node;
left_t := last_node
end
else if last_node.value > v then
if right h = nil then
begin
right_h := last_node;
right_t := last_node;
end
else
begin
right_t.next := last_node;
right_t := last_node
end
else
begin
p-t.next := last_node;
p-t := last_node
end
end
end => return (left_h,p_h,p_t right h);

function gsort(h:handle) handle, handle
{ given a pointer to unsorted list, return head and tail pointer of }
{ sorted list }
q-h, g-t: handle;
Llh]lt,rrhrt: handle;
p-h, p-t: handle
begin
if h = nil then

C.2 Analysis of the main program 121

begin
q-h := nil;
q-t := nil
end
else
begin

L,p-h,p_t,r := partition(h);
1h]t := gsort(l);
r-h,rt := gsort(r);
q-h,q-t := link_up(l-h,]_t,p h p_t);
q-h,q-t := link_up(q-h,q-t,rhr_t)
end
end => return(q.h,q-t);

procedure main(n:int)
unsorted _head,sorted head,sorted_tail : handle
begin :
unsorted_head := build_list(n);
print list(unsorted_head);
sorted head, sorted_tail := gsort(unsorted_head);
print_list(sorted _head)
end;

C.2 Analysis of the main program

We first look at the interference analysis at the level of the main procedure. For
each statement in the body of main, we display the path matrix that estimates the
effect of executing the statement.

procedure main(n:int)
unsorted_head,sorted _head,sorted_tail : handle
begin
unsorted_head := build_list(n);
print_list(unsorted_head);
sorted_head, sorted-tail := gsort(unsorted-head);

print list(sorted -head)
end;
BEGIN main s====================
begin ... end

unsorted_head:=build_list(n)

122 Illustrative Interference Analysis Computations

| [unsorted_head(®,0) |
| unsorted_head || S j

print_list(unsorted_head)

| [| unsorted_head(®,0) |
| unsorted_head || S |

sorted_head,sorted_tail:=qsort(unsorted_head)

[| sorted_head(®,0) | sorted_tail(®,0) |

sorted_head S (S+ N*)?
sorted_tail S? S

print_list(sorted_head)

====== == END main =

Given the trace of main above , we observe the following:

unsorted head := buildlist(n) - This statement produces a list that does not
contain any cycles or DAG nodes. If a cycle had been detected an exception
would have been raised, and if a DAG node had been created, a DAG handle
would appear in the resulting path matrix. The nilness estimate of (©,©)
indicates that the handle unsorted_head may be either nil or a handle to a
node.

print_list(unsorted head) - This statement does not change the structure of
the list, and the path matrix estimate remains the same.

sorted head, sorted_tail := gsort(unsorted-head) - After executing this state-
ment, two handles are live: sorted_head, and sorted_tail. No cycles or DAGS
were created, and the path matrix entries indicate that sorted_head and
sorted_tail may be the same node, or there may be a path of length 1 or
more between them. Also note that the analysis detects that the next field
for sorted_tail must be nil.

print_list(sorted_tail) - After executing this statement, there are nolive han-
dles, so an empty path matrix is displayed.

C.3 Analysis of build_list 123

C.3 Analysis of build_list

We now take a closer look at the analysis of the build_list and build_nonn:l_list
functions, and the resulting trace of the path matrix computations. This trace
illustrates the iterative approximation of a the while loop in build_nonnil_list, and
the merging of path matrices after conditionals. For example, note the merging of
the path matrices for both parts of the conditional statement in build_list.

function build list(n:int) handle
{ build a random list }
list: handle
begin
ifn > 0then
list := build_nonnil list(n)
else
list := nil
end => return(list);
function build_nonnil list(n:int) handle
{ build a random list of at least one element }
next_val: int;
root, last_node, next.node : handle
begin
next_val := random();
next_val := next_val / RANDOMDIV;
root := new_node(next_val);
last_node := root;
while n > 1do
begin
next_val := random();
next_val := next_val / RANDOMDIV;
next_node := new_node(next_val);
last_node.next := next_node;
last_node := next_node;
n:=n - 1
end;
end => return(root);

==== BEGIN build_list =
begin ... end
if (n>0) then ... else ...

==== COND (THEN PART) =
list:=build_nonnil_list(n)

= BEGIN build_nonnil_list =====
begin ... end

next_val:=random()

124 Illustrative Interference Analysis Computations

next_val := (next_val/100000)
root:=new_node(next_val)

|

|| root(e,0) |

|

root”

s |

last_node := root

|

|| root(e,0) | last_node(s,0) |

root

S

S

last_node

S

S

while (n>1) do

begin ..

