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Preface 

 

The original version of this paper was presented at a conference of the 

Northeastern Agricultural and Resource Economics Association in June 2001, and the 

abstract was printed in the October 2001 issue of Agricultural and Resource Economics 

Review.  Subsequently, a slightly edited version of the paper was presented at a 

conference in St. Louis in April 2002.  But, neither conference resulted in publication. 

The paper reports on a thoughtful analysis of the pricing of options on corn and 

soybean futures, and it gives a sense of a portion of Lordkipanidize’s (2004) PhD 

dissertation research in a relatively few pages.  It is still appropriate, therefore, to 

establish an accessible historical record of her work, by placing it in the Dyson School’s 

Staff Paper Series.   

The text of this staff paper is nearly identical to the 2001 and 2002 presentations, 

except that some parameter estimates have been changed to reflect revised results 

contained in her dissertation and a few minor editorial changes have been made.  The 

dissertation contains tables, figures, additional discussion, and an application to S & P 

500 futures and options markets’ data.   

I regret that her research results were not made more widely available via journal 

publication.   
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Abstract.  The empirical evidence in this paper supports the existence of seasonality, 

time-to-maturity, and long-memory effects in the volatility of prices, but not in the 

returns themselves, in corn and soybean futures markets.  This volatility is modeled as an 

Orenstein-Ulenbeck process driven by fractional Brownian motion.  The inclusion of 

long-memory stochastic volatility is found to have a significant impact upon the term 

structure of implied volatilities, and should be able to provide better estimates of in- and 

out-of-the money options’ prices. 
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1. Introduction and Background 

Understanding and modeling the stochastic behavior of spot and futures prices is 

important for pricing contingent claims on commodities. A good empirical model for 

valuing such claims should capture the observed statistical characteristics of actual 

market prices. The well-known Black-Scholes options pricing model is widely used for 

pricing contingent claims. It relies on the assumption that the logarithms of price changes 

are independently and identically distributed Gaussian variables and can be modeled as 

geometric Brownian motion – the continuous counterpart of a random walk. Even though 

the Black-Scholes model provides a reasonable first approximation to options prices, it 

results in systematic biases across maturities and moneyness. One possible explanation 

for these inaccuracies is that the statistical properties of price series differ from those 

implied by the model. In fact, empirical evidence suggests that commodity price 

dynamics exhibit non-trivial statistical characteristics: substantial skewness and 

leptokurtosis, non-integer (fractional) dimension of the probability distribution of the 

underlying process, a short-time memory of only a few minutes in price changes, and 

long-range correlations in volatilities. 

The question of deviations of commodity price behavior from random walk and 

Gaussian distribution assumptions was first raised in a series of papers by Mandelbrot 
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(1963, 1966, 1967). Studying cotton prices, Mandelbrot observed the following 

discrepancies between Brownian motion and the empirical facts: apparent non-

stationarity of the underlying process, repeated instances of discontinuous price changes, 

concentration of high price variability, cyclic behavior of price series, leptokurtosis, and 

long-term dependence in the variances of price changes. Since then, these characteristics 

have been repeatedly observed in many speculative price series. 

Early studies of the behavior of market prices implied that asset returns of many 

markets do not follow a random walk and that they may have long-term dependencies in 

price correlations. Existence of a stochastic memory in market returns implies that prices 

may not be efficient in quickly arbitraging new information; it may be possible to obtain 

abnormal profits on the basis of past information (Irwin, Zulauf, and Jackson, 1996). This 

would contradict the efficient market hypothesis. But, studies (Cheung and Lai, 1993; 

Crato, 1994; Fung and Lo, 1993), using new statistical tools, have found that financial 

returns in major liquid markets have no significant memory; i.e., a correlation function of 

price increments is zero for time periods longer then 15 minutes. Also, short-time 

correlations in price changes may be consistent with the efficient market hypothesis 

because transaction costs, associated with arbitrage, are likely important in commodity 

markets.  Furthermore, correlations in spot price changes for commodities can occur in 

rational markets (Tomek 1994, 2000). 

