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ABSTRACT 

    Current orthotopic xenograft models of colorectal cancer (CRC) require survival 

surgery and do not robustly form tumors in liver, the most common site of metastasis in 

patients. In the work described in the thesis chapter 2, we used chemokine-targeting to 

develop cell line and primary patient-derived xenograft models that recapitulate the vast 

majority of common human somatic CRC mutations as primary gastrointestinal (GI) 

tumors in mice without requiring surgery. Importantly, we utilize early-stage mouse 

blastocyst microinjection techniques to extend this approach and model primary human 

CRCs in immunoproficient mouse hosts. Next, we show that primary GI tumors can 

inducibly and robustly metastasize to liver. Finally, we demonstrate that human CRC 

liver metastases in vivo have higher levels of DKK4 and NOTCH signaling and are more 

chemoresistant than paired sub-cutaneous xenografts. Overall, we anticipate that this 

experimental system can help improve our mechanistic understanding of human 

primary CRC progression to liver metastasis and provide a more physiological model 

than sub-cutaneous xenografts for pre-clinical drug screening. 

     Refined cancer models are urgent to bridge the gap between cell-line or animal 

based research and clinical research. In thesis chapter 3, we described an organotypic 

colon cancer model which was generated from human native matrix and have 
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pathophysiologically recapitulated the natural features of progression from APC-

dependent in situ neoplasia to sub-mucosal invasive adenoma in colorectal cancer 

(CRC)-associated genetic pathways. To identify invasion-driver genes, we performed a 

forward genetic screen using Sleeping Beauty (SB) transposon- based mutagenesis in 

the ex vivo CRC model. This screen identified 39 candidate genes, all of which are 

listed in TCGA CRC dataset. 17 of them, including TCF7L2, TWIST2, MSH2, DCC and 

EPHB1,2, most likely drive invasion of CRC through cooperation with mutant APC. 

Among the remaining genes that have not previously been implicated in CRC, seven 

out of ten were functionally validated to significantly promote the growth, migration or 

invasion of colon cells. This piece of work demonstrated the utility of ex vivo human-

originated models with transposon-based mutagenesis and provided a new system for 

studying the biology of cancer. 
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BACKGROUND 

 

Colorectal cancer (CRC) is a major public health source of morbidity and mortality. 

Approximately 5% of the population in western world will develop colorectal 

malignancies during their lifetime and 25% of CRC patients eventually die from 

metastatic disease [1, 4]. Thus, it is urgent for research to enhance our ability to 

diagnosis, prevent and treat this disease. To improve patient outcome largely depends 

on precisely interdicting the mechanisms of metastasis and developing therapy 

targeting the mechanisms. 

Genetics of Colorectal Cancer 

Each disease stage during CRC progression develops distinct pathological features 27. 

Firstly, inappropriate proliferation cause colon stem or progenitor cells to transform into 

colon cancer stem cells, which start with adenoma formation and evolve into carcinoma 

in situ. Then, pre-invasive CRCs, by accumulating more genetic mutations, acquire the 

ability to invade through the submucosa and muscularis, and metastasize out of the 

colon microenvironment niche and in the distant organs.  

In the CRC molecular etiology, each clinical stage highly correlates with sequential 

accumulations of mutations in major genes [1, 10]. CRC generally can be divided into 

two classes based on the genetic background displaying chromosomal instability (CIN) 

or microsatellite instability (MSI), in which CIN phenotype occurs in 80-90% CRC cases. 

CRCs displaying CIN frequently harbor loss-of-function mutations in adenomatous 

polyposis coli (APC) which is believed to be the initial event to transform normal colon 

epithelium into pedunculated adenomatous polyps through up-regulating WNT signaling. 
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Then additional somatic mutations occur to drive malignant transformation of 

pedunculated adenomatous polyps to invasive and metastatic adenocarcinomas [5, 10, 

27]. The “Vogelstein model” [11, 28] described oncogene KRAS/BRAF mutations 

promote the early stage adenoma to late stage adenoma, and further mutations in DCC, 

TP53, and abrogation of the TGF-β pathway, including mutations in SMAD4 and 

TGFBR2, are thought to occur later in CRC progression, transforming the adenoma to a 

carcinoma. Although colorectal cancer (CRC) progression appears to be characterized 

by high-frequency mutations, such as KRAS, SMAD, TP53, many low-frequency 

mutations are also believed to contribute to the disease development. The advance in 

secondary generation sequencing has accelerated the identification of genetic 

alterations in human cancers in whole-genome scale and comprehensive molecular 

studies such as TCGA (The Cancer Genome Atlas) [ 1] have provided a broad range of 

insights with an unprecedented level of molecular resolution into the precise molecular 

alterations that drive human CRC pathogenesis and progression. 

Chemokine Network with CRC 

Chemokines, family members of cytokines, are 8- to 12-KD polypeptides that when 

binding to specific G protein – coupled chemokine receptors, activate signaling 

cascades guiding cell migration toward chemokine ligand gradients. Chemokine-

regulating cell movements play critical roles in immunity, embryonic development, 

angiogenesis, wound healing and involved in the physiological events of central nervous 

system, and skeletal muscle. Chemokine signaling pathways are essential to the 

functions of immune system, mediating various types of immune cells trafficking 

between the secondary lymph sites and the regions of inflammation [17, 19, 21, 22].  
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The connection between inflammation and cancer has been well-established and 

more and more recent studies indicate that chemokines play key roles in both driving 

and preventing cancer progression [3, 6, 14, 15, 16 ]. Many human cancers have a 

complex chemokine network that regulates the extent and phenotype of the infiltrating 

leukocytes, as well as have an effect on tumor growth, survival, migration, and 

angiogenesis. Cancer cells can produce chemokines to regulate immune cell behaviors, 

and alter inflammation microenvironment which in turn effects cancer progression. 

Cancer cells also can express chemokine receptors and thus directly guide themselves 

into targeted organs and develop metastases. Interestingly, studies indicate that 

adaptive immune cells have the potential to limit tumor progression. Galon and 

colleagues demonstrated that the presence of CD8+ T cells infiltrate is associated with 

the absence of early metastatic processes in patients with melanoma, ovarian cancer 

and CRC [20]. In contrast, the persistence of active innate immune responses, such as 

the chronic inflammation at tumor sites, has been implicated with poor clinical outcome 

[2, 7].    

Chemokine ligand CCL25 and receptor CCR9 are unique and critical to intestinal 

immune system. Intestinal epithelial cells secrete CCL25 to attract CCR9 expressing 

lymphocytes into gut for immune function [19]. Evidence shows [3, 15, 16, 23] that gut 

produced CCL25 regulate CCR9+ melanoma or ovarian cancer cells to spread 

metastases in intestines. However, how the CCR9-CCL25 axis interacts with colon 

cancer under native intestinal conditions has been poorly understood. My first project [8] 

described in chapter 1 of the dissertation for the first time reveal a new function for 
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CCR9-CCL25 axis to inhibit CRC invasion and metastasis and describe a novel in vivo 

experimental system to study CRC mechanisms.  

Animal models of CRC 

Animal models capitulating features of specific human CRC are invaluable tools 

necessary to study carcinogenesis, the specific molecular mechanisms of colon cancer, 

to test potential preventive and therapeutic strategies, and to translate the research 

hypotheses derived from cell models into the results under physiologically – relevant 

conditions. However, one of the major limitations in current experimental system for 

studying CRC is the absence of refined animal models to bridge the gaps in 

translational research.   

A genetically engineered mouse model (GEMM, transgenetic mice) is one of the most 

used in vivo models for cancer study. However, it has some weakness: First, only some 

of major genes relevant to human CRC have been to date modified to make GEMM with 

floxed alleles, enabling specifically targeting the colon epithelial cells. The lack of mice 

with variant floxed gene alleles limits the generation of GEMM with either intestine-

specific or inducible genetic modifications. Second, almost all of whole-body gene-

modified or chemical-induced models develop tumors outside the colon or with colon 

cancer as a minor phenotype. Thus, due to its over-simple genetic background, GEMM 

hardly captures all the features of the genetic mutations and epigenetic regulations in 

human CRC diseases. For example, mouse screens for cooperating mutations are not 

always concordant with TCGA results to identify the most common mutations, genomic 

rearrangements and epigenetic in the corresponding human cancer. 
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Subcutaneous xenograft models, the current workhorse for drug screening, lack the 

native gut microenvironment and the property of distant metastasis, thus lead to many 

false positive drugs that can cure mice but fail in patients [4]. Surgical implantation of 

CRC cells under the kidney capsule, or orthotopic implantation through intra-cecum or 

rectal injection overcomes this limitation. However, injection needle tracts create 

potential artifacts for cell egress, disturb the extracellular matrix and artificially generate 

a local inflammatory microenvironment, which confound the research results. 

Additionally, we currently do not have robust, consistent models of CRC liver metastasis 

from primary intestinal sites. Advance methods are required to model more accurately 

CRC metastasis and improve therapeutics.  

In my second project described in the chapter 2, we used chemokine-targeting to 

develop cell line and primary patient-derived xenograft models that recapitulate the vast 

majority of common human somatic CRC mutations as primary gastrointestinal (GI) 

tumors in mice without requiring surgery. Importantly, we utilize early-stage mouse 

blastocyst microinjection techniques to extend this approach and model primary human 

CRCs in immunoproficient mouse hosts. We anticipate that this experimental system 

can help improve our mechanistic understanding of human primary CRC progression to 

liver metastasis and provide a more physiological model than sub-cutaneous xenografts 

for pre-clinical drug screening. 

Transposon-Mediated Mutagenesis System 

Transposons are discrete DNA elements including transposon and transposase, 

which have the unique ability to change their genomic position through “cut and paste” 
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mechanism [12, 13]. The Tc1/ mariner transposons are the most wide-spread 

transposons found in nature and have little insertion site preference, except that they 

always integrate into a TA dinucleotide. Ivics and colleagues genetically engineered a 

synthetic transposase, SB10, which can precisely mobilize the Tc1/ mariner elements in 

all the major types of vertebrate cells. This transposon system was named Sleeping 

Beauty (SB). SB Transposon-based insertional mutagenesis (TIM) provides an 

alternative high-throughput platform for cancer gene discovery [24, 25]. To our 

knowledge, the SB-TIM system has been considered non-biased, efficient, and thus the 

best mutagenesis system to date to simulate somatic mutations in cancer models.  

Copeland & Jenkins Lab, one of our collaborators [9], developed a new mutagenic 

transposon T2/Onc2, which could up-regulate the expression of oncogenes or inactivate 

tumor suppressor genes. T2/Onc2 has been used to model many types of mouse 

cancers through introducing into the mouse germ line by microinjection, and the 

transgenic lines carrying enough high copy numbers of the transposon genes were 

selected to develop mouse tumors in multiple organs. Several research groups reported 

that SB inducing somatic-cell insertional mutagenesis in mice was successfully used for 

the identification of novel cancer genes and signaling pathways through forward 

genetics screen. The T2/Onc mobilization driven by the gastrointestinal tract-specific 

Villin promoter (Vil-Cre) can generate intestine-specific mutagenesis in APC min mouse 

models and this tissue-specific TIM system has been used for the identification of novel 

driver genes causing CRC progression through cooperation of APC mutations.  

Decellularization – Recellularization in Tissue Engineering  
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    Extracellular matrix (ECM) consists of the proteins and other biomolecules produced 

by cells, with cells made up the whole tissues. Each tissue has tissue-specific 

dynamically reciprocal communication in that cells response to the signals of ECM to 

regulate cellular behaviors and the cells in turn alter the composition of ECM and thus 

the entire tissue-specific microenvironment and so on. Similar to normal tissues, ECM 

and tissue microenvironment also play critically important roles in cancer initiation, 

promotion and progression. Studying cancer cells in 3D tissue context can produce 

more comprehensive and physiologically relevant results with concordance of 

translation to the clinical research.  

    The advance in tissue engineering and regenerative medicine shed more light on the 

technology of isolating the whole tissue matrix through efficient removal of cellular 

components. Through acid, enzyme or detergent-based methods, several groups have 

successfully in generating acellular organs of heart, lung, liver and kidney, with some 

further attempts to orthotopic transplantation of the organ constructs by recellularization. 

The decellularized matrix preserves the main proteins and biomolecules in ECM and 

retains complex tissue-specific geometry and structure including relative intact 

vasculature, thus provides an ideal culture platform for cancer cells to grow, form 

shapes and maintain cell-cell, cell-ECM interactions. Recently, Mishera and colleagues 

have developed ex vivo lung cancer models by growing several human lung cancer cell 

lines (A549, H1299 and H460) in the acellular rat lung matrix and the lung cancer cells 

grown in the matrix had features similar to the original human lung cancer. 

    In the chapter 3, we described, to our knowledge, the first ex vivo colon cancer model 

engineered from the native human colon tissue matrix using the decellularization-
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recellularization techniques. Furthermore, we applied the CRC models combined with 

TIM in studying cancer genetics.  

    Currently large-scale and high-throughput genetic sequencing have facilitated the 

identification of genetic alterations in human cancers. However, because tumor 

heterogeneously evolves and numerous passenger mutations confound the footprints of 

driver alterations, most cancer studies using reverse genetics yield numerous and 

complex genetic candidates, making it difficult to identify the driver genes [5]. Another 

major obstacle to distinguish drivers from passengers rises from technical limitations of 

existing experimental systems. Conventional cell culture models as research platforms 

lack the capacity to maintain multiple-cellular interactions and tissue-specific 

microenvironment, which are required for tumor progression. Animal models are short of 

appropriate resolution and sensitivity to track the dynamics of cancer malignant 

transition. Animal study can also show considerable differences from humans with 

regard to requirements for oncogenic transformation. To bypass the above difficulties, 

we engineered ex vivo human CRC models with transposon-based mutagenesis that 

allowed us to perform rapid forward genetics study in human-originated colon tissues for 

exploring novel CRC-driver genes and improve the understanding of CRC biology. This 

work is described in chapter 3 in the dissertation.  
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CHAPTER 1 

The Chemokine 25/Chemokine Receptor 9 Axis Suppresses Colon 

Cancer Invasion and Metastasis 

(Contribution: Steven Lipkin, Huanhuan Chen and Xiling Shen designed the project; 

Huanhuan Chen, Robert Edwards and Serena Tucci performed experiments; Steven 

Lipkin, Huanhuan Chen, Xiling Shen wrote the manuscript; Winfried Edelmann and 

Zeynep H. Gümüş helped with project discussion.) 
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INTRODUCTION 

Colorectal cancer is a leading cause of cancer death worldwide. CRC progresses 

through multiple distinct stages in its evolution. Morphologically, inappropriate 

proliferation and anti-apoptosis cause formation of adenomas, which evolve into pre-

invasive carcinoma in situ. Then, pre-invasive CRCs acquire the ability to invade 

through the submucosa and muscularis, metastasize, and survive outside the colon 

microenvironment niche [1-3]. Mechanistically, mutations activating WNT signaling in 

transformed colon cancer cells are an early event [4-6]. Subsequently, mutations in 

KRAS, TGFBR1, BRAF, TP53, DNA mismatch repair genes, FBXW7, NOTCH, PI3 

Kinase and other signaling pathways accumulate to promote CRC tumor progression to 

invasive and metastatic disease [7-11]. As 5-year survival for early stage CRC is ~90% 

vs. ~15% for metastatic CRC, understanding in great detail the mechanisms that 

regulate the transition from indolent (adenomas and carcinoma in situ) to locally 

invasive early clinical stage(stage I-II) and metastatic later stage(stage III/IV) CRC is 

critical to improving patient outcomes[12]. 

Chemokines are a family of secreted ligands that play important roles in regulating 

lymphocyte intra- and intercellular signaling, anti-apoptosis and trafficking between 

different organs, such as bone marrow and intestinal mucosa[13]. The G-protein 

coupled chemokine receptor CCR9 and its ligand CCL25 comprise a signaling axis that 

is particularly important for the small intestine and colon. Small intestine and colon 

epithelial cells produce CCL25 [14-17]. This attracts circulating CCR9+ T cells to 

intravasate into the gut towards the CCL25 source.CCL25 binding promotes CCR9 Gβγ 

interaction with PI-3 kinase, which initiates a downstream cascade activating AKT 
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kinase. AKT phosphorylates several targets, including GSK3B, promoting T cell 

proliferation, anti-apoptosis and mucosal immunity [14, 15, 18-20]. In addition to 

producing CCL25, small intestine and colon epithelial cells also express CCR9. Small 

intestinal epithelial cell CCR9 increases local immune response, while colonic epithelial 

cell CCR9 reduces inflammation, possibly by acting as a CCL25 “sink”[15]. Furthermore, 

melanoma, ovarian, breast and prostate adenocarcinomas express CCR9 [21-25]. This 

is proposed to play a role in tumor cell anti-apoptosis and proliferation. Overall, these 

findings show that CCL25/CCR9 plays a variety of important roles in different cell types, 

including several cancers.  

Here, we reveal a novel role for CCR9 to inhibit colorectal cancer invasion and 

metastasis. Compared to normal colon mucosa, CCR9 is upregulated in adenomas and 

pre-invasive colorectal cancers. In contrast, CCR9 expression is subsequently 

downregulated in invasive and metastatic CRCs. Because the commonly used 

colorectal cancer cell lines we tested were CCR9-, we searched for new cell culture 

models and found that both primary colorectal cancer cell cultures and CCIC lines made 

from early stage tumors are CCR9+. In vivo, systemically injected CCR9+ early stage 

CCIC spontaneously form orthotopic colon and small intestinal xenografts, which has 

never been observed with any previous CRC cell line, while commonly used colorectal 

cancer cell lines (as has been described in the literature) and CCR9- CCIC form only 

extra-intestinal tumors.  Blocking the CCR9-CCL25 axis inhibits CCIC intestine/colon 

tumor formation while increasing extra-intestinal tumor multiplicity. Finally, we show that 

NOTCH signaling, which stimulates CRC invasion and metastasis, promotes CCR9 

proteosomal degradation, inhibits CCL25 dependent AKT signaling and increases extra-
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intestinal colorectal cancer tumors. Overall, these data provide insights into the 

mechanism by which CCR9/CCL25 promotes colon-localized, early stage colorectal 

cancer growth while inhibiting invasion and metastasis, its suppression by NOTCH 

signaling in late stage colorectal cancer, and provide a novel in vivo model system to 

study CRC tumor progression in the native colon microenvironment.   
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RESULTS 

CCR9 is upregulated in pre-invasive CRC and downregulated in invasive and 

metastatic CRC 

    To understand the expression pattern of CCR9 in colorectal cancer, we 

immunostained representative sections from patient tumors.  Cases varied in clinical 

stage from adenoma to carcinoma in situ (Tis) to transmural involvement (T4).  CCR9 

staining intensity was scored for normal crypt epithelium and neoplastic tissue from 

each involved layer of the colon wall (Figure 1). Consistent with previous studies, CCR9 

is expressed in normal colonocytes essentially throughout the entire crypt. To quantify 

CCR9 staining intensity, we used a histopathology scoring system ranging from 0-3. 

Normal colon epithelium had a mean staining intensity of 1.60±0.04, n=55.  CCR9 

staining in adenomatous foci was significantly increased (2.26±0.06, n=46) vs. normal 

tissue.  In contrast, staining intensity progressively decreased in carcinoma in 

situ(2.03±0.08, n=19), and in carcinomas invasive into the submucosa (1.47±0.06, n=44) 

and muscle wall (1.13±0.08, n=42; all p < 0.001) (Figure 1 A-I). Additionally, we 

quantified CCR9 expression in primary CRC culture by FACS. Consistently, high 

percentages (~90%) of early stage (I/II) primary CRC cells areCCR9+, while much lower 

percentages of late stage (III/IV) invasive or metastatic CRCs (~10%) are CCR9+ 

(Figure 1 J). Overall, CCR9 levels are highest in non-invasive tumors (adenomas and 

in situ carcinomas) and progressively downregulated in submucosal invasive, muscle 

invasive and metastatic colorectal cancer tumors, consistent with a potential role for 

CCR9 to suppress invasion and metastasis. 
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   To understand CCR9’s role in colorectal cancer, we tested several commonly used 

colorectal cancer cell lines (HCT116, RKO, SW480 and LoVo) and found very low or 

undetectable CCR9 protein levels (Figure 1 K,L). In contrast, we found that several 

colon cancer initiating cell lines (CCIC) derived from early-stage/colon-localized 

(American Joint Committee on Cancer stage I/II) CRC patients [26, 27] generally have 

robust CCR9 protein expression. In contrast, CCIC lines derived from later stage (III/IV) 

patients whose tumors had spread beyond the colorectum have much lower CCR9 

expression. This suggested that CCIC lines derived from early stage/colon-localized 

colorectal cancer patients might be a useful system for mechanistic studies of CCR9. 

Additionally, while only correlative, these data are consistent with immunohistochemistry 

that CCR9 protein levels are more closely associated with earlier stage CRC tumors 

that have less invasive and metastatic potential vs. later stage tumors with poorer 

prognosis. 

 

Stage I/II CCIC form orthotopic xenograft CRC tumors in the colon and small 

intestine CCL25 produced by small intestine and colon epithelial cells attracts 

circulating CCR9+ T lymphocytes [28]. To understand the in vivo role of CCR9 in 

colorectal cancer, we injected CCIC lines systemically into the tail vein of  

immunodeficient mice (NOG mice).  73.3% of mice injected with early stage CCIC 

became moribund and developed average of 3.7 tumors in intestine/colon at mean 8.55 

weeks post-inoculation (Table 1). Of mice that developed gastrointestinal (GI) tumors, 

69% had tumors in both small intestine and colon, 19% only in colon and 12% only in 

small intestine (Figure 2 H). No upper GI or rectal tumors were seen. Many of these 
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tumors caused intestinal obstructions and pneumatosis coli (gas in the intestine from 

bacterial stasis and dysmotility secondary to obstruction) (Figure 2 A,B), pathologies 

often seen in patients with obstructing primary colorectal cancer adenocarcinomas. 

Evaluation of other organs showed that 35.6% of mice developed an average of 126 

extra-intestinal tumor foci, mostly lung, and all were in mice that also carried 

intestine/colon tumors. In contrast, mice injected with CCIC derived from later stage 

tumors or commonly used colorectal cancer cell lines SW480 or LoVo formed tumors 

only outside the small intestine and colon (Figure 2 H,I). Similar to CCIC dermal 

xenografts and the vast majority of human primary and metastatic colorectal cancer 

tumors, CCIC colon/intestine and extra-GI tumors have adenocarcinoma morphology 

containing distorted crypt-like structures (Figure 2 D-F).  

Mice injected with either early or late stage CCIC also became moribund at significantly 

earlier times post-inoculation vs. commonly used CRC cell lines (P<0.001) 

(Supplemental Figure 1). The colon/intestine tumors we observed could have arisen 

directly from early stage CCIC, or indirectly by stimulating endogenous mouse intestinal 

tumorigenesis. We systemically injected and tracked early stage CCIC carrying the PGK 

promoter driving constitutive expression of an eGFP reporter. First, we tested whether 

these tumors contained human DNA. PCR using two different human centromeric 

repeat sequences from genomic DNA isolated from intestine/colon tumors showed that 

they contain human DNA (Figure 3 A). Next, we examined the lower GI tract from mice 

carrying early stage CCIC colon/intestine tumors for eGFP fluorescence. This revealed 

that GI tumors consist of eGFP+ cells (Figure 3 B, C, D), indicating that the colon/ 

intestine tumors were formed by early stage CCIC in mouse hosts. As anticipated, the 
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intestine and colon sites where tumors formed expressed Ccl25 while sites of ex-GI 

tumors, such as lung, did not have detectable levels (Figure 3 F, G). Interestingly, early 

stage GI CCIC tumors were CCR9+ whereas ex-GI tumors were CCR9- (Figure 3E). 

  

Stage I/II primary CRC cultures and CCIC show CCL25 dependent chemotaxis 

To understand the role of the CCR9/CCL25 axis in primary colorectal cancer cells, we 

cultured tumor cells directly from patient tumors. Cells were sorted for expression of the 

colorectal cancer marker carcinoembryonic antigen (CEA) and plated in Boyden  

chambers. Consistently, more primary early stage colorectal cancer cultured cells 

migrated toward the chamber compartment containing recombinant CCL25 than mock 

control (p<0.001) (Figure 4 A, B) while SW480 did not. Migrated primary early stage 

colorectal cancer cells were double immunopositive (yellow) for CEA (red) and CCR9 

(green) (Figure 4 C). Similarly, consistent with our in vivo xenograft studies, more early 

stage CCIC migrated in vitro towards a chamber containing CCL25 vs. a mock control 

while this activity overall was much lower for experiments with late stage CCIC (Figure 

4 D-F). Altogether, these data show that both CCR9+ early stage colorectal cancer cells 

and CCIC functionally chemotax towards CCL25. 

 

Inhibiting the CCR9/CCL25 axis reduces CCIC colon/intestine tumor formation 

To test the role of CCR9 in CCIC orthotopic colon/intestine xenograft formation, we 

performed cell sorting for CCR9 and systemically injected CCR9+ or CCR9- early stage 

CCIC (Supplemental Figure 5A). Mice injected with CCR9+ CCIC had a high 

incidence of colon/ intestine tumors (both sites produce CCL25), whereas CCR9- CCIC 
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had low incidence (P<0.001) (Table 2). The mean number of colon/intestine tumors in 

mice injected with CCR9+ CCIC was also significantly higher than mice injected with 

CCR9- CCIC. At the same time, the incidence and mean number of tumors outside the 

colon/intestine were significantly higher in mice injected with CCR9- vs. CCR9+ CCIC 

(Table 2).  

To confirm the role of CCR9/CCL25, we used anti-CCL25 antibodies to inhibit 

bioavailable intestinal CCL25. Pre-treating mice with anti-CCL25 antibodies before and 

concurrent with early stage CCIC injection reduced colon/intestine tumor multiplicity 

(Supplemental Figure 5A). Anti-CCL25 antibody treatment also trended towards 

reduced colon/ intestine tumor incidence and increased ex-GI incidence and multiplicity, 

although these differences were not statistically significant (Table 2).  Additionally, we 

used CCR9 short hairpin RNA (shRNA) knockdown in CCIC. Mice injected with CCR9 

shRNA knockdown CCIC had lower incidence, mean number of colon/intestine tumors 

and higher mean extra-intestinal tumors vs. mice injected with CCIC expressing a 

control shRNA (Table 2 and Supplemental Figure 2B). The overall survival of mice 

injected with anti-Ccl25 antibodies or CCR9 shRNA knockdown CCIC was also 

significantly longer vs. control (Table 2 and Supplemental Figure 2C).  

 

The CCR9/CCL25 axis regulates CCIC metastasis out of the GI tract 

To understand whether CCR9/CCL25 regulates CCIC metastasis out of the GI tract, we 

performed three sets of experiments involving antagonism of CCL25/CCR9 signaling 

after GI tumor initiation. First, we injected mice with CCR9+ CCIC, waited 3 weeks for 

colon/intestinal tumors to form and then treated mice with anti-Ccl25 antibodies. This 
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significantly increased both the incidence and multiplicity of CCIC ex-GI tumors (Table 3, 

Supplemental Figure 3D, Supplemental Figure 4 and Supplemental Figure 5B). 

Second, we injected CCR9+ CCIC with doxycycline inducible expression of anti-CCR9 

or control shRNA. Approximately 3 weeks after injection, we administered doxycycline 

to induce CCR9 knockdown. This also significantly increased ex-GI CCIC tumor 

incidence and multiplicity (Table 3,Supplemental Figure 3, Supplemental Figure 4, 

and Supplemental Figure 5B). Third, we created HCT116 (which are CCR9-) sub-lines 

that stably express CCR9 (HCT116 CCR9+) and used IVIS imaging to monitor the sites of 

tumor formation after tail vein injection. While HCT116 cells form ex-GI tumors, HCT116 

CCR9+cells in contrast form GI tumors in addition to ex-GI tumors. Interestingly, stable 

expression of CCR9 also reduces the overall burden of ex-GI tumors, as quantified by 

IVIS photon counting (Supplemental Figure 6).  Altogether, these studies are 

consistent with CCL25/CCR9 antagonism causing CCIC in the intestine and colon to 

migrate outside the GI microenvironment and form additional ex-GI tumors.   

CD26 and SNAL1 are associated with colorectal cancer migration and metastasis[29-

31]. To understand whether they could play a role in CCIC migration outside the GI tract, 

we used shRNA to knock down expression of CD26 or SNAL1 by ~70% (Supplemental 

Figure 2A). However, neither of these gene knockdowns affected colon/intestine or ex-

GI CCIC tumor formation, or survival of mice systemically injected with CCIC 

(Supplemental Figure 2 B, C.).   

 

CCR9/CCL25 stimulates AKT signaling and cell proliferation in stage I/II CRC 

primary culture and CCIC 
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Our hematogenous xenograft studies show that CCR9+ early stage CCIC formed 

colon/intestinal tumors while CCR9- cells formed ex-GI tumors. To understand the 

signaling mechanisms regulated by CCL25/CCR9, we performed gene expression 

profiling of FACS sorted CCR9+ and CCR9- early stage CCIC (both treated with CCL25) 

with the Wafergen Human Oncology Panel Chip.  Mapping all known interactions 

between differentially expressed genes to the Ingenuity Pathway Analysis mammalian 

interaction database revealed a network of CCR9/CCL25 upregulated oncogenic 

transcriptional regulators associated with cell proliferation, including FOS, FOSL1, JUN, 

EGR1 and ETS1 (p=9.86e-12), directly downstream of AKT and NOTCH signaling 

pathways (Figure 5 A).To test whether CCL25/CCR9 regulates AKT signaling in CRC, 

we treated early stage primary colorectal cancer or CCIC cells with CCL25 and assayed 

for phospho-Ser473 AKT, a biomarker of activated AKT signaling. CCL25 treatment 

increased the number of phospho-Ser473+ and Thr 308 CCIC (Figure 5 B-D), 

consistent with activation of AKT signaling.   

