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Cryptosporidium parvum is a zoonotic protozoan parasite that produces life-

threatening infection in people with compromised immune systems, and causes 

significant economic losses to the dairy industry due to morbidity in calves. 

The overall objective was to quantify and characterize the risk associated with 

zoonotic C. parvum infection in cattle, so that cost-effective intervention strategies 

may be implemented to mitigate the public health risk and to reduce economic losses. 

To that aim, four complementary studies were implemented, incorporating 

epidemiologic analytic approaches, geographic information system analyses and 

molecular techniques. 

A series of cross-sectional studies were conducted using molecular genotyping 

methods to obtain species-specific estimates of the prevalence of Cryptosporidium in 

dairy cattle, and to investigate seasonal variations in prevalence. The empirical 

prevalence estimates were validated using a stochastic Bayesian approach. 

Subsequently, the crude and Bayesian risk estimates were used to investigate the 

spatio-temporal dynamics of C. parvum infection on dairy farms in an important 

watershed with various cluster detection methods. In addition, a case-control study 

was conducted applying uni-, and multivariable unconditional logistic regression 

analysis to determine the association between host, management, geographical, and 

meteorological factors and Cryptosporidium genotype. Finally, to investigate the 

global zoonotic risk of Cryptosporidium, our group collaborated with the University of 

Nairobi to identify Cryptosporidium genotypes from feces collected from urban and 



 

peri-urban dairy cattle in Nairobi to determine their zoonotic potential. 

Both empirical and stochastic methods revealed a summer peak in the 

prevalence of C. parvum in pre-weaned cattle. Empirical risk estimates highlighted 

both temporal and spatial clusters of C. parvum infection in a major watershed. Herd 

size, hay bedding and precipitation were significant risk factors associated specifically 

with the zoonotic genotype in calves. Cryptosporidium ryanae, a non-zoonotic 

genotype was found in pre-weaned calves in peri-urban Nairobi. 

The findings of these studies will be useful to design control measures that 

reduce animal exposure and economic losses associated with C. parvum infection in 

cattle herds, and protect drinking water supplies by decreasing watershed 

contamination with this parasite.  
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CHAPTER ONE 

INTRODUCTION 

Cryptosporidiosis is an emerging waterborne protozoan infection affecting 

humans and a wide range of animals worldwide (de Graaf et al., 1999; Xiao and Feng, 

2008). To date the genus Cryptosporidium consists of 18 species and over 40 

genotypes (Xiao and Fayer, 2008). 

The majority of human cases of cryptosporidiosis is attributable to infection 

with C. hominis and C. parvum. Cryptosporidiosis in humans is associated with 

gastrointestinal infection which can be life threatening in immuno-compromised 

individuals. In HIV infected patients, Cryptosporidium may account for 50% of the 

cases of diarrhea (Morgan et al., 2000). In developing countries, Cryptosporidium is 

responsible for up to 19% of cases of diarrheal disease with significant effect on 

mortality (Gatei et al., 2006).  The infection is transmitted by the fecal-oral route 

either by direct contact or through contamination of food and water (Smith et al., 

2007).  

Cattle are commonly infected by four Cryptosporidium species: C. parvum, C. 

bovis, and C. ryanae (formerly the deer-like genotype) in the intestine, and C. 

andersoni in the abomasum (Fayer et al., 2007, 2008; Fayer et al., 2005; Xiao et al., 

2007). Recent studies showed that infection with these Cryptosporidium species in 

cattle is age-related. Cryptosporidium parvum, the only prevalent zoonotic species, is 

responsible for the majority of the infections in pre-weaned calves, whereas post-

weaned and adult cattle are mostly infected with C. bovis, C. andersoni and C. ryanae 

(Fayer et al., 2006; Santin et al., 2004). Clinical appearance of C. parvum infection in 

calves can range from asymptomatic shedding of oocysts to severe diarrhea, 

dehydration and death (Fayer et al., 2009). Furthermore, damage to the intestinal 

epithelium can cause prolonged malnutrition and reduced growth rates in calves, 
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resulting in significant economic losses in dairy operations (Nydam and Mohammed, 

2005). In contrast, the other three Cryptosporidium species in cattle are thought to be 

non-pathogenic and are considered unlikely to be zoonotic. Thus, only C. parvum is of 

primary concern from both the public health perspective and in terms of economic 

losses to the dairy industry due to morbidity in calves (Fayer et al., 2009).  

One of the main challenges of quantifying the risk of C. parvum infections in 

cattle is that most studies use traditional diagnostic methods such as flotation that are 

capable of identifying C. andersoni, but molecular techniques are needed to 

distinguish C. parvum from C. bovis and C. ryanae (referred to as the C. parvum-like 

species) (Santin et al., 2004; Starkey et al., 2005). To effectively control the 

occurrence of C. parvum infection in cattle, molecular techniques need to be 

incorporated into epidemiological studies to obtain valid and reliable risk estimates of 

this parasite in the target population. 

The New York City Watershed is currently the focus of a long-term project 

investigating the public health risk of waterborne cryptosporidiosis. Pathogens such as 

Cryptosporidium pose a significant threat to public health in the City’s unfiltered 

water supply, because the oocysts are very resistant to chlorination, and they are 

regularly detected in reservoir effluents (Betancourt and Rose, 2004). Dairy calves are 

thought to be a primary source of zoonotic Cryptosporidium parvum contamination in 

watershed ecosystems (Xiao and Feng, 2008). In the NYC Watershed, the 

Catskill/Delaware drainage system is home to approximately 200 dairy farms. New 

York City implements extensive watershed management measures, with the goal to 

protect water quality while maintaining economic viability on these farms (NYC 

Department of Environmental Protection, 2009).  

The general objectives of this work were to improve our understanding of the 

dynamics of Cryptosporidium infection in cattle, and to characterize the risk dairy 
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cattle pose to human health as a source of zoonotic C. parvum in two different 

ecosystems: in agricultural watersheds, and in an intensive urban smallholder system.  

Although several cross-sectional studies have investigated the prevalence of 

Cryptosporidium infection in cattle, relatively few studies utilizes molecular 

techniques to distinguish C. parvum from the non-zoonotic Cryptosporidium species.  

The aim of the second chapter of this thesis was to ensure correct estimates of the risk 

associated with Cryptosporidium infection in dairy herds in the NYC Watershed, by 

obtaining species-specific prevalence estimates and validating the empirical estimates 

using a stochastic approach. Seasonal variation in the prevalence was also 

investigated.  

Understanding the spatial and temporal pattern of C. parvum infection on dairy 

farms in watersheds would be useful in designing watershed management strategies to 

monitor and mitigate the risk of C. parvum contamination. However to date, the 

spatial and temporal variation in the risk of C. parvum infection in dairy herds in 

watersheds has not been investigated.  In the third chapter we aimed to explore and 

map the temporal and spatial dynamics of the risk of C. parvum infection in dairy 

cattle in the NYC Watershed, and to identify potential high-risk clusters in space and 

time. 

  To effectively decrease the risk of infection with C. parvum in cattle, relevant 

risk factors for this parasite need to be identified. Due to the necessity of employing 

molecular typing to determine the zoonotic potential, relatively few studies 

investigated risk factors associated specifically with zoonotic Cryptosporidium 

infection in cattle. The fourth chapter of the thesis involved the identification of 

ecological and management related factors that increase the risk of infection with 

zoonotic Cryptosporidium in dairy calves using a case-control study design.  

Cryptosporidium is one of the most common enteric parasites associated with 
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diarrhea in developing countries such as Kenya (Gatei et al., 2006). In spite of the 

high prevalence of human cryptosporidiosis in Kenya, little is known about the 

occurrence of different genotypes in Kenyan livestock (Kang'ethe et al., 2005). The 

lack of information in Kenya about the extent of zoonotic transmission of 

Cryptosporidium and the risk posed by livestock to human health prompted the fifth 

chapter of this thesis, which reports Cryptosporidium genotypes identified in the feces 

of urban dairy cattle in Nairobi.  
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CHAPTER TWO 

 

SEASONAL VARIATION IN THE PREVALENCE AND MOLECULAR 

EPIDEMIOLOGY OF CRYPTOSPORIDIUM INFECTION IN DAIRY 

CATTLE IN THE NEW YORK CITY WATERSHED
1 

 

ABSTRACT 

A series of cross-sectional studies were conducted in the New York City 

Watershed to ensure a valid estimate of the risk associated with Cryptosporidium 

infection in dairy herds. The aims of the studies were to obtain species-specific 

estimates of the prevalence of Cryptosporidium in dairy cattle and to investigate 

seasonal variations in prevalence. The empirical estimates were validated using a 

Bayesian approach. Samples were collected on 32 study farms once in each of three 

different seasons using an age-stratified sampling design. The overall prevalence of C. 

parvum-like species and C. andersoni among the 1911 animals tested by the flotation 

method was 5% and 1%, respectively. Among pre-weaned calves, the prevalence of C. 

parvum -like species was twice as high in the summer (26%) compared to the winter 

(11%). Herd prevalence showed the same seasonal trend. Pre-weaned calves were also 

shedding C. andersoni at an average intensity of 20 oocysts per gram of feces. We did  

not detect C. parvum-like oocysts in cattle older than 5 months of age. Sequencing of a 

portion of the 18s rRNA gene revealed that in the summer, 42% of the C. parvum-like 

oocysts shed by pre-weaned calves were zoonotic, compared to > 74% during the rest 

of the year. Both empirical and stochastic methods revealed a summer peak in the 

prevalence of C. parvum-like oocysts in pre-weaned calves.  

 
1 
This chapter has been prepared in the format for submission to the journal Parasitology Research 
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Determining whether seasonal variation in the prevalence and proportion of 

Cryptosporidium species shed by pre-weaned calves is due to management practices 

or ecological factors will have important implications for effective control of this 

parasite.    

 

INTRODUCTION 

Cryptosporidiosis is an emerging waterborne protozoan infection affecting 

humans and livestock worldwide (de Graaf et al., 1999; Xiao and Feng, 2008).   Cattle 

are commonly infected by four Cryptosporidium species: C. parvum, C. bovis, and C. 

ryanae (formerly the deer-like genotype) in the intestine, and C. andersoni in the 

abomasum (Fayer et al., 2007, 2008; Fayer et al., 2005; Xiao et al., 2007). A recent 

study showed that these Cryptosporidium species in cattle are age-related. 

Cryptosporidium parvum, the only prevalent zoonotic species, is responsible for about 

85% of the infections in pre-weaned calves, whereas post-weaned and adult cattle are 

mostly infected with the host-specific C. bovis, C. andersoni and C. ryanae (Fayer et 

al., 2006; Santin et al., 2004). These findings demonstrate that only neonatal calves 

are important sources of zoonotic cryptosporidiosis in humans, and it is this age group 

that is mostly affected by cryptosporidiosis in terms of prevalence of infection and 

associated morbidity and mortality (Xiao et al., 2007). This information is critical for 

the design of cost-effective strategies to decrease the risk of this pathogen in dairy 

cattle populations. 

One of the main challenges of quantifying the risk of C. parvum infections in 

cattle is that most studies use traditional diagnostic methods such as flotation that are 

capable of identifying C. andersoni, but molecular techniques are needed to 
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distinguish the zoonotic C. parvum from the non-zoonotic C. bovis and C. ryanae. 

Thus, when traditional diagnostic methods are used, it is more accurate to commonly 

refer to C. parvum, C. bovis and C. ryanae as the C. parvum-like species (Santin et al., 

2004; Starkey et al., 2005). However, for the purposes of risk assessment and risk 

mitigation, it is critical to differentiate between zoonotic and non-zoonotic species of 

this pathogen, and to obtain valid and reliable estimates of their occurrence in the 

target populations. 

Various authors have reported contradictory findings regarding seasonality of 

the risk of Cryptosporidium infection in cattle populations. A number of studies 

conducted in New York State and other regions with similar climatic conditions 

indicated that winter is the greatest risk (Hamnes et al., 2006; Huetink et al., 2001; 

Mohammed et al., 1999) while others reported increased prevalence during the 

summer (Garber et al., 1994; Trotz-Williams et al., 2007) or no significant seasonal 

pattern of shedding of this protozoa (Starkey et al., 2005).  Season itself may be a risk 

factor that is not amenable to intervention, but determining the presence of seasonal 

variation is of importance because the observed pattern might be associated with 

modifiable management practices.  Hence, intervention strategies may be 

preferentially applied in high-risk months to effectively decrease the risk of infection.  

While the Catskill/Delaware portion of the New York City Watershed is home 

to approximately 200 dairy farms, it provides over 80% of New York City’s (NYC) 

drinking water that is largely unfiltered. Extensive efforts and resources are being 

invested to maintain the quality of the NYC drinking water and at the same time 

sustain the agricultural viability of the region. For these efforts to continue to be 

successful, it is essential to accurately quantify the risk that these dairy farms pose to 

water supplies as a source of zoonotic Cryptosporidium. Our objective was to ensure 

correct estimates of the risk associated with Cryptosporidium infection in dairy herds 
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in the NYC Watershed. We adopted three specific aims: 1) to obtain species-specific 

estimates of the prevalence of  Cryptosporidium  in dairy cattle; 2) to investigate 

seasonal variations in prevalence; and 3) to validate the empirical estimates using a 

stochastic approach. 

MATERIALS AND METHODS 

Target population and sample collection 

A series of repeated cross-sectional studies were conducted targeting dairy 

herds in the Catskill/Delaware portion of the New York City Watershed located in 

central New York State. The study population consisted of 32 farms that were drawn 

from herds enrolled in a voluntary program administered by the New York City 

Watershed Agricultural Council (Starkey et al., 2005). Farms selected and enrolled in 

the study were visited once in each of three different seasons defined as winter 

(December - March), spring (April - June) and summer (July - September). An age-

stratified sampling design was applied, preferentially targeting pre-weaned calves to 

improve the chances of detecting those animals shedding C. parvum oocysts (Starkey 

et al., 2006a; Wade et al., 2000). According to the protocol samples were collected 

from a total of 20 animals per visit. The sampled animals included all calves < 1 year 

of age up to a maximum of 12 animals; if more than 12 such animals were present, 9 

samples were collected from pre-weaned calves (< 2 months old) and 3 samples from 

post-weaned calves (2-12 months of age). We also collected samples from 8 animals > 

1 year of age including 4 heifers and 4 milking cows. The number of herds and 

animals to be sampled was based on an expected within-herd, and animal prevalence 

of 30% and 3% (Levy and Lemeshow, 1981).  

Sample processing and microscopic identification 

Fecal samples were collected rectally from each animal into plastic cups that 

were immediately capped and labeled to identify their source based on the ear tag 
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number. The samples were transported on ice to the Animal Health Diagnostic Center 

at Cornell University (Ithaca, NY) where they were processed within one week of 

collection using a standard quantitative centrifugation flotation technique (Georgi, 

1990). For each sample, 1 g of feces was processed using sugar (sg 1.33) as the 

flotation medium. Cryptosporidium oocysts were confirmed at 400X magnification 

with both bright-field and phase contrast illumination. A sample was considered 

positive by flotation when at least one oocyst with the correct morphological 

characters was identified (C. parvum-like oocysts are 4-6  µm and spherical; C. 

andersoni is 7-9 µm and oval; both types contain a residuum and sporozoites, refract 

pink in sugar and have a halo in phase) (Wade et al., 2000). 