Although evidence of correlations in price changes for futures contracts is not 

strong, autocorrelations in the variance of price changes appear to be positive and decay 

very slowly, implying long-range dependence in volatility (Streeter and Tomek, 1992; 

2 



Crato and Ray, 2000).  Extremely slow power law decay provides a measure of the well-

documented clustering or persistence of volatility observed in market data.  

In addition to negligible correlations of price increments and the long-range 

correlation of volatilities, another striking feature observed in many markets is that 

marginal distributions of price changes have ‘fat tails’, i.e., are leptokurtic, and possibly 

skewed to the right. If this is true, price variations usually decay more slowly than a 

Gaussian distribution would imply. Corazzo, Malliaris, and Nardelli (1997) investigated 

the structure of six agricultural futures markets by estimating parameters of the Pareto-

Levy stable probability distribution and found that returns have long-memory and fractal 

structure. That is, they are characterized by nonstandard properties such as fine structure, 

local and global irregularities, self-similarity, and non-integer dimension of probability 

distribution of the underlying process. The Hurst exponent estimates for various 

agricultural futures indicate evidence of long-term memory for the entire daily returns 

time series. 

The existence of volatility smiles and skews in option prices is also evidence of 

the failure of Gaussian assumptions. In theory, the volatility should be constant for all 

strikes, but predictions based on the Black-Scholes model find that out-of-the-money 

options are priced too low, while in-the-money options are priced too high. This suggests 

that a log-normal distribution and a constant volatility assumption do not adequately 

describe price behavior in commodity markets.  

Attempts to reconcile theory with the empirical evidence have led to a rapidly 

expanding class of models that modify the volatility specification to make it stochastic. 

Stochastic volatility allows reproducing more realistic returns distribution. In particular, it 
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generates kurtosis in an otherwise Gaussian process. Introducing correlations between 

noise sources allows for asymmetry of the tails of the probability density function of the 

returns. Stochastic volatility causes options to display both smile and term structure 

effects. 

Accuracy of stochastic volatility models, however, depends on correctly 

specifying the volatility process itself. Many alternative models have been developed to 

fit the data. One hypothesis, conceived by Clark (1973) and developed further by Engle 

(1982) and Bollerslev et. al (1992) in classes of models, is specified as GARCH models. 

GARCH processes have fat-tailed unconditional distributions and conditional 

distributions whose second moments are changing through distributed lag or ARMA 

processes. Using a GARCH model for corn, pork bellies, soybeans, sugar, wheat, and 

gold daily spot price changes, Yang and Brorsen (1992) confirmed that the variance of 

the price changes is not constant. 

The GARCH specification reproduces many characteristics of non-Gaussian 

distributions, such as fat tails, clustering and the presence of autocorrelation in volatility. 

Some studies have shown, however, that the autocorrelation function of the variance has 

a much longer time memory than GARCH models suggest. The empirical presence of 

long memory is found in the persistence of autocorrelation. Studying high frequency 

price series, Bredit, de Lima and Crato (1993) and Bollerslev and Mikkelsen (1996) 

found that volatility of many U.S. stock return series exhibits long-memory behavior, that 

is, autocorrelation of functional moments of return series decays very slowly. Scaling 

analysis of market indexes and exchange rates shows that the volatility autocorrelations 
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decline hyperbolically with time, in contrast with the GARCH models where they decay 

exponentially.  

To allow for the effects of long-memory in option pricing models, several authors 

propose a fractional Brownian motion (fBm) as a source of noise for returns. In contrast 

to standard and geometric Brownian motions, fBm allows long-range dependence for the 

whole history of the process. But, the difficulty of this approach is that fractional 

Brownian motion it is not a semi-martingale, and can not be arbitraged to become one 

(Rogers, 1997). Therefore, in this case, no equivalent martingale measure exists, and the 

first fundamental asset pricing theorem  (the absence of arbitrage is equivalent to the 

existence of equivalent martingale measure) cannot be applied. As Rogers explains, fBm 

is a convolution of the Brownian increments with the power-law kernel, and arbitrage is 

happening because of the behavior of this kernel near zero. Long-range behavior is 

happening because of the behavior of the kernel at infinity. A way of overcoming this 

difficulty is to change the kernel into a kernel smoother in the neighborhood of zero. 