NOTCH signaling downregulates CCL25/CCR9 AKT signaling and chemotaxis 

NOTCH signaling plays an important role in both normal intestine and CCIC.NOTCH 

signaling is activated by JAGGED 1 (JAG1) and Delta-like ligand binding to NOTCH 

receptors. This activates multiple proteolytic cleavage events [32, 33], after which the 

NOTCH receptor intracellular domain (NICD) is released and translocates to the 

nucleus. NICD interacts with the DNA-binding protein RBPJκ, which recruits co-

activators and stimulates expression of NOTCH target genes including HES family 

genes[32]. Recently, an important new role for NOTCH signaling in promoting CRC 

invasion and metastasis was demonstrated [11, 34]. Because CCR9/CCL25 is 
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associated with early stage, colon-localized CRCs, we compared NOTCH signaling 

levels in FACS sorted CCR9+ and CCR9– early stage CCIC treated with CCL25. NICD 

and HES1, biomarkers of active NOTCH signaling, were significantly higher in CCR9- 

vs. CCR9+ CCIC (Supplemental Figure 8 A). Confirming these data, we FACS sorted 

CCIC expressing eGFP under the control of a NOTCH responsive promoter containing 

multiple RBPJ binding sites (GFP-NOTCH) (Supplemental Figure 7A). GFP-NOTCH 

High early stage CCIC had lower levels of CCR9 and phospho-AKT (and higher levels 

of NICD and HES1) than GFP-NOTCH Low cells (Supplemental Figure 8B). Next, we 

treated stage I/II CCIC with a high concentration of JAG1. JAG1 treatment increased 

CCIC NICD, HES1 and the number of GFP-NOTCH+ cells (Supplemental Figure 7 C 

and Supplemental Figure 8B). JAG1 also downregulated CCR9 protein levels (Figure 

8C), consistent with a role for NOTCH as an upstream regulator of CCR9/CCL25 in 

colorectal cancer. To understand the mechanism of CCR9 downregulation by NOTCH 

signaling, we analyzed CCR9 mRNA and (co-treated with the proteosomal inhibitor PS-

341), protein levels.CCR9 mRNA levels in two CCIC lines did not change in response to 

NOTCH activation, as measured by qPCR. In contrast, when cells were co-treated with 

the proteosomal inhibitor PS-341, CCR9 protein levels increased (Figure 6 A, B). 

Overall, these data are consistent with a mechanism whereby NOTCHlowers CCR9 

protein levels by increasing its proteosomal degradation. Functionally, we found that 

JAG1 inhibited CCL25 induced AKT phosphorylation and that co-incubation of CCIC 

with JAG1 inhibited CCIC chemotaxis towards CCL25 (Figure 6 C,D). Similarly, in a 

migration assay, addition of CCL25 to the upper chamber inhibited migration to 5% 

serum in the lower chamber, and co-incubation with JAG1 antagonized  migration 
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stimulated by CCL25 (Supplemental Figure 8D, E). We did observe that addition of 

CCL25 downregulated NOTCH2 receptor levels. However, CCL25 did not 

downregulateNOTCH signaling as assayed by NICD and HES1 protein levels (data not 

shown). Therefore, these data are consistent with NOTCH acting upstream of 

CCR9/CCL25 to inhibit AKT and migration, but that this interaction is not reciprocal.  

 

NOTCH signaling promotes CCIC tumor formation outside the colon and intestine 

Our in vitro studies are consistent with the NOTCH pathway acting upstream of 

CCR9/CCL25 to inhibit its function. To understand the in vivo role of NOTCH on the 

CCR9/CCL25 axis in CCIC, we used CCIC expressing a GFP-NOTCH reporter. We 

FACS sorted these CCIC into GFP-NOTCH High and Low cell populations, and injected 

cells systemically into the tail vein of immunodeficient mice. Consistent with the role of 

NOTCHto promote colorectal cancer invasion and metastasis[11], GFP-NOTCH High 

CCIC formed significantly more tumors outside the colon/intestine than GFP-NOTCH 

low CCIC (Figure 6 E and Supplemental Figure 7 C.). Conversely, GFP-NOTCH High 

CCIC formed significantly fewer intestine/colon tumors than GFP-NOTCH Low CCIC. 

Overall, these data are consistent with an in vivo role for NOTCH signaling to inhibit 

CCR9/CCL25 signaling in CCIC and promote invasion, metastasis and tumor formation 

at sites outside the GI tract.  
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DISCUSSION 

Chemokines regulate anti-apoptosis, migration, recruitment of tumor associated cells, 

metastasis and trafficking for many cancers [13]. The CCR9/CCL25 axis specifically 

regulates gut mucosal immunity. CCL25 is produced by small intestine and colon 

epithelia, which recruit to the gut circulating CCR9+ T and dendritic cells, increases AKT 

signaling and prevents T lymphocyte apoptosis[14-17].  Here, we demonstrate an 

unexpected role for GI epithelium produced CCL25 to suppress CRC invasion and 

metastasis. The great majority of colonocytes express both CCR9 and CCL25 [15]. 

Compared to normal human colon, CCR9 is upregulated in adenomas and early stage 

CRC, but downregulated in invasive and metastatic CRC (Figure 1). Early stage 

colorectal cancers have better prognosis and less metastatic potential than late stage 

tumors. Both early stage primary tumor cells and CCIC demonstrate CCL25-dependent 

upregulation of AKT signaling, chemotaxis and proliferation (Figure 4). In colorectal 

cancer patients, AKT signaling (particularly in tumors carrying PIK3CA mutations) is 

associated with a good prognosis and is inversely correlated with later stages[35]. 

Conversely, NOTCH signaling is associated with CRC invasion and metastasis[11, 34] 

(Figure 6). Overall, our data are consistent with a model (Supplemental Figure 9)   

whereby pre-invasive (adenoma, carcinoma in situ) colorectal cancer cells upregulate 

CCR9 levels. Paracrine CCL25 produced by surrounding colon epithelium stimulates 

proliferation and anti-apoptosis signaling that contributes to increased tumor size, and 

likely superficial tumor spread along mucosal margins. This is accomplished 

mechanistically through upregulating AKT signaling and a downstream network of 

oncogenic transcription factors that promote proliferation. As tumors progress, some 
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cells upregulate NOTCH signaling. During this transition, upregulation of NOTCH 

signaling drives proliferation, taking over for CCL25/CCR9 signaling. This causes an 

“invasive switch” that stimulates CCR9 proteosomal degradation, inhibits CCR9/ CCL25 

signaling, promotes NOTCH driven invasion and ultimately metastasis[34]. Consistent 

with this model, NOTCH signaling is higher in CCR9- vs. CCR9+ CCIC. Consequently, 

late stage invasive and metastatic colorectal cancer tumors do not express CCR9, as 

there is no proliferative advantage if CCL25 is absent from the microenvironment of 

metastatic sites. Overall, our data provide insights into the regulation of colorectal 

cancer tumor progression by the CCL25/CCR9 mechanism and the evolution of pre-

invasive to invasive and metastatic CRC cells. Our data also suggests that CCR9 may 

be a useful prognostic marker to distinguish indolent from invasive and metastatic 

colorectal cancer.   

Which NOTCH ligands are most important for stimulating CCR9 downregulation? 

Because there are multiple roles for NOTCH signaling in colorectal cancer, including 

roles in tumorigenesis, progression, chemoresistance and angiogenesis, and because 

there are five canonical NOTCH ligands, additional non-canonical NOTCH ligands (e.g. 

DLKs) that influence signaling levels, and post-translational modification of these 

ligands by glycosyltransferases (e.g. POFUT1) that affect their ability to bind to different 

NOTCH receptors[11, 32, 36-47], the answer is complex . The multiple roles of NOTCH 

signaling in normal colon homeostasis, different CRC mechanisms and the large 

diversity of possible ligands makes the association of individual ligands with NOTCH 

driven colorectal cancer progression by in situ hybridization or immunohistochemistry 

difficult both to study and interpret. However, it is important to note that previous studies 
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have shown that the NOTCH ligand DLL4 is upregulated in vascular endothelial cells 

located within colorectal cancers, but not in endothelium adjacent to normal mucosa 

[44]. Furthermore, some colorectal cancer cells themselves express NOTCH ligands 

such as JAG1 or DLK1 and are able to stimulate paracrine signaling [48, 49], in addition 

to expression of JAG1, JAG2, DLL1 and DLL4 ligands by normal colon epithelial cells. 

Therefore, while the overall situation is complex because of the multiple roles of 

NOTCH signaling in colorectal cancer, it is most likely that DLL4, JAG1, and possibly 

DLK-1, play the most important roles in CCR9 downregulation.   

The chemokine receptor CXCR4 plays an important role in the homing and retention of 

hematopoietic stem cells within the bone marrow microenvironment [50]. Targeted 

disruption of CXCR4 signaling results in rapid mobilization of hematopoietic stem cells 

into the peripheral circulation [51-55]. The finding that downregulation of CCL25/CCR9 

signaling can increase colorectal cancer migration out of the intestine/colon is therefore 

analogous to thesituation with CXCL12/CXCR4 and hematopoietic stem cells. 

Furthermore, because CXCL12 (also called SDF1α) is implicated in metastasis of 

multiple tumor types (with more than 700 citations in Medline on this topic) including 

colorectal cancer, we tested ex-GI CCIC tumors and found that they can express 

CXCR4 at high levels (Supplemental Figure 10). Overall, these findings are consistent 

with a potential colorectal cancer chemokine driven “metastatic switch,” during tumor 

progression. In future studies it will be important to evaluate this potential metastasis 

mechanism. Experimental approaches could include carefully designed experiments 

tracking colon cancer cell CCR9 vs. CXCR4 cell surface membrane protein levels in 

CCIC and other mouse models of stochastic colon cancer metastasis[56], for example 
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by FACS,  to see if expression of these specific chemokine receptors are mutually 

exclusive, and whether CXCR4 correlates with NOTCH signaling upregulation [11]. 

Alternatively, new techniques using dual wavelength luciferase reporter genes driven 

respectively by the CCR9 or CXCR4 promoters could be monitored in vivo in surgical 

models of colon cancer metastasis [57]. Another approach would be to use dual 

immunofluorescence for CCR9 and CXCR4 to screen tissue microarray biospecimens 

from both early and late stage colorectal cancers to evaluate for mutual exclusivity of 

their expression in tumor progression.  Overall, these experiments could create a strong 

rationale to repurpose existing CXCL12/ CXCR4 antagonists that are used for 

hematopoietic stem cell mobilization for clinical trials to inhibit colorectal cancer 

metastasis. 

The commonly used colorectal cancer cell lines we tested express little or no CCR9. 

When injected systemically in mice, some lines can form tumors outside the GI tract. 

However, no spontaneous orthotopic colon/intestine tumor formation has ever been 

reported previously with any colorectal cancer cell line. Precisely why these commonly 

used cell lines do not express CCR9 is unknown. We speculate that this may reflect 

their long term in vitro culture in the absence of CCL25. 

Since our novel in vivo orthotopic CRC tumor formation system models the transition 

directly from GI-localized neoplasms to metastatic carcinomas, the CCIC lines 

described here have the potential to be a useful model to identify important “driver” 

mutations, epigenetic changes and signaling pathways that regulate pre-invasive to 

invasive and metastatic CRC progression, with less confounding by the high 

background “passenger” mutation rates seen in advanced CRC tumors. 
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Functional CCR9 responsive to CCL25 is expressed by multiple tumor types, including 

prostate, ovarian, breast and pancreatic adenocarcinomas and melanomas [21-24, 58]. 

The role of CCR9 in these cancer types is unclear. One possibility is that a driving force 

is the upregulation of AKT signaling and cell proliferation. Because some chemokine 

receptors bind multiple ligands, we speculate additional CCR9 ligands may exist that 

play a role in these tumor types. Alternatively, CCR9 could cause constitutive activity 

even in the absence of ligand in these tumors (perhaps from somatic activating 

mutations) or paracrine CCL25 could be produced by infiltrating lymphocytes. Future 

experiments in these other tumors will be required to understand the precise role of 

CCR9 in these contexts outside of the intestine and colon.  
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METHODS 

Histology and Immunohistochemistry Representative sections from patient CRC 

specimens were immunostained for CCR9 using a 1:150 dilution of anti-human CCR9 

(Abcam #ab38564) with antigen retrieval and peroxidase-based detection.  Cases 

varied in clinical stage from in situ carcinomas (Tis) to transmural involvement (T4).  For 

each case, CCR9 staining intensity was assessed (range 0-3) for normal crypt 

epithelium, and neoplastic tissue from each involved layer of the colon wall using double 

blank scoring method. Intensity ± S.E.M. is shown. 

Cell Culture. AJCC clinical stage I/II (referred to here as early) and stage III/IV (late) 

CCIC lines were generated using colon cancer “stem” cell culture conditions of 

Vermeulen et al [59] with several modifications as previously described by our lab[27]. 

Briefly, CRC patient fresh primary and metastastic tumor biospecimens were 

extensively washed with PBS, minced, and incubated at 37°C with collagenase. Cells 

were then strained through 40-μm filter and cultured as “colonospheres” [59]. 

Colonospheres were cultured in ultralow-attachment flasks in DMEM/F12 containing 

nonessential amino acids penicillin (500 U/ml), streptomycin (500 mg/ml), and 

amphotericin B (1.25 mg/ml) and heparin (4 μg/mL; Sigma). Changes from [59]included 

increased concentrations of epidermal growth factor (40 ng/mL), and basic fibroblast 

growth factor (20 ng/mL) and the addition of B27 supplement (Invitrogen). Cells were 

incubated at 37°C and 5% CO2.  Cells were cloned as single cells, expanded and 

frozen in DMSO. With these conditions clonal cultured colonospheres were considered 

to be CCIC based on the following criteria: (1) 50+% FACS positive status for CD44, 

CD133 and ALDH1 (tested individually)[26], (2) 1:1,000-1:10,000 cell ability to form 
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subcutaneous xenografts in NOG mice, (3) capable of serial self-renewal in sub-

cutaneous xenografts assays, (4) ability to form subcutaneous xenograft tumors with 

adenocarcinoma histomorphology. Additionally, CCIC were also noted to express LGR5, 

NOTCH 1,2 receptors, JAG1, DLL4 and nuclear β-catenin (consistent with expression of 

WNT target genes such as CD44 andLGR5). CCR9/ALDH1 co-expressing cells are also 

observed (data not shown). 

 

Primary CRC culture Primary CRC culture used the method of collagenase /dispase 

enzyme digestion with slight modification, as previously described [60, 61]. Fresh 

samples of CRC were collected in DMEM/F12 supplemented with 10% FBS and 2% 

penicillin/streptomycin, immediately after patient operative resection. Tissue was 

dissected free of fat and blood clots and rinsed 5 times with PBS supplemented with 2% 

penicillin/streptomycin. Then tissue was minced into approximately1 mm fragments and 

digested in DMEM/F12 containing collagenase type XI (150 U/ml, Sigma, St. Louis, MO), 

dispase neutral protease (40 μg/ml, Roche Applied Science) and 1% FBS, stirring at 

37°C for 30 min. After centrifugation, cells were re-suspended in the CCIC culture 

medium containing 5% FBS, 1% penicillin/streptomycin and cultured in the ultra low-

attachment flashes for a short time (1-2 passages), then the cell culture was shifted into 

complete CCIC medium without FBS. FACS with ESA was used to purify CRC and cells 

within 5 passages were used for following experiments.  

 

CCR9 constitutive and inducible knockdown;Snail or CD26 knockdown in CCIC 

and NOTCH reporter CCIC The lentiviral vector pEco-CMV-H1-shRNA-GFP encoding 
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a shRNA hairpin sequence (CCR9: 5’-CTTGTACTGGCTCGTGTTCAT; Snail: 5’-

GAGCTGCAGGACTCTATCCA; CD26: 5’- CATTCCTACACAGCTTCATAT) was used 

for CCR9, Snail or CD26 expression knockdown and the lentiviral vectors pEco-CMV-

H1-GFP (GenTargetInc, San Diego, CA) and pEco-CMV-H1-scrambled-shRNA-GFP 

served as controls. To generate the lentiviral vectors, the above plasmids were 

transfected into HEK293T cells with the Genetargetlentivirus packaging mix 

(GenTargetInc, San Diego, CA) according to the manufacturer’s protocol. For CCR9 

tetracycline inducible knockdown, the same shRNA hairpin sequence against CCR9 

gene was inserted into pLenti-H1-shRNA-RSV (GFP-Puro) vector (GenTargetInc, San 

Diego, CA) and packaged into lentivirus particles as the same previous procedure, 

which were used together with another TetR expression lentivirus (RFP-Bsd) 

(GenTargetInc, San Diego, CA) to infect CCICs. After antibiotic selection and GFP/RFP 

dual FACS purification, the CCR9 shRNA knockdown can be induced by1ug/ml (in vitro) 

or 1mg/ml (in vivo) doxycycline. NOTCH signaling reporter CCIC was generated by 

infecting CCIC with pCignalLenti RBP-Jk Reporter (GFP) ready lentivirus 

(SABiosciences, Inc.). After infecting CCIC lines with these lentiviral vectors, stable 

knockdown clones were obtained through antibiotic selection of blasticidin (Invitrogen, 

Carlsbad, CA). The efficiency of the CCR9, SNAIL or CD26 knockdown in CCIC was 

verified by Western Blotting and efficiency of NOTCH signaling reporter was tested by  

2 μg/ml Jagged-1[62-64] (AnaSpec) treatment following by GFP-FACS sorting. 

 

CCIC xenograft tumor formation in colon/intestine and other organs 0.5-1 x 

106CCIC or common CRC cells were injected into 6-8 weeks old non-obese 
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diabetic/severe combined immunodeficient (NOD/SCID) mice (Jackson Laboratory, Bar 

Harbor, Maine) by tail vein injection. Tumor incidence was monitored 2-3x weekly. 

When mice became moribund, they were sacrificed immediately, necropsy performed 

and tumors harvested using a dissecting microscope. For ex vivo GFP imaging of tumor 

tissues, lentiviral infection by the pEco-CMV-GFP vector was used to generate CCIC 

lines that stably express GFP and maintained in puromycin selection. 106 of these 

fluorescent CCIC were systemically injected as described above. Intestinal tissues 

harvested at the time of sacrifice were analyzed for GFP expression with Cri Maestro 

Imaging Systems (Cambridge Research & Instrumentation Inc, Woburn, MA). 

For the CCR9 study, native CCICs, CCICs with CCR9, Snail (SNAL1) or CD26 

knockdown (or commonly used CRC cell lines such as HCT116, etc. as indicated), 

CCR9+ CCIC with CCR9 inducible knockdown were intravenously inoculated into the 6-

8 weeks old NOD/SCID mice by tail vein. Mice that became moribund were sacrificed 

immediately, whereas the rest were closely monitored for 16 weeks before sacrifice. To 

test whether CCL25 antibody could inhibit the CCL25-CCR9 GI homing mechanism in 

vivo, a dose of 100 ug goat anti-mouse CCL25 neutralization antibody (R&D systems, 

Cat# AF-481-NA), was IP administrated to each mouse twice (the same dose and 

schedule as used in [65]). As a negative control, a dose of 100 ug Goat IgG (R&D 

systems) was administered to each mouse in the control group. Then 1 x 106CCIC were 

injected into the mice 8 hours after or with the injection of the antibody. To test whether 

extra-GI metastasis is induced by CCR9/CCL25 signaling blockade, CCL25 

neutralization antibody with the same dose was IP administrated to each mouse every 
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three days or 1 mg/ml doxycycline in drinking water was given to mice every other days 

starting from the fourth week after CCIC inoculation until mice get moribund.  

Genomic DNA extraction and semi-quantitative PCR 

Genomic DNA from CCIC culture, lung and intestinal adenomas normal tissues, or 

mouse tail was extracted using a tissue DNA extraction kit (Qiagen, Valencia CA). 

Semi-quantitative PCR was done followed by DNA gel electrophoresis. Human 

centromeric repeat loci were used as markers to detect human cells in harvested mouse 

tissues. Primer sequence pairs used are (1) 5’-GAGTGCACATTCAGACAAGACCC-3’ 

and 5’- CCATTAGAGAGCTTTCCTCATTGC-3’or (2) 5’-

CGTGTGTTTTTGGTTACTTCTCCCC- 3’ and 5’-CTTAGCCATTGCCCATTGATGGA- 3’. 

Quantitative real-time PCR 

Total RNAs from cells were extracted by using RNeasy Kit (Qiagen, Valencia CA). 2 μg 

of total RNAs were reverse-transcribed into cDNA by using  RT first stand kit (SA 

Biosciences) and RNA levels, normalized to GAPDH as the comparative CT (cycling 

threshold)= CT (target)- CT (control), were analyzed by the iCycler (Bio-Rad).  

Primer pairs used are (1) GAPDH 5’-ACAGTCAGCCGCATCTTCTT-3’ and 5’-

AATGAAGGGGTCATTGATGG-3’; (2) HES 15’- ACGACACCGGATAAACCAAA-3’ and 

5’-CGGAGGTGCTTCACTGTCAT-3’; (3) CCR9 5’-CACAGACTTCACAAGCCCTA-3 

and 5’-GTACAAGGGTGGGAGGAAAT-3’ . 

Transwell migration assay 

Transwell Boyden chambers (BD Pharmingen Mountain View, CA) of 8-μm pore size 

were used to evaluate primary CRC cell and CCIC migration in vitro. Primary CRC cells 

or CCICs were seeded at a density of 5 x 105 per well into the upper chamber. CCIC 
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culture medium as described above with 100 ng/ml recombinant mouse CCL25 protein 

(R&D systems Inc; Minneapolis, MA) or 5% FBS was loaded into the lower chamber. 

Chambers of cells were incubated in 37oC and 5 % CO2 conditions for 8-12 hours. At 

the time of harvest, cells remaining inside the upper chambers were removed while cells 

attached to the lower surface of the membrane were fixed and stained with 

hexamethylpararosaniline chloride (Crystal violet) (Sigma, St Louis, MO) or 

immunofluorescence staining with anti-CCR9 or CEA antibodies, followed by imaging 

analyses. 

SmartChip RT-PCR Procedures and Functional Analysis 

Early stage CCIC were FACS sorted into CCR9+ and CCR9- subpopulations. 24 hours 

afterwards, cells were treated with100ng/ml human CCL25 for 30 min. RNA was 

extracted from both populations using PureLink RNA Mini kit (Invitrogen) and analyzed 

using the SmartChip Real-Time PCR System (WaferGen Biosystems, Fremont, CA). 

Briefly, cDNA was prepared using 1 ug of total RNA per sample per manufacturer’s 

recommendation. A PCR cocktail containing SYBR Green I dye and the equivalent of 

1000 ng of starting RNA for each sample was loaded onto the SmartChip Human 

Oncology V2 Panel (containing 1,296 unique real-time PCR reactions in quadruplicate 

for a total of 5,184 reactions/sample). The volume was 100 nL with an equivalent of 96 

pg of RNA loaded per reaction. Forty cycles of real-time PCR were performed on the 

SmartChip Cycler collecting both raw Ct and Tm of each gene and sample for data 

analysis.  A data quality screen on amplification, Tm curves, and Ct and Tm variability 

was performed to remove any outlier data. All-means normalization was performed on 

quadruplicate PCRs and delta-delta Ct calculations were used to determine fold change 
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in expression. Genes either with a log2 fold change by a factor of greater than 1.8 (that 

correlates to ~3.3 fold or higher), or expressed in only one sample with min raw of Ct of 

24.99 were deemed significantly differentially expressed between CCR9- and CCR9+ 

early stage CCIC cells.The complex biological processes that differentiate between 

CCR9- and CCR9+ CCIC were examined in the context of biomolecular networks. The 

interaction network shown in Figure 5 was generated with Ingenuity Pathway Analysis 

(IPA), a web-delivered application used to discover, visualize and explore relevant 

networks (www.ingenuity.com). Gene symbol identifiers and log2 fold changes of 

differentially expressed genes were uploaded to IPA, each identifier was mapped to its 

corresponding gene object in the IPA Knowledgebase and direct interactions were 

queried only between these gene objects. The direct interaction network of differentially 

expressed genes between CCR9- and CCR9+ CCIC was manually integrated with 

signaling proteins known to be involved in the CCR9/CCL25 pathway. 

 

Statistics Summary 

 

All experiments were done with four to eight samples per group, unless otherwise 

indicated, and all results were derived from at least five independent experiments. 

Values are expressed as mean ± SEM. For Student’s t test, a 2-tailed test was used.  

A p value less than 0.05 was considered significantly. Statistical calculations were 

performed with the Statistical Package for the Social Sciences version 11.5 software 

(SPSS Inc, Chicago, IL) or GraphPad. The statistical test used for each figure or table 

panel is indicated.   

http://www.ingenuity.com/
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Study Approval 

All primary CRC tissues in this study were taken from I-IV stage CRCs collected by the 

Weill Cornell Colon Cancer Biobank, approved by the Institutional Review Board (IRB) 
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institutional animal welfare and use committee of Weill Cornell Medical College, Cornell 

University. 
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Figure 1. CCR9 is expressed in early stage CRC and early stage colon cancer initiating cells 

(CCIC). CCR9 protein in normal colon epithelium (B), pre-invasive (A&C), invasive (D&E) and liver 

metastatic (F&G) CRCs are shown by immunohistochemistry with anti-human CCR9 and developed by 

DAB (brown). Dotted line in E indicates the boundary between normal epithelium (CCR9+) and invasive 

CRC (CCR9-).(H), negative control with control IgG; Scale bars, 100μ in A,D,F; 50 μ in E,G,H; 10 μ in 

B,C (I) CCR9 expression levels by immunohistochemistry scoring. Error bars indicate SEM. * and ** 

indicate statistical difference with P < 0.001 and P<0.01, respectively, compared to normal colon.  (J) 

FACS quantification of membrane and cytoplasmic CCR9+ cells in early or late stage primary CRCs. 

Gates are set for high CCR9+ signal intensity.(K) Western blot of CCR9 protein levels in common CRC 

lines (RKO, SW480, LoVo), 3 early stage CCIC lines (Stage I/II) and 2 late stage CCIC lines (Stage III/IV), 

β-actin is loading control. Lymphoma cells are used as a positive control for CCR9.(L) FACS 

quantification of cell surface membrane CCR9+ cells in common CRC lines (HCT116 as representative), 

early stage CCIC and late stage CCIC (early stage CCIC1 and late stage CCIC1 as representative).  
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Figure 2.Early stage CCIC form orthotopic xenograft tumors in mouse intestine, colon and other 

sites. (A)Post-mortem analysis of NOD/SCID mice with tail vein-injected CCIC (4X). Arrows show CCIC 

tumors in lung (white spots; upper part of photo) and intestine (lower part of photo). Small bowel is 

distended and inflamed. (B)Close up of mouse abdomen showing (1) distended small intestine loop 

proximal to CCICtumor obstruction with adhesion to adjacent (non-obstructed and grossly normal) small 

intestine loop and (2) Pneumatosisintestinalis from bacterial stasis in right colon proximal to another CCIC 

obstruction.(C) High low power light microscopy close up of CCIC jejunal adenocarcinoma, Scale bars, 

0.5 mm. Multiple CCIC tumors with histopathology in small intestine (D), colon (E&F) and lung (G). Arrow 

denotes adenocarcinomas in D-G. Scale bars,100μ. (H)Xenograft tumor incidence by site of implantation 

mice injected with CCIC or CRC cell lines. * P< 0.01 and **P< 0.001 compared to non-CCIC. Error bars 

indicate S.E.M.  
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Figure 3.CCIC colon and intestinal tumors consist of human cells and are CCR9 positive. 
(A). PCRof human centromeric repeat sequences from DNA extracted from CCIC (positive 
control), CCIC injected mouse tail, intestine, lung tissue and no DNA control (negative control).  
(B). Maestro GFP imaging system images of intestinal tumor of PGK-eGFP expressing CCIC. 
Scale bars, 0.5 cm.(C).Light microscopy close up of eGFP+ CCIC tumor in (B).Scale bars, 0.5 
mm.(D). Anti-GFP-immunofluorescence imaging of CCIC intestinal tumor with adenocarcinoma 
morphology. Left upper window shows H+E staining of the same intestinal tumor as control. 
Arrows indicated eGFP+ cells. M, mucosa. Scale bars, 100μ.  (E). CCR9 immunofluorescence 
of CCIC intestinal and lung tumors.CCR9 protein was detected by anti-human CCR9 antibody 
(green) and nuclei were stained with DAPI (blue). Scale bars, 50 μ. (F).CCL25 
immunofluorescence in mouse intestine and lung.CCL25 expression was detected by anti-
mouse CCL25 antibody (red) and nuclei were stained with DAPI (blue). Scale bars, 100 μ. (G). 
Anti-CCl25 antibody western blot showing CCL25 expression in mouse intestine but not lung. β- 
actin is loading control. 
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Figure 4.CCL25 dependent chemotaxisin early stage primary CRC and CCIC. 
(A)Boyden chamber assay of 7 early stage primary CRCs chemotaxis to chamber containing 
CCL25. (-) CCL25 absence or (+) CCL25 presence. Error bars indicate S.E.M. *P < 0.0001 
compared to matched (-) cells by one-way ANOVA (n=4). SW480 is used as a negative control. 
(B)Crystal violet staining of early stage primary CRC cells migrating into chamber with CCL25 
(bottom) or mock (top).Scale bar, 50μ. (C).CEA (Red) and CCR9 (green) immunofluorescence 
of early stage primary CRC cells that migrated to chamber with CCL25. DAPI, blue. Scale bar, 
10μ. IgGis negative control. (D) Crystal violet staining of Transwell chambers with early stage 
CCIC1 or late stage CCIC1(as representatives) that have migrated to CCL25or PBS (mock). 
Scale bar, 50μ. (E)CCR9 immunofluorescence of early stage CCIC that migrated to CCL25 
containing chamber. CCR9 (green) and DAPI (blue).Control IgGis used as negative control. 
Scale bar, 10μ.(F) Percentage of earlyor late stage CCIC that migrated to CCL25 or mock (PBS) 
in Transwell assay.  **P<0.001.  
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Figure 5.CCR9/CCL25 Increases AKT signaling in early stage CRC primary culture cells and 

CCIC.(A)Ingenuity Pathway analysis (IPA) direct interaction network of differentially expressed genes 

between CCR9- and CCR9+ early stage CCIC with signaling proteins known to be involved in the 

CCR9/CCL25 pathway(please see Method Section (SmartChip RT-PCR Procedure and Functional 

Analysis).  Solid lines correspond to all direct interactions in IPA database. Dashed lines represent 

indirect interactions. Genes either with a log2 fold upregulation (red nodes) or downregulation (green 

nodes) are integrated in the signaling network. Blue lines correspond to direct interactions in NOTCH, 

AKT and GSK3β signaling pathways. (B). Levels of phosphorylated AKT (Ser473 &Thr 308) and GSK-3β, 

which are increased by incubation with 0.5 or 1.0 µg/ml CCL25 for 30 min in early stage CCIC by western 

blot. β-actinis loading control. (C). Levels of phospho-AKT (Ser 473) in early stage primary CRC cultured 

cells and early stage CCIC1 after 30 minutes of 0.5 ug/ml CCL25 treatment. Imaging analysis software 

Ariol SL-50 was used to evaluate immunofluorescence signals of cells (-) or (+) CCL25. * P < 0.001 

compared to control by one way ANOVA. Error bars indicate S.E.M. (D).Phospho-AKT (Ser 473) in early 

stage primary CRC cultured cells after treatment with 0.5 ug/ml CCL25 for 30 minutes as detected by 

immunofluorescence (green). Scale bar, 10μ.  
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Figure 6.NOTCHdownregulates CCR9/CCL25 axis signaling in early stage CCIC and 

increases extra-GI tumor formation. (A)CCR9 mRNA levels in CCR9+ cells of early stage 

CCIC1 & CCIC2 in response to JAG1 induced NOTCH activation using quantitative PCR, HES1 

is used as positive control.(B)CCR9 protein levels in CCR9+ early stage CCIC1 & CCIC2 co-

treated with or without proteasome inhibitor (100nM PS341, 4 hours before harvest) in response 

to JAG1 induced NOTCH activation using western blot, HES1 is used as positive 

control.(C)Pretreatment of CCIC with 5μg/ml JAG-1 peptide for 8 hours suppresses CCL25 

dependent chemotaxis in Boyden chamber assay. *P < 0.0001 vs. control by one way ANOVA; 

**P < 0.001 vs. CCL25 alone. (N=3). Error bars indicate S.E.M. (D)Pretreatment of CCR9+ 

CCIC with 2μg/ml JAG1 peptide for 8 hours suppresses CCR9 protein and CCL25 

inducesphospho-AKT (Ser473) levels, with essentially no change in total AKT levels. Western 

analysis used anti- human CCR9, phospho-AKT, total AKT (AKT 1, 2, 3), NICD and HES1 

antibodies. β-actin was used as a loading control. (E)CCIC carrying GFP-NOTCH reporter were 

sorted into NOTCH high and low subpopulations by FACS and injected into NOD/SCID tail vein. 