Statistical analysis 

Empirical approach using maximum likelihood estimates 

The animal prevalence was calculated as the number of animals with positive 

test result on flotation divided by the total number of animals examined. The herd 

prevalence was defined as the number of herds with at least one positive animal at the 

time of visit divided by the total number of herds. Cumulative herd prevalence was 

calculated as the proportion of herds with at least one positive animal on at least one 

of the 3 visits. The within-herd prevalence was estimated as the proportion of positive 

animals in each herd.  

Stochastic approach using Bayesian modeling 

A Bayesian prevalence model was fitted to validate our empirical estimate of 

the prevalence of zoonotic Cryptosporidium in the New York City Watershed. The 

analysis was restricted to pre-weaned calves, because the risk of infection with 

zoonotic Cryptosporidium has been shown to be limited to this age group, and the 

majority of Cryptosporidium oocysts shed by pre-weaned calves is zoonotic (Fayer et 

al., 2007; Starkey et al., 2005; Xiao, 2009). Given these findings, restricting the 
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analysis to pre-weaned calves provided a more accurate estimate of the human health 

risk posed by dairy cattle regarding zoonotic Cryptosporidium within the watershed. A 

hierarchical model was fitted (Branscum et al., 2004), based on a single diagnostic test 

applied to multiple herds with binomial sampling (Appendix). Animal level 

prevalence was modeled as mixture distributions to allow for zero infection 

prevalence, as previous reports indicate that not all herds in the study area are infected 

(Starkey et al., 2005; Wade et al., 2000). Using this model, we estimated the within-

herd prevalence for each of the 32 herds, the distribution of prevalences for all herds 

in the region (prevalence distribution), the proportion of infected herds, and predicted 

probabilities for a randomly selected herd in the region (including the predicted 

probability of zero prevalence). 

The prior parameters for the model were based on a series of studies our group 

had conducted on dairy farms in New York State watersheds (Starkey et al., 2005) 

using the most likely (modal) value and the estimated upper or lower 95
th

 percentile 

for the parameter. We used the modal values of 0.2 and 0.42 for the beta distributions 

of the average animal prevalence and the herd prevalence, respectively, with 95
th

 

percentiles of 0.3 and 0.6. Thus average animal prevalence was modeled as beta 

(12.82, 48.28) and herd prevalence was modeled as beta (9.51, 12.75). In a previous 

study, it was determined in our laboratory that the sugar flotation has a sensitivity and 

specificity of 0.75 and 0.96, respectively (Starkey et al., 2007). Using these values 

sensitivity was modeled as beta (13, 5) and specificity as beta (97, 5). Models were 

run on the free software WinBugs version 1.4 (Spiegelhalter et al., 1996).  The initial 

burn-in phase of 5000 iterations were discarded and the models were run for another 

45,000 iterations to obtain estimates. Convergence was assessed by running multiple 

chains from various starting values (Branscum et al., 2004). 
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Molecular typing of specimens 

DNA was extracted from all samples that tested positive for C. parvum-like 

oocysts with the flotation method, using QIAamp DNA Stool Mini Kit according to 

the manufacturer’s instructions (Qiagen, Valencia, CA).  A two-step nested PCR 

protocol was used to amplify an 830bp fragment of the 18S rRNA gene using primers 

5'-TTCTAGAGCTAATACATGCG-3 and 5'- CCCATTTCCTTCGAAACAGGA-3 

for primary and 5'-GGAAGGGTTGTATTTATTAGATAAAG-3 and 

5’AAGGAGTAAGGAACAACCTCCA-3' for the secondary PCR (Xiao et al., 1999). 

The primary reaction was carried out in 25 µl volume consisting
 
of 1 µl of genomic 

DNA, 10.8
 
µl of reverse osmosis water, 2 µl of 10X PCR buffer (Fermentas, MD),

 
4.8 

µl of MgCl2 (25 mM), 0.4 µl of dNTP’s (10 mM), 0.4 µl of each forward and reverse 

primer (10 µM), and 0.2 µl (5 U/µl) of Taq DNA polymerase. The
 
secondary reaction 

consisted of 1 µl of the product from
 
the primary reaction added to a mixture 

containing 13.2 µl
 
of reverse osmosis water, 2 µl of 10X PCR buffer, 2.4 µl of MgCl2

 

(25 mM), 0.4 µl of dNTP’s (10 mM),
 
0.4 µl of each forward and reverse primer (10 

µM), and 0.2 µl (5 U/µl) of Taq DNA polymerase.
 
Both the primary and secondary 

reactions were run under the
 
same conditions: initial denaturation (94°C for 3 min), 

followed by 35 cycles of amplification (94°C for 45 s, 55°C for
 
45 s, and 72°C for 1 

min) and a final extension (72°C for 7 min).
    

PCR products were visualized after 

electrophoresis on 1% agarose gel stained with ethidium bromide. After purification of 

PCR products using Exonuclease
 
I/Shrimp Alkaline Phosphatase (Exo-SAP-IT; USB 

Corporation,
 
Cleveland, OH), the products were sequenced using the internal

 
primers 

described above in 9-µL reactions in an automated
 
sequencer (3730 DNA Analyzer; 

Applied Biosystems, Foster City,
 
CA). Samples were sequenced in both directions, 

and the sequence
 
chromatograms were aligned from each strand using

 
MEGA 4 

software (Tamura et al., 2007). The DNA sequences were compared with GenBank 
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DNA sequences to determine the species of Cryptosporidium in the sample using the 

Basic Local Alignment Search Tool (BLAST). 

RESULTS 

Maximum likelihood estimates of prevalence 

A total of 1,911 fecal samples were collected on 32 dairy farms from 860 adult 

cattle and 1051 calves, including 507 pre-weaned and 544 post-weaned calves. The 

average number of pre-weaned calves present on the farms at sample collection was 

five, with continuous calving throughout the year.  The animal-, and herd level 

prevalence of Cryptosporidium species as determined by flotation and stratified by age 

and season, were summarized in Table 2.1.   

Prevalence of C. parvum-like species based on microscopy 

The prevalence of C. parvum-like species among the 1,911 animals tested with 

the flotation technique was 5%. Pre-weaned calves had the highest prevalence with an 

overall average of 18%, and a marked seasonal variation ranging from 11% in the 

winter to 26% in the summer. The prevalence in post-weaned calves was low (0.5-2%) 

throughout the year, and no adult cattle were infected with C. parvum-like species at 

any time during the study. The oldest animal shedding C. parvum-like oocysts was a 

5-month old calf. The same seasonal trend in prevalence was detected at both the 

animal-, and the herd level: herd prevalence ranged from as low as 41% in the winter 

to 56% in the summer. The cumulative herd prevalence was 84%. The within-herd 

prevalence was greatly influenced by herd size (data not shown). We observed the 

highest within-herd prevalence among the largest herds in the study population, where 

up to 60% of the pre-weaned calves sampled were shedding C. parvum-like oocysts. 

Conversely, the smallest farms that did not have more than 2-3 pre-weaned calves on 

the premises at any given time often tested free of Cryptosporidium infection.  
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Prevalence of C. andersoni based on microscopy 

The overall prevalence of C. andersoni among the 1911 animals was 1%. 

Although the prevalence was low (close to 1%) in all age groups in all seasons, 

interestingly, the highest overall prevalence was found among pre-weaned animals 

(1.5%) with a peak of 3.3% in the spring. The youngest animal infected with C. 

andersoni was 21 days of age. Among the 8 pre-weaned calves that were shedding C. 

andersoni at the time of sampling, 3 animals were also shedding C. parvum-like 

oocysts simultaneously. However, adult cattle infected with C. andersoni shed an 

average of 98,286 oocysts per gram of feces, compared to only 20 oocysts per gram 

among pre-weaned calves. The proportion of farms with at least one animal shedding 

C. andersoni oocysts was in the range of 12-15% throughout the year. The cumulative 

herd prevalence of C. andersoni was 31%.   

Bayesian estimates of the prevalence of C. parvum-like species in calves 

The estimated within-herd prevalence distribution for each of the 32 study 

farms was displayed in Figure 2.1. The 95% credible interval was wide for the 

majority of the study farms, ranging from zero to 40-50%.  Only 3 farms in the study 

(Farms 2, 8, and 32) had a 95% credible interval that did not include zero. These  

farms were among the largest herds in the study. 

The means and 95% credible intervals for herd prevalence and prevalence 

distribution in the watershed are summarized in Table 2.2  The following posterior 

probabilities were also predicted: the probability that a randomly selected herd in the 

area is infection free (P (π*= 0| {yt})); the proportion of herds in the watershed that 

have a within herd prevalence <5% (P (π*≤ 0.05| {yt})); and the probability that less 

than 50% of the herds in the area are infected (P (HP ≤ 0.5| {yt})).  

Consistent with the maximum likelihood estimates, the proportion of farms 

infected was highest in the summer (54%) and lowest in the winter (41%) (Figure 2.2).  



 

 

1
7 

 

Table 2.1 Maximum likelihood estimates of animal-, and herd-level prevalence of Cryptosporidium in cattle by season, as 

determined by microscopic examination 

 

      Spring Summer Winter Total 

Animal level  n
2
  p (%)

3
 n p (%) n p (%) n p (%) 

 
pre-weaned calves 150 

 
182 

 
175 

 
507 

 

  
C. parvum-like spp

1
 23 (15.3) 

 
47 (25.8) 

 
20 (11.5) 

 
90 (17.7) 

  
C. andersoni 5 (3.3) 

 
1 (0.5) 

 
2 (1.1) 

 
8 (1.5) 

 
post-weaned calves 192 

 
170 

 
182 

 
544 

 

  
C. parvum-like spp 4 (2.1) 

 
1 (0.6) 

 
1 (0.5) 

 
6 (1.1) 

  
C. andersoni 0 

 
1 (0.6) 

 
0 

 
1 (0.2) 

 
adult cattle 292 

 
275 

 
293 

 
860 

 

  
C. parvum-like spp 0 

 
0 

 
0 

 
0 

  
C. andersoni 4 (1.4) 

 
3 (1.1) 

 
3 (1.0) 

 
10 (1.2) 

Herd level  32 
 

32 
 

32 
 

32 
 

  
C. parvum-like spp 14 (43.7) 

 
18 (56.2) 

 
13 (40.6) 

 
27 (84.3) 

    C. andersoni 5 (15.6)   4 (12.5)   5 (15.6)   10 (31.2) 

 
1
 C. parvum-like spp: C. parvum, C. bovis, and C. ryanae 

2  
n: number of animals (animal level) or herds (herd level) examined 

3 
p (%): number and proportion (expressed as percentage) of animals or farms that tested positive by flotation
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Figure 2.1 Bayesian estimate of within-herd prevalence for 32 dairy farms, ranked by 

their mean. Farm number is shown in brackets. For each study farm, the mean of the 

within- herd prevalence is indicated by a dot and a horizontal line represents the 95% 

credible interval
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Table 2.2 Means, 95% credible intervals, and predictive probabilities for the prevalence of C. parvum-like species in pre-weaned 

calves based on Bayesian analysis 

  Posterior distributions Posterior predictive probabilities 

Dataset {yt} Herd prevalence Prevalence distribution P (π*≤ 0.05|{yt}) P (π*= 0|{yt}) P (HP ≤ 0.5|{yt}) 

Spring 0.46 (0.28-0.64) 0.1 (0-0.47) 0.58 0.54 0.68 

Summer 0.54 (0.36-0.7) 0.16 (0-0.59) 0.48 0.46 0.34 

Winter 0.41 (0.23-0.60) 0.08 (0-0.5) 0.65 0.59 0.82 

Total 0.47(0.29-0.66) 0.1 (0-0.51) 0.58 0.53 0.62 
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Figure 2. 2 Distribution of prior (solid) and posterior herd prevalence by season: 

spring (dots), summer (dashes and dots), and winter (dashes) 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.15 0.30 0.45 0.60 0.75

Prevalence

D
en

si
ty



 

 21 

 

The prevalence distribution predicted that the average within-herd prevalence 

among all the herds in the target population ranged from 8% in winter to 16% in the 

summer, although there was a wide variation indicated by the 95% credible intervals. 

In the winter and spring, the probability that a randomly selected herd in the target 

area was infection free was > 50%; in contrast in the summer, it was predicted that 

over 50% of the farms had a prevalence > 5%. In the summer, there was only a 34% 

probability that herd prevalence was ≤ 50%; in the winter, this probability was 82%.  

Molecular characterization of C. parvum-like specimens 

We successfully amplified a segment of the 18s rRNA gene of 79 flotation-

positive samples (74 from pre-weaned and 5 from post-weaned calves). All 5 

sequences from post-weaned calves had 100% homology with C. bovis (Genbank 

accession AY120911). The number of different species of C. parvum-like organisms 

detected in pre-weaned calves in each season was summarized in Table 2.3. The 

majority of the C. parvum-like specimens (44) had 100% homology with C. parvum 

(AF093490), followed by 25 sequences that were identified as C. bovis, while only 5 

specimens had 100% homology with C. ryanae (AY120910). Calves that were 

infected with C. parvum shed an average of 127,000 oocysts per gram of feces year-

round, while those infected with the non-zoonotic species did not shed more than an 

average of 6,500 oocysts per gram at any time of the year. The average age of animals 

infected with C. parvum was the lowest (17 days) followed by C. bovis (27 days) and 

C. ryanae (43 days).  

We observed a substantial seasonal shift in the proportion of zoonotic 

Cryptosporidium shed by pre-weaned calves (Figure 2.3).  
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Table 2.3 Number (n) of different C. parvum-like species identified by 18s rRNA gene 

sequencing in pre-weaned calves in each season.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
The average age, and the average number of oocysts per gram of feces estimated by the quantitative 

concentration flotation method are also indicated 

  

Season Species n Age (days) Oocyst/gram of feces 

Spring C. parvum 12 20 115,686 

 
C. bovis 3 30 398 

 
C. ryanae 0 

  
Summer C. parvum 15 17 105,733 

 
C. bovis 16 27 5613 

 
C. ryanae 5 43 182 

Winter C. parvum 17 14 154,255 

 
C. bovis 6 25 465 

 
C. ryanae 0 

  
Total C. parvum 44 17 127,195 

 
C. bovis 25 27 3751 

  C. ryanae 5 43 182 



 

 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The proportion of C. parvum-like species shed by pre-weaned calves by 

season based on18s rRNA gene sequencing 
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In the winter and spring, at least 74% of the C. parvum-like samples from pre-

weaned calves were zoonotic. However in the summer, only 42% of such samples 

were identified as zoonotic, while the rest belonged to the non-zoonotic C. bovis and 

C. ryanae species.  

DISCUSSION 

The goal of this study was to ensure correct estimates of the risk of infection 

with different Cryptosporidium species in cattle in an important New York State 

watershed. The overall prevalence of C. parvum-like species and C. andersoni among 

the 1911 animals tested by the flotation method was 5% and 1%, respectively. As 

expected, we detected the highest prevalence of C. parvum-like species among pre-

weaned calves (18%).  