. end

BEGIN WHILE/REPEAT

next_val:=random()

next_val

:= (next_val/100000)
next_node:=new_node(next_val)

|| root(e,0) | last_node(e,0) | nezt_node(s,0) |

root S S
last_node S S
nezt_node

last_node.next := next_node

l

|| root(e,e) | nezt_node(e,0) |

root

S

Nl

nezt_node

S

last_node := next_node

l

|| root(e,e) | last_node(s,0) |

root S N1
last_node S
n := (n-1)

|

|| root(e,0) | last_node(e,0) |

root

S

S

last_node

S

S

OuUT:

C.3 Analysis of build_list

| root(e,e) | last_node(e,o) |

root S Nt

last_node S
= ITERATION # 2 ======== =
begin ... end

next_val:=random()

next_val

:= (next_val/100000)

next_node:=new_node(next_val)

| root(e,e) | last_node(s,0) | nezt_node(s,0) |

last_node.next :

root S N1

last_node S

nezt_node S
= next_node

l

[| root(e,e) | nezt_node(e,0) |

root S N?
nezt_node S
last_node := next_node

[|| root(e,e) | last_node(e,0) |
root S N?
last_node S

n := (n-1)
------- results of iteration #2 -------
IN:

I || root(e,e) | last_node(s,0) |
root S N1
last_node S

OUT:

l || root(e,e) | last_node(s,0) |
root S N?
last_node S

IN merge OUT => next(IN):

[| root(e,e) | last_node(s,0) |

root

S Nt

last_node

S

Illustrative Interference Analysis Computations

begin ..

. end

==== ITERATION # 3

next_val:=random()

next_val

:= (next_val/100000)

next_node:=new_node(next_val)

|| root(e,e) | last_node(e,0) | nezt_node(s,0) |

root S N+t

last_node S

nezrt_node S
last_node.next := next_node

|| root(e,e) | nezt_node(e,o0) |

root S NINt
nezt_node S
last_node := next_node

[| root(e,e) | last_node(s,0) |

root S NIN+t
last_node S
n := (n-1)

IN:

l [root(s,e) [last-node(s,o0) |
root S Nt
last_node S

OUT:

| [root(s,e) | last_node(s,0) |
root S NINT
last_node S

IN merge OUT => next(IN):

[

| root(e,e) | last_node(s,o) |

root

S

N+

last_node

S

END WHILE/REPEAT

-1

C.4 Analysis of gsort 12

| [root(s,0) | last-node(s o) |

root S (S+NT)
last_node 5?7 S
s================ END build_nonnil_list s==================
L[stre0)]
[lst]| S]
------- (ELSE PART) ========= ===
list := nil
I [| tist(o,0) |
(st S |
END COND ======s======z=====
L[tst(@,0)]
[st]] S |

= END build_list ====

C.4 Analysis of gsort

We now examine the analysis for gsort. Figure C.1 gives a pictorial outline of the
behaviour of gsort and figure C.2 gives a trace of the iterative approximation. Given
an unsorted linked list h, gsort partitions h into three sub-lists, sorts the the left
and right sub-lists, and then links the sorted sub-lists together.

function gsort(h:handle) handle, handle
{ given a pointer to unsorted list, return head and tail pointer of }
{ sorted list }

q-h, q-t: handle;

Ll hl trrhrt: handle;

p-h, p-t: handle

begin
if h = nil then
begin
q-h := nil;
q-t := nil
end

else

128 Illustrative Interference Analysis Computations

unsorted list

p‘_..

1,p-h,pt,r := partition(h);

<p =p >p
i 1
1 p-h p-t r
1h,1t := gsort(l); rh,rt := gsort(r);
sorted < p =p sorted > p
T ro b j
1.h 1t p-h p-t rh T
q-h,qt := linkup(lh,l_t,ph,pt);
sorted <= p sorted > p
i - f
q-h q-t rh It
q-h,qt := linkup(q-h,q-t,rh,rt);
sorted list
| f
q-h

Figure C.1: Diagrammatic outline for gsort.

C.4 Analysis of gsort 129

sakkkokkkkkkkk [1] qsort = LEVEL O skkkiokdokkiokiokkokkk

INPUT APPROX:

[Tr*6(6,0)] 20,0)]
hx6 S S
h S S

OUTPUT APPROX:

[[#6(0,0) [eh(o,0) [a-t(o0]]
hx6 S
q-h S
g-t S

soakickkkikkak [2] qsort = LEVEL O #kkkkkkiokikkikkkkk

INPUT APPROX:

[_[h+6(0,0)[4(6,0)]
6] S S
B S S

OUTPUT APPROX:

[Th+6(0,0)] ¢-h(0,0)] ¢-t©,0)]

h+6 S S? (S+N*)?
ah 57 5 S+ N7
g-t S? S? S

wokrkkkckkkkkk [3] qsort - LEVEL O #kkdkkkkkdkkikkkikk

INPUT APPROX:

[[4*6(0,0)] 4©,0)]
hx6 S S
h S S

OUTPUT APPROX:

[T #+6(0,0) Ta-h(0,0)] ¢t@,) |
hx6 S S? (S+ N*)?
ok | S+ N 5 (S+ NPT
0t 57 57 S

Figure C.2: Iterative Approximation for gsort.

