A New Method for Solving
Triangular Systems on
Distributed Memory
Message-Passing Multiprocessors

Guangye Li*
Thomas F. Colemant

TR 87-812
March 1987

Department of Computer Science

Cornell University
Ithaca, New York 14853-7501

*Research partially supported by the US. Army Research Office through the
Mathematical Sciences Institute, Cornell University.

+Research partially supported by the Applied Mathematical Sciences Research Program
(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant
DE-FG02-86ER25013.A000.



A New Method for Solving Triangular Systems on

Distributed Memory Message-Passing Multiprocessors

Guangye Li Y2
Thomas F. Coleman 3
Computer Science Department &
Center for Applied Mathematics

Cornell University

Ithaca, New York 14853

March 1987

Abstract: Efficient triangular solvers for use on message passing multipro-
cessors are required, in several contexts, under the assumption that the ma-
trix is distributed by columns (or rows) in a wrap fashion. In this paper we
describe a new efficient parallel triangular solver for this problem. This new
algorithm is based on the previous method of Li and Coleman [1986] but is

considerably more efficient when 2 is relatively modest, where p is the

p
number of processors, and n is the problem dimension.

A useful theoretical analysis is provided as well as extensive numerical
results obtained on an Intel iPSC with p = 128.

Keywords: hypercube multiprocessor, parallel triangular solver, parallel
Gaussian Elimination, parallel matrix factorization

AMS Subject Classification: 65F05

1 Research partially supported by the U.S. Army Research Office through the Mathemati-
cal Sciences Institute, Cornell University.

2 permanent address: Computer Center, Jilin University, People’s Republic of China.

3 Research partially supported by the Applied Mathematical Sciences Research Program

(KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under
grant DE-FG02-86ER25013.A000.



0. Introduction

An important part of many computations is the solution of a triangular
system of equations. On a sequential computer, this is a simple task; how-
ever, an effective parallel procedure on a message-passing multiprocessor is
far from trivial. Indeed, recently there has been a flurry of research activity
directed at just this issue (e.g. Heath[1986], Li & Coleman[1986],
Moler[1986a,b], Romine & Ortega[1986]). In this paper a new algorithm is
described: this procedure is an enhancement of the recent method proposed
by Li & Coleman [1986] and represents a significant improvement.

The algorithm proposed by Li & Coleman [1986] is applicable on any
message-passing multiprocessor (with no shared memory) on which it is pos-
sible to embed a ring. Theoretically the new algorithm proposed in this
paper can get by with just ring connectivity as well; however, this new algo-
rithm will usually be more efficient when there is more connectivity than
this. The precise architectural design is unimportant provided a ring can be
embedded; we have conducted all our experiments on hypercube computers.

We assume that the system to be solved is Ux = b where U is an upper
triangular matrix of order n. We also assume that U is distributed to the
nodes (processors) by column. (A similar algorithm exists for the row-
distributed case; however, since it is quite straightforward given the column
algorithm, we will not discuss it further.) This is a natural assumption in
many cases. For example, the finite-difference estimation of Jacobian
matrices yields a matrix column-by-column. Finally, we assume that the
columns of U are assigned to the nodes in a wrap fashion. So, for example, if
the node containing column j is P(j) then P(j) = P(k) if and only if
j = k(mod p), where there are p nodes altogether. A wrap mapping is
chosen because it seems a very reasonable choice for the matrix factorization
stage (e.g. Geist & Heath [1986], Chamberlain [1986]) which often precedes
a triangular solve.

The original algorithm proposed by Li and Coleman [1986] is capable of
effectively solving triangular systems in many cases. For example, the
numerical results reported by Li & Coleman[1986], Heath [1986], and
Moler[1986b] suggest that in many cases it represents the best available
algorithm. However, upon close inspection it appears that this algorithm

begins to lose ground as " decreases (note: we always assume n = p). For

example, Moler [1986b] compared the Li-Coleman algorithm to another
parallel solver due to Romine & Ortega [1986]. In these experiments the Li-
Coleman method was faster by a factor of 4.5 when p = 16 and n = 710



-2 -

whereas this ratio decreased to 1.38 when p = 128 and n = 1890. Heath’s
[1986] results are even more dramatic. When p = 16 and n = 900 Heath
reports a ratio of about 2 in favour of the Li-Coleman algorithm. However,
when p = 64 and n = 900 the tables have turned; the ratio is approxi-
mately .8. (We note in passing that these results are not really comparable.
In both cases Intel iPSC computers were used; however, different languages
and implementations, different precisions, and different timing 'rules’ make
it very difficult to compare.)