With respect to the overall prevalence of C. andersoni, the current study was in 

concordance with a study our group had conducted on 109 farms in the New York 

City Watershed in 1998, where an overall prevalence of 1.1% was reported for this 

parasite (Wade et al., 2000). These results were also consistent with other reports from 

the United States (Fayer et al., 2007; Fayer et al., 2000), however investigators in 

India found a higher overall C. andersoni prevalence of 12.85% in post-weaned and 

adult cattle (Paul et al., 2009).  

In terms of the prevalence of C. parvum-like species, the present study was in 

agreement with a recent study conducted in an adjacent New York State watershed 

that reported an overall prevalence of 3.9% among the 453 animals examined, with a 

20% prevalence among animals less than 61 days of age (Starkey et al., 2006a). Thus 

it was confirmed that on average, approximately one-fifth of pre-weaned calves were 

infected with C. parvum-like species in the New York City Watershed.  

Numerous studies conducted worldwide within the past decade reported wide 

variations in the prevalence of C. parvum-like species in dairy calves, ranging from 
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12% in Norway (Hamnes et al., 2006)  to 40-50% in Australia and Zambia (Becher et 

al., 2004; Geurden et al., 2006) to 79% in India (Singh et al., 2006). Studies that 

applied repetitive sampling often reported higher period prevalences of  > 90% (Uga 

et al., 2000), and up to 100% (Castro-Hermida et al., 2002b; Xiao and Herd, 1994) in 

pre-weaned calves. According to the study design we only collected one fecal sample 

from each animal, which might have underestimated the actual prevalence in the study 

population, as intermittent oocyst excretion in cattle has been reported (McCluskey et 

al., 1995).  

We did not detect C. parvum-like oocysts in cattle older than 5 months of age 

in our study population. Molecular analysis of the specimens revealed that C. parvum 

did not occur in calves older than 2 months of age, while post-weaned cattle were only 

infected with the non-zoonotic C. bovis and C. ryanae. These findings were consistent 

with other reports, although some studies detected infection with C. parvum-like 

species in adult cattle (Fayer et al., 2006; Feng et al., 2007; Santin et al., 2004). In a 

study conducted in Maryland targeting cattle over 6 months of age, C parvum-like 

oocysts were detected in 20.7% of the 184 animals tested with the flotation method 

(Fayer et al., 2000), while another study in the eastern United States reported infection 

with C. parvum and C. bovis in 0.4 and 1.7% of the 541 cows examined, respectively 

(Fayer et al., 2007). The results of the present study indicated that adult cattle in the 

New York City Watershed were either truly infection free, or that these animals were 

shedding C. parvum-like oocysts below the limit of detection. For the standard sugar 

flotation that have been used in our investigations, the threshold of detection was 

determined to be approximately 100 oocysts per gram of feces (Fayer et al., 2000; 

Xiao and Herd, 1993). Therefore if adult cattle were consistently shedding C. parvum-

like oocysts below the limit of detection, they would have been classified as negative 

for this parasite.  
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Larger farms had higher within-herd prevalence of C. parvum-like species 

compared to smaller farms in the study area. This was consistent with findings in the 

neighboring watershed where the likelihood of shedding C. parvum-like oocysts 

increased with the number of pre-weaned calves in the herd (Starkey et al., 2006a). 

Several authors have described an association between the size of the farm and risk of 

Cryptosporidium infection, where the higher the number of susceptible calves, the 

greater the number of animals that become infected which in turn results in increased 

environmental contamination (Garber et al., 1994)  

Our study revealed that the point herd prevalence of C. parvum-like species 

ranged from 41-56%. However, the cumulative herd prevalence over the study period 

was 84%, with only 5 of the 32 herds testing negative at every visit. A herd that is not 

truly negative may be classified as negative if too few calves were tested to detect 

infection; or infected calves were shedding below the detection threshold at sampling; 

or the tested animals had recovered from earlier infection and did not shed at sampling 

time (Hamnes et al., 2006). Thus a larger herd size is not only associated with an 

increased risk of infection as discussed above, but the probability of a herd testing 

positive also increases with the number of samples collected per farm (Garber et al., 

1994). Therefore it is possible that we could not accurately identify the infection status 

of the smaller herds in the study, due to the low number of calves present at any given 

time on these farms.  This uncertainty is captured by the wide 95% credible intervals 

for within herd prevalence in the Bayesian analysis.  

Due to the inherent difficulties in accurately assessing the infection status of 

small herds, it is questionable whether small farms that tested negative in this study 

are in fact truly free of Cryptosporidium. In a previous study conducted on dairy farms 

in the New York City Watershed, Cryptosporidium was found in the soil of 92% of 

the 37 farms examined, indicating high level of environmental contamination on these 
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farms (Barwick et al., 2003). A comprehensive wildlife survey in the same watershed 

revealed that Cryptosporidium is ubiquitous in wildlife in this area; oocysts were 

detected throughout the year in 64% (25/39) of the mammalian species tested (Ziegler 

et al., 2007b) and six isolates recovered from rodents were identified as C. parvum 

(Ziegler et al., 2007a). These findings highlight the fact that wild mammal populations 

are persistently infected and serve as environmental sources of Cryptosporidium 

oocysts, since their feces may contaminate bedding material. We suspect that the high 

level of environmental contamination and the presence of rodent reservoirs provide 

continuous exposure of susceptible calves to Cryptosporidium oocysts. However, the 

average low number of calves on the small-scale farms in the NYC Watershed does 

not favor the propagation and detection of infection. 

All 4 species of Cryptosporidium that affect cattle were detected in this study 

in pre-weaned calves. The youngest age we detected C. parvum was 7 days, which 

was in concordance with previous reports suggesting that calves acquired infection 

with this parasite within the first 1-2 days of life, and started shedding oocysts after a 

5-6 day pre-patent period (Castro-Hermida et al., 2002b; Ongerth and Stibbs, 1989; 

Quilez et al., 1996).The youngest calf shedding C. bovis and C. ryanae oocysts was 10 

and 22 days of age, respectively. This finding was in agreement with other studies that 

found that calves acquired infection with these species early in life (Santin et al., 

2004; Starkey et al., 2006b). The results of the present study also confirmed earlier 

suggestions that animals infected with C. parvum had significantly higher oocyst 

counts than animals infected with C. bovis and C. ryanae (Feng et al., 2007; Starkey et 

al., 2006b). We detected that pre-weaned calves, including a 21 day-old calf, were 

shedding C. andersoni oocysts at an average intensity of 20 oocysts per gram of feces. 

Although C. andersoni has been reported to mainly infect adult cattle (Enemark et al., 

2002; Fayer et al., 2000; Huetink et al., 2001), several authors described this species 
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in pre-weaned calves (Kvac and Vitovec, 2003; Santin et al., 2004). It is possible that, 

similarly to the other Cryptosporidium species, calves also acquire C. andersoni 

infection early in life, but the intensity of shedding in young animals is low, which 

makes early detection difficult.    

In the present study, both the animal-, and the herd-level prevalences of C. 

parvum-like species peaked in the summer and dropped to their lowest levels in the 

winter. Both our empirical estimates and Bayesian modeling confirmed this seasonal 

trend. One advantage of the study design was that samples were collected on the same 

farms in three different seasons, which allowed the evaluation of the effect of season 

without statistical adjustment for farm effects (Mohammed et al., 1999). Seasonal 

variation in prevalence can be explained by at least 4 different scenarios: seasonal 

calving which results in a higher number of susceptible animals in the calving season; 

crowding of animals indoors which leads to increased animal-to-animal transmission; 

better survival of oocysts in the environment due to favorable climatic conditions; and 

seasonal differences in management practices that affect the risk of infection (Atwill et 

al., 1999; Castro-Hermida et al., 2002a; Garber et al., 1994; Hamnes et al., 2006). In 

the NYC Watershed, there is a year-round calving pattern, and crowding indoors is not 

characteristic of the summer months when cattle spend most of their time outside. 

Thus, the most likely explanation for the observed seasonal variation in prevalence in 

this watershed is either seasonal differences in management, or favorable conditions 

for oocyst survival.  

Concurrently with an increase in the prevalence of C. parvum-like species 

among pre-weaned calves, there was seasonal variation in the proportion of zoonotic 

Cryptosporidium shed by these animals. Sequencing of a portion of the 18s rRNA 

gene revealed that in the summer, only 42% of the C. parvum-like species shed by pre-

weaned calves were zoonotic, as opposed to at least 74% during the rest of the year.  
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These estimates were slightly lower than the result of another study in the United 

States, which indicated that C. parvum was responsible for 85% of the 

Cryptosporidium infections in pre-weaned calves (Santin et al., 2004). 

Combining the results suggests that seasonal variation in the prevalence of C. 

parvum-like species in this population was due to an increased risk of infection with 

the non-zoonotic species in pre-weaned calves in the summer. It is plausible that the 

oocysts of different C. parvum-like species favor different environmental conditions. 

Alternatively, different management practices might also favor the propagation of 

zoonotic vs. non-zoonotic species. Determining whether seasonal variation in the 

prevalence and proportion of Cryptosporidium species shed by calves is due to 

management practices or ecological factors will have important implications for 

effective intervention.    

Empirical prevalence estimates obtained in this study were validated by fitting 

a Bayesian model to the data. Prior parameters for the model were based on previous 

data from studies that our group had conducted among the same target population and 

in the same laboratory. Therefore, these priors were considered to be an objective and 

unbiased representation of previous knowledge. Applying a Bayesian model allows to 

account for imperfections in the diagnostic test and for random variations in the input 

parameters, giving a range of possible values for the target population that reflect 

these uncertainties. The prevalence estimates based on maximum likelihood and 

Bayesian methods were in close agreement, lending credence to the conclusion that we 

obtained a valid and reliable estimate of the risk of infection with zoonotic 

Cryptosporidium in dairy herds in the New York City Watershed. 
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APPENDIX 

Syntax for the Bayesian model 

Model; 

{ 

Se ~ dbeta(13, 5) ## Se=sensitivity of the test 

Sp ~ dbeta(97, 5) ## Sp=specificity of the test 

tau ~ dbeta(9.51, 12.75) ## tau=proportion of infected herds 

mu ~ dbeta(12.82, 48.28) ## mu=average prevalence 

psi ~ dgamma(4.5, 0.5) ## psi=variability among herd prevalences 

alpha <- mu*psi ## first parameter of prevalence distribution 

beta <- psi*(1-mu) ## second parameter of prevalence distribution 

for(i in 1:k) 

{ 

inf[i] ~ dbern(tau) ## for each herd, it is estimated whether it is infected or not using a 

Bernoulli distribution with mean tau 

pi.star[i] ~ dbeta(alpha,beta) ## estimated prevalence of each herd 

pi[i] <- pi.star[i] * inf[i] ## estimated prevalence of each herd allowing for zero 

prevalence by multiplication with inf[i] 

prob.tpos[i] <- pi[i]*Se + (1-pi[i])*(1-Sp) ## probability of a positive test result is the 

probability of a true positive + probability of a false positive 

y[i] ~ dbin(prob.tpos[i], n[i]) ## the number of positive test results in an infected herd 

follows a binomial distribution 

} 
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CHAPTER THREE 

TEMPORAL AND SPATIAL DYNAMICS OF CRYPTOSPORIDIUM PARVUM 

INFECTION ON DAIRY FARMS IN THE NEW YORK CITY WATERSHED:  

A CLUSTER ANALYSIS BASED ON CRUDE AND BAYESIAN RISK 

ESTIMATES
1 

 

ABSTRACT 

BACKGROUND 

Cryptosporidium parvum is one of the most important biological contaminants 

in drinking water that produces life threatening infection in people with compromised 

immune systems. Dairy calves are thought to be the primary source of C. parvum 

contamination in watersheds. Understanding the spatial and temporal variation in the 

risk of C. parvum infection in dairy cattle is essential for designing cost-effective 

watershed management strategies to protect drinking water sources. Crude- and 

Bayesian seasonal risk estimates for Cryptosporidium in dairy calves were used to 

investigate the spatio-temporal dynamics of C. parvum infection on dairy farms in the 

New York City Watershed.  

RESULTS 

Both global (Global Moran’s I) and specific (SaTScan) cluster analysis 

methods revealed a significant (p<0.05) elliptical spatial cluster in the winter with a 

relative risk of 5.8, but not in other seasons. There was a two-fold increase in the risk 

of C. parvum infection in all herds in the summer (p=0.002), compared to the rest of 

the year. Bayesian estimates did not show significant spatial autocorrelation in any 

season.  

 
1
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CONCLUSIONS 

Although we were not able to identify seasonal clusters using Bayesian 

approach, crude estimates highlighted both temporal and spatial clusters of C. parvum 

infection in dairy herds in a major watershed. We recommend that further studies 

focus on the factors that may lead to the presence of C. parvum clusters within the 

watershed, so that monitoring and prevention practices such as stream monitoring, 

riparian buffers, fencing and manure management can be prioritized and improved, to 

protect drinking water supplies and public health. 

 

BACKGROUND 

Cryptosporidium is a protozoan parasite that is recognized as one of the most 

important biological contaminants in drinking water (Graczyk et al., 1997). 

Cryptosporidiosis is associated with gastrointestinal infection which can be life 

threatening in immuno-compromised individuals. The infection is transmitted by the 

fecal-oral route either by direct contact or through contamination of food and water 

(Smith et al., 2007). An experimental study of healthy adult volunteers revealed that 

the ingestion of as  few as 30 Cryptosporidium oocysts can initiate infection (Graczyk 

et al., 1997). Water-borne transmission is facilitated by the long-lasting infectivity of 

the oocyst in the environment and its resistance to conventional water treatment 

technologies such as chlorination (Betancourt and Rose, 2004). 

The New York City Watershed is currently the focus of a long-term project 

investigating the public health risk of waterborne cryptosporidiosis. Active 

surveillance in the city which began in 1994 has identified over 100 cases of 

cryptosporidiosis annually among NYC residents (NYC Department of Mental Health 

and Hygiene, 2009). A quantitative risk assessment model for cryptosporidiosis in 
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NYC predicted that the mean annual risk estimates for infection for all ages and 

persons with or without HIV/AIDS exceed the proposed acceptable annual risk level 

of 1 case of infection per 10,000 (Makri et al., 2004).  