130 Illustrative Interference Analysis Computations

begin
l,p-h,p-t,r := partition(h);
1.h,lt := gsort(l);
r.h,rt := gsort(r);
q-h,q-t := link_up(l-h,l_t,p h,p_t);
q-h,q-t := link_up(q-h,q-t,r h,r_t)
end
end => return(q.-h,q-t);

The following trace of gsort gives the path matrices computed for the last iter-
ation the iterative approximation. Compare the relationships encoded in the path
matrices with the diagram of pointers given in figure C.1. Note that the path matrix
just before the recursive calls to gsort indicates that [and r are unrelated. Also,
note that the resulting path matrix is equal to the last output approximation in the
iterative approximation in figure C.2.

==== BEGIN gsort =s=sss===== ====
begin ... end
if (h=nil) then ... else ...
================= COND (THEN PART) s===
begin ... end
q.h := nil
[#+6(0,0)] g-h(o,0)]

hx6 S

q-h S
q-t := nil

| | h+6(©,0) | ¢-h(o,0) | g-t(o,0) |

h*6 S

q-h S

g-t S
ss======= (ELSE PART) ======================
begin ... end

1,p_h,p_t,r:=partition(h)

| [h+6(0,0) [1(6,0)] r(©,0) | p-h(,0) | p-t(e,0) |

hx6 S S? (S+NH)?
l S

r S

p-h S? S (S+N)
p-t S? S? S

C.4 Analysis of gsort 131

1_h,1_t:=qsort(l)

hx6 lh It r p-h p-t
©0)]©0)] (©0) |(©06)](60) (s,0)
hx6 S S? | (S+N*)?
lh S (S+N*)?
It S? S
r S
p-h S? S (S+NT)
p-t S? S? S
r_h,r_t:=qsort(r)
hx6 Lh It r_h r_t p-h p-t
(®r®) (®;®) (®;°) (0,0) (®’°) ("G) (o,o)
hx6 S S? | (S+N*)?
Lh S (S+NtY)?
It S? S
r_h S (S+ Nt+)?
r_t S? S
p-h S? S (S+NT)
p-t S? S? S

q-h,q_t:=link_up(1_h, 1_t, p_h, p_t)
[T "606,0) [¢h©,0)] ¢t@,0) [rh©,0)] rt@,) |

hx6 S S? (S+N*)?

g-h || ST, (S+ N*)? S (S+N*¥)?

g-t S? S? S

r_h S (S+N*)?
r_t S? S

q-h,q_t:=link_up(q_h, q_t, r_h, r_t)
[T m60,0) [4h0,0)] g¢t©@,0)]

h+6 S S? (S+N*)?
ah || ST,(S+ N¥)? S (S+N*)
q-t S7? S? S

=== o=============== END COND =================

[[m6(0,0) | ¢h0,0) | ¢t@,) |

h+6 S S? (S+N*)?
gh || (S+ NV S (S+N*)?
g-t S? S? S

==== END gsort ssssss============

Appendix D

Generating Parallel C Programs:
An Example

D.1 Sequential SIL Program

program bitonic

constant
UP = 0 { sort in ascending order }
DOWN = { { sort in descending order }
end;

nodedef
value: int;
left: handle;
right: handle
end;

{ ——— AUXILLIARY PROCEDURES ——- }

function NewNode(v: int) handle
h: handle
begin
h := new();
h.value := v;
h.left := nil;
h.right := nil
end => return(h);

{ ——— PRINT TREE PROCEDURES ——- }

procedure PrintIndent(n: int; path: int)
divisor: int
begin
if n = 0 then puts(”x”); { if the root then print out root symbol }

132

D.1 Sequential SIL Program

divisor := 1 << (n - 1);
while n > 0do
begin
if n = 1 then { if last link }
if path = 0 then
puts(”/————— >") { right link }

puts("\————— >") { left link }
else
if (path / divisor) = (path
puts(” ")
else
puts(”| ")
path := path
divisor := divisor / 2;
n:=n-1I
end
end;

procedure PrintSubTree(h: handle; n,path: int)
1,r: handle
begin
if h # nil then
begin
{ print right sub—tree }
r := h.right;
PrintSubTree(r,n+1,path x 2);

{ print root }

puts(”(”); put(n); puts(”)”);
PrintIndent(n,path);

puts(” ”); put(h.value); puts(”\n”);

{ print left sub—tree }
1 := h.left;
PrintSubTree(l,n+1,(path x 2) + 1)
end
end;

procedure PrintTree(h: handle)
{ Print the tree rooted at h }
begin

PrintSubTree(h,0,0)
end;

{ Print the inorder traversal of tree rooted at h }

133

134 Generating Parallel C Programs: An Example

procedure InOrder(h: handle)
I,r: handle
begin
if h # nil then
begin
1 := h.left;
r := h.right;
InOrder(l);
put(h.value);
puts(” ”);
InOrder(r)
end
end;

{ ——— CREATE A RANDOM TREE ——-}

function RandTree(n: int) handle
next_val: int;
h,l,r: handle
begin
ifn > 1 then
begin
next_val := random();
h := NewNode(next_val);
1 := RandTree(n/2);
r := RandTree(n/2);
h.left :=1;
h.right := r;
end
else
h := nil
end => return(h);