The purpose of this paper is to describe a modification of the original
Li-Coleman algorithm. This modified version does not degrade in perfor-
mance as p increases relative to n. Moreover, it actually reduces to the ori-

ginal Li-Coleman algorithm when % is relatively large and therefore the

modified algorithm maintains a high level of performance under these cir-
cumstances as well.

The proposed algorithm can be used on any distributed-memory
message-passing multiprocessor in which a ring can be embedded provided
send and receive primitives are available. We assume that when control of
a node program passes to a send statement, the send is executed immedi-
ately, in time zero, and then control passes on to the next executable state-
ment in this node program. Of course this does not imply the message is
received immediately - we discuss this transfer time below. We also assume
that when control passes to a receive statement in a node program, execu-
tion of this node program is suspended until the message is physically
received which happens when the appropriate transfer time elapses.

Message passing speed plays an important role in the execution time of
algorithms for the solution of triangular systems of linear equations. This
contrasts with the factorization stage (e.g. Moler [1986¢]) in which floating
point computations clearly dominate. In order to quantify message-passing
speed in our analysis, we use a quantity ¢:

t is the maximum number of flops that can be executed on a single pro-
cessor during the time in which a single ’small’ message is sent by one
node and then received by a waiting adjacent node.

In this context we define ’small’ to be a message of size less than or equal to
% double precision words (64 bits each), where p is the number of processors

and q is a positive integer to be discussed later.

Our paper is organized as follows. In Section 1 the new algorithm will
be motivated and described; results of numerical experiments will be given.



-3-

An analysis of the new algorithm will be provided in Section 2. In Section 3
we briefly discuss a modified version of the new algorithm - this modifed ver-
sion achieves a well-balanced (rectangular) work distribution (instead of tri-
angular). Section 4 will contain a summary and concluding remarks.



-4 -
1. The Algorithm: Motivation, Description, and Numerical Results

1.1 Motivation

The parallel triangular solver PCTS, proposed by Li and Cole-
man[1986], is based on a ring architecture and assumes the columns are
assigned to the nodes in a wrap fashion. In particular, if the node that con-
tains column i is P(i) then P(j) = P(k) if and only if j(mod p) = k (mod p).
In the embedded ring, node P(i (mod p)) is connected to P(i+1 (mod p)),
i1=1:p.

Mechanically, algorithm PCTS is simple: the p—1 array SUM passes
around the ring going from P(j) to P(j—1) for j=n:2. When SUM arrives at
node P(j), P(j) determines x(j), modifies SUM (p flops), and then forwards
SUM to node P(j —1). Finally, node P(j) modifies the first j—p elements of
array PSUM using column j of U (j —p flops).

The procedure PCTS is executed by every node: the following initial
conditions are assumed.

If myname = P(n): SUM(1:p) = b(n:n—p+1)

PSUM@(1:n—p) = b(l:n—p)

If myname # P(n): SUM(:pp) =0

PSUMQ:n—p) =0

Procedure PCTS (x[1:m], SUM(1:p), PSUM(1:n —p), U(l:n,[1:m])
For j=n:1
If myname = P(j)
Receive SUM(1:.p—1) [ifj < nl]
x(j) « (SUMQ) + PSUMQGN/U( )
SUM(1:p—2) « SUM@2:p—1) — UG—15—(p—2), j)Xx()
+ PSUM( —1j—(p—2)
SUM(p-1) « —UG—(p-1, )Xx() + PSUM(—(p—1)
Send SUM(1:p—1) tonode P(j—1) [ifj > 1]
PSUM(1:j —p) < PSUM(1:;j—p) — ULyj—p, j)Xx()
End

Note: For brevity, we follow the convention that if an array index is out of
bounds, the returned value is assumed to be zero. Each node has at most

m =

%l columns of the upper triangular matrix U.



-5-

We have listed all the arrays used, and their dimensions, in the pro-
cedure statement. The square brackets indicate indirect addressing. For
example, x[1:m] says that there are at most m components of the vector x on
this node but they are not necessarily the first m components of the n-vector
x. In particular, the components of x are assigned to the nodes in a wrap
mapping consistent with the assignment of columns. Rather than introduce
indirect indexing in the body of the procedure, we refer to components
directly. So for example, x(j) refers to the j* component of the solution x,
not the j%* component of the array x[1:m] on this node. Of course for this
reference to be valid, this component must be assigned to this node.

The mechanism behind PCTS can be described as a distributed outer
product. On each node % the array PSUM holds part of the outer product
corresponding to processed columns on that node; the travelling array SUM
funnels the distributed sums together, as needed.