The New York City water supply system provides drinking water to almost 

half the population of New York State, which includes over 8 million people in the 

City and one million in Upstate counties, plus millions of commuters and tourists. The 

water is supplied from a network of 19 reservoirs and three controlled lakes that 

contain a total storage capacity of approximately 2 billion cubic meters. The total 

watershed area for the system is approximately 5,100 square kilometers extending 

over 200 kilometers north and west of NYC.  The system is dependent on precipitation 

and subsequent runoff via streams and rivers to supply the reservoirs. The water is 

then moved via a series of gravity-fed aqueducts to the distributions system, where it 

is chlorinated before it reaches the consumers (NYC Department of Environmental 

Protection, 2009). Pathogens such as Cryptosporidium pose a significant threat to 

public health in the City’s unfiltered water supply, because the oocysts are very 

resistant to chlorination, and they are regularly detected in reservoir effluents 

(Betancourt and Rose, 2004).  

Dairy calves are thought to be a primary source of zoonotic Cryptosporidium 

parvum contamination in watershed ecosystems (Xiao and Feng, 2008). In the NYC 

Watershed, the Catskill/Delaware drainage system is home to approximately 200 dairy 

farms. To avoid building a huge filtration plant that could cost about $8 billion and the 

associated $300 million per year for operating costs, NYC implements extensive 

watershed management measures, including water quality monitoring and best 

management practices (BMP) on agricultural land, with the goal to protect water 

quality while maintaining economic viability on these farms (NYC Department of 

Environmental Protection, 2010).  Watershed management requires a network design 
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that demands distinct spatial and temporal monitoring and protection efforts. However 

to date, the spatial and temporal variation in the risk of C. parvum infection in dairy 

herds in watersheds has not been investigated. Understanding the spatial and temporal 

pattern of C. parvum infection on dairy farms would be useful in designing or 

modifying watershed management strategies to monitor and mitigate the risk of C. 

parvum contamination in watersheds.  

Bayesian approach has been used increasingly in geographical epidemiologic 

studies, because it stabilizes crude risk estimates by reducing variance heterogeneity. 

Thus, risk maps based on Bayesian rather than crude risk estimates are preferred 

because they are more accurate and visually appealing (Berke, 2005).  In a Bayesian 

approach, a prior probability distribution for the values of a parameter (based on 

previous studies) is converted (under the influence of current observations) to a 

posterior distribution of that parameter. This posterior distribution is used to provide 

an estimate for the parameter (Rezaeian et al., 2007).  

The objectives of the study were to 1) explore and map the temporal and 

spatial dynamics of the risk of C. parvum infection in dairy cattle in the NYC 

Watershed, and to 2) identify high-risk clusters in space and time. The study utilized 

both crude-, and Bayesian prevalence estimates to accurately describe the spatial 

epidemiology of this important zoonotic parasite among dairy herds in a large 

watershed ecosystem. 

METHODS 

Description of data and study area  

The crude C. parvum prevalence estimates were based on a series of cross-

sectional studies conducted in the Delaware portion of the NYC Watershed (Szonyi, 

2010). The study farms were located within the Cannonsville drainage basin in the 

City’s Delaware Water Supply System, which is the largest basin in the City’s system, 
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encompassing an area of 1200 km
2
 within Delaware County (NYC Department of 

Environmental Protection, 2009). Most of the dairy farms in the study area were 

family operated, small- scale farms occupying an average of 1-2 km
2
 and maintaining 

a herd of approximately 100 mature dairy cows. There was a year-round calving 

pattern and most farmers spread calf manure on their fields regularly. The majority of 

the farmers maintained an open herd (i.e. regularly purchased cattle from other herds). 

Mature cattle were kept on pasture during the summer months and often had direct 

access to springs. Several farms used untreated spring water as water source for the 

barn. The study population was drawn from dairy herds enrolled in the Watershed 

Agricultural Program, which is a voluntary partnership between watershed farmers 

and the City, aimed at developing and implementing pollution prevention plans on 

farms to protect water quality.  Thirty-two dairy farms were visited once in each of 

three different seasons defined as spring (April-June) summer (July-September) and 

winter (December-March). A total of 507 fecal samples were collected from pre-

weaned calves (with or without apparent signs of illness) and screened for the 

presence of Cryptosporidium with a quantitative centrifugation flotation method and 

bright-field microscopy. A sample was considered positive by flotation when at least 

one oocyst with the correct morphological characters was identified (C. parvum-like 

oocysts are 4-6 µm and spherical; contain a residuum and sporozoites; refract pink in 

sugar and have a halo in phase) (Georgi, 1990).   

Bayesian model 

Prevalence data from the cross-sectional studies described above were used to 

fit a hierarchical Bayesian model using WinBugs version 1.4 software (Spiegelhalter, 

1996). All prior estimates in the model were based on the results of epidemiologic 

studies that our group had conducted among dairy herds in New York State 

watersheds (Starkey et al., 2006a; Starkey et al., 2007) . Thus the sensitivity and 
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specificity of the flotation method was 0.75 and 0.96, respectively (Starkey et al., 

2007). The Bayesian model was based on binomial sampling (Equation 1) (Branscum 

et al., 2004). 

1) (Eq                              )1)(1(,(,,/ SpSenBinSpSey ttttt   

where yt was the number of flotation-positive calves on farm t, nt was the total number 

of calves tested on farm t, πt  was the prevalence of Cryptosporidium among pre-

weaned calves on farm t, and Se and Sp were the sensitivity and specificity, 

respectively, of the flotation method. The term (πt Se + (1- πt )(1-Sp)) is the probability 

of a test positive result for a particular calf.  Because of our concern regarding the 

potential over-dispersion in the estimate of t (due to the fact that animals are clustered 

by farm) we controlled for this dependency by conditioning the estimate on farm to 

achieve approximate conditional independence. In other words, we used a hierarchical 

modelling approach to be able to pool the information on the prevalence of 

Cryptosporidium from these herds without assuming that they belonged precisely to 

the same population. To achieve approximate conditional independence, we assigned 

Bayesian hyperpriors to t representing the mean C. parvum prevalence in pre-weaned 

calves in the population (μ), and the variability of this prevalence (ψ) due to 

aggregation by farms (Equation 2). Prior studies revealed that the average prevalence 

of C. parvum in a New York State watershed in pre-weaned cattle was 20% (Starkey 

et al., 2006a), therefore μ was modelled as beta (12.82, 48.28) with a most likely value 

of 20%. The same study revealed that the within-farm prevalence of C. parvum in this 

population ranged from 0-40%. Using this estimate, the variability among C. parvum 

prevalence in calves on different farms (ψ) was modeled as gamma (4.5, 0.5). 

Previous studies also revealed that not all herds in the study area were infected with C. 

parvum (Wade et al., 2000). To allow for the possibility of a C. parvum-free herd, t 

was modeled with a mixture distribution. A prior study in an adjacent watershed 
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estimated that 42% of the herds were infected with C. parvum  (Starkey et al., 2006b). 

In the current study, the probability of a herd being infected (τ) was modeled as beta 

(9.51, 12.75) with a most likely value of 0.42. Thus, t was modeled as a mixture beta-

distribution with the hyperpriors μ and ψ as described in equation 2.  

2) (Eq.      0 for   - 1 and  y probabilit th the        wi))1(,(,/ tBetat  

The number of animals and prevalence estimates used in the study are summarized in 

Table 3.1. 

Potential clustering of zoonotic strains  

The overall clustering tendency of the disease risk in the study region was 

assessed by a test of global spatial autocorrelation, which only investigates the 

presence but not the exact location of the cluster(s).  Spatial autocorrelation arises 

when risk estimates from neighbouring farms are not independent, i.e., correlated. 

This correlation is measured using the Moran’s I. High values for the I implies that 

disease rates for geographically closer farms are more highly correlated than those 

from farms that are geographically distant (Moran, 1950). The Moran’s I statistic is 

defined as follows: 

 

 

 

where  N is the number of farms, X  is the average prevalence on the farms, iX  and

jX  are the prevalence on farm i and j, respectively, and ijw  is the spatial weight 

between farms i and j, determined by the distance between farms i and j. The Z Score 

associated with the index is based on the Randomization Null Hypothesis stating that 

"there is no spatial clustering". Thus Z-scores greater than 1.96 or smaller than −1.96 

indicate significant spatial autocorrelation at the 5% level (Moran, 1950).  

The spatial relationship among the farms was conceptualized with the inverse 
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distance model (the impact of one feature on another decreases with distance). The 

global spatial autocorrelation test was performed on both the crude and the Bayesian 

prevalence estimates by season, using the geographical information system (GIS) 

software ArcView 9.2 (ESRI, CA, USA).  

The scan statistic implemented in the software SaTScan v8.0.1 (Kulldorff, 

2009) was used to test for the presence of purely spatial, purely temporal, and space-

time clusters, and to identify their location. The SaTScan statistic evaluates clusters in 

temporal, spatial and space-time setting by gradually scanning a window across time 

and/or space. Purely spatial analysis utilizes circular or oval scanning windows, while 

space-time analysis uses cylinders, with the base representing space and the height 

indicating time. For each window a likelihood ratio statistic is computed based on the 

number of observed and expected cases within and outside the window.  The 

likelihood function assuming Poisson distributed cases is proportional to: 

 

 

 

Where N  is the total number of cases, c  and E[c] represent the observed and 

expected number of cases in a window, while N-c and N – E[c] indicate the observed 

and expected number of cases outside the window. The indicator function 

 I( ) is equal to 1 when the window has more cases than expected under the null 

hypothesis, and zero otherwise. The window with the highest likelihood ratio is the 

most likely cluster and is assigned a p value through 999 Monte Carlo simulations 

(Kulldorff, 1997). A Poisson model was fitted to the raw data for each season to 

examine the presence of purely spatial clusters. A Poisson model was also applied to 

the entire dataset to determine whether purely temporal (i.e. seasonal) or space-time 

clusters existed during the course of a year. At each farm location, cases were defined 
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as the number of calves that tested positive for Cryptosporidium by the flotation 

method, while the population size was the total number of calves that were tested. The 

maximum cluster size was set at the recommended value (50% of the total population 

at risk).  Both circular and oval cluster shapes were evaluated.  

Mapping the risk of C. parvum in the watershed 

Geospatial coordinates for each farm were collected with a Garmin eTrex 

Summit handheld global positioning system (GPS) device (Garmin International Inc, 

Olathe, Kansas, USA) and imported into the GIS software Manifold System 8.0 

Ultimate Edition (Manifold, Carson City, NV, USA). The geographical coordinates 

were re-projected into the Universal Transverse Mercator coordinate system, Zone 

18(N), North American Datum 1983, and overlaid with the shapefile of Delaware 

County, NY obtained from the New York State Geographic Information System 

Clearinghouse (www.nysgis.state.ny.us). Dot maps indicating the seasonal prevalence 

estimates on the study farms were created to examine the spatial dynamics of C. 

parvum in the watershed during the annual cycle, and to explore the differences 

between the crude-, and the Bayesian estimates. 

RESULTS 

Potential clustering of zoonotic strains 

The Global Moran’s I statistic was performed on both crude-, and Bayesian 

prevalence estimates to determine the presence of global autocorrelation in three 

different seasons. The results of this analysis were summarized in Table 3.2. The 

crude estimates revealed significant spatial autocorrelation in the winter with a Global 

Moran’s I value of 0.18 (p=0.03), and no clustering in the spring and summer. In 

contrast, the Bayesian prevalence estimates did not show significant overall clustering 

tendency in any of the seasons examined.  

Crude prevalence estimates were used to test for the presence of spatial, 
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temporal, and space-time clusters using the Poisson model with the scan statistic. The 

results of the SaTScan analyses were summarized in Table 3.3. The purely temporal 

analysis revealed a 2-fold increase in the risk of C. parvum infection in the summer 

affecting all the herds in the study area. A significant (p=0.003) oval-shaped cluster 

was identified in the winter, with a more than 5-fold increase in risk inside the cluster 

compared to the rest of the study area. In addition, significant space-time clusters were 

detected in the summer with both oval and circular scanning window settings. These 

space-time clusters included nearly 50% of the population at risk and overlapped 

geographically. Therefore, only the circular space-time cluster was shown in Figure 

3.1. 

Risk maps 

Dot maps were created to explore the spatio-temporal dynamics of C. parvum 

infection in dairy herds in Delaware County, NY, based on crude-, and Bayesian 

prevalence estimates (Figures 3.1 and 3.2). The significant spatial and space-time 

clusters identified by the SatScan statistics were also indicated. Although cluster 

analyses based on Bayesian estimates did not show significant spatial clustering in any 

season, the map revealed a diffuse increase in the risk of C. parvum contamination in 

the summer.
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Table 3.1 Characteristics of the data used in the study 

 

 

 

 

 

  
 

 

 

1
 Number of pre-weaned calves tested with the flotation method 

2 
Number of pre-weaned calves positive for C. parvum with the flotation method 

3 
Crude average prevalence of C. parvum among pre-weaned calves expressed as percent 

4 
Range of crude within-herd prevalence of C. parvum expressed as percent 

5 
BP Bayesian average prevalence of C. parvum among pre-weaned calves expressed as percent 

6
 Range of Bayesian within-herd prevalence of C. parvum expressed as percent

Season N samples
1
 N positive

2
 CP

3
 

 
Range of CP

4
 BP

5
 Range of BP

6
  

Spring 150 23 15 0-100 10 0-37 

Summer 182 47 26 0-100 19 0-48 

Winter 175 20 11 0-64 9 0-51 
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Table 3.2 Results for the test of global spatial autocorrelation using Moran’s I 

statistics based on crude-, and Bayesian risk estimates 

 

 

  
Season Estimate Moran's I Z-score p-value 

Spring 
    

 
Crude 0.0087 0.41 0.67 

 
Bayesian -0.0067 0.24 0.8 

Summer 
    

 
Crude -0.17 -1.4 0.15 

 
Bayesian -0.1 -0.64 0.51 

Winter 
    

 
Crude 0.18 2.07 0.03 

 
Bayesian 0.061 1.03 0.3 
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Table 3.3 The most likely temporal, spatial, and space-time clusters identified by the 

SaTScan statistics using the Poisson probability model, based on crude prevalence 

estimates 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

1 
Number of observed cases in cluster 

2 
Number of expected cases in cluster 

3 
Relative Risk 

4 
Number of animals at risk in the cluster 

 

Analysis 

type 
Observed

1
 Expected

2
 RR

3
 

P- 

value 
Population

4
 Shape 

Purely 

Temporal 
57 38 2 0.002 169 

 

Purely 

Spatial        

Spring no significant cluster 
 

Summer no significant cluster 
 

Winter 14 4 5.87 0.003 29 elliptical 

Space-

Time 
37 20 2.3 0.031 83 circular 

  40 17 3 0.004 78 elliptical 
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 Figure 3.1 Dot map of the spatio-temporal dynamics of C. parvum infection in dairy 

herds in Delaware County, NY, based on crude prevalence estimates. Significant 

circular clusters identified by the SaTScan statistics are also shown 



 

 

5
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Figure 3.2 Dot map of the spatio-temporal dynamics of C. parvum infection in dairy 

herds in Delaware County, NY, based on Bayesian risk estimates 
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DISCUSSION 

This study was carried out to evaluate potential clustering of dairy herds that 

are infected with C. parvum in the NYC Watershed.  This was the first study to 

evaluate the spatial and temporal variation in the risk of C. parvum infection in dairy 

cattle in an important watershed.   