Another possibility, employed by Comte and Renault (1998), is to maintain 

standard Brownian motion as a source of noise for the returns process and to use fBm as 

a source of noise for the volatility process. In this case, since volatility itself is not a 

traded asset, it is impossible to construct arbitrage, and therefore, the underlying asset 

price process and the price process of the option are conformable to a necessary and 

sufficient condition for the existence of equivalent martingale measure. The volatility is 

modeled as an Ornstein-Ulenbeck process driven by a fBm, which is independent of the 

underlying Brownian motion. This model should be able to account for both a long 
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memory in volatility and a fractional dimension of the underlying probability distribution 

of futures returns. 

Given this background, the objective of this paper is to implement a fractional 

stochastic volatility model of Comte and Renault (1998) to price options on corn and 

soybean futures contracts. The rest of this paper is organized as follows. In section 2 we 

describe the fractional stochastic volatility model and provide the associated option 

pricing formulas. Section 3 outlines the estimation techniques and statistical inference 

issues. Section 4 describes the data and empirical findings, and Section 5 concludes the 

paper. 

2. The Fractional Stochastic Volatility Model 

In this section we describe the stochastic volatility model for pricing a European 

call option on a futures contract with strike price X and maturity TC.  F(t) is a futures 

price level and σ(t) is an instantaneous volatility at time t. For convenience, the 

instantaneous interest rate is assumed constant, so that a traded money market account 

earns interest at this rate.  Then the stochastic differential equations for a price process 

F(t) with a constant drift µ and the stochastic volatility σ(t) can be written as (1) and (2) 

respectively. 

dF t F t dt t F t dW t
X t t
dX t k X t dt dW t

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ( )) ( )

= +
=

= − +

µ σ
σ

θ γ α

                                             
ln

                                              

(1)

(2)

1

2

 

where {W1(t), W2
α

 (t)} are the standard and fractional Brownian motions respectively. 

The volatility function is an exponential function of an Ornstein-Ulenbeck process, with 

constant rate of mean-reversion k and constant long-run mean level θ. It is possible to 

replace the fractional Brownian motion with a standard Brownian motion in equation (2) 
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by differentiating it at the fractional order α. Now the stochastic differential equation for 

the fractional volatility process can be written as  

dX t k X t dt dW tα αθ γ( ) ( ( )) ( )= − + 2                                      (3)  

where  

 W (t)
(t-s)
( )

d W (s)  a t

2 0 21
 =                                                    

α

αΓ +∫  

Note, the volatility coefficients k, θ, γ remain invariant to this transformation (see proof 

in Comte and Renault, 1996). 

The stochastic process specified by equations (1) and (3) admits an equivalent 

martingale representation. Since the volatility is not a traded asset and nonstandard 

fractional properties are set only on the volatility process and not directly on the 

underlying futures price process, a riskless arbitrage cannot be constructed. Thus, there 

exists a probability distribution under which the discounted futures price process is a 

martingale. However, this martingale probability is not unique. The addition of the 

stochastic volatility, which is not directly tradable, makes the market incomplete in the 

sense that trading in the money market account and the underlying futures contracts can 

not replicate all contingent claims based on the underlying futures contract.  

Eisenberg and Jarrow (1994) showed that the introduction of an additional traded 

asset, imperfectly correlated to the underlying asset, can complete the market. Following 

this approach, we complete the market with another call option A(t) written on the futures 

F(t) with the same strike price and the closest maturity TA. The time t price of this call 

option satisfies the following stochastic differential equation: 
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dA t t A t dt t A t dW t t A t dW t

t
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The second Brownian motion influences futures price dynamics through a nonzero 

volatility coefficient η2. With the two sources of risk {W1(t), W2(t)} and two imperfectly 

correlated traded risky assets, the market is complete and the equivalent martingale 

measure can be determined uniquely.   