Assuming p is fixed, Li and Coleman showed that the running time of
PCTS, T(n), is a function which is linear up to a threshold value of n after
which it is quadratic. In the quadratic range T(r) represents essentially
optimal speedup (this is because node P(n) is almost always busy doing use-
ful floating point computations - the other nodes are not quite as busy as
P(n) due to variation in column size). However, T'(n) reflects less than
optimal speed in the linear region and since the threshold value of n can be
quite large, it is worthwhile trying to improve PCTS in this region.

T(n) is linear when the busiest node, node P(n), has idle time in every
cycle of SUM. Therefore, it is easy to see that under these circumstances
T(n) is dominated by the time it takes SUM to complete a cycle:

cycle time = p? + tp (1.1)

Obviously, if SUM could be reduced to size % — 1, for ¢ = 1, then the time

to complete a cycle would be
cycle time = (%)p + ip (1.2)

provided there are no other compromising ill-effects. In particular, the size
of ¢ must be restricted because expression (1.2) is no longer valid if SUM
arrives back at node P(n) before node P(n) is ready to process SUM. Hence,
the following principle guides our choice of g: choose g as large as possible
subject to the constraint that node P(n) is always (just) ready to process
SUM when it arrives. Note that this principle suggests to choose ¢ = 1 for
n sufficiently large - i.e. resort to the original PCTS algorithm.



-6 -

The step from algorithm PCTS to the new algorithm PCTS™* can best
be understood, perhaps, by considering the first cycle of PCTS in which the
last p components of x are solved for. In particular, notice that the determi-
nation of x(n —1) does not involve x(n)XU(n —p+1:n -2, n). Similarily, the
determination of x(n—2) does not involve x(n)XU(n—-p+1:n—3, n) nor
does it involve x(n—1)XU(n—p:n—3,n—1). Hence it may be possible to
ship information across the ring (provided the communication links are
there) while maintaining essentially the same algorithmic form. So, for

example, if ¢ = 2 the vector x(n)XU(n —-p+1ln— g,n) could be shipped
"directly’ to node P(n — %).

Generalizing this notion, in the first cycle node P(n) computes the vec-

tor x(n)XU(n—p+1:n,n) in q packets, each of size % The first packet
(SUM) is sent to node P(n—1), the second packet is sent to node P(n— 5),

the third packet is sent to node P(n—-2§), and so on. Figure 1.1 shows the

communication pattern for p = 16 and ¢ = 4. For simplicity we also
assume that n = 16.

13
14

15 \\

WOJ00 N Oy N W N

column n




-7

Of course a similar communication pattern can be repeated at all nodes.
Therefore, in general during a given cycle, a node P(j) will receive g pack-

ets, each of size 5, before solving for the next variable and then successively
computing and sending off q packets, each of size % (actually, one of the

packets, SUM, is of size (%—1). After this node P(j) will then modify the

remaining j —p components. Figure 1.2 illustrates the incoming communi-
cation pattern of node P(3), for p = 16 and q = 4.

1.2 Description

Algorithm' PCTS* is a generalization of PCTS; when q = 1 the two
algorithms are identical. In general, for ¢ = 1, a P _ array SUM passes
around the ring going from P(j) to P(j—1) for j = n:2. Before SUM arrives,
node P(j) receives g —1 packets, each of size E, from g —1 predecessor nodes
(node P(j) modifies vector PSUM using each packet it receives). When
SUM arrives at node P(j), P(j) determines x(j), modifies SUM using L
flops, and then forwards SUM to node P(j—1). Node P(;) then modiﬁeqs
p — g— elements of the local‘ array PSUM in packets of size 5—; the first



.8 -

packet is sent to node P(j — %), the second packet is sent to node

PGy — 2%) , and so on. Node P(j) then proceeds to modify the remaining

j — p elements of array PSUM, using the corresponding elements of column
j of U. Node P(j) is then ready to begin again, this time with respect to

x(j—p).
We assume —Z— is an integer and define p = P The array w identifies

g —1 of the recipients of the p-packets. So for example, let k be the lowest
numbered column on a node. Then w(g—1) =P(k—p, w(g—2) = P(k — 2p)
and so forth.