The decision to include only pre-weaned calves in this study was based on the 

results of a quantitative risk assessment (QRA) of Cryptosporidium in dairy cattle in 

the NYC Watershed which revealed, that despite representing only a small proportion 

of the population and producing a small fraction of manure, pre-weaned calves 

produced the vast majority of all zoonotic C. parvum oocysts shed within the dairy 

cattle population. Specifically, it was estimated that pre-weaned calves produced 

99.5% of the total C. parvum oocyst burden with a calculated mean log oocyst 

shedding of 4.02 x 10
10 

daily. Thus it was estimated that pre-weaned calves produce 

nearly all the C. parvum oocysts that contaminate the watershed (Starkey et al., 2007).  

One of the assumptions in the present models was that all C. parvum-like 

oocysts shed by pre-weaned calves were zoonotic. This assumption was made because 

molecular typing is required to determine the zoonotic potential of C. parvum-like 

oocysts, and this necessity would have further amplified the problem of small 

numbers. While over-estimating the zoonotic risk, we felt this assumption was 

reasonable, because recent studies that applied molecular typing revealed that the 

majority of Cryptosporidium infections in pre-weaned calves were indeed zoonotic 

(Santin et al., 2004; Starkey et al.; Szonyi et al, 2010). 

Both global (Moran’s I) and specific (SaTScan) cluster detection methods 

identified a significant spatial cluster of C. parvum infection in calves in the winter, 

with a relative risk (RR) of 5.8, based on crude risk estimates. No other purely spatial 

clusters were identified with either method. Thus, there was complete agreement 
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between the results of the two cluster detection methods. In addition, the scan statistics 

detected a significant space-time cluster in the summer with both circular (RR= 2.3) 

and elliptical (RR=3) window settings. Further investigation revealed the presence of a 

significant temporal cluster (RR=2) but the lack of a purely spatial cluster in the 

summer, which suggests that the space-time clusters identified in the summer were 

due to a temporal rather than a spatial increase in risk. The large sizes of the space-

time clusters including nearly 50% of the population at risk (maximum allowed under 

the conditions specified) also supports the notion of a spatially diffuse increase in the 

risk of C. parvum infection in the summer.   

It has been suggested that farms downstream of other farms may be 

contaminated with Cryptosporidium via runoff from farms upstream, although 

evidence for this epidemiologic link is lacking (Hansen and Ongerth, 1991; Ong et al., 

1996; Sischo, 2000). The rationale for considering elliptical spatial clusters in this 

study was that farm-to-farm transmission via runoff would be expected to produce an 

elliptical rather than a circular cluster.  

The term disease cluster is defined as an increase in the expected number of 

cases within a population bounded in space and time (Elliott and Wartenberg, 2004). 

Two different cluster detection methods were used in this study to ensure 

comparability and robustness of results. The scan statistics was selected for the 

investigation of temporal and space-time clusters, because recent studies identified 

SatScan as the most developed and robust space-time surveillance software package 

that takes multiple testing problems into account, and is considered the most powerful 

for detecting localized clusters (Robertson and Nelson, 2009).  

The major limitation of the study was the low number of pre-weaned calves on 

the farms, resulting in unstable risk estimates as small populations have large 

variability in rates (Olsen et al., 1996) . For example, the small number of cases and 
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population at risk may have accounted for the high relative risk estimate (RR=5.8) for 

the winter spatial cluster.  This limitation was corrected with the use of a Bayesian 

approach that has the ability to stabilize the raw estimates derived from a small 

number of individuals (Berke, 2004). The Bayesian approach also allowed the 

incorporation of prior knowledge about the risk of C. parvum infection in the target 

population, and accounted for the imperfections of the diagnostic test. However, the 

quality of this prior information might influence the quality of the estimate and hence 

could be a source of bias and limitations (Elliott and Wartenberg, 2004).  

The degree of smoothing is a trade-off between high sensitivity (truly high risk 

areas correctly identified) and high specificity (areas without excessive risk correctly 

identified) such that sensitive but non-specific measure will generate many false 

positive findings, whereas a specific but not sensitive measure will miss areas with 

high risk (Elliott and Wartenberg, 2004). In this study contradictory results were 

encountered in the analysis of purely spatial clusters using Global Moran’s I statistics. 

While crude estimates revealed significant spatial autocorrelation in the winter, 

Bayesian estimates indicated the lack of a spatial clustering in any season. Considering 

the limitations of using crude vs. Bayesian estimates in spatial analysis, the 

discrepancy in the results may be due either to the instability of the crude estimates 

leading to spuriously high values, or to the low sensitivity of the Bayesian model to 

detect areas with truly high risk.  

Cryptosporidium is considered a non-point source pollutant in watersheds that 

is carried off the land surface during rain events (Atwill et al., 2006; Graczyk et al., 

2000). Monitoring of stream sites in the study area revealed that event based (e.g. after 

a storm) Cryptosporidium concentrations were consistently higher than baseline 

results (up to 11.7 oocysts 50l
-1

), implicating runoff as contamination source (NYC 

Department of Environmental Protection, 2009). The close relationship between 
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activities in the drainage basin and the quality of its water resources forms the 

underlying premise for all watershed management programs. Best management 

practices that protect water supply on farms such as fencing, filter strips, stream 

crossings, animal trails and walkway, manure composting facility, and runoff 

management systems would ideally and ultimately be implemented on every farm in 

the watershed. However, until that goal is achieved, prioritization methodologies to 

address non-point source pollutants need to be developed, and the identification of 

“hot spots” is an integral part of this process.   

The occurrence of spatial or temporal clusters may be due to rapid spread 

between locations in the case of a highly contagious disease, or the presence of 

common environmental risk factors (Stevens et al., 2009). The higher risk of C. 

parvum infection on dairy farms in the summer throughout the study area may be due 

to climatic or management factors that affect the entire area. This finding suggests that 

spreading manure in the summer (compared to other seasons) in any area of the 

watershed is associated with an increased risk of C. parvum contamination of the 

water supply. This finding is important because farms in the study area regularly 

spread untreated calf manure in the fields. The current recommendation is to avoid 

spreading manure in the spring and during frozen conditions, while summer is 

considered a lower risk period (NYC Department of Environmental Protection, 2009). 

If further studies confirm an increased risk of Cryptosporidium contamination in the 

summer, this knowledge will be useful to improve Nutrient Management Plans, which 

give recommendations about the most environmentally safe time and place to spread 

manure.  

With the City’s population expected to rise to 9.1 million by 2039 from 8.3 

million in 2005, watershed management will continue to have an important part to 

play in protecting water quality (NYC Department of Environmental Protection, 



 

 58 

 

2010). Over time, systematic and careful monitoring of disease-causing organisms and 

pollutants will determine the effectiveness of New York City’s protection strategies 

and the continued success of its filtration avoidance plan. The identification of spatial 

or temporal “hot-spots” of C. parvum contamination within the watershed will have 

important implications for watershed monitoring and management, and need to be the 

focus of future investigations.  

CONCLUSIONS 

The identification of C. parvum clusters is a priority in designing cost-effective 

and targeted watershed management practices to ensure safety of the water supplies 

for public health. This study identified high risk clusters of C. parvum infection in 

dairy herds in both space and time in a large and important watershed, suggesting that 

further studies are needed to determine whether the presence of clusters are persistent 

and predictable.  We recommend that future studies focus on the causes of these “hot 

spots” so that watershed monitoring and management strategies may be implemented 

and targeted to effectively decrease C. parvum contamination of the water supply. 
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CHAPTER FOUR  

A CASE-CONTROL STUDY OF FACTORS ASSOCIATED WITH THE RISK 

OF ZOONOTIC CRYPTOSPORIDIUM INFECTION IN DAIRY CALVES
1
 

 

Objective – To identify risk factors associated with zoonotic Cryptosporidium 

infection in dairy calves 

Design – Case-control study 

Animals/Sample population – The target population consisted of dairy calves in the 

New York City Watershed. Cases consisted of calves infected with C. parvum and 

controls were either infected with C. bovis or were not infected with Cryptosporidium.  

Procedures – Fecal samples were tested for the presence of Cryptosporidium spp. 

using the flotation concentration method. Samples were genotyped by sequencing of 

the 18s rRNA gene. The association between host, management, geographical, 

meteorological factors and Cryptosporidium genotype was assessed using univariable 

and multivariable logistic regression. 

Results – A total of 108 cases and 283 controls were enrolled. The controls included 

67 animals with C. bovis infection. Younger calves and calves housed in the cow barn 

were more likely to be infected with both genotypes. Herd size and hay bedding were 

associated with an increased risk of infection with C. parvum, while Jersey breed was 

a risk factor for C. bovis infection.  There appeared to be a lower risk of infection with 

both species at higher latitudes, although this trend was not statistically significant. 

Compared to a flat surface, steeper slope was significantly associated with a decreased 

likelihood of infection with both genotypes, while precipitation influenced the risk of 

C. parvum infection only. 

 
1 
This chapter has been prepared in the format for submission to the American Journal of Veterinary 

Research 
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Conclusions and Clinical Relevance – The unique aspects of the study were the 

examination of putative risk factors at the genotype level and the identification of 

factors that put calves at risk of infection with zoonotic strains of Cryptosporidium. 

The findings will be useful to design measures that reduce animal exposure, and 

decrease the public health risk and economic losses associated with C. parvum 

infection in cattle. 

 

INTRODUCTION 

Cryptosporidium parvum is a protozoan parasite that causes gastro-intestinal 

disease in humans and neonatal cattle. Clinical appearance of C. parvum infection in 

calves can range from asymptomatic shedding of oocysts to severe diarrhea, 

dehydration and death (Fayer et al., 2009). Furthermore, damage to the intestinal 

epithelium can cause prolonged malnutrition and reduced growth rates in calves, 

resulting in significant economic losses in dairy operations (Nydam and Mohammed, 

2005).   

Although cattle are commonly infected with four different species of 

Cryptosporidium (C. parvum, C. bovis, C. ryanae and C. andersoni), only C. parvum 

is of primary concern from both the public health perspective and in terms of 

economic losses to the dairy industry due to morbidity in calves (Fayer et al., 2009). 

Pre-weaned calves are thought to be the main source of C. parvum contamination in 

watersheds that threaten the quality of drinking water supplies. Pre-weaned calves 

may also be infected with C. bovis, which is considered host adapted, non-zoonotic, 

and non pathogenic in cattle (Fayer et al., 2005). One of the main challenges to 

identifying risk factors for C. parvum infections in cattle is that molecular techniques 

are required to distinguish C. parvum from the morphologically similar C. bovis and 
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C. ryanae (commonly referred to as the C. parvum-like species) (Fayer et al., 2009). It 

is necessary to decrease the risk of infection with C. parvum in cattle to protect water 

consumers and prevent economic losses in the dairy industry. To effectively control 

the occurrence of C. parvum infection in cattle, molecular techniques need to be 

incorporated into epidemiological studies to identify relevant risk factors associated 

with this parasite. 

Cryptosporidium oocysts are tolerant to most disinfectants and can survive for 

months in the environment under favorable conditions (Fayer et al., 1997). 

Temperature, moisture, and UV radiation are among the most important factors 

affecting oocysts survival in the environment (Peng et al., 2008). While it has been 

shown that environmental conditions influence oocyst survival, their effect on the risk 

of infection has not been determined. It is also not know whether different 

environmental or ecological conditions facilitate infection with C. parvum compared 

to C. bovis in calves. It is important to identify ecological niches that favor oocyst 

survival and lead to increased risk of infection with the zoonotic genotype, as this 

information could be used to design preventive measures to decrease the risk of 

exposure.  

The primary objective of this study was to identify risk factors associated with 

zoonotic Cryptosporidium infection in dairy calves. Specifically, we conducted case-

control studies to examine the association between host, management, geographical, 

and meteorological factors and C. parvum infection in pre-weaned calves using C. 

parvum positive cases and two sets of controls: Cryptosporidium negative and C. 

bovis positive controls. In addition, risk factors for C. bovis infection were also 

investigated using C. bovis positive cases and Cryptosporidium negative controls. 
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MATERIALS AND METHODS 

Study design 

Unmatched retrospective case-control studies were carried out to identify 

potential risk factors for infection with C. parvum and C. bovis among dairy calves. 

The study population was recruited from animals that were enrolled in our ongoing 

studies in this target population on 44 dairy farms in the New York City Watershed 

(Szonyi et al, 2010; Wade et al., 2000). Briefly, fecal samples were collected from 

1,072 pre-weaned calves (< 65 days of age) and screened for the presence of 

Cryptosporidium oocysts. There were 205 animals diagnosed as shedding C. parvum-

like oocysts using a flotation technique. Subsequently, polymerase chain reaction 

(PCR) and sequencing of the 18s rRNA gene were performed on all flotation-positive 

specimens to determine the Cryptosporidium species in the sample. Sample size 

estimation
a
 showed that with 2 controls per case for exposures of 25% in the control 

population and at 95% confidence, a study with 69 cases would have 80% power, 

while a study with 91 cases would have 90% power to detect odds ratios of 2.5 or 

more. The protocol for the studies was approved by the Institutional Animal Care and 

Use Committee at Cornell (Protocol # 00-4). 

Sample collection and screening  

Fecal samples were collected rectally from each animal into a plastic cup that 

was immediately capped and labeled to identify source based on the ear tag number. 

For each sample, 1 g of feces was processed using sugar (sg 1.33) as the flotation 

medium with a standard quantitative centrifugation flotation technique (Georgi, 1990). 

Cryptospridium oocysts were confirmed at 400X magnification with both bright-field 

and phase contrast illumination. A sample was considered positive when at least one 

oocyst with the correct morphological characters was identified at 400X magnification 

using bright-field and phase contrast illumination (C. parvum-like oocysts are 4-6  µm 
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and spherical; contain a residuum and sporozoites, refract pink in sugar and have a 

halo) (Wade et al., 2000). 

Molecular typing of specimens  

DNA was extracted from all samples that tested positive for Cryptosporidium 

oocysts and a select group of controls.
b
  A two-step nested PCR protocol was used to 

amplify an 830bp fragment of the 18S rRNA gene using primers 5'-

TTCTAGAGCTAATACATGCG-3 and 5'- CCCATTTCCTTCGAAACAGGA-3 for 

primary and 5'-GGAAGGGTTGTATTTATTAGATAAAG-3 and 

5’AAGGAGTAAGGAACAACCTCCA-3' for the secondary PCR (Xiao et al., 1999). 