Now Girsanov’s theorem can be used to convert the discounted futures price  

e-rtF(t) and discounted options price e-rtA(F(t), t) into martingales. The two market prices 

of risk, λ1 (t) - the risk premium associated with the futures contract - and λ2(t) - the 

volatility risk premium - can be found using the following transformations:  

W t W t u du W t W t u du
~

 =  +            
~

 =  +           
0

t

1 0

t

2 (5)1 1 2 2( ) ( ) ( ) ( ) ( ) ( )λ λ∫ ∫  

where  W t W t
~

 and  
~

1 2( ) ( ) are  independent standard Brownian motions adapted to the 

filtration (F t) in the probability space (Ω, F , Q). Using (5) it can be shown that the 

martingale property of the discounted prices e-rtF(t) and  e-rtA(t) under Q implies that  

λ
µ

σ

λ
η

η
η λ

η

1

2
0

2

1 1

2

( )
( )

( )

( )
( )

( )
( ) ( )

( )

t
t r

t

t
t r

t
t t

t

= −
−

= −
−

−

                                                                             

.                                                         
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Given the above relations, the dynamics of the fractional volatility under the equivalent 

martingale measure Q can be expressed as 

 

dX t k X t dt t dt d W tα α αθ γλ γ( ) ( ( )) ( ) ( )= − + +2 2

~
                            (8)  

where  

 X  =                                                         (9)α
α

α
( ) ( ) .t

d
dt

(t-s)
( )

X s ds
t −

−∫ Γ 10
 

The price of the call option is given by 

( )C F t K T e E F t KC
r T t Q

t
C( ( ), , ) max[ ( ) , ]( ) =   .                                 (10)− − − 0 F

 

Since the volatility premium in (7) depends only on the current level of the volatility, the 

expectation in (10) can be computed by conditioning on the volatility path, i.e. 

               =  -                  

where                                                                                                                                                    
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This is an option pricing formula under the Hull and White stochastic volatility model, 

where the option value is a weighted average of the Black-Scholes values, and the 

conditional probability distribution is computed with respect to the conditional 

probability distribution of Ut,T  given the instantaneous volatility σ(t).  
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3. Estimation Procedures 

To estimate the long-memory volatility model described above, we follow the 

procedure suggested in Comte and Renault (1998). First, the long-memory parameter α  

is found using the semiparametric method of Robinson (1995) and then the parameters 

(k,θ, γ) of the Ornstein-Ulenbeck log-volatility process are obtained by estimating an 

AR(1) process after fractional differentiation at the estimated order α . In contrast to 

Comte and Renault (1998), our model does not assume that the volatility risk premium is 

zero. Thus, in addition to the parameters (k, θ, γ) we also need to estimate market prices 

of risk λ1(t) and λ2(t).  

Since the volatility is not directly observable, it must be either estimated from 

time-series data of underlying futures prices or inferred from options prices. In this paper 

the latter approach is used. The implied volatility σi,t can be obtained by inverting the 

Black-Scholes formula, i.e. solving the nonlinear equation 

C e F t
m
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e
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U
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m
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t T
r T t t
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t T m t
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t T i t
t

c
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c

c t

c

c

c
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,

,
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,
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( )
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where                                                                                                             
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2

σ
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2 2/

−∞∫
u

dt .

 

The implied volatilities will be numerically evaluated using the Newton-Raphson 

method.  

 After obtaining implied volatilities, the market prices of risk λ1(t) and λ2(t) are 

obtained by discretising equations (1) and (4) and estimating the parameters µ, η0, η1, η2  

in 
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F F F

A A A A
t t t t t t t

t t t t t t t t t
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∆ ∆
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∆ ∆
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(14)0

 

 where ∆t =1.  We compute OLS estimates of µ and the residuals ξt+∆t from equation (13), 

and then substitute these residuals into equation (14) to find parameters η0, η1, η2. Given 

these parameters the volatility risk premium can be computed from (6) and (7). 