{ ——— SWAPPING PROCEDURES ——- }

procedure SwapValue(l,r: handle)
temp: int
begin
temp := l.value;
l.value := r.value;
r.value := temp
end; { SwapValue }

procedure SwapLeft(l,r: handle)
1.,rl: handle
begin

D.1 Sequential SIL Program

11 := Lleft;
rl := r.left;
Lleft := rl;
rleft :=1

end; { SwapLeft }

procedure SwapRight(l,r: handle)
Ir,rr: handle
begin
Ir := l.right;
IT := r.right;
Lright := rr;
r.right :=Ir
end; { SwapRight }

{ —=—— BITONIC MERGE ——- }

procedure Bimerge(root: handle; sp_r:handle ; dir: int)
rightexchange, elementexchange, temp : int;
spd, pl, pr, rl, rr: handle
begin
rightexchange := (root.value > sp_r.value) xor dir;
if rightexchange then SwapValue(root,spr);
pl := root.left;
pr := root.right;
while (pl # nil) do
begin
elementexchange := (pl.value > pr.value) xor dir;
if rightexchange then
if elementexchange then
{ swap values and right subtrees, search path goes left }

begin
Swap Value(pl,pr);
SwapRight(pl,pr);
pl := pl.left;
pr := pr.left
end
else
{ search path goes right }
begin
pl := pl.right;
pr := pr.right
end
else

if elementexchange then

135

136 Generating Parallel C Programs: An Example

{ swap values and left subtrees, search path goes right }
begin
SwapValue(pl,pr);
SwapLeft(pl,pr);
pl := pl.right;
pr := pr.right
end
else
{ search path goes left }
begin
pl := pl.left;
pr := pr.left
end
end; { while }
if (root.left # nil) then
begin
1l := root.left;
IT := root.right;
spd := NewNode(root.value);
Bimerge(rl,spl,dir); Bimerge(rr,sp.r,dir);
root.value := spl.value

end
end; { Bimerge }
{ ——— BITONIC SORT —--}

procedure Bisort(root,sp_r: handle; dir:int)
1, r, sp1: handle

begin
if root.left = nil then
begin
if (root.value > sp_r.value) xor dir then
SwapValue(root,sp.r)
end
else
begin

1 := root.left;
r := root.right;
spd := NewNode(root.value);
Bisort(l,spd,dir); Bisort(r,sp.r,!dir);
root.value := spl.value;
Bimerge(root,sp_r,dir)
end
end;

D.2 Parallel C Program

{ ——— MAIN ———}

procedure main(n: int)
h,s: handle;
sval, height: int;
begin
{ Build original tree }
h := RandTree(n);
sval := random();
s := NewNode(sval);

{ Print out tree }
puts(”Original Tree: ”);
PrintTree(h);
InOrder(h);
put(s.value); puts(”\n”);

{ Sort tree }
Bisort(h,s,UP);

{ Print out sorted tree }
puts(”Sorted Tree: ”);
PrintTree(h);

InOrder(h);

put(s.value);

puts(”\n”);

{ sort in desending order }
Bisort(h,s, DOWN);

{ Print out sorted tree }
puts(”Sorted Tree: ”);
PrintTree(h);
InOrder(h);
put(s.value);
puts(”\n")

end;

D.2 Parallel C Program

D.2.1 File: bitonicp_node.h

/% mzzzzszzzzz=z=s= JODE STRUCTURE s/

struct node {
int value;
struct node *left;
struct node *right;

};

137

138 Generating Parallel C Programs: An Example

typedef struct node HANDLE;

#define NIL ((HANDLE #) 0)

D.2.2 File: bitonicp_procs.h

/# ========z= PROCEDURE TYPES/NUMS s/

HANDLE *NewNode();
void PrintIndent();
void PrintSubTree();
void PrintTree();
void InOrder();
HANDLE *RandTree();
void SwapValue();
void SwapLeft();
void SwapRight();
void Bimerge();
void SS_Bimerge()
void Bisort();
void SS_Bisort();
void sil_main();
void sil_child();

#define DD_Bimerge O
#define DD_Bisort 1
#define DD_EXIT 2

/* PROC NAMES ===zzzzz=xz==zzz=x%/

#ifdef EXTERN
extern char sprocnames(];
#else
static char s*procnames(] =
{
"Bimerge",
“Bisort",
IDEXITID
};
#endif

D.2.3 File: bitonicp.c

/* PROGRAN bitonic */

#include <us.h> /% Uniform System */
#include <stdio.h> /* Standard I/0 */

#include NODEH /* Node Definition */
s#include PROCH /* Procedure Types/Eums */

ginclude "include/util.h"” /# Utility macros */

HANDLE =
[essssnesn/

NewNode(v)
/*sssrnss/

int v;

{ HANDLE #h;

D.2 Parallel C Program 139

h = makenode();
h->value = v;
h->left = NIL;
h->right = NIL;
return(h);

}

void
[sesssssnssssrsrns/
PrintIndent(n,path)
FATITT R DY)
int n;

int path;