The primary reaction consisted of 25 µl including 1 µl of genomic DNA, 10.8
 
µl of 

reverse osmosis water, 2 µl of 10X PCR buffer,
c 
4.8 µl of MgCl2 (25 mM), 0.4 µl of 

dNTP’s (10 mM), 0.4 µl of each forward and reverse primer (10 µM), and 0.2 µl (5 

U/µl) of Taq DNA polymerase. The
 
secondary reaction consisted of 1 µl of the 

product from
 
the primary reaction added to a mixture containing 13.2 µl

 
of reverse 

osmosis water, 2 µl of 10X PCR buffer, 2.4 µl of MgCl2
 
(25 mM), 0.4 µl of dNTP’s 

(10 mM),
 
0.4 µl of each forward and reverse primer (10 µM), and 0.2 µl (5 U/µl) of 

Taq DNA polymerase.
 
Both the primary and secondary reactions were run under the

 

same conditions: initial denaturation (94°C for 3 min), followed by 35 cycles of 

amplification (94°C for 45 s, 55°C for
 
45 s, and 72°C for 1 min) and a final extension 

(72°C for 7 min).
    

The PCR products were visualized after electrophoresis on 1% 

agarose gel stained with ethidium bromide. After purification of PCR products using 

exonuclease
 
I-shrimp alkaline phosphatase,

d
 the products were sequenced using the 

internal
 
primers described above in 9-µL reactions in an automated

 
sequencer.

e
 After 

bi-directional sequencing, the sequence
 
chromatograms were aligned using

 
MEGA 4 

software  
f 
(Tamura et al., 2007). We compared DNA sequences with GenBank DNA 

sequences to determine the species of Cryptosporidium in the sample using the Basic 
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Local Alignment Search Tool (BLAST). 

Definition of cases and controls  

A case was defined as a pre-weaned calf (<65 days of age) that tested positive 

by flotation for Cryptosporidium, and subsequent sequencing of the 18s rRNA gene 

revealed a 100% homology with C. parvum (GenBank accession number AF093490). 

Two set of controls were used in this study. The first set of controls, Cryptosporidium 

negative controls were selected randomly from pre-weaned calves (< 65 days of age) 

that tested negative by both the flotation concentration and by PCR targeting the 18s 

rRNA gene. Random selection was carried out using the animal’s unique identification 

number and a random number generator using Microsoft Excel
 g
. The second set of 

controls consisted of all pre-weaned calves (< 65 days of age) that tested positive by 

flotation for Cryptosporidium, and subsequent sequencing of the 18s rRNA gene 

revealed a 100% homology with C. bovis (GenBank accession number AY120911). 

Specimens that tested positive by flotation for Cryptosporidium, but either 1) 

subsequently failed to produce an 18s rRNA gene product, or 2) the amplicon did not 

have 100% homology with either C. bovis or C. parvum, were excluded from the 

study.  

Data collection  

A questionnaire was used to collect information on host factors and farm 

management practices. The data was collected by personal interview of the farm 

owner/manager. Geospatial coordinates for each farm were recorded at the calf 

housing facility with a handheld global positioning system (GPS) device.
h
 Digital 

Elevation Models (DEM) for the study area were obtained from the New York State 

Geographic Information System Clearinghouse (www.nysgis.state.ny.us). The GPS 

data for farm locations and the DEM were imported into a geographical information 

system (GIS) software,
i
 and re-projected into the Universal Transverse Mercator 
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(UTM) coordinate system (Zone 18N), North American Datum 1983. The DEM and 

farm coordinates were overlaid to obtain information on geomorphological features 

(i.e. elevation, slope and aspect) associated with each farm location. Elevation was 

converted from feet to meters (1ft = 0.305 m), and slope was expressed as percent 

gradient. The numerical slope aspect values were converted to categorical to reflect 

the direction in which the slope faces; i.e. slope aspect was equal to south (greater than 

or equal to 112° and less than 292° azimuth) or north (0-111°; 292-360° azimuth). To 

determine whether the geographic position of farms with respect to cardinal directions 

had effect on genotype, we included the easting and northing coordinates in the 

logistic regression analyses. The term “easting” refers to the eastward measured 

distance from the false east reading, which is uniquely defined in each UTM zone, 

while “northing” refers to the northward measured distance from the equator. 

Information on precipitation and temperature was obtained from the National Climatic 

Data Center, US Department of Commerce (www.ncdc.noaa.gov). For the analyses, 

all the rainfall measurements were converted from inches to millimeters ( 1inch=25.4 

mm), and all the temperature measurements were converted from F to ˚C [˚C =(F-

32)/9 X 5]. It has been shown that oocyst excretion starts 2-7 days post-infection, and 

lasts for up to two weeks (Fayer et al., 1997). The effect of precipitation and perhaps 

temperature is thought to exert an influence on the length of oocyst shedding intervals 

as well as the timing of shedding. Therefore, the average temperature and precipitation 

one month before the detection of oocyst shedding was considered, as this time frame 

appeared to be the most biologically plausible. 

Statistical analyses  

A systematic approach for data analysis was adopted. First, we examined the 

bivariable association between shedding C. parvum (zoonotic genotype) and each of 

the putative factors, in two sets of controls: 1, Cryptosporidium-negative controls and 
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2, C. bovis-infected animals. The significance of association between the putative risk 

factors and the likelihood of shedding C. bovis was also evaluated using 

Cryptosporidium negative controls. All analyses were conducted using standard 

statistical software. 
j
 Continuous variables were grouped into categories based on 

equal intervals. The functional form of the relationship between continuous variables 

and outcome were explored by plotting log odds ratios on a graph. Where a linear 

trend was supported by visual inspection, the variable was also considered as 

continuous. Screening of variables was performed using univariable logistic regression 

analysis to assess the effects of all variables on the outcome of infection. When the 

number of observations at a certain level of the independent variable and infection 

status was less than five, Fisher’s exact test was used to evaluate the significance of 

association in the univariable analysis; such variables were omitted from the 

multivariable models. All other variables were considered for inclusion in the 

multivariable logistic regression models. Variables were retained in the model if the 

Wald-test p-value was < 0.05 and/or the variable significantly improved the model fit 

(likelihood ratio statistic < 0.05). Biologically plausible interaction terms were tested 

between final model variables at the first order level.  

Because the sampling units, the animals, in this study were clustered in herds, 

it was assumed that this clustering would lead to a correlation in the likelihood of 

infection within the study population.  This correlation between responses occurs 

because they are dependent on exogenous factors that are associated with these 

responses, i.e., infection with the organism.  Conditioning on an observed set of these 

factors by controlling for their effect in the analysis and including them as covariates 

in the logistic regression analysis will sometimes achieve approximate conditional 

independence.  However, more often this correlation in the response arises from both 

observed and unobserved risk factors.  It was assumed that the unobserved risk factors 
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were randomly distributed among farms and the overall significance of this 

assumption was evaluated by using a mixed-effect logistic regression model. 

The final multivariable models were examined for goodness- of-fit using the 

Hosmer-Lemeshow statistics, (Hosmer and Lemeshow, 1989) and the stability of the 

models were assessed by examining the delta betas (Pregibon, 1981). The models 

were considered stable if removal of observations with the largest delta-beta values 

(i.e. those observations whose exclusions were predicted to have the largest influence 

on model fit) altered the odds ratio by < 25% and did not affect the significance of 

individual variables.  

RESULTS 

Descriptive  

A total of 108 C. parvum cases and 67 C. bovis positive animals met the 

inclusion criteria and were enrolled in their respective category. In addition, 216 

Cryptosporidium - negative controls were randomly selected. The 44 study farms were 

located within a distance of 66 kilometers in the east-west, and 31 kilometers in the 

north-south direction. The average elevation on the farms was 512 m (range 376-570 

m) with a 6% slope (range 0-17.6 %). The average monthly precipitation ranged from 

47 to 198 mm, while the mean monthly temperature ranged between -8.5 and 21.5 ˚C.  

Total herd size (including all ages) varied from 46 to 800 head of cattle.  

C. parvum cases vs. Cryptosporidium negative controls  

A graphical examination of the frequency distribution of the continuous 

variables (age, herd size, geographical location, and metrological features) and their 

relation to the log odds ratios of being a case indicated a non-linear trend. Thus, these 

variables were retained as ordered categorical. 

 In the univariable analysis, calves that were more than one month of age were 

at significantly decreased risk of C. parvum infection in comparison to younger calves 
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(Table 4.1). Herd size, outdoor housing, dirt flooring and being housed in a pen were 

associated with an increased risk, while keeping calves in a greenhouse was associated 

with a decreased risk of infection with C. parvum.  Among geographical factors, 

steeper slope was significantly associated with a lower risk of C. parvum infection. 

The likelihood of infection was higher with a monthly precipitation of 100-150 mm 

compared to < 100 mm; however precipitation exceeding 150 mm was not associated 

with an elevated risk.  

The final multivariable model for C. parvum infection using Cryptosporidium 

negative controls revealed that the risk of being a case was significantly increased with 

herd size > 200 compared to < 100, being housed in the cow barn, and with the use of 

hay bedding, while older age was associated with lower risk (Table 4.2). Compared to 

a flat surface, a slope of 5-10% was associated with a decreased risk; however a slope 

greater than 10% was not significant in the model. There appeared to be a lower risk at 

higher latitudes (northing), although this trend did not reach statistical significance at 

the 5% level.  Precipitation of 100-150 mm compared to < 100 mm remained a 

significant risk factor in the multivariable model. No statistically significant 

interactions were identified. The model was robust to the exclusion of observations 

with the highest delta-beta values (extreme values), and provided adequate goodness-

of-fit, as measured by the Hosmer-Lemeshow statistics (p=0.58). 
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Table 4.1 Univariable logistic regression analysis for associations between putative 

risk factors and C. parvum infection using Cryptosporidium negative controls in pre-

weaned calves 
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  Cases (%) Controls (%) OR 95 % CI Wald p-value 

Host factors      

Age      < 0.001 

 < 1 month 100 (59.1) 70 (40.9) 1   

 1-2 months 8 (5.2) 146 (94.8) 0.038 0.01-0.08  

Breed       

 Holstein 101 (33.5) 201 (66.5) 1   

 Jersey 7 (46.7) 8 (53.3) 1.74 0.61-4.93 0.29 

Herd management      

Herd size      

 < 100 12 (13.6) 76 (86.4) 1   

 100 to 200 39 (24.2) 122 (75.8) 2 1.0-4.1 0.05 

 > 200 57 (76.0) 18 (24.0) 20.1 8.9-44.9 < 0.001 

Greenhouse      

 No 96 (35.8) 172 (64.2) 1   

 Yes 12 (21.4) 44 (78.6) 0.48 0.24-0.96 0.04 

Outdoors      

 No 67 (26.2) 189 (73.8) 1   

 Yes 41 (65.1) 22 (34.9) 5.25 2.91-9.46 < 0.001 

In cow barn      

 No 64 (41) 92 (59) 1   

 Yes 42 (30.2) 97 (69.8) 0.62 0.38-1.0 0.06 

Flooring       

 Cement 50 (49.0) 52 (51.0) 1   

 Dirt 58 (26.1) 164 (73.9) 2.71 1.66-4.49 < 0.001 

Hay bedding      

 No 36 (33.0) 73 (67.0) 1   

 Yes 68 (33.8) 133 (66.2) 1.03 0.63-1.7 0.88 

Dust bedding      

 No 56 (33.1) 113 (66.9) 1   

 Yes 48 (34.0) 93 (66.0) 1.04 0.64-1.67 0.86 
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Table 4.1 Continued 

 

 

 

  Cases (%) Controls (%) OR 95 % CI Wald p-value 

Tied       

 No 57 (40.14) 85 (59.86) 1   

 Yes 51 (31.5) 111 (68.5) 0.68 0.42-1.0 0.11 

Pen       

 No 55 (30) 128 (70) 1   

 Yes 53 (43.8) 68 (56.2) 1.81 1.12-2.92 0.015 

Geographical features      

Easting (km)      

 < 500  29 (41.4) 41 (58.6) 1   

 500 to 520  52 (34.9) 97 (65.1) 0.75 0.42-1.35 0.351 

 > 520  26 (25.0) 78 (75.0) 0.47 0.24-0.90 0.023 

Northing (km)      

 < 4675  19 (43.2) 25 (56.8) 1   

 4675 to 4685  40 (34.5) 76 (65.5) 0.69 0.34-1.4 0.3 

 > 4685  48 (29.4) 115 (70.6) 0.54 0.27-1.08 0.08 

Elevation (m)      

 < 470  45 (58.4) 32 (41.6) 1   

 470 to 570  36 (20.8) 137 (79.2) 1.19 0.68-2.08 0.52 

 > 570  27 (36.5) 47 (63.5) 0.79 0.44-1.41 0.43 

Slope (%)      

 < 5 51 (42.9) 68 (57.1) 1   

 5 to 10 43 (29.5) 103 (70.5) 0.55 0.33-0.92 0.02 

 > 10 14 (23.7) 45 (76.3) 0.41 0.21-0.83 0.01 

Aspect       

 South 48 (33.8) 94 (66.2) 1   

 North 60 (33.0) 122 (67.0) 0.96 0.65-1.65 0.87 

Meteorological factors      

Temperature (˚C)      

 < 0   37 (33.6) 73 (66.4) 1   

 0 to 11   22 (36.6) 38 (63.4) 1.14 0.59-2.2 0.69 

 > 11   49 (31.8) 105 (68.2) 0.92 0.54-1.55 0.75 

Precipitation (mm)      

 < 100  46 (28.8) 114 (71.3) 1   

 100 to 150  41 (47.7) 45 (52.3) 2.25 1.31-3.89 0.003 

  > 150  21 (26.9) 57 (73.1) 0.91 0.49-1.67 0.76 
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Table 4.2 Final multivariable logistic regression model for associations between C. 

parvum infection and explanatory variables using Cryptosporidium negative controls 

in pre-weaned calves 

 

    OR 95% CI Wald p-value LRS p-value 

Age     < 0.001 

 < 1 month 1    

 1-2 month 0.01 0.0025-0.051 <0.001  

Herd size    < 0.001 

 < 100 1    

 100-200 2.87 0.81-10.1 0.099  

 > 200 292 46-1836 < 0.001  

In cow barn    < 0.001 

 No 1    

 Yes 14 2.5-78.81 0.003  

Hay     < 0.001 

 No 1    

 Yes 7.05 2.4-20.1 < 0.001  

Northing (km)    0.002 

 < 4675  1    

 4675 to 4685  0.22 0.03-1.3 0.096  

 > 4685  0.24 0.05-1.12 0.071  

Slope (%)    0.003 

 < 5 1    

 5 to 10 0.14 0.044-0.45 0.001  

 > 10 0.57 0.1-3.0 0.51  

Precipitation (mm)    0.042 

 < 100  1    

 100 to 150  3.35 1.2-9.5 0.02  

  > 150  1 0.3-3.3 0.99   
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C. parvum cases vs. C. bovis controls  

After visual inspection, none of the continuous variables were deemed to have 

a linear relationship with the log odds of C. parvum infection using C. bovis controls. 

Thus all continuous variables were retained as ordered categorical.  

Univariable analysis showed that compared to C. bovis controls, the likelihood 

of C. parvum infection increased significantly with herd size, outdoor housing, dirt 

flooring, and being in a pen, while older age, Jersey breed, being tied and housed in 

the cow barn were associated with a lower risk (Table 4.3). The risk appeared to be 

increasing at higher latitudes, but this trend was not consistent across the categories. 

