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The success of computational materials science in designing the materials of the

future relies on the computation of materials properties using temporally expen-

sive computer codes. Surrogate models, or simply surrogates, are employed to

approximate the computer code and simultaneously decrease the computational

effort by orders of magnitude enabling characterization, optimization, and design

of materials in silico. To learn a surrogate, a few observations must be obtained

from the expensive code, but once learned, the surrogate can predict the computer

code output for any input. In most cases, one is faced with the task of choosing a

narrow subset of best candidates among a larger set of potential surrogates for a

given task.

In this thesis, we present two new methods which improve surrogate modeling,

and a third method capable of quantifying the uncertainty in materials properties

predicted from the approximating surrogate. Our methods are general, but will be

applied to the subset of materials called alloys.

We start out by applying information theory to improve thermodynamic char-

acterization of materials using surrogates. We explore employing relative entropy

to measure “distance” between Boltzmann distributions, and find that our ap-

proach greatly improves current thermodynamic characterization in much better

agreement with experiments.

Then, we provide a rigorous way to propagate the uncertainty from not know-



ing the best surrogate candidate to use and from having observed only a limited

number of computer code observations during the process of lining up a set of

relevant candidates. We show that the surrogate indeed captures properties to a

satisfactory degree, as has been tacitly assumed so far in the field, with a predictive

variance on the order of 5-10 %, which can be further improved if needed.

Finally, we consider a materials design problem using surrogates. We consider

the task of minimizing the thermal conductivity in nanowires. The low symmetry

of these wires motivates us to introduce a modification to the traditional surrogate

model employed to learn the property of such systems. We call the new technique

the cluster expansion ghost lattice method and show how the method successfully

predicts the nanowire structure with lowest thermal conductivity.
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CHAPTER 1

INTRODUCTION

One of the biggest achievements of computational materials science would be to

produce a full-fledged virtual materials design laboratory thus removing any need

for costly real world experimental testing. We imagine inputing a set of desired

materials properties into a computer code, wait for a reasonable amount of time,

and receive the output material optimal for the application at hand. Only a single

material, the optimal one, needs to be produced in a real world laboratory and

we know immediately that all other possible representations of this material are

inferior.

We still have a long way to go to reach this goal successfully, but in order to

do so, we must be skillful in at least the following two tasks: We must be able

to optimize materials properties, such as the energy, the band gap, the thermal

conductivity, etc., represented in silico, and second, we should be able to accurately

characterize materials. An essential characterization is of thermodynamic nature.

That is, we need to know, e.g., in which phases the material will exist at various

external conditions and also how stable these phases are. In both of these tasks, we

must have a clear understanding, and quantification, of the uncertainties associated

in our work.

One of the main reasons why this virtual materials laboratory is not a reality

during the time of writing is the fact that computing the property of a material

requires running temporally expensive computer codes. For example, if we want

the accurate ab initio quantum mechanical energy of a single representation of

a material, we can run the Vienna ab initio simulation package (vasp),1,2 which

currently takes hours even on a supercomputer. This introduces a serious problem
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since any optimization task needs to search typically many hundreds of millions

different representations of the material in its way to the optimal answer. It seems

that we are faced with an insurmountable computational effort. To make matters

worse, for thermodynamic modeling of a material, we rely on statistical thermody-

namics which demands the evaluation of ensemble averages requiring the materials

property evaluated for the system found in the most likely (in principle all) states

at a set of external conditions such as temperature and pressure. Again, although

not an optimization task per se, we find ourselves facing the same problem of an

infeasible computational task due to the expensive computer code. By now it

should be clear that, overcoming the computational cost associated with obtaining

materials properties is of central importance in computational materials science

and represents one of the most relevant research areas.

The above discussion motivates the development of so-called surrogate models.

A surrogate model, or simply, a surrogate, is a replacement for the accurate, ex-

pensive, computer code. In a nutshell, the surrogate attempts to learn the output,

also called the response, of the computer code for any given input, in orders of

magnitude less time than it takes to run the expensive code. The outputs of the

computer code for all possible inputs are collectively called the response surface.

When employing a surrogate to learn the response surface, we necessarily in-

troduce uncertainty into computed materials properties. This generates essential

questions such as, how do these uncertainties affect our final predictions about

which material is best for a given application? We may tell the experimentalist to

produce material A when in fact material B is better because we relied too much

on a single surrogate, this is the danger of using non-Bayesian methods. Bayesian

methods on the other hand, as we will see in this thesis, accounts probabilisti-
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cally for all possible surrogates consistent with a set of samples taken from the

true response surface. Rigorously accounting for uncertainties with a probabilistic

approach will tell us how much we believe the best material is A over B, leaving

us with a much more informed approach to materials design. Furthermore, in the

context of thermodynamic characterization, how does the approximate surrogate

affect our uncertainty about which phase a material is most stable in for various

temperatures and pressures? Disregarding this uncertainty can be detrimental to

future materials design.

Although the methods developed in this thesis are general, we have decided to

focus our attention on a subset of materials, namely alloys, i.e., materials composed

of a set of different chemical elements of which at least one element is metallic.

Alloys are very commonplace in society. Indeed, mercury mixed with silver, tin,

copper, and zinc forms dental fillings, iron mixed with aluminum, nickel, cobalt,

and other elements, creates the magnets in loudspeakers, copper mixed with zinc

produces door locks and bolts, iron mixed with carbon and silicon is used to build

bridges and cookware, copper mixed with nickel and manganese is used to create

coins, aluminum mixed with copper, magnesium, and manganese forms materials

used in automobiles, for aircraft body parts, and for military equipment. The list

goes on.

In the case of alloys represented in silico, a particular surrogate model called

the cluster expansion has been employed for many decades3 to represent alloy con-

figurational properties, i.e., properties that depend on exactly where the atoms

in the alloy are placed, called a configuration, on the lattice (for example a face-

centered cubic (fcc) lattice with a basis)4 defining the geometry of the alloy. The

cluster expansion is useful because of its computational speed and can, in prin-
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ciple, be made arbitrarily accurate to the point where the true computer code is

exactly represented. In practice, however, it is made approximate, as we discuss in

Chapter 2.

In this thesis we address both the issue of optimization and that of thermo-

dynamic characterization. In Chapter 4, we first set out to merge information

theory with the cluster expansion to obtain a thermodynamic treatment in closer

agreement with experiments.

Then, in Chapter 5, we address, in a rigorous way, the important issue of how

much accuracy we sacrifice when replacing the expensive computer code with the

surrogate. We present an approach capable of quantifying the uncertainties in

properties computing using the surrogate. The framework is general, but will be

applied to the cluster expansion.

Finally, in Chapter 6, we demonstrate a case of using surrogates for materials

design. The cluster expansion surrogate model is employed to predict a material

with a given specified property. We show how the cluster expansion is useful for

materials design and in this process we modify the traditional cluster expansion

applicable to bulk alloy systems to now handle low-dimensional systems of arbitrary

shapes.

We will first need a theoretical framework which will be the topic of the fol-

lowing chapter.
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Figure 2.1: (Color) Demonstration of two different configurations of some
binary alloy on a face-centered cubic lattice shown via the non-
conventional unit cell. Each lattice site can host either of two
chemical species: a red species, which could be, e.g., Mg or a blue
species which could be, e.g., Li. σi is the configuration vector of
configuration i identifying which chemical species occupies which
lattice site.

CHAPTER 2

THE CLUSTER EXPANSION

2.1 Alloy Configuration Space

Define an alloy via a lattice, which could but need not be of the Bravais type,

and consider a set of atoms which can occupy each lattice site. A single config-

uration, mentioned briefly in Chapter 1, is represented by a vector σ and given

by specifying which chemical species sits where on the lattice sites. Eee Fig. 2.1

for two different configuration examples if the alloy is binary and defined on the

face-centered cubic (fcc) lattice. The set of all possible configurations of the lattice

forms the configuration space, denoted {σ}. If considering an alloy of Nc possible

lattice sites, the configuration space has 2Nc configurations. To form the vector σ,

the two chemical species are mapped to integers. A popular choice for the binary

alloy, e.g., is ±1. For reasons that will become clear later we can call the integers

the spin values of the site, but warn the reader that they have nothing directly to
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do with quantum mechanical spins.

Most alloy properties are configuration-dependent, i.e., they depend on which

chemical species occupy the lattice sites. We think of such properties as functions

living in a function space over configuration space. These functions map configu-

rations to alloy properties. Energy is a configuration-dependent property and we

can think of associating with each configuration a real number—the energy of that

alloy configuration. To simplify the discussion ahead we will now assume that the

alloy property we are interested in is the energy.

2.2 Functions over Configuration Space

The alloy properties are computed via some computer code(s). This code is what

brings us from a configuration to the alloy energy. We can think of it as a mathe-

matical function mapping members of configuration space to energies. As discussed

in Chapter 1, this function is complicated and temporally expensive to evaluate.

We treat the computer code as a black box providing us energies/responses for

inputs we provide. Our goal is to replace the expensive code with some alter-

native which is much faster. This is equivalent to saying that we are replacing

Schrödinger’s equation, the exclusion principle, etc., with an emulator. At first,

this seems impossible since we have no access to the internal workings of the code.

On second thought, however, we are implicitly given information about how the

code behaves each time it responds to a given input. This actually turns out to be

enough for most cases when we are willing to sacrifice accuracy for speed.

Given enough examples of how the code responds to various inputs, we can learn

to emulate the code. This is the idea behind a surrogate model and is generally a

6



very successful approach in most engineering fields. The surrogate needs to both

be a good interpolator, predicting energies well within the set of inputs used to

learn it, but also a good extrapolator, predicting energies for inputs which were

not part of choosing the surrogate. It is the extrapolating, also called predictive,

capabilities that open up the possibility for materials design as we will show in

Chapter 6.

2.3 Expanding Functions over Configuration Space in a

Basis

There are many possible choices for surrogates, but a popular model used for alloys

is the cluster expansion. The idea is to create an orthonormal and complete basis

in the space of functions over the 2Nc dimensional configuration space and then

expand configuration-dependent properties in this basis.

2.3.1 Orthonormal Basis of a Single Lattice Site

The approach to creating this basis can be broken into two main parts. First, we

build an orthonormal and complete set of basis functions in the space of functions

over configuration space of a single lattice site. Then, we form the direct product

of all Nc site bases. In this section, to simplify the exposition, we will consider

binary alloys, but the approach extends easily to a general M -nary alloy.

In mathematical terms, consider two configuration-dependent, general func-
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tions f(·) and g(·) and define the inner product:

〈f, g〉 = 1
2

∑
σ∈{−1,1}

f(σ)g(σ),

where we use scalar σ to represent a particular spin value on the given site, not to

be confused with vector σ representing an alloy configuration. The configuration

space of the single site has just two points, one for each spin value the site can be

found in. We are free to represent any function over this configuration space of

the single lattice site, say, h(·) as the vector:

h→ 1√
2

 h(1)

h(−1)


where we have used the spin values directly instead of σ and we explicitly see that

for a binary alloy the single-site configuration space is isomorphic to R2 and thus

it is two-dimensional. For slight increased notational convenience later, we can

re-write the inner product as the dot product

〈f, g〉 = fTg,

where the superscriptet T identifies the transposition operator.

To form an orthonormal basis in this two-dimensional configuration space, we

can start with a standard polynomial complete basis guess and then make it or-

thonormal. Consider therefore the following two basis vectors (written first in

function notation) taking as input the spin value σ on the site:

Θ0(σ) = 1→ 1√
2

 Θ0(1) = 1

Θ0(−1) = 1

 (2.1)

and

Θ1(σ) = σ → 1√
2

 Θ1(1) = 1

Θ1(−1) = −1

 . (2.2)
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They are both associated with the same site and we can collect them in a matrix

B:

B = 1√
2

 1 1

1 −1

 .
We then compute the QR factorization B = QR and the kth column of R−1, the

inverse matrix of R, tells us how much each polynomial basis function contributes

to form the new kth orthonormal basis vector. In this case (aside from an overall

negative multiplicative constant):

R−1 =

 1 0

0 1

 .
The first column is (1, 0)T which means that the first orthonormal basis vector of

this single site is just Θ0(·) (plus zero times Θ1(·)). The second column (0, 1)T

informs us that the second orthonormal basis vector of the single site is simply

Θ1(·). Thus, the original polynomial basis (Eqs. 2.1 and 2.2) guess happens to

be already an orthonormal complete basis for the configuration space of a single

lattice site. Of course, the alloy would be very boring if only containing a single

site, so let us extend these developments to Nc sites.

2.3.2 Orthonormal Basis of Nc Lattice Sites

Configuration space now has 2Nc points. Define the inner product of the configu-

ration space of all Nc lattice sites:

〈f, g〉 = 2−NcTr(Nc)fTg,

where the generalized trace over Nc sites is the operator

Tr(Nc) =
∑
σ(1)

∑
σ(2)

· · ·
∑
σ(Nc)

,
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and σ(j) is the possible spin values of site j, i.e., σ(j) ∈ {−1, 1} for all j. σ(i)

should not be confused with the (fixed) ith element of σ. σ(i) is just a summation

variable representing site i. The key to forming the configuration space basis over

Nc sites is to take the direct product of each single-site basis sets found and to

realize that such a product keeps the resulting basis functions orthonormal as long

as the single-site basis set is orthonormal.5

The result, as shown in Ref. [5], is that each basis function over Nc sites is

formed by taking all possible combinations of the single-site basis functions. One

particular basis function over all Nc sites is obtained if taking the product of the

Θ0(·) functions from each of the Nc sites which gives a constant function over

configuration space. Another basis function over the Nc sites is found by taking

the Θ0(·) basis function from all Nc sites except, say, site 1 where we take the

Θ1(·) basis function instead, and so on, for all possible choices of basis functions.

Mathematically, we can define the vector b with the ith element being k if we

want to use basis function Θk for site i, and remind ourselves of the configuration

vector σ defined in Section 2.1 whose ith element identifies the spin value on site

i now to be parsed to the corresponding basis function identified by bi. As an

example, say spin value +1 occupies site i, i.e., σi = 1, and that we want to use

basis function Θ1(σ) = σ for this site, i.e., bi = 1. Then, to get the basis function

value for the particular configuration we input si to the basis function identified

by bi thus obtaining Θbi
(σi) = 1. Another configuration of the same alloy could

(but need not) change σi leading to a different value of this same basis function if

it happens that the opposite spin value occupies site i now: σi = −1.
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2.4 The Cluster Expansion and its Effective Cluster Inter-

actions

In the case of the binary alloy, we are now ready to define the symbol Γ, called

the cluster function, to represent the basis function over Nc lattice sites and write

it as:

Γb(σ) =
Nc∏
j=1

Θbj
(σj), (2.3)

where the product is over all the lattice sites. We will see in the next section how

we need not, in general, take the product over all lattice sites in Eq. (2.3). Note

that our Eq. (2.3) is the same as Eq. (3) in Ref. [6]. We have followed the notation

closely in Ref. [6] on purpose to provide a detailed explanation of how the cluster

expansion notation is derived. This should bring the unfamiliar reader quickly up

to speed with reading the cluster expansion literature.

With Eq. (2.3) we can finally write down the cluster expansion of some general

configuration-dependent total property value Q(·) (an extensive quantity) as the

following sum over cluster functions:

Q(σ) =
∑
b

VbΓb(σ), (2.4)

where Vb are unknown expansion coefficients called effective cluster interactions

(ECI). This is not the final form to be used in this thesis, but provides a starting

point for further developments in the following sections.
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2.4.1 Clusters

The presence of the Θ0(·) basis function, which is just 1, allows the following

geometric interpretation of the basis functions. Since any site in the lattice which

hosts the basis function Θ0(·) contributes with a factor of 1 in Eq. (2.3), we can,

effectively, ignore the site. In other words, the product becomes over just the sites

with non-Θ0(·) basis functions. It is this realization that leads us to only worry

about collection of lattice sites with non-Θ0(·) basis functions. Each such collection

is called a cluster, the very namesake of the expansion we will be interested in as a

surrogate in the present thesis. We can think of visualizing clusters, e.g., as sticks

connecting these lattice sites. Eq. (2.4) looks deceivingly simple, but the cluster

functions rely on the computation of the clusters (satisfying certain symmetries

to be discussed in Section 2.4.2) which presents the main computational effort

underlying the expansion.