{ int divisor;

if ((n == 0))
puts("=");
divisor = (1 << (n - 1));
while ((n > 0))
{ if ((n == 1))
if ((path == 0))

puts("/----- >);

else
puts(*\\----- >);

else

if (((path / divisor) == ((path % divisor) / (divisor / 2))))
puts(” ")

else
puts(”| ");

path = (path % divisor);
divisor = (divisor / 2);
n=(n-1);
}
}

void
[eenssnssnsssnsnssnss/
PrintSubTree(h,n,path)
T Y]
HANDLE #h;

int n;

int path;

{ HANDLE +1;
HANDLE er;

if ((h != ¥IL))
{ r = h->right;
PrintSubTree(r,(n + 1),(path * 2));
puts(”(");
put(n);
puts(")\t");
PrintIndent(n,path);
puts(" ");
put(h->value);
puts(“\n");
1l = h->left;
PrintSubTree(1,(n + 1),((path * 2) + 1));

}

void
/essssss8ss/

140 Generating Parallel C Programs: An Example

PrintTree(h)
JALITITTTTTY)
HANDLE #*h;

{
PrintSubTree(h,0,0);
}

void

/*ssnsnns/
InOrder(h)
[esssnnns/
HANDLE s*h;

{ HANDLE »1;
HANDLE sr;

if ((h != NIL))
{ 1 = h->left;
r = h->right;

InOrder(1);
put (h->value);
puts(® ");
InOrder(r);
}
}
HANDLE *
[/essssnnnn/
RandTree(n)
VAIITITIT YY)
int n;

{ int next_val;
HANDLE #h;
HANDLE =*1;
HANDLE #r;

if ((n > 1))
{ next_val = random();
h = NewNode(next_val);
1 = RandTree((n / 2));
r = RandTree((n / 2));
h->left = 1;
h->right = r;
/+ EmptyStatement */
}
else
h = NIL;
return(h);

}

void
/ssssrsnssnss/
SwapValue(l,r)
/essrsssssses/
HANDLE »1;
HANDLE s»r;

{ int temp;

temp = 1->value;
1->value = r->value;
r->value = temp;

}

void
/esssnssrses/
SwapLeft(l,r)
/esssrsnssns/
HANDLE *1;
HANDLE *r;

{ HANDLE *11;
HANDLE #rl;

11 = 1->left;

rl = r->left;

1->left = rl;

r->left = 11;
}

void
/esnsssnnssss/
SwapRight(1,r)
[/esssnsnnsans/
HANDLE »*1;
HANDLE s*r;

{ HANDLE *lr;
HANDLE srr;

1r = 1->right;
rr = r->right;
1->right = rr;
r->right = 1r;

}

void

/esssssnsnssnssssssns/
Bimerge(root,sp_r,dir)
/essssssnsnsssnnnssns/
HANDLE *root;
HANDLE *sp_r;

int dir;

{ int rightexchange;
int elementexchange;

int temp;

HANDLE #»sp_1;
HANDLE pl;
HANDLE #*pr;
HANDLE *rl;
HANDLE *rr;

D.2 Parallel C Program

rightexchange = ((root->value > sp_r->value) ~ dir);
if (rightexchange)

SwapValue(root,sp_r);
Pl = root->left;

Pr = root-

>right;

while ((pl != NIL))
{ elementexchange = ((pl->value > pr->value) - dir);
if (rightexchange)

if (elementexchange)
{ SwapValue(pl,pr);
SwapRight(pl,pr);

}

Pl = pl->left;
Pr = pr->left;

else

141

142

}

{ pl = pl->right;
pPr = pr->right;

else
if (elementexchange)
{ SwapValue(pl,pr);
SvapLeft(pl,pr);
pl = pl->right;
Pr = pr->right;

else
{ pl = pl-dleft;
Pr = pr->left;
}
}
if ((root->left != NIL))
{ rl = root->left;

rr = root->right;

sp.1 = NewNode(root->value);

{ int input_endpoint;
input_endpoint = my_endpoint;
if (my_endpoint == my_index) /+ only 1 proc */

{ ss_Bimerge(rl,sp_1,dir);
SS_Bimerge(rr,sp_r,dir);

}

else /+ more than one proc, fork off a procedure call */

Generating Parallel C Programs: An

Example

/% s==azmm= get up for fork of Bimerge(rl,sp_1l,dir); =====z===z= »/
{ int p, p_endpoint, »p_arglist, interval; short *p_pending;

p-endpoint = my_endpoint;

interval = (my_endpoint - my_index + 1) >> 1;

my_endpoint -= interval;
P = my_endpoint + 1;

GET_PENDING (p_pending,1); /* get pending lock for p »/

p-arglist = arg_list_ptrs(p]l;
*((short »+) p_arglist)++ = p_pending;
*((int+) p_arglist)++ = DD_Bimerge;
*((inte) p_arglist)++ = p_endpoint;
«((HANDLE **) p_arglist)++ = rl;
«((HANDLE »#+) p_arglist)++ = sp_1;
*((int *) p_arglist)++ = dir;
START(p); /* let processor p start */
Bimerge(rr,sp_r,dir);
VAIT_ZERO(*p_pending);
RELEASE_PENDING; /* release pending lock */
}
my_endpoint = input_endpoint;
}
root->value = sp_l->value;