Procedure PCTS* (x[1:m], SUM(:p), PSUM(1:n—p), U :n[1:m]),
BUF(1:p), w(l:q—1))

For j=n:1
If myname = P(j)
For i=1:q—1

Ifj<n-iXp
Receive BUF(1:p)
PSUM(—p+1:j) « PSUM(j—p+1:j)+ BUF(1:p)
Receive SUM(1:p—1) [ifj < n]
x(j) « (SUM@Q) + PSUMGN/U( )
SUM@1:p—-2) « SUM@2:p—1) — UG —1:j—(p—2), )Xx()
| + PSUM(y —1:j—(p —2))
SUM(p—-1) « —UG—(p—1), H)Xx() + PSUM(j—(p—1))
Send SUM(1:p—1) tonode PG—1) [ifj > 1]
For i=q—1:1
Ifj>(@—-iXp
PSUM(—(gq—i+1)Xp +1:j—(g—i)Xp)
«PSUM(j—(g—i+1)Xp +1:j—(g—i1)Xp)
—U({—(g—i+DXp +1:j—(g—i)Xp,)j)Xx())
Send PSUM(j—(g—i+1Xp +1:j—(g—i)Xp) to node
w(i)
PSUMQ@:j—p) « PSUMQ:j—p) — U(:j—p, j)Xx()
End

Most architectures will not guarantee a direct link between sender and
receiver of the p-packets. In our implementation on a hypercube computer,



.9.

we make no attempt to optimize the route - we let the cube operating system
take care of it (hopefully, some attempt is made to use idle nodes).

Obviously the choice of ¢ plays an important role. As we mentioned
before, a reasonable guiding principle is to choose g as large as possible sub-
ject to the constraint that when SUM arrives the receiving node is ready to
process SUM. This notion can be formalized (under some simplifying
assumptions on message traffic) and an optimal ¢ can be determined analyt-
ically. We discuss this in Section 2. Next, we present numerical results
using different values of q.

1.3 Numerical Results

Our numerical results were obtained using Intel iPSC hypercube com-
puters. Experiments were performed using RM/Fortran, in double precision,
under release 3.0 of the operating system. Experiments with p >16 (i.e.
p = 64, p = 128) were performed at Intel Scientific Computers, Beaverton,
Oregon with the help of Cleve Moler. The largest linear system we could
solve in this environment was approximately n = 1700. The p = 16 experi-
ments were performed using the Intel iPSC housed in the Advanced Com-
puting Facility at the Cornell Center for Theory and Simulation in Science
and Engineering. This cube is outfitted with extra memory boards allowing
systems of approximate order n = 2000 to be solved. Our test problems con-
sisted of randomly generated linear systems.



-10 -
In the graph in Figure 1.3 we plot execution time (y-axis) versus various d
values (x-axis) where g = 29. The test problem is of size n = 1000 and

p = 128.

t (secs)

40

30

20

10

Figure 1.3 (n =1000, p =128, ¢ =29)

Obviously the optimal choice for ¢ in this case is ¢ = 23 = 8. Notice
that the difference between ¢ = 8 and ¢ = 1 is greater than a factor of 4.



-11 -

As we show in Section 2, the optimal choice of g is dependent on the
problem size. Nevertheless, Figure 1.4 illustrates that this dependency is
relatively mild in this environment. In particular, ¢ = 8 is almost unifor-
mily superior for all » < 1500 when p = 128.

t(secs)

60 - ]

20 q=16

0 500 1000 1500

Figure 1.4 (p=128)

An important thing to notice is that ¢ =1 and ¢ = 8 curves are
diverging with n and therefore the significance of ¢ increases with n (up to
a point). When n = 1500 the ¢ = 8 algorithm is approximately a factor 5
better than q¢ = 1. Notice that for the ¢ = 1,2,4,8 cases, T(n) is clearly
linear; for ¢ = 16,32 the plot is not quite so true - we explain this
phenomenon in Section 2.1.

Interestingly, Theorem 2.1 in Li and Coleman [1986], suggests that if n
is below the threshold value (demarking the linear and quadratic regions)
for a given p, then increasing the number of nodes p, while keeping n fixed,
will cause the execution time to increase. It turns out that this is true in
practise as well as theory. However, the introduction of g allows for some
mitigation of this effect. Indeed, Theorem 2.3 in the next section indicates

that if n is held constant and £ is fixed then we can expect the execution
q

time to be constant with p. Figure 1.5 illustrates this remark.



.12 -

In Figure 1.5 n is held constant at n = 600 and p is varied. In the first
case (¢ = 1) the increase in computation time with p is evident. In the

second case, ¢ was varied always maintaining P2 — 16. In this case there is
q

virtually no increase in computation time.

t (secs)
T T
20 | .
10 | _
\ L | } | v )
0 16 32 64 128

Figure 1.5 (n =600)



- 13 -
2. Analysis

The purpose of this section is to derive an expression T(n) for the run-
ning time of algorithm PCTS + measured in flops. This can easily be done,
under a simplifying assumption, and the resulting formula can be used to
guide the choice of the parameter gq.