NOTCH high CCICform more extra-GI tumors while NOTCH low CCIC form more GI tumors. 

Error bars indicate SEM. ** and * indicate statistical difference with P < 0.001 and P<0.05, 

respectively, comparing to each other.Also see supplemental figures 6 and 7. 
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                                                             Mean                 GI Tumor           Mean GI           Ex-GI Tumor        Mean Ex-GI      
        Cells                  # Mice           Progression          Incidence           Tumors /           Incidence       Tumors/Mouse     
                                                           (weeks)                    (%)                 mouse                     (%)  
   Early Stage 
      CCIC 

       62       8.6        73.3       3.7        35.6       126.0 

   Late Stage 
      CCIC 

       11       6.5*          0*         0*        91.0*        71.1* 

  Non-CCIC 
  CRC lines 

       24      11.8*          0*         0*        20.0*        66.2* 

 

 

Table 1. CCIC and common CRCs form orthotopic xenograft tumors in mouse intestine, colon and 

other sites. colon/intestine and ex-GI tumors from mice injected with cells by tail vein. Asterisks denote 

statistically significant differences among CRC cell lines SW480 and LoVo, early and late stage CCIC as 

determined by one way ANOVA. * P< 0.01 compared to early stage CCICs. 
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                                                             Mean                 GI Tumor           Mean GI           Ex-GI Tumor        Mean Ex-GI      
        Cells                  # Mice           Progression          Incidence           Tumors /           Incidence       Tumors/Mouse     
                                                           (weeks)                    (%)                 mouse                     (%)  
   CCR9+ 
 

        8         9.4       75.0*       3.8*       25.0         8.3* 

   CCR9- 
 

        8        10.0       12.5       0.25       87.5        75.6 

Anti-CCL25
 a

 

(Pre-injection) 

        6        11.3       28.5       1.1*       100.0        95.9 

Control IgG 
 

        6         9.2       83.3       3.0        83.3        77.5 

  CCR9 KD
 b 

 

        7        13.0*       14.3*       0.3*       85.7        105.0* 

   Control 
   shRNA    

 
        7         9.6       100.0       3.7       71.4        82.5 

 

a
anti-CCL25 (pre-injection) means mice were IP injected with anti-CCL25 neutralization antibody before 

and concurrent with CCSC tail vein injection.  
b

CCIC with CCR9 shRNA knockdown were tail vein injected in mice. 

 

Table 2.CCR9/CCL25 is required for CCIC colon/intestine tumor formation. 
mice injected with early stage CCIC.Rows1-2:Mice injected with CCR9+ CCIC or CCR9- CCIC 
(*P<0.001 for Row 1-2 comparison). Rows 3-4: Anti-Ccl25 antibody reduces GI tumor incidence 
(*P<0.05 for row 3-4 comparison). Rows 5-6: CCR9 shRNA lentiviral knockdown (KD) reduces 
GI tumor incidence and multiplicity, and increases ex-GI multiplicity (*P < 0.01 for row 5-6 
comparison).  
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                                                             Mean                 GI Tumor           Mean GI           Ex-GI Tumor        Mean Ex-GI      
        Cells                  # Mice           Progression          Incidence           Tumors /           Incidence       Tumors/Mouse     
                                                           (weeks)                    (%)                 mouse                     (%)  

   Anti-CCL25
a
 

(post injection) 

       7        7.9        71.4        2.4        42.8*         2.9* 

   Control IgG 
 

       7        8.7        85.7        3.3          0          0 

   CCR9
 b

 
   Inducible KD 

       8        8.1        62.5        2.2        50.0*         3.4* 

   Control 
   shRNA    

 
       8        8.9        87.5        3.2        12.5         0.2 

 

a
anti-CCL25 (post injection) means mice were IP injected with anti-CCL25 neutralization antibody three 

weeks after CCR9+ CCIC tail vein injection. 
b

CCR9+CCIC with CCR9 inducible shRNA were tail vein injected in mice and CCR9 knockdown were 

generated in vivo by administration of doxycycline three weeks later.   
 

Table 3. BlockingCCR9/CCL25 signaling after intestinal tumor formation increases 
metastasis. Mice injected with early stage CCIC. Top, after three weeks to allow GI tumors to 
form from injected CCR9+ early stage CCIC, mice were IP injected with 100 μg/mouse goat 
anti-mouse CCL25 neutralization antibody or goat control IgG every three days until moribund. 
The mice in anti-CCL25 groups formed extra-intestinal metastatic tumors in abdominal tissues, 
pancreas, kidney and liver (*P<0.001 statistically significant different to goat control IgG 
treatment, row 2).Bottom, after 3 weeks to allow GI tumors to form from injected CCR9+ early 
stage CCIC carrying either doxycycline regulatable anti-CCR9 or control shRNA, 1mg/ml 
doxycycline in drinking water was given to the mice every other day until moribund to induce 
CCR9 knockdown in tumor cells.  The mice with inducible CCR9 knockdown formed extra-
intestinal metastatic tumors in abdominal tissues, pancreas, kidney and liver (*P < 0.001). Also 
see supplemental figures 2 and 3. 
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SUPPLEMENTAL INFORMATION 

 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Immunohistochemistry For mouse experiments, histology and immunohistochemistry 

were performed on paraffin-embedded or frozen sections from xenograft tumors as 

previously described [27]. Intestinal, extra-GI tumor and corresponding normal tissues 

were snap frozen in OCT (Fisher Scientific, Pittsburgh, PA) and fixed in 10 % buffered 

formalin followed by paraffin embedding. For immunofluorescence, sections were 

immunostained with antibodies, counterstained with 4,6-diamidino-2-phenylindole 

(DAPI). H+E adjacent sections were used for comparison. 

Immunocytochemistry. Cells were fixed with mixture of acetone and methanol (1:1) at 

-20°C for 20 min, then rinsed three times with PBS. Following cells were incubated in a 

blocking solution (5% BSA or normal serum (goat, rabbit or horse) and 0.1% Triton-X in 

PBS) for 1 hour. For single or co-immunofluorescence staining, primary antibodies 

diluted in blocking solution were added overnight at 4°C overnight. To ensure specificity, 

a no primary antibody control staining was performed. The slides were then washed in 

PBS and incubated with the appropriate secondary antibody for 1 hour at room 

temperature and counterstained/mounted with Vectashield containing DAPI (Vector 

Laboratories). Images were acquired on an inverted fluorescence microscope (Nikon 

Eclipse E800, Morrell Instruments). Ariol SL-50imaging software (Applied Imaging 

Instruments) was used to quantify biomarker staining. At least n=100 cells from three 

independent staining experiments were analyzed. Data are presented as means ± SEM 

and the significance was tested with the Student t test.  
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Fluorescent activated cell sorting (FACS) analysis FACS with anti-epithelial specific 

antigen (ESA, BD Pharmingen #347197) antibody was used to purify primary CRC cells 

[26, 66] or with anti-CCR9 antibody (BD Pharmingen Mountain View, CA) to sort CCR9+ 

and CCR9- CCIC, essentially as previously described [26, 66]. Cells were first 

incubated with anti-human CCR9 antibody for 30 minutes on ice and then were washed 

in 1% BSA/PBS buffer. FACS was then used to separate CCIC into CCR9 positive and 

negative sub-groups by signal intensity gating. Approximately 6-8 hours after sorting, 

CCR9+ and CCR9- subsets from 1x 106 CCIC were inoculated into two mice by tail vein 

injection and monitored as described above.  GFP-NOTCH FACS sorting was 

performed as described (44). 

Western Blotting 

Isolated mouse intestine, lung tissues, cultured CCIC, or ATCC CRC cell lines were 

homogenized in RIPA buffer and complete protease inhibitor cocktail (Roche Applied 

Science, Indianapolis, IN)] with brief sonication on ice, and centrifuged for 5 minutes at 

14,000 r.p.m to remove large debris. Protein concentration of the supernatant was 

determined by Bradford protein assay (Bio-Rad Laboratories Inc, Hercules, CA). Fifty 

micrograms of protein derived from tissue or cell lysates were separated by SDS-PAGE 

and transferred to polyvinylidenedifluoride membranes. Following blocking, membranes 

were probed with primary antibodies to determine different levels of protein expressions. 

Specific antibodies targeting CCR9 (Abcam, Cambridge, MA), CCL25 (R&D systems 

Inc; Minneapolis, MA, Cat# AF-481-NA), AKT (Cell Signaling, Inc, Cat# 9272), phospho-

AKT (ser 473, Cell Signaling, Inc, Cat# 9271), phospho-AKT (thr 308, Cell Signaling, Inc, 
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Cat# 9275),  GSK-3β (Cell Signaling, Inc, Cat# 9315), phosphor-GSK-3β (Cell Signaling, 

Inc, Cat# 9336), NICD (R&D Systems, Cat# AF3647), HES1 (Santa Cruz, Cat# sc-

13842), Snail (Cell Signaling, Cat# 3879), CD26 (Calbiochem, Cat# IM1004) were used, 

and anti-actin antibody (Santa Cruz Biotechnology Inc, Santa Cruz, CA, Cat# sc-1616-R) 

was used as internal controls. Immunoreactive antibody-antigen complexes were 

visualized with the enhanced chemiluminescence reagents from GE Healthcare 

(Uppsala, Sweden). The software of Quantity One (BioRad) was used to semi-quantify 

protein levels in western. 

Generation of CCR9 constitutive expression CRC line. 

 The SureTiter TM lentivector (GenTarget Inc, San Diego, CA) in which the sub-cloned 

human CCR9 ORF sequence (gene ID: NM_006641) and a firefly luciferase gene were 

under control of CMV promoter was used to generate constitutively CCR9 expressing 

cell lines. To generate the lentiviral particles, the above plasmids were transfected into 

HEK293T cells with the Genetarget lentivirus packaging mix (GenTarget Inc, San Diego, 

CA) according to the manufacturer’s protocol. The common used CRC line HCT116 

was infected with lentivirus and positive cells selected by antibiotic. 

Luciferase imaging in whole animal or ex vivo tissues:   

Each NOG mouse was tail vein injected with 0.5x106 CCR9 constitutively expressing or 

scrambled control HCT116 cells and tumor formation was determined by luciferase-IVIS 

imaging system every 3 days  For luciferase imaging, D-luciferin of 1.5mg/10g body 

weight was intra-peritoneally injected into mice and 10 min later, luciferase imaging 

(Xenogen IVIS-200) was applied on whole-mouse body or ex vivo tissues.     
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Cell proliferation assay 

CCR9+ primary CRC and CCIC were FACS sorted and seeded in ultro-low attachment 

24-well plates for 12 hours. 100ng/ml human CCL25, 1μg/ml CCR9 neutralizing 

antibody (R&D systems Inc;), 2 μM pan-AKT inhibitor Triciribine (Sigma) or control goat 

IgG were added into culture medium and cells were continued to incubate for 36 hours. 

The cellular ATP (adenosine triphosphate) levels were measured to quantify cell 

proliferation and viability using the ViaLightPlus Kit (Lonza Rockland, Inc.) and GloMax-

20/20 Single-Tube Luminometer (Promega) per manufacture instructions.  

 

SUPPLEMENTAL INFORMATION 

All experiments were done with four to eight samples per group, unless otherwise 

indicated, and all results were derived from at least five independent experiments. 

Values are expressed as mean ± SEM. For Student’s t test, a 2-tailed test was used.  

A p value less than 0.05 was considered significantly. Statistical calculations were 

performed with the Statistical Package for the Social Sciences version 11.5 software 

(SPSS Inc, Chicago, IL) or GraphPad. The statistical test used for each figure or table 

panel is indicated. 
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Supplementary Figures 

 

 

 

 

 

 

 

 

 
 
 
Supplemental Figure 1. Related to Figure 2. Survival of mice systemically injected with 
early stage CCICs, late stage CCICs and non-CCIC CRC lines. Kaplan-Meier survival 
analysis of mice after tail vein injection with early stage CCIC (blue), late stage CCIC (grey) or 
the non-CCIC commonly used CRC cell lines LoVo and SW480 (black). P<0.0001 difference 
between the early stage CCIC and commonly used CRC cell lines by log-rank test (Graphpad 
Prism software version 5). 
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Supplemental Figure 2. Related to Figure 5. Anti-Ccl25 antibody systemic injection or 
shRNA knockdown of CCR9, but not CD26 or SNAIL, increases survival of mice 
systemically injected with CCIC. (A) shRNA constitutive knockdown efficiencies of CCR9, 
CD26 or SNAIL in CCIC were tested by western (left) and quantified (right) by using western 
quantification software of Quantitity One (BioRad). (B) Xenograft tumor incidence in mice 
injected with CCIC expressing anti-CCR9, SNAIL1 or CD26 shRNA knockdown, organized by 
tumor site. * P< 0.01 compared to scrambled shRNA control. Error bars indicate S.E.M. (C) 
Kaplan-Meier survival analysis of mice after tail vein injection with anti-Ccl25 antibodies or CCIC 
lentivirally infected with scrambled shRNA control (Mock), shRNA against CCR9, SNAIL1 or 
CD26. Survival curve data match Table 1. P=0.0007, Log Rank test comparison of overall 
survival of mice injected with CCIC expressing either scrambled shRNA control vector or anti-
CCR9 knockdown sequences (Graphpad Prism version 5).  P=0.023 Log Rank test comparison 
of overall survival of mice injected with anti-Ccl25 or IgG control (Graphpad Prism version 5).   
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Supplemental Figure 3. related to Figure 6. CCR9/CCL25 signaling is inhibited after CCIC 

intestinal tumor initiation by anti-CCL25 antibody treatment or CCR9 inducible shRNA. 

(A). Schematic of CCR9 inducible shRNA, in which anti-CCR9 hairpin sequence was cloned in 

the 3’pH1 TetO promoter. Expression of anti-CCR9 hairpin was inhibited by TetR (Tet-repressor) 

and induced by tetrycycline derive doxycycline. (B). Efficiency of CCR9 inducible knockdown in 

CCIC. The CCR9 protein levels in CCICs with only shRNAtetO vector, tetO + tetR or tetO+tetR+ 

doxycycline were detected by anti-human CCR9 antibody (left) and semi-quantified (right)by 

Quantitity One (BioRad).(C & D) Xenograft tumor incidence in mice injected with CCR9+ CCR9, 

and anti-CCL25 antibody therapy (C) or CCR9 inducible knockdown (or control, scr) by 

doxycycline (D) three weeks after tail vein injection organized by tumor site. * P< 0.01 compared 

to mock control. Error bars indicate S.E.M. 

           



 

66 
 

    

       A             B                                                                                                                   

 

 

 

                                                          

           C                 D   

 

 

                                   

 

                     

 

Supplemental Figure 4. related to Figure 6. CCIC extra-GI metastatic tumors are 
induced by anti-CCL25 treatment or CCR9 inducible knockdown. (A)and (B)Light 
microscopy of CCIC abdominal metastasis. (C) Light microscopy of CCIC liver 
metastasis, Metastatic foci are indicated by arrows. (D). H+E of CCIC metastatic tumors 
in pancreas. Arrows denote metastatic foci. Scale bar, 100μ. 
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Supplemental Figure 5. related to Table 2 and 3. (A). Schema of the experimental 
procedures in Table 2. (B)Schema of the experimental procedures in Table 3. 
Colon/intestine tumors (blue) and ex-GI tumors (green) dots. 
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Supplemental Figure 6. Related to Figure 6. CCR9 overexpression in HCT116 
significantly increased GI tumor formation and reduced extra-GI tumor 
formation (A). Western blot of CCR9 expression in HCT116 cells transfected with 
control vector or CCR9 constitutive expression vector. β-actin is loading control. (B). 
Quantification of GI and extra-GI tumors in mice that have HCT116 cells transfected 
with either CCR9 overexpression or control vector (n=6) injected by tail vein. Xenograft 
tumors were quantified by luciferase - photon signals with Xenogen software. ** P< 
0.001; * P< 0.01 compared to the control group. Error bars indicate S.E.M. The whole-
mouse (right upper panel) or an ex vivo GI (right down panel) representative imaging is 
shown in (C). 
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Supplemental Figure 7. related to Figure 8.CCICNotch reporter cells and in vivo 
xenografts formed by Notch high and Notch low CCICs. (A) schematic of Notch 
GFP reporter vector which has tandem repeats of RBP-Jk transcription responsive 
elements (TRE) binding to Notch downstream transcriptional factor RBP-Jk, activating 
promoter (TATA) and GFP expression. (B)CCIC Native Notch signaling was detected 
by GFP and increased when treated with 3μg/ml JAG1 for 4-6 hours. Scale bar, 
20μ.(C)Xenograft tumor incidence in mice injected with FACS sorted GFP-Notch high or 
GFP-Notch low CCIC, organized by tumor site. * P< 0.01 compared to mock control. 
Error bars indicate S.E.M. 
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Supplemental Figure 8. Related to Figure 8. NOTCH downregulates CCR9/CCL25 axis 

signaling in early stage CCIC, and early stage CCIC chemotaxis to 5% FBS is inhibited by 

CCL25 and partially restored by JAG1 (A)CCR9+ CCIC have lower NICD and HES1 levels vs. 

CCR9- CCIC as shown by western blot. (B). GFP-NOTCH reporter CCIC were sorted into high 

and low NOTCH signaling sub-populations by FACS; CCR9 and phospho-AKT (ser 473) levels 

were detected higher in GFP-NOTCH- CCIC, but with no change in total AKT levels. NICD, 

HES1 and β-actin levels are shown for comparison. (C) Pre-treatment of CCR9+ CCIC with 

2μg/ml JAG1 peptide for 8 hours decreases CCR9 protein expression. NICD and HES1 levels 

are shown for comparison. (D) Schematic of CCIC incubated with different ligands in different 

chambers. Blue dots are representative of the relative number of cells in each chamber. FBS, 5% 

fetal bovine serum. (E) Graph of the percentage of early stage CCIC migrating to 5% FBS (%). 

The ligands match the schematic in (D). *P<0.001 by one way ANOVA for comparisons of mock 

control vs. CCL25 or JAG1 vs. CCL25+JAG1 data points. 
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Supplemental Figure 9. Model figure of CCR9/CCL25 in the evolution of early 
stage to advanced CRC.  Normal colon is schematized, with the crypt base on the 
bottom and crypt mouth at the top of the figure. A legend is given for each of the major 
normal colon cell types, as well as colon cancer cells and colon cancer stem cells. Early 
stage non-invasive CCIC and non-CCIC CRC cells upregulate the CCR9 receptor. 
Paracrine CCL25 from adjacent normal colon upregulates AKT signaling, proliferation, 
anti-apoptosis and likely superficial tumor spread along mucosal margins. As tumors 
progress, some cells upregulate NOTCH signaling (perhaps in response to NOTCH 
ligand expressing tumor associated cells such as vascular endothelium). Upregulation 
of NOTCH signaling causes an “invasive switch” that suppresses CCR9 and promotes 
NOTCH driven invasion and metastasis. Invasive and metastatic CRC tumors do not 
express CCR9, and CCL25 is absent from metastatic sites.   
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Supplemental Figure 10. CXCR4 expression in early stage CCIC extra-GI tumor. 
CXCR4 protein detected by immunohistochemistry in xenograft lung tumors, shown by 

DAB (brown), (A) IgG control; (B) anti-human CXCR4 antibody; red arrows designate 

tumor foci.  
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Supplemental Table 1:   Primary human colorectal cancers used for CCR9 FACS, 

chemotaxis, p-AKT and cell proliferation analyses  

ID Age Gender Stage Histopathology  Assays
a
         

1 81 M I Adenocarcinoma, 
moderately 
differentiated 

    FACS/ 
    p-AKT/ 
chemotaxis 

2 74 M I Adenocarcinoma, 
moderately 
differentiated  

    FACS/ 
    p-AKT/ 
chemotaxis 

3 70 F I Adenocarcinoma, well 
to moderately 
differentiated 

    FACS/ 
    p-AKT/ 
chemotaxis 

4 86 F II Adenocarcinoma, well 
to moderately 
differentiated 

    FACS/ 
chemotaxis 

5 58 M II Adenocarcinoma, well 
to moderately 
differentiated 

    FACS/ 
chemotaxis 

6 63 M I Adenocarcinoma, well 
to moderately 
differentiated 

    FACS/ 
chemotaxis 

7 59 F II Adenocarcinoma, 
poorly differentiated 
 

    FACS/ 
chemotaxis 

8 90 F II Adenocarcinoma, 
poorly differentiated 
 

    FACS/ 
Proliferation 

9 85 M I Adenocarcinoma, 
poorly differentiated 
 

    FACS/ 
Proliferation 

10 40 M II Adenocarcinoma, 
poorly differentiated 
 

    FACS 

 

a 
The primary CRC cells were used for the assays of FACS, chemotaxis function,  AKT phospholation 

    or cell proliferation. 
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Supplemental Table 2:   Colorectal Cancer Initiating Cell Lines used for             

multiple analyses  

ID Age Gender Stage Histopathology  Assaysa         
(early 
stage) 
CCIC1 

57 M I Adenocarcinoma, well 
to moderately 
differentiated 

FACS/ Mouse/ 
p-AKT/ 
Chemotaxis/ 
Proliferation / 
Western/ 
Q-PCR/ 
Microarray 

(early 
stage) 
CCIC2 

51 M II Adenocarcinoma, well 
differentiated 
 

FACS/ Mouse/ 
p-AKT/ 
Chemotaxis/ 
Proliferation / 
Western/ 
Q-PCR 

(early 
stage) 
CCIC3 

74 F I Adenocarcinoma, well 
to moderately 
differentiated 

FACS/  
Mouse/  
Western 

(late 
stage) 
CCIC1 

54 M III Adenocarcinoma, 
moderately 
differentiated  

FACS/  
Mouse/  
Chemotaxis/ 
Western 

(late 
stage) 
CCIC2 

61 M IV Carcinoma, poor to 
moderately 
differentiated (liver 
metastasis) 

FACS/  
Mouse/  
Western 

 

a 
The CCIC cells were used for the assays of FACS, in vivo mouse study, chemotaxis function,  AKT 

phospholation, cell proliferation, western blot, quantative PCR, or micro-array.   
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CHAPTER 2 

Chemokine-Targeted Mouse Models of Human Primary and Metastatic 

Colorectal Cancer 

(Contribution: Steven Lipkin, Huanhuan Chen and Xiling Shen designed the project; 

Huanhuan Chen, Jian Sun, Harry Hou Jr, Myra Arcilla, Daniel Joe, Nikolai Rakhilin, 

Jiahn Choi, Poornima Gadamsetty, Randy Longman and Jonlin Chen performed 

experiments; Huanhuan Chen, Steven Lipkin, Xi Kathy Zhou, Robert Edwards, Jian Sun, 

Kai Yuan Chen and Zeynep H. Gümüş analyzed the data; Steven Lipkin, Huanhuan 
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INTRODUCTION 

Colorectal cancer (CRC) is a leading cause of cancer death world wide.The most 

common site of CRC metastasis is the liver[67]. When CRC hepatic metastases are 

treated with chemotherapy, they almost invariably become chemoresistant. 

Consequently, five-year survival for metastatic CRC is only ~15% and, despite recent 

advances, current chemotherapy regimens almost never cure advanced disease. 

Genetically engineered mouse models (GEMM) are powerful tools for studying CRC, 

but they only represent a subset of CRC driver mutations. Human subcutaneous 

xenograft and orthotopic models in immunodeficient mouse hosts are widely used for 

mechanistic studies, drug screening, and have provided many critical insights into CRC 

pathogenesis[27, 68-72]. However, the persistence of poor outcomes among many 

CRC patients highlights the need for new approaches to complement existing models. 

For example, there is currently no robust non-survival surgery requiring model that 

recapitulates the process of human CRC cell metastasis from the GI tract to the liver, 

the site of more than 50% of CRC metastases. Another problem is that pre-clinical 

evaluation of new CRC therapies has a high false-positive success rate[69-72] and 

there is an urgent medical need for less chemosensitive pre-clinical models to reduce 

the number of futile CRC clinical trials conducted. A third problem is that human cancer 

cell studies in vivo require immunodeficient mouse hosts to avoid xeno-immunorejection, 

a barrier that has limited mechanistic studies of adaptive immunity in CRC progression, 

tumor vaccines and immunotherapies[72].    
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To expand the range of pre-clinical human CRC models, we created a resource of 

mechanistically diverse CRC cell and patient-derived xenograft (PDX)lines that 

collectively carry the majority of common recurrent somatic CRC mutations, represent 

all major molecular subtypes and robustly model primary CRCs in the native GI micro-

environment via simple tail-vein injection. By controlling the CCR9-CCL25 chemokine 

axis, these human CRC cells traffic to the GI tract and form orthotopic tumors[73]. This 

minimally invasive approach avoids potential survival surgery experimental confounders 

(e.g. needle exit wound tracts, iatrogenic local inflammation and systemic stress), and 

reduces administrative compliance burden and ethical concerns of surgery associated 

animal morbidity. 

Importantly, as proof of principle, we extended this approach to model human derived 

CRCs in immunoproficient mouse hosts. We microinjected human PDX CRC cells that 

natively express the CCR9 chemokine receptor[73] into wild-type (wt) mouse early 

blastocysts to form human-mouse chimeras. These humanized chimeric mice 

developed CRC tumors that originated from blastocyst-injected, human PDX CRC cells 

in the GI tract. This model allows the study of human primary CRCs in an 

immunoproficient GI microenvironment. 

Next, we further develop this resource and demonstrate sequential metastasis of 

primary human CRC tumors to liver, recapitulating the anatomical route occurring in 

patients. Finally, we use these hepatic metastases to show that for commonly used anti-

CRC therapies such as oxaliplatin, in vivo CRC liver metastases have elevated DKK4 

levels and upregulated Notch signaling (both of which have previously been associated 
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with CRC chemoresistance)[74, 75]and are significantly less  chemosensitive vs. paired 

sub-cutaneous xenografts generated from the same cells.  
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RESULTS 

Modeling Recurrent Human Primary CRC Mutations 

Chemokines are secreted ligands that regulate cell trafficking between different 

organs[13]. Small intestine and colon epithelia produce Chemokine 25 (CCL25), which 

binds to Chemokine Receptor 9 (CCR9) expressing cells[14-17]. Previously, we 

reported that CCR9 is up-regulated in primary tumors from early-stage CRC patients, 

but downregulated in invasive and metastatic CRC tumors. Furthermore, via only 

mouse tail-vein injection, early-stage CRC cells that endogenously express CCR9 

spontaneously form primary CRCs in the colorectum and intestine, attracted by 

CCL25[67, 73].In contrast, blocking the CCL25-CCR9 chemokine axis by short-hairpin 

RNA (shRNA) or antibodies against CCL25 promotes metastasis and formation of extra-

intestinal tumors. 

Based on these findings, we established a Chemokine-Targeted Mouse Model (CTMM) 

system that can be used to study primary human CRC mechanisms of progression and 

chemoprevention in the native GI microenvironment. Recent genome-wide 

characterization studies have highlighted the extreme molecular heterogeneity among 

human CRCs[76]. We therefore systematically generated a panel of 15 doxycycline- 

inducible CCR9+ cell and PDX lines (Supplemental Fig. 1 and Supplementary Fig. 2) 

to model a diverse spectrum of primary human CRC tumors that carry the majority of 

common recurrent somatic mutations occurring in patients (Supplementary Table 1). 