}

void
/*sssesnsssnssssssssssss/
SS_Bimerge(root,sp_r,dir)
/e nsnsnsssssssssssssss/
HANDLE *root;

HANDLE #*sp_r;

int dir;

{

int rightexchange;
int elementexchange;
int temp;

HANDLE »sp_1;
HANDLE #pl;

D.2 Parallel C Program

HANDLE *pr;
HANDLE »rl;
HANDLE *rr;

rightexchange = ((root->value > sp_r->value) = dir);
if (rightexchange)
SwapValue(root,sp_r);
Pl = root->left;
Pr = root->right;
while ((pl != NIL))
{ elementexchange = ((pl->value > pr->value) - dir);
if (rightexchange)
if (elementexchange)
{ SwapValue(pl,pr);
SwapRight(pl,pr);
pl = pl->left;
pr = pr->left;

else
{ p1 = pl->right;
Pr = pr->right;

else
if (elementexchange)
{ SwapValue(pl,pr);
SwapLeft(pl,pr);
pl = pl->right;
Pr = pr->right;

else
{ p1 = pl->left;
Pr = pr->left;

}
if ((root->left != NIL))

{ rl = root->left;
rr = root->right;
sp_1l = NewNode(root->value);
{ SS_Bimerge(rl,sp_l,dir);

8S_Bimerge(rr,sp_r,dir);

}

root->value = sp_l->value;
}

void
/esssssssssssssssess/
Bisort(root,sp_r,dir)
/ »s/
HANDLE sroot;

HANDLE #sp_r;

int dir;

{ HANDLE »1;
HANDLE er;
HANDLE *sp_1;

if ((root->left == NIL))
{ if (((zroot->value > sp_r->value) ~ dir))
SwvapValue(root,sp_r);
}
else
{ 1 = root->left;
r = root->right;
sp.1l = NewNode(root->value);

143

144 Generating Parallel C Programs: An Example

{ int input_endpoint;

input_endpoint = my_endpoint;

if (my_endpoint == my_index) /+ only 1 proc */
{ SS_Bisort(1,sp_1,dir);

8S_Bisort(r,sp_r, (! dir));

}

else /* more than one proc, fork off a procedure call */
/% ======= set up for fork of Bisort(l,sp_l,dir); ===zzzz=z=== %/
{ int p, p_endpoint, *p_arglist, interval; short *p_pending;

p-endpoint = my_endpoint;
interval = (my_endpoint - my_index + 1) >> 1;
my_endpoint -= interval;
P = my_endpoint + 1;
GET_PENDING (p_pending,1); /* get pending lock for p */
p-arglist = arg_list_ptrs(pl;
*((short »+) p_arglist)++ = p_pending;
*((ints) p_arglist)++ = DD_Bisort;
((int) p_arglist)++ = p_endpoint;
*((HANDLE **) p_arglist)++ = 1;
«((HANDLE #*) p_arglist)++ = sp_1;
*((int *) p_arglist)++ = dir;
START(p); /* let processor p start */
Bisort(r,sp_r, (! dir));
WAIT_ZERO(*p_pending);
RELEASE_PENDING; /* release pending lock */
}
my_endpoint = input_endpoint;

}

root->value = sp_l->value;

Bimerge(root,sp_r,dir);

}
}

void
[/ressrnsssssssssssnsnns/
SS_Bisort(root,sp_r,dir)
A T P T T Y
HANDLE *root;

HANDLE *sp_r;

int dir;

{ HANDLE =1;
HANDLE =*r;
HANDLE *sp_1;

if ((root->left == §IL))
{ if (((root->value > sp_r->value) - dir))
SwapValue(root,sp_r);
}
else
{ 1 = root->left;
r = root->right;
sp_1 = NewNode(root->value);
{ sS_Bisort(l1,sp_1,dir);
SS_Bisort(r,sp_r, (! dir));
}
root->value = sp_l->value;
SS_Bimerge(root,sp_r,dir);

}

void
/*sssnnnan/
sil_main(n)

AT YT LY
int n;

{ HANDLE #h;
HAEDLE »s;
int sval;
int height;

h = RandTree(n);
sval = random();
s = NewNode(sval);
puts("Original Tree: ");
PrintTree(h);
InOrder(h);
put(s->valune);
puts("\n");
Bisort(h,s,0);
puts(“Sorted Tree: ");
PrintTree(h);
InOrder(h);
put(s->value);
puts(“\n");
Bisort(h,s,1);
puts(“Sorted Tree: ");
PrintTree(h);
InOrder(h);
put(s->value);
puts("\n");

}

void
/ssssssss/
SS_main(n)
[esssssss/
int n;

