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ABSTRACT

It is well-known that a particular choice of the parameters in Shor’s
subgradient algorithm with space dilation in the direction of the gradient
yields the ellipsoid method. We show that another choice of these
parameters leads to the quasi-Newton method that uses the symmetric
rank-one update and direct prediction. One curious feature is that the
sequence of approximate inverse Hessian matrices lags by one in the former
description; this necessitates a different starting matrix or an unusual
update at the first step. While the similarity between update formulae in
space~dilation and quasi-Newton methods has been observed by several
researchers, our result seems to be the first showing a precise
equivalence. We note that apparently this equivalence cannot be extended
to other quasi-Newton methods (for smooth optimization) or space-dilation
methods (for nonsmooth optimization). Nevertheless, we feel that our
result gives insight into the relationship between these two classes of
algorithms, and hope that it will suggest new efficient methods for

nonsmooth problems.
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1. Introduction

In 1970, Shor [4] introduced the subgradient method with space dila-
tion in the direction of the gradient, for convex nonsmooth optimization.
When applied to minimize a smooth function f, starting with an initial
trial point X, € R" and an initial symmetric positive definite matrix
Hl’ intended as an approximation to (sz(xl))_l, the method proceeds as
follows:

Algorithm SDG(xl,Hl)!

Iteration k. Compute g = vf(xk); STOP if g = 0.

Otherwise, set
Sk = "M (1)
Xee1 T ¥ TS (2)

T
oy = B — ot et (3)

The method depends on the sequences {ak} and {Uk} of parameters. In
fact, Shor chose a =h /(gH g )2 and o = (1 - B2)/e with

’ o = b /(g g k g they,
0 < B <1 the dilation parameter. This ensures that all Hk’s are
positive definite. We will need the flexibility of choosing o > 1/g£Hkgk
later; in this case, the matrices Hk do not remain positive definite and

we have therefore parametrized the step size by o rather than hk.

The ellipsoid method of Yudin and Nemirovskii [7] corresponds to the

parameters
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which is equivalent to f = ((n—l)/(n+1))1/2 and thus guarantees that all
Hk’s are positive definite.

In this note we wish to compare the space dilation method to the
quasi-Newton algorithm that uses the symmetric rank-one update formula and
direct prediction of step size (see e.g., Dennis and Schnabel [2]). Given
an initial trial point Xy € R" and symmetric positive definite matrix

~

Hl’ with g = Vf(xl), this algorithm proceeds as follows:

Algorithm SRl(xl,Hl):

Iteration k. STOP if gy = 0. Otherwise, set

s = “Hgys (4)
el T ¥ T Sk (5)
Compute
By = VE(xp ) and vy =g T g
Set
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Because of the unit step size in (4)-(5), (6) can be simplified by

observing that

s~ B = W

hence

~ Ao T ~ T 2
Heq = B - He g0/ g0y (6"



The similarity to (3) is clear, although (6') involves the subsequent
gradient 81+l while (3) uses gy - We shall see that we can choose the
parameters in algorithm SDG so that it generates the same iterates as algo-
rithm SR1--however, the matrices Hk will lag one behind the matrices ﬁk'

While the similarity between (3) and quasi-Newton updates has been
observed by many researchers, this result appears to be the first showing a
precise equivalence between a space-dilation (for nonsmooth optimization)
and a quasi-Newton (for smooth optimization) method. Unfortunately, it
seems that the equivalence cannot be extended to other members of these
classes. In particular, we cannot encompass subgradient algorithms with
space dilation in the direction of the difference of successive gradients
(Shor and Zhurbenko [6]), which are regarded as more efficient in practice
than the SDG algorithms (see Shor [5]). Nor can we include a line search
in the quasi-Newton method, nor use the preferable DFP or BFGS updates (see
[21).

The quasi-Newton method using the symmetric rank-one update and a unit
step size at each iteration, as above, is rarely used. We conclude this
section by noting some of its properties. Broyden, Dennis, and More [1]
have shown that it can fail to be locally convergent, since the denominator
in (6) or (6') can vanish for k =1 even with 3 and ﬁl arbitrarily
close to a minimizer x  and (vzf(x*))ul. If the algorithm does not
break down in this way, then it yields the minimizer of a convex quadratic
function within n steps. If instead exact line searches are used (and
again assuming (6) remains well-defined), then Dixon [3] has shown that it
generates the same sequence of points as the DFP and BFGS methods with

exact line searches, on arbitrary smooth functions f.



2. The Result

The observation below (6') indicates that the first update of SDG
might have to be special so that H2 = Hl' Instead, we will use a dummy
Oth step and a different initial matrix H1 so that all iterations are

identical.

. - T
Theorem. Given Xis 8 and Hl’ choose sg SO that O # 2150 #

T/\
nglgl' Set

~ ~

T~ T A
Hy = H + HgegH /g (sg - Higy)- (M

Then, if we choose the parameters by

% = gisk-l/gi(sk—l * e (8)
o = V(s g * Bgy). )

the algorithms SDG(xl,Hl) and SRl(xl,Hl) generate identical iterates

(if they do not simultaneously break down) and Hk+1 = ﬁk for k 2> 1.

Proof. From (7) we deduce

~

Hg = Nig,. (10)
where
T T o
A= glso/gl(so - H1g1)° (11)

~

Hence g?ngl = Ag?ngl; substituting for g?ngl in (11) and solving for

AL yields



-1 T T
A= glsO/gl(SO + ngl)' (12)
Thus
- -1
-Hijgy = A THigy = -oiHigy

and the first steps agree——the two algorithms generate the same Xy Also,

T -1 T
H, = H - (g;(sg *+ Hygy)) HigieiHy

A on T T - -1 _,2, T -1
Hy + Hig gl ((g1(sg - Hig)) — — N(gy(sp + Higy)) )

by (7) and (10); using (11) and (12), the second term vanishes, whence
H, = H,. (13)

Now assume that both algorithms generate the same iterates Xj’ j £k,

and Hk = Hk—l' Then from (4) we have
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Hence
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so that both algorithms generate the same point X1 Moreover, the
equation ﬁk—l = Hk, the update formulae (3) and (6'), and (9) and (14)
together imply ﬁk = Hk+1' Thus by induction both algorithms generate the
same iterates {xk} and ﬁk = Hk+1 for all k.

To complete the proof, note that both algorithms are well-defined as
long as the quantity in (14) remains nonzero. If this is zero for some Kk,
then algorithm SDG fails in the kth iteration since ak is not defined,
and algorithm SR1 fails in the (k-1)st iteration after generating X
since ﬁk is not defined. (In particular, if f 1is not smooth but
piecewise~linear and g is a subgradient of f at X s it is very
possible that g = 8,1 SO that Y1 is zero and (14) vanishes. Thus

this version of algorithm SDG is disastrous for such problems, while other

variants remain applicable.)

This concludes the proof of the theorem. We hope that it will suggest
new efficient methods for nonsmooth optimization where the parameters are
chosen to be different from those that lead to the typically slow ellipsoid
method. Note that, if some form of line search yields gisk_l > 0, then

a.

" in (9) will maintain positive definiteness in Hk.
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