One flop reflects the time to execute the operation y <y + ax where
a,x,y are scalars. We apply this definition a bit loosely, for simplicity. For
example when the following statement in PCTS " is executed,

PSUM(j—p +1:j) « PSUM(j—p+1:j) + BUF(1:p)

we count 1 flop per assignment even though there is no multiplication.
Similarily, we count just 1 flop each pass through the loop

SUM(1:p—2) « SUM2:p—1) — UG—1:j—(p—2), ))Xx()
+ PSUM(—1:j—(p—2))

even though there is an extra addition.

In the results to follow, we will assume that a cross-ring message of size

p A L (a p-packet in PCTS*') takes time at most r¢ flops, where

r = logy(p). (Of course the minimum travel time is just ¢ flops by the
definition of ¢.) Furthermore, we assume that message forwarding accrues no
overhead cost: a message is forwarded immediately by an intermediate node
at zero cost. Finally, for simplicity we assume that n = mp for some
integer m.

It turns out that T'(n) is a linear function of n provided q and n are
both less than threshold values. We derive this expression in 3 stages. First,
in Lemma 2.1, we show that if ¢ is sufficiently small, then in the first cycle,
SUM is processed (p flops) immediately upon receipt by each of the nodes
P(n—1), .., P(n—(p—1)). Second, Lemma 2.2 establishes that in the first
cycle node P(n—p) = P(n) is also ready to process SUM immediately upon
receipt, provided we make the additional assumption that n is less than a
threshold value of n, n*. Finally, in Theorem 2.3 it is shown that SUM is
always processed immediately upon receipt by every node in every cycle; the
expression for T is then easily deduced.

The following reasoning leads to an intelligent upper bound on g, q*.
Upon receipt of SUM a node P (k) updates SUM in p flops and then forwards



-14 -

SUM to a neighboring node on the ring. Immediately after this p elements
of PSUM are modified by P(k) and then this p-packet is forwarded to node
P(k—p). Now, when the cycling vector SUM arrives at node P(k—p) it is
important that P(k—p) is ready to process SUM. An obvious necessary con-
dition for this is that the cross-ring p-packet has been received and pro-
cessed by P(k—p) before SUM arrives. This consideration immediately
leads to the inequality

2p+rt < pt + (p—1)p

which yields the bound

q = 2p . (2.0)
B—0+V(—-3)?2 + 4rt

Unfortunately (2.0) doesn’t quite do the job when the last p columns of U,
columns p,p—1, .., 1, are processed. The reason is that SUM can travel
more quickly in this final strech since less processing is required at each
node. Specifically, in this last cycle node P(j) processes S UM in just j flops
instead of the usual p. Hence this final stretch of p nodes leads to the ine-
quality

2p +rt < §t+———p(p2+1) -1

which implies

2p )
3-20)+ Y(2t—3)2 + 8(rt+1)

It is easy to see that (2.0°) = (2.0) whenever q = %, and since this latter
condition is highly reasonable, we define the upper bound for q,

_ 4P 2p
q* = min {-—’ }
2’ 3-20+V@t-3)2 + 8irt+1)

Lemma 2.1: If g <q* then, in the first cycle, SUM travels
P(n) > P(n—1) —» --- »P(n—(p—1))

in time pp + (p—1t flops (i.e. without delay).

Proof: We will show that when SUM arrives at node P(n—k), 1=sk<=p-—1,



.15 -

the receiving node is ready to process SUM. This will be the case if node

P(n—Fk) has completed processing the required E_ cross-ring p-packets
p

which it will receive in the first cycle. In particular we will show that the
time between 2 p-packet arrivals is always enough to allow the first to be
processed before the second arrives. (This is true even when the second p-
packet is SUM itself.) Since processing the cross-ring p-packets is the only
work that node P(n —k) must do before SUM arrives, our desired result will
follow.

Assume that p-packet i (say) is sent to node P(n—k) at time ¢,. Then,
it will arrive at P(n —k) by time ¢, +rt. But p-packet i+1 is not ready to be
processed by node P(n—k) until at least time ¢ +p(p+¢) — 2p. (Note that
p-packet i +1 may refer to SUM.) Therefore, if

t,+rt+p < t;+pp+t) — 2p 2.1

then it follows that node P(n—k) is ready to process p-packet i+1 upon
arrival. But (2.1) is clearly implied by the assumed bound on g and there-
fore the result follows. []

Node P(n —p) will be ready for SUM in the first cycle provided n is less
than a threshold value n*:

n* = p¢+p-1) + p

Note that n* depends on g; n*(q) is monotonically decreasing as q increases.