To estimate the long-memory parameter α  we use a semiparametric method 

known as a regression on the periodogram first suggested by Geweke and Porter-Hudak 

(1983) and developed further by Robinson (1995). The periodogram is defined as  

I
N

X ej
N

ij

j
( )ν

π
ν=

=
∑1

2 1

2

                                      (15)  

where ν is the frequency, N is the number of terms in the series, and Xj are the implied 

volatilities computed in the previous step. At the origin, a fractional Gaussian noise 

model has a spectral density proportional to ν 2α.  Since I(ν) is an estimator of the 

spectral density,  an OLS regression of the logarithm of the periodogram versus the 

logarithm of the frequency ν should give an estimate of α. The spectral regression 

equation is  

ln( ( )) lnI c  k=l+ , ...., m kν α ν ξ=   -   (2 ) +                      k k      (16)1  

and the estimate of α is given by  

  α =  Y X(X X)               -1  ′ ′  

where Y = (Yl+1, …, Ym), X = (Xl+1, …, Xm),  Yk = ln(I(νk)) and Xk = -2ln(νk). Since the 

proportionality to ν  2α  holds only for the ν  close to the origin, not all the periodogram 
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frequencies are used in the regression. Robinson (1995) shows that the periodogram for 

frequencies between 2π/k and 2π/n satisfying  

                       
   =       

 +   +  
(ln

  0,     

m o N
l
m

m m
l

N
m

( )
ln( ) )

/

/

4 5

1 2 2

→
 

is asymptotically i.i.d. χ2 and the estimate of α is consistent and asymptotically normal.  

 As specified in the previous section, the log-volatility process dynamics under the 

martingale measure follows the stochastic differential equation 

                     d t k t dt t dt dW tln ( ) ( ln ( )) ( ) ( ).σ θ σ γλ γα α α= − + +2 2

~
                            (17)  

To estimate the parameters of this equation, we need to fractionally differentiate 

the log-volatility process, that is to approximate the integral  

                                          x (t)
(t-s)
( )

dx(s)  
t( )α

α

α
=

−

−

∫ Γ 10
 

where x(t) = lnσ(t). This can be done by numerically evaluating integrands on a discrete 

partition of the interval of observation [0, t ]: k/n, k = 0,1,…,[ht]1 by step functions: 

   .                                           (18) (  )x (t)
( )

xm
t-kh
( ) kh

kh<t

α
α

α
=

−

−∑ Γ
∆

1
 

Comte and Renault (1998) showed that  (  )x (t)mα converges to x (t)m( )α for kh → ∞ .  

 After obtaining the fractional log-volatilities the process can be estimated using 

an indirect inference method suggested by Pastorello, et al (2000). Equation (17) is an 

AR(1) process and can be directly integrated, giving 

1 [z] is the integer j such that j≤z≤j+1 
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To estimate this equation we need to maximize the log-likelihood function 

ln ( , , ) ln

( ) ( ) ( ))
,
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where a e b e c
e
k

k t k t
k t

= − = =
−− −

−

θ γ( ), , .1
1

2
∆ ∆

∆

   Maximization of the log-

likelihood function with respect to the parameters a, b, and c is equivalent to running an 

OLS regression on the volatility ( )ln ( )σ α t t+ ∆ , its lagged value ( )ln ( )σ α t , the volatility 

risk premium λ2 ( )t , and a constant. 

 Given the estimated parameters of Ornstein-Ulenbeck process and the volatility 

risk premium, a sample path of the ( )ln ( )σ α t t+ ∆ can be simulated. Then the expectation 

(10) is computed by Monte Carlo simulations to get the values C(F(t),K,TC) conformable 

to the long-memory stochastic volatility model. 

4. Data and Estimation Results 

The empirical analysis is based on daily futures and options prices for corn and 

soybeans for the period January 3, 1989 to November 28, 2000. (These contracts are 

traded on Chicago Board of Trade, now a division of the Chicago Mercantile Exchange.)  

The 1989 start date provides a sample period where market prices were above 

government price support levels; also before 1989, the volume of trading in options 

contracts was small.    
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Since futures contracts mature, a continuous sequence of prices was created by 

rolling over to the next contract when the nearby contract reached its expiration month. 