As a final note, to those familiar with the Ising model,7 the cluster expansion

is equivalent to an extended Ising model accounting for next-nearest neighbor

interactions, interactions of groups of four sites, groups of five sites, etc., as justified

in Ref. [8].

2.4.2 Symmetries and Cluster Orbits

Essential to the success of cluster expansions are the space group symmetries of the

“empty” lattice. By empty, we mean the lattice with no particular configuration,

e.g., an fcc lattice with no atoms occupying the sites. Alternatively, we can get

the same result by determining the space group symmetries of the lattice with the

same chemical species occupying all sites. Consider two different clusters b and
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b′. They have the same ECI if they can be brought to lie on top of each other,

i.e., if they are equivalent, under a lattice space group operation. Mathematically,

Vb = Vb′ in Eq. (2.4). We will take b′ ∈ b to mean that b′ is equivalent to b under

the space group operations of the lattice. Since we can group clusters under the

same ECI value we name each such group. In this thesis we will call it a cluster

orbit, or simply an orbit for short. Some references also use the term “cluster

family”.

This discussion changes the way we present Eq. (2.4) in that we can now break

the sum into one over the orbits and, for each orbit, a sum over the equivalent

clusters. Let α denote an orbit, then Eq. (2.4) takes the form:

Q(σ) =
∑
α

Vα
∑
b∈α

Γb(σ), (2.5)

which is already in a much more useful form. The importance of employing sym-

metries comes from the fact that, for orbit α, we have reduced the number of

unknowns to be determined by the number of equivalent clusters in this orbit.

This number is denoted Mα.

But there is a more subtle point to be made as well. The expensive computer

code, thought of as a function, belongs to a subspace in the space of functions

over configuration space. This subspace contains functions that satisfy the space

group symmetries of the system. Loosely speaking, when employing symmetries in

our surrogate, we “approach” this subspace and more quickly converge to a good

approximation to the code.

We will return to the importance of symmetries in Chapter 6.
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2.4.3 Infinite Crystals

If Q(·) is the total energy of some bulk crystal extending to infinity along all

directions then Q(·) would be infinite itself (just think of adding the self energy of

each atom to the total energy). Therefore, it is much more useful to make Q(·) an

intrinsic quantity. We make it the energy per unit cell.

Eq. (2.4) takes the form

q(σ) =
∑
α

mαVαφα(σ), (2.6)

where q(·) is the per-unit-cell version of Q(·), mα is the per-unit-cell version of Mα

introduced at the end of Section 2.4.2 and φ(·) is a correlation function defined as

the average over cluster functions:

φα(σ) =
∑
b∈α Γb(σ)
Numα

, (2.7)

where Nu is the number of unit cells in the structure from which the property was

computed using an appropriate computer code. This makes the correlation func-

tion a real number in the range [−1, 1]. Eq. (2.6) is a standard way of presenting

the cluster expansion in the literature.

2.4.4 Truncating the Cluster Expansion

In practice, a truncation of Eq. (2.6) to some upper limit αmax is necessary. This

is achieved by fixing the maximum number of crystal sites present in any cluster

as well as its maximum spatial extent defined throughout this thesis as the largest

distance between any two crystal sites in the cluster.9
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Much of the cluster expansion literature has been, and is still, devoted to finding

the best set of clusters to be used in the summation Eq. (2.6), see, e.g., Ref. [10].

2.5 Cluster Expanding M-nary Alloys

In this section we generalize the developments leading to Eq. (2.6). The presenta-

tion follows closely that of Ref. [11]. Any site can now host Mi species. So far, we

have assumed Mi = 2. Note that this also allows for site i hosting at maximum

two different species while site j hosts, say, three different species and so on.

The reader will find the cluster expansion in many different forms in the liter-

ature. In this section we will use a notation slightly different than Eq. (2.6). This

is mainly to allow the reader, who may not be an expert on cluster expansions, to

more quickly adapt to changes in the cluster expansion notation in the literature.

The expansion now takes the form

q(σ) =
∑
α

mαJα〈Γα′(σ)〉α, (2.8)

where Jα is now the symbol for the ECI and the correlation function, which was

called φ·(·) in Eq. (2.6), is now written explicitly as an average over the clusters

α′ symmetrically equivalent to α (b in Eq. (2.7)).

In Eq. (2.8) we have changed the notational meaning of the vector α represent-

ing a cluster. If Mi different chemical species can now occupy lattice site i, αi can

take values from zero to Mi − 1. If αi = 0, site i is not contained in the cluster,

i.e., the basis function of site i is Θ0(·). Importantly, sites hosting different sets

of species are to be considered symmetrically distinct when determining the space

group symmetries.
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The cluster function Γα(σ) is now defined similar to Eq. (2.3) as the following

product over all Nc lattice sites in the system:

Γα(σ) =
Nc∏
i=1

γαi,Mi
(σi),

where

γ0,Mi
(σi) = 1 (2.9)

(what we called Θ0(σi) in Eq. (2.3)) and

1
Mi

Mi−1∑
σi=0

γαi,Mi
(σi)γβi,Mi

(σi) =


1 if αi = βi

0 otherwise,
(2.10)

which implies that the cluster functions are orthonormal, i.e., 〈Γα,Γβ〉 is one if

α = β and zero otherwise. The cluster expansion is thus an expansion over the

average cluster function in all cluster orbits. Ref. [11] provides more details and

discusses a particular implementation of γαi,Mi
(·).

2.6 Learning the Cluster Expansion

The cluster expansion has learned a given computer code once the retained clusters

in the truncation along with the values for the ECI have been identified. The

approach is to obtain a data set D = {(σi, q(σi))}Ni=1 of N properties expensive to

obtain. How to choose D is an open question that our current research is trying

to address. We will, in this thesis, take D for granted. Typically, N is on the

order of 50-200. A fitting method is employed such as least squares12 with leave-

one-out cross-validation (LOOCV) (in some cases modified with ad hoc weights)13

potentially coupled with genetic algorithms,14 or compressive sensing,15 to learn

both the best clusters and associated ECI. For typical systems, 20-80 clusters
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are retained, but can vary greatly depending on the property and the system in

question.

2.7 Alternative Notations of the Cluster Expansion

In Chapter 4, we cast the cluster expansion Eq. (2.6) in the following form:

q(σ|γ) =
M∑
i=1

γiφi(σ) (2.11)

(read the left hand side as: property q given the particular set of ECI γ), where the

sum is over the cluster orbits, indexed by i, chosen (somehow) for the system and

γi is the ith element of the ECI now collected in the vector γ. If we let αi be the

cluster α in Eq. (2.8) chosen to represent the ith cluster orbit (such a cluster is also

called a prototype) then γi in Eq. (2.11) would be equivalent to Jαi
in Eq. (2.8),

and φi(σ) is simply mαi
〈Γα′

i
(σ)〉αi

, where α′i denotes a cluster in orbit i which is

symmetrically equivalent to αi. This definition of φ·(·) is very close to the one in

Eq. (2.6) except for the mα and the fact that the subscript notation now indexes

a cluster orbit in some integer.

In Chapter 5 we shall view the cluster expansion purely from a linear regression

perspective. From Eq. (2.8), the cluster expansion of a configuration dependent

alloy property q(·) can be expressed in the linear regression form, with added noise

ε, as:

q = Xβ + ε, (2.12)

where any dependence on σ is suppressed, the ith element of vector q is q(·) of

structure i with its associated noise in the ith position of ε, X is called the design

matrix and contains, in the ith row and jth column, the term mαj
〈Γα′

j
(σ)〉αj

,
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discussed in the previous paragraph, of structure i for cluster orbit j, and the ECI

are now collected in the vector β, not to be confused with the (scalar) inverse

temperature β = 1/kBT used in Chapter 4 or the notation for some generic cluster

in Eq. (2.10).

2.8 Summary

The cluster expansion is a surrogate model for alloys which expands the expensive

computer code in a basis set with associated expansion coefficients called ECI.

The cluster expansion provides an exact representation of any configuration de-

pendent property q(·) of alloys if untruncated, but in practice we truncate it to

M clusters/terms. The expansion is used to obtain the design matrix in a linear

regression setting where the properties are obtained via an expensive computer

code. We learn the clusters and associated ECI from a training data set D and

given these, the property of any alloy configuration, even one not part of D, can

be obtained at, essentially, no computational cost, enabling alloy optimization and

thermodynamic modeling.
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CHAPTER 3

MARKOV CHAIN MONTE CARLO TECHNIQUES

In typical Bayesian settings we need to maximize some unnormalized joint pos-

terior distribution and to collect samples from the target distributions later used

for inference. This is a very difficult task leaving Bayesian probability theory essen-

tially unemployed in practice until around the 1980s where Markov Chain Monte

Carlo (MCMC) methods finally1 gained popularity in the statistical community.

MCMC can be used as a numerical sampling method to obtain random variables

distributed according to “custom” unnormalized probability distributions, exactly

as needed in typical Bayesian tasks. It scales well with high dimensions which

makes it useful for problems with hundreds or even thousands of unknowns.

It is not just in Bayesian probability theory per se that MCMC finds use.

Consider statistical mechanics. Here, the Boltzmann (probability) distribution

plays an essential role. Indeed, if we consider a system in contact with a heat bath

at temperature T , the probability p(·) of finding the system in a state of energy E

is:

1
Z

exp
(
− E

kBT

)
,

where kB relates energy to temperature and is called the Boltzmann constant, and

Z is the normalization constant of the Boltzmann factor for the system also called

the partition function. To compute it, we need to sum over all possible states of

the system

Z =
∑

j∈all states
exp

(
− Ej
kBT

)
,

1The MCMC method was devised in the 1950s.

19



where Ej is the energy of state j. The partition function captures a wealth of

information For our purposes, in short, the MCMC method is a way to sample

from custom probability distributions.

3.1 State Space

We eventually want to evolve the system in a so-called Markov chain, the namesake

of MCMC, for reasons that become clear as we go along.16 We need this chain

to satisfy certain conditions, which will be discussed here as well. To start our

treatment, first define a state space as a space containing all possible states of the

system, i.e., we need some way of associating a meaning to the word “state” when

saying “move from state i to state j”. For the alloy, e.g., this space could be the

configuration space discussed in Section Section 2.1, where we move between states

by altering the identities of the chemical species occupying the (fixed) lattice sites,

but it all depends on the application at hand.

We want the ability to move the system from state to state at random. This

is in order to form a stochastic process. For such a process, the system can evolve

in many different directions from the current state to some next state generally

dependent on the entire past of the system. Contrast this to solving, say, a reason-

ably defined ordinary differential equation where we, given the initial condition,

can find a deterministic solution. For some subset of stochastic processes the way

we move to the next state only depends on the current state of the system, not on

any other past states. In other words, the move can only be influenced by infor-

mation associated with the state we are in at the very moment we are making the

move decision. This subset of processes contains what are called Markov chains

and what we will be interested in. For an example of a Markov chain please refer
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to the “Drunkard’s walk” in Chapter 2 of Ref. [17].

If not careful, the Markov chain will not end up sampling from the distribution

we need it to sample from. Concepts such as the chain having multiple so-called

stationary distributions, transient states and cycles can all lead to invalid samples.

There is, however, a way to bypass these issues. The trick is to ensure that the

chain is ergodic.17 This means that we must be able, with some finite probability,

to transition from state α to state β after some finite time. Ergodic chains are,

however, still not enough, we need to study a subclass of Markov chains, namely

those satisfying detailed balance. Detailed balance implies that the equilibrium

probability for the state in a general set A to move to a state in set B is the

same with A and B reversed.22 So in summary, the Markov chain converges to

a custom distribution of our choosing if it is Markovian, it is ergodic, and it

satisfies detailed balance. The question is then how to ensure this and the answer

is to develop an algorithm which, taking as input the current state, tells us the

probability of moving to any other state. A famous such algorithm is the Metropolis

algorithm18 which was later generalized by W. K. Hastings to the Metropolis-

Hastings algorithm.19 In 1995, the algorithm was further generalized and we will

employ this in Section 5.6. The algorithm was devised by P. Green and is called

the Metropolis-Hastings-Green algorithm.20,21 We will discuss this algorithm from

a theoretical standpoint in the following section.

As a final note, the name MCMC is used to describe the class of the algorithms,

including the ones just mentioned, which uses a Markov chain to sample from some

custom distribution of interest.
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3.2 Reversible Jump Markov Chain Monte Carlo

For some problems it can be beneficial, or directly necessary, to let the state space

change dimensions as the Markov change moves between states. For example,

we want to allow a move from a state space where states are characterized by

two-dimensional vectors to another state space where they are characterized by

four-dimensional vectors. Regression problems come to mind. What if we want to

infer, from the data, the number of basis functions needed in a given basis expan-

sion regression problem, and not simply the values of their associated expansion

coefficients? In that case, the Metropolis-Hastings-Green algorithm, briefly men-

tioned in the previous section, can be employed. The resulting technique is called

the reversible jump MCMC (RJMCMC) method. To present it, we follow the

approach, not requiring a measure theoretic approach defining dominant measures

and Radon-Nikodym derivatives, given by Refs. [22, 23] and direct the reader to

the more rigorous presentation in Ref. [20] if needed. As we go along in the follow-

ing paragraphs, we refer the reader to Ref. [22] for the full details. The upcoming

presentation will serve as the theoretical framework underlying Chapter 5, and

have been included here to make this thesis self-contained.

We start by defining the state space denoted χ = ⋃
k∈K ({k} × χk) where k

labels the state we are in. The kth state has nk parameters. In our application, if

k = 2, say, we are in a state of two basis functions ad n2 = 2 as well. The various

states with k = 2 identifies different particular values of the regression coefficients,

collected in the vector θk, belonging to these basis functions. Since the coefficients

will be real-valued, we let θk ∈ χk ⊂ Rk.

We are, generally speaking, trying to infer some probability distribution

π(k,θk|D), in light of an observed data set D, on the state space. Keeping k
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fixed for the moment we can let a computer program move between two states

by generating a set of, say, r random numbers u from the known joint density

g. The proposed state, say, x′, is then generated via some deterministic function

h(x, u) such that (x′, u′) = h(x, u). The newly introduced u′ contains the r′ ran-

dom numbers generated from the known joint density g′ required to move from x′

back to x (reversing the move) using the inverse function h′ of h. Let us accept the

move from x to x′ with probability α(x, x′) and the reverse move with probability

α(x′, x). Detailed balance requires that:

∫
(x,x′)∈A×B

π(x)g(u)α(x, x′)dxdu =
∫

(x,x′)∈A×B
π(x′)g′(u′)α(x′, x)dx′du′.

We want to solve this for α(·, ·). In order to do so, we assume h(·, ·) and its

inverse h′(·, ·) are differentiable so that the integral over the primed variables can

be converted, via a Jacobian, to one over the unprimed variables. We can make the

two integrals identical if the integrands are the same over the integration domain.

Therefore, we require, after the change of variables, that:

π(x)g(u)α(x, x′) = π(x′)g′(u′)α(x′, x)
∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣ . (3.1)

One choice (not the only one) for α(·, ·) is to let

α(x, x′) = min
{

1, π(x′)g′(u′)
π(x)g(u)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣
}
. (3.2)

We can show that Eq. (3.2) is indeed a solution to Eq. (3.1) as follows. Multiply

Eq. (3.2) through by the denominator in the fraction:

π(x)g(u)α(x, x′) = min
{
π(x)g(u), π(x′)g′(u′)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣
}

= min
{
π(x′)g′(u′)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣ , π(x)g(u)
}

⇒ π(x)g(u)α(x, x′)
π(x′)g′(u′)

∣∣∣∂(x′,u′)
∂(x,u)

∣∣∣ = min

1, π(x)g(u)
π(x′)g′(u′)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣
−1
 , (3.3)
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but the left hand side is just α(x′, x) from Eq. (3.1) so we get:

α(x′, x) = min

1, π(x)g(u)
π(x′)g′(u′)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣
−1
 . (3.4)

Now switch the labels x and x′ in the proposed solution Eq. (3.2), it should equal

Eq. (3.4), which we see it does. Also notice how Eq. (3.4) and Eq. (3.2) are

reciprocals.