{ HANDLE #h;
HANDLE #s;
int sval;
int height;

h = RandTree(n);
sval = random();
s = NewNode(sval);
puts("Original Tree: ");
PrintTree(h);
InOrder(h);
put(s->value);
puts("\n");
SS_Bisort(h,s,0);
puts(“"Sorted Tree: ");
PrintTree(h);
InOrdexr(h);
put(s->value);
puts("\n");
SS_Bisort(h,s,1);
puts("Sorted Tree: ");
PrintTree(h);
InOrder(h);
put(s->value);
puts(“\n");

}

void
JALIITTTILY)

D.2 Parallel C Program

145

146 Generating Parallel C Programs: An Example

8il_child()
/essnnrnnn/
{ short *pending_addr;
int my_exit, procedure_num;
my_exit = 0;
Atomic_add(start_counter,-1); /+ signal this processor started »*/
while (my_exit == 0) /# while this processor not killed */
{ VAIT_NONZERO(*my_busy_lock); /¢ wait for work to do */
pending_addr = (short *) my_arg_list[0];
procedure_num = (int) my_arg_list[1];
my_endpoint = (int) my_arg_list[2];
svitch (procedure_num)

{
case DD_Bimerge:
Bimerge(
(HANDLE *) my_arg_list[3],
(HANDLE *) my_arg_list[4],
(int) my_arg_list[5]); break;
case DD_Bisort:
Bisort(
(HANDLE *) my_arg_list[3],
(HANDLE *) my_arg_list[4],
(int) my_arg_list[5]); break;
case DD_EXIT:
my_exit = 1; break;
}

*my_busy_lock = 0;
Atomic_add(pending_addr,-1);

Bibliography

[AHS7]

[AK87]

[Ban79a)

[Ban79b]

[Bar78]

[Bar84]

[BBN88a]

[BBN8Sb]

[BBN89]

[BCS6]

[BKK*89]

Samson Abramsky and Chris Hankin, editors. Abstract Interpretation of
Declarative Languages. Ellis Horwood Limited, 1987.

Randy Allen and Ken Kennedy. Automatic translation of FORTRAN
programs to vector form. ACM Transactions on Programming Languages
and Systems, 9(4), October 1987.

U. Banerjee. Speedup of Ordinary Programs. Ph.D. dissertation, Univer-
sity of Illinois at Urbana-Champaign, October 1979. Dept. of Computer
Science Rpt. 79-989.

J. P. Banning. An efficient way to find the side effects of procedure calls
and the aliases of variables. In Proceedings of the 6th ACM Symposium
on Principles of Programming Languages, 1979.

J. Barth. A practical interprocedural data flow analysis algorithm. Com-
munications of the ACM, 21:724-736, 1978.

H. P. Barendregt. The Lambda Calculus, Its Syntaz and Semantics. Stud-
ies in Logic. North-Holland, Amsterdam, revised edition, 1984.

BBN Advanced Computers Inc. Inside the GP1000, 1.0 edition, October
1988.

BBN Advanced Computers Inc. Programming in C with the Uniform
System, 1.0 edition, October 1988.

BBN Advanced Computers Inc. Private Communication, September
1989. BBN Hotline.

M. Burke and R. Cytron. Interprocedural dependence analysis and par-
allelization. In ACM SIGPLAN Notices, Vol 21,7, 1986.

Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKin-
ley, and Jaspal Subholk. The ParaScope Editor: An interactive parallel
programming tool. In Proceedings Supercomputing ’89, pages 540-550,
1989.

147

148

[BN89]

[Bro88]

[CKsS]

[DKS85)]

[GGGI8S]

[GorT79]

[GS]

[Gua88]

[Har86]

[Har89]

[HPSS]

Bibliography

G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel
algorithm for shared-memory machines. SIAM Journal on Computing,
18(2):216-228, 1989.

Eugene D. Brooks III. PCP: A parallel extension to C that is 99 per-
cent fat free. Technical Report UCRL-99673 PREPRINT, Universtiy
of California, Lawrence Livermore National Laboratory, 1988. Revised
September 25, 1989.

D. Callahan and K. Kennedy. Compiling programs for distributed-
memory multiprocessors. The Journal of Supercomputing, 2(2):151-169,
October 1988.

Henry Dietz and David Klappholz. Refined C: A sequential language for
parallel processing. In ICPP, pages 442-449, 1985.

Vincent A. Guarna Jr., D. Gannon, Y. Gaur, and D. Jablonowski. Faust:
An environment for programming parallel scientific applications. In Su-
percomputing 88, 1988.

M.J.C. Gordon. The Denotational Description of Programming lan-
guages. Springer-Verlag, 1979.

Carl A. Gunter and Dana S. Scott. Handbook of Theoretical Computer
Science, chapter on Semantic Domains. North Holland. To appear.

Vincent A. Guarna Jr. A technique for analyzing pointer and structure
references in parallel restructuring compilers. In Proceedings of the In-
ternational Conference on Parallel Processing, volume 2, pages 212-220,
1988.

W. Ludwell Harrison III. Compiling Lisp for evaluation on a tightly
coupled multiprocessor. Technical Report CSRD Rpt. No. 565, Center
for Supercomputing Research and Development, University of Illinois at
Urbanan-Champaign, March 1986.