This includes not only well-established examples (e.g. KRAS and BRAF) but also 

mechanistically poorly characterized recurrently mutated genes such as ASXL1,MLL3 

and LIFR. Orthogonally, this resource includes multiple examples from all the major 
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histopathological and molecularly defined CRC sub-types, such as DNA mismatch 

repair proficient and deficient, CpG Island Methylator Phenotype (CIMP), 

adenocarcinoma and mucinous sub-types. (Supplementary Table 1). 

To facilitate quantitative experimental monitoring, each model also co-expresses 

constitutive luciferase and RFP reporters (Supplementary Fig.1a).Using tail-vein 

injection and luciferase monitoring (Fig. 1a,b and Supplementary Fig.3), within 3 

weeks, each CTMM model forms mean1.88±0.57colorectal tumors per affected mouse 

host, (whereas the CCR9- parental lines rarely, if at all, form colorectal tumors (mean 0-

0.15)) (Fig. 1c and Supplementary Table 2). 

 

In summary, we have developed a CTMM system to model primary human CRC tumor 

growth and progression in the native GI microenvironment. This system includes a 

molecularly diverse resource that spans the majority of recurrent patient CRC somatic 

mutations. CTMM models can be generated easily within weeks and avoid potential 

experimental confounding factors from survival surgery implantation (e.g. needle tract 

exit wounds, iatrogenic local inflammation and systemic stress from anesthesia), as well 

as reduce administrative compliance burden and ethical concerns of surgery associated 

animal morbidity. These qualities make CTMM a potentially useful system for evaluation 

of early-stage CRC progression mechanisms and chemoprevention drug screening. 

Human Primary Gastrointestinal CRC Tumor Formation in Immunoproficient 

Mouse Hosts  
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A current limitation of modeling human-derived cancers in mice is that immunodeficient 

hosts are required to avoid xenograft rejection. This is particularly problematic given our 

increasing appreciation of the role of the immune system in the tumor micro-

environment[77]. Therefore, it will be desirable to use immunoproficient mouse hosts to 

model CRC when studying tumor immunology, immunotherapies or other cancer cell-

microenvironment immunity cross-talk mechanisms.  

First, to test whether chemokine targeting works in immunoproficient mouse hosts, we 

generated CCR9-expressing mouse CT26 cells. Tail-vein injection into immune-

proficient Balb/c of these cells similarly generated primary CRC tumors in the colon. Co-

immunofluorescence showed that the human primary tumors are infiltrated by mouse 

CD3+ T cells and CD20+ B cells (Supplementary Fig.4).  

However, mouse cancer cells severely limit the scope and usefulness of CTMM. To 

address this limitation, we directly tested whether CTMM can model primary human 

CRC tumors in immunoproficient mouse hosts. Using essentially the same techniques 

for mouse embryonic stem cell microinjection to generate knockout mice[78, 79] we 

FACS sorted CCR9+ PDX cancer stem cells and injected 10-15 cells into wild-type 

Swiss-Webster strain mouse e3.5 blastocysts to generate human primary CRC-mouse 

chimeras (Fig. 2).  

For each CCR9+ CRC cell blastocyst microinjection session into pseudo-pregnant 

mouse foster mothers we obtained 24-40 live mouse pups. At post-natal day 21, ~10% 

have IVIS detectable luciferase activity, all of which localizes to intestine/colon (Fig. 2). 

In contrast, no IVIS detectable signal is observed in pups born from blastocysts injected 
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with CCR9- PDX cells (data not shown).  By age 3-6 months, blastocyst-injected human 

CRC cells form luciferase-detectable colon and small intestinal tumors in ~20% of 

immunoproficient mouse hosts, including locally invasive tumors that can penetrate the 

bowel wall (Fig. 2). PCR of human centromeric repeats confirmed that the dissected 

tumors consist of human and not rodent cells (Supplementary Fig.5b). 

Histopathological analysis confirmed that intestine/colon tumors are also RFP+, 

consistent with the growth of microinjected human luciferase/RFP-labeled CRC cells in 

the wt immunoproficient host GI microenvironment(Fig.2 c). In contrast, injection of 

CCR9- PDX cells did not form tumors anywhere in the body and were undetectable in 

the thoracic and visceral organs.  

At the same time, no human IVIS signal or CRC cells were detected in any other organ, 

such as lung, liver, spleen, kidney or skeletal muscle (Fig. 2b, Supplementary Fig. 5a 

and data not shown). We also performed dual-immunofluorescence with anti-RFP and 

anti-mouse CD3 (a pan T cell marker) antibodies(Fig. 2d and e). This confirmed that 

mouse hosts carrying human primary CRC tumors have T cells, as well as CD20+ B 

cells (data not shown) infiltrating the human primary CRC malignancies. Additionally, to 

further confirm that mouse hosts are systemically immunoproficient, we analyzed spleen 

and mesenteric lymph nodes (MLNs) from human primary CRC+ mice and their control 

(IVIS-negative) blastocyst-non-injected littermates. This showed that T and B cells were 

clearly present, and the relative proportions of spleen and MLN CD3+ (T cells), CD4+ (T 

helper cells),CD8+ (cytotoxic T cells), CD19+ (B cells) did not significantly differ 

between the two groups (Supplementary Fig.6).  Similarly, analysis of CD4+ T helper 
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revealed equivalent populations of CD62Lhi CD44lo (naïve cells), CD62Llo CD44hi 

(activated memory T cells), RORγt+ (Th17), and Foxp3+ (Treg).  

Overall, we have developed an orthotopic experimental system to study primary human 

colorectal cancer in the GI microenvironments of immunoproficient mouse hosts. This 

technology has the potential to significantly enhance our ability to understand and 

develop immunological therapies that target adaptive immune mechanisms in the GI 

tumor microenvironment. 

Sequential primary human CRC-liver metastasis formation 

Seven CTMM models (CCR9-PDX1, HT15, HCA7,SW48,Colo205, DLD1 and LS174T) 

spontaneously form liver tumors (mean 3.1-8.2 liver tumors/mouse by 8 weeks) but only 

in mice that have previously developed primary CRCs (Fig. 3 and Supplementary Fig. 

7). IVIS imaging revealed luciferase-detectable primary CRCs (mean 1.8 weeks post-

inoculation) preceded liver tumors (mean 5.8 weeks post-inoculation). In contrast, liver 

tumors were rarely detected in non-CTMM models, in which tail-vein injected CRC cells 

usually form tumors in the lung (Fig. 3). 

These findings are potentially consistent with a model whereby CTMM promotes cells 

from primary CRC tumors to metastasize to liver, most likely via the portal circulation. 

To test this model, we tail-vein injected mice to generate primary CRC CTMM models. 

After primary GI tumor formation was detected by IVIS imaging, we next withdrew 

doxycycline to suppress CCR9 expression. In all CTMM lines tested liver tumor 

multiplicity was significantly higher when CCR9 levels were suppressed 

(Supplementary Fig. 8a). Additionally, FACS of mouse liver cells 48 hours after tail 
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vein injection of CCR9+ CRC cells showed that RFP+ cells were essentially 

undetectable (Supplementary Fig. 8b), arguing against an alternative model in which 

CCR9 suppression stimulated expansion of previously resident human CRC cells in 

liver.   

Next, to confirm that CTMM primary CRC tumor cells could enter the portal circulation, 

we injected mice with FITC-Dextran to label vasculature and used Multi-Photon 

Microscopy (MPM) to image the primary tumor and liver metastatic tumors in vivo. This 

revealed that RFP+ human CTMM cells co-localize with and travel through host blood 

vessels, consistent with vascular intravasation (an important step prior to entry into the 

portal circulation that drains to the liver) (Supplementary Fig. 9).  

In summary, our data are consistent with a subset of molecularly well-characterized 

CTMM primary CRC tumors that are capable of sequentially modeling the progression 

of primary human CRC to liver metastases via the portal circulation that occurs in over 

50% of stage IV CRC patients. Furthermore at even later time-points, luciferase+ cells 

spreading at additional sites such as lung were also observed (Fig.3b and data not 

shown).  

Increased Chemoresistance of Human Hepatic vs. Sub-Cutaneous or Primary GI 

CRC tumors 

One challenge for cancer drug discovery is that therapies effective against 

subcutaneous xenograft tumors are often ineffective in human (especially metastatic) 

CRC patients. For proof-of-concept, we tested whether the more clinically relevant GI 
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and liver microenvironments of CTMM CRCs impact chemotherapy responsiveness vs. 

subcutaneous xenograft models. 

Oxaliplatin is an effective and widely used anti-CRC chemotherapy. We used both DNA 

mismatch repair proficient (pMMR) and deficient (dMMR) CIMM models to test whether 

the same cells have altered oxaliplatin chemosensitivity in different tumor 

microenvironments. We simultaneously injected mice subcutaneously or by tail vein to 

generate (a) subcutaneous tumors or (b) primary CRCs and sequential liver metastases. 

Quantitative IVIS imaging of constitutive luciferase reporters was used to directly 

compare tumor responses (Fig. 4a). 

As expected, oxaliplatin treatment of mice significantly inhibited the growth of sub-

cutaneous tumors for both pMMR and dMMR models after five weeks respectively, 

causing mean 53% volume reduction at week five (Fig. 4b, c and Supplementary Fig. 

10; P=0.005). Oxaliplatin similarly inhibited the growth of primary CRCs (-33.9%; 

P=0.04). This difference in tumor response was not statistically significant between the 

two different microenvironments.   

However, in the liver microenvironment, no oxaliplatin dependent growth inhibition was 

observed for CRC hepatic metastases generated from the same cells. The increase in 

oxaliplatin chemoresistance was significantly greater for liver metastases vs. either sub-

cutaneous (P<0.001) or primary GI tumors (P=0.002). 

To understand the mechanisms of CRC chemoresistance in the hepatic 

microenvironment, we performed RNA-seq gene expression profiling of liver and sub-

cutaneous tumors generated from DLD-1 cells. Consistent with this comparison, 
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Ingenuity Pathway Analysis (IPA) revealed that the Canonical Pathway of Colorectal 

Cancer Metastasis Signaling was upregulated (p=0.049). Additionally, Dickkopf 4 

(DKK4)levels were dramatically upregulated(76-fold; p=0.00001) in CRC liver 

metastases (Fig. 4d)., a finding that we subsequently confirmed using qPCR (Fig. 

4e).High DKK4 levels have previously been strongly associated with clinical CRC 

chemo-resistance[74]. Furthermore, Notch pathway signaling was also significantly 

upregulated in CRC liver metastases (p=0.012), a finding we also confirmed using 

qPCR for Notch pathway downstream target genes, including HES1, HES7, HEY1 and 

HEY2.Notch pathway signaling have also previously been associated with CRC 

chemoresistance[75]. 

In total, our CTMM model of CRC liver metastasis through the portal circulation can be 

performed within 5-8 weeks, does not require survival surgery and demonstrates 

greater oxaliplatin chemoresistance than either subcutaneous xenograft or primary GI 

orthotopic tumors, likely through a mechanism of upregulated DKK4 and Notch pathway 

signaling. 
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DISCUSSION 

Recent comprehensive molecular studies such as TCGA have provided a broad range 

of insights with an unprecedented level of molecular resolution into the precise 

molecular alterations that drive human CRC pathogenesis and progression. However, 

new pre-clinical models are needed to augment existing ones and recapitulate more 

fully the diverse nature of both cell-autonomous signaling pathways and non-cell 

autonomous interactions between tumor cells and their orthotopic primary, metastasis-

route and -destination site microenvironments.  

Towards this goal, we systematically generated a resource of human primary CRC 

CTMM models that collectively carry the major recurrent somatic alterations occurring in 

CRC patients. This can be used to study the mechanistic role of the majority of 

recurrent human CRC mutations multi-dimensionally. For example, Difluoro-

methylornithine (DFMO) is a potent anti-CRC chemoprevention agent that alters 

metabolite levels critical for DNA and histone methylation[80-83]. To study the impact of 

recurrently mutated epigenetic regulator genes such as the histone-lysine N-

methyltransferase MLL3 or the Polycomb complex chromatin binding protein ASLX1 

(Supplementary Table 1) on DFMO chemoprevention efficacy, mice carrying tumors 

from the CTMM primary CRC resource can be treated with DFMO, scored for reduced 

tumor multiplicity and in parallel efficacy assessed from the same dataset classified by 

positive vs. negative mutation status for MLL3, ASLX1 or any other epigenetic 

regulatorto assess the mechanistic role of each mutation and potential epistasisin 

DFMO chemoprevention. 
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Next, based on previous findings that fetal intestine and colon express the CCR9 ligand 

CCL25[84, 85] we extended our chemokine-targeting approach and developed an 

effective experimental system to model human cancer cell growth and invasion in 

immunoproficient mice, which has remained a challenge in the field. The precisely 

established mechanisms that permit immune tolerance of CCR9+ human cancer stem 

cells that are injected into blastocysts of wild type mice are currently poorly understood. 

But, perhaps similar to mechanisms allowing expression of human transgenes in 

genetically engineered mice, their introduction before thymus development (which also 

expresses CCL25) likely causes human cell antigens to be immunologically perceived 

as "self" by immunoproficient mouse hosts and inducing tolerance. 

The ability to model human cancers in immunoproficient mouse hosts is potentially 

significant. We anticipate that this approach can be applied to studying other aspects of 

human CRC-adaptive immunity cross-talk (ex. impact of Th17 and Treg cells on primary 

CRC formation, liver metastasis, tumor dormancy), other cancer types (ex. chimeras 

targeting CXCR4+ human Acute Lymphoblastic Leukemia cells to SDF-1α expressing 

bone marrow), and immunotherapy screening (ex. testing anti-PD1antibodies and 

cancer vaccines in immunoproficient hosts).  

With regard to modeling primary CRC tumor progression, current hepatic metastasis 

models using human CRC cells are time- and labor-intensive and technically 

challenging, which limits their usage for drug development. Direct injection of human 

CRC cells into the heart left ventricle, kidney capsule or spleen are potentially 

confounded by anatomical routes to the liver that do not recapitulate the 

microenvironment favorable for transit from the gut through the portal circulation and 
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lymphatics that occur in almost all advanced stage CRC patients[67]. The portal 

circulation is known to have distinct features that distinguish its microenvironment from 

other vasculature. For example, hepatic vein, lymphatic and tributary flow to the liver is 

unique in that it receives both oxygenated and deoxygenated blood (the latter from gut) 

and consequently has lower pO2 and hemodynamic perfusion pressure than other 

organs[86-88]. Furthermore, hypoxia can promote metastasis in multiple types of 

cancer[89-94]. Therefore, it is highly likely that not only GI microenvironment pre-

conditioning from interactions with colon myofibroblasts, dendritic cells, the gut 

microbiome and native intestinal extracellular matrix impacts CRC liver metastasis, but 

also pre-conditioning by the portal circulation microenvironment as well. 

Finally, the study of CRC cell chemoresistance is vitally important as it almost invariably 

occurs in the context of advanced disease. Previous experiments suggested that CRC 

tumors in liver are more chemoresistant than subcutaneous tumors to doxorubicin[95, 

96]. But interpretation of these experiments is complicated by the fact that doxorubicin is 

not clinically used to treat CRC patients. We therefore used a widely prescribed, 

effective anti-CRC drug, oxaliplatin, and directly tested on CTMM models whether the 

chemosensitivity of the same cells is dependent on their microenvironment. Our data 

demonstrate that in vivo CRC liver metastases are significantly less oxaliplatin 

chemosensitive vs. paired subcutaneous xenografts generated from the same cells. 

Consistent with this finding, both the WNT pathway inhibitor DKK4 and Notch pathway 

signaling have been previously associated with CRC chemoresistance[74, 75] and both 

are significantly upregulated in CTMM CRC liver metastases. 
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For the past several decades, mice carrying subcutaneous xenografts have been the 

most commonly used pre-clinical model system to screen new chemotherapy agents. 

Since this approach has a high false-positive success rate[69-72], including anti-CRC 

drugs,  and all too often fail when subsequently tested in patients, more chemoresistant 

CTMM models of CRC hepatic metastases have the potential to help reduce the 

number of futile CRC clinical trials.  

Additionally, other studies have suggested that in vitro cultured human CRC primary 

tumors are more chemosensitive to 5-FU than paired hepatic metastases from the same 

patients[97]. However, this finding was never been validated in vivo in mice. Here we 

similarly confirmed that the same CRC cells in liver are similarly more resistant than 

primary CRC tumors to oxaliplatin. 

In summary, we anticipate that the CTMM resources described here can help improve 

our mechanistic understanding of primary CRC-microenvironment interactions 

(particularly those involving adaptive immunity and immunotherapies), liver metastasis 

pre-conditioning by transit through the portal circulation, and potentially improve the 

clinical relevance of pre-clinical anti-CRC drug screening.  
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METHODS 

Tissue Culture of PDX lines. Patient derived xenograft tumors were harvested and 

generated as previously described[27, 73, 98, 99]. Briefly, fresh patient CRC samples 

were collected in Medium 199 supplemented with 200 U/ml penicillin and 200 mg/ml 

streptomycin, immediately after patient operative resection. Fat and blood clots were 

removed from tissues and they were rinsed 10 times in sterile PBS. Samples were 

minced with sterile scalpel blades into approximately 5 mm3 fragments. Tumor 

fragments were immersed into RNAlater and embedded in O.C.T. (Fisher Scientific) at - 

80ºC for histopathological or molecular analysis. Remaining tissue fragments were 

coated in Matrigel (BD Biosciences) and subcutaneously implanted into 3-4 6-week-old 

NOD/Shi-scid/IL-2Rγnull(NOG) mice (Jackson Laboratory, Bar Harbor, Maine) After PDX 

tumors reached an average volume of 400 mm3, mice were sacrificed and tumor tissue 

harvested. Part of tissue was passaged in new mice and the remainder was used to 

generated PDX cell lines using the method of collagenase /dispase enzyme digestion 

with slight modification, as previously described[73, 100]. Basically, tissue was minced 

into approximately1 mm2 fragments and digested in DMEM/F12 containing collagenase 

type XI (150 U/ml, Sigma, St. Louis, MO), dispase neutral protease (40 μg/ml, Roche 

Applied Science) and 1% FBS, stirring at 37°C for 30 min. After centrifugation, cells 

were re-suspended in the DMEM/F12 containing 1% nonessential amino acids 

(Invitrogen), penicillin (400 U/ml;Sigma), streptomycin (400 mg/ml;Sigma), amphotericin 

B (1.25 mg/ml; Sigma) and heparin (4 μg/mL; Sigma), human epidermal growth factor 

(40 ng/mL; BD scientific), human basic fibroblast growth factor (20 ng/mL; BD scientific), 

B27 supplement (Invitrogen) and 5% Fetal Bovine Serum, then transferred and cultured 
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in the ultra-low-attachment flasks (Corning) at 37°C and 5% CO2. FACS of human ESA 

(epithelial specific antigen) was used to purify cancer cells and PDX cells were 

characterized to be able to form subcutaneous xenograftswithsimilar adenocarcinoma 

histomorphology to parental PDX, when injected 0.5-1 million cells / mouse in NOG 

mice. PDX lines were frozen in DMSO. PDX freshly thawed cells,negative for 

mycoplasma, were used within 10 passages for the all experiments in this study. 

 

CCR9 inducible expression in CRC cells and PDX cells The lentiviral tetracycline-

inducible protein expression system (LifeTechnologies, T-Rex System) consists of two 

vectors: the regulatory vector, pcDNA6/TR, which encodes the Tet repressor (TetR) 

under the control of the human CMV promoter; and an inducible expression vector 

expressing human CCR9 (CDS region (181 -1290) of gene ID: NM_031200.) or mouse 

Ccr9 (CDS region (296-1405) of gene ID: NM_009913) genes[101] under the control of 

CMV promoter and two tetracycline operator 2 (TetO2) sites. To generate the lentiviral 

particles, the above plasmids were transfected into HEK293T cells with the 

Genecopoeialentivirus packaging mix (Genecopoeia) according to the manufacturer’s 

protocol. TetR expression lentiviruswas used to infect common CRC or PDX lines. After 

puromycin selection, the TetR expressing lines were then infected with the CCR9 

inducible expression lentivirus and followed with blasticidin selection and RFP FACS 

purification. The CCR9 expression can be induced by1-1.5 ug/ml (in vitro) or 1-2mg/ml 

(in vivo) doxycycline (Sigma, St Louis, MO)administered in 5% sucrose-containing 

drinking water. The efficiency of CCR9 inducible expression in these variant colorectal 

lines was verified by Western Blotting using anti-human CCR9 antibody 
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(Abcamcat.#ab38564) or anti-mouse Ccr9 antibody (Thermo Scientific. PA1-21618) and 

the software of Quantity One (BioRad) was used to semi-quantify protein levels.All non-

PDX cell lines used in this study were purchased from ATCC and were negative for 

mycoplasma.  

 

PDX xenograft tumor formation and oxaliplatin treatment  

0.5-1 x 106CRC cells with inducible CCR9 expression or control vectors were injected 

into 6-8 weeks old NOD/Shi-scid/IL-2Rγnull(NOG) mice (Jackson Laboratory, Bar Harbor, 

Maine) by tail vein injection. Tumor incidence was monitored 2-3 times weekly by whole 

body IVIS imaging. When mice became moribund, they were sacrificed immediately, 

necropsy performed and tumors harvested using a dissecting microscope. For 

oxaliplatin therapy study, 1 x 106 CCR9+ CRC cells were tail-vein injected or 

subcutaneously inoculated into the left flank of  6-week NOG mice (n=8) and IVIS 

imaging was performed to monitor tumor formation. When GI or subcutaneous tumors 

reached radiance of 5 x 106 (p/sec/cm2/sr), doxycycline was withdrawn to turn off CCR9 

expression and oxaliplatin (6mg/kg, Sigma, St Louis, MO) or normal saline as control 

was given IV once  weekly for 5 weeks. Tumor growth was quantified by luciferase - 

photon signal analysis with Xenogensoftwareuntil mice became moribund. Ex vivo IVIS 

imaging and necropsy were performed to further verify sizes and locations of tumor loci. 

Luciferase imaging in whole animal or ex vivo tissues:  For luciferase imaging, D-

luciferin (The In Vivo Imaging Community.) of 1.5mg/10g body weight was injected intra-

peritonealinto mice and 10 min later, luciferase imaging (Xenogen IVIS-200) was 

applied on whole-mouse bodies.For ex vivo imaging, mice were dissected 10 min after 
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luciferin injection. Intestine and other organs were quickly rinsed 3 times in PBS and 

place in culture dishes in which luciferase imaging was applied immediately.  

Immunohistochemistry For mouse experiments, histology and immunohistochemistry 

were performed on paraffin-embedded or frozen sections from xenograft tumors as 

previously described[27]. Intestinal, extra-GI tumor and corresponding normal tissues 

were snap frozen in O.C.T (Fisher Scientific, Pittsburgh, PA) and fixed in 10 % buffered 

formalin followed by paraffin embedding. For immunofluorescence, sections were 

immunostained with antibodies, counterstained with 4,6-diamidino-2-phenylindole 

(DAPI). H+E adjacent sections were used for comparison. 

Production of Human CRC-Mouse Chimeras: 

The methods of blastocyst microinjection and generation of chimeric mice were 

modified from standard procedures[102]. Briefly, Embryonic day (E) 3.5 or Swiss 

Webster(CFW) blastocysts (derived from natural mating. Charles River Strain code 024) 

were placed in 30 ml FHM (Millipore Cat#MR-122-D) and 10-15 CCR9+ CRC cells were 

injected per blastocyst by transfertip(ES) (Eppendorf cat. no.: 930001040) and 

vacutip(Eppendorf cat. no.: 930001015) using Eppendorf TransMan 

NKmicromanipulatorsunder invert microscope (Nikon Diaphot). The injected blastocysts 

were uterine-transferred into day 2.5 pseudopregnant CD-1 recipient females (Charles 

River Strain Code 022) at the same day (12-15 blastocysts / female). Pups were born at 

day 19-21 and fostered with lactating CD-1 mice. Live IVIS imaging was performed on 

the chimerical mice twice every week to detect the proliferation of luciferase+ cells. 
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Then ex vivo IVIS and histopathology were used to confirm the tumor formation and 

locations. 

Immune Cell Analyses in Human PDX-Mouse Chimeras 4-week old Swiss Webster 

mice from blastocysts injected with CCR9+ PDX-1 cells and the littermates from non-

injected blastocysts as control for normal immune functions were sacrificed and the 

spleens and 4 mesenteric lymph nodes (MLN) / mouse were collected in cold PBS 

under dissecting microscope. Then MLN and spleen were immediately mechanically 

disrupted and passed through a 70 um cell strainer.  Splenocytes and lymphocytes 

were collected and incubated in ACK lysis buffer (Life Technologies) to remove RBCs.  

Surface stainingwas performed with anti-CD3 (ebiosciences, clone:145-2C11), CD4 

(ebiosciences, clone:RM4-5), CD8 (ebiosciences, clone:53.67), CD44 (ebiosciences, 

clone:IM7), CD62L (ebiosciences, clone:MEL-14). Intranuclear staining with anti-

RORγt(ebiosciences, clone:B2D) and anti-Foxp3(ebiosciences, clone:fjk-16s) was 

performed according to manufacturer’s protocol (Intracellular Fixation and 

Permeabilization Kit from eBioscienes). Prior to intracellular cytokine staining, cells were 

cultured in the presence of GolgiPlug (BD Biosciences) for 4 hours or stimulated with 

phorbolmyristate acetate (PMA; 20ng/mL) and ionomycin (1μg/mL) or IL-23 (40ng/mL; 

eBioscience) in the presence of GolgiPlug (BD Biosciences) for 4 hours before staining.  

Intracellular cytokine staining was performed according to the manufacturer’s protocol 

(Cytofix/Cytoperm buffer set from BD Biosciences) using IFN-γPECy7 (ebiosciences, 

clone: XMG1.2) and IL17A FITC (ebiosciences, clone: eBio17B7).  An LSR II (BD 

Biosciences) and FlowJo software (Tree Star) were used for flow cytometry and 



 

103 
 

analysis. Dead cells were excluded using the Live/Dead fixable aqua dead cell stain kit 

(Invitrogen). 

Two-photon microscopyThree to six month old Balb/c male and female mice were 

kept under isoflurane anesthesia and a portion of the large intestine was externalized to 

be placed in a saline-filled, temperature-controlled chamber. The portion to image was 

covered with a glass coverslip and agarose for stability and imaged with a custom-built 

multi-photon microscope optimized for in vivo imaging. 50 mg/ml FITC-Dextran 

(FD2000S; Sigma-Aldrich, St. Louis, MO) was retro-orbitally injected in mice (0.25 ml / 

kg) and this dose allowed vasculature imaging for 1-2 hours. Simultaneous excitation 

with 900 nm and 1040 nm femtosecond laser light enables imaging of GFP (FITC-

Dextran) and RFP (human CRC cells) at the same time.  

Whole-Exome Sequencing DNA was extracted from 4 PDX lines (PDX 1-4) and 

common CRC lines (HT-15 and Caco-2) using DNeasy DNA extraction kit (Qiagen). 

Whole-Exome sequence data for the six cell lines were obtained through Agilent’s 

G9906A HaloPlexExome Target Enrichment System kits (protocol Version A, February 

2013) with Illumina HiSeq2000. Briefly, genome DNA samples were first digested by 

restriction enzymes to create a library of gDNA restriction fragments. Then the 

HaloPlexexome probe was provided as eight separate probe solutions in wells A–H of 

the HaloPlex Probe 8-well Strip. The circularized target DNA-HaloPlex probe hybrids, 

containing biotin, were captured on streptavidin beads and then DNA ligase was added 

to the capture reaction to close nicks in the circularized HaloPlex probe-target DNA 

hybrids. After a 10-minute ligation reaction period, the captured DNA libraries were 

diluted and PCR amplified with the PCR Master Mix. After the enrichment was validated, 
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the samples were pooled with different indexes, and sequenced with Illumina 

HiSeq2500.~ 60M 101bp pair-end reads for each sample were obtained from 

HiSeq2500. The mean quality score for all samples was ~ 35, and more than 90% reads 

were at least 30 base quality. All the raw reads were first processed with program 

Cutadapt[103] to remove adapter sequences from high-throughput sequencing reads. 

The processed sequence data were mapped to human genome (hg19) with program 

BWA[104]. The mapping were re-aligned and recalibrated with GATK[105]. Variants and 

mutations were detected with the module Unified Genotyper in GATK. Sequence data 

were deposited with NCBI (Accession SRP035634). 

RNA sequencing and quantitative real-time PCR 

Total RNAs from liver tumor or subcutaneous tumor cells were extracted by using 

RNeasy Kit (Qiagen, Valencia CA). For RNA-seq, library preparation and HiSeq2000 

lane analysis was performed as previously described[106].  Subsequently, 75-bp 

paired-end read sequences were mapped to human genome (hg19) with Tophat/bowtie 

(version 2.1.1). Read count for each gene transcript was obtained with Genomic 

Features (version 1.15.9). Genes with mean read count in both liver and skin samples 

less than 10 were filtered out. DESeq (version 1.12.0) was used to analyze for 

differential expression. Fisher Exact Test was used to assess statistical significance, 

with adjustment using the Benjamini& Hochberg method for multiple comparisons. 