Let us pause and explain how the acceptance probability is actually used in the

computer program. For a move from x to x′

Recall that we have kept k fixed during the above presentation, but now let

that be allowed to change. That is, as we traverse the state space χ, some states

will have k = 2 (we use two basis functions to describe the data) and other states

will have k = 4 (we use four basis functions to describe the data). The question is,

what changes in the above discussion. We find a pleasing answer: the dimensions

of the state parameters associated with x and those associated with the new state

x′ can be different as long as the transformation from (x, u) to (x′, u′) remains a

diffeomorphism. We must set up the requirement that n + r = n′ + r′, which is

called dimension-matching. As noted in Ref. [22] we can have r and/or r′ to be

zero which is useful, e.g., in cases where we transition towards lower k values (and

thus, we do not need to augment the current state).

3.2.1 State-Dependent Move Types

We will be employing the RJMCMC algorithm in Chapter 5 and will see that,

typically, in order to traverse the state space χ we need the concept of state-

dependent move types. Consider first standard MCMC, where we have some way
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of perturbing the current state, say, with a Gaussian random number. We take a

state with θ = (2.2, 4.1)T , say, and perturb it to θ′ = (2.4, 4.0), e.g. (notice that k

is fixed in standard MCMC so has been suppressed) This represents a single move

type. But how is such a move type going to let us jump from a state with k = 2

with, e.g., θ2 = (1, 4)T to a state with k′ = 4 with, e.g., θ′4 = (1, 4, 2, 8)T when all

we can do is perturb the parameter values? We need a move type which can offer

this variation as well, i.e., a move type with a specification such as “augment the

current state vector with 2 random numbers”.

We can implement any feature in the Markov chain as long as the chain still

satisfies detailed balance. If we have two different move types in state x then

detailed balance sums over all the possible move types. In order to maintain

detailed balance we need to first introduce the probability of performing move

type m in state x denoted jm(x). Next, we need to realize that, as long as detailed

balance is satisfied for each separate move type, the overall detailed balance over

all move types is satisfied as well.22 The acceptance probability Eq. (3.2) becomes

move-type dependent and changes to:

αm(x, x′) = min
{

1, π(x′)jm(x′)g′(u′)
π(x)jm(x)g(u)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣
}
, (3.5)

where the Jacobian is move-type dependent as well although not explicitly stated

in the equation.

In the following section we will show a simple example of developing an RJM-

CMC algorithm for a linear regression problem.
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3.2.2 Developing a Reversible Jump Markov Chain Monte

Carlo Algorithm for Linear Regression

Consider a linear regression problem where we have only two basis functions, i.e.,

k can take values in {1, 2}. We want to learn whether the data can be explained

better with a single basis function or with both basis functions.

We start by defining three move types: the birth move which increments k by

1, the update move, which updates the parameters for a given fixed k, and the

death move, which decrements k by 1. If we have a full model (k = 2) we will

not allow the birth move since there is no valid model with k = 3. This affects

the move-type probabilities. In particular, if k = 2 we have that jbirth(x) = 0,

jdeath(x) = 1/2, jupdate(x) = 1/2. If k = 1, we cannot make a death move since

k = 0 is not a valid model, so jbirth(x) = 1/2, jdeath(x) = 0, jupdate(x) = 1/2.

Now let us derive the acceptance probability satisfying detailed balance. Con-

sider the update move first since this is the easiest case of the three.

3.2.3 Acceptance Probability of an Update Move in Re-

gression

The update move proceeds as follows. We find ourselves in a state x = (k, θk)

and propose a move to x′ = (k, θ′), both states having the same k. This is a

standard Metropolis-Hastings step. Let us make sense of Eq. (3.5) in this scenario.

The way we perturb the current state parameter vector θ is, e.g., by generating

r = k random numbers and putting them in u. The deterministic map is thus θ′ =
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h(θ, u) = θ + u giving the Jacobian factor |∂θ′/∂θ| = 1. The proposal density g is

simply the Gaussian density evaluated at u. Now consider the reverse move from

the proposed state x′ back to x. The map is now θ = h(θ′, u′) = θ′ + u′ = θ′ − u.

The last equality follows from the requirement that we must end up in state x (and

we originally added u to θ). We have that g′ is also Gaussian because this is the

distribution we would use to perturb the state x′ to x, so g′(u′) = g(−u), but since

the Gaussian is symmetric, we have that g(u) = g′(u′) and these factors cancel

in the acceptance probability. Finally, the move-type probabilities cancel as well

since jupdate(x) = jupdate(x′). The Metropolis-Hastings algorithm for symmetric

distributions is actually just the Metropolis algorithm and this is what we have

here. The final answer is that, for the update move, we should accept moves with

probability (we can ignore k since it is the same for both states, so use directly the

parameter θ instead of the more general x):

αupdate(θ, θ′) = min
{

1, π(θ′)
π(θ)

}
. (3.6)

To evaluate this probability, we simply need to compute the posterior distribution,

which replaces the general distribution π(·) in a given Bayesian inference problem,

in the two states. Notice that the expression involves the ratio of the posterior

distribution in the two states which means that the normalization constant cancels,

which is certainly one of the biggest advantages of MCMC as explained in the

introduction to this chapter.

Next, let us consider the acceptance probability of a birth move.
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3.2.4 Acceptance Probability of a Birth Move in Regres-

sion

We are in the state x = (1, θ) and propose a move to state x′ = (2, θ′). Since

θ′ has two dimensions we need to augment θ with an extra random variable that

we will draw from a Gaussian (thus, r = 1 here leaving u as a single normally

distributed variable). So now θ′ = (θ′1, θ′2) = h(θ, u) = (θ, u). Notice that, more

generally, there is also the option of generating u as a Gaussian (or anything else

we please) and then pass it to another function, say, k(u), leaving us with (θ, k(u))

which would lead to more complicated Jacobians, and could potentially improve

the state space traversal, but in this case we simply obtain:∣∣∣∣∣∣∣∣
∂θ′

1
∂θ1

∂θ′
1

∂u

∂θ′
2

∂θ1

∂θ′
2

∂u

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣∣ = 1.

The jump probability of a birth move is jbirth(x) = 1/2 and since we generated

the proposed new state from a Gaussian we have that g(u) is the Gaussian density

evaluated at u. This finishes the forward move. Next, let us discuss the reverse

move going from x′ to x which involves now a death move (from k = 2 to k = 1).

First, the jump probability is jdeath(x′) = 1/2. In order to make this reverse move,

we do not need to generate any additional random numbers, so r′ = 0. We simply

need to set (θ, u) = h′(θ′) = (θ′1, θ′2). This means that g′(u′) should not appear in

the detailed balance equation from the beginning and, effectively, we can set it to

one here, leaving us with:

αbirth(x, x′) = min
{

1, π(2, θ′)
π(1, θ)N (u, σ2)−1

}
, (3.7)
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3.2.5 Acceptance Probability of a Death Move in Regres-

sion

Let us now derive the death move acceptance probability. As per our remark

following Eq. (3.4), we should find that this probability is the inverse of the birth

move acceptance probability found in Section 3.2.4.

We start in state x = (2, θ) and propose to jump to x′ = (1, θ′). Since x′ is

of lower dimensionality, we do this simply by setting (θ′, u′) = h(θ1, θ2) = (θ1, θ2).

The jump probability is jdeath(x) = 1/2 and since we do not generate any random

numbers in this move (r = 0), we have that g(u) is effectively one. The Jacobian

is: ∣∣∣∣∣∣∣∣
∂θ′

1
∂θ1

∂θ′
1

∂u

∂θ′
2

∂θ1

∂θ′
2

∂u

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0

0 1

∣∣∣∣∣∣∣∣ = 1.

Consider now the reverse move, i.e., we are in state x′ = (1, θ′) and propose a

birth move to state x = (2, θ) via a specific set of parameters: (θ′, u′) = (θ1, θ2)

given in the previous paragraph. That is to say, we are not interested in a jump

from x′ to any other sate, but only interested in the single jump from x′ which

leads exactly back to x.

The jump probability is jbirth(x′) = 1/2, and thus cancels with jdeath(·), and

to perform this reverse move we have to set (θ1, θ2) = h′(θ′, u′) = (θ′, u′ = θ2) so

g′(u′) is a Gaussian evaluated at θ2. We are ready to write down the acceptance

probability:

αdeath(x, x′) = min
{

1, π(1, θ′)
π(2, θ)N (θ2, σ

2)
}
,

and indeed this is the inverse of Eq. (3.7) when we change variables (think of u in
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Eq. (3.7) as being the “second parameter of θ, i.e., θ2”).
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CHAPTER 4

IMPROVING THERMODYNAMIC CHARACTERIZATION OF

ALLOYS USING INFORMATION THEORY

Construction of binary alloy phase diagrams are important to thermodynamic

characterization of materials and generally relies on the cluster expansion discussed

theoretically in Chapter 2. In the present chapter, the alloy property will be the

ab initio quantum mechanical energy, called simply energy, and thus, to offer a

more concrete treatment, instead of q(·), we denote the energy E(·). We remind

ourselves that, given the clusters with associated ECI, typically obtained from a

least squares or a least absolute shrinkage and selection operator (LASSO) fit,24

the latter to be discussed in Chapter 5, on a training set D, the energy of any

alloy configuration can be computed, and subsequently used for thermodynamic

simulations.9,25–30

When employing the above mentioned fitting techniques to learn the ECI, all

structures in D are weighted equally, but we can provide an intuitive argument as

to why this weighting scheme does not necessarily lead to an optimal description

of the thermodynamics of the system. Consider the case of a canonical ensem-

ble. The Boltzmann factor, in equilibrium, dictates that more energetic states are

exponentially less likely to be observed. So, at low temperatures, the partition

function is mostly influenced by the few low energy states. The Boltzmann factor

for all other states is essentially zero. Therefore, the thermodynamic importance

of a state is quantified by its Boltzmann factor. We conclude that, as the tem-

perature is increased, so is the importance of any state. Furthermore, at infinite

temperature all states are equally important.

31



The previous discussion motivated the work in this chapter. It is desirable to

investigate techniques which obtain the ECI based on thermodynamic arguments.

All the necessary information is encapsulated in the probability distribution over

states (PDS). The idea is to bring the PDS induced by the cluster expansion (can-

didate PDS) as close as possible to the true one. We propose to measure this

distance in terms of relative entropy (also known as the Kullback–Leibler diver-

gence).31 Thus, we obtain a variational problem, namely, the minimization of the

relative entropy functional with respect to the candidate PDS. Though theoret-

ically sound this problem is computationally intractable. To cope with this, we

show that the relative entropy functional can be approximated by the variance

(with respect to the true PDS) of the difference between the true and the can-

didate cluster expansion energy. Restricting this approximation on the observed

data leads to a weighted least squares problem making the proposed approach

computationally attractive.

We test the performance of our method in a study of canonical phase transfor-

mations in Si-Ge (two-phase coexistence to disorder) and Mg-Li (order to disorder)

alloys at various compositions. A comparison is presented between the relative en-

tropy results and least squares LOOCV where we, for Mg-Li, observe noticeable

differences in the transition temperatures. Our results are found to be in better

agreement with guiding experimental data.

4.1 Chapter Outline

First, the theoretical framework of relative entropy is discussed in Section 4.2. In

Section 4.3, we explain how the ab initio observations were made along with details
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on the thermodynamic calculations. Then, we present numerical results starting

with a toy model in Section 4.3.1. This is followed by a study of a real Si-Ge

diamond alloy (Section 4.3.2) predicting the transition from two-phase coexistence

to disorder at fixed 50 % composition. The same transition has been simulated

in Refs. [32–34] and also by using cluster expansions with least squares LOOCV

in Refs. [9, 35]. As a final example, we then turn to an Mg-Li alloy on a body-

centered cubic (bcc) lattice (Section 4.3.3) which has recently36 been simulated at

low temperature predicting order to disorder phase transformations at 33 %, 50 %,

and 66 % Mg. Finally we compare the relative entropy results with both Ref. [36]

and guiding experimental data in Ref. [37].

4.2 Relative Entropy

Let the binary alloy, as introduced in Chapter 2, be at fixed composition and in a

heat bath at temperature T . The PDS is

p(σ|β) = exp (−βE(σ))
Z

, (4.1)

where β = 1/kBT , with kB the Boltzman factor, E(σ) is the ab initio energy of

alloy state σ, and Z = ∑
σ exp(−βE(σ)) is the partition function. The candidate

PDS, given some ECI that we, in this chapter, will denote γ, is

p(σ|γ, β) = exp (−βE(σ|γ))
Z(γ) . (4.2)

Please refer to Chapter 2 and Eq. (2.11) for the meaning of E(σ|γ). As discussed

in the chapter introduction, we seek to bring the candidate PDS (Eq. (4.2)) as

close as possible to the true PDS (Eq. (4.1)). The measure of “distance” we choose

is the relative entropy, defined by

Srel [γ] :=
∑
σ

p(σ|β) ln
[
p(σ|β)
p(σ|γ, β)

]
. (4.3)
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The relative entropy quantifies the information loss when using the candidate PDS

instead of the true one. It has been used in numerous applications ranging from

machine learning (variational methods),38 coarse graining,39–42 to free energy cal-

culations.43 We postulate that the optimal ECI should be selected by minimizing

Eq. (4.3).

Notice that Eq. (4.3) involves a sum over the entire phase space rendering its

minimization practically impossible. Several approximations are essential in order

to bring the problem to a soluble form. Towards this goal, let us first rewrite

Eq. (4.3) as

Srel [γ] = β〈E(σ|γ)− E(σ)〉+ ln(Z(γ)) + ln(Z)

= −〈∆〉+ ln 〈exp(∆)〉

= ln
〈

exp [∆− 〈∆〉]
〉
,

where 〈·〉 denotes the expectation with respect to the true PDS and ∆ := β(E(σ)−

E(σ|γ)) can be thought of as the error of the approximation, in units of the

thermal energy. We now derive an approximation to the relative entropy whose

minimization is equivalent to the solution of a linear system. To leading order in

∆ we have

Srel [γ] = ln
〈

1 + (∆− 〈∆〉) + 1
2(∆− 〈∆〉)2 + · · ·

〉
≈ ln

(
1 + 1

2Var[∆]
)
≈ 1

2Var[∆]

= 1
2

∑
σ

p(σ|β)∆2 −
(∑

σ

p(σ|β)∆
)2
 , (4.4)

where, in the last equality, we recall that ∆ depends on σ. Equating the derivative

of Eq. (4.4) with respect to γ to zero,

0 = ∂Srel [γ]
∂γi

= −β (〈φi(σ)∆〉 − 〈∆〉〈φi(σ)〉)

= −β2cov
[
(E(σ)− Ê(σ|γ)), φi(σ)

]
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and solving for γ, yields the following linear system:

cov [φ(σ),φ(σ)]γ = cov [φ(σ), E(σ)] , (4.5)

where

cov[X,Y] :=
〈
(X− 〈X〉)(Y − 〈Y〉)t

〉
with Xt being the transpose of X, denotes the covariance of the true PDS between

two vector functions X and Y of configuration space. However, Eq. (4.5) is still

unmanageable. The next step is to approximate it using the observed data.

Assume we have collected N observations
{(
σ(i), E

(
σ(i)

))}N
i=1

, what we called

D in Chapter 2, where σ(i) is the configuration and E
(
σ(i)

)
is the corresponding ab

initio energy. To approximate Eq. (4.5), we replace all averages with respect to the

true PDS with averages over the observed data. In other words, we approximate

the average of any quantity X by

〈X〉 ≈
N∑
i=1

pN,iX
(
σ(i)

)
,

where

pN :=
exp

[
−βE

(
σ(1)

)]
ZN

, · · · ,
exp

[
−βE

(
σ(N)

)]
ZN

 ,
with ZN := ∑N

i=1 exp
[
−βE

(
σ(i)

)]
. Thus, Eq. (4.5) becomes a weighted least

squares problem:

ΦtWΦγ = ΦtWE, (4.6)

where E is a vector of length N containing the observed energies, and

W := (IN − pN1N)diag(pN)(IN − pN1N)t,

where IN is the (N ×N) identity matrix, 1N a (1×N) vector of all elements equal

to 1, and diag(pN) an (N ×N) matrix with the vector pN as its diagonal.
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Eq. (4.6) is what makes the relative entropy method computationally tractable.