Lemma 2.2 : If ¢ < q* and n<n*(q) then, in the first cycle, node P(n) is
ready to process SUM upon arrival (at time p(t +p)).

Proof: By Lemma 2.1, SUM arrives at node P(n) at time p(p + ¢). We must
now argue that node P(n) has enough time to process column n of U, as well
as the (g—1) cross-ring p-packets that arrive in staggered fashion, before
SUM arrives. But, by algorithm PCTS T, node P(n) processes column n first
before doing the (q—1) p-packet updates. Since it is clear that the last p-
packet, arriving from node P(n—p), can be processed by P(n) before SUM
arrives (provided P(n) isn’t otherwise busy) we can, without loss of general-
ity, count backwards. That is, assume that P(n) processes this last p-packet
during time [p(p +t)—(p —1), p(p +0)]. Similarily, we can assume that P(n)
processes the second last p-packet during time [p(p+t)—(2p —1), p(p +1)]
(By definition of g*, it is clear that P(n) has processed this packet by time



-16 -

p(p+t)—(2p —1)). Continuing in this fashion, assume, without loss of gen-
erality, that the interval [p(; +8)—(g—1p —1), p(p+1¢)] is used to process
all (¢g—1) cross-ring p-packets. Hence we must only show that P(n) has
finished processing column n by time p(p+t)—(g—1)p +1. But node P(n) is
finished processing column n of U at time n and with n = n*(q) we obtain

n <pp+t)—-(g—p —-1) U]

Theorem 2.3 : If ¢ <q* and n<n*(q) then the total running time of PCTS*
satisfies

T = +pn — 2D

Proof: By Lemmas 2.1 and 2.2, SUM is processed immediately upon receipt
by nodes

P(n—1), P(n-2), .., P(n—p) = P(n)

in the first cycle. But if node P(n —p) is free when SUM arrives in the first
cycle, then it is clear that every node will be free when SUM arrives in sub-
sequent cycles (except possibly when the last p columns, column p, ..,
column 1, are being processed). The reason is simple: such nodes are in the
same situation as node P(n) is in the first cycle. In particular, each such
node must process its current column of U and then the (g—1) arriving p-
packets before SUM returns. But since the size of the columns of U is
diminishing, and since P(n) had enough time in the first cycle (by Lemma
2.2), it follows that each node will have sufficient time to do this.

However, it is necessary to consider the last p columns (.e. columns
p,p—1, ..., 1) separately because in this stretch the nodes P(p), ..., P(1) do
less work in processing SUM. In particular, in this final stretch SUM
requires i flops at node P(i), 1<i<p. Hence it is conceivable that SUM
arrives at node P(j), say, with 1=<j<p, before P(j) is ready. But it is easy to
see that this cannot be the case: the bound on g, ¢*, ensures that each node
P(j) has enough time to process the p-packet from P(j+p) before SUM
arrives. Hence it follows that SUM is processed immediately upon arrival
at all nodes during every cycle.

We are now ready to compute 7' and thus prove the theorem. The total
running time T is just the time for SUM to cycle around the ring m times.
Since every node is always ready to process SUM upon arrival, it is
straightforward to compute this cycling time. With respect to each column



-17 -

j, p<j=<n, we will associate the time p+¢, which represents the time re-
quired to process SUM plus the time for SUM to travel to the next node on
the ring. Similarily, for 2<j<p column j is charged j+¢ flops; column 1 is
charged just 1 flop. Therefore, the total time T is just the sum of the
charges:

T =m-p)p+0 + G-t + 3
=1

which yields the result. []

2.1 Remarks on Theorem 2.3

The main practical importance of Theorem 2.3 is that it can be used to
guide the choice of g. Specifically, T' decreases as q increases (for fixed p,n,t)
and therefore the optimal value of q, gq,, is attained by increasing g until
either n = n*(q) or ¢ = g*, whichever comes first. Therefore q, is given by

— P 1V VR
q* max {11 min {q ’[n—p(t—l)] }}

Let us now consider how this theoretical estimate matches our computa-
tional experience reported in Section 1. We have estimated ¢ = 40 on the
Intel iPSC (release 3.0). Using this estimate and p = 128 we obtain
g* = 19. Hence if n = 1000 then q, = ¢* = 19. Considering the results
given in Figures 1.3 and 1.4, we see that this estimate is a bit high: i.e. the
numerical results clearly indicate that ¢ = 8 is superior to ¢ = 16. Indeed,
this overestimation is typical and can be explained, we think, by considering
our assumptions. Specifically, in order to make the analysis tractable, we
have assumed that the forwarding of cross-ring messages occurs at no cost:
i.e. there is no interruption in the computational work performed by the for-
warding nodes. However, as g increases this assumption becomes increas-
ingly questionable since, in truth, forwarding nodes will be interrupted.
Hence it is best to regard the theoretical value of g, as an upper bound on
q. Indeed, it is the violation of this assumption as g increases that accounts
for the deviation from linearity exhibited by the ¢ = 16,32 curves in Figure
1.4.