For quantitative PCR, 2 μg of total RNAs were reverse-transcribed into cDNA by using  

RT first stand kit (SA Biosciences) and RNA levels amplified by PCR containing SYBR 

Green I dye (Invitrogen), normalized to β-actin as the comparative CT (cycling 
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threshold)= CT (target)- CT (control), were analyzed by the iCycler (Bio-Rad). Primer 

pairs used are (1) DKK4: F5’-CGTTCTGTGCTACATGTCGTGG and R5’-

GTGTGCCATCTTGCTCATCAAGC; (2) HES1: F5’-

GGAAATGACAGTGAAGCACCTCC and R5’-GAAGCGGGTCACCTCGTTCATG; (3) 

HES7: F5’-CATCAACCGCAGCCTGGAAGAG and R5’-

CACGGCGAACTCCAATATCTCC; (4)HEY1: F5’-

TGTCTGAGCTGAGAAGGCTGGTand R5’-TTCAGGTGATCCACGGTCATCTG; 

(5)HEY2: F5’-TGAGAAGACTTGTGCCAACTGCT and R5’- 

CCCTGTTGCCTGAAGCATCTTC; (6)human β-actin: F5’-

CGCGAGAAGATGACCCAGAT and R5’-ACAGCCTGGATAGCAACGTACAT; 

(7)mouse β-actin: F5’-GATCTGGCACCACACCTTCTand R5’-

GGGGTGTTGAAGGTCTCAAA. 

Fluorescent activated cell sorting (FACS) analysis FACS with anti-epithelial specific 

antigen (ESA, BD PharmingenCat #347197) antibody was used to purify PDX cells [3,4] 

Cells were first incubated with anti-human ESA antibody conjugated with Alexa Fluor 

488 for 30 minutes on ice and then were washed in 1% BSA/PBS buffer. FITC filter was 

then used to separate cells into ESA positive and negative sub-groups by signal 

intensity gating. The ESA+ cells were transferred into culture flasks for further growth 

and passages.   

To detect RFP positive cells in mouse liver, 0.5 x 106CCR9+ RFP+ Luciferase+ CRC 

cells were injected into 6-week NOG mouse (n=6) by tail vein. After 48 hours, mice were 

sacrificed and liver pieces in the same weight were treated with collagenase / dispase 

(1 mg/ml, Roche Applied Science) for 0.5-1 hour to create single-cell suspension and 



 

106 
 

followed with BD Pharm Lyse (BD Scientific) treatment according to company 

instruction, to destroy red blood cells. RFP cells were measured as PE positive and 

FITC negative in FACS channels. 

 

Transwell migration assay 

Transwell Boyden chambers (BD Pharmingen Mountain View, CA) of 8-μm pore size 

were used to evaluate migration in vitroofparental or CCR9 expression CRC cells and 

PDX cells. Briefly, cells were seeded at a density of 5 x 105 per well into the upper 

chamber. Culture medium as described above with 100 ng/ml recombinant mouse 

CCL25 protein (R&D systems Inc; Minneapolis, MA) was loaded into the lower chamber. 

Chambers of cells were incubated in 37oC and 5 % CO2 conditions for 12 hours. At the 

time of harvest, cells remaining inside the upper chambers were removed while cells 

attached to the lower surface of the membrane were fixed and stained with Crystal 

violet (Sigma, St Louis, MO) followed by imaging and cell number counting analyses. 

 

SUPPLEMENTAL INFORMATION 

Statistical Analyses 

Sample sizes for all figures and tables were estimated based on our previous studies[27, 

73, 100, 107]. For mouse experiments, no animals were excluded from the analyses. 

For each set of experiments, samples and animals were prepared for all experimental 

arms at the same time. For animal studies, the randomization schema had mice 

alternating in assignments to experimental groups. Both male and female mice were 

used.Values are expressed as mean ± SEM or summarized using box-plots. All 



 

107 
 

statistical tests are 2-sided.No adjustments were made for multiple comparisons. Both 

PIs (Lipkin and Shen) and the Study Statistician (Zhou) were blinded to experimental 

allocations among different experimental arms for all experiments. For all parametric 

statistical analyses, data were determined to be normally distributedby the D'Agostino-

Pearson test. For all parametric and non-parametric tests, variances were similar 

between groups being compared. For comparisonbetween experimental and control 

groups at a specific time point or tissue site in Figures 1, 3 and Supplemental Figures 

1,6, 8and 10, 2-sided Student t- test or 2-sided Mann-Whitney (MW) tests were used. In 

Figure 4, linear regression analysis and ANOVA was used to estimate the tumorgrowth 

rate in different experimental groups and study sites while adjusting for differentcell lines. 

Differences in tumor growth rates between Oxaliplatin treated and the controlmice at 

each body site and the difference in the effect of Oxaliplatin treatment on tumorgrowth 

rates between different sites were further evaluated using simultaneous tests forgeneral 

linear hypotheses (Figure 4). Pvalueswere adjusted for multiple comparisons by 

controlling the experiment-wise errorrate using the conservative Bonferroni-Holm 

method (Figure 4). Statistical calculationswere performed with the Statistical Package 

for the Social Sciences version 11.5software (SPSS Inc, Chicago, IL), GraphPad, or R 

(reference: R Core Team (2013).R: A language and environment for statistical 

computing. R Foundation for StatisticalComputing, Vienna, Austria. URL http://www.R-

project.org/). The statistical test used foreach figure or table panel is indicated. All cell 

lines were purchased from ATCC in the past 2 years (or derived for PDX1-4) and were 

negative for mycoplasma. 
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Supplemental Table 2 

 

          Statistics Tests and P values in Figures 

 

In Figures 1C, 3D, 3E, Supplementary Figures 1C, 8A and Supplementary Table 2, for 

each data point, 6-8 week old male or female NOG mice were used for each 
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experimental arm (e.g. in Figure 3D 8 mice for each line’s control arm and 8 mice for the 

CCR9+ arm).MW, 2-sided Mann-Whitney test. Paired t-test, 2-sided Student paired t 

test. 

Study Approval 

All CRC tissues used were approved by the Institutional Review Board (IRB) of Weill 

Cornell Medical College and Consent obtained for each participant.All animal protocols 

in this study were approved by the IACUC committees of Weill Cornell Medical College, 

Cornell Universityor Albert Einstein College of Medicine. 

 

Accession ID 

CRC cell whole exome data are deposited in NCBI GEO as SRS542031 and RNA-seq 

data as SRR1204492. 
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Figure 1. Modeling Primary Human CRC Recurrent Mutations in Mice without 

Survival Surgery (a).Schematic of experimental approach: Lentiviral infection with virus 

containing a Tetracycline inducible CCR9 expression cassette and constitutive luciferase-RFP 

reporter genes. After puromycin selection and FACS,0.5-1 x 106 CCR9+ cells were injected into 

6-8 week old male or female (m/f) non-obese diabetic/severe combined immunodeficient (NOG) 

mice by tail vein and intestinal tumor formation monitored after 2-3 weeks by IVIS-luciferase 

imaging. Blue dots: GI tumors.(b).Representative whole body IVIS images of mice injected with 

CRC cells expressing a control luciferase reporter only (CCR9-), constitutive CCR9 expression 

and luciferase (CCR9+) or a mixture (CCR9+/-); Luciferase photon signals are 

shown.(c).Quantification of mean luciferase-detectable large intestinal tumors in 6-8 week 

miceinjected with CCR9 expressing cells (CCR9+) via tail vein. * P< 0.01 CCR9+ compared to 

the control group by 2-sided Mann-Whitney test. Error bars indicate S.E.M. (stand. error of 

mean). All cell lines combined control vs. CCR9+, P=0.001; Student paired t test. Also see 

Supplemental Table 2. 
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Figure 2. Human Primary CRC-immunoproficient Mouse Host Chimeras (a). Left: 

schematic of mouse blastocyst injection with luciferase+ RFP+ CCR9+ PDX cells (10-15 cells / 

blastocyst); Scale bars, 20μm. Middle: representative whole body IVIS images of human PDX-

mouse chimeras (8 weeks, Swiss Webster) generated by mouse blastocyst injection,(Luciferase 

- photon signal are indicated, Mock: littermate controls not injected with PDX cells.); Right: 

Three-month old human PDX-mouse chimera with abdominal tumor mass extending from 

intestine (4X). Arrow indicates tumor.(b).Representative IVIS whole-body  (left upper panel) and 

ex vivo images (right upper  and lower panels) show adult chimeras (8-weeks) with luciferase+ 

tumors detectable in the gastrointestinal tract but no other organs. (c).Anti-RFP 

immunofluorescence (Upper right) of caecal PDX tumor in chimeric mice (age 8 weeks).Left 

upper image shows Hematoxylin (nuclear: blue) and Eosin (cytoplasm: pink) (H+E) staining of 

the same intestinal tumor for comparison. Scale bars, 50μm.  Lower panel images show double-

immunofluorescence of T cells (anti-mouse CD3 antibody (green)) and human PDX cells (anti-

RFP antibody (red)). Nuclei, DAPI (blue). M, mucosa; T: regions with adenocarcinoma 

morphology. Arrows indicate CD3+ T cells. Scale bars, 50μm (left) & 5μm (right)(d).Percentages 

of chimeric mice with luciferase positive tumors in the two groups from blastocysts injected with 

CCR9+ PDX cells (CCR9+) or CCR9- PDX cells (CCR9-). ** P = 0.002 by 2-sided Mann-

Whitney test, Error bars indicate S.E.M. (E). B6-2J mouse blastocysts were microinjected 

with luciferase+ RFP+ CCR9+ PDX cells (15 cells/blastocyst) and uterine-transferred 

into day 2.5 pseudo-pregnant recipient females at the same day (12-15 blastocysts / 

female). Representative RFP florescent images (4X) of whole embryos at embryonic 

day 9.5, 10.5 and 11. Mock control: littermate controls not injected with PDX cells. White 

arrows designate hindgut location and black arrow designates vitelline duct location. 

Scale bar, 0.5 mm. Also see Supplemental Table 2. 
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Figure 3.Sequential human CRC primary GI tumor- metastasis formation (a).Schematic of 

sequential human primary CRC and liver metastasis. Using the same approach as in Figure 1, 

in 6-8 week m/f NOG mice were injected with CCR9+ human CRC cells and monitored by IVIS 

imaging for primary CRC formation. Once primary GI tumors were detected, CCR9 expression 

was silenced by withdrawing doxycycline from drinking water. Mice were monitored using IVIS-

luciferase imaging over the next 4-6 weeks and sacrificed. Blue dots: GI tumors; green dots: 

metastatic tumors. (b).Representative whole-body IVIS images(CRC line DLD1 as 

representative) show sequential lower abdominal and right upper quadrant abdominal 

detectable photons, with ex vivo confirmation of abdominal right upper quadranttumors as liver-

localized(4X) (n=8 each for CCR9+ and CCR9- arm for each cell line analyzed). (c). 

Histopathology (H+E staining) examples of different primary CRC tumors detectable as 

submucosal (2nd week), with invasion of submucosa (4thweek) and muscularis (6th week). 

Arrows indicate histopathologically confirmed tumors; M, mucosa; SM, submucosa. Scale bars, 

100μ. (d). Quantification of liver metastases in mice (n = 8 each for CCR9+ and CCR9- arm for 

each cell line analyzed) tail vein injected with control lentiviral vector infected CRC cells (control) 

or CRC cells with inducible CCR9 expression. * P< 0.05 compared to the control group by 2-

sided Mann-Whitney test. All CCR9+ vs. control cell lines, P=0.001 2-sided Student t test. (e). 

Time post-injection of cells with inducible CCR9 expression to luciferase-detectable signal in 

histopathologically confirmed primary GI or liver tumors (n = 8 mice each for CCR9+ and CCR9- 

arm for each cell line analyzed). ** P< 0.01 by 2-sided Mann-Whitney test. All cell lines liver vs. 

GI tumors, P=0.001 2-sided Student t test. Also see Supplemental Table 2. 
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Figure 4.Increased oxaliplatin chemoresistance of human CRC cells in liver vs. 

orthotopic or subcutaneous xenografts.1 x 106
CCR9+ CRC cells were injected by tail-vein 

or subcutaneously inoculated into the left flank of  6-week NOG mice (n=8/each experimental 

arm) and IVIS imaging was performed to monitor tumor formation. When GI or subcutaneous 

tumors reached radiance of 5 x 106 (p/sec/cm2/sr), doxycycline was withdrawn to turn off CCR9 

expression and oxaliplatin (6mg/kg) or normal saline as control was intravenously given once 

weekly for 5 weeks (W1-W5). Tumor growth was quantified by luciferase - photon signal 

analysis with Xenogen software. Real-time whole body IVIS imaging of mice with subcutaneous 

inoculated (a, left panel) or tail-vein injected CTMM cells (a, right panel) treated with 

Oxaliplatin (CRC line DLD1 as representative) (b) and (c).Quantification of the effects of 

Oxaliplatin on growth rate of GI, liver and subcutaneous xenograftsby luciferase -photon signal 

measurement with Xenogen software. Tumor growth rate is defined as the difference between 

week 5 tumor luciferase - photon signal (i.e., cubic transformed tumor size) and the first 

measurable tumor luciferase - photon signal divided by the duration of the treatment. ANOVA 

was used to compare change in cubic root transformed DLD1and Colo205 tumor size at week5 

from week1.P-values were adjusted for multiple comparisons by controlling the experiment-wise 

error rate using the Bonferroni-Holm method** P< 0.001; * P< 0.05 compared to the control 

group. Error bars indicate S.E.M. (b: Colo205; c: DLD1).Each box-whisker plot represents 8 

mice/arm. (d) Heat map presenting the expression level of indicated transcripts in RNA-seq 

comparison of non-treated DLD1 subcutaneous vs. liver metastasis tumors. The relative 

abundance of each gene was normalized between 0 and 2. Above 1 indicates higher expression, 

below 1 indicates lower expression. Red indicates upregulation. (e).mRNA levels of DKK4, 

HES1, HES7, HAY1 and HEY2 in week 5 DLD1 liver tumors (n=6) and subcutaneous tumors 

(n=6) using quantitative PCR. ** P< 0.01; * P< 0.05compared to subcutaneous tumors by 2-

sided Mann-Whitney test. 
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Supplementary Figures 

a       b 
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Supplementary Figure 1.Engineering inducible CCR9+ CRC lines and in vitro functionally 

evaluating the efficiency of CCR9+cells. (a). Schematic of inducible CCR9 expression system 

which consists of two vectors: the regulatory vector encoding the Tet repressor (TetR) under the 

control of the human CMV promoter; and an inducible expression vector expressing human 

CCR9 or mouse Ccr9 genes under the control of CMV promoter and two tetracycline operator 2 

(TetO2) sites. This CMV promoter also drives luciferase (Luc) and Red fluorescence protein 

(RFP) expressions. After packaging the two vectors into lentivirus particles, TetR expression 

lentivirus was first used to infect common CRC or PDX lines. After puromycin selection, the 

TetR expressing lines were then infected with the CCR9 inducible expression lentivirus and 

followed with blasticidin selection and RFP FACS purification. The CCR9 expression can be 

induced by1-1.5 ug/ml (in vitro) or 1-2mg/ml (in vivo) doxycycline.(b). CCR9 protein level 

expression in parental CRC cells (Ctrl), CRC cells with (+ Doc) or without (- Doc) doxycycine 

induction were tested by using anti-human CCR9 antibody in western blots. β-actin is loading 

control.(c).In vitro migration of CRC lines toward CCL25 was significantly increased with CCR9 

expression, evaluated by Boyden chamber experiments as described in METHOD section. *P< 

0.01mean compared to parental CRC cells transfected with control vector by 2-sided MW test. 

Error bars indicate S.E.M. All cell lines control vs CCR9, P=0.001 2-sided Student t test. (n = 8 

each for CCR9+ and CCR9- arm for each cell line analyzed).Also see Supplementary Table 2. 
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Supplementary Figure 2. Histopathology of mouse subcutaneous xenografts formed by 

PDX lines. 6  week NOD/SCID mice (n=6) were subcutaneously injected with 1 x 106PDX cells / 

mouse in two flanks, and tumors began to form in 6-8 weeks. H+E staining ofsubcutaneous 

tumors formed by PDX-1 (Left) or PDX-2 (Right).Scale bars, 50μm.  
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Supplementary Figure 3.Ex vivo IVIS imaging and histopathology of orthotopic GI tumors 

formed by CCR9+ CRC lines.The specific anatomical locations of NOG mouse abdominal 

tumors identified by whole body IVIS imaging (Figure 1 b) were determined as multiple foci in 

the Duodenum, Jejunum, Ileum, Cecum and Colon, by both ex vivo IVIS imaging and 

histopathology in H+E staining (M: mucosa; T: regions with adenocarcinoma morphology).At the 

same time, no tumors were detectable by IVIS imaging in other organs, such as lung, liver, 

pancreas or kidney. Comparisons with control lines infected with non-CCR9 encoding lentivirus 

are shown. Scale bars, 50μm.(n = 6 for each cell line analyzed) 
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Supplementary Figure 4.Mouse CRC line with CCR9 expression formed GI tumors in 

immunoproficient mice with same genetic background. (a). representative whole body IVIS 

images (upper panel) of tail-vein injected mice with luciferase-RFP double labeled CT26 cells 

transfected with backbone vector (CCR9-), mixture of cells transfected with CCR9 expression 

vector and cells transfected with backbone vector (CCR9+/-), or CRC cells transfected with 

CCR9 expression vector (CCR9+); Luciferase - photon signals represent xenografts.Ex vivo 

imaging (lower panel) indicated abdominal luciferase positive tumors located in GI. 

(b).Representative H+E staining image of tumors in mouse large intestine tail vein injected with 

inducible CCR9+ CT26 cells. (M: mucosa; T: regions with adenocarcinoma morphology). Scale 

bars, 50μ(c).double- immunofluorescence in immune cells and tumor cells. T cell marker CD3 or 

B cell marker CD20 expression was detected by anti-mouse CD3 or CD20 antibody (green), 

tumor cells were detected by anti-RFP antibody (red) and nuclei were stained with DAPI (blue). 

Arrow designates T cells or B cells. Scale bars, 50μm (upper) &5μm (lower). N=6 6-8 week 

NOG mice. 
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Supplementary Figure 5. Human Primary CRC-immunoproficient Mouse Host Chimeras 

(a).Swiss Webstermouse blastocyst injection with luciferase+ RFP+ CCR9+ PDX cells (10-15 

cells / blastocyst) and representative IVIS Whole-body (left) or ex vivo images (middle and right) 

from post-natal day 10 human PDX-mouse chimeras are also shown. Mock(upper panel): no 

injection; PDX (down panel): blastocyst injected with CCR9+PDX cells. (b). PCR of human 

centromericrepeat sequences in DNA extracted from intestinal tumors excised from human 

PDX-mouse blastocyst-injected chimeras  (1-4), blastocyst injected mouse tail, in vitro culture 

PDX cells and no DNA control (negative control). Experiment was performed 3 times. 
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Supplementary Figure 6. Phenotypic and functional analysis of lymphocytes from the 

spleen and mesenteric lymph nodes (MLN) in human PDX-mouse chimeras. Spleens and 

4 MLNs / mouse were collected from 4-week old mice (n=5) developed from Swiss Webster 

mouse blastocysts injected with CCR9+ PDX-1 cells (IVIS+). The littermates (n=5) from non-

injected blastocysts were used as control for normal immune functions (IVIS-; control). (a).  

Gating strategy for phenotypic analysis is shown.  Live (DAPI)-negative cells were electronically 

gated and CD3 (T cell) or CD19 (B cell) surface staining is shown.  Electronic gating on CD3+ T 

cells was used to determine CD4 and CD8 expression as illustrated.  CD4+ T cells were 

subsequently gated to determine CD62L and CD44 expression.  (B). Relative average 

percentage of the parent population for each surface phenotype is shown.  (C). Gating strategy 

for CD4+ T cell analysis.  Live (Aqua)-negative cells were electronically gated and CD3/CD4 

surface stain was used to identify CD4+ T cells.  Intranuclear staining for Foxp3 and RORt (top 

panel) was performed on unstimulated cells.  Intracellular cytokine staining for IFN and IL-17 

was performed of PMA/ionomycin stimulated cells.  Relative percentage of mean total CD4+ T 

cells is displayed at right.  No statistically significant differences (P > 0.05) between any IVIS+ 

vs. IVIS- groups, by 2-sided Mann-Whitney test were observed.Error bars represent standard 

deviation. No adjustments for multiple comparisions were made. 
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Supplementary Figure 7. Histopathological confirmation of IVIS imaged CRC liver 

tumors.CCR9+ CRC cells were injected via tail-vein into NOG mice and serial whole body IVIS 

imaging was performed to monitor tumor growth. CCR9 expression was inhibited by 

withdrawing doxycycline after IVIS lower abdominal tumor formation was observed at 2-4 weeks. 

Subsequent tumors occur primarily in liver. In each sub-panel, Left: representative whole-body 

IVIS images of GI and metastatic tumors; Middle upper:Ex vivo IVIS imaging of liver tumors. 

Middle lower: light microscopy of the same hepatic tumors as control. (4X)Right: 

representative images of H+E staining in hepatic human CRC tumors. (T: adenocarcinoma; 

Dotted lines indicate the borders between regions with hepato-cellular or tumor morphology 

Scale bars, 100μm. N=2-4 NOG mice/cell line. 
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Supplementary Figure 8. Primary CRC CCR9 knockdown increases liver tumor 

multiplicity. (a). Quantification of liver IVIS + foci in NOG mice tail vein injected with inducible 

CCR9+ CRC cells. The experiment procedure is described in Figure 3. (For each cell line, 

CCR9-off (n=8 mice / cell line): no CCR9 expression s/p doxycycline withdrawal after lower 

abdominal IVIS+ signal detection; CCR9-on (n=8 mice/cell line): continuous doxycycline 

maintenance of CCR9 expression).* P<0.05 by 2-sided MW test. (b). 0.5 x 106 
CCR9+ CRC 

cells were injected into 6-week NOG mouse (n=4 mice/each cell line experimental arm) by tail 

vein. After 48 hours, mice were sacrificed and livers were treated with collagenase and dispase 

to generate single-cell suspension. RFP cells were almost undetectable by FACS in mouse 

livers injected with RFP-labeled CCR9+ CRC cells. FACS Gates (dot windows) are set for RFP+ 

signal intensity; Mock: cells extracted from livers in mice injected with PBS; Positive control: 

GFP+ cells "spiked" in with mouse hepatic cells (200 RFP+ cells/million hepatic cells). 
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Supplementary Figure 9. Two-photon microscopy imaging of hepatic metastatic tumors. 

The experiment procedure to form primary CRC and sequential liver metastases was described 

in Figure 3. (a). two-photon microscopy imaging of orthotopic xenograft tumors. (representative 

images on tumors formed with CCR9+ DLD1 cells) (I. Schematic of surgical and imaging 

preparation (also referred in METHOD part); II – IV. low magnification images of intestine; V – 

VI. High magnificence imaging of intestinal tumors expressing RFP (red) surrounding 

vasculature labeled by FITC-Dextran (green).White arrows designate intravasating tumor 

cells.)(b).(Representative images on liver tumors formed with DLD1 cells)Hepatic tumor cells 

expressing RFP (red) surrounding vasculature labeled by FITC-Dextran (green).White arrows 

designate extravasating tumor cells out of blood vessel.) Scale bars, 50μm (left) & 10μm (right). 

N=6 mice were examined. 
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Supplementary Figure 10. Growth curves of human CRC cells in liver vs. orthotopic or 

subcutaneous xenografts, oxaliplatin chemoresistance and survival. (a). More detailed 

weekly growth curves of the data presented in Figure 4 are shown. 1 x 106
CCR9+ CRC cells 

were tail-vein injected or subcutaneously inoculated into the left flank of 6-week NOG mice (n=8 

for each experimental arm) and IVIS imaging was performed to monitor tumor formation. When 

GI or subcutaneous tumors reached radiance of 5 x 106 (p/sec/cm2/sr), doxycycline was 

withdrawn to turn off CCR9 expression and oxaliplatin (6mg/kg) or normal saline as control was 

given IV once  weekly for 5 weeks. Tumor growth was quantified by luciferase - photon signal 

analysis with Xenogen software, with each light unit graphed representing 1 million measured 

light units. Real-time whole body IVIS imaging of mice at weeks 1-5 are shown for 

subcutaneous inoculated or tail-vein injected CTMM cells treated with Oxaliplatin. Error bars 

indicate S.E.M. *, No overlap of error bars at given time point. (b). Kaplan-Meier survival plot of 

mice analyzed in (a). 
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Supplementary Table 1.Mutation Profiles of CTMM CRC cell lines. The mutation status of 

17 CTMM cell lines for the twenty most commonly somatically altered genes in human CRC 

(COSMIC Database, http://cancer.sanger.ac.uk) is given.The presence of a somatic mutation is 

indicated by a red bar. Whole exome sequencing analysis was performed for PDX-1 through 4, 

Caco-2 and HT15. PDX-3 and PDX-4 were previously described as CCIC-1 and CCIC-2 

(reference 7). For the other cell lines, mutation status was previously described in the Cancer 

Cell Line Encyclopedia (http://www.broadinstitute.org/software/cprg/?q=node/11) or Eiden et 

al[108]. Cell lines were classified as MSI, microsatellite instability; MSS, microsatellite stable; 

Mucinous, mucinous adenocarcinoma histolopathology; CIMP,CpG Island Methylator 

Phenotype; CIN, chromosomal instability pathway, as previously described by D Ahmed, et al.  

 

http://www.broadinstitute.org/software/cprg/?q=node/11
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Supplementary Table 2. Inducible CCR9+ CRCs form orthotopicxenograft tumors in mouse 

intestine.Colorectal and small intestine tumors formed in mice injected with cells infected with 

CCR9+ vector or backbone control vector by tail vein. Asterisks denote statistically significant 

differences between CCR9+ group and control group. * P< 0.01 compared to parental control 

groups by 2-sided MW test. 
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INTRODUCTION 

    Despite devoting more than three decades of research to improve understanding of 

cancer biology and development of therapeutics, the persistence of poor outcomes 

among cancer patients highlights the need for new approaches to complement existing 

research methodology [1,21,51]. One of the major obstacles arises from intrinsic 

limitations of existing experimental systems, which poorly translate into clinical 

applications due to shortage of concordance with human studies [5,12,16,24]. For 

instance, conventional cell culture models as research platforms lack the capacity to 

maintain the interactions of tumor cells with extracellular matrix (ECM) and replicate 

tissue-specific microenvironment, which are required for tumor pathogenesis [19, 21]. 

Although animal models are valuable research tools, they are costly, time-consuming, 

and short of appropriate resolution and sensitivity to track the dynamics of cancer 

progression. Animal studies can also show considerable differences from humans with 

regard to requirements for oncogenic transformation [36]. 

     Another problem is that a tumor evolves heterogeneously and the numerous 

passenger mutations which have little function on cancer disease confound the paths of 

tumor-causing alterations (drivers) and this property makes most reverse genetics 

studies yield numerous complex genetic candidates [5,9, 10]. Therefore, testing the role 

of each gene in cancer pathogenesis is a critical albeit difficult task given the large 

number of low-frequency mutations in cancer genome. Currently large-scale high-

throughput genetic approaches have facilitated the identification of genetic alterations in 

cancers. However, distinguishing drivers from passengers is barely successful using 

genome analysis alone [5, 9]. 
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    To fundamentally bypass these limitations, we have established a new system for 

cancer research. Recent technical advance on orthotopic organ engineering and 

transplantation has paved a new avenue for isolating natural matrix with preserved ECM 

and three-dimensional tissue-specific structure, which provide more physiologically 

relevant conditions [11, 17, 37, 39, 40, 49 ]. To truly mimic human conditions and create 

a refined model qualified for studying cancer genetics, we have created an organotypic 

cancer model using human natural matrix, and to identify low-frequency driver genes, 

we applied a forward genetic screen using Sleeping Beauty (SB) transposon- based 

mutagens in this cancer model [10, 14, 15, 31, 46, 47 ]. 

    Here we have demonstrated the method by generating ex vivo human colon cancer 

tissues combined with SB mutagenesis system for studying invasion-driver genes. 

Found in ~80% of colorectal cancer (CRC), loss-of-function mutations in adenomatous 

polyposis coli (APC) gene is thought to be the initial event, which transforms normal 

colon epithelium into neoplasia. APC-dependent neoplasia requires additional mutations 

for progression from in situ mucosa to invasion through the muscularis layer into the 

submucosa where cancer cells gain access to main vascular and lymphatic systems for 

their systemic spreading. Thus invasion into submucosa is believed as a key feature for 

CRC to become malignant. As proof of principle, we first created a physiologically active 

model of human colon by reseeding primary colon epithelial cells, endothelial cells and 

fibroblasts in decellularized human colon tissues, which retain the colon’s complete 

geometry, well preserved ECM including relatively integral vascular network, and most 

importantly, maintain the intactness of muscularis layer [34]. The organotypic colon was 

sequentially transformed into APC-null in situ neoplasia and then into submucosal 
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invasive adenoma by introducing the additional genetic elements of active K-RAS and 

TGF-β [22, 45, 50]. Functional analyses and molecular characterizations indicate that 

this bioartificial CRC model has the capacity to recapitulate the major features of tumor 

malignancy, including breaking muscularis layer and invading into submucosa. This 

CRC model, derived from genetically defined epithelium, free of redundant genetic 

alterations and reproducing malignancy transformation within 4 weeks, served as a new 

platform for studying progression-driver genes. Next, we performed a forward genetic 

screen using transposon- based mutagens to induce malignancy transformation in 

the in situ APC-dependent neoplasia. Our results demonstrated that the organotypic 

cancer model combined with transposon-based mutagenesis system allow us to 

achieve rapid forward genetics study in human-originated tissues and improve 

oncogene discovery.  
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RESULTS 

Preparation of acellular human colon matrix  

    Decellularization 39,40 using sodium dodecyl sulfate (SDS) followed with Triton-X100 

washing gave better results than the PEG based or DNase/enzyme based methods for 

removal of cellular components from human colon tissues (~5 cm3) (Figure 1 A-D). DNA 

content (Supplementary Table 1) in these acellular scaffolds decreased to less than 5% 

of that in normal colon, while there was no difference in the quantities of the four main 

ECM proteins – GAG (Supplementary Table 1.), collagen (type I), laminin and 

fibronectin (Figure 1 I) [35]. Removal of most cellular components is further confirmed 

(Figure 1 I) by the observation that F-actin and nuclei are undetectable in the scaffolds 

by immunohistochemistry. The decellularized scaffolds successfully preserved the 

tissue architecture, main vasculatures and crypt niches (Figure 1 E, F and H) of the 

original colon. Most importantly, the colon matrix retained the intactness of muscularis 

layers (Figure 1 G), which form the native barrier for CRC malignancy progression and 

submucosa invasion. 