The extend to which it is valid, requires further mathematical analysis that goes

beyond the scope of this work. For the cases considered in Section 4.3, it was

observed that the ECI obtained by solving Eq. (4.6) converged as the number of

observations N increased in a way similar to least squares. Notice that the ECI

are, generally, T -dependent through the weight matrix W in Eq. (4.6).

Before concluding this section, it is instructive to compare Eq. (4.4) with the

least squares loss function

L[γ] =
∑
σ

(E(σ)− E(σ|γ))2 = β−2∑
σ

∆2. (4.7)

Notice that the first summand in Eq. (4.4) is similar to that of Eq. (4.7), albeit

weighted by the true PDS. The second summand does not have an analogue in

least squares. The important observation is that learning efforts are concentrated

on the relevant states mostly, at a given temperature. On the contrary, least

squares always considers all states equally important. It is therefore anticipated

that the relative entropy ECI would perform better when used in thermodynamic

calculations.

4.3 Numerical Results

In this section, we explain how the ab initio data for the two alloys were obtained.

Then, we briefly discuss the details of the underlying Monte Carlo scheme used to

extract thermodynamic information needed to detect the phase transitions.

The first principles configurational energies were generated using vasp. For

the Mg-Li bcc system we used Perdew–Burke–Ernzerhof (PBE)44,45 projector-
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augmented-wave46 pseudo potentials. We treated the 2p and 3s orbitals of Mg

and the 1s orbital of Li as valences. Convergence to within 1 meV/atom was

achieved around a wave cutoff of 340 eV, in agreement with Ref. [36] using the

same technique, and was checked for both the pure structures and for a couple of

randomly chosen mixed structures. Spin polarization was not included. We used a

dense gamma-centered Monkhorst–Pack47 k-grid for the Brillouin zone integration

with just over 7500 k-points per reciprocal atom and scaled the grid according to

the size of each supercell being computed. In this way, a training set of 82 struc-

tures was generated. Then, a cluster expansions with up until and including five

point clusters was constructed using atat.9,11,13,48,49 The least squares LOOCV

ECI were obtained using atat. We obtained a LOOCV score of 4.2 meV. The

same training set was used to compute the ECI for the relative entropy method at

each temperature using Eq. (4.6).

For the Si-Ge diamond system, we also used PBE pseudopotentials and the

system converged to within 1 meV/atom around a wave cutoff of 340 eV using the

same k-point grid type, density, and scaling as for the Mg-Li system. A training

set of 38 structures was constructed and a cluster expansion containing up until

and including three point clusters, as in Ref. [9], computed with atat. The least

squares LOOCV ECI were obtained with atat. A LOOCV score of <1 meV was

achieved. The training data was used to compute the ECI for the relative entropy

method at each temperature using Eq. (4.6).

The clusters obtained with atat are used in the relative entropy method as

basis functions, i.e., as columns in Φ in Eq. (4.6). The ECI obtained for both

systems using the least squares LOOCV method are shown in Fig. 4.1. The empty

cluster is left out as it is just an overall scale of the energy irrelevant when sampling
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Figure 4.1: (Color) ECI obtained for (a) the Mg-Li and (b) the Si-Ge system
using least squares LOOCV as implemented in atat. Left-right
arrows, with colors and text, group the number of sites in the
clusters associated with the ECI. “i-pt” is shorthand for i point
clusters. Within each group, spatially larger clusters are found
further to the right. The total number of clusters reported ex-
cludes the empty and 1-pt cluster. The inset in (a) shows the
ECI for all clusters except the nearest neighbor 2-pt cluster (n.n.
2-pt) for a more detailed variation. Notice the difference in scale
in energies between the two systems.

the Boltzmann factor. By a similar argument, valid because the system is in a

canonical ensemble, the one-point cluster ECI does not play a role either.

The ground states found for Mg-Li, at the compositions studied in this work,

were: Bf , B2, and C11b at 33 %, 50 %, and 66 % Mg, respectively. Ref. [36] finds
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the same result except obtaining a C11b structure at 33 % Mg. We find that only

the two pure diamond structures are ground states for the Si-Ge system at zero

Kelvin.

Thermodynamic properties were calculated on a 30 × 30 × 30 simulation cell

with periodic boundary conditions. Sampling of the PDS was performed using an

Adaptive Sequential Monte Carlo (ASMC) technique50,51 coupled with an under-

lying Metropolis–Hastings algorithm using double-spin-flip dynamics to conserve

composition. ASMC approximates the PDS with a weighted finite set of delta func-

tions, called particles, at some convenient initial temperature. The particles are

then propagated from this starting point to any other temperature as desired, and

the weights are updated accordingly. Steps in temperature are taken adaptively to

ensure that the distribution does not undergo large changes, and thermodynamic

information is recorded at each step.

The ASMC sampler was initialized with 512 particles, each on its own com-

putational core, at 2000 K. Each particle was initialized randomly. At this high

temperature random configurations are distributed (almost) correctly according to

the Boltzmann factor offering a very convenient starting point. Nevertheless, each

particle was thermalized with 100 sweeps.52 A target temperature of 50 K was

specified and to improve the chances that we did not miss a transition, we split

the interval 50-2000 in bins of size 10 K. ASMC drove the ensemble of particles

from the right corner of this interval to the left.

The heat capacity at constant pressure was obtained from the standard statis-

tical relation to the variance in energy

Cp = β2kB
(
〈E2〉 − 〈E〉2

)
.

For an infinite system a divergence in this quantity signals a phase transition. For
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a finite system we should expect a distinct peak.

4.3.1 Magnesium Lithium Toy Model

The purpose of this section is to assess the predictive power of the relative entropy

method compared to least squares LOOCV in the context of canonical order to

disorder phase transitions. In order to do this we device an artificial problem in

which the phase transition is exactly known. We consider the Mg-Li system and

assume that the true energy surface is the one obtained by the set of clusters

and ECI determined by atat, see Fig. 4.1(a). For this cluster expansion, we

compute the phase transition temperature from order to disorder (true transition

temperature). We create an artificial data set by evaluating this cluster expansion

on the 82 observed configurations and assume that the energies predicted are the

true energies. Then, we reduce the cluster expansion to include only the two point

clusters (of which there are 16) and train it on the artificial data using both least

squares LOOCV and relative entropy. Finally, for each method we compute the

order to disorder phase transition temperature for the 66 % Mg composition and

compare them with the true one. It must be noted that special attention was

paid to ensure that the reduced cluster expansion could predict the same ordered

state, which was C11b, as the artificial model. This was verified by monitoring

the pair correlation values versus temperature. The results are shown in Fig. 4.2.

The relative entropy method differs by 22 K of the true transition temperature

compared to 70 K for least squares LOOCV. This is evidence of the anticipated,

enhanced, predictive capabilities of the relative entropy method.
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right arrows with associated temperatures identify the peak-to-
peak distance between predicted transitions of the two considered
methods and the full model. Relative entropy is measured on the
right scale as indicated by the dashed arrow

4.3.2 Transition from Two-Phase Coexistence to Disorder

in Diamond Silicon Germanium

The ECI obtained with relative entropy at the highest temperature 2000 K are

shown in Fig. 4.3(a). At high temperatures relative entropy considers all states

thermodynamically important. Therefore, the ECI should be comparable to least

squares in Fig. 4.1(b) which is seen to be the case. The difference between the meth-

ods becomes increasingly pronounced as the temperature is lowered. This claim is

supported by the difference in selected ECI versus T as shown in Fig. 4.3(b).

The prediction of the Si-Ge two-phase coexistence to disorder transition tem-

perature at 50 % composition is seen for ECI obtained using both least squares

LOOCV and relative entropy in Fig. 4.4. The least squares result, yielding a tran-
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Figure 4.3: (Color) Si-Ge system. (a) ECI obtained with the relative entropy
method at 2000 K. Compare to Fig. 4.1(b). (b) shows the dif-
ference in ECI versus T between least squares with LOOCV (LS
LOOCV) and relative entropy. Circled numbers in (b) identify
the clusters in (a) selected for plotting.

sition temperature around 339 K, is in good agreement with the 325 K found in

Ref. [9], using the same method but different sets of clusters and Monte Carlo

sampling methods.

Relative entropy agrees with least squares LOOCV. This can be explained from

the small variation in the ECI between the two methods for this system on the

order of 0.01 meV as seen in Fig. 4.3(b).
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4.3.3 Order to Disorder Phase Transition in bcc Magne-

sium Lithium

The ECI obtained with relative entropy at the highest temperature 2000 K are

shown in Fig. 4.5(a). Similar to Section 4.3.2, at high temperatures the ECI should

be comparable to least squares LOOCV, shown in Fig. 4.1(a), which is found to

be the case. The difference between selected ECI is shown in Fig. 4.5(b).

In Fig. 4.6 we show the predicted order to disorder transition temperatures for

Mg-Li bcc at 33 %, 50 %, and 66 % Mg compositions. Using least squares LOOCV

we obtain transition temperatures of 226, 304, and 207 K, respectively. This is in

general agreement with Ref. [36] obtaining 190 and 210 K for 33 % and 66 % Mg,
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respectively. For 50 % composition Ref. [36] reports a transition between 300 and

450 K. Overall, discrepancies are due to different particular fitting methods used

and different Monte Carlo techniques.

With the relative entropy method we predict 170, 214, and 240 K for 33 %,

50 %, and 66 % Mg, respectively. The difference between the two methods can

be explained from the changing ECI around the transition temperatures as shown

in Fig. 4.5(b). The ECI differences are an order of magnitude larger than for the
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Si-Ge system.

Interestingly, the relative entropy method is in good agreement with the in-

dicative experimental results in Ref. [37] according to which the order to disorder

transitions across all compositions commence between 140 and 200 K. For the

highest composition, i.e., 66 % Mg, we note that the experiments had highest er-

ror. For this largest composition, the relative entropy predicts a larger transition

temperature than least squares LOOCV.

4.4 Conclusion

We have proposed a new paradigm based on a variational principle for obtaining

thermodynamically relevant ECI. The principle is build upon the relative entropy

which measures the information loss induced by replacing the true PDS with the

candidate one. Through a series of suitable approximations we managed to bring

the variational problem to a weighted least squares form enabling a practical so-

lution.

We observed differences in predicted order to disorder transition temperatures

of the Mg-Li alloy between the proposed method and least squares LOOCV. For

the Si-Ge system, where a transition from two-phase coexistence to disorder was

studied, we found the two methods to agree.

The main drawback of the method is that it requires a good set of clusters

to start with. In this work, we relied on the methodologies implemented in atat

(namely, least squares LOOCV to capture the ground states). Alternatively, we

could have used the state-of-the-art method of compressive sensing. An interesting
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research question is to investigate the performance of compressive sensing when the

error function is replaced by relative entropy. Under the approximations developed

in this chapter this corresponds to changing from a Euclidean norm to a weighted

norm when accounting for the error term.
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CHAPTER 5

BAYESIAN UNCERTAINTY QUANTIFICATION IN USING

SURROGATES FOR PREDICTING MATERIALS PROPERTIES

In this chapter we aim to develop a Bayesian framework for quantifying the un-

certainty in alloy modeling when using fast parametrized surrogates in place of

expensive computer codes as discussed in Chapter 1. We also show how the un-

certainty is propagated to quantities predicted from the surrogate. We emphasize

that the framework extends beyond cluster expansions (Chapter 2).

Generally, in the most typical setup, a surrogate is learned from some data

set, e.g., quantum mechanical energies, and then used to predict some quantity

of interest (QoI), which could be a ground state line, a phase transition, or some

optimal structure (e.g., lowest thermal conductivity in the case where the data are

instead thermal conductivities). Of course, the parametrization we choose for the

surrogate depends on what data we see from the computer code. Since the code

is expensive, we only see a limited amount of data. Furthermore, we require the

surrogates to be computationally cheap. This means that, e.g., if the surrogate is

represented by a set of basis functions, we are not in liberty to include an arbitrarily

large number of such basis functions. The particular surrogate we consider later

is such an example. These restrictions on the surrogate mean that, when it is

parametrized, we do not know a priori the best parametrization. We have to

learn it from a set of multiple candidate parametrizations, a pool of candidates,

each candidate, from a Bayesian perspective, consistent with the observed limited

amount of data. A single value of the QoI is computed from a single surrogate

candidate. Since there may be multiple candidates, there may also be multiple

values for the same QoI. Our uncertainty about the best surrogate candidate has

48



thus propagated to the QoI. This is the first source of uncertainty we aim to capture

in the present work. From now on, we will simply say parametrization to mean

surrogate parametrization/candidate.

Notice also that, the effect of limited data enters implicitly through our belief

about the best parametrization pool to choose. For example, upon seeing data

set D1 it might be that the pool of parametrizations t1 is better than another

pool t2. But if we now observe more data, it could very well be that our opinion

is reversed, thus choosing t2 over t1. The fewer data points we have, the worse,

and generally larger, our pool of parametrizations consistent with the data will

be, unless, of course, our prior belief is already sharply tuned to a good pool of

parametrizations. However, this is rarely the case, and in by far the most cases we

benefit from observing data. From this, it should be clear that the limited data

plays a role in our knowledge about the best pool of parametrizations to use. The

fact that we only see a limited amount of data therefore introduces a second source

of uncertainty (not independent of the first one though) in the QoI, and we will

be able to capture this as well.

As it is important, we reiterate that our developed methods are independent

of the particular surrogate employed, but we will focus on the cluster expansion

introduced in Chapter 2. To recap, the cluster expansion expands the alloy prop-

erty in basis functions with associated expansion coefficients called ECI, which

are obtained by fitting the cluster expansion to a data set. The cluster expansion

surrogate is uniquely given once the ECI are specified, so we will consider a sur-

rogate parametrization as being synonymous with the ECI. Although the cluster

expansion is exact when untruncated, in practice one needs to make a truncation

choice and estimate the ECI from a pool of parametrizations, as discussed in the
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beginning of this introduction. We reiterate that this introduces uncertainties in

the QoI predicted by the cluster expansion. Although an important question to

ask, the sizes of these uncertainties have, strictly speaking, remained unknown

until now. We employ a fully Bayesian approach to quantify the uncertainties.

We should mention that non-Bayesian methods have been applied in some

works to quantify the uncertainty in QoIs, but we believe that they should be

avoided for uncertainty propagation. In particular, there is no rigorous framework

for propagating uncertainties through parametrized surrogates, such as the cluster

expansion, to the QoI in non-Bayesian frameworks.53,54

In beginning our Bayesian approach, we need to be clear about what we mean

by probability. We interpret probability as a reasonable degree of belief55,56 as

opposed to a frequency of some (hypothetical) long-run experiment. The sum and

product rules of probability theory then tell us how to manipulate degrees of be-

lief in a rigorous way. From this view of probability, Bayes theorem follows, and

can be used to change our knowledge when observing new data in a given prob-

lem.55,57 This is collectively what is called Bayesian probability theory. We will use

a Bayesian approach to introduce a model describing our belief about the best set of

ECI with emphasis on sparsity. We include the sparsity feature because alloy prop-

erties are expected to be sparsely representable, based on physical arguments.15

A very successful sparse regression method, from the non-Bayesian literature, is

LASSO, which is an L1-constrained least squares method. It can be shown that

LASSO has a Bayesian interpretation. It corresponds to the posterior mode when

the parameters to be learned have independent Laplace distributions as priors.58

The above information about LASSO will be used to choose Laplace distributed

priors in Section 5.5. The Bayesian posterior distribution (posterior) contains the

50



information needed to rigorously quantify the QoI uncertainties. In our case, the

posterior attains a shape allowing it to be summarized via the 95 % highest pos-

terior density confidence interval (HPD)—the smallest region containing at least

95 % of the posterior mass. We will reduce the effects of other uncertainties as

much as possible, and discuss this as we go along.