.18 -

If p = 16 then q* = 46 and q, = q* = 4.6 provided n < 900. This
theoretical estimate is'bit high once again, since, experimentally, we have
found that the best choice for ¢ with n in this range is ¢ = 2. If p =64
then g, = g* = 11 for n < 3000. However, experimentally we obtain the
results reported in Figure 2.1.

t (secs)

20 -

10

0 ' 500 1000

Figure 2.1 (p = 64)

Clearly the experimental best choice for q is ¢ = 4 with ¢ = 8 a very close
second.

It is interesting to note that the definition of the upper bound g* does
not depend on on n. Hence g, will be invariant with respect to n for some
range of values of n. For example, considering the p = 128 example men-
tioned above, we will have ¢, = 19 for all n < 5861 (on the Intel iPSC
without extra memory, this figure greatly exceeds the storage capacity).
This is of considerable practical significance because it suggests that using a
fixed value of g may be a reasonable thing to do despite the apparent depen-
dence of g, on n. Hence, in practice, it may not be necessary to compute q,
for every problem in which n changes - rather, a good value of q can be
chosen given p and ¢. (Of course, as we mentioned in the preceding para-
graph, this choice should probably be somewhat less than the theoretical
value q, ).



-19 -

Theorem 2.3 is very much related to Theorem 2.1 in Li & Coleman
[1986]. Indeed, if ¢ = 1 then Theorem 2.3 reduces to precisely the first half
of the latter result. Theorem 2.3 says nothing about the case when
n > n*(g). The reason is that Theorem 2.1 (Li & Coleman [1986]) covers
the interesting ground. In particular, if n >n*(g=1) then this theorem says
that T is a quadratic function of n:

2
T = %{—nl—)— +n + p(t+p)2 — pt — p2+ p}—t.

The case where n < n*(g=1) but n > n*(g>1) is not really of interest: the
practical choice is ¢ = 1 in this case.



-20 -

3. A Rectangular Triangular Solver

In this section we consider an improvement to algorithm PCTS*; how-
ever, since our numerical experiments show that the new algorithm,
RPCTS ™, offers only a modest gain in efficiency, we will be quite brief in
our presentation. Nevertheless, there is no question that RPCTS " is never
worse and sometimes better than PCTS™; the improvement may be
significant in some environments.

The basic idea behind RPCTS* is based on the observation that
columns of U diminish in size from right to left: therefore, the workload
endured by PCTS? is not evenly balanced. Moreover, it is quite possible to
postpone some of the work on the larger columns until later and thereby
achieve a rectangular work distribution (instead of triangular). In particu-
lar, in every cycle of RPCTS * each node processes a ‘column’ of U of about

size L
9"

The rectangular triangular solver follows. The parameter h is usually
chosen to be approximately equal to % Indeed this is the choice that leads

to the rectangular work distribution and is always our choice in our reported
experiments.



-21 -

Procedure RPCTS* (x[1:m], SUM(1:p), PSUMQ :n—p), U(1:n,[1: ml),
BUF(:p), w(l:q—1))

l=m
For j=n:1
If myname = P())

For i=1:9q—1
Ifj=n-—-iXp
Receive BUF(1:p)
PSUM(j—p +1:j) « PSUM(j—p +1:j) + BUF(1:p)
Receive SUM(1:p—1) [if j < nl]
x(j) « (SUM(1) + PSUM(N/UG y)
SUM(1:p—2) « SUM@2:p-1) — U(j—1:j—(p—2), j)Xx())
+ PSUM(j—1:j—(p—2)
SUM@E—-1) « —U(—(p—1), )Xx() + PSUM(—(p—1)
Send SUM(1:p—1) to node PG —1)  [if j > 1]
For i=q—-1:1
Ifj >(@—iXp
PSUM(j —(q—i+1)Xp +1:j—(g—i)Xp)
«PSUM(j—(q—i+1)Xp +1:j—(g—i)Xp)
—U(—(g—i+DXp +1:j—(g—i)Xp,j)Xx()
Send PSUM(j—(q—i+1)Xp +1:j—(q—i)Xp) to node w()
PSUM(i—h+1 :j—p) « PSUM(j—h+1:j—p)
— U({—h+1:j—p, j)Xx()
Ifj<=n—h+p
For i=m:l
PSUM(j—2p+1 :j —p)<PSUM(j —2p+1 :j—p)
—UG—2p+1:j—p, ) Xx(i)
l=1-1
End