 

Recellularization of acellular human colon matrix  

     As we have proposed earlier, one key feature of the ex vivo colon model to facilitate 

identification of driver genes is having a genetically defined epithelium which is free of 

malignant origin and secondary genetic alterations. We developed primary culture of 

human colon epithelial cells (hCEC) (Supplementary Figure 1 A.) from routine 

colonoscopy patient samples [13, 28, 43]. DNA sequencing of these cells indicated no 
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mutations in hotspot regions of APC, KRAS and TP53 genes. Immortalized with protein 

expression of the human ribonucleoprotein enzyme telomerase (hTERT), hCEC formed 

organoids with microcrypt structure in 3D culture (Supplementary Figure 1 A.), and were 

capable of self-renewal and multilineage differentiation into the various major types of 

functional epithelial cells [33](Supplementary Figure 1B).  

     The small bowel mucosa with intact crypt niches and muscularis layer can be 

mechanically separated from the submucosa (Supplementary Figure 3 A and B.), thus 

allowing to populate the acellular matrix with hCEC, human colon microvascular 

endothelial cells and fibroblasts (Supplementary Figure 2.) in exact physiological 

locations (Figure 2 B and Supplementary Figure 3 C, D). The complete organotypic 

human colon model was then generated by assembling the stratified mucosa and 

submucosa layers containing native ECM proteins and secreted stromal elements 

(Figure 2 B and Supplementary Figure 3 E, F). Importantly, this ex vivo colon not only 

remained viable, but also developed physiologically active crypts including basal stem 

cells and major types of functionally differentiated cells (Supplementary Figure 4).                  

 

Establishment of colon cancer model 

It has been proposed that sequential alterations in several main genes and signaling 

pathways correlated with histological features during CRC progression. APC mutation 

constantly activating the WNT pathway is believed to be the first event transforming 

normal cells into an adenoma. In the adenoma-carcinoma sequence, common mutation 

in oncogene KRAS promotes malignant transformation of early adenoma into 
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intermediate adenoma. Abrogation of the TGF-β pathway, including mutations in 

SMAD4 and TGFBR2, is thought to occur later in CRC progression, transforming the 

adenoma to a carcinoma. To rapidly convert normal hCEC into cancerous cells, we 

introduced into the system the pathological pair of genetic elements that inhibit human 

APC by small- hairpin RNA and encode active KRAS by retroviral transfection. To test 

the tumorigenic conversion, the hCEC cells with APC null and KRAS over-expression 

were subcutaneously injected into immunodeficient mice and 4 weeks later, the TGF-β 

signaling pathway was activated by directly injecting growth factor TGF-β into the 

xenografts to induce tumor development. Within 6-8 weeks, tumors occurred in 60% of 

injection sites and presented typical epithelial CRC features with crypt-like lumen 

structure and microvasculature formation, but no tumor formed by parental hCEC 

(Supplementary Figure 5).    

Based on these findings, the same sequential genetic alterations were applied to 

transform the ex vivo colon models to the different stages of CRC models. Tumor 

initiation, progression and invasion were achieved by populating the mucosa epithelium 

with APC- hCEC, APC-KRAS+ hCEC or APC-KRAS+ hCEC treated with TGF-β, 

respectively (Figure 2 A). Similar to the native human colon tissue (Figure 2 C), the ex 

vivo colon model recellularized with normal hCEC (Figure 2 D) was found to form 

single-cellular layer in crypt niches that tightly attached to the basal membrane and 

stromal ECM. In contrast, the APC-null colon model (Figure 2 E and F) presented 

dysplasia-like structure in the mucosa epithelium including cells undergoing fast 

proliferation to form multi-cellular layers and distorted crypt structure with multi-lumenal 

fusion, a typical phenotype in early stage adenoma. The APC-null neoplasias formed in 
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only 2 weeks and were in situ restricted to mucosa layer. Next, the CRC model further 

demonstrated that constant expression of KRAS functioned synergistically with the 

activated TGF-β pathway to promote the APC-dependent neoplasia growth into large 

adenoma, breaking through the muscularis layer and invading into submucosa, a key 

feature of malignant CRC (Figure 2 G-I).This malignant transformation occurred within 4 

weeks from the onset of the in situ APC-null neoplasia.  

In summary, we have developed a colon cancer model using human natural matrix 

and genetically defined primary colon cells. This pathophysiologically active CRC model 

recapitulated the key features in tumor initiation, progression and malignant transition 

from mucosa in situ to submucosa invasion. The different stages of oncogenic 

transformation can be generated easily within weeks, correlating well with histological 

features and avoiding redundant passenger mutations. The ex vivo system also can 

provide single-cell resolution and time-lapse sensitivity for anatomically tracking and 

dissecting disease steps within CRC progression. These qualities make the ex vivo 

CRC model a potentially useful system for high-throughput genetics or therapeutics 

study.           

  

Identification of CRC driver genes   

In our previous study, SB transposon-based mutagenesis has been successfully 

used as a genetic modification tool to model many types of human cancer in mice and 

this forward genetics study facilitated the exploration of many novel genes and signaling 

pathways driving cancer in mice [7,8,10,14,15, 26, 27,31,36,46,47,48] . Here we extend 
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the SB mutagenesis system to model cancer diseases in human-origin tissues, which 

allows for identification of cancer driver genes in real human conditions. In order to 

create an active human SB transposition system covering broad target range on the 

low-frequency mutant genes of CRC, we made some improvements to the current 

T2/Onc transposition system used in mice. We added the dual selection markers of 

GFP and neomycin between the two inverted repeats/direct repeats in the transposon 

gene and this allowed the purification of the cell population with transposon insertions. 

We also replaced the SB10 transposase in the transposition system with SB100X, the 

most effective transposase currently available [20]. In the combination system of 

T2/Onc and SB100X, 500 ng transposon donor plasmids and 100 ng transposase 

helper plasmids were found to function best for hCEC cells for reaching the peak activity 

of transposase and avoiding the effect of overproduction inhibition (OPI) 

[20](Supplementary Figure 6 A). Each hCEC cell had on an average 4 ± 3 transposon 

copies inserted in its host genome after 4 weeks of antibiotics selection (Supplementary 

Figure 6 B).     

The adenoma undergoing submucosa invasion developed within 6-7 weeks in the 

colon matrix with APC-null SB-inserted hCEC seeded in the crypt niches (Figure 3 D 

and E). The average number of invasion loci in every 10 cm2 matrix was 5.5 ± 1.9 which 

is significantly higher than that of the matrix with APC-null hCEC transfected with 

transposon donor plasmid alone (Figure 3 F), and indicated that SB-based mutagenesis 

system was physiologically functional in generating genetic hits during CRC progression. 

The ex vivo system demonstrated that colon tumors in multiple disease stages can be 

sequentially reproduced and time-lapse tracked to single-cell resolution (Figure 3 G - I). 
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     In this study, 21 invasive neoplasias in total from 15 independent recellularized 

matrixes were excised by laser-capture microdissection to minimize the contaminations 

with non-invasive tumor tissues. For analysis of transposon insertion sites, ligation-

mediated PCR (LM-PCR) [4] was performed to specifically amplify the transposon 

integrated genomic fragments which were then sequenced by illumine sequencing. Low 

mapping quality reads (values less than 30) were filtered out for the following analysis. 

Among the high mapping quality reads, about half of them were mapped at the “TA” 

dinucleotide sites. Further analysis was focused on these consensus SB insertion sites. 

From the distribution of read depth at the insertion sites, it was clear that majority of the 

insertion sites resulted from background insertion events or PCR artifacts. We 

considered the top 10% of the deepest insertion sites as clonal insertion sites. We 

mapped these clonal insertion sites in each sample to the human genome annotation 

file, refGene, and picked the sites that were within 1000bp of known transcripts in 

refGene. In addition to this, big dye terminator sequence was used to confirm the 

transposon insertion sites [20].  

This forward genetics screen identified a total of 39 candidate genes which, when 

mutated, probably contributed through cooperation with APC mutations to the malignant 

transformation of the ex vivo CRC (Supplementary Table 2). All the candidate genes 

have been documented in the human colon cancer cataloged TCGA database, 

highlighting the strong concordance of the ex vivo CRC models to the real clinical 

aspect of the disease. Intriguingly, 17 of the 39 genes were found to have been 

identified earlier to contribute majorly in CRC progression and these included TCF7L2 

and WNT9B (two members in WNT pathway), DNA mismatch repair gene MSH2; 
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TWIST2 (associated with the phenomenon of epithelial to mesenchymal transition), 

JAK1and STAT3 in JAK-STAT signaling pathway; DCC (a common deletion gene in 

CRC) (Table 1). Among the remaining 22 genes which have not previously been 

implicated in CRC progression, we selected 10 genes (ASXL1, CAMTA1, CSTF3, 

DDX20, FXR1, LATS2, MITF, PAX7, PRKG1, and RPAP1) for validating the driver 

function of causing tumor malignant transformation. siRNA was used to down-regulate 

the gene expressions in APC-null hCEC or colon cancer cell line SW480. SW480 line 

was derived from early-stage adenocarcinoma and harbors APC mutation similar to that 

of hCEC in our model, thus used as a suitable cellular tool to test the candidate 

functions in real CRC cells. It was observed that 7 genes promoted cell proliferation, 4 

increased cell mobility and 7 enhanced cell invasions through matrigel matrix (Figure 4).  
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Discussion 

 

    We have described a new methodology that allows unbiased forward genetics 

studies performed in human-origin tissues under real human conditions. The 

decellularized human native matrix can provide major tissue-required elements, 

including complex tissue-specific structure, cell-matrix interaction, and physiological co-

location of multiple types of cells and these make our method advanced to conventional 

assays of cell migration or invasion though synthetic matrigel or collagen layer which 

does not exist in real tissues. Compared to the complex bioreactor and medium formula 

desired to generate native functional organs for orthotopic transplantation, we used 

simpler systems that fulfill minimal requirements for developing tissue-level tumor 

models, enabling low-cost and large-scale cancer study.  

Currently, very few animal models have been developed to study malignant events 

and test late-stage CRC, mainly because the intestinal-specific and inducible gene 

modifications in mice are available in only some of the genes relevant to human CRC 

and most global genetic manipulations barely cause colon-specific cancer phenotypes. 

Through introducing sequential pathologically-paired genetic elements, the ex vivo CRC 

model was able to recapitulate most features in different disease stages and developed 

malignant transformation within weeks, suggesting it to be a valuable complement to 

current cancer models. Genetic alteration patterns required for oncogenic 

transformation in human systems are different to animal systems. For instance, it is 

estimated that average 5-12 somatic mutations are required for a normal human cell to 

undergo malignant transformation, but only 2-4 mutations are sufficient for mouse cells. 
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The ex vivo cancer models generated from human native matrix and primary cells may 

serve as a more accurate and efficient research platform from which the results derived 

may be applied directly to the human circumstance, bridging the gaps between animal 

models and clinical diseases.  

 Transposon-based insertion mutagenesis system is believed as an unbiased and 

high-throughput genetic tool for cancer gene discovery. SB system has been used to 

model many types of mouse cancers. However our studies, to our best knowledge, at 

the first time demonstrate SB is capable to induce human cancer development under 

human native conditions. Identification of malignancy driving genes that will lead to 

developing not only drug targets but also diagnosis markers, therefore, is critically 

important for improving clinical outcomes. Currently, studying malignancy driver genes 

remains as a challenge and a tractable system that enables recapitulating the dynamic 

malignancy transition within a clear diver alteration context would largely facilitate 

oncogene discovery. The ex vivo CRC models we described here were created with 

normal primary cells free of redundant mutations and have the capacity to reproduce 

tumor initiation, promotion and progression by sequentially introducing APC, KRAS and 

TGF-β genetic alterations. Based on the tractable model system, we applied SB- 

mediated mutagenesis to simulate multiple hits during cancer evolution and the 

mutations correlated to CRC development were promptly detected by pathological 

features and efficiently identified by high-throughput LM-PCR.   

To provide the proof of principle for the forward genetic study based on the approach 

of “engineering oncology”, we identified 39 candidate driver genes involved in CRC 

submucosal invasion though cooperation with mutations in APC. All of the genes have 
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been listed in the TCGA-colon cancer database, suggesting the highly relevance of the 

ex vivo model to clinical CRC diseases and among these genes, 17 have been 

previously reported correlated to CRC progression, indicating the effectiveness and 

accuracy of the model system as a functional platform and feasibility of ex vivo SB-

based forward genetic screen for studying cancer genetics. Besides functional assays, 

the known functions of the candidate genes also provide evidence for some of them to 

be the drivers in CRC development. ASXL2 [30], for example, is a member of ASXL 

family that are epigenetic scaffolding proteins with functions of epigenetic regulations by 

recruitment of the polycomb-group repressor complex (PRC) and trithorax-group (trxG) 

activator complex and of histone modification by assembling transcription factors to 

specific genetic domains. ASXL2 as well as ASXL1, another ASXL family member, 

BRCA1 and YY1 are binding partners of BAP1 that is a nuclear de-ubiquitinating 

enzyme and strongly associated with metastasis as a tumor suppressor. Truncation 

mutations of ASXL2 have been correlated to poor prognosis in prostate cancer, 

pancreatic cancer and breast cancer. Additionally, ASXL1 has been involved in the 

malignant progression of multiple cancers including CRC with microsatellite instability 

(MSI).  

Another candidate CAMTA1 was previously identified as a putative tumor suppressor 

in neuronal cancers [23]. CAMATA1 decreases glioblastoma cell growth by stimulating 

the expression of anti-proliferative peptide NPPA and regulates neuroblastoma cell 

mobility through increasing expressions of β3 (TUBB3) tubulin, microtubule associated 

protein 2 (MAP2) and neurofilament light chain (NEFL). CAMTA1 may function through 

Ca2+ signaling pathway and mediate Ca2+ - dependent processes in cell differentiation. 
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Particularly, decreased expression of CAMTA1 was observed frequently in CRCs and 

was previously reported to be substantially associated with poor survival as an 

independent indicator [32]. Consistent to previous findings, our both in vitro and ex vivo 

functional assays that decreased CAMTA1 expression substantially promoted cell 

proliferation and invasion in hCEC and SW480 lines, further indicated that CAMTA1 

may play a tumor-suppressor role in CRC malignancy transformation. 

Because of the heterogeneity during cancer evolution and diversity in personal 

genomic background, the 39 candidates identified in this screen are sort of specificity to 

the patients that these three colon epithelial cell lines were derived from. Theoretically, 

this model system can discover broader ranges of novel oncogenes by using various 

patient cell sources or generating initial pools covering different mutation profiling 

through different rounds of SB mutagenesis. Although now mutations in tumors can be 

identified on a whole-genome scale, elucidating the roles of genetic alterations in 

tumorigenesis is still challenging. Here we demonstrated the potential value of the ex 

vivo cancer models to complement existing in vitro cell lines and in vivo animal models 

for studying the mechanistic roles of the recurrent human cancer mutations multi-

dimensionally. The new methodology of engineering ex vivo cancer models developed 

in this research also offers more opportunities to create specialized physiological 

microenvironment for mimicking real clinical diseases. For instance, further engineering 

vascular network, immune system and organ-specific microbes may be selected to 

incorporate into the miniaturized cancer tissues depending on variant research goals to 

achieve. In addition, this new engineering process also might be extent to generating 

other types of ex vivo cancer organs [38, 42], such as lung, liver, skin and kidney and 
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potentially provide new research strategy in many fields of oncology from developing 

biomarkers for diagnosis and prognosis to screening drugs, chemicals, pathogens and 

toxins for personalized medication.     
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METHODS 

Decellularization of human colon tissues. 

All primary normal colon tissues in this study were taken from the normal parts of CRC 

tissues collected by the Weill Cornell Colon Cancer Biobank, approved by the 

Institutional Review Board (IRB) of Weill Cornell Medical College. Pathological study 

has been used to check the normal origin by tissue morphology. Briefly, fresh patient 

colon tissues were collected in Medium 199 supplemented with 200 U/ml penicillin and 

200 mg/ml streptomycin, immediately after patient operative resection. Fat and blood 

clots were removed from tissues and they were rinsed 5 times in sterile PBS. Samples 

were cut into 5 cm x 2 cm pieces and incubated in sterile 1% SDS (Fisher Scientifics) in 

deionized water for 4-6 hours at room temperature and gently shaking condition. Sterile 

1% Triton –X100 (Sigma) in deionized water was applied to rinse the tissues for 1 hour 

and the acellular matrix was then washed in sterile PBS containing 

penicillin/streptomycin/amphotericin at 37°C for the first 5 hours changing the PBS 

every 30 minutes and the other 5 days changing the PBS every day. The decellularized 

matrix can be freshly used for the following recellularization or stored in – 80 °C for up 

to 6 months.  

 

Quantification of DNA and Glycosaminoglycan (GAG) 

To assess total DNA or GAG content within the native colon and decellularized colon 

matrix, 6 X 100mg (wet weight) specimens were used for the following measurements. 

For DNA measurement, specimens were minced and homogenized in 1 ml lysis buffer 

consisting of 50 mM TriseHCl (pH 8), 50 mM EDTA, 1% SDS and 10 mM NaCl, and 

then digested with Proteinase K for overnight, followed by phenol/chloroform extraction. 
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The total DNA was precipitated and washed with 70% ethanol and dissolved in RNA-

free water. Subsequently, DNA purity and concentrations were charaterized by 

nanodrop (Thermo Scientific 2000c). 

The sulfated GAG content from both native and acellular colon tissues was quantified 

using Blyscan GAG Assay Kit (Biocolor, UK). GAG concentrations were calculated by 

the absorbance at 595 nm using a microplate reader (Tecan Infinity) and compared to 

standards made from bovine tracheal chondroitin-4-sulfate.  

Culture of primary human colon cells 

With proved of IRB at Weill Cornell Medical College, Colon biopsies (0.5-1 cm3) without 

visible adenomas by pathology were obtained from patients undergoing colonoscopy 

screening. The techniques of isolation and primary culture of human colon epithelial 

cells (hCEC) were slightly modified from the previous studies. Briefly, Colonic 

specimens were immersed in cold X medium (HyClone) supplemented with 2 % 

penicillin/streptomycin, immediately after patient operative procedure and rinsed with 

sterile PBS with antibiotics/ antimycotic (invitrogen) for 5 times. The tissues were 

minced into small pieces (~1mm in size) and crypts were gently exacted by digestion in 

X medium containing collagenase type XI (150 U/ml, Sigma, St. Louis, MO), dispase 

neutral protease (40 μg/ml, Roche Applied Science), stirring at 37°C for 15-30 min. The 

crypt cells were cultured in X medium with growth supplements of 5% FBS, EGF 

(25ng/ml R&D systems), insulin (5.0 μg/ml, Sigma), hydrocortisone (1.0 μg/ml Sigma), 

transferring (2 μg/ml Sigma), BPE (50 μg/ml Sigma), B27 supplement (Invitrogen), R-

spondin 1 (200 ng/ml, R&D systems) and Noggin (50ng/ml, Peprotech) in collagen-I 

coated flasks (BD scientific) incubated at 33°C, 5% CO2. After 48 hour culture, 
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fibroblast Inhibitory reagent (Human Colon FibrOut™ from CHI Scientific) was applied to 

the culture medium for 2-3 days to reduce fibroblast growth. After cell colonization was 

observed, cells were transfected with retroviral hTERT and followed with the 

characterization by 3D matrigel culture into organoid growth and expression of stem cell 

marker Lgr5 and differentiation markers. Co-culture with human colon fibroblasts was 

required to develop tight-junction in hCEC.  

Human colon myofibroblasts and endothelial cells were primary cultured from the 

normal tissue parts of CRC patient surgical specimens and characterized by CD31 

marker for endothelial cells and α-smooth muscle actin for myofibroblasts.    

DNA sequencing of hCEC indicated no mutations in hotspot regions of APC, KRAS and 

TP53 genes and the primers are listed as following: 

Oligonucleotide sequences and PCR conditions used to amplify exons 1-14 of 

APC. Amplification was performed in the 25µl amplification mixture containing 100-

200ng DNA, 1.5mM MgCl2, 0.2mM of each dNTP, 0.5mM of each primer and 1.25U of 

Taq DNA polymerase. 

Exon Primer Sequence 5´→3´ 
 

Size (bp) 
Amplification conditions* 

1 

F AACCTTATAGGTCCAAGGGTAG 

234bp A 
R ACCTCAAGTTTACAAGAGGGAA 

2 

F AAATACAGAATCATGTCTTGAAGT 

212bp B 

R ACACCTAAAGATGACAATTTGAG 

3 

F GACCCAAGTGGACTTTTCAGG 

423bp B 

R ACAATAAACTGGAGTACACAAGG 

4 

F GAGAAGTTTGCAATAACAACTGATG 

291bp A 

R TTATCCTGAATTTTAATGGATTACCT 
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5 

F AACCTCACTCTAACTGGACCAA 

481bp A 
R AACAGAGCTGTAATTCATTTTATTCC 

6 

F GGTAGCCATAGTATGATTATTTCT 

204bp B 

R CTACCTATTTTTATACCCACAAAC 

7 

F AAGAAAGCCTACACCATTTTTGC 

238bp B 

R GATCATTCTTAGAACCATCTTGC 

8 

F GACACTTCATTTGGAGTACCTTAACA 

222bp A 

R GGCATTAGTGACCAGGGTTT 

9 

F AGTCGTAATTTTGTTTCTAAACTC 

394bp B 

R TTTGAAACATGCACTACGAT 

10 

F TTGCTCTTCAAATAACAAAGCAT 

192bp A 

R TCCACCAGTAATTGTCTATGTCA 

11 

F GATGATTGTCTTTTTCCTCTTGC 

215bp B 
R CTGAGCTATCTTAAGAAATACATG 

12 

F TGACAAAGGAAGAACAGATAGCA 

390bp B 

R GCAGTGAGCTGAGATTGCAC 

13 

F TTTCTATTCTTACTGCTAGCATT 

306bp B 

R ATACACAGGTAAGAAATTAGGA 

14 

F AGGGACGGGCAATAGGATAG 

390bp A 

R GGTCTTTTTGAGAGTATGAATTCTG 

*A: an initial denaturation at 94ºC for 2min, followed by 40 cycles at 94ºC for 30", (50ºC, for exon 10, and 55ºC) 

for 45” and 72ºC for 1min, and a final extension step at 72ºC for 7min.  

B: The touchdown PCR protocol consists on: an initial denaturation at 94ºC for 2 min, followed by 3 cycles (94ºC 

for 30s, 60ºC for 40s and 72ºC for 30s), 3 cycles (94ºC for 30s, 58ºC for 40s and 72ºC for 30s), 25 cycles (94ºC for 

30s, 55ºC for 40s and 72ºC for 30s) and a final extension step at 72ºC for 7 min. 

15-1 5’GTTACTGCATACACATTGTGAC3’ 

5’TGTGGTTGGAACTTGAGGTG3’ 

1375bp 15 IVS15-54 -3275 

 

15-2 5’CAGATGAGCAGTTGAACTC 3’ 

5’GATTTGGTTCTAGGGTGC 3’ 

907bp  15 3095-4001 
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15-3 5’ACAGGAAGCAGATTCTGC 3’ 

5’GAGCCTCATCTGTACTTCTGC3’ 

1223bp 15 3879-5101 

 

15-4 5’AGTGATCTAACAATCGAATCC3’ 

5’CACCCTTGAGTCTTGAAGGG3’ 

1204bp 15 4972-6175 

 

* KRAS mutational analysis by PCR & sequencing  

The genomic region harboring mutational sites was amplified using three different 

primer data set to obtain respectively 198 bp, 181 bp and 162 bp amplicons:  

* KRAS 198 bp forward: 5´ GGTACTGGTGGAGTATTTGATAGTG 3´ and reverse: 5´ 
GTTGGATCATATTCGTCCACAA 3´  

* KRAS 181 bp forward: 5´ GGTACTGGTGGAGTATTTGATAGTG 3´ and reverse: 5´ 
CCACAAAATGATTCTGAATTAGC 3´  

* KRAS 162 bp forward: 5´ TGTAAAACGACGGCCAGTGGCCTGCTGAAAATGACTGAA 3´and 
reverse: 5´ CAGGAAACAGCTATGACCGGTCCTGCACCAGTAATATGC 3´  

PCR was performed in 50-µl reaction volumes containing 1X AmpliTaq ® Gold DNA 

Polymerase Buffer (Applied Biosystems, CA, USA); 2 mM of MgCl 2 ; 0.02 mM of each 

deoxynucleotide; 0.2 µM of each primer; 5 units AmpliTaq Gold ® DNA Polymerase 

(Applied Biosystems) and 80 ng of DNA template. PCR reactions to amplify KRAS 198-

bp amplicons were performed by incubating the samples at 95°C for 10 min, followed by 

40 cycles of 95°C for 30 s, 58°C for 30 s and 72°C for 1 min. The final extension step 

was performed for 10 min at 72°C and the samples were then chilled to 4°C. The 

amplification of KRAS 181-bp and 162-bp PCR fragments was obtained with the same 

conditions, but using 2.5 mM MgCl2 . PCR reactions were run in a Veriti PCR apparatus 

(Applied Biosystems). 
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The sequence data were analyzed using the Sequencer software Version 4.8 (Gene 

Codes Corporation, MI, USA) to identify mutations and to assign genotypes to individual 

DNA samples. The identified DNA changes were compared with a reference sequence 

of KRAS (Gene Bank accession NM_004449.3). Sequence results were scored by 

visual inspection of the chromatograms, performed by three independent analysts 

(Nicola Normanno, Pietro Carotenuto, Cristin Roma or Anna Maria Rachiglio). A 

mutation was called when three independent observers agreed. 

* TP53 mutational analysis by PCR & sequencing  

DNA fragments were amplified by PCR using primer pairs previously described 

(http://www-p53.iarc.fr), with the exception of the primers used to sequence exons 2 and 

3 (Table S1).  

Lentivirus transduction of primary hCEC. 

The lentiviral vector pEco-CMV-H1-shRNA-GFP encoding a shRNA hairpin sequence 

( 5"-gatccccGCTCTGCTGCCCATACACAttcaagagaTGTGTATGGGCAGCAGAGCtttttggaaa-3" 

and 5"-agcttttccaaaaaGCTCTGCTGCCCATACACAtctcttgaaTGTGTATGGGCAGCAGAGCggg-

3".) was used for knockdown of APC expression. The psi-LVRH1GP (CMV-H1-APC 

shRNA-SV40-KRASG12D - neomycin) encoding both APC- shRNA hairpin sequence and 

human KRASG12D sequence was used for knockdown of APC expression and over-

expression of KRAS G12D in hCEC. To generate the lentiviral vectors, the above 

plasmids were transfected into HEK293T cells with the Gentarget lentivirus packaging 

mix (GenTargetInc, San Diego, CA) according to the manufacturer’s protocol. High titer 

virus particles were used to transduce hCEC in serum free conditions and the efficiency 

http://www-p53.iarc.fr/
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0041261#pone.0041261.s001
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of APC knockdown and KRAS expression was verified by Western Blotting after 

antibiotic selection.  

Recellularization of acellular colon matrix 

The mucosa layer of decellularized colon matrix was physically separated from 

submucosa by forceps and seeded human endothelial cells by microinjection of 1000 

cells/side into four sides of 1 cm3 mucosa layer. After 5 days culture in endothelial cell 

medium, 0.2 million hCEC were planted to the 1 cm3 mucosa evenly with cells seated in 

crypt niches and cultured for 10 days in epithelial cell medium with 1:1 matrix of 

endothelial cell basal medium. The myofibroblasts were seeded in the opposite surface 

of mucosa and continue culturing for another 10-15 days. Last, the mucosa layers were 

assembled with submucosa part and returned back to culture in epithelial cell medium 

with 1:1 matrix of endothelial cell basal medium for certain time until developing CRC in 

different stages.          

Establishment of SB – TIM system in hCEC 

Insertion of CMV-GFP-Puromycin into T2/Onc vector 

• Use BglII and BsaBI to cut T2/Onc vector.  

Double Digest Recommendation(s) for BglII + BsaBI:  

• Digest in NEBuffer 3 at 37°C with BglII, then add BsaBI and raise temperature to 

60°C.  

At least one enzyme has < 100% activity in this buffer, so additional units of 

enzyme and/or longer incubation time may be necessary. 

• Design PCR primers with BgLII and BsaBI ends for the CMV-GFP-Puro: add 

BglII in CMV end and BsaBI in Puromycin end.  

LEFT PRIMER        TGACCTTACGGGACTTTCCTAC  

RIGHT PRIMER      CAGCGTATCCACATAGCGTAAA  

PRODUCT SIZE: 2754, PAIR ANY COMPL: 5.00, PAIR 3' COMPL: 2.00  
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So the end with BglII is: 5’- agatctTGACCTTACGGGACTTTCCTAC– 3’  

GC% = 46%, Tm = 60C  

The end with BsaBI is: 5’- gatnnnnatcCAGCGTATCCACATAGCGTAAA – 3’  

(in T2/Onc VECTOR the BsaBI site is 5’… gattatgatc … 3’)  

= 5’- GATTATGATCCAGCGTATCCACATAGCGTAAA – 3’  

GC% = 41%, Tm = 61C  

TOTAL LENGTH IS 2754bp 

Perform PCR amplification of the DNA piece of CMV-GFP-Puro with BglII and 

BsaBI ends  

PCR conditions:  

Initial denaturation: 95 C for 2 min  

30 cycles: 95C for 30S  

           55 C for 30S  

           68 C for 4 min  

Final extension: 72C for 7 min  

Hold: 4 C   

 Ligation of the two DNA fragments by T4 ligase 

The Schema map of T2/Onc – CMV-GFP-Puro  
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Transfection of hCEC 

50,000 hCEC cells with APC shRNA were seeded into 24 well plates one day prior to 

transfection.  500 ng transposon T2/Onc – GFP-Puro and 100 ng transposase SB 100X 

were used to transfect hCEC in each well with presence of Lipofectamine 3000 

(invitrogen) and after 3 days incubation, cells were transferred into collagen-I coated 

flasks for continuing culture starting with puromycin selection. After 3 weeks antibiotic 

selection, the hCEC cells were used immediately for populating the 3D colon matrix.  