We employ our framework to two real binary alloy systems. First, we consider

bcc magnesium-lithium (Mg-Li) and let the QoI be its ground state line. Then, we

turn to diamond silicon-germanium (Si-Ge) and present a computationally more

involved example where the QoI is the transition temperature of the disordered to

two-phase-coexistence at 50 % composition.

5.1 Chapter Outline

We start out with a general introduction to uncertainty quantification and present

our framework in Sections 5.2 and 5.3. In Section 5.5, we present a Bayesian

method for describing the ECI with emphasis on sparsity. The resulting posterior

from the Bayesian treatment will not be in closed form for its intended use, so we

show how samples are drawn from it using Markov chain Monte Carlo (MCMC)59

methods in Section 5.6. Having developed the framework, we turn to case stud-

ies first discussing uncertainty quantification in the Mg-Li ground state line in

Section 5.7, followed by the uncertainty quantification of an Si-Ge phase transi-

tion in Section 5.8. Results from these studies are presented in Section 5.10 and

a corresponding discussion follows in Section 5.11. The chapter is concluded in

Section 5.12.
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5.2 Background

In this section we introduce the methods used to quantify the uncertainty in the

QoI making no assumption about the form of parametrization of the response

surface. Then, in the following section, we show how the cluster expansion makes

this parametrization. Independent of the choice of surrogate model we will need

data to make the best possible choice of parametrization. Therefore, we first

discuss assumptions about the computer code used to obtain the data. Then, we

introduce the central element in this work: an operator which acts on the surrogate

to produce the QoI, and show how it is used to summarize the present uncertainty

quantification task in a single equation, given certain assumptions.

The data acquisition takes place by supplying a set of alloy configurations as in-

put to an expensive computer code, e.g., vasp or the large-scale atomic/molecular

massively parallel simulator (lammps)60 and obtain a set of corresponding prop-

erty values as output which collectively form the response surface. This could be

quantum mechanical energies per atom or thermal conductivity, respectively. We

view the computer code as a function f(·) mapping some input structure, with

configuration denoted σ, to a response y. We do not know f(·) and we are most

often not interested in it per se, but rather some function of this—the QoI. There-

fore, we define an operator I[·] taking as input a response surface and returning the

QoI which can generally be represented by a set of real numbers. As an example,

we can let it return the structure at the global minimum of the surface:

I[f(·)] = arg min
i

f(σi),

or the ground state line of the system. The QoI can also be more complicated such

as a transition temperature. The computer code has inherent approximations. For

example, vasp approximates the exchange-correlation term in density functional
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theory (DFT), implements a particular k-point integration scheme,47 and a pseu-

dopotential to approximate the true potential,44 etc., all inducing uncertainties in

the output. We assume, however, that such uncertainties are small when compared

to those arising from not knowing how to choose the surrogate parametrization,

and from having observed only a limited amount of data. The presence of code

uncertainties means that we do not actually observe the theoretical f(σi) of struc-

ture i. Nevertheless, we will make the assumption that we do observe f(·), but

with added Gaussian measurement noise. Call this noisy version of the code yi.

We show in Section 5.5 how the noise can be estimated in the current framework.

Incidentally, this does not mean we commit to the noise source necessarily be-

ing Gaussian itself, but rather that our estimates depend on the first and second

moments of the noise.61

In its present form, the response surface f(·) is very abstract. To describe it

in more concrete terms we replace it with a parametrized surrogate model. The

surrogate describes f(·) using a set of parameters θ which can be discrete, continu-

ous, or a mix of both. E.g., if expanding f(·) in a basis, θ identifies the set of basis

functions and corresponding expansion coefficients. Without loss of generality, the

surrogate is synonymous with θ so we will no differentiate these in the text. We as-

sume that, for some parameter choice, the surrogate captures the response surface

exactly. If this was not the case we would not be guaranteed that some parameter

in the set could, even in principle, capture the surface. This would lead to further

uncertainties which would, in general, be very difficult to quantify. The physi-

cal implication of our assumption is that the parametrization should account for

f(·) being periodic, satisfying certain symmetries, and/or its differentiability, etc.

The cluster expansion, to be introduced formally in Section 5.4, does capture the

response surface for some parameter and is thus well suited for the present frame-
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work. We will assume to be in a situation where the parameter which captures the

surface exactly is computationally intractable to obtain. The central question we

address in this work is then: of the remaining computationally feasible parameter

set, which parameter should be chosen to describe the surface? There is no easy

answer and indeed, most of the cluster expansion literature so far has been on how

to obtain a “best” set of ECI, but with no rigorous treatment of the uncertainties

in the QoI.

The focus of this chapter is not so much on the ECI themselves, or equivalently,

on the response surface itself, but rather on the QoI predicted from these. Our

approach will be to describe the ECI with a Bayesian approach but different than

Ref. [62] in the prior specification. We reiterate that the choice of the best param-

eter will implicitly depend on the data set size. This is because we “pin down” the

response surface more as the data set increases. Thus, incompatible surrogates,

recognized by the Bayesian method, are removed leaving a smaller set of possible

ECI to choose from and thus less variability.

5.3 Bayesian Uncertainty Quantification

We now develop the Bayesian tools needed for the proposed uncertainty quantifica-

tion of the QoI. Before seeing any data, we have some belief of possible surrogates

best describing the QoI. We associate with our belief a prior probability distri-

bution p(θ) (prior). Since we are ultimately interested in the QoI rather than θ

let I denote a realization of the operator (which outputs the QoI) I[f(·; θ)]. We

are interested in p(I) which is our prior belief about the QoI. Of course, since I

derives directly from θ via the application of the associated operator I[f(·; θ)], p(I)
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has to depend on p(θ). This dependence, however, is not trivial unless we make

the assumption that the operator itself does not introduce further uncertainties

in I. We shall later see a case where this could happen. With this assumption,

consider first a single surrogate θ1 and its associated predicted QoI I1. If we are

certain about θ1 we necessarily have to be certain about I1. However, the contrary

statement is not true. To see this, note that multiple θ’s might lead to the same

value of I1. For example, if I1 is a transition temperature it is conceivable that

two different surrogates θ1 and θ2 happen to yield the same transition. With the

help of the Dirac δ-function the functional dependence between θ1 and any value

of I can then be summarized in the form:

p(I) = p(θ1)δ (I [f(·; θ1)]− I) . (5.1)

But since the uncertainty in I can also be affected from other surrogates than θ1

the general form of Eq. (5.1), accounting for all possible surrogates, becomes:63,64

p(I) =
∫

dθp(θ)δ (I [f(·; θ)]− I) , (5.2)

which is then our prior belief in the values taken on by the QoI. The prior belief

can, most typically, be much improved by incorporating actual observations of the

response surface into our state of knowledge. Therefore, we now run the computer

code for a set of structures and obtain a data set D = {(σi, yi)}ni=1. The likelihood,

denoted L(D|θ, ·), quantifies how compatible a surrogate θ is with D and contains

all information about θ present in D. Bayes rule provides a clear prescription for

how we should update our belief about the best surrogate upon observing D:

p (θ|D, ·) ∝ p(θ)L(D|θ, ·). (5.3)

This change of knowledge propagates to the QoI as:

p(I|D, ·) =
∫

dθδ (I [f(·; θ)]− I) p (θ|D, ·) , (5.4)
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with the same rationale as that preceding Eq. (5.2). Eq. (5.4) is the posterior on

the QoI. Plotting its HPD provides an answer to our opening question of how to

quantify the uncertainty in predicted QoIs from surrogates used for alloy modeling.

However, solving the equation is not trivial in general.

Note that a very large spread in p(I|D) informs us that we are not capturing

the response surface well with our parametrization method and data set. Different

applications tolerate different spreads of course, but the purpose in the present

work is to get a feel for the sizes of these uncertainties when applying the method

to two real alloys using a popular parametrization method to be discussed next.

At this point we can relate our framework to the thorough work of Ref. [65],

referred to as KH in what follows. They develop a general Bayesian framework

for matching θ to a set of observations. This is known as calibration, and they

use Gaussian processes to do so.66,67 In our work, we will use a basis function

approach,68 the cluster expansion, to be discussed in the following section. We

consider KH an alternative approach to ours, as far as the calibration aspect is

concerned. But we emphasize that our work also provides a rigorous way to propa-

gate the distribution of the calibrated model to the QoI. This allows us to quantify

the uncertainty of the QoI. Surely, it would be interesting to compare KH to our

approach at the calibration level. For a discussion of, and references to, other

Bayesian alternatives please see Ref. [65].
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5.4 Parametrizing the Response Surface with the Cluster

Expansion

The cluster expansion, theoretically introduced in Chapter 2, provides a possible

parametrization method of the response surface f(·) discussed in the previous

section by expanding it in correlation functions constructed from cluster orbits.

Together with the ECI, these functions play the role of θ in Eq. (5.4), and we

recall that, for some set of ECI, the cluster expansion captures the true response

surface exactly. This makes the expansion well suited for estimating the particular

uncertainties in the QoI we aim to capture from truncating the expansion. For

notational convenience, we introduce a vector γ to carry the information about

which clusters have been retained in the truncation. Furthermore, for clearer

notation later, we now let βγ be the ECI. The vector γ contains a one/zero in its

jth spot if basis function j is included/excluded in the expansion and if γj = 0

then so is βγ,j. Thus, the cluster expansion parametrizes f(·) as f(·;γ,βγ).

The difference between the observed data and the cluster expansion

parametrization is the error. We assume this error to be Gaussian. In view of later

developments we cast this in the notationally simpler form, notationally slightly

different from that discussed in Chapter 2, because of the added information γ:

y = Xβγ + ε, (5.5)

where we recall that X is the design matrix. The ith element in ε is the Gaussian

error of observation i. We assume the error identical for all observations, with

mean zero and constant variance δ2. The framework presented here can be used

to estimate δ, and hence the assumed noise, from the data.
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5.5 Bayesian Treatment of the Response Surface Parametriza-

tion

The cluster expansion parametrizes the response surface, but how do we choose

the best set of parameters, i.e., the cluster orbits and corresponding ECI, in light

of some data set D? In this section we introduce a Bayesian model on the ECI

from Section 5.4. In particular, we introduce the prior, likelihood, and posterior

on θ = (γ,βγ) in Eq. (5.5). As discussed in the chapter introduction, we will base

the Bayesian model on LASSO through our prior beliefs. The price of this will be

a posterior distribution that is not in closed form. However, we show later how to

use sampling methods to still solve Eq. (5.4). The prior is the joint distribution

of three parameters p(βγ , δ2, k|·), where k is the number of basis function to be

used, that is, it is the number of columns in the design matrix. We introduce

this parameter in Eq. (5.7) below. We shall assume prior logical independence

between the parameters. In other words, knowledge about βγ , before seeing any

data, does not provide evidence about the value of the data noise or k. The

logical independence allows us to separate the joint prior into independent factors

p(βγ |·)p(δ2)p(k|·). We therefore proceed by specifying the prior one parameter at

a time. A Laplace distribution is assigned to our prior belief in the magnitude of

the ECI:

p(βγ,j|τ,γ) = 1
2τ exp

(
−
|βγ,j|
τ

)
, (5.6)

where βγ,j is the jth coefficient of βγ and τ is a hyperparameter. It is thought of

as a shrinkage tuning parameter for βγ,j with j ∈ γ. | · | is the absolute value.

The amount of shrinkage is unknown a priori so will be described with a non-
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informative hyperprior:

p (τ) ∝ τ−1.

The data noise is also unknown leaving us to choose a non-informative hyperprior

as well:

p
(
δ2
)
∝ δ−2.

We can enforce sparsity in how many cluster orbits best describe the data. In

other words, we can shrink the number of columns needed in the design matrix.

A sub-model of size k is a particular set of active cluster orbits. To favor lower

values of k, the prior probability of a sub-model follows the right truncated Poisson

distribution at kmax:

p (k|λ) = exp (−λ)λk
Ck! , (5.7)

with C a normalization constant, k = 1, ..., kmax, and λ, a hyperparameter, can be

thought of as a second shrinkage parameter inducing sub-models with less clusters.

Equal probability is assigned to each sub-model having the same value of k. The

hyperprior on λ is chosen as non-informative:

p (λ) ∝ λ−1.

Consider now the likelihood L(y|βγ ,γ, ·). Given the linear model in Eq. (5.5) and

our belief about the error, we write it as:

L
(
y|βγ ,γ, ·

)
=
(
δ2
)−n/2

exp
(
−
||y −Xβγ ||22

2δ2

)
, (5.8)

where || · ||t is the t-norm. Incidentally, although Eq. (5.8) contains no explicit

correlations this does not mean we cannot capture such effects in the data.55 For

this problem, the hyperparameters τ , λ, and δ can be integrated out, and thus
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implicitly dealt with. This serves us a more robust fitting method. Combining the

above equations one can show that the posterior takes the form:

p
(
γ,βγ |D

)
∝ Γ(k)B(k, kmax − k + 1)||βγ ||−k1 ||y −Xβγ ||−n2 , (5.9)

where k is the number of active components in γ, Γ(·) is the Gamma function,

B(·, ·) is the Beta function, and the reason for keeping k-dependent prefactors is

related to how we are going to draw samples from this which is the topic of the next

section. Eq. (5.9) is our posterior belief about the cluster expansion truncation and

ECI values best describing the data at hand. For more details on this particular

model, please see Ref. [69].

5.6 Sampling from the Posterior: Reversible Jump Markov

Chain Monte Carlo

Our ultimate goal is to sample from the posterior on the QoI [Eq. (5.4)] using the

posterior on possible surrogates [Eq. (5.9)]. The integral in Eq. (5.4), however, can

not be carried out analytically. Therefore, we turn to numerical sampling methods.

The idea is to sample from the surrogate posterior in regions where it takes large

values (i.e., we sample surrogates very likely to be true). Each surrogate θ is then

passed through I[f(·; θ)] finally providing a sample from the posterior on the QoI

p(I|D).

We will use an MCMC sampling technique to sample from the surrogate pos-

terior. If we worked with a fixed model dimension k in Eq. (5.9), standard MCMC

would suffice, see Chapter 3. However, we consider the possibility that k clus-

ter orbits might not describe the data better than, say, k′ orbits. This requires
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a dimension-changing scheme leaving us to choose the RJMCMC method intro-

duced, and discussed theoretically, in Section 3.2. As in Section 3.2, we consider

the three move types: update the ECI in the current model, increment the model

dimension (birth), i.e., add another correlation function and associated ECI, or to

decrement the current model dimension (death). If updating the ECI a zero-mean

Gaussian distribution is chosen with variance α2 to perturb the state. We will

consider only the models k + 1 (birth move) and k − 1 (death move) as valid can-

didates if currently at k active basis functions. The reason for not choosing, say,

k + 2 is because we assume that k + 1 is always the smallest perturbation of the

state possible (although we have no notion of distance in this more complicated

state space) hence leading to higher acceptance rates. Here, we will simply provide

the jump probabilities for our case, but more information is available in Ref. [69].