W. Ludwell Harrison III. The interprocedural analysis and automatic
parallelization of scheme programs. Technical Report CSRD Rpt. No.
860, Center for Supercomputing Research and Development, University
of Nllinois at Urbanan-Champaign, February 1989.

W. Ludwell Harrison III and David A. Padua. Parcel: Project for the
Automatic Restructuring and Concurrent Evaluation of Lisp. In Pro-
ceedings of the 1988 International Conference on Supercomputing, July
1988.

[HPRS89)

[Hud86|

[IM81]

[IM82]

[KKK89)]

[KMRS7]

[LG8S]

[LH88a)

[LH8Sb)

[Luc87]

[Man74]

Bibliography 149

Susan Horwitz, Phil Pfeiffer, and Thomas Reps. Dependence analysis
for pointer variables. In Proceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implementation, pages 28-40, June
1989.

P. Hudak. A semantic model of reference counting and its abstraction.
In Proceedings of the 1986 ACM Conference on Lisp and Functional Pro-
grammang, 1986.

N. D. Jones and S. S. Muchnick. Program Flow Analysis, Theory and
Applications, chapter 4, Flow Analysis and Optimization of LISP-like
Structures, pages 102-131. Prentice-Hall, 1981.

N. D. Jones and S. Muchnick. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In 9th
ACM Symposium on Principles of Programming Languages, pages 66-74,
1982.

D. Klappholz, A. Kallis, and X. Kong. Refined C - An Update. In Pro-
ceedings of the Second Workshop on Languages and Compilers for Parallel
Computing, 1989.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Semi-automatic domain
decomposition in Blaze. In Proceedings of the International Conference
on Parallel Processing, 1987.

J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Pro-
ceedings 15th ACM Symposium on Principles of Programming Languages,
pages 47-57, 1988.

James R. Larus and Paul N. Hilfinger. Detecting conflicts between struc-
ture accesses. In Proceedings of the SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation, pages 21-34, June 1988.

James R. Larus and Paul N. Hilfinger. Restructuring Lisp programs for
concurrent execution. In Proceedings of the ACM/SIGPLAN PPEALS
1988 - Parallel Programming: Ezperience with Applications, Languages
and Systems, pages 100-110, July 1988.

J. M. Lucassen. Types and Effects: Towards the Integration of Functional
and Imperative Programming. Ph.D. dissertation, MIT, 1987.

Zohar Manna. Mathematical Theory of Computation. McGraw-Hill,
1974.

150

[Myc81]

[Nei88]
[Nic84]

[NPD87]

[PGH*89]

[PWs6)
[RMsS]
[RP89]
[SA8S]

[Sto77]
_ [Ten81]
[Wol82]

[ZBG8S]

Bibliography

A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. Ph.D. dissertation, University of Edinburgh, Scot-
land, 1981.

A. Neirynck. Static Analysis of Aliasing and Side Effects in Higher-Order
Languages. Ph.D. dissertation, Cornell University, January 1988.

A. Nicolau. Parallelism, Memory Anti-Aliasing, and Correctness for
Trace Scheduling Compilers. Ph.D. dissertation, Yale University, 1984.

A. Neirynck, P. Panangaden, and A.J. Demers. Computation of aliases
and support sets. In Proceedings of the 14th ACM Symposium on Prin-
ciples of Programming Languages, pages 274-283, 1987.

Constantine D. Polychronopoulos, Miland Girkar, Mohammad Reza
Haghighat, Chia Ling Lee, Bruce Leung, and Dale Schouten.
Paraphrase-2: An environment for parallelizing, partitioning, synchro-
nizing, and scheduling programs on multiprocessors. In Proceedings
of the 1989 International Conference on Parallel Processing, volume II,
pages 3948, 1989.

David A. Padua and Michael J. Wolfe. Advanced compiler optimization
for supercomputers. Communications of the ACM, 29(12), December
1986.

C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allo-
cated objects. In Proceedings of the 15th ACM Symposium on Principles
of Programming Languages, pages 285-293, 1988.

A. Rogers and K. Pingali. Process decomposition through locality of
reference. In Proceedings of the ‘89 ACM-SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 69-80, June 1989.

Kevin Smith and William F. Appelbe. PAT - An Interactive Fortran
Parallelizing Assitant Tool. In Proceedings of the 1988 International
Conference on Parallel Processing, pages 285-293, 1988.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

R.D. Tennent. Principles of Programming Languages. Prentice-Hall,
1981.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, October 1982.

H. Zima, H-J. Bast, and M. Gerndt. Superb: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif
	pdftemp/0144.tif
	pdftemp/0145.tif
	pdftemp/0146.tif
	pdftemp/0147.tif
	pdftemp/0148.tif
	pdftemp/0149.tif
	pdftemp/0150.tif
	pdftemp/0151.tif
	pdftemp/0152.tif
	pdftemp/0153.tif
	pdftemp/0154.tif
	pdftemp/0155.tif
	pdftemp/0156.tif
	pdftemp/0157.tif
	pdftemp/0158.tif
	pdftemp/0159.tif
	pdftemp/0160.tif