Laser-capture microdissection  

The cells undergoing submucosal invasion were harvested by laser-capture 

microdissection according to the company instruction (Carl Zeiss MicroImaging, 

Germany) and DNA was exacted from the samples using QIAamp DNA MicroKit 

(#56304, Qiagen).  

LM-PCR amplification and preparation for illumina sequencing 

Restriction digest 
1. Digest 1μg of tumor DNA with NlaIII (IRR) or AluI (IRL). Do not use more than 2 μg of 
genomic DNA as this 
will lead to concatomerization of genomic fragments during the ligation step. Less than 1 μg of 
genomic 
DNA can be used, but the final volume should be scaled to maintain a similar DNA 
concentration in the 
reaction. 
1 μL enzyme 
4 μL buffer 
4 μL 10X BSA (if needed) 
X μL H2O 
Y μL DNA        
20 μL Total 
 
2. Incubate at least 3 hours at 37°C. 
 
3. Heat inactivate enzyme. 
The restriction digest can be incubated overnight. In this case, heat inactivation of the enzyme is 
not required. 
However, overnight incubation should be performed in a 37°C incubator (not a water bath) to 
prevent 

http://www.lifetechnologies.com/us/en/home/life-science/protein-expression-and-analysis/transfection-selection/lipofectamine-3000.html
http://www.lifetechnologies.com/us/en/home/life-science/protein-expression-and-analysis/transfection-selection/lipofectamine-3000.html
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evaporation of the sample. 
 
Ligation 
1. Prepare the adaptor by mixing the linker+ and linker- primers (each at 100μM) at a 1:1 ratio 
(see below for 
primer details). Linkers should be re-suspended at 100μM when stored. Heat the primer solution 
at 95°C 
for 5 minutes. Turn off the heat and allow the primers to slowly cool to room temperature. This 
allows the 
single-stranded oligos to anneal and form the double-stranded adaptor. 
2. Set up ligations: 
10.0 μL digested genomic DNA 
2.0 μL 10X NEB buffer 4 
2.0 μL 10 mM ATP 
1.5 μL adaptor 
1.0 μL T4 ligase (2,000U) 
3.5 μL dH2O 
20.0 μL Total 
ligate 2-3 hours at room temperature or overnight at 16°C 
3. Heat inactivate the T4 ligase (65°C for 10 minutes). 
4. Digest ligation with BamHI. This prevents the fragment from transposons within the 
concatomer from being 
amplified. BamHI solution is made in a 10μL volume per tube. To each tube add: 
1.0 μL BamHI 
1.0 μL NEB Buffer 4 
3.0 μL 10X BSA 
5.0 μL dH2O 
10.0 μL Total 
If the digest ligation is performed overnight at 37°C then column purification is not required as 
the BamHI has degraded. Otherwise, a column purification is needed to remove the BamHI 
enzyme. 
 

PCR 
 
2.00 μL ligation reaction Step 1 98°C 30 seconds 
10.00 μL 5X buffer 
1.00 μL 10 mM dNTPs Step 2 98°C 10 seconds 
1.50 μL primer 1 (10 μM) 63°C 20 seconds 
1.50 μL primer 2 (10 μM) 72°C 30 seconds 
0.25 μL Phusion polymerase (NEB) repeat Step 2 for 25 cycles 
33.75 μL H2O 
50.00 μL Total Step 3 72°C 2 minutes 
Hold at 4°C 
- dilute 3 μL of PCR reaction in 147 μL H2O (1:50 dilution) 
- store remaining primary PCR reaction at 4°C 
Set up secondary PCR 
4.00 μL diluted primary PCR (diluted 1:50 in H2O) 
20.00 μL 5X buffer 
2.00 μL 10 mM dNTPs 
3.00 μL nested primer 1 (10 μM) 
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3.00 μL nested primer 2 (10 μM) 
1.00 μL Phusion polymerase (NEB) 
67.00 μL H2O 
100.00 μL Total 
- perform PCR using the same cycle conditions as primary PCR (25 cycles) 

 Analyze 25 μL of PCR product on 1.5% agarose gel. 

 Purify remaining PCR product to remove excess primers/dNTPs. 

 Determine concentration of purified PCR products (Nanodrop or UV spec is sufficient) 

 Pipet 25 ng of each PCR product pool into a single tube to be run on a single lane on the 
Illumina 

 platform 

 Adjust the final concentration of the mixed sample to be ~20-25 ng/μL. 

 Incubate the diluted products at 37-42°C for 30 minutes 

 Submit sample for sequencing 

 

Primers to generate adaptors: 
IRDRR adaptor 
NlaIII linker+ 5’-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGACCATG-3’ 
NlaIII linker- 5’-Phos-GTCCCTTAAGCGGAG-C3spacer-3’ 
IRDRL adaptor 
AluI linker+ 5’-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC-3’ 
AluI linker- 5’-Phos-GTCCCTTAAGCGGAG-C3spacer-3’ 
All adaptor primers are resuspended in STE* buffer at 100μM. All PCR primers were used at 10 
μM 
concentration. C3spacer modification is available from Integrated DNA Technologies. 
 
Primers for IRR amplification (NlaIII-digested DNA): 
Primary PCR 
IRR 5’GGATTAAATGTCAGGAATTGTGAAAA 3’ 
linker primer 5’GTAATACGACTCACTATAGGGC 3’ 
 
Primers for IRL amplification (BfaI and AluI-digested): 
Primary PCR 
IRL 5’AAATTTGTGGAGTAGTTGAAAAACGA 3’ 
linker primer 5’GTAATACGACTCACTATAGGGC 3’ 
 
Secondary PCR (for IRR and IRL) 
IR-A1 
5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
(barcode)TGTATGTAAACTTCCGACTTCAACTG 
Linker-A2 
5’CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTAGGGCTCCGCTTAAGGGAC 3’ 

 

Then the DNA samples are ready for direct illuma sequencing 
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CIS analysis 

For analysis of transposon insertion sites, ligation-mediated PCR (LM-PCR) was 

performed to specifically amply the transposon integrated genomic fragments which 

were then sequenced by illumine sequencing. Low mapping quality reads (values less 

than 30) were filtered out for the following analysis. Among the high mapping quality 

reads, about half of them were mapped at the “TA” dinucleotide sites. Further analysis 

was focused on these consensus SB insertion sites. From the distribution of read depth 

at the insertion sites, it was clear that majority of the insertion sites resulted from 

background insertion events or PCR artifacts. We considered the top 10% of the 

deepest insertion sites as clonal insertion sites. We mapped these clonal insertion sites 

in each sample to the human genome annotation file, refGene, and picked the sites that 

were within 1000bp of known transcripts in refGene. In addition to this, big dye 

terminator sequence was used to confirm the transposon insertion sites.  
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Knockdown candidate genes through siRNA 

siRNA was used to knockdown expressions of candidate genes in hCEC or SW480 

cells with Lipofectamine RNAiMAX (invitrogen) and Q-PCR was used to test the 

knockdown efficiency. 

 

 

 



 

167 
 

FIGURES 
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Figure 1. Preparation and characterization of acellular human colon matrix. (B) and (D) 

representative images of decellularized human colon; comparison with (A) and (C) native 

human colon tissues. H+E staining of decellularized colon matrix (F) and native colon tissue (E), 

Acellular colon matrix well preserved vasculature (Asterisks), &crypt niches (Triangles). (G) 

Electron microscope image of acellular mucosa preserved integral muscularis layer (ML); M: 

mucosa area; SM: submucosa area. (H) Quantification of crypt numbers and diameters, blood 

vessel number and ML integrity in native tissue and acellular matrix. (I) Representative 

immunostaining images of left to right: F-actin for cell skeleton, DAPI for cell nuclei, collagen-I, 

laminin and fibronectin in acellular matrix (down) and native tissues (up).   
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Figure 2. Creation of organotypic human colon model and transformation into CRC 

cancer models. (A) Schematic of creating ex vivo colon model through recellularization and 

transforming normal colon models into CRC models; (B) representative images of H+E staining 

(up) and dual immunostaining (down) of cytokeratin & fibronectin in recelluarized colon or native 

colon tissues. ML: Muscularis layer; Representative images of native colon (C), recellularized 

colon with hCEC (D), APC-null hCEC (E) & (F), APC-null-KRAS-overexpression hCEC which is 

also treated with TGF-β (G) & (H). (I) Quantification of in situ neoplasia and invasive neoplasia.         
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Figure 3. Invasive adenoma induced by SB transposon-based mutagenesis. (A) Schematic of 

different stage CRC models induced by SB transposon-based mutagenesis; Representative 

images (H+E in B & D; immunostaining of keratin & fibronectin in C & E) of CRC models 

recellularized with APC-null hCEC transfected with SB transposition system (down) or only SB 

transposon donor plasmids (up, as negative control). (F) Quantification of invasive neoplasia 

formation in the samples with SB mutagenesis system or in the negative control. (G-I) 

representative images (dual immunostaining in keratin & fibronectin) of neoplasia progression 

from in situ to submucosal invasion.   
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Table 1. Candidates have been previously identified as malignancy driving genes in CRC. * 

copy number of transposons inserted in each gene; ** number of invasive neoplasia with the 

same insertion. *** Genetic functions affected by transposon insertions.  
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A  

 

 +: two folds;  ++: three folds 

B 

 

+: two folds;  ++: three folds 

 

Figure 4. In vitro and ex vivo functional validation of candidate genes. Evaluated the effects of 

10 genes on APC-null hCEC (A) or colon cancer cell line SW480 (B) in cell proliferation, migration 

and invasion through matrigel in Boyden chamber, when gene expressions were down 

regulated by siRNA. 
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Supplementary Figures 

 

     * Value Not Available 

   ** Value Not Distinguishable from Zero. 

Supplementary Table 1. Molecular characterization of acellular human colon matrix.  
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Supplementary Fig 1. Characterization of primary human colon epithelial cells (hCEC). (A) 

representative images of hCEC cells in 2D flask culture or 3D matrigel culture. In matrigel 

culture, (left to right) individual hCEC progressively form organiod-type structure. (B)  

Expressions of stem cell marker Lgr5, epithelial markers cytokeratin 18 & 20, zonula occludens-

1 (ZO-1), A33, and differentiation markers villin, mucin 2 and chromogranin; (C) Quantification 

of stem cells and differentiated functional cells.  
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Supplementary Fig 2. Characterization of primary human colon microvascular endothelial 

cells and fibroblasts. (A) Primary cultured colon fibroblasts in light microscope (left) or stained 

with anti-α smooth muscle actin (right). (B) Primary cultured colon microvascular endothelial 

cells in light microscope (left) or stained with anti-CD31 (right).   
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Supplementary Fig 3. Engineering organotypic human colon model through microinjection 

The acellular colon matrix was physically separated into mucosa layer (A) with 20x in big 

window and 40 x in small window, and submucosa layer (B); white arrow designated the intact 

epithelial crypt niches. (C) And (D) representative images of the microinjection procedure that 

the endothelial cells was microinjected into mucosa layer. (F) Colon matrix was populated with 

hCEC, endothelial cells and fibroblasts after 4 week in vitro culture, compared to the acellular 

matrix (E). 
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Supplementary Fig 4. Molecular characterization of physiological active crypts recellularized 
with hCEC. Immunostaining of intestinal stem cell marker Lgr5, and other differentiation 
biomarkers (MUC1 for non-terminally differentiated colonic epithelial cells MUC2 for goblet 
cells; Lysozyme for paneth cells; chromogranin for enteroendocrine) in the colon models 
recellularized with immortalized hCEC.    
 

 



 

180 
 

 

 

A 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

Supplementary Fig 6. Creation of transposition system by T2/Onc and SB100X in hCEC. (A) 

quantification of transposition activity in fixed dose of tranposon-donor plasmids (500 ng of 

T2/Onc) under variant doses of transposase-plasmids (SB 100X); (B) average transposon copy 

numbers in hCEC individual colonies.  
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Supplementary Table 2. Candidate genes identified by SB – based forward 

genetics screen. * listed in TCGA – colon cancer database; ** identified as driver 

genes in Dvoli et, al list 

 

 

 



 

182 
 

REFERENCE 

1. Arrowsmith, J., Trial watch: Phase II failures: 2008-2010. Nat Rev Drug Discov, 
2011. 10(5): p. 328-9. 

2. Bates, R.C., Colorectal cancer progression: integrin alphavbeta6 and the 
epithelial-mesenchymal transition (EMT). Cell Cycle, 2005. 4(10): p. 1350-2. 

3. Bates, R.C. and A.M. Mercurio, The epithelial-mesenchymal transition (EMT) and 
colorectal cancer progression. Cancer Biol Ther, 2005. 4(4): p. 365-70. 

4. Brett, B.T., et al., Novel molecular and computational methods improve the 
accuracy of insertion site analysis in Sleeping Beauty-induced tumors. PLoS One, 
2011. 6(9): p. e24668. 

5. Cancer Genome Atlas, N., Comprehensive molecular characterization of human 
colon and rectal cancer. Nature, 2012. 487(7407): p. 330-7. 

6. Chen, H.J., et al., Chemokine 25-induced signaling suppresses colon cancer 
invasion and metastasis. J Clin Invest, 2012. 122(9): p. 3184-96. 

7. Collier, L.S., et al., Cancer gene discovery in solid tumours using transposon-
based somatic mutagenesis in the mouse. Nature, 2005. 436(7048): p. 272-6. 

8. Collier, L.S. and D.A. Largaespada, Hopping around the tumor genome: 
transposons for cancer gene discovery. Cancer Res, 2005. 65(21): p. 9607-10. 

9. Collier, L.S. and D.A. Largaespada, Transforming science: cancer gene 
identification. Curr Opin Genet Dev, 2006. 16(1): p. 23-9. 

10. Copeland, N.G. and N.A. Jenkins, Harnessing transposons for cancer gene 
discovery. Nat Rev Cancer, 2010. 10(10): p. 696-706. 

11. Crapo, P.M., T.W. Gilbert, and S.F. Badylak, An overview of tissue and whole 
organ decellularization processes. Biomaterials, 2011. 32(12): p. 3233-43. 

12. de Jong, G.M., et al., Animal models for liver metastases of colorectal cancer: 
research review of preclinical studies in rodents. J Surg Res, 2009. 154(1): p. 
167-76. 

13. Deveney, C.W., et al., Establishment of human colonic epithelial cells in long-
term culture. J Surg Res, 1996. 64(2): p. 161-9. 

14. Dupuy, A.J., et al., Mammalian mutagenesis using a highly mobile somatic 
Sleeping Beauty transposon system. Nature, 2005. 436(7048): p. 221-6. 

15. Dupuy, A.J., et al., A modified sleeping beauty transposon system that can be 
used to model a wide variety of human cancers in mice. Cancer Res, 2009. 
69(20): p. 8150-6. 



 

183 
 

16. Francia, G., et al., Mouse models of advanced spontaneous metastasis for 
experimental therapeutics. Nat Rev Cancer, 2011. 11(2): p. 135-41. 

17. Gilbert, T.W., T.L. Sellaro, and S.F. Badylak, Decellularization of tissues and 
organs. Biomaterials, 2006. 27(19): p. 3675-83. 

18. Gomes, C.C., et al., Assessment of TP53 mutations in benign and malignant 
salivary gland neoplasms. PLoS One, 2012. 7(7): p. e41261. 

19. Gout, S. and J. Huot, Role of cancer microenvironment in metastasis: focus on 
colon cancer. Cancer Microenviron, 2008. 1(1): p. 69-83. 

20. Grabundzija, I., et al., Comparative analysis of transposable element vector 
systems in human cells. Mol Ther, 2010. 18(6): p. 1200-9. 

21. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 
2011. 144(5): p. 646-74. 

22. Helm, J., et al., Current and evolving strategies for colorectal cancer screening. 
Cancer Control, 2003. 10(3): p. 193-204. 

23. Henrich, K.O., et al., CAMTA1, a 1p36 tumor suppressor candidate, inhibits 
growth and activates differentiation programs in neuroblastoma cells. Cancer 
Res, 2011. 71(8): p. 3142-51. 

24. Hung, K.E., et al., Development of a mouse model for sporadic and metastatic 
colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A, 
2010. 107(4): p. 1565-70. 

25. Hunter, D.D., et al., A laminin-like adhesive protein concentrated in the synaptic 
cleft of the neuromuscular junction. Nature, 1989. 338(6212): p. 229-34. 

26. Ivics, Z., et al., Molecular reconstruction of Sleeping Beauty, a Tc1-like 
transposon from fish, and its transposition in human cells. Cell, 1997. 91(4): p. 
501-10. 

27. Ivics, Z., et al., Transposon-mediated genome manipulation in vertebrates. Nat 
Methods, 2009. 6(6): p. 415-22. 

28. Jung, P., et al., Isolation and in vitro expansion of human colonic stem cells. Nat 
Med, 2011. 17(10): p. 1225-7. 

29. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J 
Clin Invest, 2009. 119(6): p. 1420-8. 

30. Katoh, M., Functional and cancer genomics of ASXL family members. Br J 
Cancer, 2013. 109(2): p. 299-306. 

31. Keng, V.W., et al., A conditional transposon-based insertional mutagenesis 
screen for genes associated with mouse hepatocellular carcinoma. Nat 
Biotechnol, 2009. 27(3): p. 264-74. 



 

184 
 

32. Kim, M.Y., et al., Recurrent genomic alterations with impact on survival in 
colorectal cancer identified by genome-wide array comparative genomic 
hybridization. Gastroenterology, 2006. 131(6): p. 1913-24. 

33. Kosinski, C., et al., Gene expression patterns of human colon tops and basal 
crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad 
Sci U S A, 2007. 104(39): p. 15418-23. 

34. Liotta, L.A., Tumor invasion and metastases: role of the basement membrane. 
Warner-Lambert Parke-Davis Award lecture. Am J Pathol, 1984. 117(3): p. 339-
48. 

35. Lohi, J., et al., Laminins, tenascin and type VII collagen in colorectal mucosa. 
Histochem J, 1996. 28(6): p. 431-40. 

36. March, H.N., et al., Insertional mutagenesis identifies multiple networks of 
cooperating genes driving intestinal tumorigenesis. Nat Genet, 2011. 43(12): p. 
1202-9. 

37. Mertsching, H., et al., Engineering of a vascularized scaffold for artificial tissue 
and organ generation. Biomaterials, 2005. 26(33): p. 6610-7. 

38. Mishra, D.K., et al., Human lung cancer cells grown in an ex vivo 3D lung model 
produce matrix metalloproteinases not produced in 2D culture. PLoS One, 2012. 
7(9): p. e45308. 

39. Ott, H.C., et al., Regeneration and orthotopic transplantation of a bioartificial lung. 
Nat Med, 2010. 16(8): p. 927-33. 

40. Ott, H.C., et al., Perfusion-decellularized matrix: using nature's platform to 
engineer a bioartificial heart. Nat Med, 2008. 14(2): p. 213-21. 

41. Pusch, J., et al., The physiological performance of a three-dimensional model 
that mimics the microenvironment of the small intestine. Biomaterials, 2011. 
32(30): p. 7469-78. 

42. Ridky, T.W., et al., Invasive three-dimensional organotypic neoplasia from 
multiple normal human epithelia. Nat Med, 2010. 16(12): p. 1450-5. 

43. Roig, A.I., et al., Immortalized epithelial cells derived from human colon biopsies 
express stem cell markers and differentiate in vitro. Gastroenterology, 2010. 
138(3): p. 1012-21 e1-5. 

44. Schraivogel, D., et al., CAMTA1 is a novel tumour suppressor regulated by miR-
9/9* in glioblastoma stem cells. EMBO J, 2011. 30(20): p. 4309-22. 

45. Smith, G., et al., Mutations in APC, Kirsten-ras, and p53--alternative genetic 
pathways to colorectal cancer. Proc Natl Acad Sci U S A, 2002. 99(14): p. 9433-8. 



 

185 
 

46. Starr, T.K., et al., A transposon-based genetic screen in mice identifies genes 
altered in colorectal cancer. Science, 2009. 323(5922): p. 1747-50. 

47. Starr, T.K., et al., A Sleeping Beauty transposon-mediated screen identifies 
murine susceptibility genes for adenomatous polyposis coli (Apc)-dependent 
intestinal tumorigenesis. Proc Natl Acad Sci U S A, 2011. 108(14): p. 5765-70. 

48. Su, Q., et al., A DNA transposon-based approach to validate oncogenic 
mutations in the mouse. Proc Natl Acad Sci U S A, 2008. 105(50): p. 19904-9. 

49. Totonelli, G., et al., A rat decellularized small bowel scaffold that preserves villus-
crypt architecture for intestinal regeneration. Biomaterials, 2012. 33(12): p. 3401-
10. 

50. Trobridge, P., et al., TGF-beta receptor inactivation and mutant Kras induce 
intestinal neoplasms in mice via a beta-catenin-independent pathway. 
Gastroenterology, 2009. 136(5): p. 1680-8 e7. 

51. Valastyan, S. and R.A. Weinberg, Tumor metastasis: molecular insights and 
evolving paradigms. Cell, 2011. 147(2): p. 275-92. 

52. Wilson, C.H., et al., Nuclear receptor binding protein 1 regulates intestinal 
progenitor cell homeostasis and tumour formation. EMBO J, 2012. 31(11): p. 
2486-97. 

53. Worm, J., et al., Genetic and epigenetic alterations of the APC gene in malignant 
melanoma. Oncogene, 2004. 23(30): p. 5215-26. 

54. Wurbel, M.A., et al., CCL25/CCR9 interactions regulate large intestinal 
inflammation in a murine model of acute colitis. PLoS One, 2011. 6(1): p. e16442. 

55. Youn, B.S., et al., Blocking of c-FLIP(L)--independent cycloheximide-induced 
apoptosis or Fas-mediated apoptosis by the CC chemokine receptor 9/TECK 
interaction. Blood, 2001. 98(4): p. 925-33. 

 

 

 

 

 

 

 

 



 

186 
 

CHAPTER 4 

Future Recommendation  

Project 1 (in chapter 1) 

    Common cancer cell lines that are adapted for long-term in vitro culture and have 

accumulated numerous passenger mutations barely retain the native properties of 

primary cancer cells. One of the advantages in our study is that we established working 

protocols for deriving primary culture colon cancer cells directly from clinical patient 

samples at different disease stages and keeping these primary cells in low-passage and 

native conditions for most of our experiments. The benefits of using primary cells were 

demonstrated in the findings that CCR9 expression, as an adaptive phenotype in native 

colon cancers, was retained at high levels only in early-stage non-invasive primary CRC 

cells, which enabled a functional response to its ligand CCL25, while CCR9 expression 

could not be detected in most common cell lines. The relationship of chemokine CCL25 

– CCR9 signaling regulating CRC progression, otherwise, could not been studied 

effectively using common CRC lines.   

    In this project, we revealed the crosstalk between NOTCH-JAG1 signaling and 

CCL25-CCR9 signaling that activated NOTCH by JAG1 directly down-regulated CCR9 

levels in CRC cells through CCR9 proteosomal degradation. What we found was 

NOTCH activation decreased CCR9 expression in protein level, but not in RNA level, 

and the CCR9 protein decrease can be blocked by proteosome inhibitor PS-341. Based 

on the current data, it is difficult to draw the conclusion that CCR9 protein is one of the 

direct downstream targets of NOTCH pathway and further investigation is necessary to 

understand whether the CCR9 protein restored by blocking proteosome function is 
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exactly the one regulated by NOTCH signaling, or due to the different CCR9 protein, 

because of blocking the proteosomal degradation of other signaling pathways which 

otherwise would have decreased CCR9 expression. 

Project 2 (in chapter 2) 

    Through engineering inducible CCR9+ expression in CRC cells, orthotopic mouse 

intestinal tumors could be formed with many common CRC lines or primary cultured 

CRC cells through tail vein injection. CTMM models are relatively fast, low-cost and 

robust in developing GI tumors and metastases within several weeks, and this property 

makes CTMM a valuable model for tracking and studying multiple steps in CRC 

progression from cancer cell invasion, migration, blood vessel intravasation, traveling in 

circulation system, extravasation to colonization in distant organs. Furthermore, similar 

to the engineering approach of CTMM, other types of chemokine and cell trafficking 

markers could be used to generate orthotopic cancer models in various types of organs. 

For instance, CXCR4 could be utilized to target the growth of leukemia cells specifically 

in bone marrow which express ligand SDF-1, or CCR6 could be applied to guide human 

hepatocellular carcinoma cells to specifically grow in mouse liver, which is one of the 

major organs secreting CCR6 ligand CCL20.  

     Another interesting finding is that we demonstrated liver metastases are more 

chemoresistant than orthotopic GI tumors or subcutaneous xenografts, and explored the 

potential molecular mechanisms of increased DKK4 level and NOTCH signaling 

involved in the chemoresistance to Oxaliplatin, as consistent to the study using clinical 

patient samples. Our RNA-Sequencing and quantitative RCP double confirmed that 

DDK4 level was 80 times up-regulated in metastasis than that in primary GI tumors, 
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indicating there could be a sort of “on” and “off” switch of genetic regulation involved in 

DKK4 signaling. Further studied will be required to reveal the broader signaling network 

involved in CRC chemoresistance, such as the regulation of DKK4 mediated TFAP2E-

dependent resistance, or the DKK4 activation of WNT pathways with crosstalk of 

NOTCH pathway. These results also highlight the concordance of our CTMM to the 

clinical CRC diseases, and further studies might be performed to interdict the detailed 

molecules and signaling network undergoing in CRC chemoresistance. In addition, 

CTMM could be applied as an advanced pre-clinical model for middle-throughput 

screening of potential drugs, chemicals, toxin and other therapeutics, or studying 

biomarkers for prevention and diagnosis.  

      The technology of engineering humanized orthotopic cancer in immunoproficient 

mice through blastocyst injection shed more light on creating humanized chimera 

models. CCR9+ CRC cells could be substantially incorporated into and grow along with 

mouse embryos at a successful rate, having RFP+ human cells detected in the hindgut 

and co-localized with regions expressing ccl25. Comparing to embryos, it is much more 

difficult to detect the RFP+ human cells in adult mouse intestines and this could be due 

to the immune rejection by mature adult immune system or the dormancy of human 

cells losing the capability of proliferation. Nevertheless, our methodology demonstrated 

the proof of principle that CCR9 expression promoted human CRC cells survive in mice 

with normal immune system. Our research provide the potential approaches of 

engineering humanized organs or tissues through chemokine targeting, and similar to 

the CCR9 procedure, other chemokines such as CXCR4 or CCR6 could be applied to 

engineer humanized mouse bone marrow or liver tissues.  
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     Another interesting question is how the CCR9+ human cells evade xeno-immune 

rejection from mouse hosts. Immunologically, the chimeric mice represent a 

complicated situation. T cells are educated in the thymus on mouse Major 

Histocompatibility Complex (MHC) and this would make human antigens only cross-

presented by mouse antigen presenting cells. However these T cells would be unable to 

recognize the human cells with human MHC. One possibility to test the mechanism of 

central immune tolerance is to identify whether colonized human CRC cells exist in the 

thymus in the chimeric mice. If true, there could be neonatal central tolerance to the 

human cells. If not, peripheral tolerance mechanisms might be operative, especially 

when mouse T cell, not negatively selected for xenogenic (human) MHC, encounter 

human MHC in the periphery under non-acute inflammatory conditions. To test this, the 

same CRC cells coud be grafted subcutaneously in the chimeras at 6 weeks of age 

when the mouse immune system becomes mature. If the xenografts occur, this would 

prove the immune-proficiency versus systemic tolerance.    

Project 3 (in chapter 3) 

Decellularization removed cellular components from the human colon tissue while 

retaining intact tissue architecture, blood vessel network and ECM. The integral 

vasculature provided a possibility for modeling angiogenesis in cancer tissues. 

Moreover, future technical improvements are necessary to complement the current 

decellularization method for preserving native soluble molecules, growth factors and 

other biomaterials along with the acellular matrix.  

    In addition to three types of colon cells: epitheial cell, endothelial cells and fibroblasts, 

other types of cells such as lymphocytes, adipocytes, or microbes could be potentially 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CDkQFjAG&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMajor_histocompatibility_complex&ei=c3fPU43sNMuiyASh0YCoDg&usg=AFQjCNEPpUqEW32kKh0MWWAPjTg_D_qg1g
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CDkQFjAG&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMajor_histocompatibility_complex&ei=c3fPU43sNMuiyASh0YCoDg&usg=AFQjCNEPpUqEW32kKh0MWWAPjTg_D_qg1g
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incorporated into the ex vivo colon model system for achieving various research goals. 

The ex vivo CRC models can also be personalized and retain the pathological and 

genetic features in individual patients by having the normal colon epithelial cells 

replaced with patient-derived primary CRC cells. Furthermore, because of its properties 

of single-cell resolution, time-lapse sensitivity and easy genetic manipulation, the ex 

vivo CRC model could be applied for exploring sophisticated questions in genetics, and 

proteomics, such as fate determination of stem cells, cellular behaviors in complete 

tissue context as well as the reciprocal effects between cells and ECM.   

    It was quite amazing to perform forward genetics study in real human conditions and 

we demonstrated that many novel genes and signaling steps were successfully 

identified through transposon-based forward screens in the ex vivo human CRC models. 

However, carefully designed functional validations are critical to analyze the candidate 

genes identified from ex vivo models. Here for testing driver genes in malignant 

transformation, the ideal model will be APC min mouse models and further studies could 

be developed to investigate the tumor progression through knockdown or over-

expressing the candidate genes in intestine-specific conditions.   