A proposal step size is drawn, called u, from a Gaussian. If we just want to

update the ECI vector in the current model k from βγ to β′γ we select a random

element, say the jth, from βγ and propose the update β′γ,j = βγ,j + u. We accept

this change with probability (see Section 3.2.3)

min


(
||βγ ′||1
||βγ ||1

)−k ( ||y −Xβ′||2
||y −Xβ||2

)−n
, 1

 ,
which we recognize to be a standard Metropolis acceptance probability which does

not explicitly contain the proposal distribution (Gaussian) because this distribu-

tion is symmetric.18 If we instead propose a birth move to increment the model

dimension we select an inactive correlation function and propose to revive it si-

multaneously setting the associated ECI value equal to the proposal u. This move

is accepted with probability (see Section 3.2.4)

min

 k2

kmax − k
||β′||−(k+1)

1 ||y −Xβ′||−n2
||β1||−k||y −Xβ||−n2

p(γ ′ → γ)
p(γ → γ ′)N (u; 0, α2)−1, 1

 , (5.10)

where N (u; 0, α2) is the Gaussian proposal distribution evaluated at u. Notice how
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now the proposal distribution enters explicitly in the third factor this time. The

quantity p(a→ b) is the probability of ending in state b given that you started in

a, and is provided in Ref. [69]. A death move is just the inverse of Eq. (5.10), see

Section 3.2.5. Note that the only adjustable parameter in the RJMCMC method

is α. A value too small will not allow good exploration of the space and a value

too large leads to many rejected steps. We use a value leading to an approximately

30 % total acceptance rate. This is close to the widely accepted optimal acceptance

probability of 23.4 %.70 Interestingly, this parameter can be estimated from the

data themselves leaving no adjustable parameters.

Having now coupled the Bayesian LASSO (BL) method in Section 5.5 with the

RJMCMC sampling scheme in the present section we will refer to the method as

BL-RJMCMC in the rest of the chapter. We are now in place to sample from

Eq. (5.4). In the next two sections we discuss two particular alloy quantities of

interest and how to apply Eq. (5.4).

5.7 Uncertainty Quantification of the Magnesium-Lithium

Ground State Line

In this section we give an example of using Eq. (5.4) when I represents the ground

state line of formation energies in the bcc Mg-Li system when using the cluster

expansion as a parametrization so θ = (γ,σγ). This is equivalent to quantifying

the uncertainty in the T = 0 K phase diagram. The response surface is internal

quantum mechanical energies of the alloy. The operator I[f(·; θ)] then takes a set

of cluster orbits and associated ECI, i.e., a surrogate, and produces the ground

state line as output.
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We can describe in more detail what I[·] does in the present problem. First,

change notation from the general response yi in Section 5.2 to the more expressive

E(σi) with σi being the configuration of structure i. Let ∆E(σi) be the formation

energy of structure i defined below. Take E(σMg) and E(σLi) to be the energies

of the structures containing only Mg and only Li atoms, respectively. If structure

i contains a fraction of Mg atoms x(i)
Mg, then:

∆E(σi) ≡ E(σi)−
(
E(σMg)x(i)

Mg + E(σLi)(1− x(i)
Mg)

)
, (5.11)

and I[·] then forms the ground state line from the formation energies of all struc-

tures, see, e.g., Ref. [71].

Our goal is to answer how certain we are about the predicted ground states of

Mg-Li and implicitly how well the cluster expansion captures the energies. Practi-

cally speaking what we need is to draw ground state line samples from Eq. (5.4) and

plot the HPD. This can be done as follows. Assume we are given an equilibrated

RJMCMC chain on the posterior. Then, we draw samples from the posterior,

which corresponds to drawing different possible parametrizations of the response

surface. For each parametrization we compute the formation energies of the data

and plot the ground state line. This is repeated for as many samples from the

chain as possible and the HPD is computed. In Section 5.10 we show the result of

this.
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5.8 Uncertainty Quantification of Disorder to Two-Phase-

Coexistence Phase Transition

Next, consider another QoI: A disorder to two-phase-coexistence phase transition

in the diamond Si-Ge alloy at 50 % composition. Computationally, the phase

transition is found by starting the alloy at a high temperature which for Si-Ge

could be 2000 K. The temperature has to be large enough for the entropic energy

in the free energy to dominate. Then, the temperature is gradually lowered while

monitoring the specific heat at constant pressure:

Cp(T ) = β2kB〈(E − 〈E〉)2〉, (5.12)

where β is the inverse temperature defined in terms of the temperature T as 1/kBT ,

kB is the Boltzmann constant, 〈·〉 denotes an average, and E is the internal energy

of the alloy. Lowering the temperature decreases the entropic energy allowing

the configurational energy to become comparatively stronger finally demanding a

certain ordering of the atoms. In a two-phase-coexistence phase the atoms do not

want to mix on the lattice but stays separated into pure forms. A peak (divergence,

in the limit of an infinite lattice) in the specific heat signals the phase transition.

The procedure for quantifying the uncertainty is similar to that discussed in

Section 5.7 but now with I representing a phase transition temperature. This

demonstrates the generality of Eq. (5.4). Parametrizations of the response surface

are again sampled from the RJMCMC chain and for each sample the phase tran-

sition is computed. This, in turn, provides a sample from Eq. (5.4). Plotting the

HPD of multiple samples quantifies the uncertainty in the phase transition.

Let us now discuss the numerical method used to compute the phase transition.

We used an adaptive sequential Monte Carlo (ASMC) method coupled via in-house
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code to the MCMC library of atat. This is not to be confused with the other

MCMC method already used to sample the posterior. The ASMC code works

as follows. A set of 64 so-called particles is started at a high temperature of

2000 K. Each particle is an initial state of the system: a 30× 30× 30 Monte Carlo

cell with periodic boundary conditions. Using double-spin-flip dynamics they are

independently evolved via the ASMC method to 50 K. The step size is adaptive,

but we maximally allow a 10 K jump to ensure we do not miss a transition. At

each step (including the initialization) 100 flips per lattice site were performed.

For more details please see Ref. [72]. There are uncertainties associated with the

number of particles and the seed used for the internal pseudo-random-number

generator. Thus, the present situation is a case where I[·] could introduce further

uncertainties. If we allow this we are not only capturing the uncertainties from the

truncated cluster expansion and limited data but also from the ASMC method.

To avoid the ASMC uncertainties, we use the same number of particles with each

sample and the same seed.

5.9 Data

We used the quantum mechanical energies of both alloys computed via vasp in

Ref. [72]. This provided a set of responses. atat was then used to generate

the design matrix X. We must make a choice about what cluster orbits (basis

functions) can be considered by the Bayesian model. The RJMCMC method will

then select a subset of these. For bcc Mg-Li we generated 16 two-point (2-pt)

and 4 3-pt cluster orbits besides the empty and 1-pt cluster orbits contained in

both systems. The maximum cluster orbit spatial extent was 20 Å. Generating

more cluster orbits, especially for this system, leads to better predictions. But in
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the present work we want to demonstrate features of the uncertainty in the QoI

induced by the cluster orbit and ECI choice, and not predict some alloy property

with high precision. Therefore, it is essentially irrelevant what exact choice of

cluster orbits we make. Of course, if the uncertainty is too large it can be reduced

by including larger cluster orbits but this was not needed here. For the Si-Ge

diamond system we generated 9 2-pt and 6 3-pt cluster orbits with a maximum

spatial extent of 8 Å.

In Fig. 6.6 we show the two data sets. Fig. 6.6(a) contains the formation en-

ergies of bcc Mg-Li versus Mg concentration. The Mg-Li data set is in general

agreement with a similar one obtained in Ref. [36]. Discrepancies are due to dif-

ferent vasp settings but more importantly the difference in structures considered.

In particular, atat was used in our case to generate the data set. In Fig. 6.6(b)

the formation energies of diamond Si-Ge versus Ge concentration. The formation

energy is a measure of how well the pure alloys mix. A negative value indicates

affinity towards mixing on the lattice, this is the case for Mg-Li, and the opposite

is true for positive values, seen for the Si-Ge system.

5.10 Results

For both systems we needed to set up an RJMCMC chain on Eq. (5.4) and equili-

brate it in order to draw posterior samples. In Fig. 5.2 we provide details of these

simulations versus MCMC step number for both systems. For Mg-Li(Si-Ge) we

ran the chain for 9(8) million steps burning the first 4 million samples. This took

6 hours to run on a single core (a parallelization of the MCMC chain is possible).73

Fig. 5.2(a) shows the model complexity during the run. The sparse nature of the
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BL-RJMCMC is apparent for both systems in that most time is spent exploring

surrogates with around a third of the complexity maximally possible, which is 22

for Mg-Li and 16 for Si-Ge. This is because of our prior choices in Eqs. (5.6)

and (5.7). In comparison, least squares and LASSO with 10-fold cross-validation

(LASSO-CV) have high complexities of 22 and 20, respectively, for Mg-Li and 16

and 10, respectively, for Si-Ge. The zero-point cluster orbit was not used in any

fitting process (as the noise is assumed independent and identically distributed).

Therefore, 21 coefficients are shown for Mg-Li and 16 for Si-Ge with the under-

standing that the ECI not shown is common to all methods and equates to the

mean of the data. Fig. 5.2(b) estimates the data noise δ entering the model through

ε in Eq. (5.5). The noise agrees, for both systems, with the order of magnitude

expected from DFT calculations which is meV’s per atom.74 For the bcc Mg-Li

system we use the approach discussed in Section 5.7 to quantify the uncertainty

in the ground state line from the cluster expansion truncation and the fact that

we have limited data. Please find this result in Fig. 5.3(a) where black dots are

the vasp formation energies along with the black line being the vasp ground state

line. The median of the BL-RJMCMC posterior samples is shown as the full blue

line and the shaded area encloses the HPD.

For the diamond Si-Ge system we use the sampled ECI to estimate the uncer-

tainty in the disorder to two-phase-coexistence transition temperature as discussed

in Section 5.8. Please refer to Fig. 5.3(b) for the results. Five coefficients were

sampled from the RJMCMC chain and the transition temperature run from each

set of coefficients, based on identical initial conditions, are shown in the main fig-

ure. The inset summarizes this by plotting the HPD of Eq. (5.4). The median is

plotted as a vertical black line.
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Figure 5.1: Data sets obtained via vasp. (a) Shows the quantum mechanical
formation energies of 82 Mg-Li structures and (b) for 38 Si-Ge
structures. The line of zero formation energy is shown as well.

5.11 Discussion

Most work so far in the field has focused on obtaining the best surrogate surface

itself. Therefore, we provide a comparison of the most likely surrogates predicted

by BL-RJMCMC to the (point) surrogates predicted by least squares and LASSO-

CV. See Fig. 5.5. The BL-RJMCMC chain is started with just one cluster orbit

active and an ECI value of 1 eV. From this, it finds an almost identical result as

LASSO-CV, but it is even sparser. Interestingly, in Fig. 5.5(a) BL-RJMCMC pre-

dicts a strong signal from the nearest neighbor 2-pt cluster orbit but nothing from
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Figure 5.2: BL-RJMCMC simulation details for the Mg-Li system. In (a)
we monitor the model complexity, i.e., k in Eq. (5.9), where the
maximum complexity kmax is 21 (not counting the empty cluster
orbit). In (b) we show the estimated data noise ε in Eq. (5.5).
Insets show similar results for the diamond Si-Ge system where,
in (a), the maximum complexity is 16 (not counting the empty
cluster orbit).

the largest 2-pt cluster orbits. It then picks up a signal again at the two short-

est 3-pt cluster orbits, in agreement with LASSO-CV, but predicts no signal from

the largest 3-pt cluster orbit as opposed to LASSO-CV. With the smaller cluster

orbits carrying most of the signal, the BL-RJMCMC provides a more physically

satisfying result compared to both least squares and LASSO-CV.10 In Fig. 5.5(b)

BL-RJMCMC picks up some strong 2-pt cluster orbit signals but no 3-pt cluster

orbit signals, among the cluster orbits chosen. In the latter case both least squares
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Figure 5.3: (Color) Uncertainty in the ground state line of bcc Mg-Li. Black
dots are the formation energies obtained from vasp and their
ground state line is the black line. Red dash-dot and green dash
lines are LASSO-CV and least squares, respectively. The BL-
RJMCMC result is plotted as a blue full line (median of the
posterior) with the shaded areas representing the HPD.

Figure 5.4: (Color) Uncertainties in the disorder to two-phase-coexistence of
Si-Ge at 50 % composition identified by a peak in Eq. (5.12).
Five different runs are shown each in a different color. The inset
summarizes the main figure via the posterior median as a black
vertical line surrounded by the HPD as the shaded area.

and LASSO-CV predict signals for these large cluster orbits. An interesting obser-

vation can be made for the third ECI where least squares and LASSO-CV disagree
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Figure 5.5: (Color) ECI obtained via the BL-RJMCMC method (box plots),
least squares (red stems), and LASSO-CV (green stems) plotted
for the (a) Mg-Li bcc and (b) Si-Ge diamond system. Insets show
the single site cluster orbit for increased clarity.

on its sign. The ECI sign is indirectly coupled to the underlying physics: A neg-

ative value indicates that this 2-pt cluster orbit prefers the atoms in the cluster

to be of the same type. The opposite is true for a positive ECI value. In other

words therefore, whenever least squares and LASSO-CV disagree on the underly-
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ing physics about preferred atomic ordering, BL-RJMCMC predicts that the data

support no evidence of drawing a conclusion about this.

The posterior samples from the BL-RJMCMC chain are used in Eq. (5.4) to

draw samples from p(I|D). In the first alloy, bcc Mg-Li, the samples are ground

state lines. In Fig. 5.3 we summarize these samples using thee HPD. Uncertain-

ties on the order of 10 meV are seen around the median in the vicinity of 50 %

composition. The fact that the relative uncertainties are around 12 % provides

evidence that the cluster expansion is capturing the response surface. Whether

this is tolerable or not cannot be answered here. For pure comparison we have

shown the point estimated ground state lines of LASSO-CV (green dash) and least

squares (red dot-dash) as well. Notice that the black line from our limited data

set is not necessarily the true ground state line. Strictly speaking, the true line is

computed only from an infinite number of structures. Therefore, the HPD is not

required to contain this line.

In the second alloy the BL-RJMCMC samples were phase transitions. The

HPD of the two-phase coexistence transitions in Si-Ge varies by 19.7 K based on

five posterior samples. The median transition is at 333 K in good agreement with

the result in Ref. [9]. Discrepancies are due to a different choice of cluster orbit

set and MCMC method used. We predict a relative uncertainty in the transition

around 6 % which, at first, seem very small. However, the quantum mechanical

energy of Si-Ge is typically well described by smaller cluster orbits of two and

three points compared to, e.g., Mg-Li typically requiring up to five point cluster

orbits. Indeed, the difference in uncertainties between the two systems here are in

line with what we found in Ref. [72]: there was a small difference in using least

squares and relative entropy on Si-Ge but a large difference for Mg-Li. Therefore,
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we attribute the smaller uncertainty in Si-Ge to the fact that we have captured

the response surface better than that of Mg-Li.

If one wishes to reduce the uncertainty further in either system, more cluster

orbits can be included. Also, more data should be obtained. This would move

the posterior of θ closer to the true response surface and allow us to capture

the response surface better. Improving the Bayesian fitting method is another

alternative. In particular, if one has further prior knowledge about the system

(e.g., one knows the data noise to be some particular value, or that the data are

correlated in some way) this should be included in the prior specification and will

lead to a better fit of the response surface. This can readily be incorporated into

the present framework.

5.12 Conclusion

We have presented a rigorous Bayesian framework for quantifying the uncertainty

in predicted quantities of interests from the cluster expansion arising from two

sources: lack of knowledge about the best truncation choice and corresponding

ECI, and also from having observed a limited amount of data. We presented a

framework for carrying out this quantification in general but considered two par-

ticular quantities of interest in two different binary alloys: bcc Mg-Li and diamond

Si-Ge. The main idea was to set up a Bayesian posterior on the possible trunca-

tions and associated ECI consistent with the observed data. Samples were then

drawn, via an RJMCMC sampling scheme, from the posterior and propagated

through an operator I[·] which provided the quantity of interest as output when

given a particular truncation of the cluster expansion, i.e., a particular surrogate.
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Essentially, the operator converted uncertainties in the cluster expansion to uncer-

tainties in the quantity of interest. We applied our framework to two alloys. First,

we demonstrated the uncertainty in the predicted ground state line of formation

energies in bcc Mg-Li, and concluded that there was up to 12 % relative uncertainty

when plotting the 95 % HPD. In the second alloy considered, diamond Si-Ge, we

provided uncertainties in the phase transition temperature at 50 % composition

from disorder to two-phase-coexistence. We found a 6 % relative uncertainty when

plotting the 95 % HPD.

Finally, we address a potential issue with the BL-RJMCMC method. An im-

portant question is how to choose the starting guess. The BL-RJMCMC method

per se is not built for finding global extrema. In this work, however, we found that

a great variety of starting guesses lead to the same conclusions. In other words,

the response surfaces were adequately smooth for our purpose. This might not

be true in general. An interesting research topic is to couple the BL-RJMCMC

presented here with some annealing scheme75 or other sampling scheme73,76 to get

closer to a globally relevant part of the posterior. This would make the method

much more robust to the shape of the response surface.
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CHAPTER 6

USING SURROGATES FOR MATERIALS DESIGN

We discussed the motivation for surrogate models in Chapter 1 and introduced a

particular surrogate model, the cluster expansion, useful for alloys, in Chapter 2.

To recap, the cluster expansion expands the response surface in basis functions

with associated expansion coefficients called ECI. So far in this thesis we have not

discussed the computation of the clusters themselves. We have tacitly assumed

that the clusters were computable in order to construct the design matrix. For

most bulk systems this is the case. In fact, generally speaking, for bulk systems,

we do not have to worry about the computational cost of obtaining the clusters.

This is unfortunately not so when faced with low-dimensional systems. Of course,

predicting structures possessing lower dimensional geometries is just as, if not

more, interesting as predicting bulk structures, so we need surrogates which can

successfully describe such systems as well. This motivated the work in this chapter

where we set out to modify the traditional cluster expansion to work more fluently

for structures of arbitrary geometries.

As we have seen in the previous chapters that to perform a cluster expansion

the open source software package atat can be employed. Non-bulk systems such

as surfaces can be cluster expanded with atat,77 but consider now using atat to

cluster expand any geometry—even one fully void of periodicity and/or large in

size. The computation of the clusters in atat and of the associated correlation

functions for arbitrary structure shapes easily becomes prohibitively expensive to

compute for large unit cells. One of the main reasons is that the number of clusters

to compute, as will be shown in Section 6.2, grows extremely fast with the unit

cell size.
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In this chapter, we introduce the cluster expansion ghost lattice method (CE-

GLM). The CE-GLM is an idea, which enables, via minor modifications, a cluster

expansion software package to cluster expand structures of arbitrary shapes with

the same computational effort as the corresponding bulk system. Its main strength

is in the ease of implementation in existing cluster expansion code. What makes the

method different than a regular cluster expansion with vacuum atom types, is in the

way it handles large low-symmetry structures by using a practically convenient ad

hoc grouping of the clusters. The work of Ref. [78] provided evidence that some ad

hoc grouping of the clusters should be expected to be necessary for low-symmetry

systems since the number of unknowns otherwise becomes insurmountable. We

propose to make the ad hoc choice unique and transferable.

In order to demonstrate that our choice of using bulk clusters in non-bulk low-

symmetry systems can be useful, we set out to reproduce the work of Ref. [78],

but by using the CE-GLM implemented in atat. If successful, this will provide a

strong case for the usefulness of the CE-GLM method.

6.1 Chapter Outline

We start with a discussion of how the CE-GLM extends the cluster expansion

of Chapter 2 in Section 6.2. Then, in Section 6.3.1, we provide an overview of

the nanowire problem considered, followed by details on how the nanowire data

set was obtained in Section 6.3.2. In Section 6.3.3 we discuss how the thermal

conductivities of the nanowires were computed. The results of this chapter are

provided in Section 6.4 before concluding in Section 6.5.
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6.2 The Cluster Expansion Ghost Lattice Method

The CE-GLM removes the computational overhead of cluster expanding non-bulk

possibly low-symmetry systems compared to bulk structures. The cluster expan-

sion of 2D sheets, nanowires, spheres, etc., takes the same time as cluster expanding

a bulk structure equivalent in size—the equivalence quantified, e.g., by using the

bulk structure which just exactly encloses the non-bulk structure. This is accom-

plished by introducing a new type of site in the system called a ghost site. The

cluster function Γ·(σ) of any cluster, which includes a ghost site, is zeroed.

In addition, for low-symmetry systems, the CE-GLM chooses to use the bulk

clusters and group them by the bulk symmetries. We discuss the implication of

this at the end of this section, but before that, we present how one employs the

CE-GLM. A large box is created containing lattice sites on the same underlying

lattice as the non-bulk structure in question. Then, a subset of lattice sites inside

this box is selected to represent the non-bulk structure. The remaining sites are the

ghost sites. We note that this is not a new idea in the cluster expansion framework;

the novelty is in how the ghost sites are kept in the system and thus enables the

use of bulk clusters grouped by their bulk symmetries. In Fig. 6.1 we consider an

example of a CE-GLM implementation for a hypothetical system, namely a single-

layer Si-Ge slab on a simple cubic (sc) lattice. The large box in Fig. 6.1(a) is on

an sc lattice as well, containing white ghost sites. As a side note, we can think

of this entire box as the equivalent bulk structure. The non-bulk structure is not

visible inside this box until the cross-section, identified by the black surrounding

square in both Fig. 6.1(a) and Fig. 6.1(b), is taken. This reveals the structure

in Fig. 6.1(b). A black ellipse delineates a 3-pt cluster originating from an atom

inside the structure, but which includes ghost sites. The atoms within the cluster
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Silicon

Germanium Ghost site

3-pt cluster
(a) (b)

Figure 6.1: (Color) Demonstration of the CE-GLM for some hypothetical
single-layer slab of Si (Silicon; red) and Ge (Germanium; blue)
on a simple cubic lattice. Ghost sites are white. The black square
surrounding the boxes in (a) and (b) show where a cross-section
is taken in (a) to reveal the slab in (b). A black ellipse in (b)
delineates a 3-pt cluster containing ghost sites. The sites in the
cluster are colored green, purely as a visual construct, to associate
them with the cluster.

are youed green, which is purely a visual construct. Since the cluster includes at

least one ghost site, its cluster function is zero, and hence does not contribute to

the cluster expanded property.

The CE-GLM employs the bulk clusters and associated bulk symmetries in

the cluster expansion even for non-bulk geometries. To further understand the

importance of symmetries in cluster expansions, and why an ad hoc grouping

is expected to be necessary in most low-symmetry cluster expansions, consider

the following hypothetical scenario. We want to cluster expand some function

of configuration on an fcc lattice with a 5 Å lattice constant, and clusters with

up till 4 points are to be included. This is a very common cluster expansion

problem.13,15,79,80 The unknown ECI are learned by training the cluster expansion

on some data set containing the property values of, say, 80-200 alloy structures.
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Assume, for the sake of the argument, that the more clusters that are included,

the better the property is captured. For quantum mechanical energies, e.g., this

assumption seems to hold well.13 Therefore, it is of interest to include large sized

clusters. Assume that the hypothetical property follows the size-hierarchy rules in

Ref. [10]. In particular, we will include all 2-pt clusters of a given maximum spatial

extent L. Then, we also include all 3-pt clusters within some lesser extent, chosen

here as L− 1, and finally all 4-pt clusters with spatial extents less than L− 2 are

included as well. In this sense, all clusters are bound by the length L quantifying

the maximum spatial extent of any included cluster. As L increases, the number of

clusters, generally speaking, increases as well. This, in turn, increases the number

of unknown ECI.

In Fig. 6.2(a), we plot the number of unknown ECI versus L, first if we do not

exploit the fcc lattice space group symmetries (Nnone), and then together with the

number of unknowns if we do use all the 48 space group symmetries of the bulk

(Nbulk). The inset shows the ratio of the two curves from the main plot. Notice

how this ratio increases rapidly with L. The fcc lattice is illustrated in Fig. 6.2(b)

where red lines illustrate the largest 2-pt cluster for three different values of L. The

parenthesized numbers can be matched with those above the abscissa in Fig. 6.2(a)

to find the corresponding value of L. Notice that L is not necessarily the length

of the largest 2-pt cluster. Furthermore, no other clusters than the largest 2-pt

cluster are illustrated in Fig. 6.2(b) for any given L. From Fig. 6.2(a) we learn

that, e.g., when the 2-pt cluster has maximum spatial extent L = 10 Å we have

Nbulk = 118 and Nnone = 3160. Since these cluster sizes are vey common it implies

that, exploiting symmetries in the cluster expansion critically lowers the number

of unknowns. In Ref. [81], a similar plot for Nbulk is given for the bcc lattice.
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Figure 6.2: (Color) (a) Number of unknown ECI to be determined for an
fcc lattice, representing some hypothetical alloy, versus the max-
imum spatial extent L of any included cluster in the cluster ex-
pansion, when not using any symmetries in the system (Nnone)
and when using all 48 bulk space group symmetries (Nbulk). The
inset shows the ratio of the main plot curves versus the same
L. The parenthesized numbers above the abscissa at L equal to
4, 5, and 7 Å are matched with those in (b). (b) The fcc lat-
tice considered with a 5 Å lattice constant and its lattice sites
represented as green balls. The cubic cell structure is delineated
with black lines. The red lines with parenthesized numbers show
the maximum allowed length of any 2-pt cluster included in the
cluster expansion when choosing L at three different values along
the abscissa in (a).

The choice of grouping the clusters by the bulk symmetries of the underly-

ing lattice in the CE-GLM makes the clusters unique in the sense of being user-

independent. Also, if one develops a cluster grouping, particular to a problem at
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hand, this will, almost never, be useful for other structure shapes thus requiring

new groupings to be developed for each new property and/or geometry. This issue

is dealt away with in the CE-GLM since the choice is to use the bulk clusters. It is

in this sense that the CE-GLM is transferable. Also, the choice presented in this

work has the added feature that, if no ghost sites are present, the system is truly

bulk, in which case the CE-GLM naturally merges into the standard cluster expan-

sion without being a special case. Finally, the choice of cluster-grouping-scheme

for low-symmetry systems does not increase computational efforts when compared

to the bulk because of the ghost sites.

Finally, it is important to point out the fact that we do not pretend that

the choice of bulk clusters will always work equally well on any geometry and

configurational property. If it does not perform well, one may have to consider

using a more elaborate grouping scheme. But the CE-GLM could provide a starting

point for cluster expanding exotic geometries and the method might turn out to

perform sufficiently well. In the context of the work presented in Refs. [82, 83],

the CE-GLM is a computationally efficient way to obtain the bulk contribution to

the energy, which is the first term in Eqs. (13) and (14) in Ref. [82], but without

the added surface term perturbation. With the help of the ghost site concept, the

CE-GLM can, in this light, be seen as a computationally very efficient algorithm—

essentially without overhead in going from the bulk to the non-bulk—to compute

this bulk contribution for arbitrary geometry shapes and sizes.
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6.3 Application: Predicting Lattice Thermal Conductivity

of Si-Ge Nanowires

6.3.1 Nanowires as Thermoelectric Devices

We consider Si-Ge nanowires used as thermoelectric devices.84,85 The efficiency of

a thermoelectric device is quantified by the dimensionless figure of merit:86

ZT = S2σel

κ
Tavg, (6.1)

where S is the Seebeck coefficient quantifying the induced thermoelectric voltage

in response to a temperature gradient across the device, σel is the electrical conduc-

tivity of the device, Tavg its average temperature, and κ its thermal conductivity.

The thermal conductivity κ can be decomposed into contributions from the elec-

trons (el) and the phonons/lattice (lat) writing κ = κel + κlat, but typically, and

this will be assumed here as well, κel � κlat.86,87 Therefore, from now on, we let

κ ≈ κlat. Thus we see from Eq. (6.1) that, keeping everything else constant, a

minimal κ leads to a maximal ZT . The best thermoelectric devices currently have

ZT ≈ 2 at room temperature,86,88,89 and with ZT > 3, we can begin replacing

compressor-based refrigeration units.90–92

Ref. [93] discovered that Si nanowires possessed two orders of magnitude lower

thermal conductivity compared to the bulk value of 150 W/m.K.94 This brought

a lot of interest into studying nanowires for thermoelectric applications. We are

interested in the heat transferred along the nanowire axis, so we now let κ mean

the axial lattice thermal conductivity. The thermal conductivity has been shown

to depend on the configuration of the Si and Ge atoms,95 and is thus well suited

to be described by the cluster expansion.
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In the present work, 50 nm long Si nanowires are considered, with roughened

surfaces—roughened to help scattering phonons—which currently achieve a ZT

around 1. A factor of, at least, 10 reduction in κ is, however, still needed. The

authors in Ref. [78] used a clever meta cluster expansion (MCE) to capture κ. In

essence, this is a cluster expansion technique which uses an ad hoc grouping of the

clusters based on physical intuition. Then, in conjunction with the learned MCE, a

genetic algorithm was employed to find the configuration with lowest κ. They found

that, a silicon nanowire with pure planes of germanium (PPG)—the planes spaced

about 1 nm apart—was the lowest thermal conductivity configuration. While

the method was very successful, extending it to other properties and/or system

geometries requires a new set of cluster groupings. This is in general a very complex

task

6.3.2 Creating the Nanowire Data Set

This section details how we obtained the nanowire data set D. First, computing

the correlation functions requires a set of cluster orbits. Given these cluster orbits,

the data set generation is a two-step process. First, the nanowire must be created,

and its thermal conductivity computed. Then, we must compute the correlation

functions in Eq. (2.8) using the orbits. Carrying this out for all wires gives κ and

X, respectively, in Eq. (2.12) (the general property vector q is now a vector of

thermal conductivities that we denote κ). As discussed in the following section,

we used molecular dynamics (MD), as implemented in lammps, to compute κ.

Interestingly, it was shown in Ref. [78] that, instead of modeling long (∼50 nm)

nanowires with roughened surfaces, as we intend to do here, we can instead model

short (∼2 nm) ones with perfect surfaces. This is computationally easier, as we
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need not worry about modeling the surface roughness, and we have fewer atoms

overall. Therefore, we adopt this approach here as well.

The CE-GLM requires us to create two representations of the same nanowire

structure. One representation for use in atat-GLM to compute the correlation

functions. We call this the atat representation. The other representation was

generated for directly computing κ in lammps without periodic images and ghost

sites. We call this representation the lammps representation. Creating both repre-

sentations started out at a common origin as follows: a large cubic box containing

a diamond lattice, with a lattice constant a0 = 5.431 Å, was created. A cylindrical

region was selected along the [111] direction representing the wire. ovito96 was

used along the way to verify the nanowire geometry. All sites inside the box, but

not inside the nanowire or any of the periodic images along its axis, were selected

as ghost sites. The non-ghost atoms, including images of the wire along its axis, to

be shown shortly, were chosen as Si or Ge depending on the particular configura-

tion of the wire. This is the atat representation of the nanowire. Notice that the

number of periodic images needed here depends on the cluster with largest spatial

extent. One periodic image was enough along each axial direction of the nanowire

in our case, since the largest cluster orbit included was 1.2 nm and the wire had

a length of roughly 2 nm. Further details about exactly which cluster orbits were

included are presented later.

Fig. 6.3 shows the atat representation of the nanowire. At first, it can be

difficult to see the atoms in the nanowire. This is because all the ghost sites are

included—shown as smaller black atoms—and they engulf the nanowire, just as

in Fig. 6.1(a). Notice the repetition of the wire by one image along its axis in

both directions. The image atoms are colored slightly lighter than the atoms in
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ATAT representation

ghost site

Si
Ge

one periodic image
of the wire

“image” Si

“image” Ge

Figure 6.3: (Color) The atat representation of an arbitrary Si (red atoms)
nanowire from the data set D alloyed with 6.4 % Ge (blue atoms).
Ghost sites are black atoms, made small so the wire becomes
visible. The atoms in the two images of the wire along its axis
are colored with a slightly lighter color to distinguish them from
the main wire. The thick black circle identifies one of the two
nanowire images. Ge atoms are made slightly larger than Si
atoms for visual clarity.

the main wire. Of course, if we were not modeling the wire as being infinitely

periodic along its axis, the images should not be there. Also, to be on the safe

side, the distance from the wire to any point on the surface should be larger than

the longest length of any cluster included for the same reasons, which can easily

be achieved by making the cell large enough; there is little increased overhead in

computing the correlation functions with an increase in the number of ghost sites.

The entire geometry is bulk, so it is straightforward to parse with atat-GLM.

Next, to create the lammps representation of the nanowire, all periodic images

of the atat representation, and all the ghost sites, were removed. The nanowire

axis was rotated to lie along the [100] direction in the box. The box dimension

along the wire axis was changed to the periodic length of the wire closest to 2 nm,

which is 2
√

3a0 ≈ 1.88 nm along [111] in a diamond lattice before thermalization,
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End view Side view

(a) (b)

1.88 nm

LAMMPS representation

GeSi

1.5 nm x

Figure 6.4: (Color) The corresponding lammps representation of the
nanowire in Fig. 6.3. The black surrounding box is the lammps
simulation cell. (a) Shows the nanowire looking down its axis,
and (b) illustrates the same wire from the side. The horizontal
arrow inside the cell in (b) identifies the x-axis. Double headed
arrows report sizes of the wire, and the smaller arrows in (b), over
the wire, identify the atom types. Ge atoms are made slightly
larger than Si atoms for visual clarity.

to be discussed in the next section. The nanowire diameter was made 1.5 nm,

also before thermalization, leaving it with 220 atoms. Please consult Fig. 6.4 for

a visualization of the lammps representation of the nanowire. Fig. 6.4(a) and (b)

show the end and side view, respectively, with the black box in each view being

the lammps simulation cell. In Fig. 6.4(b), notice how the wire becomes periodic

along its axis when applying periodic boundary conditions along x in lammps.
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6.3.3 Computing the Nanowire Thermal Conductivities

and the Design Matrix

To compute the thermal conductivities κ of the LAMMPS representations of the

nanowires, the Green-Kubo method97 was employed. Ref. [98] provides a thorough

study, and detailed discussion, of this. We will refer to the LAMMPS represen-

tations of the nanowires as simply (nano)wires in this section. The wire axis is

aligned along x with periodic boundary conditions, and fixed boundary conditions

along dimensions transverse to the axis, so

κ = Vwire

kBT 2 lim
τm→∞

∫ τm

0
〈Jx(τ)Jx(0)〉dτ, (6.2)

where Vwire is the nanowire volume, T is its temperature, kB is the Boltzmann con-

stant, Jx(τ) is the x component of the heat flux vector J at time τ and 〈Jx(τ)Jx(0)〉

is the heat flux autocorrelation function (HCACF) at lag τ . The heat flux vector

J must be collected while the system is in a constant particle number N , system

volume V , and energy E (NVE) ensemble following a thermalization according to

the constant N , V , and temperature T (NVT) ensemble.

The MD time step was set to 1 fs and the heat flux vector was defined as:

J = 1
Vwire

 N∑
i=1

eivi + 1
2

N∑
i=1

N∑
j=1
i,j

(F ij · vi) rij + 1
6

N∑
i,j,k=1

(rij + rik) (F ijk · vi)

 ,
where the sums are over all N atoms in the nanowire, ri is the position of atom

i, rij ≡ ri − rj, ei and vi are the total per-atom energy (kinetic plus potential)

and velocity of atom i, respectively, F ij is the pair potential force on atom i due

to its neighbor j, and F ijk, in the third term, is the 3-body force term. The

forces are obtained from the potential energy landscape which is modeled with the

Tersoff scheme.99 Please refer to Ref. [98] for more details, and for a discussion of

87



different, but equally reasonable ways, of defining this heat flux vector. Note that

〈·〉 in Eq. (6.2) is an ensemble average, which, in an MD simulation, becomes a

time average, assuming, as we will, ergodicity is satisfied. The time τm should be

much smaller than the total simulation time, but larger than the time required for

the HCACF to decay to zero.98

To collect J , the system needs to be thermalized in an NVT ensemble at

T = 300 K. In order to do this, it is important to thermalize the nanowire surface,

especially for wires of this small size having large surface to volume ratios. We

found the following procedure successful. The atomic coordinates in the wire

were first adjusted using a conjugate gradient method until finding a (possibly

local) minimum in the potential energy. We then began an annealing process to

thermalize the surface: an initial set of velocities were chosen for each atom from a

mean zero Gaussian distribution with standard deviation scaled to 1000 K, and the

system was run for 500 ps. Then, the temperature was gradually lowered 100 K

at a time over 10 ps. At each temperature, we ran the system for 100 ps before

decreasing by another 100 K, continuing in this way until reaching 300 K. After

obtaining a room temperature NVT ensemble, the nanowire axis was pressurized to

1 bar using a constant N , pressure P , and T = 300 K ensemble. This was necessary

to reduce strains from the size mismatch between the Si and Ge atoms. Indeed,

we observed the pressure to be, typically, around 500 bar before pressurizing to

1 bar. After the NPT ensemble run, the system was switched back to the room

temperature NVT ensemble and run for 1 ns.

Following this, the system was finally switched to an NVE ensemble, and run

for 16 ns. The total energy stayed constant to within numerical accuracy expected

with the Verlet integrator, and the temperature stayed constant, on average, by
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oscillating around 300 K with a 40 K amplitude. The axial heat flux Jx was output

every fourth time step (for memory reasons), and the HCACF computed from this.

The HCACF was then integrated. Determining when to stop the integration, i.e.,

choosing the best τm in Eq. (6.2), called τ ∗m, was done as follows. Forty moving

averages of various window sizes ranging from 50 ps to 200 ps were computed. The

time point where the standard deviation of all window sizes obtained a minimum

was chosen as τ ∗m.

To verify our overall implementation, and to show explicitly how the choice of

τm was carried out, please refer to Fig. 6.5. We ran a pure Si wire, Fig. 6.5(a),

and the PPG wire, Fig. 6.5(b). Our approach gives 4.1± 0.4 W/m.K for the pure

Si wire and 0.12 ± 0.03 W/m.K for the PPG wire. The errors are determined

from re-running the wires with different initial random velocity distributions. In

comparison, Ref. [78] obtains 4.1 ± 0.3 W/m.K for the pure Si wire and 0.23 ±

0.05 W/m.K for the PPG wire with the same method of determining the standard

deviations. Discrepancies between these numbers are due to different MD software

used, a different surface reconstruction technique, and different thermalization and

pressurization timings and methods.

Finally, this is how the design matrix X was obtained. The ith row of the design

matrix contains the cluster-orbit-averaged correlation functions of nanowire i. It is

a priori unclear which cluster orbits are needed to describe thermal conductivity.

In this work we used up till 5-pt cluster orbits with maximum spatial extents of

the cluster orbits chosen as 12, 8, 6, and 5 Å for the 2, 3, 4, and 5-pt cluster orbits,

respectively. Since the largest cluster orbit is 1.2 nm, one periodic nanowire image,

which is 1.88 nm, is enough along the axis. For each structure in the data set,

the atat representation of the nanowire was parsed by atat-GLM providing the
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Figure 6.5: (Color) Demonstration of the method used to obtain the best τm
in Eq. (6.2) called τ ∗m. All ordinates are in units of W/m.K. (a)
Shows the pure Si wire and (b) the PPG wire. Top plots are
κ versus τm in Eq. (6.2). In the bottom plots the µ/σ graph is
the mean/standard deviation of 40 different unweighted running
averages of window sizes ranging from 50 to 200 ps applied to
the top graphs. The µ/σ graph is measured on the right/left
ordinate. The red circles with vertical lines crossing the abscissa
mark the minima of the σ graphs and hence the times τ ∗m.

nanowire correlation functions as output.

6.4 Results

In Fig. 6.6(a) we show a histogram of D containing 145 wires each with a random

Si-Ge configuration. The concentration of Ge was restricted to the range 3 % to

22 % as in Ref. [78], which could be due to, e.g., weight constraints, and the wires
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had an average thermal conductivity of 0.90 W/m.K compared to 1.1 W/m.K in

Ref. [78]. We will refer to a wire from D as a random wire (RW). Please see the top

left of Fig. 6.6(b) for an illustration of this type of wire. For the purpose of learning

β we split the RW data set into a training set (RW train), of 140 wires, and a test

set (RW test) containing 5 wires. The ECI were learned on RW train, using least

squares with repeated random sub-sampling validation using 10 splits,100 and then

initial predictions were made on RW test. The predictions on RW test serves as a

preliminary test of the CE-GLM in the following sense. If the prediction errors are

much larger than the training errors at this stage, the CE-GLM is not capturing

the underlying physics and we should not trust further predictions. In Fig. 6.7(a)

we first show the least squares fit on RW train. The average root-mean-square

(RMS) training error of all random splits was 0.15 W/m.K.

In Fig. 6.7(b) we show the initial test of the RW train fit on RW test, and as

can be seen, the predictions made on RW test have errors comparable to those on

RW train. Indeed, the test error is 0.12 W/m.K. Note that the errors in general

are relatively large. This was the same observation made in Ref. [78], and is due

to inherent sizable noise in equilibrium MD simulations.

The purpose of this work is to show whether the CE-GLM method would

have lead to the same conclusions as in Ref. [78]. To this end, a data set of 18

nanowires was created, each wire being a perturbed configuration from the PPG

wire. We refer to these as the similar-to-PPG (SPPG) wires. As an example, one

perturbation is obtained by substituting a random Ge atom from one of the pure

Ge planes in the PPG wire with a random Si atom in the non-planes region of

the wire. Each SPPG wire has its own number of atoms, ranging from 1 to 8,

randomly substituted in this way. See Fig. 6.6(b) for an example SPPG wire with
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Figure 6.6: (Color) (a) Nanowire data set of random Si-Ge configurations
plotted in a histogram with the number of elements versus their
thermal conductivity κ. (b) Each type of wire considered in
the fitting and predictions of thermal conductivity: wires with
random Si-Ge configurations (RW), the pure planes of Ge wire
(PPG), and wires that are similar to the PPG wire (SPPG).
Red/blue atoms are Si/Ge. For the SPPG wire, black circles
show where two random atoms, one atom from one of the pure Ge
planes, and one atom from the non-plane region, were substituted
to perturb the PPG wire.

1 atom substituted.

Notice that, importantly, the RW test wires, the SPPG wires, and the single
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PPG wire, are not used in training the least squares model. Only RW train is

employed for this task. If the CE-GLM is useful here, we will predict that a

large majority (if not all) of the SPPG wires have lower thermal conductivity than

the RWs. In Fig. 6.7(b) we see that this is also the case. Furthermore, the RMS

prediction error is 0.25 W/m.K, which is similar in magnitude to the RW data sets.

Also, a larger error for the, more or less, ordered SPPG wires is to be expected

since the predictions are made based on a fit to the random data set. In principle,

this should not matter since we assume that the thermal conductivity is captured

well in all of configuration space. However, in practice, since we only observe a

limited amount of data, it will typically be the case that we enjoy an increased

predictive capability in regions closer to the structures employed in the training

process.

As a final additional test, we see whether CE-GLM predicts the PPG wire to

have overall lowest thermal conductivity of all wires considered above. This is an

important test. If it (almost) has the lowest conductivity, we would have been

able to provide the same conclusion as Ref. [78] if coupling the cluster expanded

thermal conductivity with an optimization routine such as the genetic algorithm or

an adaptive sequential Monte Carlo method.73 Remarkably, Fig. 6.7(b) shows that

we do indeed make this important prediction. Note that, whether this is indeed the

global minimum configuration is out the scope of this work to determine. These

results provide evidence that the CE-GLM does capture the thermal conductivity

of Si-Ge nanowires to, at least, the same degree as the MCE, and is therefore a

useful method to apply in this problem.
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Figure 6.7: (Color) Predictions of thermal conductivity from the cluster
expansion ghost lattice method (CE-GLM) versus the results
from molecular dynamics. In (a) the least squares fit on RW
train is shown. Only one of the 10 train/test splits are shown
(green/white circles). In (b) the CE-GLM is tested on three dif-
ferent test sets: RW test, the SPPG wires, and the PPG wire.
Note that in (b), RW train (green circles) is the same as in (a).
Error bars on the SPPG wires and the PPG wire stem from 10
different random splits of the RW data into train and test. For
more information on the various nanowire data sets see, e.g.,
Fig. 6.6(b).

6.5 Conclusion

In this chapter we introduced a modified cluster expansion method, called the

cluster expansion ghost lattice method (CE-GLM), which is distinct to the regular
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ternary cluster expansion with vacuum atom types. The CE-GLM uses the bulk

clusters and bulk symmetries for any geometry. The ghost site—zeroing cluster

functions of clusters containing it—turns any structure into an effective bulk ge-

ometry and makes the CE-GLM computationally efficient when implemented in

existing cluster expansion software packages—no matter the shape and/or size of

the structure in question when compared to an equivalent bulk system. We dis-

cussed how to implement the method in the cluster expansion software package

atat.

To test the usefulness of the CE-GLM the method was employed to predict

the thermal conductivity of Si-Ge nanowires. When comparing to a similar work

carried out recently we find great agreement: the lowest thermal-conductivity-

nanowire configuration is that of an Si wire with planes of pure Ge spaced 1 nm

apart. This establishes that the CE-GLM can be useful for cluster expanding non-

bulk low-symmetry systems with minor modification to existing cluster expansion

software.

The main drawback of the CE-GLM is that it does not provide a way to sys-

tematically check whether increasingly precise surface terms matter greatly in the

problem at hand or not.

In future work it will be interesting to employ the method on other even more

exotic geometries and preferably compare to other cluster grouping methods. Fur-

thermore, since the CE-GLM computes the unperturbed, i.e., the bulk, energy of

any structure, a study, for non-bulk structures, of how the surface contribution

plays a role would be useful.
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CHAPTER 7

CONCLUSION

Surrogates used in place of expensive computer code are essential to optimization

and characterization of materials in silico. The surrogate attempts to approximate

the materials response surface of any given property as well as possible from a data

set containing samples of the true response surface. The frameworks developed in

the thesis are general, but for our applications, we focused mainly on the important

subset of materials called alloys. In the case of alloys, a particular surrogate exists

called the cluster expansion.

The main topics presented in this thesis has been the improvement of surrogates

for materials characterization, optimization, and design and the quantification of

the uncertainty in predicted materials properties and quantities of interest (QoIs)

from using surrogates.

Thermodynamic characterization of materials is extremely important since it

tells us if the material will be stable or not if created in the real world. In Chap-

ter 4, we showed that the concept of relative entropy employed to measure the

distance between a candidate and the true Boltzmann distribution provided signif-

icant improvements to thermodynamic predictions of the material in much closer

agreement with experiments. This should provide evidence that materials science

can benefit greatly from information theory. This merge is indeed the current

direction of the computational materials science field.

Predicting materials QoIs are important to both materials characterization,

optimization, and to design. However, without knowing how well we know the

QoI, our predictions are meaningless. This motivated the work of Chapter 5, where
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we developed a rigorous framework for propagate and quantify the uncertainty in

predicted QoIs. We demonstrated that the predictive variance in QoIs should

be expected to be around 5-10 %, which can be improved for the application at

hand, when the materials property is quantum mechanical energy, in agreement

with what has been assumed in the field so far. This uncertainty propagation is

essential in order to approach future materials design in an informed and reliable

way and our work is the first to attempt such a rigorous propagation of uncertainty

from the surrogate to the QoI in the computational materials science field. There

is, however, still much more work needed in this area.

In Chapter 6, we observed that the traditional cluster expansion method, de-

veloped for bulk systems, did not perform well for low-symmetry systems. We

considered a materials design problem involving the minimization of thermal con-

ductivity in Si-Ge nanowires but were, at first, unable to proceed using traditional

methods. Therefore, we set out to develop a fast cluster expansion method for

such systems and found a successful approach called the cluster expansion ghost

lattice method capable of capturing the thermal conductivity and predict the low-

est conductivity structure. Our method is approximate, but had huge benefits in

terms of computational implementation and speed when applied to any system

of arbitrary shape and proved useful in the particular application of predicting

nanowire thermal conductivity.

As final words, we are headed towards the realization of virtual materials labo-

ratories, but there are still many developments and discoveries to be made before

we reach this goal. We sincerely hope that our contributions and ideas help reach

this goal sooner rather than later. Rest assured that some day in the future these

laboratories will see the light of day.
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