Futures prices during the maturity month are excluded to avoid any nonstationarity in 

price series due to increased volatility associated with unusual market activity near 

maturity. The options data used for each trade date are the settlement price, exercise 

price, and time to maturity. The risk free rate of interest associated with each option is 

derived from the three-month Treasury bill prices obtained from CRSP daily files. 

In the first step of the estimation procedure, implied volatilities are obtained from 

the options that are the closest to being at-the-money. The moneyness of an option is 

defined as its discounted strike price divided by the corresponding futures price. An 

option is exactly at-the-money when its moneyness equals one.  The Newton-Raphson 

method is used to compute the implied volatilities, except at maturity (T=0), when they 

are obtained from the conditional variances at the valuation date.   

The term structure of the implied volatilities for at-the-money options for varying 

times to maturity are summarized by year and on average in the dissertation.  The 

estimates of the term structures for both corn and soybeans indicate that they are 

relatively low in the early part of the life of a contract, increase gradually, reach their 

maximum values sometime between seven to eight months to expiration, and then 

decrease throughout the remaining life of the contract. The standard errors behave in a 

similar fashion.  

The estimates of long-memory parameters for the logarithms of returns and for 

the volatility for corn and soybeans are reported for varying sample lengths in 

dissertation Tables 5.4 and 5.5. The estimates of the α for returns are near zero, though 
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are sometimes statistically different than zero.  (The significant non-zero estimates may 

reflect the way that the futures price series were constructed by rolling over the prices 

from one contract to the next as maturity approaches.  This procedure creates a series that 

approximates the behavior of the underlying spot prices.) 

For the volatility, the estimates for the varying sample lengths are in the range 

0.29 to 0.40 for corn and 0.42 to 0.51 for soybeans and are significantly different than 

zero. (Time series that have no memory would have α=0.)  To test for the sensitivity of 

the estimates to different sample periods and sample sizes, the data were divided into two 

relatively equal sub-samples. The results for the two sub-samples show that the estimates 

are not sensitive to the estimation period and number of observations used.  Thus, we find  

little or no memory in returns and strong evidence of long memory in volatility. 

After fractionally differentiating log-volatility at the estimated degree α, we fit 

the regression equation (19) for the Ornstein-Ulenbeck process (Lordkipanidze 2004, 

Table 5.6). The estimates of all of the parameters, except the parameter γ, are statistically 

significant and consistent with respect to the different sample periods. Using these 

estimates, Monte Carlo simulations are performed to compute the conditional probability 

distribution of Ut,T  given the instantaneous volatility σ(t).  Call option prices conditional 

on the volatility path are computed from equation (11).  The simulated volatility paths 

over time are computed from the fractional stochastic volatility model and from the 

Black-Scholes model, and plots of the paths are available in the dissertation. The Back-

Scholes implied volatilities differ considerably for options with different maturities, 

whereas the volatilities implied by fractional stochastic volatility model fluctuate 

moderately around the mean level. Thus, the inclusion of a long-memory stochastic 
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volatility has a significant impact upon the term structure of implied volatilities. This 

finding suggests that the stochastic volatility model should be able to get better estimates 

of in- and out-of-the-money options prices.   

5. Conclusion 

The empirical evidence provided in this paper supports the existence of long 

memory in the volatilities of both corn and soybean futures prices.  These volatilities also 

have strong seasonal and time-to-maturity effects (Lordikpanidze 2004).  The findings 

also suggest that options pricing models should be adjusted to accommodate a long 

memory in volatility. The fractional stochastic volatility model utilized in this paper 

offers improvement over the standard Black-Scholes option pricing models by 

incorporating a long memory in volatility and a fractional dimension of underlying 

probability distribution of futures returns.  

This improvement comes at the expense of considerable complexity.  Further 

research is required to test the performance of the model discussed in this paper relative 

to alternatives.  In particular, it would be interesting to compare the performance of the 

fractional stochastic volatility model with other models of persistence in volatilities, such 

as the GARCH and ARFIMA classes of models.  
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