The univariable effects of the meteorological factors were not significant.  

The multivariable model for C. parvum infection using C. bovis infected 

controls revealed that the risk of being a case significantly increased with herd size 

and the use of hay bedding, while older age and Jersey breed were associated with 

lower risk (Table 4.4).  The risk seemed to be increasing with precipitation, although 

this trend was not significant across the categories (i.e. only 100-150 mm was 

associated with a significantly higher risk compared to the reference category of < 100 

mm). Similarly, there appeared to be an elevated risk associated with latitude 

(northing), but this trend was not consistently observed across all categories of this 

variable. There were no statistically significant interactions. The model was robust to 

the exclusion of observations with highest delta-beta values, and fitted the data 

adequately as measured by the Hosmer-Lemeshow goodness of fit statistics (p=0.44). 
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Table 4.3 Univariable logistic regression analysis for associations between putative 

risk factors and C.  parvum infection using C. bovis controls in pre-weaned calves 



 

 79 

 

 

 

    Cases (%) Controls (%) OR 95 % CI Wald p-value 

Host factors      

Age       

 < 1 month 100 (70.9) 41 (29.1)    

 1-2 months 8 (23.5) 26 (76.5) 0.12 0.05-0.30 < 0.001 

Breed       

 Holstein 101 (69.2) 45 (30.8)    

 Jersey 7 (25.0) 21 (75.0) 0.14 0.05-0.37 < 0.001 

Herd management      

Herd size      

 < 100 12 (33.3) 24 (66.7) 1   

 100 to 200 39 (61.9) 24 (38.1) 3.25 1.37-7.67 0.007 

 > 200  57 (75.0) 19 (25.0) 6 2.52-14.26 < 0.001 

Greenhouse      

 No 96 (61.5) 59 (38.1) 1   

 Yes 12 (60.0) 8 (40.0) 0.92 0.35-2.38 0.86 

Outdoors
1 

     

 No 67 (50.8) 65 (49.2) 1   

 Yes 41 (95.3) 2 (4.7) 19.8 4.62-85.53 < 0.001 

In cow barn      

 No 65 (80.2) 16 (19.8) 1   

 Yes 43 (51.2) 41 (48.8) 0.25 0.12-0.51 < 0.001 

Flooring
1 

      

 Cement 58 (47.5) 64 (52.5) 1   

 Dirt 50 (94.3) 3 (5.7) 18.4 5.4-62.1 <0.001 

Hay bedding      

 No 36 (54.5) 30 (45.5) 1   

 Yes 68 (65.4) 36 (34.6) 1.57 0.83-2.95 0.15 

Dust bedding      

 No 56 (62.9) 33 (37.1) 1   

 Yes 48 (59.3) 33 (37.1) 0.85 0.46-1.58 0.62 
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Table 4.3 Continued 

    Cases (%) Controls (%) OR 95 % CI Wald p-value 

Tied       

 No 57 (52.78) 16 (23.88) 1   

 Yes 51 (47.22) 51 (76.12) 0.28 0.14-0.55 <0.001 

Pen       

 No 55 (50.0) 55 (50.0) 1   

 Yes 53 (81.54) 12 (18.46) 4.41 2.12-9.16 <0.001 

Geographical features      

Easting (km)      

 < 500  29 (76.3) 9 (23.7) 1   

 500 to 520  52 (59) 36 (41) 0.44 0.18-1.05 0.068 

 > 520  26 (54.2) 22 (45.8) 0.36 0.14-0.93 0.036 

Northing (km)      

 < 4675  19 (50.0) 19 (50.0) 1   

 4675 to 4685  40 (78.4) 11 (21.6) 3.63 1.44-9.14 0.006 

 > 4685  48 (56.5) 37 (43.5) 1.29 0.6-2.79 0.5 

Elevation (m)      

 < 470  45 (68.2) 21 (31.8) 1   

 470 to 570  36 (51.4) 34 (48.6) 0.49 0.24-0.99 0.04 

 > 570   27 (69.2) 12 (30.8) 1.05 0.44-2.46 0.91 

Slope (%)      

 < 5 51 (65.4) 27 (34.6) 1   

 5 to 10 43 (58.9) 30 (41.1) 0.75 0.39-1.46 0.41 

 > 10 14 (58.3) 10 (41.7) 0.74 0.29-1.88 0.53 

Aspect       

 South 48 (55.2) 39 (44.8) 1   

 North 60 (68.2) 28 (31.8) 1.74 0.94-3.22 0.07 

Meteorological factors      

Temperature (˚C)      

 < 0   37 (67.3) 18 (32.7) 1   

 0 to 11   22 (68.7) 10 (31.3) 1.07 0.41-2.72 0.887 

 > 11    49 (55.7) 39 (44.3) 0.61 0.3-1.23 0.17 

Precipitation (mm)      

 < 100  46 (56.1) 36 (43.9) 1   

 100 to 150  41 (68.3) 19 (31.7) 1.68 0.84-3.39 0.14 

  > 150  21 (63.6) 12 (36.4) 1.36 0.59-3.14 0.45 

 

 
1
Fisher’s exact test was used to assess the significance of the association.
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Table 4.4 Final multivariable logistic regression model for associations between C. 

parvum infection and explanatory variables using C. bovis controls in pre-weaned 

calves 

 

    OR 95% CI  Wald p-value LRS p-value 

Age     < 0.001 

 1 month 1    

 1-2 month 0.05 0.01-0.15 < 0.001  

Breed     < 0.001 

 Holstein 1    

 Jersey 0.023 0.004-0.132 < 0.001  

Herd size     < 0.001 

 < 100 1    

 100-200 7.1 2.0-24.6 0.002  

 > 200 22.3 4.1-119 < 0.001  

Hay  bedding    < 0.001 

 No 1    

 Yes 5.66 1.21-26.3 0.027  

Northing (km)    0.001 

 < 4675  1    

 4675 to 4685  0.56 0.1-3.23 0.52  

 > 4685  0.14 0.04-0.49 0.002  

Precipitation (mm)    0.018 

 < 100  1    

 100 to 150  4.21 1.13-15.68 0.032  

  > 150  1.13 0.25-5.0 0.86   
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C. bovis cases vs. Cryptosporidium negative controls  

Based on visual inspection, none of the continuous variables had a linear 

relationship with the log odds of C. bovis infection. Thus all continuous variables were 

retained as ordered categorical.  

Univariable analysis indicated that a herd size of > 200 cattle compared to < 

100, Jersey breed, being housed in the cow barn, and being tied were significantly 

associated with an increased risk of C. bovis infection, while older age, dirt flooring, 

and being in a pen were associated with a decreased risk (Table 4.5). In addition, 

latitude (northing), elevation, and northern aspect were associated with a decreased 

likelihood of C. bovis infection.  

The final multivariable model for C. bovis infection using Cryptosporidium 

negative controls revealed that the risk of being a case was significantly increased with 

Jersey breed and being housed in the cow barn, while older age was associated with 

lower risk (Table 4.6). There appeared to be an elevated risk associated with latitude 

(northing), but this trend was not consistently observed across all categories of this 

variable. Finally, the likelihood of infection was lower on steeper slopes. There were 

no statistically significant interactions. The model was robust to the exclusion of 

observations with highest delta-beta values, and fitted the data adequately as measured 

by the Hosmer-Lemeshow goodness of fit statistics (p=0.54). 
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Table 4.5 Univariable logistic regression analysis for associations between putative 

risk factors and C. bovis infection using Cryptosporidium negative controls in pre-

weaned calves 



 

 84 

 

 

 

  

    Cases (%) Controls (%) OR 95 % CI Wald p-value 

Host factors       

Age       

 < 1 month 54 (33.1) 109 (66.3) 1   

 1-2 months 13 (10.8) 107 (89.2) 0.24 0.12-0.46 <0.001 

Breed       

 Holstein 45 (19.1) 201 (81.71) 1   

 Jersey 21 (72.4) 8 (27.6) 11.72 4.88-28.15 < 0.001 

Herd management      

Herd size       

 < 100  24 (24.0) 76 (76.0) 1   

 100 to 200  24 (16.4) 122 (83.6) 0.62 0.33-1.17 0.14 

 > 200  19 (51.4) 18 (48.6) 3.34 1.51-7.37 0.003 

Greenhouse       

 No 59 (25.5) 172 (74.5) 1   

 Yes 8 (15.4) 44 (84.6) 0.53 0.23-1.19 0.12 

Outdoors
1
       

 No 65 (25.6) 189 (74.4) 1   

 Yes 2 (8.3) 22 (91.7) 0.26 0.006-1.15 0.076 

In cow barn       

 No 16 (14.8) 92 (85.2) 1   

 Yes 41 (29.7) 97 (70.3) 2.43 1.27-4.62 0.007 

Flooring
1
       

 Cement 64 (28.1) 164 (71.9) 1   

 Dirt 3 (5.5) 52 (94.5) 0.14 0.04-0.49 0.002 

Hay bedding      

 No 30 (29.1) 73 (70.9) 1   

 Yes 36 (21.3) 133 (78.7) 0.65 0.37-1.15 0.14 

Dust bedding      

 No 33 (22.6) 113 (77.4) 1   

 Yes 33 (26.2) 93 (73.8) 1.21 0.69-2.11 0.49 
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Table 4.5 Continued 

 

    Cases (%) Controls (%) OR 95 % CI Wald p-value 

Tied       

 No 16 (15.84) 85 (84.16) 1   

 Yes 51 (31.48) 111 (68.52) 2.43 1.3-4.57 0.005 

Pen       

 No 55 (30.) 128 (69.95) 1   

 Yes 12 (15.0) 68 (85.0) 0.41 0.2-0.81 0.012 

Geographical features      

Easting (km)      

 < 500  9 (18) 41 (82) 1   

 500 to 520  36 (27) 97 (73) 1.6 0.74-3.82 0.2 

 > 520  22 (22) 78 (78) 1.28 0.54-3.0 0.56 

Northing (km)       

 < 4675  19 (43.2) 25 (56.8) 1   

 4675 to 4685  11 (12.6) 76 (87.4) 0.16 0.06-0.39 < 0.001 

 > 4685  37 (24.3) 115 (75.7) 0.4 0.2-0.8 0.01 

Elevation (m)      

 < 470  21 (39.6) 32 (60.4) 1   

 470 to 570  34 (19.9) 137 (80.1) 0.37 0.19-0.73 0.004 

 > 570   12 (20.3) 47 (79.7) 0.38 0.16-0.9 0.027 

Slope (%)       

 < 5 27 (28.4) 68 (71.6) 1   

 5 to 10 30 (22.6) 103 (77.4) 0.73 0.4-1.34 0.31 

 > 10 10 (18.2) 45 (81.8) 0.55 0.24-1.26 0.16 

Aspect       

 South 39 (29.3) 94 (70.7) 1   

 North 28 (18.7) 122 (81.3) 0.55 0.09-0.31 0.03 

Meteorological factors      

Temperature (˚C)      

 < 0   18 (19.8) 73 (80.2) 1   

 0 to 11   10 (20.8) 38 (97.1) 1.06 0.44-2.53 0.88 

 > 11   39 (27.1) 105 (72.9) 1.5 0.79-2.83 0.2 

Precipitation (mm)      

 < 100  36 (24.0) 114 (76.0) 1   

 100 to 150  19 (29.7) 45 (70.3) 1.33 0.69-2.57 0.38 

  > 150  12 (17.4) 57 (82.6) 0.66 0.32-1.37 0.27 

 
1 
Fisher’s exact test was used to assess the significance of the association
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Table 4.6 Final multivariable logistic regression model for associations between C. 

bovis  infection and explanatory variables using Cryptosporidium negative controls in 

pre-weaned calves 

 

    OR 95% CI  Wald p-value LRS p-value 

Age     < 0.001 

 <1 month 1    

 1-2 month 0.23 0.1-0.5 < 0.001  

Breed     < 0.001 

 Holstein 1    

 Jersey 3.69 1.02-13.31 0.046  

In cow barn     < 0.001 

 No 1    

 Yes 7.69 2.21-26.71 0.001  

Northing (km)    < 0.001 

 < 4675  1    

 4675 to 4685  0.14 0.03-0.62 0.009  

 > 4685  0.65 0.17-2.51 0.537  

Slope (%)      < 0.001 

 < 5 1    

 5 to 10 0.23 0.09-0.56 0.001  

 > 10 0.12 0.04-0.39 <0.001  



 

 87 

 

 

DISCUSSION 

Numerous recent studies have been conducted to identify risk factors for 

Cryptosporidium infection in cattle (Castro-Hermida et al., 2002; Maddox-Hyttel et 

al., 2006; Trotz-Williams et al., 2008). The results of these investigations greatly 

differ and are often contradictory, which has been attributed to differences in study 

design, management practices and climatic conditions (Silverlas et al., 2009). 

Arguably, the use of diagnostic techniques that do not distinguish the different species 

or genotypes of Cryptosporidium could also have contributed to inconsistent findings. 

To date, very few studies have incorporated DNA sequencing to distinguish risk 

factors for infection with zoonotic vs. non-zoonotic strains of Cryptosporidium in 

cattle (Duranti et al., 2009; Starkey et al., 2006). Although these studies had limited 

scope regarding the putative risk factors examined, their findings suggested that there 

was a difference in the subset of factors that predispose to infection by either 

genotype. The important and unique aspect of the current study was the examination 

of a range of host, management, and ecological factors at the genotype level, which 

allowed the identification of differences in risk factors associated with C. parvum and 

C. bovis infection. For the purpose of designing cost-effective strategies to mitigate 

the potential risk associated with different genotypes of Cryptosporidium, it is critical 

to compare and contrast the risk factors for zoonotic and non-zoonotic strains.  We 

attempted to address this goal by comparing risk factors between animals shedding C. 

parvum and the ones shedding C. bovis.  

The effects of age and breed  

Calves < 1 month of age were at greater risk of infection with both C. parvum 

and C. bovis. Younger calves were also more likely to be infected with C. parvum 

compared to C. bovis. These findings are partially in agreement with previous studies 
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that demonstrated the relationship between age and Cryptosporidium infection in 

cattle. Specifically, the results concurred with previous reports that the majority of C. 

parvum infections occur in cattle < 1 month of age (Santin et al., 2004). However, our 

finding that younger age is also a risk factor for C. bovis infection seems to contradict 

other studies, that concluded that C. bovis infection was acquired later in life and was 

thus considered to be predominant in older calves (Santin et al., 2004). Jersey breed 

was a significant risk factor for C. bovis infection in both multivariate models that 

included C. bovis infection as outcome.  However breed was not a significant risk 

factor for C. parvum infection. These results suggest that Jersey calves are more 

susceptible to C. bovis infection, but not less susceptible to C. parvum infection, 

compared to Holstein calves. 

The effects of management  

In this study we found that calves kept in the cow barn were at an increased 

risk of infection with both genotypes, which seems to support the idea of cow-to-calf 

transmission.  In the past cows were not regarded as an important source of infection 

for calves, (Atwill et al., 1998) however recent studies indicated that cow-to-calf 

transmission might be an important route for acquiring Cryptosporidium infection in 

calves (Faubert and Litvinsky, 2000; Huetink et al., 2001). The use of hay bedding 

increased the likelihood of infection with C. parvum but not with C. bovis in the 

multivariable models. One study in Mexico found that hay bedding increased the odds 

of shedding Cryptosporidium oocysts in dairy calves, which was attributed to the 

humid and protective environment created by hay, favoring oocyst survival 

(Maldonado-Camargo et al., 1998). Finally, a herd size of > 200 head as compared to 

< 100 was associated with an increased risk of infection with C. parvum. In contrast, 

herd size did not remain a significant risk factor for C. bovis infection in the 

multivariable analyses. Previous studies have revealed a positive association between 
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the size of the farm and the risk of shedding C. parvum-like oocysts, attributed to 

environmental contamination by the higher density of animals (Garber et al., 1994). 

The results of the present study suggest that calves in larger herds are more likely to 

be infected with the zoonotic genotype. 

The effects of geography and meteorology  

Among the geomorphological factors in the multivariable analyses, a slope of 

5-10% compared to a flat surface was significantly associated with a decreased 

likelihood of infection with both genotypes. One possible explanation for the effect of 

slope on infection is that steeper slopes may not be favorable for the accumulation of 

oocysts around calf holding facilities. In addition, the risk of infection with both C. 

parvum and C. bovis appeared to be lower at higher latitudes, although this trend was 

not statistically significant at the 5% level. Only precipitation had a significant effect 

in the multivariable models among the meteorological factors. Specifically, 

precipitation of 100-150 mm as compared to < 100 mm was found to be a significant 

risk factor for C. parvum infection using both sets of controls. Desiccation has been 

shown to be lethal for Cryptosporidium oocysts (Peng et al., 2008), thus precipitation 

may increase the risk of exposure by supporting oocyst survival. In wet periods, rain 

water could also transport feces from one calf to another, increasing the risk of calf-to-

calf transmission. 

Study design limitations  

A large number of possible sources of bias and error in case-control studies 

have been discussed in the literature. Among the most common concerns are the 

identification of an appropriate control group (selection bias), and availability of 

accurate information on infection status and potential risk factors (information bias) 

(Kelsey, 1996). This study attempted to minimize selection bias by using a control 

group that was randomly drawn from the same source population as the cases. 
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Misclassification bias was kept to a minimum by the use of PCR which is one of the 

most highly sensitive and specific diagnostic tests for Cryptosporidium infection 

(Xiao, 2009).  However, a potential source of bias was that conventional sequencing 

of the 18s rRNA gene is unable to detect mixed Cryptosporidium infections (Santin 

and Zarlenga, 2009). Thus if any of the cases were infected with both genotypes, only 

the dominant genotype would have been identified by this method. Since age has been 

shown to affect the likelihood of Cryptosporidium infection in cattle, and may also be 

associated with other hypothesized risk factors, we controlled for the confounding 

effect of age by considering all independent variables in the multivariable analysis, 

even if they were not significant at the univariable level. 

In conclusion, this study identified and compared several host, management, 

and ecological risk factors associated with C. parvum and C. bovis infection in cattle. 

The findings of this study will be useful in designing measures that reduce animal 

exposure, and effectively decrease the public health risk and economic losses 

associated with C. parvum infection in cattle herds. 
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CHAPTER FIVE 

FIRST REPORT OF CRYPTOSPORIDIUM DEER-LIKE GENOTYPE IN 

KENYAN CATTLE
1
 

 

ABSTRACT 

The objective of the study was to identify Cryptosporidium genotypes from 

feces collected from urban and peri-urban dairy cattle in Nairobi, Kenya, in order to 

determine their zoonotic potential. A total of 34 samples that were diagnosed positive 

by the modified Zielh-Neelsen technique were preserved in potassium dichromate 

(2.5%) and the DNA was extracted using the QAIamp DNA stool kit. Two 

Cryptosporidium isolates examined at the 18S rRNA locus were identified as the deer-

like genotype by DNA sequencing. As public health officials are facing the difficult 

decision of whether to allow urban livestock production because of its economic 

benefits and a livelihood asset to the urban communities, or to ban it for its public 

health risks, the finding of non-zoonotic genotypes in a smallholder dairy system has 

significant public health as well as economic implications that merit further 

investigation. 

 

INTRODUCTION 

Cryptosporidium is a globally important intracellular pathogen of humans and 

animals. Recent studies in the United States and several other countries in Europe 

suggest that cattle are infected with at least four Cryptosporidium species or 

genotypes: C. parvum, C. bovis, C. andersoni and Cryptosporidium deer-like genotype 

(Feng et al., 2007; Langkjaer, 2007; Thompson et al., 2007; Plutzer et al., 2007).  
 

 

1 
This chapter has been prepared in the format for submission to the journal Veterinary Parasitology 
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These Cryptosporidium species in cattle show a host age related susceptibility: 

C. parvum predominates in pre-weaned calves, C. bovis and the Cryptosporidium 

deer-like genotype in post-weaned calves and C. andersoni in older calves and adult 

cattle (Santin et al., 2004; Fayer et al., 2006), although C. bovis and the 

Cryptosporidium deer-like genotype have been reported in all age groups (Feng et al., 

2007). These findings indicate that C. parvum is the major species responsible for 

diarrhea in calves, and is the only zoonotic species in cattle (Thompson et al., 2007).  

Cryptosporidium parvum infects the small intestine of young calves causing enteritis 

and diarrheal disease, whereas C. andersoni infects the abomasums of juvenile and 

mature cattle and is not associated with overt clinical signs, although reduced milk 

production has been reported (Santin et al., 2004., Olson et al., 2004). 

Cryptosporidium deer-like genotype and C. bovis have not been associated with signs 

of disease (Fayer et al., 2006). Because of the difficulty in differentiation between 

species of Cryptosporidium based on the morphological characteristics of the oocyst, 

molecular techniques are used to determine the genotype and asses the risk of human 

infection (Fayer et al., 2006). 

Urban dairy production is an essential source of income and nutrition for an 

increasing number of households in African cities, but its intensive nature provides an 

environment that is conducive to emerging zoonotic pathogens such as 

Cryptosporidium (Kang’ethe et al., 2005). Therefore, urban dairying as a source of 

human infection is a great concern. Previous studies of human cryptosporidiosis in 

Kenya showed a prevalence of 2-5% in children (Gatei et al., 2006; Simwa et al., 

1989) while in HIV infected patients, a prevalence of 17% was reported (Mwachari et 

al., 1998). However, the prevalence of zoonotic vs. non-zoonotic genotypes of 

Cryptosporidium in cattle raised under urban smallholder system has not been 
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investigated, and the extent of zoonotic transmission in such production systems is 

unknown (Kang’ethe et al.; 2005). The objective of this study was to identify 

Cryptosporidium genotypes collected from feces of urban and peri-urban dairy cattle 

in Nairobi in order to determine their zoonotic potential.  

MATERIALS AND METHODS 

Sources of samples 

Fecal samples were obtained from cattle in Dagoretti Division of Nairobi from 

randomly selected urban and peri-urban households. All 143 calves aged 7-30 days 

were sampled in the selected households between August and December of 2006. 

Feces were collected directly from the rectum of animals into plastic gloves and 

transported to the laboratory the same day in an icebox for diagnosis of 

Cryptosporidium spp. All samples were collected from cattle of mixed local breeds 

and processed within one week of collection. The samples were stained by the 

Modified Ziehl-Neelsen method (Casemore et al., 1985) and examined under bright 

field light microscope. Positive samples were preserved with 2.5% potassium 

dichromate at 4 °C until further processing.  

DNA extraction 

After an initial step of washing four times in distilled water to remove the 

preservative, DNA was extracted from 34 samples identified positive by the Modified 

Ziehl-Neelsen method using QIAamp DNA Stool Mini Kit according to the 

manufacturer’s instructions (Qiagen, Valencia, CA).    

Molecular detection of Cryptosporidium genotypes 

A two-step nested PCR protocol was used to amplify an 830bp fragment of the 

18S rRNA gene (Xiao et al., 1999).
   

 PCR products were visualized after 

electrophoresis on 1% agarose gel stained with ethidium bromide. 
 
 Samples were 

sequenced in both directions and sequence
 
chromatograms from each strand were 
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aligned and inspected using
 
MEGA version 4.0, 2007 (Tamura et al., 2007). The basic 

local alignment search tool (BLAST) was used to compare DNA sequences with 

GenBank DNA sequences and to determine the species of Cryptosporidium in the 

sample.  

RESULTS 

We were able to extract DNA from 34 samples that were identified positive by 

the modified Ziehl-Neelsen staining method.  PCR positive results for the 18SrRNA 

gene of Cryptosporidium were obtained from samples from two animals. Both animals 

were 14-day-old bull calves from separate households. Genetic sequence analysis 

indicated that both of these isolates had 100% homology with the deer-like genotype 

listed in GenBank (accession number AY587166).  

DISCUSSION 

The aim of this study was to genetically characterize isolates of 

Cryptosporidium from urban dairy cattle in Nairobi in order to determine the risk of 

human infection. 

Two samples that amplified with PCR were identified as the non-zoonotic 

deer-like genotype. It is unclear why only two out of the 34 samples amplified 

successfully after numerous attempts, but several factors might have played a role. 

The Modified Ziehl-Neelsen technique is nonspecific, staining a range of other gastro-

intestinal parasites (Sunnotel et al, 1999). Therefore, misclassification by the initial 

screening process cannot be ruled out. Pre-PCR processing, such as concentration and 

purification might have led to parasite loss. It is also possible that the small volume of 

fecal material used in the extraction missed the oocyst if the parasite load in the feces 

was low. Furthermore, genetic denaturing might have occurred during long transport 

times between laboratories. Another possible explanation for the failure of PCR is that 

ruminant feces contain high levels of PCR inhibitors that could have interfered with 
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the reaction (Thornton et al., 2004). 

This is the first report of the deer-genotype in cattle from Africa. The SSU 

rRNA sequences in our study were identical to those previously reported from the 

United States and China (Santin et al., 2004; Feng et al., 2007). A series of studies 

indicated that C. bovis as well as the deer-like genotype were prevalent and 

widespread in dairy cattle on the East Coast of the Unites States (Santin et al., 2004;  

Fayer et al., 2006; Fayer et al., 2007) . In a recent study, both genotypes were found in 

a small number of cattle in China and India (Feng et al., 2007). Several countries in 

Europe, such as Denmark, Hungary and Northern Ireland recently reported that C. 

bovis and the deer-like genotype were prevalent in their cattle populations (Langhjaer 

et al., 2007; Plutzer et al., 2007; Thompson et al., 2007). In Africa, C. bovis was 

shown to be widespread in calves in Zambia (Geurden et al., 2006).  Both C. bovis and 

the deer-like genotype were detected in pre- and post-weaned calves as well as 

milking cows (Feng et al., 2007).  The deer-like genotype was found in small number 

of calves (5%) at 3 weeks of age in the United States (Santin et al., 2004) and in one 

pre-weaned calf in China (Feng et al., 2007). Our finding of the deer-like genotype in 

pre-weaned calves is in agreement with previous studies and suggests that calves may 

acquire infection early in life.   

In developing countries, Cryptosporidium is responsible for up to 19% of cases 

of diarrheal disease with significant effect on mortality. In HIV infected patients, 

Cryptosporidium may account for up to 50% of the cases of diarrhea (Gatei et al., 

2000). Cryptosporidium is one of the most common enteric parasites associated with 

diarrhea in Kenya (Gatei et al., 2006).  In spite of the high prevalence of human 

cryptosporidiosis in Kenya, little is known about the prevalence of different genotypes 

in Kenyan livestock, and the risk posed by livestock to human health (Kang’ethe et al., 

2005). This is the first time that Cryptosporidium isolates from Kenyan cattle have 
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been analyzed genetically.   

The finding of non-zoonotic genotypes in urban and peri-urban dairy cattle has 

significant public health as well as economic implications that underscore the need for 

molecular characterization of bovine cryptosporidiosis. As public health officials are 

facing the difficult decision of whether to allow urban livestock production for its 

economic benefit, or to ban it for its public health risks, epidemiologic studies using 

molecular techniques to distinguish between the genotypes are essential tools in 

formulating sound management policies to improve human health and livelihoods. 
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CHAPTER SIX 

CONCLUSION 

The aim of this body of work was to improve our understanding of the 

dynamic of Cryptosporidium infection in dairy cattle. Specifically, the work focused 

on quantifying and characterizing the public health risk posed by dairy cattle as a 

source of zoonotic Cryptosporidium in an important watershed and in an urban dairy 

production system, such that cost-effective mitigation strategies could be 

recommended. This aim was accomplished in four complementary studies that 

employed DNA sequencing methods in combination with epidemiologic analytical 

approaches.  

The first study utilized molecular techniques to obtain species-specific 

estimates of the prevalence of Cryptosporidium infection in dairy herds in the New 

York City Watershed. The study incorporated findings of previous investigations that 

our group had conducted in the target population through the use of a stochastic 

Bayesian approach, which allowed improving the estimates of the risk associated with 

zoonotic Cryptosporidium infection in this population. The study confirmed previous 

observations that only pre-weaned calves were the source of zoonotic 

Cryptosporidium in dairy herds. The study also increased our knowledge of the effect 

of season on the risk of infection.  

The second study built upon the risk estimates obtained in the first study to 

investigate the spatio-temporal dynamics of C. parvum infection in dairy calves and to 

identify potential high-risk clusters in the New York City Watershed. The study 

employed two different cluster detection techniques and identified high-risk clusters in 

both space and time in this important watershed. This finding has implications for 

watershed management, and will aid in the improvement of monitoring and prevention 

activities to protect drinking water supplies.  
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Knowledge gained in previous studies in the target population were integrated 

in the third study to determine risk factors for infection with zoonotic vs non-zoonotic 

Cryptosporidium in dairy calves using a case-control study design. The study revealed 

that younger age and being housed together with adult cattle were associated with an 

increased risk of infection with both C. parvum and C. bovis, while larger herd size 

and hay bedding increased the likelihood of infection only with the zoonotic genotype. 

The findings of this study may be useful to design measures that reduce animal 

exposure and decreased the public health risk and economic losses associated with C. 

parvum infection in cattle. 

In the final chapter we identified Cryptosporidium species using DNA 

sequencing to determine the zonotic risk associated with urban dairy production in the 

East African city of Nairobi. This study added to our knowledge regarding the global 

distribution of C. ryanae (formerly the deer-like genotype). The finding emphasized 

that dairy cattle worldwide may be infected with non-zoonotic Cryptosporidium 

genotypes, and underscored the need to incorporate molecular techniques in 

Cryptosporidium risk assessment in dairy cattle worldwide.  

 

 

 

 