    Through this forward screen, we identified a total of 22 novel candidate genes. In 

addition to functional assays, the known functions of the candidate genes provided 

evidence for some of these to be the drivers in CRC development. At least 5 of them 

are promising since they have already been implicated in other types of cancers or 

independently correlated to clinical patient outcome. Further studies are recommended 

for exploring the molecular mechanisms of each candidate in CRC progression. Another 

interesting finding is that besides insertions in genetic coding regions, SB also inserted 
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in non-coding regions and some of them target gene promoters or the genomic “dark” 

area such as the domains related to transcriptions of microRNA or long non-coding 

RNA. It will be good to know the exact functions of these mciroRNA and long non-

coding RNA in CRC progression through further mechanistic studies.  
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APPENDIX 

Engineering Colorectal Cancer and Metastasis Models for Mechanism 

And Therapeutic Studies 
 

Thesis Dissertation Proposal presented to Professors Xiling Shen, Micheal Shuler, 

Steven Lipkin and Robert Weiss in May. 2013 in partial fulfillment of the requirements 

for the admission to Ph. D. Candidacy exam (A exam) 

Abstract 

Whereas Primary colorectal cancers (CRC) can be cured by surgery, metastasis is the 

major cause of CRC mortality. To effectively treat CRC diseases largely depends on 

precisely interdicting the mechanisms of metastasis and developing drugs targeting the 

mechanisms. However, we currently lack advance in vivo and in vitro research systems 

to accurately model metastatic CRC diseases and test therapies.  

Here, we engineered orthotopic and metastatic CRC mouse models utilizing chemokine 

switch. Based on our former study that early stage CRC cells are CCR9 positive and 

they spontaneous form GI tumors by tail vein injection, we created primary and 

commercial CRC lines with inducible CCR9 expressions and show these cells were able 

to form tumors in mouse intestine simple through tail vein injection. After forming 

orthotopic tumors, CRC cells are free to metastasize from the primary tumor after CCR9 

turns off, if they possess the intrinsic ability to metastasis. This model recapitulates the 

most features of CRC metastasis progression directly from primary GI locations to 

distant organs. In addition, we broadly engineered CCR9 expressing cell lines 

representing all major CRC molecular subtypes in TCGA list, to form orthotopic CRC 
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accounting for clinical patient genetic diversity. At last we indicated that the new CRC 

mouse models facilitate mechanism study by combining with whole body IVIS imaging 

as well as multi-photon microscopy and also provide effective and efficient platform for 

pharmaceutics study.  (This project is close to end and we currently prepare paper 

submission.)  

In the other hand, we created an in vitro organotypic human colon by reseeding primary 

colon epithelial, endothelial cells and fibroblasts in decellularized human colon tissues, 

which retain colon’s complete geometry, preserves the extracellular matrix including 

relative intact vascular network, and most importantly, maintains the integrity of 

muscularis layer. The organotypic colon can then be transformed into APC-null invasive 

neoplasia in CRC-associated genetic pathways. Functional analyses and molecular 

characterizations indicate the bioartificial organ has the ability to recapitulate the major 

features of CRC malignant progression.  

Our future research plan is to use the pathophysiologically relevant bioartificial human 

CRC as a culture platform to identify invasion driving genes. We will apply SB 

transposon systems as mutagens to induce submucosa invasion of APC in situ 

neoplasia in the bioartificial colon. Then we will perform in vitro and in vivo functionally 

validations to corfirm the invasion driver genes we captured. (For this part, we 

collaborate with Copeland & Jenkins lab, and Zalton Ivics group and we suppose to 

finish in ~ 1.5 years.) Overall, my PhD research goal is to engineer in vivo and in vitro 

CRC models which can fill the gaps between conventional 2D cell culture and animal 

models, serving as better research platforms for mechanism and therapeutics studies.   
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Part A: Inducible Colorectal Cancer Metastasis Mouse Model via a Chemokine 

Switch  

Background 

Colorectal cancer (CRC) is a major public health source of morbidity and mortality, with 

proximately 150,000 new diagnoses each year in the United States[109].  25% CRC 

patients eventually die from metastatic diseases. CRC progresses through multiple 

distinct stages. Firstly, inappropriate proliferation cause colon stem or progenitor cells to 

transform into colon cancer stem cells, which start with adenoma formation and evolve 

into carcinoma in situ[110]. Then, pre-invasive CRCs by accumulating more genetic 

mutations, acquire the ability to invade through the submucosa and muscularis, 

metastasize, and survive outside the colon microenvironment niche and in the distant 

organs[111, 112]. Precisely understanding mechanisms of CRC formation, transition 

from localized to metastatic stages and developing drugs to block the mechanisms are 

criticalpre-requirements to improve patient outcomes. While current CRC animal models, 

as basal research tools, have their weaknesses whichretardus from fully understanding 

metastasis mechanisms and developing effective drugs.  

Genetically engineered mouse model (GEMM, transgenetic mice) is a very powerful tool 

for cancer study. However, it is relatively expensive and time consuming to create. Also, 

due to its over-simple genetic background, GEMM hardly captures all the features of the 

genetic mutations and epigenetic regulations in human CRC diseases. For example, 

mouse screens for cooperating mutations are not always concordant with TCGA (The 

Cancer Genome Atlas) results to identify the most common mutations, genomic 

rearrangements and epigenetic in the corresponding human cancers. Subcutaneous 
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xenograft models, the currently workhorse for drug screening, lack the native gut 

microenvironment [113, 114]and the property of distant metastasis, thus lead to many 

false positive cures.Surgical implantation of CRC cells under the kidney capsule, or 

orthotopic implantation through intra-cecum or rectal injection overcomes this limitation. 

However, injection needle tracts create potential artifacts for cell egress, disturb the 

extracellular matrix and artificially generate a local inflammatory microenvironment, 

which confound the research results. Additionally, we currently do not have robust, 

consistent models of CRC liver metastasis from primary intestinal sites[115, 116]. 

Therefore, advance methods are required to model more accurately CRC metastasis 

and therapeutics[117].  

Approaches 

Here, we create an inducible colorectal cancer metastasis mouse model via a 

Chemokine Switch. Chemokines are a family of secreted ligands that play important 

roles for trafficking lymphocytes in the body to different organs, including bone marrow, 

skin, thymus, intestine,liver and other sites.The G protein–coupled chemokine receptor 

9 (CCR9) and its ligand chemokine 25 (CCL25) comprise a signaling axis that is 

particularly important for the small intestine and colon[15]. Intestinal epithelial cells 

produce CCL25, which attracts circulating CCR9+ T cells to intravasateinto the gut 

toward the CCL25 source.Normal colon epithelial cells also are CCR9+. Recently our 

study[73]showed that early but not late stage CRCs are CCR9+ and when injected by 

tail vein can spontaneously form gut tumors.Thus, our working hypothesis is by making 

inducible CCR9 expression in human CRC cells, we can have the CRC cells forming 

tumors in the native mouse gut microenvironment simply through tail vein injection and 
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then metastasizing to the most common anatomical sites when CCR9 expression turns 

off. We used this as a platform to develop a more general metastasis system.Solid 

tumors are heterogeneous and this is a problem for metastasis study becauseof over-

extrapolating results from a limit diversity of genetic backgrounds. To address this issue, 

we made a series of CCR9+ lines that cover the major CRC molecular subtypes as 

defined in TCGA. This should be a useful research resources or tools for mechanistic 

studies and drug screening.These inducible CCR9+ lines also have luciferase and 

fluorescence double labeling for real time in vivo tracking by IVIS system for middle-

throughput drug screening and time lapse imaging to study deep metastatic 

mechanisms like tumor cell intra-/extravasations, epithelial mesenchymal transition. 

Finally, we evaluateoxaliplatin effects, one of the first line drugs in clinical CRC therapy, 

using the inducible CRC metastasis model as well as current standard subcutaneous 

xenograft model.     

Experimental Designs and Results 

1. Engineering inducible CCR9+ primary or commercial CRC lines and In vitro 

evaluating the efficiency of inducible CCR9 expression, migration to CCL25, cell 

growth and death with CCR9 expression.  

We first constructed an inducible CCR9 expression lentivirus vector, in which the open 

reading frame (ORF) of human or mouse CCR9 and a Red fluorescence protein (RFP) 

marker are sub-cloned under a CMV promoter(Figure 1 A). The CMV promoter is 

tetracycline inducible promoter (conditional knock-in) which means the CCR9 gene is 

silent until certain amounts of tetracycline derive doxycycline is given in vivo or in vitro. 

Then we infected a panel of human or mouse CRC lines with the lentivirus particles and 
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test the CCR9 expression is inducible with doxicyclineby western blots(Figure 1 B).The 

boyden chamber experiment was then performed to functionally evaluate the in vitro 

migration of CCR9+ cellstoward CCL25(Figure 1 D). Additionally, we tested that CCR9 

expression has no significanteffects on CRC cell proliferation[14] and apoptosis by the 

cellular ATP (adenosine triphosphate) levels(Figure 1 C). 

2. Qualify and quantify GI (gastrointestinal) vs extra-GI tumor formationby 

engineered CRC lines. 

We performed whole body IVIS imaging on mice iv injected with CCR9- (parental) only, 

CCR9+/- (mixture) and CCR9+ only CRC cells(Figure 2 B and Figure 1 A is the 

experiment schema). Most CCR9- cells developed tumors in lung locations, and the 

CCR9+/- mixture cells formed tumors in both lung and abdominal sites, while the pure 

CCR9+ cells only formed tumors in abdominal sites. The abdominal tumors were further 

confirmed(Figure 3)by ex vivo IVIS imaging and histopathology asmultiple foci along 

intestinal system from Duodenum, Jejunum, Ileum, cecum to colon.We totally 

engineered 13 CCR9+ commercial human CRC lines and 2 CCR9+ primary CRC lines 

derived from clinical patient samples(Figure 2 C), among which 12 commercial lines 

and 2 primary lines formed tumors in GI. We then quantified(Table 1) extra-GI, small 

intestinal and large intestinal tumors formed by different CRC lines, in multiplicity, sizes, 

and rates, compared to their parental lines. 

3. Broadly engineering human CCR9+ cell lines representing all major CRC 

molecular subtypes in TCGA list and a mouse CRC lines to develop murine 

orthotopic CRC model in immunoproficient environment. 
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We expanded the CCR9+ engineering in 13 human commercial CRC lines and 2 

primary CRC lines which harbor most top 20 genetic mutations in TCGA list(Table 2). 

The orthotopic CRC mouse models developed by these lines may serve as practical 

research resources or platforms for genetic subtype CRC study and drug development 

targeting specific molecular signaling. They also enable studying CRC tumor in its 

orthotopic organ site, with higher resolution and allows tracking of dynamics. As a 

demonstration, we performed in vivo multi-photon imaging of the gut tumor(Figure 5). 

We also created a CCR9+ murine CRC line CT26(Figure 4), which formed intestinal 

tumors and liver metastasis in the same BALB/C genetic background through CCR9+ 

controlling. This orthotopic mouse CRC model in immunoproficient conditions could be 

a useful tool to study the effects of immune system on CRC progression. 

4. Create the inducible metastasis models that orthotopic CRC tumors 

metastasize after CCR9 expression turns off and use the models to demonstrate 

the dynamics of CRC metastasis progression. 

We performed real time whole body IVIS imaging on mice iv injected with CCR9+ CRC 

cells(Figure 6). The CCR9 expression was turned off after lower abdominal tumor 

formation and subsequently metastasis occurred mainly in liver which is the most 

common organ the human CRC diseases metastasize. The CCR9 expression shutting 

down returns the engineered CRC lines back into their parental stages and the 

metastasis was caused by cell native properties. EX VIVO imaging combining 

histopathology(Figure 7 A) were used to further quantify the locations and numbers of 

primary and metastasis tumors, comparing to the control. The histological analyses of 

H+E staining (Figure 7 B) indicate the primary tumor undergoing progression from in 
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situ carcinoma (Stage I), submucosa invasion (stage II), to muscularis invasion (stage 

III). We also compare(Figure 8)the occurring time and numbers of liver metastasis foci 

between doxycline-keep group (CCR9-on) and withdrew group (CCR9-off). The data 

showing the doxycline withdrew group develop more liver metastatic foci in shorter 

period of time indicate metastasis correlates with doxycycline induction. In total, (Figure 

8 B)three commercial CRC lines and one primary CRC line were able to develop the 

inducible metastasis mouse models. Furthermore, most liver tumors by CCR9 

engineered lines occur later than their primary GI tumors and also later than those liver 

tumors developed by wild-type lines, indicating it is possible that most liver tumors are 

the metastases from GI tumors (Figure 8 C).In addition, we show the dynamic tumor 

growths in primary and metastatic locations can be time-lapse monitored by luciferase - 

IVIS imaging, indicate this model can be used more practically for drug screening       

5. The chemokine inducible CRC metastasis models (CIMM) serve as a powerful 

platform for imaging the dynamics of the metastasis progress. 

Combining multi-photon microscopy, we apply real-time imaging on primary GI as well 

as liver metastasis tumors. Since vasculature was labeled by green fluorescent dyes 

and engineered CRC cells have RFP marker, it is possible to track the tumor cell 

intravasation and extravasation, as important steps in metastasis generation(Figure 5 

and Figure 9). Similarly, the interaction between tumor cells and microenvironment, 

dynamic alternation of molecular markers and signaling pathway associated with 

metastasis progress could be more directly and practically studied in this system.    

6. CIMM models have the similar drug responses to that of clinical CRC diseases.  
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Oxaliplatin is an alkylating agent breaking DNA strand and causing cell apoptosis, which 

combined with 5-fluorouracil is the first line drug in clinical CRC therapy regimen. We 

applied the CRC mouse models in therapeutic study(Figure 10 and Figure 11). We 

tested oxaliplatin treatment on subcutaneous, orthotopic and liver metastatic xenograft 

tumors by Colo205 (CIN type) and DLD1 (MIS type) and evaluate therapy efficiency by 

tumor growth inhibition and mouse survival rates. The study show metastatic tumors are 

more chemoresistantthan primary GI tumors and subcutaneous xenografts. Interestingly, 

we also found oxaliplatin treatment is intended to induce further metastases probably by 

having more effects on primary tumors than metastatic tumors or promoting 

chemoresistant subpopulation amplification by eradicating the chemosensitive group.  

To evaluate whether CIMM model produce similar drug responses to those of CRC 

patients, we studied 14 patients with primary colorectal cancer and 11 patients with liver 

metastases (Figure 12 and Figure 13). Chi-Square tests in tumor volume or growth 

dynamics indicate there is significant difference in drug responses between primary 

CRC tumors and metastatic tumors, proving the similar conclusion that metastatic 

tumors are more chemoresistant than primary CRC tumors. 

Conclusion 

We develop a novel CRC metastatic model. The CIMM system, in which human CRC 

cells form primary tumors in native gut microenvironment and metastasize to the most 

common anatomical sites, recapitulates most features of CRC metastasis progression. 

This model is easy to handle (tail-vein injection), is repeatable, and generates 

metastasis robustly, which has not been achieved by other CRC models.In CIMM 

system, chemokine engineering does not affect cellular native capability to metastasize 
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because chemokine expression in CIMM is inducible and controllable, meaning the 

engineered cell lines could be changed back to parental stage right after seeding in the 

primary gut sites and metastasis is generated by cellular native properties.  

We generated a broad panel of CIMM systems with all the major molecular CRC 

subtypes in TCGA, as research platforms for specific mechanism study on different 

genetic background and evaluating drugs that target specific molecular signaling.  

Furthermore, we demonstrate that CIMM combined with multiple-photon microscopy 

can be applied to study the dynamic interaction between CRC cells and vasculatures, 

and the CRC metastatic progress under native microenvironment. 

Low-cost, surgery-free, repeatable and capturing the most features of primary CRC 

formation and metastasis progression, CIMM can be anovel and practical tool for 

pharmaceutical screening, by filling the gaps between subcutaneous xenograft and 

clinical trials.  
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Part B: In Vivo Imaging of Epithelial Mesenchymal Transition (EMT) in CIMM 

models 

Background 

An epithelial mesenchymal transition (EMT) is a biological process that allows the 

polarized epithelial cells to functionally undergo multiple biochemical changes into 

migratory mesenchymal cells secreting ECM components[118]. EMT is required for 

embryonic development, tissue remodeling, and wound repair. Recently, accumulating 

evidence indicates that tumor progression, invasion, and metastasis involve 

theinduction of EMT. During EMT, the loss of E-cadherin facilitates tumor cells 

dissociated from cell-cell or cell-extracellular matrix adhesions, and the induction of 

mesenchymal markers such as N-cadherin or vimentin leads to the reorganization of 

cellular skeleton and acquisition of a motile and invasive capacity.   

 

EMT research raises the hypothesis that the tumor cells undergoing EMT are supposed 

to have higher invasive and metastatic capability than those cells that do not, thus 

closely associated with metastasis formation. While, up to date, this hypothesis [119]is 

still short of direct evidence to prove and this difficulty partly comes from the lack of a 

reliable metastatic model that recapitulates the most properties of metastasis (CRC 

invasion and intravasation from the primary tumor) and that allows real-time monitoring 

of this dynamic process in single cell resolution. 
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Approaches 

Here, we utilize the combination of CIMM model and multiphoton microscopy to explore 

the above questions.  We first develop CIMM models with E-/N-cadherin dual reporter 

cell lines, which could designate EMT by fluorescence colors. By the promoter reporters, 

we could further determine whether the invasive cells intravasing into vasculature are 

undergoing functional EMT, how the occurrence of EMT coincides with distant 

metastasis.  

 

Experimental Designs and Results 

1. In vivo imaging of CRC cells undergoing EMT in CIMM mice. 

First, we engineered two EMT reporter CRC lines (CCR9-SW480 and CCR9-SW620) 

which are transfected with DNA plasmids of E-cadherin promoter driving GFP and N-

cadherin promoter driving mCherry(Figure 14). Then multi-phone microscopy will be 

performed in CIMM mice to visualize the CRC cells in primary GI and liver locations. 

The cells undergoing EMT can be captured by GFP and mCherry dual markers.  

2. Quantity of the EMT cells correlated with invasion, intravasation and 

metastasis 

Furthermore, we will study the relationships between EMT cells and CRC progression. 

We will quantify the EMT cells in different GI positions: mucosa in situ, submucosa 

invasion and muscular invasion. The intravasating EMT CRC cells also will be identified 

and the percentage of EMT cells will be quantified in the total amount of CTC cells 

which is in RFP marker.  
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Conclusion 

We apply CIMM model to explore some critical questions in CRC fields, which are hard 

to study using conventional animal models. EMT correlated with CRC cancer 

metastasis is hypothesized, based on the research well studied in vitro cell culture 

models, while it has not been completely proved in vivo[120]. These hypotheses have 

significant implications for anti-metastasis therapies. The difficulty largely lies in the lack 

of a reliable metastatic model that recapitulates the onset of metastasis (CRC invasion 

and vascularintravasation from the primary tumor) and that allows real-time monitoring 

of thisdynamic process.Here, we try to fill the gap by directly visualizing the EMT 

phenomena in orthotopic CRC and study the correlation between EMT and tumor 

progression by using CIMM models.   
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Part C:Identification of Invasion Driver Genes Utilizing a Bioartificial Colorectal 

Cancer Model with Transposon Mutagenesis 

Background 

Human colorectal cancers (CRC) generally can be divided into two classes based on 

the genetic background displaying chromosomal instability (CIN) or microsatellite 

instability (MSI), in which CIN phenotype occurs in 80-90% CRC cases. CRC displaying 

CIN frequently harbor loss-of-function mutations in adenomatous polyposis coli (APC) 

which transforms normal colon epithelium into neoplasia. APC neoplasia requires 

gaining additional mutationsin order to progress from in situ mucosa and invade through 

the basement membrane (muscularis layer) into the submucosa where cancer cells get 

access to the vascular and lymphatic systems for their systemic spreading[121]. 

Invasion into submucosa is therefore considered the first checkpoint in CRC becoming 

malignancy, and identification of invasion driving mutations is critical to illuminate CRC 

mechanisms and to develop potential therapeutic targets, which could eventually 

improve patient outcomes. 

However, limited progress has been made to date due to three difficulties: 

1.Conventional cell or animal-based research platforms have intrinsic limitations[122]. 

The former could not recapitulate intercellular interactions and tissue microenvironment, 

which are required for tumor malignancy. While animal models are not only costly and 

time-consuming, they also lack the appropriate resolution and sensitivity to track or 

monitor the dynamic and transientmalignant transition. 2. The difference between 

human and animal makes the results from animal studies usually inconsistent to clinical 

patient data. 3. Although second generation sequencing facilitates reverse gene studies, 
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tumor heterogeneous evolutions and numerous passenger mutations confound the 

curves of driver alterations.Therefore, animal or patient based reverse genetic studies 

generally yield numerous and complex genetic candidates, including both driver and 

passenger mutations that makes hard for functional validation.  

 

Approaches 

To overcome the first two difficulties, we will utilize a pathophysiologically relevant 

model[123] of bioartificial human colon as the research platform, which provides 

sufficient resolution, time-lapse monitoring for rapid gene screening, and also because 

of human tissue, produces responses that are more predictive of humans than animal 

models. First, we create an organotypic human colonby reseeding primary colon 

epithelial, endothelial cells and fibroblasts in decellularized human colon tissues[124, 

125], which retain colon’s complete geometry, preserves the extracellular matrix 

including relative intact vascular network, and most importantly, maintains the integrity 

of muscularis layer. Then we transform the organotypic colon into APC-null invasive 

neoplasias by deregulating APC expression, upregulatingK-RAS expression and TGF-β 

treatment[126, 127]. Functional analyses and molecular characterizations indicate the 

bioartificial organ has the ability to recapitulate the major features of CRC malignant 

progression. 

To overcome the third difficulty, we will perform forward, instead of reverse, gene 

screen using transposon-based insertional mutagenesis (TIM).Transposons are discrete 

DNA elements including transposon and transposase, which have the unique ability to 

change their genomic position through “cut and paste” mechanism and leave 5 bp 
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common insertion sites (CIS) in the hostgenome after transposition.To our knowledge, 

the TIM system has been considered non-biased, efficient, and thus the best mutagen 

system to date to simulate somatic mutations in cancer models.We plan to use the 

Sleeping Beauty (SB) DNA transposon systemdeveloped by the Copeland & Jenkins 

lab[128] at Methodist Research Institute, as mutagen to simulate the additional insertion 

hits on the APC-null in situneoplasia.During the same time, we will perform time-lapse 

microscopy monitor on the neoplasia and capture the cells undergoing invasion into 

submucosa. By analyses of SB CIS in the invasive subgroup cells, we can identify the 

invasion driving genes. Finally, we will cross outside human databases such as TCGA 

(The Cancer Genome Atlas) of APC subtype CRC or murine datasets of APC 

dependent intestinal tumorigenesis[129], to verify and narrow down our driver 

candidates for further functional validation. 

 

Experimental Designs and Results 

1. Create acellular human colon bioscaffolds by decellularization.  

We performed detergent-based decellularization slightly modified from D.A.Taylor. Nat. 

Med. 2008[130], whichaccording to our pilot experiment results[131], works best to 

remove cellular components in human colon tissues than othermethods(Figure 

15).DNA content (Figure 17)in decellular scaffolds decreased to less than 5% of that in 

normal colon, while there was no difference in GAG, Collagen (collagen I)[132], 

laminin[133] and fibronectin[134] contents. Removal of most cellular components is 

further conformed (Figure 18) that F-actin and nuclei are undetectable in the scaffolds 

by immunohistochemistry. As expected, the decellular scaffolds (Figure 16)leaved main 
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vasculatures and crypt niches intact and retained the integrity of basal membranes 

(muscularis layers).  

2. Primary cultures of human colon epithelial cells, myofibroblasts and 

microvascular endothelial cells and identification.  

Subsequently, we did primary cultures of human colon epithelial cells (hCEC)[135, 136], 

myofibroblasts and endothelial cells, the main cast needed for scaffold 

recellularization(Figure 19). In order to maintain long-term in vitro culture, hCEC have 

to be immortalized by overexpression of the non-oncogenic gene of telomerase reverse 

transcriptase (TERT) by retrovirus infection. We succeeded to grow out and maintain 

three hCEC primary lines in vitro which form microcrypt/villi in matrigel 3D 

culture(Figure 20) andexpress markers of colonic epithelial cells such as pan 

cytokeratins, zonula occludens-1, mucins-2, antigen A33, chromogranin A and stem cell 

marker Lgr5(Figure 21). Interestingly, about 20 % hCECs form crypt-like structure when 

keep cultured in 3-D mitrigel without high Wnt/ Notch signaling stimulation[137] for 5-6 

days, indicating harboring stem cell like cells. Myofibroblasts are identified as more than 

90% cells expressingα- smooth muscle actin and similarly vascular endothelial cells are 

positive in CD31 expression.  

3. Bioscaffoldrecellularization and characterization.  

Before recellularization, the mucosa layers with complete muscularis layers were 

physically separated from submucosa(Figure 15).For the mucosa fabrication, we then 

seededhCECs in the crypt niches and the mixture of endothelial cells andmyofibroblasts 

(1:1) in the extracellular matrix outside crypt niches by capillary injection of hand-pulled 

glass needles or microinjection needles(Figure 22). After the cells attached to the 
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extracellular matrix and start proliferation, the myofibroblasts were planted on the 

muscularis layer opposed to the mucosa(Figure 22). In addition, we seed endothelial 

cells in the submucosa scaffolds. The two scaffolds of mucosa and submucosa were 

physiologically placed together and mounted in proper culture medium. After 20-30 day 

culture, both morphology(Figure 23) (H+E staining) and molecular markers(Figure 

24)(immunohistochemistry) were applied to test the physiological properties and 

differentiation of the recellularizedorganotypic colon. 

4. The organotypic colon recapitulates the feathers of APC-dependent malignant 

transition from mucosa in situ to submucosa invasion.  

We then performed functional analysis whether the organotypic colon can be 

transformed into APC -dependent invasive neoplasias. We generatedthree groups of 

organotypic colons fabricated with APC knockdown hCEC, APC knockdown + K-Ras 

overexpression hCEC or APC knockdown + K-Ras overexpressionhCEC + TGF-β 

treatment, and firstly APC knockdown + K-Ras overexpression hCECs were 

subcutaneously implanted in immunodeficient (NSG) mice to test the tumorigenesis 

capability by xenograft formation(Figure 25). Subsequently, in order to test whether the 

organotypic colon has the ability to transform normal epithelial cells into APC-null 

invasive neoplasia in CRC-associated genetic pathways, the three subgroups of hCECs 

were seeded in the crypt niches of decellular scaffolds along with endothelial cells and 

fibroblasts. After 20-30 day culture, we observed neoplasiain situ formation in APC 

knockdown group (Figure 26) and with additional K-Ras overexpression, the neoplasia 

became larger, making crypt shape deformed and mucosa disorganized (Figure 

26).Furthermore, in the third group of APC knockdown + K-Ras overexpressionhCEC + 
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TGF-βtreatment developedsubmucosainvasive neoplasias in the organotypiccolon 

system (Figure 26).Functional analyses and molecular characterizations will be 

performed to prove the bioartificial organ has the ability to recapitulate the major 

features of CRC malignant progression. 

Future plan: 

Apply sleeping beauty (SB) insertion mutations in the APC-dependent neoplasias 

and capture the invasion driving genetic signatures.  

Currently I and Zhubo Wei, the postdoc in Copeland & Jenkins labs have been working 

together to transfect SB transposon vectors (the transposon plasmid T2/Onc2 and 

transposase plasmid SB100x) in hCECs with enough gene copies inserted in host 

genome, which ensure SB can be mobilized at frequencies high enough to induce 

submucosa invasion(Figure 27).APC-null hCECs transfected with SB, along with 

endothelial cells and fibroblasts will be seeded in the acellular colon matrix to form colon 

neoplasia. During the same time, time-lapse monitoring will be performed to track and 

capture the cells undergoing invasion into submucosa. A modified splinkerette PCR 

method by barcoded primers will be used to amplify the SB CIS from the invasive 

hCECs, and the mutation sites, types, and copy number variations can be identified by 

sequencing PCR products. We currently collaborate with the SB transposon 

discoverer[138] and geneticist, Dr. ZoltánIvics, who provides technical support 

withhuman cellular SB CIS mapping to identify the candidate mutations[139, 140]. Then 

we will cross outside human databases such as TCGA (The Cancer Genome Atlas) of 

APC subtype CRC or murine datasets of APC dependent intestinal tumorigenesis, to 
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verify and narrow down our driver candidates for further functional validation in the next 

step(Figure 28).  

6. Functional validation of the gene signatures.  

For functional validation of the driver genes, we will use siRNA to silence the candidate 

oncogenes and use DNA vectors to knockin the candidate suppressor genes in APC – 

null hCECs or common CRC cell lines. Subsequently, in vitro cell proliferation, migration 

and invasion assays will be performed to test the driver genes. If time and funds allow, 

an APCmin knockout mouse model will be used to verify the drivers of invasive 

progression by monitoring histological changes in the CRC tissues (Figure 28). 

Conclusion 

To our knowledge, this is the firstorganotypic human colon created to be a natural 

platform by de-/re-cellularization[141], as a third research model to fill the gap between 

2D cell culture and animal models. This will be also the first tumor model[142]developed 

on a bioartificial colon and induced from genetically defined primary colon epithelial cells. 

The APC-dependent neoplasias created from the organotypic colon will recapitulate the 

features of invasive malignancy and serve as an ex vivo platform to screen genetic 

signaling driving tumor progression. 

Moreover, this study will be the first application of SB transposon-mediated forward 

gene screen in human organotypic system for cancer research. It was reported by 

Copeland & Jenkins group and othersthat SB transposon germlineinsertions, as 

mutagens to mimic somatic mutations, enable to inducevariant types of tumors in mice. 

This forward gene screen that tumors result from SB insertion mutagenesis, facilitates 

the identification of the gene and signaling pathways that drive tumor formation[143, 
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144]. However, the forward gene screens based on transposon systems can beonly 

applied[145] in non-human systems, which have quite different genetic background and 

mechanisms of tumorigenesis than human body. Here, we try to explore the forward 

genetic study of the SB transposon mutagenesis in human systems, the 

physipathological relevant bioartificial colon, to identify CRC invasion driving genes, 

providing a potential way to bridge the gaps between animal and human study.  
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