It is important to realize that RPCTS* can potentially improve on
PCTS* only when n > n*(g) ; otherwise, the algorithms have exactly the
same running time for all feasible values of q. However, it is possible to
extend the linear region beyond n*(g) with RPCTS ™. The reason for this is
simply that the definition of the linear region is driven by the size of the
largest column processed - the ’column’ sizes used by algorithm RPCT S* are



.29 .

all roughly % which contrasts with a maximum column size of n in the case

of PCTS*. The following theorem formalizes this notion: notice that the
bound on n is roughly twice n*(q); the expression for T is identical to that
for PCTS*. (We omit the proof - it is very similar to the proof of Theorem
23)

Theorem 3.1: If q < q* and n < 2p(t+p —2) then

T =(t+p)n — Mzil—)—p—t O

3.1 Numerical Results

In Figure 3.1 we compare RPCTS* with PCTS* for p=16 and q=1.
Notice that the graphs are essentially indistinguishable up until
n= 1000 = n*(g=1). (Theoretically this breakpoint occurs at n = 900.) At
this point RPCTS* continues in a linear fashion while PCTS™ begins its
quadratic phase.

t (secs)

. pcTSt

20 = RpCTS*

10 - .

! ] ! n
0 500 1000 1500 2000

Figure 3.1 (p=16, g=1)



.93 .-

4. Summary and Conclusions

We have presented and analyzed a generalization of the Li-
Coleman[1986] algorithm for solving triangular systems of equations on a
multiprocessor. We have assumed that the columns of the matrix are distri-
buted to the nodes in a wrap fashion. We note in passing that a similar algo-
rithm can be constructed for the row-distributed case. This new solver is

effective even when > is modest whereas the original solver degrades in
p

performance as 1 decreases. The new solver is applicable on a distributed-

memory multipr(fcessor that allows for a ring embedding; however, it is most
reasonable when there is additional inter-processor connectivity, beyond that
of a ring. The exact nature of this connectivity is unimportant though our
experiments have been restricted to a hypercube multiprocessor.

Under a slightly unrealistic assumption on cross-ring traffic (i.e. nodes
forward messages at no cost) the proposed method is analytically tractable.
This analysis reveals that up to threshold values of n and parameter g, the
running time is a linear function of n. More importantly, the analysis yields
a theoretically optimal choice for the parameter g which, in practice, serves
as a very useful upper bound on gq.

Finally, we note that when " s sufficiently large then the new algo-

p
rithm reduces to the original Li-Coleman[1986] algorithm which is quite
effective in such circumstances.

Acknowledgements:

We are especially grateful to Richard Chamberlain who suggested to us
that the original Li-Coleman algorithm could be improved in a manner simi-
lar to the procedure described here. We thank Intel Scientific Computers of
Beaverton, Oregon, and Cleve Moler in particular, for allowing us to visit
and conduct many of our numerical experiments there. Finally, the balance
of our numerical experimentation was performed with the assistance of the
Advanced Computing Facility at the Cornell Center for Theory and Simula-
tion in Science and Engineering, which is supported by the National Science
Foundation and New York State.



- 924 -
References

R.M. Chamberlain [1986], An Algorithm for LU Factorization with Partial
Pivoting on the Hypercube, Technical Report CCS 86/11, Chr. Michelsen
Institute, Bergen, Norway.

G.A. Geist and M.T. Heath [1986], Matrix Factorization on a Hypercube M ul-
tiprocessor, in Hypercube Multiprocessors 1986, M. Heath ed., SIAM Pub-
lications, Philadelphia, PA.

M.T. Heath [1986], Private Communication.

G. Li & T. Coleman [1986], A Parallel Triangular Solver for a Hypercube
Multiprocessor, Technical Report TR 86-787, Dept. of Computer Science,
Cornell University, Ithaca, NY.

C. Moler[1986a], Private Communication.

C. Moler[1986b], Numerical Comparisons of Triangular Solvers on the Intel
iPSC, presented at the Second Conference on Hypercube Multiprocessors,
Knoxville, Tennessee, Sept. 29-Oct.1.

C. Moler [1986¢c], Matrix Computation on Distributed Memory Multiproces-
sors, Technical Report, Intel Scientific Computers.

C.H. Romine and J.M. Ortega, Parallel Solution of Triangular Systems of
Equations, Technical Report RM-86-05, Department of Applied Mathemat-
ics, University of Virginia.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif

