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The main result of this thesis is the two-sided heat kernel estimates for both Dirich-

let and Neumann problem in any inner uniform domain of the Euclidean space Rn.

The results of this thesis are shown to hold more generally for any inner uniform

domain in many other spaces with Gaussian-type heat kernel estimates. We as-

sume that the heat equation is associated with a local divergence form differential

operator, or more generally with a strictly local Dirichlet form on a complete locally

compact metric space. Other results include the (parabolic) Harnack inequality

and the boundary Harnack principle.
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Chapter 1

Introduction

1.1 Basic setting

To introduce our approach, we focus on the case when U is an unbounded do-

main in Rn, keeping in mind that our approach will be extended to a much more

general setting including in particular manifolds with boundary. This paper is con-

cerned with the problem of obtaining global two-sided heat kernel estimates for

the Dirichlet heat semigroup in U . That is, we want to estimate the fundamental

solution

(t, x, y) 7→ pD
U (t, x, y)

of the PDE problem






(∂t + ∆)u = 0 in (a, b) × U

u = 0 on (a, b) × ∂U
(1.1)

with a = 0, b = ∞. Here ∆ = −∑n
1 ∂

2
i is the Laplacian in Rn and ∂U is the

boundary of U . Equation (1.1) is the heat equation in U with Dirichlet boundary

condition and pD
U (t, x, y) is the Dirichlet heat kernel in U . A classical solution of

(1.1) in a cylinder Q = (a, b)×U is a continuous function on (a, b)×U vanishing on

(a, b) × ∂U which, in Q, is twice continuously differentiable in the space variable,

once continuously differentiable in the time variable, and satisfies (1.1). Note that

such classical solutions do not always exist because U \ U can contain a polar

set where nonnegative solutions of the heat equation cannot vanish (e.g. isolated

points, submanifold of dimension at most n−2, or other irregular boundary points).

In this generality, estimating the Dirichlet heat kernel is a challenging question

with difficulties arising both from the possible lack of regularity of the boundary

1
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and from the global geometry of the domain. See Figure 1.1. This problem is well

understood but already non-trivial when U is a cone. See, e.g., [9, 22, 67, 68, 69]

and the references therein. The case when U is the domain above the graph of

a Lipschitz function has been studied intensively, especially from the view point

of elliptic theory. See [4, 15] and also [2, 6, 45] for generalizations and further

pointers to the literature. Deep results concerning the heat equation are obtained

in [28, 29, 52] and in [64, 65, 66] where further references can be found. Interesting

global phenomena are studied in [8] in the case where U is the inside of a parabola.

Other specific cases such as the exterior of a compact set [36, 70] and horn shaped

and twisted domains [23] have also been studied. Further references include [17,

62, 63, 56, 71] among many others.

The goal of the present work is to present a general approach that leads to very

good two-sided bounds in cases where the effects of the boundary and of the global

geometry of the domain are relatively mild. This can be illustrated by treating

two simple but essential examples,

U is the domain above the graph of a Lipschitz function Φ : Rn−1 → R.(1.2)

U = Rn \ V where V is a convex domain. (1.3)

In particular for the case (1.3) our results are new.

To explain our main idea, let us consider another important and perhaps better

understood problem which is the study of the Neumann heat kernel pN
U (t, x, y), that

is, the fundamental solution of the heat equation in U with Neumann boundary

condition, that is, 



(∂t + ∆)u = 0 in (a, b) × U

∂
∂~n
u = 0 on (a, b) × ∂U

(1.4)

Here ~n = ~n(x) is the normal vector to ∂U at x and we assume for simplicity

here that ∂U is smooth. A classical solution of (1.4) in a cylinder Q = (a, b) × U
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Figure 1.1: The complement of three cones in R2.

is a continuous function u : (a, b) × U → R with continuous first space partial

derivatives in (a, b) × U which, in Q, is twice continuously differentiable in space,

once continuously differentiable in time and satisfies (1.4).

The main reason this is a simpler problem comes from the fact that there is

no heat loss, i.e., the heat flow is conservative. Technically, this means that one

can make use of most of the tools developed to study the heat equation for diver-

gence form elliptic operators in Rn and Laplace operators on complete Riemannian

manifolds without boundary. Here, we are referring in particular to the celebrated

works of Nash and Moser on Harnack inequalities and of Aronson on two-sided

Gaussian type heat kernel estimates. See [18, 33, 34, 50, 51] and the references

therein. For instance, the techniques of [35, 37] leads to sharp two-sided estimates

for the Neumann heat kernel in the region shown in Figure 1.1. We review some of

these tools in Chapter 2.6 and illustrate their use by proving two-sided heat kernel

estimates for pN
U (t, x, y) when U is an inner uniform domain. See Theorem 1.3.1

and Definition 3.1.2.

Returning now to the heat equation in U with Dirichlet boundary condition, the

main idea we want to apply here is to reduce the problem to one without Dirichlet

boundary condition to which the techniques alluded to above can be applied. The
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crucial first step in this direction is to use the technique of Doob’s transform. This

is a well-known idea and one of the most relevant references for us in this spirit

is [17]. Surprisingly, and despite a rather large literature, e.g., around the notion

of intrinsic ultracontractivity [7, 17, 18, 21], this idea has not been developed and

used as much as it can to study the Dirichlet heat kernel. Recall that, to any

positive function h on U and any semigroup Pt the Doob’s transform technique

associates another semigroup defined by

P h
t (f) = h−1Pt(hf).

If Pt is the heat diffusion semigroup with Dirichlet boundary condition in U and

h is harmonic, then P h
t is a diffusion semigroup to which one may hope to apply

the techniques of analysis of local Dirichlet spaces by working on L2(U, h2dµ), µ

being the Lebesgue measure. Moreover, if the harmonic function h vanishes at

the boundary, one may hope to show that P h
t is conservative. In this last case

and in probabilistic terms P h
t is the semigroup associated with Brownian motion

conditioned to leave U at infinity. A function h that is positive harmonic in U

and vanishes (in the appropriate sense) at the boundary, is called a réduite for

U . The existence and unicity of réduites is discussed in the literature for various

specific domains (e.g., [4, 67]). In terms of the notion of Martin boundary, réduites

are produced by points at infinity. From the viewpoint taken in this work, the

properties of the réduite h are essential for the analysis of P h
t .

One of the aims of this paper is to present a complete implementation of these

ideas. However, in order to obtain interesting estimates by analysing the semi-

group P h
t acting on L2(U, h2dµ), one needs to prove some basic results concerning

the réduite h and the corresponding Dirichlet space on L2(U, h2dµ). In fact, the

hope behind the use of this method is that most of the analysis can be reduced to

verifying some basic properties of the réduite h. It is thus very important to be
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able to construct an appropriate réduite h and we will do so in Chapter 5.5. The

strategy outlined above is illustrated in this paper by treating inner uniform do-

mains including domains of types (1.2)-(1.3). This strategy is presented in general

context in Chapter 1.2. In the well studied case (1.2) of domains above the graph

of a Lipschitz function, our analysis makes no use of the many existing results in

the literature (e.g., [4, 15, 28, 64]). Instead, we recover some of these results by a

different method. In case (1.3), the results we obtain are new. Further examples

where the method developed here applies will be discussed in Chapter 3.2. The

structure of this paper is discussed at the end of Chapter 1.2.

1.2 General approach

Let X be a connected locally compact complete separable metric space, µ - a

positive Borel measure on X with full support. The natural setting for this paper

is that of regular strictly local Dirichlet space (E ,D(E)) on L2(X,µ). Such a

Dirichlet form is associated with a self-adjoint nonnegative operator L acting on

the domain D(L) which is a dense subset of L2(X,µ). In Chapter 2.2 we will

explore a notion of a local weak solution of the elliptic equation

Lf = g

and of the parabolic heat equation

∂

∂t
f = −Lf

on X. The heat semigroup (Pt)t>0 of contractions on L2(X,µ) is defined by the

spectral theorem via

Pt = e−Lt
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By the spectral theorem we know that g(t, x) = Ptf(x) is naturally a weak global

solution of 




∂
∂t
g = −Lg, t > 0

g(0, ·) = f(·), t = 0

We are interested in the case when (X,µ, E ,D(E)) is a Harnack-type space (see

Chapter 2.5 and Theorem 2.6.1). On such a space there exists a kernel p(t, x, y)

of the heat semigroup (Pt)t>0. Moreover, p(t, x, y) is Hölder continuous and the

two-sided heat kernel estimates (2.40) are satisfied (see the work of Stürm [60]).

For any subset U ⊂ X we may consider the analogue of a heat equation in U

with Dirichlet or Neumann boundary conditions on ∂U by restricting the Dirichlet

form E to certain subsets of D(E). There are two corresponding heat semigroups

PN
U,t and PD

U,t. We ask when can we obtain the heat kernel estimates for each

of these semigroups. The answer is surprisingly general - the estimates we are

obtaining hold for any uniform subset of X.

For the Neumann case, our aim is to prove that the Dirichlet space (EN
U ,D(EN

U ))

on L2(Ũ , µ) corresponding to the Neumann problem on some completion of U is a

Harnack-type space (the set Ũ denotes a completion of U with respect to the inner

geodesic metric ρU , see Chapter 3). In view of Theorem 2.6.1 this includes proving

the doubling property of the measure µ on balls in Ũ and the family of Poincaré

inequalities for the balls in Ũ . This is done for uniform sets in Chapter 4.

For the Dirichlet case, which is the main focus of this work, the Dirichlet heat

semigroup PD
U,t does not preserve the total heat content and so the Dirichlet space

(ED
U ,D(ED

U ), L2(Ũ , µ)) cannot be Harnack-type. We will see that for inner uniform

domains there exists a réduite h which is a global (weak) solution of Lh = 0 with

weak Dirichlet boundary conditions on ∂U . This function h can be used to relate
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the semigroup PD
U,t via h-transform to a conservative semigroup

PD
U,h,tf =

1

h
PD

U,t(hf)

acting on L2(U, h2dµ). Our aim is to prove that the semigroup PD
U,h,t corresponds

to a Harnack-type space. In view of Theorem 2.6.1 this requires showing that the

measure h2dµ satisfies the doubling condition on Ũ . This also requires proving the

family of Poincaré inequalities for the Dirichlet form

ED
U,h(f, g) = ED

U (hf, hg)

with domain

D(ED
U,h) =

1

h
D(ED

U ) ⊂ L2(U, h2dµ).

The structure of this paper is as follows. In Chapter 2 we will introduce the

context of Dirichlet forms, the associated metric, Harnack-type spaces and state

the main tool for this work. In Chapter 3 we will discuss, with examples, the

notions of a uniform and inner uniform domains, for which our estimates of the

heat kernel will be proved to hold in this paper. In Chapter 4 we will show that the

heat kernel for the Neumann heat equation in U satisfies the two-sided estimates

of the same type, provided U ⊂ X is uniform or even inner uniform.

In Chapter 5.4 we will prove boundary Harnack principle in the context of the

uniform subset of X - this is the main tool for the construction and analysis of

the réduite function on U . In Chapter 5.5 we will construct some réduite function

h and we will use the h-transform technique to obtain the two-sided estimates on

the heat kernel of the Dirichlet heat semigroup in U if U is uniform or even inner

uniform.
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1.3 Statement of results

In this section we state some of the main results proved in this paper. We start

with heat kernel estimates for the Neumann heat kernel in inner uniform domains

in Rn and then discuss the Dirichlet heat kernel in domains of types (1.2)–(1.3).

The distance

ρ = ρU

used in the statements below is simply the shortest path distance in U (paths must

stay in U). We call it the inner geodesic distance in U . Later we will see how this

metric is also associated to both Dirichlet and Neumann diffusion problems in U

via Definition 2.1.12. The ball of radius r around x ∈ U for the distance ρU is

denoted by

BU(x, r) = {y ∈ U : ρU(x, y) < r}.

Inner uniform domains are described in Definition 3.1.2 below. These domains

include the domains of types (1.2)-(1.3) above and many more. Note however that

it does not include all convex domains (e.g., the interior of a parabola is not inner

uniform). As Theorem 1.3.1 makes very clear, the condition of inner uniformity is

both local (boundary regularity) and global (geometry of the domain).

1.3.1 Neumann heat kernel

In the following statements, the boundary of any set is always the boundary in the

ambient Euclidean space Rn.

Theorem 1.3.1 Let U be an unbounded inner uniform domain in Rn. There

exist positive finite constants c1, . . . , c5 such that the Neumann heat kernel pN
U in

U satisfies

c1t
−n/2e−c2ρ2/t ≤ pN

U (t, x, y) ≤ c3t
−n/2e−c4ρ2/t, ρ = ρU (x, y),
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for all x, y ∈ U and all t > 0. For any integer k ≥ 0 there exists a constant C(k)

such that the k-th time derivative of the Neumann heat kernel satisfies
∣∣∣∣∣

(
∂

∂t

)k

pN
U (t, x, y)

∣∣∣∣∣ ≤ C(k)t(−k−n/2)e−c5ρ2/t, ρ = ρU(x, y)

for all x, y ∈ U and all t > 0. The constants c1, . . . , c5 above depend only on

the dimension n and the constants c0, c1 that appear in Definition 3.1.2, which

introduces the notion of inner uniform domain. The constant C(k) depends only

on n, c0, c1 and k.

We will prove two generalizations of this result - Theorem 4.0.5 and Theorem

4.2.7. By [33, 50, 60] (see also Theorem 2.6.1 below), given that the volume of any

geodesic ball of radius r in an inner uniform domain grows like rn, the two-sided

inequality above is equivalent to saying that the heat equation with Neumann

boundary condition in U satisfies a uniform parabolic Harnack principle as stated

in the following theorem.

Theorem 1.3.2 Let U be an inner uniform domain in Rn. There exists a constant

C such that, for any z ∈ U , r > 0, and for any non-negative solution u of (1.4) in

Q = (0, 4r2) ×BU (z, 2r), that is,





(∂t + ∆)u = 0 in (0, 4r2) × BU(z, 2r)

∂
∂~n
u = 0 on (0, 4r2) × (∂BU (z, 2r) ∩ ∂U),

(1.5)

we have

sup
Q−

{u} ≤ C inf
Q+

{u} (1.6)

where Q− = (r2, 2r2) × BU(z, r), Q+ = (3r2, 4r2) × BU(z, r).

Remark 1. Note that the boundaries in (∂BU (x, 2r)∩ ∂U) are understood in Rn.

To make sense of the explicit boundary condition in (1.5), one needs to assume

some minimal regularity of ∂U . In fact, we will interpret (1.5) in a weak sense in
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such a way that no additional regularity assumption is needed. Namely, consider

the geodesic closure Ũ of U obtained by completing U for the distance ρU (this is

not a subset of Rn). Let B̃(z, r) = {y ∈ Ũ : ρU (x, y) < r}. Then, a weak solution

of the heat equation in I × B̃(x, r) = I × B is a function u in L2(I → W 1(B))

with time derivative in the sense of distribution ∂tu in L2(I →W 1(B)′) such that

∫

I

∫

B

[(∂tu)φ+ ∇u · ∇φ]dµ = 0

for all φ ∈ L2(I → W 1(B)) with compact support in B̃(x, r) ⊂ Ũ . Here W 1(B)

denotes the Sobolev space in B, and W 1(B)′ denotes its dual with respect to the

inner product in L2(U). Because the test function φ is required to have compact

support not in B but in B̃, the equation above implies that ∂
∂~n
u = 0 on the part

of the boundary ∂U that touches B, assuming that ∂
∂~n
u makes sense.

Remark 2. As we already mentioned, not all convex domains are inner uniform.

However, the Harnack inequality stated in Theorem 1.3.2 does hold for any convex

domain U . Indeed, any geodesic ball BU(x, r) (geodesic and Euclidean distances

coincide) is a convex set of diameter at most 2r. The necessary Poincaré inequality

holds for such sets. The volume V (x, r) of BU(x, r) can be significantly smaller

than rn but a simple argument shows that the doubling property holds. These

properties together with Theorem 2.6.1 (proved in [37, 60]) imply the following

two-sided estimates for the Neumann heat kernel

c1V (x,
√
t)−1e−c2ρ2/t ≤ pN

U (t, x, y) ≤ c3V (x,
√
t)−1e−c4ρ2/t, ρ = ρU(x, y),

for all x, y ∈ U and all t > 0.
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1.3.2 Dirichlet heat kernel

To state similar estimates for the Dirichlet heat kernel, we need some notation. Let

h = hU be a réduite of U , that is, a positive harmonic function in U which vanishes

continuously on the boundary ∂U (in the cases considered below, a posteriori, it

turns out that the réduite is unique, up to a positive multiplicative constant). For

general domains, in order to deal with the possible existence of irregular boundary

points, the more correct requirement is that h is a positive harmonic function on

U that vanishes quasi-everywhere on ∂U . Set

Vh2(x, r) =

∫

BU (x,r)

h(y)2dy.

Theorem 1.3.3 Let U be an unbounded inner uniform domain in Rn. Let h be a

réduite for U . There are positive finite constants c1, . . . , c5 such that the Dirichlet

heat kernel pD
U (t, x, y) in U satisfies

c1h(x)h(y)e−c2ρ2/t

√
Vh2(x,

√
t)Vh2(y,

√
t)

≤ pD
U (t, x, y) ≤ c3h(x)h(y)e−c4ρ2/t

√
Vh2(x,

√
t)Vh2(y,

√
t)
, ρ = ρU (x, y),

for all x, y ∈ U and all t > 0. For any integer k ≥ 1 there exists a constant C(k)

such that the k-th time derivative of the Dirichlet heat kernel satisfies
∣∣∣∣∣

(
∂

∂t

)k

pD
U (t, x, y)

∣∣∣∣∣ ≤
C(k)h(x)h(y)e−c5ρ2/t

tk
√
Vh2(x,

√
t)Vh2(y,

√
t)
, ρ = ρU(x, y)

for all x, y ∈ U and all t > 0. The constants c1, . . . , c6 above depend only on the

constants c0, c1 which appear in Definition 3.1.2, which introduces the notion of

inner uniform domain. The constant C(k) depends only on n, c0, c1 and k.

Remark. In the assumptions of Theorem 1.3.3 there exists a constant c6 depend-

ing only on the constants c0, c1 which appear in Definition 3.1.2, such that for any

x ∈ U and r > 0, the volume function Vh2(x, r) can be estimated by

c6
−1h2(xr)µ(BU(x, r)) ≤ Vh2(x, r) ≤ c6h

2(xr)µ(BU(x, r))
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where xr is any point with ρU (xr, x) = r
4

and ρU(xr, ∂U) ≥ c1
8
r, and c1 is a constant

appearing in Definition 3.1.2. Such a point xr exists by Lemma 4.1.5.

In fact we will prove Theorem 5.0.8 which is a generalization of Theorem 1.3.3

. Our proof also provides a parabolic Harnack inequality which takes the following

form.

Theorem 1.3.4 Let U, h be as in Theorem 1.3.3. There exists a constant C such

that if u is a (classical) non-negative solution of ∂u
∂t

+∆u = 0 in (0, 4r2)×BU (z, 2r),

z ∈ U , which vanishes continuously on (0, 4r2) × (∂BU (z, 2r) ∩ ∂U), we have

sup
(t,x)∈Q−

{
u(t, x)

h(x)

}
≤ C inf

(t,x)∈Q+

{
u(t, x)

h(x)

}
(1.7)

where Q− = (r2, 2r2) × BU(z, r), Q+ = (3r2, 4r2) × BU(z, r).



Chapter 2

Dirichlet forms

2.1 Dirichlet spaces

The main setting for this paper is that of a regular, strictly local Dirichlet space.

Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support. For any open set U ⊂ X, let Cc(U) be the

set of all continuous functions with compact support in U and let C0(U) be the

completion of Cc(U) with respect to the supremum norm. Consider a Dirichlet

form, i.e., a closed densely defined symmetric Markovian bilinear form E with

domain D(E) ⊂ L2(X,µ). For a detailed introduction to Dirichlet forms we refer

to [31, Chapter 1]. We recall some important definitions and results.

Definition 2.1.1 ([31], p.5) A function v on X is called a normal contraction

of a function u on X if

∀x, y ∈ X, |v(x) − v(y)| ≤ |u(x) − u(y)| and ∀x ∈ X, |v(x)| ≤ |u(x)|.

A function v ∈ L2(X,µ) is called a normal contraction of u ∈ L2(X,µ) if some

Borel version of v is a normal contraction of some Borel version of u.

Lemma 2.1.2 ([31], Theorem 1.4.1) Normal contractions operate on (E ,D(E)),

i.e., whenever u ∈ D(E) and v is a normal contraction of u, we have v ∈ D(E)

and

E(v, v) ≤ E(u, u).

Definition 2.1.3 Let (E ,D(E)) be a closed form on L2(X,µ). For any function

f ∈ D(E) let

||f ||D(E) =

√∫

X

f 2dµ+ E(f, f) (2.1)

13
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denote the norm of f in the Hilbert space D(E).

Definition 2.1.4 ([31]) A set C ⊂ D(E)∩C0(X) is called a core for the Dirichlet

form (E ,D(E)) if C is dense in D(E) for the norm (||f ||2L2(X,µ)+E(f, f))
1

2 and dense

in C0(X) for the uniform norm. A Dirichlet form is called regular if it admits a

core.

The following lemma is an important property of the domain D(E).

Lemma 2.1.5 ([31], Theorem 1.4.2) Let (E ,D(E)) be a Dirichlet form. Then

the space D(E) ∩ L∞(X,µ) forms an algebra.

We will make use of the functions constructed in the following lemma as ”cutoff”

functions.

Lemma 2.1.6 ([31], Problem 1.4.1) If a Dirichlet form (E ,D(E)) is regular

then it admits a core C which is a dense subalgebra of C0(X). Also for any compact

set K and relatively compact open set G containing K, there exists a nonnegative

function u ∈ C such that u ≡ 1 on K and u ≡ 0 on X \G.

Definition 2.1.7 A Dirichlet form D(E) is called strictly local if for any u, v ⊂

D(E) such that the supports of u and v are compact and v is constant on the

neighborhood of the support of v, we have E(u, v) = 0. See [31, p 6] where such

Dirichlet forms are called ”strong local”.

Any strictly local regular Dirichlet form E can be written in terms of an ”energy

measure” dΓ so that

E(u, v) =

∫

X

dΓ(u, v)

where dΓ(u, v) is a signed Radon measure on X. The quadratic form dΓ(·, ·) is

defined for u ∈ D(E) ∩ L∞(X,µ) as a Radon measure by

∀φ ∈ D(E) ∩ C,
∫

X

φdΓ(u, u) = E(u, φu) − 1

2
E(u2, φ) (2.2)
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and extended to all u ∈ D(E) by

dΓ(u, u) = sup{dΓ(v, v)| v = min(n,max(u,−n)), n = 1, 2, · · · }.

As in [49] we define the measure-valued bilinear form dΓ(·, ·) on D(E) ×D(E) by

dΓ(u, v) =
1

4

(
dΓ(u+ v, u+ v) − dΓ(u− v, u− v)

)
. (2.3)

The ”energy” form dΓ(·, ·) is symmetric by definition. Moreover dΓ(·, ·) satisfies

the Leibnitz rule and the chain rule, see [49]. Also the form dΓ is strictly local in

the sense that for any open Ω ⊂ X, and any f1, f2, g ∈ D(E), we have

dΓ(f1, g)|Ω ≡ dΓ(f2, g)|Ω whenever f1 − f2 ≡ const on Ω. (2.4)

We now introduce the notion of a local domain of the Dirichlet form.

Definition 2.1.8 For any open set Ω ⊂ X denote

Floc(Ω) =

{
f ∈ L2

loc(Ω, µ) : ∀ compact V ⊂ Ω, ∃f̂ ∈ D(E) : f = f̂ a.e. in V

}
.(2.5)

We extend the measure-valued form dΓ(·, ·) to Floc(Ω)×Floc(Ω) in the following

way.

Definition 2.1.9 In the above context, for any function f ∈ Floc(Ω) define the

quadratic form dΓΩ(f, f) to be the unique nonnegative Radon measure on Ω that

coincides on V with dΓ(f̂ , f̂) for any pair (V, f̂) as in (2.5). We then define the

bilinear form dΓΩ(·, ·) to be the polarization of the quadratic form dΓΩ(·, ·) in the

sense of (2.3).

Such a measure exists because the bilinear form dΓ(·, ·) is local in the sense of

(2.4). We will often omit the reference to Ω from the notation dΓΩ(·, ·).

We will often assume that the Dirichlet form (E ,D(E)) admits a carré du champ

operator in the sense of the following definition.
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Definition 2.1.10 (see e.g. [44]) The Dirichlet form (E ,D(E)) is said to admit

a carré du champ operator if for any f, g ∈ D(E), the measure dΓ(f, g) is absolutely

continuous with respect to dµ. We denote Radon-Nikodym derivative by

Υ(f, g) =
dΓ(f, g)

dµ
∈ L1(X,µ), for f, g ∈ D(E).

For any open set Ω, the carré du champ operator Υ : D(E)×D(E) → L1(X,µ)

can be extended to an operator

ΥΩ : Floc(Ω) × Floc(Ω) → L1
loc(Ω, µ)

ΥΩ(f, g) =
dΓΩ(f, g)

dµ
(2.6)

because of the following lemma.

Lemma 2.1.11 Assume that the Dirichlet form (E ,D(E)) admits a carré du champ

operator in the sense of Definition2.1.10. Then for any open set Ω ⊂ X and any

two functions u, v ∈ Floc(Ω), the measure dΓΩ(u, v) on Ω is absolutely continuous

with respect to dµ.

Proof. Take any compact V ⊂ Ω. By definition there exist functions ũ, ṽ ∈

D(E) coinciding on V with u and v respectively. Therefore dΓ(ũ, ṽ) is absolutely

continuous w.r.t. dµ by assumption. It remains to notice that dΓΩ(u, v) coincides

with dΓ(ũ, ṽ) on V by definition. This holds for any compact V ⊂ Ω, therefore

dΓΩ(u, v) is absolutely continuous with respect to dµ as a Radon measure on Ω. �

2.1.1 The metric associated with the Dirichlet form

Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support and (E ,D(E)) be a strictly local regular Dirichlet

form on L2(X,µ). In this section we define and explore the properties of the
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metric and the corresponding length structure associated with the Dirichlet form

(E ,D(E)) on X.

Definition 2.1.12 (See [60]) Let ρE denote a pseudo-metric associated with the

form (E ,D(E)) and given by

ρ(x, y) = ρE(x, y) = sup {u(x) − u(y) : u ∈ D(E) ∩ C0(X), dΓ(u, u) ≤ dµ} (2.7)

The condition dΓ(u, u) ≤ dµ is understood in the sense of Radon-Nikodym deriva-

tive dΓ(u,u)
dµ

being less than or equal to one. We will often omit the reference to

E from the notation unless the Dirichlet form is other than the original form

(E ,D(E)) on L2(X,µ).

Note that ρE is always a lower semicontinuous function. It is only a pseudo-

metric because it might happen that ρ(x, y) = +∞ for some x, y. For a careful

introduction to this definition and the associated geometry we refer the reader to

[61].

For the rest of this paper we will restrict our attention to the case when the

Dirichlet form (ED
U ,D(ED

U )) is local and satisfies two assumptions:

(A1) The pseudo-distance ρE is finite everywhere and the topology induced by ρE

is equivalent to the initial topology on X. In particular x, y → ρE(x, y) is a

continuous function.

(A2) (X, ρE) is a complete metric space.

We will state these assumptions again in Chapter 2.1.2. Such Dirichlet forms

were studied in [61, 60, 58, 59]. For such Dirichlet forms there is another way to

define a metric associated with the Dirichlet form, e.g.,

ρ∗(x, y) = ρ∗E(x, y) = sup {u(x) − u(y) : u ∈ Floc(X) ∩ C(X), dΓX(u, u) ≤ dµ}

(2.8)
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and it is proved in [61] that in the case that is of interest to us here, i.e. under

assumptions (A1) and (A2), these associated metrics coincide, i.e. ρ = ρ∗.

It is known [61, Corollary 1] that under assumptions (A1) and (A2), the metric

ρE is a length metric in the sense of Definition 3.0.4, i.e. the distance between

two points can be computed by looking at the length (in the metric ρE) of paths

connecting these two points,

ρ(x, y) = inf {L(γ) : γ is a continuous path connecting x and y in X} ,

where for a path γ : [a, b] → X, its length L(γ) associated with a metric ρ is given

by

L(γ) = sup

{
k−1∑

i=1

ρ(γ(ti), γ(ti+1)) : k ∈ N, t1 = a, tk = b, ti < tj for i < j

}

Throughout this paper we let B(x, r) denote the open ball in (X, ρE) of radius

r around x,

B(x, r) = {y ∈ X : ρE(x, y) < r}.

If y ∈ B(x, r) then when ρ is a length metric, the distance ρ(x, y) can also be

computed by looking only at continuous curves γ which stay in B(x, r), because

all other curves joining x and y have L(γ) > r. In other words,

ρ(x, y) = inf{L(γ) : γ is a continuous curve in B(x, r) joining x and y} (2.9)

We prepare the following lemma which shows how the length of a path is

related to the energy measure dΓ. We include the proof found in [61, Theorem 3]

for convenience and clarity.

Lemma 2.1.13 ([61], Theorem 3) Assume the conditions (A1) and (A2) are

satisfied. Assume that the path γ : [a, b] → X does not have self-intersections.

Then

L(γ) = sup{u(γ(a)) − u(γ(b)) : Y is an open neighborhood of γ([a, b]) ⊂ X,

u ∈ Floc(Y ) ∩ C(Y ), dΓY (u, u) ≤ dµ on Y }.(2.10)
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Proof. Denote the right hand side of (2.10) by L∗(γ). Choose ǫ > 0, an open

neighborhood Y of γ([a, b]) and an admissible function u on Y with

u(γ(a)) − u(γ(b)) ≥ L∗(γ) − ǫ

(here and below we call a function u on an open set Y ⊂ X admissible if u ∈

Floc(Y ) ∩ C(Y ) with dΓY (u, u) ≤ dµ on Y ).

Let δ = 1
4
ρ(γ([a, b]), X \ Y ). By Since both γ([a, b]) and X \ Y are closed, we

have δ > 0. Choose a = t0 < t1 < · · · < tn = b with δi := ρ(γ(ti), γ(ti+1)) ≤ δ.

Then for every i = 1, . . . , n the function u is defined and is admissible on the whole

ball B(γ(ti), 4δi). Hence so is the function

ṽi(x) = min

(
3δi − ρ(γ(ti), x), u(x) − u(γ(ti−1))

)
.

It immediately follows that ṽi ≤ 0 on B(γ(ti), 4δi) \B(γ(ti), 3δi). Hence the func-

tion

vi =






max(ṽi, 0), on B(γ(ti), 3δi)

0, else,

is defined, nonnegative and admissible on the whole space X. From the Definition

2.1.12 of the metric ρ it follows that

vi(γ(ti)) − vi(γ(ti−1)) ≤ ρ(γ(ti), γ(ti−1)) = δi

and thus

u(γ(ti)) − u(γ(ti)) ≤ δi.

This implies that

L∗(γ) − ǫ ≤ u(γ(a)) − u(γ(b)) =
n∑

i=1

u(γ(yi)) − u(γ(ti−1))

≤
n∑

i=1

ρ(γ(yi), γ(ti−1)) ≤ L(γ)
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This holds for every ǫ > 0, therefore L∗(γ) ≤ L(γ). The opposite inequality follows

because the following function is admissible in Y

u(x) = inf {L(γ′) : γ′ : [0, 1] → Y is a curve connecting γ(a) and x in Y } ,

(2.11)

and as Y becomes smaller and smaller neighborhood of γ([a, b]), the right hand

side of (2.11) tends to L(γ). �

2.1.2 The assumptions on the Dirichlet space

We will be interested in Dirichlet forms that satisfy the following properties (see

e.g. Theorem 2.6.1).

(A1) The pseudo-distance ρE is finite everywhere and the topology induced by ρE

is equivalent to the initial topology on X. In particular x, y → ρE(x, y) is a

continuous function.

(A2) (X, ρE) is a complete metric space.

(A3) The measure µ on X satisfies doubling condition, i.e for any x ∈ X and any

R > 0,

µ(B(x, 2R)) ≤ c2µ(B(x,R)) (2.12)

(A4) The following Poincaré inequality is satisfied for any x ∈ X and any R > 0

inf
ξ

∫

B(x,R)

(u− ξ)2dµ ≤ c3R
2

∫

B(x,R)

dΓ(u, u) (2.13)

for any u ∈ C.

Remark 1. The infimum in (2.13) is attained at ξ = uB(x,R) = 1
µ(B(x,R))

∫
B(x,r)

udµ.

Remark 2. The family of Poincaré inequalities (2.13) is equivalent to the same

family of inequalities for u ∈ D(E) since C is dense in the Hilbert space D(E).
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2.2 Weak solutions

Let 〈·, ·〉 denote the inner product on L2(X,µ). Let (L,D(L)) be the nonnega-

tive self-adjoint operator associated with the Dirichlet form (E ,D(E)), implicitly

defined using the Riesz representation theorem by

D(L) = {f ∈ D(E) : ∃C > 0, ∀g ∈ D(E), E(f, g) ≤ C||g||L2(X,µ)}

〈Lf, g〉 = E(f, g) (2.14)

Indeed for each f ∈ D(L), the map

E(f, ·) : D(E) → R, g → E(f, g)

extends to a bounded operator on L2(X,µ). The function Lf is then the rep-

resentation of this map as an element of L2(X,µ). Our goal in this section is

to introduce the notion of a local solution of the elliptic and parabolic equation

involving L.

2.2.1 Local domains and their properties

Let X be a locally compact separable metric space and let µ be a Radon measure

on X. Let (E ,D(E)) be a strongly local regular Dirichlet form on L2(X,µ). Let Ω

be an open subset of X. In this section we explore some properties of the domain

Floc(Ω) and other important function spaces associated with the Dirichlet form

(E ,D(E)).

Lemma 2.2.1 Let Ω ⊂ X be an open set. The space Floc(Ω) ∩ L∞
loc(Ω, µ) is an

algebra. If additionally the Dirichlet form (E ,D(E)) admits a carré du champ

operator Υ as in Definition 2.1.10, then

ΥΩ(gf, gf) ≤ 2g2ΥΩ(f, f) + 2f 2ΥΩ(g, g). (2.15)
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Proof. Let f, g ∈ Floc(Ω) ∩ L∞
loc(Ω, µ). Say, |f |, |g| ≤ C a.e. on Ω. Then fg ∈

L∞
loc(Ω, µ)∩L2

loc(Ω, µ). To show that fg ∈ Floc(Ω) take any compact subset V of Ω.

Let f̂ , ĝ ∈ D(E) be the functions coinciding a.e. on V with f and g respectively.

Without loss of generality we can assume that f̂ and ĝ are in L∞(X,µ), otherwise

we may replace them by the functions of type f̂1 = min(max(f̂ ,−C), C) which is

in D(E) because (E ,D(E)) is a Dirichlet form. By Lemma 2.1.5, f̂ ĝ ∈ D(E), and

so the condition (2.5) is satisfied for the function fg and every compact subset V

of Ω. Therefore fg ∈ Floc(Ω). We can estimate its local energy measure using the

chain rule by

ΥΩ(gf, gf) = g2ΥΩ(f, f) + f 2ΥΩ(g, g) + 2fgΥΩ(f, g)

≤ g2ΥΩ(f, f) + f 2ΥΩ(g, g) + 2g
√

ΥΩ(f, f)f
√

ΥΩ(g, g)

≤ g2ΥΩ(f, f) + f 2ΥΩ(g, g) + g2ΥΩ(f, f) + f 2ΥΩ(g, g)

= 2g2ΥΩ(f, f) + 2f 2ΥΩ(g, g) (2.16)

by Minkovski inequality since ΥΩ(·, ·) is a nonnegative-definite L1
loc(Ω, µ)-valued

bilinear form. �

Using the quadratic form dΓΩ(·, ·) we define

F(Ω) =

{
f ∈ Floc(Ω) ∩ L2(Ω, µ) :

∫

Ω

dΓΩ(f, f) <∞
}
, (2.17)

Fc(Ω) = {f ∈ F(Ω) : essential support of f is compact in Ω}

We can extend each function in Fc(Ω) by zero outside of Ω to become a function

on X, thus we will regard Fc(Ω) as a subset of L2(X,µ).

Lemma 2.2.2 The space Fc(Ω) is a subset of D(E), and

Fc(Ω) = {f ∈ D(E) : essential support of f is a compact subset of Ω}
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Proof. Every f ∈ D(E) with essential support being a compact subset of Ω is

trivially in Fc(Ω). Take any f ∈ Fc(Ω), and regard it as a function on X. Let

V ⊂ Ω be the essential support of f . Let V ′ be any precompact neighborhood of

V in Ω. Then by definition of F(U) there exists a function f̃ ∈ D(E) such that

f̃ ≡ f in V ′. Since (E ,D(E)) is a Dirichlet form, for every N > 0 the function

f̃N = min{max{f̃ ,−N}, N} is in D(E) ∩ L∞(X). Also f̃N → f̃ as N → ∞ in the

Hilbert space D(E), see [31, Theorem 1.4.2].

Pick two intermediate open sets V ′′ and V ′′′ with V ⊂ V ′′, V ′′ ⊂ V ′′′ and

V ′′′ ⊂ V ′. By Lemma 2.1.6 there exists a bounded nonnegative ”cutoff” function

ϕ ∈ D(E) such that ϕ ≡ 1 on V ′′ and ϕ ≡ 0 outside V ′′′. Since D(E) ∩ L∞(X)

is an algebra, we have f̃N · ϕ ∈ D(E). Denote fN = min(max(f,−N), N). Then

fN = f̃Nϕ ∈ D(E).

To show that f ∈ D(E) we let N go to ∞ and notice that fN → f in L2(X,µ);

to show the convergence is in D(E) it remains to prove that fN is a Cauchy sequence

in D(E). We estimate

E(fM − fN , fM − fN) = E((f̃M − f̃N)ϕ, (f̃M − f̃N)ϕ)

=

∫

X

dΓ((f̃M − f̃N)ϕ, (f̃M − f̃N)ϕ)

=

[∫

V

+

∫

V ′\V
+

∫

X\V ′

]
dΓ((f̃M − f̃N)ϕ, (f̃M − f̃N )ϕ)

=

∫

V

dΓ(f̃M − f̃N , f̃M − f̃N ) +

∫

V ′\V
dΓ(0, 0) +

∫

X\V ′
dΓ(0, 0)

by strict local property of dΓ. Indeed (f̃M − f̃N)ϕ ≡ f̃M − f̃N on a neighborhood

of V ; f̃M − f̃N ≡ 0 a.e. on an open set V ′ \ V ; ϕ ≡ 0 on a neighborhood X \ V ′′′

of X \ V ′. Therefore

E(fM − fN , fM − fN ) ≤
∫

X

dΓ(f̃M − f̃N , f̃M − f̃N) = E(f̃M − f̃N , f̃M − f̃N) → 0

as N → ∞ since f̃N → f̃ in E-norm. �
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The following Lemma is a weaker version of (2.15) in a more general setting.

Lemma 2.2.3 Let f, g ∈ Floc(Ω) ∩ L∞
loc(Ω, µ) and assume that g ∈ D(E) is a

continuous function with compact support in Ω. Then gf ∈ Fc(Ω) ⊂ D(E) and

E(gf, gf) ≤ 2

∫

Ω

g2dΓ(f, f) + 2

∫

Ω

f 2dΓ(g, g) (2.18)

Proof. The function fg is compactly supported in Ω and is in Floc(Ω)∩L∞
loc(Ω, µ)

by Lemma 2.2.1. Therefore it is in Fc(E) and thus in D(E) by Lemma 2.2.2. Let

D denote the difference between the right hand side of (2.18) and the left hand

side. We need to prove D ≥ 0. Using the chain rule we write

D = 2

∫

Ω

g2dΓ(f, f) + 2

∫

Ω

f 2dΓ(g, g) − E(gf, gf)

=

∫

Ω

g2dΓ(f, f) +

∫

Ω

f 2dΓ(g, g) − 2

∫

Ω

fgdΓ(f, g)

=

∫

V

g2dΓ(f, f) +

∫

V

f 2dΓ(g, g) − 2

∫

V

fgdΓ(f, g) +

∫

∂V

f 2dΓ(g, g)(2.19)

where V is an open set of points where g is nonzero. Then 1
g
∈ Floc(V )∩L∞

loc(V, µ)

because each of the functions

hn =






1
n2g(x)

, if |g(x)| ≥ 1
n
;

g(x), if |g(x)| < 1
n
.

coincides with 1
n2g

on Vn = {x ∈ X : g(x) > 1
n
}, is a normal contraction of g, and

thus belongs to D(E). Since both g and 1
g

are in Floc(V ) ∩ L∞
loc(V, µ), so is their

product by Lemma 2.2.1. By chain rule we know that for any function h ∈ Floc(V ),

we can write the energy measure

dΓV (1, h) = dΓV

(
g

1

g
, h

)
=

1

g
dΓV (g, h) + gdΓV

(
1

g
, h

)
. (2.20)

Since the Dirichlet form (E ,D(E)) is strongly local, dΓV (1, h) = 0 and so (2.20)

gives

dΓV

(
1

g
, h

)
= −dΓV (g, h)

g2
(2.21)



25

Since dΓ is a nonnegative Radon measure, we can drop the last term in (2.19) and

estimate

D ≥
∫

V

g2dΓV (f, f) +

∫

V

f 2dΓV (g, g) − 2

∫

V

fgdΓV (f, g)

=

∫

V

g4

[
1

g2
dΓV (f, f) + f 2dΓV

(
1

g
,

1

g

)
+ 2f

1

g
dΓV

(
1

g
, f

)]

=

∫

V

g4dΓV

(
f

g
,
f

g

)
≥ 0

because dΓV (h, h) is a nonnegative Radon measure on V for any h ∈ Floc(V ). �

2.2.2 Weak solutions, elliptic case

We identify L2(X,µ) with its dual and let D′(E) be the dual of D(E) so that

naturally D(E) ⊂ L2(X,µ) ⊂ D′(E). For and open subset Ω of X let Fc(Ω) be as

in (2.17) and let F ′
c(Ω) denote the dual of Fc(Ω) with respect to L2(Ω, µ)-norm.

Naturally L2(Ω, µ) ⊂ D′(E) ⊂ F ′
c(Ω).

Definition 2.2.4 Let Ω be an open subset of X. Let f ∈ F ′
c(Ω). We say that a

function u : Ω → R is a weak solution of

Lu = f

in Ω if

(1) u ∈ Floc(Ω)

(2) For any function φ ∈ Fc(Ω)we have
∫

Ω

dΓΩ(φ, u) =

∫

Ω

φf dµ (2.22)

Remark. If u is a weak solution of Lu = f in Ω and there exists a function

u′ ∈ D(L) such that u′ = u a.e. in some subset Ω′ ⊂ Ω then Lu′ = f a.e. in Ω′ by

definition of the operator L.
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The examples below demonstrate boundary conditions that may be hidden in

Definition 2.2.4.

Examples. Let D be the open unit ball in R2, µ - the Lebesgue measure on D

and consider the Dirichlet form associated to the Neumann heat semigroup in D,

given by

EN
D (f, g) =

∫

D

[
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y

]
dµ

D(EN
D ) =

{
f ∈ L2(D,µ) : distributions

∂f

∂x
and

∂f

∂y
are in L2(D,µ)

}

Let LN
D be the self-adjoint nonnegative operator associated with this Dirichlet form.

1. A smooth function u is a weak solution of Lu = f in D for some smooth

function f if and only if the condition (2) above is satisfied, i.e. for any φ ∈ Fc(D)

we have ∫

D

[
∂φ

∂x

∂u

∂x
+
∂φ

∂y

∂u

∂y

]
dµ =

∫

D

φf dµ (2.23)

Since the function φ is compactly supported in D, we can integrate by parts the

left hand side to obtain the equivalent equality

−
∫

D

φ

[
∂2u

(∂x)2 +
∂2u

(∂x)2

]
dµ =

∫

D

φfdµ

In other words, u is a smooth weak solution of Lu = f in D if and only if

∆u = −f in D.

2. A smooth function u is a weak solution of Lu = f in D for some smooth

function f only if for any smooth function φ ∈ Fc(D) (e.g. any smooth function

φ on D) the equality (2.23) holds. Since the function φ is no longer required to

be compactly supported in D, integrating the left hand side of (2.23) by parts we

pick up the boundary term

∫

∂D

φ
∂u

∂~n
dν −

∫

D

φ

[
∂2u

(∂x)2 +
∂2u

(∂x)2

]
dµ =

∫

D

φfdµ
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where ∂u
∂~n

is the normal derivative of u and ν is the natural measure on ∂D. Since

µ(∂D) = 0, the right hand side does not depend on the boundary values of φ.

It becomes clear that for u to be a smooth weak solution of Lu = f in D it is

necessary that 



∂u
∂~n

= 0 on ∂D,

∆u = f in D.
(2.24)

2.2.3 Weak solutions, parabolic case

The next definition introduces the notion of (local) weak solution of the heat

equation

∂u

∂t
= −Lu.

We need the following notation. Given an open time interval I and a Hilbert space

H , we let L2(I → H) be the Hilbert space of the functions v : I → H equipped

with the natural norm

||v||L2(I→H) =

(∫

I

||v(t)||2Hdt
) 1

2

.

We let W 1(I → H) be the Hilbert space of functions v : I → H with distributional

time derivative ∂u
∂t

that belongs to L2(U → H), equipped with its natural norm

||v||W 1(I→H) =

(∫

I

||v(t)||2Hdt+

∫

I

∣∣∣∣
∣∣∣∣
∂v(t)

∂t

∣∣∣∣
∣∣∣∣
2

H

dt

) 1

2

.

We set

F(I ×X) = L2(I → D(E)) ∩W 1(I → D′(E)).

Given an open interval I and an open set Ω ⊂ X, we define Floc(I × Ω) to be

the set of all functions v : I × Ω → R such that, for any open interval I ′ ⊂ I

relatively compact in I and any open set Ω′ ⊂ Ω relatively compact in Ω there

exists a function u′ ∈ F(I ×X) such that u′ = u a.e. in I ′ ×Ω′. Finally Fc(I ×Ω)
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is the set of all functions v in F(I×X) such that, for a.e. t ∈ I, v(t, ·) has compact

support in Ω.

Definition 2.2.5 Let I be an open time interval. Let Ω be an open set in X and

Q = I × Ω. We say that a function u : Q → R is a weak solution of the heat

equation in Q if

(1) u ∈ Floc(Q)

(2) For any open interval J relatively compact in I and any function φ ∈ Fc(Q)

we have ∫

J

∫

Ω

dΓΩ(φ(t, ·), u(t, ·))dt+

∫

J

∫

Ω

φ
∂

∂t
u dµdt = 0 (2.25)

Notice that if u is a weak solution of the heat equation in I×Ω, then by definition

of Floc(I × Ω), for almost all t ∈ I the distributional derivative v(t, x) = ∂
∂t
u(t, x)

is in D′(E). Letting the function φ in (2.25) be independent of time, we see that

for any bounded interval J ⊂ I the regularization

uJ(x) :=
1

|J |

∫

J

u(t, x)dt

is a weak solution of the equation

LuJ = −vJ = − 1

|J |

∫

J

∂

∂t
u(t, x)dt

This is similar to saying that for almost all t > 0, the function u(t, ·) is a weak

solution of the equation

Lu = −v

in the sense of Definition 2.2.4.

The following lemma presents an example of a local weak solution, as well as

demonstrates how one could glue together weak local solutions on consecutive time

intervals.
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Lemma 2.2.6 Let φ ∈ D(E). Let Pt be the heat semigroup defined in Chapter

2.3. The following two properties hold for the function

ψ(t, x) =






Ptφ(x), if t > 0

φ(x), if t ≤ 0
(2.26)

(i) The function ψ is in Floc(R × X). For any finite open time interval I ⊂ R

the function ψ is in F(I ×X).

(ii) If for some open Ω ⊂ X the function φ(x) is constant one in Ω then the

function ψ(t, x) is a weak solution in R × Ω of

∂

∂t
ψ = −Lψ.

Proof. To show (i) it suffices to prove ψ ∈ F(I × X). To see that ψ ∈ L2(I →

D(E)) it suffices to notice that the functions φ and Ptφ are in the Banach space

D(E) and the norm (2.1) of Ptφ in D(E) is uniformly bounded by the corresponding

norm of φ since

||Ptφ||2D(E) = E(Ptφ, Ptφ) +

∫

X

(Ptφ)2dµ ≤ E(φ, φ) +

∫

X

φ2dµ = ||φ||2D(E)

To see that ψ ∈W 1(I → D′(E)) notice that the function

θ(t, x) =





−LPtφ(x), if t > 0

0, if t ≤ 0

is the distributional derivative of ∂
∂t
ψ(t, x) by spectral theorem for the self-adjoint

nonnegative operator L. Indeed for any real numbers s > 0 ≥ r we have

∫ s

r

θ(t, ·)dt =

∫ s

0

−LPtφdt =

∫ s

0

(∫ ∞

0

−λe−tλdEλ(φ)

)
dt

=

∫ ∞

0

(
e−sλ − 1

)
dEλ(φ) = Psφ− φ = ψ(s, ·) − ψ(r, ·).
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For every t > 0 the norm of θ(t, ·) in the Hilbert space D′(E) can be estimated by

∣∣∣∣

∣∣∣∣
∂

∂t
ψ(t, ·)

∣∣∣∣

∣∣∣∣
D′(E)

= ||θ(t, ·)||D′(E) = sup
β∈D(E)

{∫

X

θ(t, x)β(x)dµ(x) : ||β||D(E) ≤ 1

}

= sup
β∈D(E)

{∫

X

βL(Ptφ)dµ : ||β||D(E) ≤ 1

}

= sup
β∈D(E)

{
E(Ptφ, β) : ||β||D(E) ≤ 1

}

≤ sup
β∈D(E)

{√
E(Ptφ, Ptφ) ·

√
E(β, β) : ||β||D(E) ≤ 1

}

≤
√

E(Ptφ, Ptφ) ≤
√

E(φ, φ)

uniformly in t. Therefore ψ ∈W 1(I → D′(E)) and thus in F(I ×X) as desired.

To show (ii) according to (2.25) it suffices to check that for almost every t ∈ I

∫

Ω

dΓΩ(ψ(t, ·), q(t, ·)) +

∫

Ω

q
∂

∂t
ψ dµ = 0 (2.27)

for any bounded open interval I ⊂ R and any test function q ∈ Fc(I × Ω). We

know that θ is the distributional derivative ∂
∂t
ψ. Notice that for almost every t ≤ 0,

t ∈ I we have

dΓΩ(ψ(t, ·), q(t, ·)) = dΓΩ(1, q(t, ·)) = 0

because the measure dΓ is strictly local in the sense of (2.4). Also for t < 0,

θ(t, ·) = 0. Therefore both integrals in (2.27) are zero. For almost all t ∈ I, t > 0

we have ψ(t, ·) = Ptφ and θ(t, ·) = −LPt(φ) and q(t, ·) ∈ Fc(Ω). Therefore the

equality (2.27) follows from the integration by parts formula (2.22) and the remark

thereafter. �

2.3 The heat semigroup and kernel

Fix a Dirichlet form (E ,D(E)) on L2(X,µ). Let L be the nonnegative self-adjoint

operator defined on a dense subspace D(L) ⊂ L2(X,µ) given by (2.14). There

exists a unique self-adjoint semigroup {Pt}t>0 of contractions acting on L2(X,µ),
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having −L as its infinitesimal generator so that Pt = e−tL in the sense of the

spectral theorem. Moreover, {Pt}t>0 is (sub-)Markovian, see [31, section 1].

It has been proved in [60] that with the assumptions of Theorem 2.6.1 the

transition function A → (Pt1A)(x) of the semigroup Pt is absolutely continuous

with respect to the measure µ for every x, and so there exists a kernel p(t, x, y) of

the semigroup Pt relative to the measure µ. The next proposition is a well-known

consequence of spectral theory.

Proposition 2.3.1 Assume that the heat semigroup Pt associated with any Dirich-

let form (E ,D(E)) on L2(X,µ) possesses a kernel p(t, x, y) with respect to the mea-

sure dµ. Then for any fixed t0 and y0, the function p(t0, x, y0), as a function of x,

belongs to the domain of every power of the operator L. In particular, p(t0, x, y0)

belongs to the domain D(E). Also for any t > 0 and any x, y0 ∈ X we have

∂

∂t
p(t, x, y0) = −Lp(t, x, y0). (2.28)

Proof. As a function of x,

p(t0, x, y0) =
(
P t0

2

p(t0/2, ·, y0)
)

(x) = P t0
2

f(x) (2.29)

with f(x) = p(t0/2, x, y0). Also f ∈ L2(X,µ) because by symmetry

||p(t0/2, ·, y0)||2L2(X,µ) =

∫

X

p(t0/2, y0, x)p(t0/2, x, y0)dµ(x) = p(t0, y0, y0) <∞

since the kernel exists. By spectral theorem for L, we have P t0
2

= e−
t0
2

L and

p(t0, ·, y0) =

∫ ∞

0

e− t0
2

λdEλ(f)

where Eλ is a family of projection operators associated to the self-adjoint nonneg-

ative operator L. Therefore p(t0, ·, y0) belongs to the domain of every power of L

by spectral theorem, since for every n the integral

∫ ∞

0

λne− t0
2

λdEλ(f)
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is absolutely convergent in L2(X,µ). To show (2.28), we notice similarly to (2.29)

that for any t0 > 0 and any t > t0/2, p(t, x, y0) = Pt−t0/2f(x) and therefore satisfies

the heat equation (2.28) by definition of the semigroup Pt via spectral theory. �

In particular Proposition 2.3.1 implies that for t > 0 the function v(t, y) =

p(t, x, y) is a local (weak) solution of

∂

∂t
v(t, y) = −Lv(t, y)

and therefore is Hölder continuous in variables t and y by Proposition 2.5.2. The

heat kernel p(t, x, y) is also Hölder continuous in x variable by symmetry.

2.4 Boundary conditions in open sets

Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support, and (E ,D(E)) - a strictly local regular Dirichlet

form on X. Let U ⊂ X be an open set. In this section we will define the bi-

linear forms on L2(U, µ) associated with the Neumann and Dirichlet problems in

U . These bilinear forms will give rise to the Dirichlet and Neumann operators,

semigroups and kernels. The definitions below are analogous to the known bilin-

ear forms associated with the Neumann and Dirichlet problems in a smooth open

subset of Rn. We start with the Dirichlet problem in U .

2.4.1 Dirichlet boundary conditions

Definition 2.4.1 Let (ED
U ,D(ED

U )) denote the minimal closed extension for the

restriction of the Dirichlet form (E ,D(E)) to the domain Fc(U) ⊂ D(E).

Remark. The domain D(ED
U ) is a subset of D(E). A function f ∈ D(E) ⊂

L2 belongs to the domain D(ED
U ) if and only if there exists a quasi-continuous
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representative f̃ of f ∈ L2(X) such that f̃ ≡ 0 quasi-everywhere on X \U , see [31,

Lemma 2.1.4 and Corollary 2.3.1]. To explain this statement, we recall from [31,

section 2.1] that quasi-everywhere means ’everywhere except on a set of 1-capacity

zero’, where λ-capacity is defined as follows

Capλ(V ) = inf
{
λ||u||2L2(X,µ) + E(u, u) : (2.30)

u ∈ D(E), u ≥ 1 a.e. on some open V ′ containing V
}
.

A quasi-everywhere defined function f is called quasi-continuous if for every ε > 0

there exists an open set V ⊂ X with Cap1(V ) < ε such that f |X\V is continuous.

Remark. Sets of 1-capacity zero are exactly sets of 0-capacity zero, according

to [31, Theorem 2.1.6].

The form (ED
U ,D(ED

U )) is closed by definition. It is straightforward to see that

(ED
U ,D(ED

U ))) is regular on U with core Fc(U)∩Cc(U) because (E ,D(E)) is regular

on X with core F(U)∩Cc(X). The form (ED
U ,D(ED

U )) is also Markovian because the

set Fc(U) is preserved under normal contractions (see Definition 2.1.1). We denote

by LD
U , and PD

U,t the associated nonnegative self-adjoint operator and contractive

semigroup on L2(U, µ).

As we will see in section 2.7, for any Borel set A ⊂ X the expression
(
PD

U,tχA)(x)

- which is called the transition function of the semigroup PD
U,t - is a monotone

increasing function of U . Also if U = X, the domain D(ED
X ) is closed and includes

a core of (E ,D(E)). Thus (ED
X ,D(ED

X )) coincides with (E ,D(E)) and therefore

PD
X,t = Pt. So if the operator Pt on L2(X,µ) possesses a kernel, each of the

operators PD
U,t does. Let pD

U (t, x, y) denote the kernel of PD
U,t. Then pD

U (t, x, y) is a

monotone increasing function of the domain U .

Remark. The form (ED
U ,D(ED

U )) on U does not in general satisfy the condition

(A2) stated in Chapter 2.1.2, i.e. (U, ρED
U

) is not a complete metric space. If instead



34

we consider the form (ED
U ,D(ED

U )) on the geodesic closure Ũ of U with respect to

the metric ρU , then the condition (A1) will not be satisfied, as the topology given

by the metric ρED
U

treats ∂U as one point.

Definition 2.4.2 For any Dirichlet form (E ,D(E)) possessing a kernel, let GE

denote its Green function,

GE(x, y) =

∫ ∞

0

p(t, x, y)dt

The Green function GED
U for the form (ED

U ,D(ED
U )) will be denoted by GU .

The expression GU(x, y) is then a monotone increasing function of the domain

U . Notice that the integral does not converge in general unless the Dirichlet form

(E ,D(E)) is transient.

Remark. If the Dirichlet form (E ,D(E)) does not possess a kernel, GE(x, ·)

must be understood as a measure

GE(x,A) =

∫ ∞

0

(
PtχA

)
(x)dt

where Pt is the semigroup on L2(X,µ) associated with (E ,D(E)).

Further properties of the Dirichlet Green function on a precompact domain will

be studied in Chapter 5.3.

2.4.2 Weak solutions, Dirichlet case

Let ρU be the inner metric in U as in Definition 3.0.3. We define by analogy with

Floc(U) the following space of local (weak) solutions (of Lu = f) in V with weak

Dirichlet boundary conditions on ∂U .

Definition 2.4.3 Let V be any open subset of U . Let

F0
loc(V, U) = {f ∈ L2

loc(V, µ|V ) : ∀ open Ω ⊂ V rel. cpt. in U with ρU(Ω, U \ V ) > 0,

∃f̃ ∈ D(ED
U ) : f̃ ≡ f µ-a.e. on Ω} (2.31)
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In case V = U , we abbreviate the notation F0
loc(U,U) to F0

loc(U).

Remark 1. A space D(ED
U ) is clearly a subset of F0

loc(U) which in turn is a

subset of Floc(U). In view of Definition 2.4.3 and the description of the domain

D(ED
U ) following Definition 2.4.1, any function in F0

loc(U) has a quasi-continuous

representative - a function on U - which can be extended by zero in a quasi-

continuous way to a function in Floc(X).

Remark 2. It is interesting to observe that the space F0
loc(V, U) in Definition

2.4.3 would not change if we replace U by Ũ in (2.31), see Definition 3.0.3.

Lemma 5.2.3 gives an alternative view on F0
loc(V, U). Next we define the notion

of a local (weak) solution of the elliptic equation Lu = f with weak Dirichlet

boundary conditions on ∂U .

Definition 2.4.4 Let Ω be an open set in U . Let f ∈ F ′
c(Ω). We say that a

function u : Ω → R is a local (weak) solution of the equation

Lu = f

in Ω with weak Dirichlet boundary conditions on ∂U if

(1) u ∈ F0
loc(Ω, U)

(2) For any function φ ∈ Fc(Ω) we have

∫

Ω

dΓΩ(φ, u) =

∫

Ω

φfdµ (2.32)

Finally for any open subset V ⊂ U , similarly to Chapter 2.2 we will define

the notion of a (local) weak solution of the heat equation with Dirichlet boundary

conditions on ∂U . For any open interval I, we set

F0(I × U,U) = L2(I → D(ED
U )) ∩W 1(I → D′(ED

U )).
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Given an open interval I and an open set V ⊂ U , we define F0
loc(I × V, U) to be

the set of all functions v : I × V → R such that, for any open interval I ′ ⊂ I

relatively compact in I and any open set Ω ⊂ V relatively compact in U with

ρU(Ω, U \ V ) > 0, there exists a function u′ ∈ F0(I × U,U) such that u′ = u a.e.

in I ′ × Ω.

Definition 2.4.5 Let I be an open time interval. Let Ω be an open set in U and

let Q = I × Ω. We say that a function u : Q → R is a weak solution of the heat

equation

∂

∂t
u+ Lu = 0

in Q with weak Dirichlet boundary conditions on ∂U if the following two conditions

are satisfied

(1) u ∈ F0
loc(Q,U)

(2) For any open interval J relatively compact in I and any function φ ∈ Fc(Q,U),

we have ∫

J

∫

Ω

dΓΩ(φ(t, ·), u(t, ·))dt+

∫

J

∫

Ω

φ
∂

∂t
u dµdt = 0 (2.33)

2.4.3 Neumann boundary conditions

Now we begin defining the Neumann problem in U for an open set U ⊂ X.

Definition 2.4.6 Using (2.17) we define the form (EN
U ,D(EN

U )) by

D(EN
U ) = F(U) ⊂ L2(U, µ)

EN
U (f, g) =

∫

U

dΓ(f, g)

where dΓ = dΓU is a measure-valued bilinear form on Floc(U) × Floc(U) as in

Definition 2.1.9.
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Notice that the form (EN
U ,D(EN

U )) on L2(U, µ) is strongly local, since (E ,D(E))

is strongly local on L2(X,µ). Normal contractions [31, p.5] clearly operate on

(EN
U ,D(EN

U )) since they operate on (E ,D(E)). To show that (EN
U ,D(EN

U )) is a

Dirichlet form it suffices to show that it is closed. We will need the following

definitions and lemmas.

Definition 2.4.7 Let V ⊂ U be a compact set. Set

ψV (x) = max

(
1 − ρ(x, V )

1
2
ρ(∂U, V )

, 0

)
(2.34)

The function ψV on (X, ρ) is Lipschitz, identically one in V and is compactly

supported in U . These functions will be used as cutoff functions thanks to the

following Lemma.

Lemma 2.4.8 Assume that the metric ρE associated with the Dirichlet form (E ,D(E))

on X satisfies the conditions (A1) and (A2) of Chapter 2.1.2. Let V be any com-

pact subset of U . Then ψV ∈ D(E)∩L∞(U, µ). For every u ∈ Floc(U) the function

ψV u is in Fc(U) ⊂ D(E) and

E(ψV u, ψV u) ≤ C

(∫

V ′
u2dµ+

∫

V ′
dΓ(u, u)

)
(2.35)

where V ′ ⊂ U is the support of ψV and the constant C depends only on U and V .

Proof. For any compact V ⊂ U , the function ψV u is compactly supported in U

so in view of Lemma 2.1.6, in order to prove ψV u ∈ Fc(U) ⊂ D(E) it suffices to

show (2.35). Using Lemma 2.2.3 we estimate

∫

U

dΓ(ψV u, ψV u) ≤ 2

∫

V ′
u2dΓ(ψV , ψV ) + 2

∫

V ′
ψ2

V dΓ(u, u)

≤ 2 sup
V ′

dΓ(ψV , ψV )

dµ

∫

V ′
u2dµ+ 2 sup

V ′
ψ2

V

∫

V ′
dΓ(u, u)

So (2.35) follows from the following estimate [58, Lemma 1]

dΓ(ρ(·, V ), ρ(·, V )) ≤ dµ
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which essentially states that under assumptions (A1) and (A2) of Chapter 2.1.2

the distance function of the regular strictly local Dirichlet form (E ,D(E)) is in

Floc(X) and has a weak gradient bounded by one. Finally ψV ∈ Fc(U) by the

above argument with u ≡ 1 ∈ Floc(U). �

Proposition 2.4.9 Assume that the Dirichlet form (E ,D(E)) is strongly local and

regular on X. Then for any open subset U of X, the form (EN
U ,D(EN

U )) is closed.

Outline of the proof. For the case X = Rn and E(f, f) =
∫

Rn |∇f |2dµ, the proof

is a simple application of the theory of distributions. Namely, a Cauchy sequence

{fi}∞i=1 in the space D(EN
U ) is a Cauchy sequence in L2(U, µ) such that the sequence

of weak gradients ∇fi (each of the weak gradients ∇fi can be represented by a

n-dimensional vector of functions in L2(U, µ)) is a Cauchy sequence in L2(U, µ).

Since L2(U, µ) is complete, there must exists a limit f of the sequence of fi and the

limit g of ∇fi. The limit is unique in the distribution sense, and therefore ∇f = g

in the sense of distribution, i.e. ∇f can be represented by an L2(U, µ)-function,

and so ∫

U

|∇f |2dµ <∞.

This shows that in the case X = Rn, the limit f of the Cauchy sequence {fi}∞i=1 is

in D(EN
U ). �

Proof of Proposition 2.4.9. Let {ui}∞i=1 be a Cauchy sequence in L2(U, µ) and

in EN
U -sense. First, this sequence converges in L2-sense to some u ∈ L2(U, µ). For

any compact subset V ⊂ U , the sequence ψV ui is a Cauchy sequence in D(E) by

Lemma 2.4.8 and therefore converges since the form (E ,D(E)) is closed. Since

ψV ≡ 1 on V , we have shown that the sequence ui converges to u in
∫

V
dΓ(·, ·)-

sense for any compact V ⊂ U . In particular u ∈ Floc(U) and for any f ∈ Floc(U)

the measure dΓ(u, f) is well-defined as a measure on U .
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To prove that the sequence ui converges to u in EN
U -sense, we first aim to

establish the existence of such limit. Let M (U) denote the space of signed Radon

measures on U . Let also M 1(U) denote the space of finite signed Radon measures

on U , which is the dual to C0(U) with supremum norm. The associated norm on

M 1(U) is

||ν||M 1(U) = sup
σ∈C0(U),|σ|≤1

∫

U

σdν = ν+(U) + ν−(U)

where ν = ν+ − ν− and both ν+ and ν− are nonnegative Borel measures with

disjoint supports. The space M 1(U) is then a Banach space with respect to this

norm.

For any function v ∈ Floc(U), consider the linear mapping Tv,

Tv : Floc(U) → M (U),

f → dΓ(v, f)

Since dΓ is local in the sense of (2.4), the operator Tv is local, i.e. for any open set

V ⊂ U

Tv(f)|V ≡ Tv(g)|V whenever f ≡ g a.e. in V (2.36)

Notice that the correspondence v → Tv is linear. If v ∈ D(EN
U ), then also

Tv : D(EN
U ) → M

1(U)

Equipping the space D(EN
U ) with the seminorm

||v||2 = EN
U (v, v) =

∫

U

dΓ(v, v),
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we see that for v ∈ D(EN
U ), the operator Tv : D(EN

U ) → M 1(U) is bounded because

for every f ∈ D(EN
U ) we have

||Tv(f)||M 1(U) =
{

Γ(v, f)+(U) + Γ(v, f)−(U)
}

= sup
U ′⊂U

{∫

U ′
dΓ(v, f) −

∫

U\U ′
dΓ(v, f)

}

≤ sup
U ′⊂U

{√∫

U ′
dΓ(f, f)

√∫

U ′
dΓ(v, v)dµ+

√∫

U\U ′
dΓ(f, f)

√∫

U\U ′
dΓ(v, v)dµ

}

≤
√∫

U

dΓ(v, v)

√∫

U

dΓ(f, f) = ||v|| · ||f ||,

with the equality when f is proportional to v. We used that
√
ab +

√
cd ≤

√
(a+ c)(b+ d) for a, b, c, d ≥ 0. We could apply the Minkovski inequality because

for every Borel set V , the quadratic form
∫

V
dΓ(u, u) is non-negative definite. Thus

||Tv||D(EN
U )→M 1(U) = ||v|| =

√
EN

U (v, v) (2.37)

Since ui is a Cauchy sequence in D(EN
U ), the sequence of linear operators Tui

:

D(EN
U ) → M 1(U) is a Cauchy sequence by (2.37). Since M 1(U) is complete,

the sequence Tui
converges in the operator norm to some bounded linear operator

T : D(EN
U ) → M 1(U).

We will prove that the operators T and Tu coincide on Floc(U). Take any

ϕ ∈ Floc(U). It suffices to compare T (ϕ) to Tu(ϕ) locally, i.e. on any compact

subset V ⊂ U . Since both T and Tu are local operators by (2.36) and ϕ = ϕψV

on V , it is left to compare T (ϕψV ) and Tu(ϕψV ) as Radon measures in V . Let

v = ϕψV ∈ Fc(U). Let V ′ ⊂ U be the neighborhood of the support of v. To prove

T (v) = Tu(v) we will show that

dΓ(ui, v) → dΓ(u, v)

in M 1(U) as i→ ∞. We estimate M 1(U)-norm of the difference

||dΓ(u− ui, v)||M 1(U) = ||dΓ((u− ui)ψV ′ , v)||M 1(U) = ||Tv((u− ui)ψV ′)||M 1(U)

≤ ||(u− ui)ψV ′|| · ||Tv||D(EN
U )→M 1(U) = ||v|| · ||(u− ui)ψV ′||
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by (2.37). The right hand side tends to zero by the argument in the beginning of

this proof.

This holds for any compact V ⊂ U , therefore T coincides with Tu on Floc(U) ⊃

D(EN
U ), and thus the sequence Tui

converges to Tu in the operator norm. Therefore

by (2.37), we have

||u− ui|| = ||Tu−ui
||D(EN

U )→M 1(U) = ||Tu − Tui
||D(EN

U )→M 1(U) → 0,

as i→ ∞. Therefore ui → u in both EN
U and L2(U, µ) norms as desired. �

The closed form (EN
U ,D(EN

U )) is associated with a nonnegative-definite self-

adjoint operator and a contractive semigroup, which are denoted LN
U and PN

U,t

respectively. For a general open set U ⊂ X, however, the form (EN
U ,D(EN

U )) is not

necessarily regular. This and further properties of these objects will be developed

in section 4.2.

2.5 Harnack-type forms and Hölder continuity of weak so-

lutions

In this section we introduce the notion of Harnack-type Dirichlet form and begin

to introduce their important properties. Let X be a locally compact Hausdorff

space equipped with Radon measure µ with full support. Let (E ,D(E)) be a

Dirichlet form and let L be the associated nonnegative self-adjoint operator on

D(L) ⊂ L2(X,µ). Let B(z, r) denote a ball in metric space (X, ρE), centered at z.

Definition 2.5.1 We say that a regular strictly local Dirichlet form (E ,D(E)) on

L2(X,µ) is of Harnack type if the distance ρE satisfies the conditions (A1) and

(A2) of Chapter 2.1.2, and the following uniform parabolic Harnack inequality is

satisfied with some uniform constant C. For any z ∈ X, r > 0 and any (weak)
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non-negative solution u of ∂u
∂t

+ Lu = 0 in (0, 4r2) ×B(z, 2r), we have

sup
(t,x)∈Q−

u(t, x) ≤ C inf
(t,x)∈Q+

u(t, x) (2.38)

where Q− = (r2, 2r2)×B(z, r), Q+ = (3r2, 4r2)×B(z, r) and both sup and inf are

essential, i.e. computed up to a set of measure zero.

For any Harnack-type Dirichlet form (E ,D(E)) the following elliptic Harnack

inequality holds trivially with the same constant C as in (2.38). For any z ∈ X and

r > 0 and any (weak) non-negative solution u of the equation Lu = 0 in B(z, 2r),

we have

sup
B(z,r)

u ≤ C inf
B(z,r)

u. (2.39)

One of the important consequences of the Harnack inequality (2.38) is the

following quantitative Hölder continuity estimate found in [51, Theorem 5.4.7].

Proposition 2.5.2 Assume that (E ,D(E)) is a Harnack-type Dirichlet form on

L2(X,µ). Fix τ > 0. Then there exists α ∈ (0, 1) and A > 0 such that any local

(weak) solution of ∂
∂t
u+ Lu = 0 in Q = (s− τr2, s) ×B(x, r), x ∈ X, r > 0 has a

continuous representative and satisfies

sup
(t,y),(t′,y′)∈Q−

{ |u(y, t) − u(y′, t′)|
[|t− t′|1/2 + ρE(y, y′)]α

}
≤ A

rα
sup

Q
|u|.

Here Q− = (s− 3
4
τr2, s− 1

2
τr2)×B(x, r/2) and B(x, r) is a ball in (X, ρE) centered

at x.

2.6 Heat kernel estimates for Dirichlet forms of Harnack

type

It turns out that the L2-semigroup associated with each of the Harnack-type Dirich-

let forms has a kernel that can be very well estimated from both sides using the
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associated metric ρE . Also there are simpler conditions to see if a particular Dirich-

let form is of Harnack type. The following theorem is our main tool and is proved

in [60].

Theorem 2.6.1 Let X be a locally compact Hausdorff space and µ - a Radon

measure on X. Let (E ,D(E)) be a strictly local regular Dirichlet form on X.

Assume that the metric ρE satisfies the assumptions (A1) and (A2) of Chapter

2.1.2. Then the following properties are equivalent:

• The form (E ,D(E)) is of Harnack type, i.e. the uniform parabolic Harnack

inequality (2.38) is satisfied for the (weak) local solutions of ∂u
∂t

+ Lu = 0.

• For any x ∈ X and r > 0 the doubling condition (2.12) for the measure µ

and L2 Poincaré inequality (2.13) are satisfied with some constants.

• There exist constants c1, c2, c3, c4 such that the kernel p(t, x, y) of the semi-

group Pt associated with the Dirichlet form (E ,D(E)) on L2(X,µ) satisfies

c1 exp
(
−ρE (x,y)2

c2t

)

√
µ(B(x,

√
t))µ(B(y,

√
t))

≤ p(t, x, y) ≤
c3 exp

(
−ρE (x,y)2

c4t

)

√
µ(B(x,

√
t))µ(B(y,

√
t))

(2.40)

for all x, y ∈ X and all t > 0.

In fact the constant c4 in Theorem 2.6.1 can be chosen to be c4 = 4 + ε for

any ε > 0, see [51]. In the setting above it is possible to use the upper heat kernel

estimates to obtain the related upper estimates on the time derivative of the heat

kernel using the method presented in [16]. For Harnack-type Dirichlet forms the

following is a straightforward corollary of Propositions 2.5.2 and 2.3.1, since the

kernel p(t, x, y) exists.

Corollary 2.6.2 Assume that the Dirichlet form (E ,D(E)) is of Harnack type.

Then the heat kernel p(t, x, y) is Hölder continuous in X and for every t, t′ > 0
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and x, y, y′ ∈ X satisfies

|p(t, x, y) − p(t′, x, y′)| ≤ A

(√
|t− t′| + ρE(y, y′)√

t

)α

p(2t, x, y)

whenever |t− t′| < t/2, ρ(y, y′) ≤
√
t.

Also for Dirichlet forms of Harnack type, the semigroup Pt turns out to be

conservative, and we present here one of the several ways to show this.

Lemma 2.6.3 Let (E ,D(E)) be a Harnack-type Dirichlet form on L2(X,µ). For

any t > 0 and any x ∈ X,
∫

X

p(t, x, y)dµ(y) = 1, (2.41)

in other words the semigroup Pt is conservative.

Proof. Since the semigroup Pt is Markovian, we have
∫

X

p(t, x, y)dµ(y) ≤ 1.

Fix z ∈ X and R > 0. Let

φR(x) = min(1,max (0, R + 1 − ρ(x, z))).

We know that the function φR is supported in B(z, R + 1) and is identically one

on B(z, R). Since ρ(z, ·) ∈ Floc(X) with dΓ(ρ(z, ·), ρ(z, ·)) ≤ dµ by [58, Lemma 1],

it follows that φR ∈ Fc(X) ⊂ D(E) and dΓ(φR, φR) ≤ dµ on X.

Let ψR be the function ψ defined in (2.26) based on the function φR. Consider

the function

v(t, x) =





∫
X
p(t, x, y)dy, if t > 0

1, if t ≤ 0

which is an increasing limit of the functions ψR by dominated convergence theorem.

Each of the functions ψR is a nonnegative weak solution in R × B(z, R) of the

parabolic equation

∂

∂t
ψR = −LψR.
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Since 0 ≤ ψR ≤ 1 by Hölder estimates of Proposition 2.5.2, for for any t, t′ with

|t− t′| ≤ R2 and y, y′ ∈ B(z, R
2

) we have

|ψR(y, t) − ψR(y′, t′)| ≤ A
[|t− t′|1/2 + ρE(y, y′)]α

Rα
.

Taking the limit as R → ∞, we see that for all y, y′ ∈ X and t, t′ ∈ R

|v(y, t) − v(y′, t′)| ≤ lim sup
R→∞

{
A

[|t− t′|1/2 + ρE(y, y′)]α

Rα

}
= 0.

�

Let B = B(z, R) be any ball in (X, ρE). The following theorem summarizes the

important estimates of the Dirichlet heat kernel pD
B(t, x, y) found in [41].

Theorem 2.6.4 Let (E ,D(E)) be a Harnack type Dirichlet form on L2(X,µ).

Then the Dirichlet heat kernel pD
B(t, x, y) in the ball B = B(z, R) satisfies the

following estimates

(i) There exist constants ε, C1, C2 > 0 and ǫ ∈ (0, 1) such that for any x, y ∈

B(z, ǫR),

C1

µ(B(z,
√
t))

≤ pD
B(t, x, y) ≤ C2

µ(B(z,
√
t))

(2.42)

whenever 4ρ(x, y)2 < t ≤ (εR)2.

(ii) There exist constants C, ε > 0, and for any 0 < θ < 1 there exists a constant

Cθ such that for all x, y ∈ B we have

∀t > θ(εR)2, pD
B(t, x, y) ≤ Cθ

µ(B(z, εR))
exp

(
−C3

t

R2

)
(2.43)

(iii) There exist a constant C3, such that for all x, y ∈ B we have

∀t > 0, pD
B(t, x, y) ≤ C4

µ(B(x,
√
t))

exp

(
−ρ(x, y)2

5t

)
(2.44)
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All the constants above depend only on the constants c2, c3 appearing in (2.12) and

in (2.13).

Proof. The upper bounds in the estimates (i) and (iii) follow by comparing

the Dirichlet heat kernel to the original heat kernel p(t, x, y) in X, as explained in

Chapter 2.7. The lower bound in (i) follows from [41, Lemma 3.7] and the parabolic

Harnack inequality (2.38). The estimate (ii) follows by changing notation in [41,

Lemma 3.9, part 3]. �

2.7 The Markov process and the harmonic measure

Let (E ,D(E), L2(X,µ), X, ρE) be a Harnack-type Dirichlet space. Let Pt be the

semigroup associated with the Dirichlet form (E ,D(E)) and for any relatively com-

pact set V ⊂ X set

P (t, x, V ) = (PtχV )(x) ≥ 0

to be the transition function of the semigroup Pt. In view of Theorem 2.6.1 we

see that for any t > 0, x ∈ X the expression P (t, x, ·) on X is a Radon measure

which is absolutely continuous with respect to µ with kernel p(t, x, y) - a continuous

function of t, x, y which vanishes at infinity. Combining this with the Markovian

property of Pt we see that for every t > 0 the map

f → g =

∫

X

f(y)p(t, ·, y)dµ(y)

sends the space of bounded function into the space C(X) of bounded continuous

functions. This means in other words [25, p.52], that P (t, x, ·) is a Feller transition

function. The heat kernel estimates from above (2.40) are more than sufficient

to apply Theorem 3.5 in [25] which states that there exists a continuous Markov

process {Xt}t≥0 with transition function

P x{Xt ∈ V } = P{Xt ∈ V |X0 = x} = P (t, x, V ).
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This process is then strong Markov by [25, Theorem 3.10], and moreover is strong

Feller [26, p.28]. The equation (2.41) is called the stochastic completeness for the

semigroup Pt. It implies that the process {Xt}t≥0 has almost surely infinite lifetime

because for any t > 0,

P {Xt alive at time t|X0 = x} = P (t, x,X) =

∫

X

p(t, x, y)dµ(y) = 1

The process Xt has the following characterizing property: ∀t ≥ 0, ∀x ∈ X,

(Ptf) (x) = E [f(Xt)|X0 = x]

According to [31, Theorem 4.4.2] the semigroup PD
U,t associated with the Dirichlet

problem in an open subset U can be described in terms of this process Xt,

(
PD

U,tf
)

(x) = E
[
f(Xt)1{t<σX\U}|X0 = x

]

Here and later σX\U denotes the first hitting time of X \ U by the process Xt.

Because the sample paths of Xt are continuous, the first hitting time of X \ U

is a monotone nondecreasing (random) function of U , and so for any nonnegative

f ∈ L2(X,µ), the expression
(
PD

U,tf
)

(x) is a monotone nondecreasing function of

U .

Definition 2.7.1 Let V be an open subset of X and E ⊂ ∂V be compact. Then

ω(x,E, V ) = P (σX\V <∞, XσX\V
∈ E|X0 = x)

denotes the harmonic measure of a set V , as seen from x ∈ V .

As a function of x, ω(x,E, V ) ∈ Floc(V ) and Lω(x,E, V ) = 0 weakly in V

by [26, Theorem 12.13]. The strong Markov process Xt has continuous paths,

therefore the measure ω(x, ·, V ) is supported on ∂V .



48

Definition 2.7.2 (see [26], p.32 and Theorem 13.1) Let V ⊂ X be a Borel

set, and let σ′ be the first exit time from V after 0. A point x ∈ ∂V is called

regular if P x{σ′ > 0} = 0, i.e.

P{∃ε > 0 s.t. ∀t < ε,Xt ∈ V |X0 = x} = 0.

Remark. An alternative definition of regular points will be presented in Chapter

5.1, see also [10, p.9] and [31] for identification of these notions.

By [26, Theorem 13.1 on p.32] at every regular point a ∈ ∂V which is an

interior point of E, we have

lim
V ∋x→a

ω(x,E, V ) = 1.

Similarly at every regular point b ∈ ∂V \ E we have

lim
V ∋x→b

ω(x,E, V ) = 0.

The space X is unbounded and satisfies the doubling estimate (2.12). Together

with the heat kernel estimates (2.40) this shows that for any bounded open V ⊂ X,

the exit time τ is almost surely finite. Therefore ω(x, ∂V, V ) = 1.



Chapter 3

The inner metric and uniform sets
Let (X, ρ) be a connected locally compact separable metric space. We can define

the associated length function by setting for any path γ : [a, b] → X,

L(γ) = sup

{
k−1∑

i=1

ρ(γ(ti), γ(ti+1)) : k ∈ N, t1 = a, tk = b, ti < tj for i < j

}
(3.1)

Definition 3.0.3 Let U be an open subset of a metric space (X, ρ). Define ρU to

be the geodesic metric in U associated with the length function L(γ) given by (3.1),

ρU(x, y) = inf {L(γ) : γ is a continuous curve connecting x and y in U} ,(3.2)

Let Ũ be the completion of U with respect to the metric ρU .

There exists a natural continuous map from Ũ onto the closure U of U in X.

Definition 3.0.4 We say that the metric ρ on X is a length metric if ρ = ρX ,

i.e.

ρ(x, y) = inf{L(γ) : γ is a continuous curve joining x and y}

If ρ is a length metric, then the equality (2.9) says exactly that for y ∈ B(x, r),

ρ(x, y) = ρB(x,r)(x, y). (3.3)

In particular, if r = ρU(x, Ũ \ U), then all paths with L(γ) < r starting at x must

stay in U , therefore B(x, r) ⊂ U and thus for all y ∈ B(x, r) we have

ρ(x, y) = ρB(x,r)(x, y) = ρU(x, y). (3.4)

49
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3.1 Uniform sets

In this section we will define two related notions of uniform sets which are the

main focus of our study.

Definition 3.1.1 A metric space (U, ρ) is called uniform with respect to a closed

subset Γ if any two points x, y ∈ U \Γ can be connected in U by a continuous curve

γ of length L(γ) at most c0 · ρ(x, y) such that for any z ∈ γ,

ρ(z,Γ) ≥ c1
ρ(z, x)ρ(z, y)

ρ(x, y)
(3.5)

An open subset U of a metric space (X, ρ) is called uniform if (U, ρ) is uniform

with respect to its subset ∂U .

Remark. The condition (3.5) can be replaced by a simpler equivalent condition

ρ(z,Γ) ≥ cmin(ρ(z, x), ρ(z, y))

with a new constant c. For the sake of not modifying the computations of the

following sections, we will keep our current definition.

Definition 3.1.2 An open subset U of a metric space (X, ρ) is called inner uni-

form if (Ũ , ρU) is uniform with respect to Ũ \ U , i.e. if any two points x, y ∈ U

can be connected in U by a continuous curve γ of length L(γ) at most c0 · ρU(x, y)

such that for any z ∈ γ,

ρU(z, Ũ \ U) ≥ c1
ρU (z, x)ρU (z, y)

ρU (x, y)
(3.6)

Any uniform domain is clearly an inner uniform domain. We are interested in

developing the theory of heat kernels for inner uniform domains.

Definition 3.1.3 Let Lip(Ũ) be the space of Lipschitz functions on (Ũ , ρU). Let

Lipc(Ũ) be the space of Lipschitz functions on (Ũ , ρU) which are compactly sup-

ported in Ũ .
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Lemma 3.1.4 Assume that the measure µ on the metric space (X, ρ) satisfies the

doubling condition (2.12). Let U ⊂ X be inner uniform. Then the measure µ|U on

(Ũ , ρU) satisfies the doubling condition.

Proof. Fix any x ∈ U and R > 0. Without loss of generality assume that the ball

BU(x,R) is not contained in any ball of smaller radius. Then the ball BU(x,R)

contains a point z with ρU(x, z) ≥ R/2. Applying the uniform condition (3.6) we

see that there exists a continuous curve γ connecting x and z and satisfying (3.6).

Take some point y ∈ BU(x,R) on the path γ such that ρU(x, y) = R/4. Such a

point exists because the distance function ρU(x, ·) is continuous and ρU (x, z) ≥

R/2. By the uniform condition (3.6) and by triangle inequality, we have

ρU(y, Ũ \ U) ≥ c1
ρU (x, y)ρU(y, z)

ρU(x, z)
= c1R/4 · ρU(y, z)

ρU(x, z)
≥ c1R/4 · ρU (x, z) − ρU (x, y)

ρU(x, z)

≥ c1
4
R

(
1 − R/4

R/2

)
=
c1
8
R.

Therefore the ball BU(y, c1
8
R) also happens to be the ball B(y, c1

8
R) in (X, ρ). On

the other hand the ball BU(x, 2R) is a subset of B(y, 4R). The doubling property

(2.12) of the measure µ gives

µ(BU(x, 2R)) ≤ µ(B(y, 4R)) ≤ Cµ(B(y,
c1
8
R)) ≤ Cµ(BU(x,R))

for some constant C depending only on c1 and the constant c2 appearing in (2.12).

�

3.2 Examples

In this section we present some examples of uniform and inner uniform domains

in Rn. For some of these, the behavior of a réduite function h discussed in the

introduction will be studied in the Appendix.
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Figure 3.1: Von Koch snowflake - a domain in R2 with fractal boundary.

Before we proceed to examples in Rn, notice that a wide and natural class

of examples of inner uniform subsets of Harnack-type Dirichlet spaces is - inner

uniform subsets of complete Riemannian manifolds of nonnegative Ricci curvature,

see [50].

Proposition 3.2.1 Let U be a domain above the graph of a Lipschitz function

Φ : Rn−1 → R. Then U is uniform with respect to the usual metric in Rn.

Proof. The proof is in the Appendix. �

Proposition 3.2.2 Let U be a domain of the form U = Rn \ V for some closed

convex set V ⊂ Rn. Then U ⊂ Rn is inner uniform with c0 = 21, c1 = 1/462.

Proof. This result is not as obvious as it may appear. The proof is in the

Appendix. �

For the next example we look at the von Koch snowflake domain. It can be

constructed by starting with an equilateral triangle, then recursively altering each

line segment via the following procedure:
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Figure 3.2: The Fibonacci spiral in R2.

1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment from step 1 as its

base.

3. Remove the line segment that is the base of the triangle from step 2.

The von Koch curve is the limit approached as the above steps are followed

over and over again. These domains and other domains with fractal boundaries

were studied from the point of view of heat equation in [19, 20].

Proposition 3.2.3 Both the interior and the exterior of a von Koch snowflake

domain of Figure 3.2 constructed above are uniform domains in R2.

Proof. This result is well-known., and we will present the proof in the Appendix.

�

We will end this section with the following example without proof.

Proposition 3.2.4 The complement in C of the spiral S given in the parametric

form by z(t) = exp(t + icπt) (see Figure 3.2) for some constant c > 0 is inner

uniform.



Chapter 4

Neumann heat kernel
Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support, and (E ,D(E)) - a strictly local regular Dirichlet

form on X. Let ρ = ρE be the metric associated with the Dirichlet form (E ,D(E))

on X, and assume that conditions (A1-A4) stated in Chapter 2.1.2 are satisfied.

Let U be an open subset of X. Let ρU denote the inner geodesic metric in U .

Let Ũ be the completion of U with respect to ρU . Throughout this section let

BU(x, r) denote the open ball in (Ũ , ρU) centered at x. Let V (x, r) denote its

volume µ(BU(x, r)).

The goal of this section is to apply Theorem 2.6.1 to obtain the heat kernel

estimates for the kernel of the Neumann semigroup PN
U,t in case when U ⊂ X is

inner uniform. We will assume that the energy measure dΓ is absolutely continuous

with respect to µ in the sense of Definition 2.1.10.

We will prove the following result that implies Theorem 1.3.1 when X = Rn.

In fact, later we will prove another generalization of this result - Theorem 4.2.7.

Theorem 4.0.5 Let (X,µ) be as above. Assume that the Dirichlet form (E ,D(E))

satisfies the conditions (A1-A4) of Chapter 2.1.2 and admits a carré du champ

operator Υ : D(E) × D(E) → L1(X,µ). Let U be an inner uniform domain in

(X, ρE), see Definition 3.1.2. Then the Neumann heat kernel pN
U (t, x, y) in U exists

and satisfies

c1 exp
(
−ρU (x,y)2

c2t

)

√
µ(BU(x,

√
t))µ(BU(y,

√
t))

≤ pN
U (t, x, y) ≤

c3 exp
(
−ρU (x,y)2

c4t

)

√
µ(BU(x,

√
t))µ(BU(y,

√
t))

(4.1)

for all x, y ∈ U and all t > 0. For any positive integer k there exists a constant

54
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C(k) such that the k-th time derivative of the Neumann heat kernel satisfies

∣∣∣∣∣

(
∂

∂t

)k

pN
U (t, x, y)

∣∣∣∣∣ ≤
C(k) exp

(
−ρU (x,y)2

c5t

)

tk
√
µ(BU(x,

√
t))µ(BU(y,

√
t))

(4.2)

for all x, y ∈ U and all t > 0. Also for arbitrary z ∈ U every nonnegative (local)

weak solution in (0, 4r2) ×BU(z, 2r) of the equation

∂u

∂t
+ LN

U u = 0

satisfies

sup
(t,x)∈Q−

u(t, x) ≤ c6 inf
(t,x)∈Q+

u(t, x) (4.3)

where Q− = (r2, 2r2) × BU(z, r), Q+ = (3r2, 4r2) × BU(z, r). Here the constants

C(k), c1, . . . , c6 depend only on k and on the constants c0, c1, c2 in Definition 3.1.2

and (2.12). In particular the from (EN
U ,D(EN

U )) is a Harnack-type Dirichlet form

on Ũ , see Definition 2.5.1.

The plan of the proof. We learned in Proposition 2.4.9 that (EN
U ,D(EN

U )) is a

closed symmetric form on L2(U, µ). In view of Theorem 2.6.1, the following results

combined imply this theorem

• Lemma 3.1.4. The doubling condition (2.12) for the measure µ|U on (Ũ , ρU).

• The family of Poincaré inequalities (2.13) for the form (EN
U ,D(EN

U )) on L2(Ũ , µ|U)

with respect to the metric ρU . This follows from Proposition 4.1.1 applied

to the measure µ|U .

• The form (EN
U ,D(EN

U )) is a regular and strictly local Dirichlet form on L2(Ũ , µ|U).

We will explore these basic properties in Chapter 4.2.

• Lemma 4.2.5. The metric ρEN
U

associated with the Dirichlet form (EN
U ,D(EN

U ))

coincides with ρU . In particular this implies conditions (A1) and (A2) of

Chapter 2.1.2.
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• Finally any time derivative of the heat kernel can be estimated from above

as in (4.2) by [16, Theorem 4] which uses the estimates of the heat kernel to

produce the estimates on its time derivative using the analytic nature of the

heat kernel.
�

Remark. Theorem 4.0.5 holds more generally if the Dirichlet form (EN
U ,D(EN

U ))

on L2(Ũ , µ) is replaced by the form (EN,v
U ,D(EN,v

U )) on L2(U, vdµ) as will be dis-

cussed in Theorem 4.2.7.

The outline above provides the structure for the remainder of this section,

where we will complete the analysis of the Neumann heat kernel in U . We now

focus on proving the Poincaré inequalities for the balls in (Ũ , ρU) in case U ⊂ X

is inner uniform.

4.1 Poincaré inequalities for inner uniform subsets

Let X be a locally compact separable metric space. Let (E ,D(E)) be a strongly

local regular Dirichlet form on L2(X,µ). Let ρ = ρE be the metric associated with

(E ,D(E)) via (2.7). Assume that the conditions (A1) and (A2) of Chapter 2.1.2

are satisfied for the metric ρ. Let ρU be the inner geodesic metric in U . Let Ũ be

the completion of U with respect to the metric ρU . Throughout this section let

BU(x, r) denote the open ball in (Ũ , ρU) centered at x of radius r.

Proposition 4.1.1 Let (X, ρ) be a locally compact separable metric space. Let µ

be a positive Radon measure on X with full support. Let U be an inner uniform

domain in (X, ρ). Let (E ,D(E)) be a strongly local Dirichlet form on L2(X,µ),

given by the energy measure,

E(f, g) =

∫

X

dΓ(f, g), whenever f, g ∈ D(E).
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Let ν be any nonnegative Radon measure on U that satisfies the doubling property

(2.12) for all balls in (Ũ , ρU).

Fix a constant N > 1 and assume that there exists a constant A such that for

any ball B = BU (x,R) such that ρU (B, Ũ \ U) ≥ NR, the L2 Poincaré inequality

∀f ∈ D(E), inf
ξ∈R

∫

B

|f − ξ|2dν ≤ AR2

∫

B

dΓ(f, f) (4.4)

holds. Then there is a constant C such that the L2 Poincaré inequality

∀f ∈ F(B), inf
ξ∈R

∫

B

|f − ξ|2dν ≤ CR2

∫

B

dΓ(f, f) (4.5)

holds for any geodesic ball B = BU(x,R) in (Ũ , ρU).

Remarks. 1. The main point of this proposition is that the balls involved in the

assumption (4.4) are balls in (X, ρ) that happen to be in U , whereas the conclusion

(4.25) holds for all balls in (Ũ , ρU).

2. Even if the domain U is such that ρU is comparable to ρ, the Poincaré

inequalities (4.25) do not hold true if instead of inner geodesic ball B we consider

the trace of a ball in (X, ρ) on U (see figure 4.1), i.e.

B′
U (x, r) = {y ∈ U : ρ(x, y) < r}.

In this case for these balls, only the weaker inequality (4.7) below holds.

Outline of the proof. First, notice that the assumption f ∈ D(E) in (4.4) can

be relaxed in the following way. For any ǫ > 0 and for any f ∈ F(BU(x,R +

ǫ)) there exists a function f̃ ∈ D(E) coinciding with f on BU(x,R). Therefore

dΓBU (x,r)(f̃ , f̃) = dΓBU (x,R)(f, f) on B by the local property (2.4) of dΓ, and hence

(4.4) implies that for any ball B = BU(x,R) such that ρU(B, Ũ \ U) ≥ NR, the

L2 Poincaré inequality

∀f ∈ F(BU(x,R + ǫ)), inf
ξ∈R

∫

BU (x,R)

|f − ξ|2dν ≤ AR2

∫

BU (x,R)

dΓ(f, f) (4.6)



58

Figure 4.1: A bad Euclidean ball for U (large Poincaré constant)

holds and dΓ is understood as dΓB. We prove (4.25) in two stages. First we prove

that there exists k ≥ 1 such that

∀f ∈ F(BU(x, kR)), inf
ξ∈R

∫

BU (x,R)

|f − ξ|2dν ≤ CR2

∫

BU (x,kR)

dΓ(f, f) (4.7)

for each ball BU (x,R), x ∈ Ũ , r > 0. We call this a weak Poincaré inequality

because the ball on the right-hand side has been enlarged.

The second step consists of showing that the family of weak L2 Poincaré in-

equalities (4.7) for x ∈ Ũ , R > 0 and functions f ∈ F(BU(x, kR)) implies the

standard L2 Poincaré inequality (4.25) for functions in F(B). This is a well estab-

lished result, and we will omit the proof. See, e.g. [51, Chapter 5.3.2-5.3.3] and

the references therein.

In fact the proof of the second step is very similar to the proof of step one.

It is essential that the requirement f ∈ D(E) of (4.4) can be relaxed to f ∈

F(BU(x, kR)) of (4.7) in step one, and henceforth similarly relaxed to the require-

ment f ∈ F(B) of (4.25) in step two. �

We now focus on proving the weak Poincaré inequality (4.7).

4.1.1 Proof of the weak Poincaré inequality (4.7).

In this section we aim to prove (4.7) in the assumptions of Proposition 4.1.1. We

will use a Whitney cover of the domain U by the balls in (U, ρU) whose distance to
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the boundary of U is large compared to their radius and for which, by hypothesis,

the L2-Poincaré inequality (4.4) is satisfied.

We will need the following notation. On a general metric space, a set can be a

ball in more than one way. Thus we follow the convention that a ball B in (Ũ , ρU)

is always assumed to be given in the form B = BU(x,R) with a specified center

and a radius R = r(B) which is minimal in the sense that

BU(x, s) 6= B if s < r(B). (4.8)

For any ball B = BU(x, r) with fixed center and radius, define the multiple kB of

B by setting

kB = BU(x, kr).

Definition 4.1.2 A strict ε-Whitney cover of an open set U in a metric space

(X, ρ) is any set ℜ of disjoint balls A = B(x, r) ⊂ U such that the union of the

balls 3A cover U and for any A = B(x, r) ∈ ℜ:

r(A) = ερ(x, Ũ \ U). (4.9)

For ε small enough, e.g. ε ∈ (0, 1
3
) such a cover exists for any open set by a

general argument using Zorn’s lemma. If, as in the case of interest for us here, the

metric space is equipped with a Borel measure satisfying the doubling property,

the cover will always be countable.

Remark. For a domain in Euclidean space one can use a very neat Whitney

covering using cubes instead of balls (see figure 4.2). Consider all the cubes of size

length 2k with edges parallel to the coordinate axis and each of the vertices having

all coordinates of the form n2k. A given cube Q is included into the covering ℜ

if and only if its distance to the boundary is at least equal to the fixed desired

multiple of its side length and no larger cube has this property.
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Figure 4.2: Typical cover by Whitney cubes

Whitney covers have the following nice property.

Lemma 4.1.3 (Finite intersection property) Let ℜ be a strict ε-Whitney cov-

ering of an open set U in some metric space (X, ρ) with ε ∈ (0, 1
4
). Assume that X

is equipped with a Borel measure having the doubling property (2.12). Then there

is a finite constant a1 such that

∀k < 1

10ε
,
∑

A∈ℜ
χkA ≤ a1.

Proof. Pick any point y ∈ U . It belongs to some triple of a Whitney ball B ∈ ℜ

with center z. If a k-multiple of a given Whitney ball A = BU(x, r) contains point

y, then ρU(x, y) ≤ kr. Since

ρU (x, Ũ \ U) =
r

ε

by the Whitney covering condition (4.9), this means that by triangle inequality

r

ε
− kr ≤ ρU (y, Ũ \ U) ≤ r

ε
+ kr.

Applying the Whitney covering condition (4.9) and a triangle inequality,

r(B) = ερ(z, Ũ \ U) ≤ ε(3r(B) + ρ(y, Ũ \ U))

since y ∈ 3B. Therefore

r(B) ≤ ε

1 − ε
ρ(y, Ũ \ U) ≤ 2ε

(r
ε

+ kr
)

= (2 + 2kε)r ≤ 3r(A).
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Similarly r(A) ≤ 3r(B). Hence, x ∈ 5kB, and A ⊂ 10kB ⊂ 1
ε
B. But by doubling

condition (2.12), there are only finitely many disjoint Whitney balls of radius at

least r(B)/3 in the ball 1
ε
B: their number is uniformly bounded from above by

doubling property (2.12). Thus the number of Whitney balls A with the property

that a k-multiple of it covers y, is finite and bounded from above by a constant

independent of y. �

We return to the proof of (4.7). Set ε = 10−4/N , where the constant N comes

from the assumption of the Proposition 4.1.1. Let ℜ be a strict ε-Whitney covering

of the set U in (Ũ , ρU).

Definition 4.1.4 For any ball B = BU(x, r) in (U, ρU) define the collection ℑ(B)

by

ℑ(B) = {A| A ∈ ℜ, 3A ∩ B 6= ∅} (4.10)

Fix a ball B = BU(x,R) in (Ũ , ρU). Recall that we aim to prove (4.7) for the

ball B. If B is relatively far from the boundary, i.e. ρ(B, Ũ \ U) ≥ NR, then

the strong L2-Poincaré inequality (4.6) holds. Hence assume that B = BU(x,R)

is relatively large compared with ρ(B, Ũ \ U), namely

R ≥ 1

N
ρ(B, Ũ \ U) (4.11)

The ball B is covered by the triples of the balls in the collection ℑ(B). All the

balls A ∈ ℜ are small compared to their distance to the boundary in the sense of

(4.9), and the ball B is relatively large by assumption (4.11). Hence it is not hard

to see that

B ⊂
⋃

A∈ℑ(B)

3A ⊂ 2B (4.12)

Lemma 4.1.5 Let U be inner uniform domain in (X, ρ), and let ρU be the geodesic

metric in U . Then for every ball B = BU(x,R) in (Ũ , ρU) with R = r(B) being
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the minimal radius of the ball B in the sense of (4.8), there exists a point y ∈ B

with ρU (y, Ũ \U) ≥ c1
8
R and ρU(y, x) = R/4. Here c1 is the constant appearing in

(3.6).

Proof. Take some point z ∈ BU(x,R) \ BU(x,R/2), which is a nonempty set

because by convention the radius R of the ball B is minimal in the sense (4.8).

Let γ be a path from x to z given by the uniform condition (3.6). Take some

point y ∈ B on the path γ such that ρU(x, y) = R/4. Such a point exists because

the distance function ρU(x, ·) is continuous and ρU(x, z) ≥ R/2. By the uniform

condition (3.6) and by triangle inequality, we have

ρU(y, Ũ \ U) ≥ c1
ρU (x, y)ρU(y, z)

ρU(x, z)
= c1R/4 · ρU(y, z)

ρU(x, z)
≥ c1R/4 · ρU (x, z) − ρU (x, y)

ρU(x, z)

≥ c1
4
R

(
1 − R/4

R/2

)
=
c1
8
R

�

Definition 4.1.6 Let B0 be a ball from the Whitney cover ℑ(B) with the property

that the point y constructed in Lemma 4.1.5 is inside 3B0. We call the ball B0 the

central ball in B.

Note that by construction, we have

ρU (B0, Ũ \ U) ≥ c1
16
R (4.13)

We proceed to estimate the left-hand side of (4.7) for any function f ∈ F(kB),

where the constant k will be chosen later. Choose ξ = f4B0
= 1

ν(4B0)

∫
4B0

fdν and

estimate

inf
ξ

∫

B

|f − ξ|2dν ≤
∑

D∈ℑ(B)

∫

3D

|f − f4B0
|2dν

≤ 2
∑

D∈ℑ(B)

[∫

4D

|f4D − f4B0
|2dν +

∫

4D

|f − f4D|2dν
]
(4.14)
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Estimating the second term is easy since for every D ∈ ℑ(B) we have 4D ⊂ 2B,

the ball 4D is far from the boundary compared to its radius in the sense of (4.9)

and thus the Poincaré inequality (4.6) is satisfied on 4D for any f ∈ F(3B). Thus

there exists a universal constant C such that

∑

D∈ℑ(B)

∫

4D

|f−f4D|2dν ≤ CR2
∑

D∈ℑ(B)

∫

4D

dΓ(f, f) ≤ CR2

∫

2B



∑

D∈ℑ(B)

χ4D


 dΓ(f, f)

(4.15)

The sum of characteristic functions appearing in (4.15) is bounded from above by

a universal constant by Lemma 4.1.3.

To estimate the first term of (4.14), we will use the following Lemma which

estimates the difference of averages of a function on close Whitney balls via its

energy integral.

Lemma 4.1.7 Let ε ∈ (0, 1
100

) and let ℜ be a strict ε-Whitney cover of an open

set U in (X, ρ). There exists a constant a2 such that for two neighboring Whitney

balls, i.e. any balls D,E ∈ ℜ with 3D∩3E 6= ∅, and for any f ∈ F(16D)∩F(16E)

we have

|f4D − f4E| ≤ a2r(D)

(
1

ν(D)

∫

16D

dΓ(f, f)

)1

2

Proof. Using the Poincaré inequality (4.6) we estimate

ν(4D ∩ 4E)|f4D − f4E|2 =

∫

4D∩4E

|f4D − f4E|2dν

≤ 2

∫

4D∩4E

|f − f4D|2dν + 2

∫

4D∩4E

|f − f4E|2dν

≤ 2

∫

4D

|f − f4D|2dν + 2

∫

4E

|f − f4E|2dν

≤ 2A · r(D)2

∫

4D

dΓ(f, f) + 2A · r(E)2

∫

4E

dΓ(f, f)

As Whitney balls D,E are neighboring, their radii must be approximately equal,

up to the multiple of 4/3, by the Whitney condition (4.9) and the triangle inequal-

ity. Therefore the four multiple of E is contained inside the 16 multiple of D.
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Furthermore, by the doubling property (2.12) for the measure ν on Ũ , we have

ν(4D ∩ 4E) ≥ Cν(D),

up to a universal multiplication constant C depending on the doubling constant

of ν appearing in (2.12). The desired inequality follows. �

Next in order to estimate the first term of (4.14), we need the following con-

struction. Recall that for each ballD ∈ ℑ(B), the uniform condition on the domain

U produces a path γ of length at most c0ρU(B0, D), connecting the closest points

of B0 and D. Let’s choose a string of distinct balls S(D) = {BD
0 , B

D
1 , . . . B

D
l } of

length l = l(D) with the following properties:

1. ∀j, BD
j ∈ ℜ

2. B0 = BD
0 and BD

l = D

3. 3BD
j ∩ 3BD

j−1 6= ∅

4. 3BD
j ∩ γ 6= ∅

In other words, connect the two balls B0 and D by Whitney balls along the path

given by the uniform condition.

Lemma 4.1.8 Let ℜ be an ε-Whitney cover of an inner uniform domain U (see

3.6) in (X, ρ). There is a constant a3 such that for any inner geodesic ball B =

BU(x,R) satisfying (4.11) and for any ball D ∈ ℑ(B), the sequence of Whitney

balls S(D) constructed above satisfies for any index j

(i) ρU(BD
j , B0) ≤ c0ρU(B0, D) < 2c0R, so that BD

j ⊂ 4c0B

(ii) ρU(BD
j , D) ≤ a3

2
r(BD

j ), so that D ⊂ a3B
D
j .
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Proof. The first inequality (i) follows from the length estimate on the path given

by the uniform condition (3.6) and from (4.12). To show (ii), we use the Whitney

condition (4.9), the uniform condition and the triangle inequality to obtain

2

ε
r(BD

j ) ≥ ρU(BD
j , Ũ \ U) ≥ c1

ρU(BD
j , B0)ρU (BD

j , D)

ρU (B0, D)
(4.16)

2

ε
r(BD

j ) ≥ ρU(BD
j , Ũ \ U) ≥ ρU(B0, Ũ \ U) − ρU(BD

j , B0) (4.17)

One of these inequalities will give the desired result in each of the two cases

below.

(a) Assume 2ρU(BD
j , B0) > ρU(B0, Ũ \ U). Because ρU(B0, D) ≤ 2R, (4.13) and

(4.16) give

r(BD
j ) ≥ ε

2
c1
c1R

32
· ρU(BD

j , D)

2R
= CρU(BD

j , D)

for some constant C = εc21/128.

(b) Assume instead that 2ρU(BD
j , B0) ≤ ρU (B0, Ũ \ U), then (4.17) allows us to

estimate r(BD
j ) from below by

r(BD
j ) ≥ ε

2
· 1

2
ρU(B0, Ũ \ U) ≥ εc1

64
R ≥ εc1

128c0
ρU(BD

j , D).

Here, to obtain the last inequality, we have used (3.6) to see that

ρU (BD
j , D) ≤ L(γ) ≤ c0ρU (B0, D) ≤ 2c0R

This gives ρU(BD
j , D) ≤ a3

2
r(BD

j ) with a3 = min
(

256
εc2

1

, 256c0
εc1

)
as desired. �

Definition 4.1.9 Given U , ℜ, B = BU(x,R) and ℑ(B) as in (4.10), set

ℑ1(B) = {BU(x, r) ∈ ℜ| BU(x, r) ∈ S(D) for some D ∈ ℑ(B)}.
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Note that the first part of Lemma 4.1.8 can be rephrased as

⋃

A∈ℑ1(B)

A ⊂ 4c0B (4.18)

Returning now to estimating the first term of (4.14) for f ∈ F(kB), observe

that the doubling property (2.12) gives

∑

D∈ℑ(B)

∫

4D

|f4D − f4B0
|2dν ≤ c22

∫

U

∑

D∈ℑ(B)

|f4D − f4B0
|2χD dν (4.19)

Using, for each D, the string S(D) = {BD
j }l(D)

j=1 , write

|f4D − f4B0
| ≤

l(D)∑

j=1

|f4BD
j
− f4BD

j−1
| ≤

l(D)∑

j=1

a2r(B
D
j )

(
1

ν(BD
j )

∫

16BD
j

dΓ(f, f)

)1

2

by Lemma 4.1.7. Using Lemma 4.1.8, we see that χD = χDχa3BD
j

, and thus

|f4D − f4B0
|χD ≤

l(D)∑

i=1

a2r(B
D
j )

(
1

ν(BD
j )

∫

16BD
j

dΓ(f, f)

)1

2

· χD · χa3·BD
j

≤
∑

A∈ℑ1

a2r(A)

(
1

ν(A)

∫

16A

dΓ(f, f)

)1

2

· χD · χa3·A (4.20)

where we have extended the summation from the collection S(D) to the collection

ℑ1.

We will need the following result which is a special case of [51, Lemma 5.3.12].

Lemma 4.1.10 ([51], Lemma 5.3.12) Assume that the doubling condition (2.12)

is satisfied for the balls in (U, ρU) with respect to the measure ν. Fix K ≥ 1. There

exist a constant C = C(K) such that for any (possibly infinite) sequence of balls

Bi = BU(xi, ri) in (U, ρU) and any sequence of non-negative numbers bi, we have

∫

U

(
∑

i

biχKBi

)2

dν ≤ C

∫

U

(
∑

i

biχBi

)2

dν. (4.21)
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To complete the estimation of the first term in (4.14), we continue the estimate

(4.19) using the inequality (4.20) and Lemma 4.1.10 with K = a3 to get

∑

D∈ℑ(B)

∫

4D

|f4D − f4B0
|2dν ≤ c22

∫ ∑

D∈ℑ(B)

|f4D − f4B0
|2χDdν

≤ c22

∫ ∑

D∈ℑ(B)




∑

A∈ℑ1(B)

a2r(A)

(
1

ν(A)

∫

16A

dΓ(f, f)

) 1

2

· χD · χa3A




2

dν

= c22

∫ 

∑

D∈ℑ(B)

χD


 ·




∑

A∈ℑ1(B)

a2r(A)

(
1

ν(A)

∫

16A

dΓ(f, f)

)1

2

χa3A




2

dν

≤ c22a
2
2C(a3)

∫ 


∑

A∈ℑ1(B)

r(A)

(
1

ν(A)

∫

16A

dΓ(f, f)

)1

2

χA




2

dν

= c22a
2
2C(a3)

∑

A∈ℑ1(B)

r(A)2

(
1

ν(A)

∫

16A

dΓ(f, f)

)
ν(A)

≤ c22a
2
2C(a3) · R2

∫ 


∑

A∈ℑ1(B)

χ16A



 dΓ(f, f) ≤ a1c
2
2a

2
2C(a3) · R2

∫

64c0B

dΓ(f, f)

We used that the balls D are disjoint to see that
(∑

D∈ℑ(B) χD

)
≤ 1, and, for

the last inequality, Lemma 4.1.3 and the fact that if A ∈ ℑ1(B) then A ⊂ 4c0B by

(4.18).

This completes the analysis of the first term in (4.14) and together with (4.15)

establishes the weak Poincaré inequality (4.7) with k = 64c0. �

This completes the proof of Proposition 4.1.1, in view of the outline presented

after the statement of Proposition 4.1.1. To complete the proof of Theorem 4.0.5

it remains to establish some properties of the Neumann Dirichlet form and the

associated metric, which we complete in Chapter 4.2. Before we focus on those, we

will explore how Proposition 4.1.1 establishes the family of Poincaré inequalities for

a symmetric form obtained from the original form by a simple change of measure.
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4.1.2 Neumann type Dirichlet forms obtained by the change

of measure

Assume that the form (E ,D(E)) admits a carré du champ operator Υ : D(E) ×

D(E) → L1(X,µ). Let U ⊂ X be an open set and let v ∈ L∞
loc(U, µ) be a locally

uniformly positive and locally bounded measurable function on U . Set

EN,v
U (f, f) =

∫

U

vdΓ(f, f) =

∫

U

Υ(f, f)vdµ (4.22)

D(EN,v
U ) = F v(U) =

{
f ∈ Floc(U) ∩ L2(U, vdµ) :

∫

U

Υ(f, f)vdµ <∞
}

to be a symmetric form on L2(U, vdµ).

Remark. If we take the function v to be constant one, the form defined in (4.22)

becomes (EN
U ,D(EN

U )).

Notice that because of the special structure of this form, the normal con-

tractions operate on (EN,v
U ,D(EN,v

U )). The form (EN,v
U ,D(EN,v

U )) is symmetric and

densely defined in L2(U, vdµ) since compactly supported in U functions which are

Lipschitz with respect to the metric ρ are in D(EN,v
U ). It is also closed by the

proof of Proposition 2.4.9. So we see that the form (EN,v
U ,D(EN,v

U )) is a Dirichlet

form. It is also strongly local because the form (E ,D(E)) is. So each of the forms

(EN,v
U ,D(EN,v

U )) is associated with the nonnegative self-adjoint operator LN,v
U and

a self-adjoint semigroup PN,v
U,t on L2(U, vdµ). It is straightforward to see that the

energy measure associated with the form (EN,v
U ,D(EN,v

U )) on L2(U, vdµ) by (2.2) is

simply

dΓv(f, g) = vdΓ(f, g) = Υ(f, g)vdµ.

and so the Radon-Nikodym derivative of dΓv with respect to the reference measure

vdµ is

Υv(f, g) =
dΓv(f, g)

vdµ
= Υ(f, g) (4.23)
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The following straightforward corollary of Proposition 4.1.1 is important to

proving the heat kernel estimates for the heat semigroup associated with (EN,v
U ,D(EN,v

U )).

Corollary 4.1.11 Let X be a locally compact separable metric space. Let µ be a

positive Radon measure on X with full support. Let (E ,D(E)) be a strongly local

Dirichlet form on L2(X,µ). Let ρ = ρE and assume that the conditions (A1-A4)

of Chapter 2.1.2 are satisfied. Let U be an inner uniform domain in (X, ρ). Let

v ∈ L∞
loc(U, µ) be a locally bounded measurable function on U . Assume that the

measure vdµ on U satisfies the doubling condition (2.12). Assume also that there

exist positive constants C and N such that the function v satisfies the Harnack

inequality

sup
B
v ≤ C inf

B
v (4.24)

on any ball B = BU(x,R) with ρU(B, Ũ \ U) ≥ NR. Then for any geodesic ball

B = BU(x,R) in (Ũ , ρU), we have

∀f ∈ F v(B), inf
ξ∈R

∫

B

|f − ξ|2vdµ ≤ CR2

∫

B

vdΓ(f, f), (4.25)

i.e. the family of L2 Poincaré inequalities for the form (EN,v
U ,D(EN,v

U )) with refer-

ence measure vdµ holds on Ũ .

Proof. The idea is simply to apply Proposition 4.1.1 for the Dirichlet form

(EN,v
U ,D(EN,v

U )) with replacing X by Ũ , µ by vdµ and ρ by ρU . Notice that the

condition (4.4) translates to

∀f ∈ F v(U), inf
ξ∈R

∫

B

|f − ξ|2vdµ ≤ AR2

∫

B

vdΓ(f, f)

and is satisfied for any ball BU(x,R) = B(x,R) with ρU(B, Ũ \ U) ≥ NR by the

assumption (A4) of Chapter 2.1.2 together with the assumption (4.24). �

Remark. An example of a function v satisfying the conditions of Corollary

4.1.11 is any positive power of distance to the boundary,

v(x) = δU(x)α, where δU(x) = ρU(x, Ũ \ U)
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The heat kernel estimates for the forms (EN,v
U ,D(EN,v

U )) will be used for ob-

taining the heat kernel estimates for the Dirichlet form (ED
U ,D(ED

U )) in Chapter

5.

4.2 Properties of Neumann type Dirichlet forms

We first aim to prove that the form (EN
U ,D(EN

U )) is regular on some superset of

U . Recall that the form (EN
U ,D(EN

U )) is a special case of the form (EN,v
U ,D(EN,v

U ))

when the function v is taken to be constant one. Thus the following proposition

is interesting.

Proposition 4.2.1 Assume that the Dirichlet form (E ,D(E)) satisfies conditions

(A1-A2) of Chapter 2.1.2 and admits a carré du champ operator Υ, as in Definition

2.1.10. Let U ⊂ X be an open subspace of X and let ǫ be any positive number. Let

v be a locally bounded measurable function on Ũ which is locally uniformly positive

on U . Assume that the form (EN,v
U ,D(EN,v

U )) on Ũ satisfies the following family of

Poincaré inequalities with respect to the metric ρU

∀x ∈ Ũ , 0 < R < ǫ, inf
ξ

∫

BU (x,R)

(u− ξ)2vdµ ≤ C ′R2

∫

BU (x,R)

Υ(u, u)vdµ. (4.26)

for any f ∈ F v(BU(x,R)). Assume that the measure vdµ|U satisfies the following

doubling condition on Ũ with respect to the metric ρU ,

∀x ∈ Ũ , 0 < R < ǫ,

∫

BU (x,2R)

vdµ ≤ C

∫

BU (x,R)

vdµ. (4.27)

Then the form (EN,v
U ,D(EN,v

U )) on L2(Ũ , vdµ|U) is regular with core Lipc(Ũ).

In order to prove Proposition 4.2.1 we will need the following description of

Lipschitz functions on X, given in [44, Corollary 3.6].
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Proposition 4.2.2 Assume that the Dirichlet form (E ,D(E)) satisfies conditions

(A1-A2) of Chapter 2.1.2 and admits a carré du champ operator Υ, as in Definition

2.1.10. Then every Lipschitz function on (X, ρE) with Lipschitz constant k is in

Floc(X) and satisfies

k = sup
X

√
Υ(f, f)

Corollary 4.2.3 Let U be an open subset of X. In the setting of Proposition 4.2.2,

every function on U which is Lipschitz with respect to ρU with Lipschitz constant

k is in Floc(U) and satisfies

k ≥ sup
U

√
Υ(f, f) (4.28)

Proof. For any open ball B = B(x, r) in (X, ρE) which happens to be in U and

such that ρ(B, ∂U) ≥ 2r, the restriction f |B is Lipschitz with respect to ρU and

thus with respect to ρ since ρ = ρX is a length metric (see [61]). Therefore we

can extend f |U to some compactly supported Lipschitz function f ′ on (X, ρE) with

the same Lipschitz constant. We have f ≡ f ′ in B. Using Proposition 4.2.2 and

the local property (2.4) of dΓ we see that f ′ ∈ D(E), f ∈ F(B) and the Lipschitz

constant k of f ′ satisfies

k = sup
X

√
Υ(f ′, f ′) ≥ sup

B

√
Υ(f, f).

This holds for any open ball B = B(x, r) in (X, ρE) which is in U such that

ρ(B, ∂U) ≥ 2r, therefore f ∈ Floc(U). Also this shows that f is locally Lipschitz

in (U, ρ). Since ρU is the inner geodesic metric in U based on ρ, the function f

is Lipschitz in (U, ρU) with Lipschitz constant k satisfying the desired estimate

(4.28). �

Proof of Proposition 4.2.1. The space Lipc(Ũ) is dense in C0(Ũ) with supremum

norm by [42, Theorem 6.8]. To see that Lipc(Ũ) is dense in D(EN,v
U ), we follow [39,
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page 205], [40, page 13] and [38, Lemma 10]. Let

dν = vdµ

denote the reference measure on U . Let g be any function in D(EN,v
U ) = F v(U).

We aim to prove that g can be approximated by functions in Lipc(Ũ). Be-

cause we can approximate the function g in D(EN,v
U ) by bounded functions gn =

min(max(g,−n), n), without loss of generality we can assume that the function g

is bounded. Set

φR(x) = R−1 min{(2R− ρU(x, Ũ \ U))+, (2R− ρU(x, x0))+, R}

where x0 is a fixed point in U and (t)+ = min{0, t}. Since v is locally finite on

Ũ , these compactly supported ’cut-off’ functions φR are in F v(U) ∩ L∞(U, vdµ).

Since g ∈ F v(U) ∩ L∞(U, vdµ), we have gφR ∈ F v(U) by the energy estimate of

Lemma 2.2.1. It is easy to see that φRg tends to g in EN,v
U -norm and in L2(Ũ , dν)

when R tends to infinity. Thus, in the rest of the proof, we assume that g is a

function in D(EN,v
U ) with compact support in Ũ .

For any r > 0, set

gr(y) =
1

ν (BU(y, r))

∫

BU (y,r)

gdν

where BU(y, r) denotes the ball in (Ũ , ρU) centered at y. Fix r ∈ (0, ǫ) and set

ri = 2−ir, Bi = BU(x, ri). We say that x ∈ X is a Lebesgue point of g if

lim
i→∞

gri
(x) = g(x)

It is known that for every g ∈ L2(X, ν), the points in X that are not Lebesgue for

a function g form a set of ν-measure zero.
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For every Lebesgue point x ∈ U , using the Jensen’s inequality we can write

|g(x) − gr(x)| ≤
∞∑

i=0

|gri
− gri+1

| ≤
∞∑

i=0

(
1

ν(Bi+1)

∫

Bi

|g(y) − gri
(x)|2dν(y)

)1

2

≤
∞∑

i=0

ri

(
CC ′

ν(Bi)

∫

Bi

Υ(g, g)dν

)1

2

≤
√
CC ′

∞∑

i=0

ri

√
M(Υ(g, g))(x)

= r
√
CC ′

√
MΥ(g, g)(x). (4.29)

by Poincaré inequality and the doubling property of the measure ν on (Ũ , ρU).

Here M(f) is the 2ǫ-maximal function of f , i.e.

Mf(x) = M2ǫf(x) = sup
0<s<2ǫ

1

ν(BU(x, s))

∫

BU (x,s)

fdν.

Similarly for any Lebesgue points x, y ∈ U with ρ(x, y) ≤ r, the doubling property

of ν|U and the Poincaré inequality (4.26) yield

|gr(x) − gr(y)| ≤ |gr(x) − g2r(x)| + |gr(y) − g2r(x)|

≤ 2

(
C

ν(BU(x, 2r))

∫

BU (x,2r)

|g(z) − g2r(x)|2dν(z)

) 1

2

≤ 2r

(
CC ′

ν(BU (x, 2r))

∫

BU (x,2r)

ΥU(g, g)dν

)1

2

≤ (2
√
CC ′r)

√
MΥ(g, g)(x). (4.30)

Combining (4.29) and (4.30) we see that for any Lebesgue points x, y ∈ U with

ρU(x, y) ≤ r, there exists another constant C such that

|g(x) − g(y)| ≤ Cr
[√

MΥ(g, g)(x) +
√

MΥ(g, g)(y)
]
. (4.31)

For any λ > 0, set

Eλ =
{
x ∈ U : x is a Lebesgue point of g, g(x)2 ≤ λ2 and MΥ(g, g)(x) ≤ λ2

}

Fλ = U \ Eλ

Note that Fλ is precompact in Ũ for λ large enough, say λ ≥ λ0, because g has

compact support in Ũ . Furthermore, the restriction g|Eλ
of g to Eλ is Lipschitz
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with constant 2Cλ on Eλ by (4.31). Let fλ be some Lipschitz extension of g from

Eλ to Ũ with the same Lipschitz constant (see, e.g., [42, Theorem 6.2]). Let λ ≥ λ0.

For such λ, Fλ is precompact in Ũ . As fλ = g in Eλ, it follows that fλ is a bounded

function in Ũ with compact support in Ũ and with ‖fλ‖∞ ≤ λ(1+2CR0) where R0

is the diameter of Fλ0
. Moreover, fλ has compact support. Since g ∈ D(EN,v

U ), we

have g ∈ L2(U, ν), and
∫

U
Υ(g, g)dν < ∞. It is known that the maximal function

MΥ(g, g) is in weak L1(U, ν), i.e.

Nν {x ∈ U : MΥ(g, g) > N} → 0

as N → ∞, see [48, Theorem 2.19]. Also, we have

∫

Fλ

|g|2dν → 0, as λ→ ∞.

Since non-Lebesgue points of g form a set of measure zero,

λ2ν{Fλ} ≤ λ2ν{x ∈ U : MΥ(g, g) > λ2} + λ2ν{x ∈ U : g(x)2 > λ2}

≤ λ2ν{x ∈ U : MΥ(g, g) > λ2} +

∫

{g2>λ2}
|g|2dν → 0 (4.32)

as λ→ ∞. The function fλ is bounded by λ(1+2CR0) and Lipschitz with respect

to ρU with Lipschitz constant 2Cλ. Therefore Υ(f, f) ≤ 4C2λ2 by Corollary 4.2.3.

Inequality (4.32) gives

∫

Fλ

(
|fλ|2 + Υ(fλ, fλ)

)
dν ≤ λ2

(
(1 + 2CR0)2 + 4C2

)
ν{Fλ} → 0

as λ→ ∞. Now, since fλ = g on Eλ, we have

∫

U

(
|g − fλ|2 + Υ(g − fλ, g − fλ)

)
dν ≤ 2

∫

Fλ

(
|g|2 + |fλ|2 + Υ(g, g) + Υ(fλ, fλ)

)
dν

and the right-hand side tends to 0 as λ tends to infinity. Thus fλ tends to g in

Hilbert space D(EN,v
U ), as desired. �
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Corollary 4.2.4 In the context of Proposition 4.2.1, the form (EN,v
U ,D(EN,v

U )) is

a strongly local regular Dirichlet form on L2(Ũ , vdµ).

Lemma 4.2.5 Let v ∈ L∞
loc(U, µ) be a locally uniformly positive and locally bounded

measurable function on U . In the context of Proposition 4.2.1, the metric ρEN,v
U

on

Ũ coincides with the geodesic metric ρU .

Proof. For any x, y ∈ Ũ we have

ρEN,v
U

(x, y) = sup
{
u(x) − u(y) : u ∈ D(EN,v

U ) ∩ C0(Ũ),Υ(u, u) ≤ 1 a.e. on U
}
.

(4.33)

To show ρEN,v
U

(x, y) ≥ ρU(x, y) it suffices to notice that the function max(ρU(x, y)−

ρU(x, ·), 0) is a compactly supported Lipschitz function on (Ũ , ρU) with Υ(u, u) ≤ 1

a.e. on U .

To show the opposite inequality, we first focus on the case when x, y ∈ U . Let

γ : [0, 1] → U be any continuous curve without self-intersections connecting x and

y. In view of Lemma 2.1.13,

L(γ) = sup{u(γ(1)) − u(γ(0)) : Y is an open neighborhood of γ([0, 1]) ⊂ X,

u ∈ Floc(Y ) ∩ C(Y ),Υ(u, u) ≤ 1 a.e. on Y }

which is greater than ρEN,v
U

(x, y) because we can choose Y to be U . Therefore the

distance ρEN,v
U

(x, y) can be estimated by

ρEN,v
U

(x, y) ≤ inf
γ:[0,1]→U

L(γ) = ρU(x, y) (4.34)

where the infimum above is taken over all continuous curves which are not self-

intersecting.

To show ρEN,v
U

(x, y) ≤ ρU(x, y) in case at least one of the points x, y belongs

to Ũ \ U , choose a sequence {xi}∞i=1 of points in U approximating x ∈ Ũ and a
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sequence {yi}∞i=1 of points in U approximating y ∈ Ũ . For any continuous function

u on Ũ satisfying conditions (4.33), we estimate

|u(x) − u(y)| ≤ inf
i

[
|u(xi) − u(yi)| + |u(x) − u(xi)| + |u(y) − u(yi)|

]

≤ lim inf
i→∞

|u(xi) − u(yi)| ≤ lim inf
i→∞

ρEN,v
U

(xi, yi) = lim inf
i→∞

ρU (xi, yi) = ρU(x, y)

�

Corollary 4.2.6 In the context of Proposition 4.2.1, the metric ρEN,v
U

is every-

where finite and the topology given by this metric coincides with the original topol-

ogy on Ũ , i.e. the assumptions (A1) and (A2) of Chapter 2.1.2 are satisfied for

the Dirichlet form (EN,v
U ,D(EN,v

U )).

Since all the results used to prove Theorem 4.0.5 were extended to be true for

the Dirichlet form (EN,v
U ,D(EN,v

U )) under some conditions for the function v, in fact

we have shown a stronger result.

Theorem 4.2.7 In the assumptions of Theorem 4.0.5, let v ∈ L∞
loc(U, µ) be a

locally uniformly positive and locally bounded measurable function on U . Assume

that the measure vdµ on U satisfies the doubling condition (2.12). Assume also

that there exist positive constants C and N such that the function v satisfies the

Harnack inequality

sup
B
v ≤ C inf

B
v (4.35)

on any ball B = BU (x,R) with ρU(B, Ũ \ U) ≥ NR. Then there exists a kernel

pN,v
U (t, x, y) of the semigroup PN,v

U,t on L2(U, vdµ) and it satisfies

c1 exp
(
−ρU (x,y)2

c2t

)

√
Vv(x,

√
t)Vv(y,

√
t)

≤ pN,v
U (t, x, y) ≤

c3 exp
(
−ρU (x,y)2

c4t

)

√
Vv(x,

√
t)Vv(y,

√
t)

(4.36)

for all x, y ∈ U and all t > 0. Here Vv denotes the volume

Vv(x, r) =

∫

BU (x,r)

vdµ
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For any positive integer k there exists a constant C(k) such that the k-th time

derivative of the heat kernel pN,v
U (t, x, y) satisfies

∣∣∣∣∣

(
∂

∂t

)k

pN,v
U (t, x, y)

∣∣∣∣∣ ≤
C(k) exp

(
−ρU (x,y)2

c5t

)

tk
√
Vv(x,

√
t)Vv(y,

√
t)

(4.37)

for all x, y ∈ U and all t > 0. Also for arbitrary z ∈ U every nonnegative (local)

weak solution in (0, 4r2) ×BU(z, 2r) of the equation

∂u

∂t
+ LN,v

U u = 0

satisfies

sup
(t,x)∈Q−

u(t, x) ≤ c6 inf
(t,x)∈Q+

u(t, x) (4.38)

where Q− = (r2, 2r2) × BU(z, r), Q+ = (3r2, 4r2) × BU(z, r). Here the constants

c1, . . . , c6 and C(k) depend only on k,N, C and the constants c0, c1, c2 appearing

in (2.12) and in Definition 3.1.2. In particular the form (EN,v
U ,D(EN,v

U )) is also a

Harnack type regular Dirichlet form on Ũ , see Definition 2.5.1.

Proof. Similarly to Proposition 2.4.9 we know that the form (EN
U ,D(EN

U )) is a

closed strictly local symmetric form on L2(U, µ). In view of Theorem 2.6.1, the

following results combined imply this theorem

• The assumption that the measure vdµ satisfies the doubling condition (2.12)

on (Ũ , ρU).

• The family of Poincaré inequalities proved in Corollary 4.1.11.

• Proposition 4.2.1 shows that the Dirichlet form (EN,v
U ,D(EN,v

U )) is regular on

L2(Ũ , vdµ).

• Lemma 4.2.5 shows that the metric ρEN,v
U

associated with the Dirichlet form

(EN,v
U ,D(EN,v

U )) coincides with ρU . In particular this implies conditions (A1)

and (A2) of Chapter 2.1.2.
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• Finally any time derivative of the heat kernel can be estimated from above

as in (4.37) by [16, Theorem 4] which uses the estimates of the heat kernel

to produce the estimates on its time derivative using the analytic nature of

the heat kernel.
�

This completes the analysis of the Neumann heat kernel, and the proof of

Theorem 4.0.5 and Theorem 1.3.1. These results will be reused for the analysis of

the Dirichlet heat kernel.



Chapter 5

Dirichlet heat kernel
Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support, and (E ,D(E)) - a strictly local regular Dirichlet

form on X satisfying the conditions (A1-A4) of Chapter 2.1.2. Let U be an open

subset of X. Let ρ = ρE be the metric associated with the Dirichlet form (E ,D(E)),

and let ρU denote the inner geodesic metric in U , see (3.2). Let Ũ be the completion

of U with respect to ρU . Throughout this section let BU (x, r) denote the open ball

in (Ũ , ρU) centered at x, unless otherwise specified.

The goal of this section is to obtain the heat kernel estimates for the Dirichlet

semigroup PD
U,t in case when U ⊂ X is unbounded inner uniform. We will use the

technique of h-transform to prove the following result that implies Theorem 1.3.3

when X = Rn.

Theorem 5.0.8 Let (X,µ) be as above and assume that the Dirichlet form (E ,D(E))

admits a carré du champ operator Υ : D(E) × D(E) → L1(X,µ), as in Definition

2.1.10. Assume that the Dirichlet form (E ,D(E)) satisfies the conditions (A1-A4)

of Chapter 2.1.2. Let U be an unbounded inner uniform domain in X, see Def-

inition 3.1.2. Then there exists a nonnegative local (weak) solution h ∈ F0
loc(U)

of Lh = 0 in U with weak Dirichlet boundary conditions on ∂U . For any such

function h, the Dirichlet heat kernel pD
U (t, x, y) in U satisfies

c1h(x)h(y) exp
(
−ρU (x,y)2

c2t

)

√
Vh2(x,

√
t)Vh2(y,

√
t)

≤ pD
U (t, x, y) ≤

c3h(x)h(y) exp
(
−ρU (x,y)2

c4t

)

√
Vh2(x,

√
t)Vh2(y,

√
t)

(5.1)

for all x, y ∈ U and all t > 0. Here

Vh2(x, r) =

∫

BU (x,r)

h2dµ (5.2)

79



80

is the volume of BU(x, r) with respect to the measure h2dµ. For any positive integer

k there exists a constant C(k) such that the k-th time derivative of the Dirichlet

heat kernel in U satisfies

∣∣∣∣∣

(
∂

∂t

)k

pD
U (t, x, y)

∣∣∣∣∣ ≤
C(k)h(x)h(y)

tk
√
Vh2(x,

√
t)Vh2(y,

√
t)

exp

(
−ρU (x, y)2

c5t

)
(5.3)

for all x, y ∈ U and all t > 0. For any z ∈ Ũ every nonnegative weak solution of

the heat equation in (0, 4r2) × BU(z, 2r) with weak Dirichlet boundary conditions

on ∂U satisfies

sup
(t,x)∈Q−

(
u(t, x)

h(x)

)
≤ c6 inf

(t,x)∈Q+

(
u(t, x)

h(x)

)
(5.4)

where Q− = (r2, 2r2) × BU(z, r), Q+ = (3r2, 4r2) × BU (z, r). The constants

c1, . . . , c7 depend only on the constants c0, c1, c2, c3 appearing in Definition 3.1.2,

(2.12) and (2.13).

Remark 1. In the context of Theorem 5.0.8 the volume function appearing in

(5.2) can be estimated by

c−1
7 h2(xr)µ(BU(x,R)) ≤ Vh2(x, r) ≤ c7h

2(xr)µ(BU(x,R)),

where xr is any point with ρU(xr, x) = r
4

and ρU(xr, Ũ \U) ≥ c1
8
r. Such a point xr

exists by Lemma 4.1.5. The constant c7 depends only on the constants c0, c1, c2, c3

appearing in (2.12), (2.13) and in Definition 3.1.2.

Remark 2. In the context of Theorem 5.0.8 using the heat kernel estimates (5.1)

we can see [35] that the quotient h(x)
h(x√

t)
is comparable to

h(x)

h(x√t)
≍ PD

U,t1U(x),

which is the probability that the process Xt started at x stays in U for the duration

of time t, or the total heat content after time t of the diffusion system with original
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heat distribution given by a delta mass at x. We will denote this probability by

P (t, x). This implies in particular that the Dirichlet heat kernel can be estimated

by

c1P (t, x)P (t, y) exp
(
−ρU (x,y)2

c2t

)

√
V (x,

√
t)V (y,

√
t)

≤ pD
U (t, x, y) ≤

c3P (t, x)P (t, y) exp
(
−ρU (x,y)2

c4t

)

√
V (x,

√
t)V (y,

√
t)

.

Before embarking on the proof of Theorem 5.0.8 we focus on developing some

tools.

5.1 Application of the axiomatic potential theory, the har-

monic measure and the maximum principle

The setting of this section is that of a Harnack-type Dirichlet space (E ,D(E)) on

a locally compact separable metric measure space (X,µ). The aim of this section

is to provide the basis for the axiomatic potential theory as described in [14]. We

will state a theorem that uses the method of Perron-Wiener-Brelot to construct

the harmonic measure from the point of view of potential theory, rather than

the theory of Markov processes, as in Chapter 2.7. Even though the two notions

coincide, throughout the rest of this paper we will work only with the potential

theoretic notion of the harmonic measure. We will need the following notation.

Definition 5.1.1 Let H denote the sheaf of harmonic functions on X, i.e. for

any open set V ⊂ X let H(V ) denote the set of local weak solutions in V of Lu = 0.

Harmonic functions are Hölder continuous according to (2.5.2). The elliptic version

of the Harnack inequality (2.38) is satisfied for every function in H(V ). The sheaf

H coincides with the sheaf of harmonic functions with respect to the process Xt

defined in Chapter 2.7, see [31]. The space X together with a harmonic sheaf H

is a Brelot space, and even a P-Brelot space, see [10, Chapter 2.5 and Theorem
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3.1.1]. Such spaces possess a rich potential theory and we refer to [10, 14] for the

terminology and results, some of which we recall here.

Definition 5.1.2 An open relatively compact subset V of X is called regular if for

every continuous function φ on ∂V there exists a unique harmonic function HV
φ

on V which is a continuous extension of φ to V .

We recall that by definition, Brelot spaces are such that the regular sets form a

base of the topology for X. For any regular set V and any point x ∈ V , the map

HV
· (x) : C(∂V ) → R, φ→ HV

φ (x)

is then associated with a measure which will be denoted by ω(x, ·, V ), so that

HV
φ (x) =

∫

∂V

φ(y)ω(x, dy, V ).

The measure ω(x, ·, V ) is called the harmonic measure of V . The probabilistic

approach of Chapter 2.7 allowed us to construct such a measure (and the function

HV
φ ) via the process Xt.

Next we will extend the harmonic measure to more general sets. We will need

the following definitions.

Definition 5.1.3 A lower semicontinuous function f with values in R ∪ {+∞}

is called hyperharmonic in V if for any x0 ∈ V , there exists a neighborhood

V ′ ⊂ V of x such that for any regular set V ′′ with V ′′ ⊂ V ′, we have

∫

∂V ′′
f(y)ω(x, dy, V ′′) ≤ f(x), for any x ∈ V ′′

Let U denote the sheaf of hyperharmonic functions on X, so that U(V ) denotes

the convex cone of hyperharmonic functions on V .
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Definition 5.1.4 An upper semicontinuous function f with values in R∪{−∞} is

called hypoharmonic if −f is hyperharmonic in V . Let L denote the sheaf of hy-

poharmonic functions on X, so that L(V ) denote the convex cone of hypoharmonic

functions on V .

We will now introduce the harmonic measure for non-regular open sets. Let V

be any relatively compact open subset of X. Let f be a function on ∂V . As in

[14, p.18], we define the ’upper class’ of hyperharmonic functions associated with

f by

UV
f =

{
u ∈ U(V ) : u is bounded from below on V,

non-negative outside a compact subset of V

and ∀y ∈ ∂V, lim inf
V ∋x→y

u(x) ≥ f(y)

}

Similarly we define the ’lower class’ of hypoharmonic functions by

LV
f =

{
u ∈ L(V ) : u is bounded from above on V,

non-positive outside a compact subset of V

and ∀y ∈ ∂V, lim sup
V ∋x→y

u(x) ≤ f(y)

}

We define the upper and lower solutions of the Dirichlet problem in V with bound-

ary conditions f by

H
V

f (x) = inf

{
u(x) : u ∈ UV

f

}
, HV

f (x) = sup

{
u(x) : u ∈ LV

f

}
, (5.5)

If the class UV
f (resp. LV

f ) is empty, then H
V

f (resp. HV
f ) is identically +∞

(resp.−∞). A simple argument shows that HV
f ≤ H

V

f on V .

Definition 5.1.5 ([14], p.19) An open set V ⊂ X is called resolutive if for any

finite continuous function φ with compact support on ∂V , the upper and lower

solutions H
V

φ and HV
φ on V coincide and are harmonic in V .
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On resolutive sets we will set HV
φ = H

V

φ = HV
φ . The function HV

φ can be repre-

sented as

HV
φ (x) =

∫

∂V

φ(y)ω(x, dy, V )

for some measure ω(x, ·, V ) on ∂V . This completes the extension of the harmonic

measure to resolutive sets. We recall the following important result.

Theorem 5.1.6 (see [14], Theorem 2.4.2) Any open relatively compact subset

V of X is resolutive.

Definition 5.1.7 ([14], §2.2) A hyperharmonic function f ∈ U(V ) is called su-

perharmonic in an open subset V of X if for any relatively compact open subset

V ′ ⊂ V , the function ∫

∂V ′
f(y)ω(x, dy, V ′)

is harmonic in V ′. A hypoharmonic function f ∈ L(V ) is called subharmonic

in V if −f is superharmonic in V .

Definition 5.1.8 ([14], §2.2) A positive superharmonic function p on V is called

a potential on V if no positive harmonic function u on V satisfies u ≤ p on V .

For any potential p on V , we denote the harmonic support S(p) of p to be the

set where p is not harmonic.

Definition 5.1.9 ([14], §6.2) A bounded set K ⊂ X is called polar if there ex-

ists a covering of K by a family B of open subsets W ∈ B of X for every W ∈ B

there exists a positive hyperharmonic function f on W which is finite on W \ K

and identically +∞ on W ∩K.

In our context the following axioms are satisfied for the harmonic sheaf H and

the hyperharmonic sheaf U .
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Proposition 5.1.10 (Axiom of Proportionality, see Theorem 3.1.1 in [10])

Any two potentials which are harmonic outside a given point are proportional.

Proposition 5.1.11 (Axiom of Domination, see §9.2 in [14]) For any open

relatively compact subset V of some regular subset of X and for any bounded hyper-

harmonic function u defined in a neighborhood of V , HV
u is the greatest harmonic

minorant of the restriction u|V .

Proof. See Theorem 9.2.1 in [14] and Theorem 4.12 in [13]. �

According to [14, Theorem 9.2.1] the Axiom of Domination in our setting im-

plies the following equivalent facts.

(i) Any locally bounded potential p on X is continuous if its restriction to the

set S(p) is continuous.

(ii) For any locally bounded potential p on X and any positive hyperharmonic

function u on X, we have

u ≥ p on S(p) ⇒ u ≥ p on X.

Proposition 5.1.12 (Axiom of Polarity, see §9.1 in [14]) For any open set

V of X and for any family S of positive hyperharmonic functions on V , the set

{x ∈ V | ̂inf
u∈S

u(x) < inf
u∈S

u(x)}

is polar. Here f̂ denotes the lower semi-continuous regularization of f .

Proof. In our setting this proposition follows from [31, Theorems 4.1.2 and 4.1.3]

together with [14, Theorem 9.1.1]. Alternatively, the axiom of domination is known

to imply the axiom of polarity. �



86

In our context polar sets are exactly the sets of one-capacity zero, see e.g.

[31, Theorem 4.2.1, Theorem 4.1.2, Theorem 2.1.6]. Therefore the notion ’quasi-

everywhere’ introduced through capacity in Chapter 2.4.1 also means ’except on a

polar set’.

We now move on to prepare a version of maximum principle.

Definition 5.1.13 A point y ∈ ∂V is called regular if for every continuous func-

tion φ on ∂V we have

lim
V ∋x→y

HV
φ (x) = φ(y).

a point y ∈ ∂V is called irregular if it is not regular.

It is known that the set of irregular points of ∂V form a set of capacity zero,

see [12, VII.4.2] and [14, Theorem 9.1.1 (i)] together with [31, Theorem ] where it

is proved that such sets are polar. It is also known that the measure ω(x, ·, V ) does

not charge subsets of ∂V of capacity zero. Also both H
V

f and HV
f do not change

if we alter the function f on a set of capacity zero. These facts are shown in [14,

Chapter 2] and are sufficient to imply the following maximum principle.

Proposition 5.1.14 (Maximum principle) Let V be a relatively compact sub-

set of X. Let u be any bounded from above subharmonic function in V . Assume

that for some constant C, we have

lim sup
V ∋x→y

u(x) ≤ C

for quasi every y ∈ ∂V . Then u ≤ C in V . Moreover if we also assume that for

some D ≤ C we have

lim sup
V ∋x→y

u(x) ≤ D

for all y ∈ E ⊂ ∂V , then

u ≤ D + (C −D)ω(·, ∂V \ E, V ) on V.
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Proof. Define φ : ∂V → R by

φ(y) = lim sup
V ∋x→y

u(x).

The function u belongs to the lower class LV
φ . Therefore since HV

φ ≤ H
V

φ , we have

u ≤ H
V

φ on V . The first part of this proposition follows from the fact that H
V

φ

does not change if we alter the function φ on a set of capacity zero. Therefore,

u ≤ H
V

φ ≤ H
V

C = C

on V . To show the second estimate of this proposition, consider any continuous

function ϕ on ∂V which is at least C on ∂V \ E and at least D on E. Then we

have ϕ ≥ φ quasi everywhere on ∂V , and therefore for any x ∈ V , we have

u(x) ≤ H
V

φ (x) ≤ H
V

ϕ (x) = HV
ϕ (x) =

∫

∂V

ϕ(y)ω(x, dy, V )

on V . Taking the infimum over all such continuous functions ϕ, we obtain the

desired inequality

u ≤ D + (C −D)ω(·, ∂V \ E, V ) on V.

�

It follows that in order to compare two bounded local solutions of Lu = 0 in

an open set V it suffices to compare their limit behavior around quasi every point

of ∂V .

5.2 Local solutions, Dirichlet case, revisited

In the context of a Harnack-type Dirichlet form (E ,D(E)) on L2(X,µ), we are now

ready to give an alternative view on F0
loc(V, U), see Definition 2.4.3.
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Definition 5.2.1 For any set V ⊂ U let V # denote the interior of the closure of

V in Ũ .

Lemma 5.2.2 Let V be any open subset of U . A function f belongs to the space

F0
loc(V, U) of Definition 2.4.3, if and only if for any open set Ω ⊂ V which is

relatively compact in V #, the function f |Ω has an extension to a function in D(ED
U ).

Proof. Indeed, the sets Ω considered in Definition 2.4.3 are exactly the open sets at

a positive ρU -distance from U\V which are relatively compact in U , or equivalently,

relatively compact in Ũ . The relatively compact in Ũ set Ω is relatively compact

in V # if and only if ρU (Ω, U \ V ) > 0. �

Lemma 5.2.3 Let V be an open subset of U . A function f ∈ Floc(V ) is in

F0
loc(V, U) if and only if for every bounded function φ ∈ F(U) with some com-

pact support Ω ⊂ Ũ such that dΓ(φ,φ)
dµ

is bounded on U and ρU(Ω, U \ V ) > 0, we

have φf ∈ D(ED
U ).

Proof. To prove the ’if’ implication, pick any open Ω ⊂ V relatively compact

in U (equivalently, Ω is relatively compact in Ũ) with ρU(Ω, U \ V ) > 0. Denote

ε = ρU(U \ V ,Ω) > 0. Let Ω′ be an ε
2
-neighborhood of Ω in (U, ρU). Then

ρU(Ω′, U \ V ) ≥ ε
2
> 0. Consider a compactly supported in some Ω′′ ⊂ Ũ cutoff

function of the form

φ(x) = max

(
0, 1 − ρU (x,Ω)

ρU(U \ Ω′,Ω)

)
.

The support Ω′′ of φ is a subset of the closure of Ω′ in (Ũ , ρU), and therefore

ρU(Ω′′, U \ V ) ≥ ρU (Ω′, U \ V ) > 0.

We have φf ≡ f on Ω. So the function f̃ = φf satisfies the conditions of Definition

2.4.3 and is in D(ED
U ) by assumption.
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To show ’only if’ pick any bounded function φ ∈ F(U) with some compact

support Ω ⊂ Ũ such that ρU(Ω, U \ V ) > 0 and dΓU (φ,φ)
dµ

is bounded on U . By

definition of F0
loc(V, U) there exists a function f̃ ∈ D(ED

U ) coinciding with f on

Ω ∩ U . By definition of D(ED
U ), f̃ can be approximated in the Hilbert space

D(ED
U ) by functions fn ∈ Fc(U). Since (ED

U ,D(ED
U )) is a Dirichlet form, each of the

functions fn can be approximated in the Hilbert space D(ED
U ) by bounded functions

hn
m = min(max(fn,−m), m) ∈ Fc(U)∩L∞(U, µ). By the standard argument there

exists a sequence in the family {hn
m}∞m,n=1 that converges to f̃ in the Hilbert space

D(ED
U ). Therefore w.l.o.g. we can assume that each of the functions fn is in

Fc(U) ∩ L∞(U, µ).

Let φ̃n ∈ D(E)∩L∞(X,µ) be any function coinciding with φ on the support of

fn. Since both φ̃n and fn are in D(E) ∩ L∞(X,µ), we have

φfn = φ̃nfn ∈ D(E) ∩ L∞(X,µ)

by Lemma 2.1.5. Since the function fn is compactly supported in U , so is φfn and

therefore φfn ∈ Fc(U) ⊂ D(ED
U ) by Lemma 2.2.2.

Since φ is bounded, φfn → φf̃ in L2(U, µ|U). To prove that φfn → φf̃ in ED
U -

norm it suffices to show that the sequence φfn in D(ED
U ) is Cauchy. Using Lemma

2.2.1 and the chain rule we estimate

ED
U (φfn − φfm, φfn − φfm) ≤ 2

∫

U

φ2dΓU(fn − fm, fn − fm) + 2

∫

U

dΓU(φ, φ)(fn − fm)2

≤ 2 sup
U
φ2

∫

U

dΓU(fn − fm, fn − fm) + 2 sup
U

dΓU(φ, φ)

dµ

∫

U

(fn − fm)2dµ→ 0,

as m,n → ∞ because fn is a Cauchy sequence in the Hilbert space D(ED
U ) and

both φ2 and dΓU (φ,φ)
dµ

are bounded on U by assumption. �
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5.3 Green function as a tool

The context of this section is that of a Theorem 5.0.8, i.e. of a Harnack type

strongly local regular Dirichlet form (E ,D(E)) on L2(X,µ) and an open subset U

of X. Throughout the section let BU(x,R) denote a ball in (Ũ , ρU) centered at x,

and let B(x,R) denote a ball in (X, ρ). Let ξ ∈ Ũ \ U and R > 0. For any open

subset V ⊂ X let GV denote the Green function of the Dirichlet form (ED
V ,D(ED

V ))

as in Definition 2.4.2. Let GR = GUR
denote the Green function for the Dirichlet

form (ED
UR
,D(ED

UR
)), in UR = U ∩ B(ξ, R), i.e. a Dirichlet Green function for the

domain UR. As a local (weak) solution of LGR(·, y) = 0 in UR, the Green function

GR(·, y) satisfies the elliptic version of the Harnack inequality (2.38) by Theorem

2.6.1. From Chapter 2.5 we know that GR(x, y) is Hölder continuous locally in UR.

Also the Green function GR(x, y) is symmetric since the semigroup PD
UR,t is.

The following definition introduces the notion of Green capacity.

Definition 5.3.1 Let V be an open subset of X with Green function GV . Define

the Green capacity CapV (E) for a Borel set E ⊂ V by

CapV (E) = sup {µ(E) : GV µ ≤ 1 on V, µ is a Borel measure supported on E}

In the usual way CapV (E) extends to a general set E ⊂ V .

Remark. It turns out that if a set E has capacity zero relatively to one open set

V , then it has capacity zero relative to any open set V containing E. In other

words, the property of having capacity zero does not depend on the set V . Also

it is known that sets of Green capacity zero in this definition are exactly sets of

0-capacity zero, see (2.30) and [31, Chapter 2.2 and Theorem 2.1.6].

For any x ∈ U let δU(x) denote the distance ρU(x, Ũ \ U) = ρ(x,X \ U). We

will make extensive use of the following Green function estimate.
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Lemma 5.3.2 In the context above for any constant ε < 1 there exist constants

C1, C2 such that for any x, y ∈ U ∩ B(ξ, R) with ρ(x, y) ≥ εR, we have

GR(x, y) ≤ C1
R2

µ(B(y, R))
(5.6)

Moreover if U is a uniform domain in X then whenever x, y ∈ B(ξ, R
4c0

) and

δU(x), δU(y), ρ(x, y) ≥ εR

we also have

GR(x, y) ≥ C2
R2

µ(B(y, R)))

where the constants C1 and C2 depend only on ε and the constants c0, c1, c2, c3

appearing in Definition 3.1.1, (2.12) and (2.13).

Proof. We will use the representation of the Green function GR via the heat

kernel of the corresponding Dirichlet heat semigroup in U ∩ B(ξ, R),

GR(x, y) =

∫ ∞

0

pD
U∩B(ξ,R)(t, x, y)dt ≤

∫ ∞

0

pD
B(ξ,R)(t, x, y)dt

For the upper bound (5.6), we use doubling (2.12) together with Theorem 2.6.4

to estimate the Dirichlet heat kernel in the ball B(ξ, R) by

pD
B(ξ,R)(t, x, y) ≤






C
µ(B(x,

√
t))

exp
(
−ρ(x,y)2

5t

)
, if t ≤ R2;

C
µ(B(x,R))

exp
(
−C3

t
R2

)
, if t > R2,

where the constants A,C,C3 depend only on the constants c0, c1, c2, c3 from Defi-

nition 3.1.1 (2.12) and in (2.13). Integrating over t and making use of the doubling

condition (2.12) gives the estimate (5.6).

To prove the corresponding lower estimate in case δU(x), δU(y), ρU(x, y) ∈

(εR, R
2c0

), notice that by a simple geometric argument, we also have ρ(x, y) ≥ εR.

We first estimate GR(z, y) for some z close to y. Let r = δU(y) ∈ (εR, R
2c0

). When
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z ∈ B(y, r) ⊂ U ∩B(ξ, R), we can use the comparison of Dirichlet heat kernels in

U ∩B(ξ, R) and in the ball BU(y, r) = B(y, r) to estimate

GR(z, y) ≥
∫ ∞

0

pD
B(y,r)(t, z, y)dt

Using the doubling condition (2.12) and Theorem 2.6.4 to estimate the Dirichlet

heat kernel in the ball B(y, δU(y)), we see that for t such that 4ρ(z, y)2 ≤ t ≤ (ǫ1r)
2,

∀z ∈ B(y, ǫ2r), pD
B(y,r)(t, y, z) ≥

ǫ3

µ(B(y,
√
t))

≥ ǫ3
µ(B(y, r))

for some constants ǫ1, ǫ2, ǫ3 depending only on c0, c1, c2, c3. Let ǫ4 = min(ǫ2,
1
4
ǫ1).

Then for every z ∈ B(y, ǫ4r) we can integrate the inequality above over t from

(ǫ1r)2

4
to (ǫ1r)

2 to get

GR(z, y) ≥
∫ (ǫ1r)2

(ǫ1r)2/4

pD
B(y,r)(t, y, z)dt ≥

3

4
ǫ3ǫ

2
1

r2

µ(B(y, r))

Using the doubling condition (2.12) we obtain

GR(z, y) ≥ ǫ5
R2

µ(B(x,R))
,

for some constant ǫ5 > 0 depending only on the constants c0, c1, c2, c3. Assume

w.l.o.g. that x 6∈ B(y, ǫ4r). In order to compare GR(x, y) with GR(z, y) for some

z ∈ ∂B(y, ǫ4r), we make use of the uniform property of U together with the

Harnack principle. Since (Ũ , ρU) is uniform and δU(x), δU(y), ρU(x, y) ∈ (εR, 1
2c0
R),

there exists a path γ : [0, 1] → U between x and y of length at most c0ρU (x, y) ≤

c0
R

2c0
= R

2
. The path γ stays in B(ξ, 3

4
R). Also the path γ satisfies ∀t, ρU (γ(t), Ũ \

U) ≥ ǫ6R for some small positive constant ǫ6 depending only on c0, c1, c2, c3. The

constant ǫ6 will be assumed to be less than εǫ4, without loss of generality. Let z

be the last point on the way along the path γ from y to x that is in the closure

of B(y, ǫ6R). Such a point exist because ǫ6R ≤ ǫ4εR ≤ ǫ4r and so x 6∈ B(y, ǫ6R)

by assumption above. The whole segment of the path γ from z to x stays inside
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B(ξ, R) ∩ U at a distance at least ǫ6R away from y, from ∂U and from ∂B(ξ, R).

In view of the Harnack inequality for the function GR(·, y), there is a constant ǫ7

such that

GR(x, y) ≥ ǫ7GR(z, y) ≥ ǫ5ǫ7
R2

µ(B(x,R))
,

and all the constants introduced in this lemma depend only on the constants

c0, c1, c2, c3 appearing in (2.12), (2.13) and in Definition 3.1.1. �

Proposition 5.3.3 Let V be a bounded domain in X. Then for any y0 ∈ V , the

function GV (y0, ·) belongs to the space F0
loc(V \ {y0}, V ).

Proof. Fix any y0 ∈ V . Applying Lemma 2.3.1 to the Dirichlet form (ED
V ,D(ED

V ))

on L2(V, µ), we see that for every t > 0 the Dirichlet heat kernel pD
V (t, ·, y0), belongs

to D(ED
V ) as a function of the second variable.

Next we choose any nonnegative bounded function φ ∈ D(E) with compact

support K ⊂ X such that y0 6∈ K and dΓ(φ,φ)
dµ

is bounded on X. We will show that

the convergence of the integral

φ(x)GV (y0, x) = φ(x) lim
N→∞

∫ N

0

pD
V (t, y0, x)dt (5.7)

is in L2(V, µ). By dominated convergence theorem this would follow from the fact

that φ(x)GV (y0, x) ∈ L2(V, µ) as a function of x. Let

IN (x) =

∫ N

0

pD
V (t, y0, x)dt.

Let R be the diameter of V with respect to ρ. By Theorem 2.6.4 together with

the doubling condition (2.12), the heat kernel for the Dirichlet problem in the ball

B(y0, R) ⊂ X satisfies

pD
B(y0,R)(t, y0, x) ≤





C
µ(B(y0 ,

√
t))

exp
(
−ρ(x,y0)2

5t

)
, if t ≤ R2;

C
µ(B(y0 ,R))

exp
(
−C3

t
R2

)
, if t > R2.

(5.8)
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Integrating over t and using doubling (2.12), we see that the Green function

GB(y0,R)(y0, ·) is uniformly bounded on K. Now V ⊂ B(y0, R), therefore

GV (y0, x) ≤ GB(y0,R)(y0, x)

is also uniformly bounded on K as a function of x and so since φ is supported

on K indeed φ(x)GV (y0, x) ∈ L2(V, µ). Therefore the convergence in (5.7) is in

L2(V, µ).

Finally we will show that the convergence in (5.7) is in ED
V - norm by showing

that the sequence φIN is Cauchy in Hilbert space D(ED
V ). Take any M ≥ N and

let f(x) = IM − IN ≥ 0. We know f ∈ D(ED
V )∩L∞(V, µ). We estimate the energy

using the chain rule

ED
V (φ(IM − IN) , φ(IM − IN))) =

∫

V

dΓ(φf, φf)

=

∫

V

f 2dΓ(φ, φ) + 2

∫

V

φfdΓ(φ, f) +

∫

V

φ2dΓ(f, f)

=

∫

V

f 2dΓ(φ, φ) +

∫

V

dΓ(f, φ2f)

≤ sup
K

dΓ(φ, φ)

dµ

∫

V ∩K

f 2dµ+

∫

V

φ2fLD
V fdµ

= sup
K

dΓ(φ, φ)

dµ

∫

K∩V

f 2dµ+

∫

K∩V

φ2f

(∫ M

N

∂

∂t
pD

V (t, x, y0)dt

)
dµ

≤ sup
K

dΓ(φ, φ)

dµ

∫

K∩V

f 2dµ+ sup
K∩V

[
φ2pD

V (M,x, y0)
] ∫

K∩V

fdµ

The first term tends to zero as M,N → ∞ since dΓ(φ,φ)
dµ

is bounded on X and

IM(x) → GV (y0, x) in L2(K ∩ V, µ), so that f → 0 in L2(V ∩K,µ). Hence f → 0

in L1(K ∩ V, µ) since µ(V ∩K) <∞. Therefore the second term tends to zero as

M,N → ∞ because both ϕ and the Dirichlet heat kernel pD
V (t, x, y0) are bounded

from above for x ∈ V ∩K, using (5.8).

So the sequence φIN is Cauchy in D(ED
V ). Since the form (ED

V ,D(ED
V )) is closed,

the function φ(x)GD
V (y0, x), which is the L2(V, µ)-limit of φIN , must be in D(ED

V ).
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This holds for all nonnegative bounded φ ∈ D(E) with compact support K ⊂ X

such that y0 6∈ K and dΓ(φ,φ)
dµ

is bounded on X; taking for various integers n,

φ = min(1,max(nρ(·, y0) − 1, 0)),

we see that by definition GV (y0, ·) ∈ F0
loc(V \ {y0}, V ). �

This shows that the Green’s function GV (y0, ·), as a measurable function, has

a quasi-continuous representative which is zero quasi-everywhere on ∂V . In our

context of a Harnack-type Dirichlet space, the Green function GV (y0, ·) is a Hölder

continuous function in U , is uniquely determined (at least up to a constant multi-

ple) by the property that it is a potential with harmonic support y0, see Chapter

5.1 and the equivalent notion of potential in [31, Lemma 2.2.6]. Similar to [24,

Chapter VII.4] it is known that in our context the Green function GV (y0, ·) van-

ishes at every regular point of ∂V , i.e. GV (y0, ·) vanishes q.e. at ∂V , see Chapter

5.1. There are examples where GV (y0, ·) does not vanish at some points of ∂V .

5.4 Boundary Harnack Principle on a uniform subset

We will make extensive use of the boundary Harnack principle which we will prove

in this section following the ideas in [2]. First, it is useful in constructing a harmonic

function h which plays a central role in the h-transform - our approach to solving

the Dirichlet heat diffusion problem in U . Second, we will use it to prove that the

measure dν = h2dµ satisfies the doubling condition (2.12).

Let X be a connected locally compact separable metric space, µ - a positive

Radon measure on X with full support, and (E ,D(E)) - a strictly local regular

Dirichlet form on X satisfying the conditions (A1-A4) of Chapter 2.1.2. Let ρ = ρE

be the metric on X corresponding to the Dirichlet form (E ,D(E)). Let U ⊂ X be

an open subset of X.
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For any x ∈ U let δU(x) denote the distance ρU(x, Ũ \ U) = ρ(x,X \ U).

Definition 5.4.1 In this section we say that two functions f and g are comparable

on a set V ⊂ U (write f ≍ g on V ) if there exists a constant A depending only on

the constants c0, c1, c2, c3 appearing in (2.12), (2.13) and in Definition 3.1.1 such

that

1

A
g ≤ f ≤ Ag on V

Theorem 5.4.2 Let (X, ρ, µ) be a metric measure space with a regular Dirichlet

form (E ,D(E)) on a Hilbert space L2(X,µ). Assume that the doubling property

(2.12) and the L2 Poincaré inequality (2.13) are satisfied for all x ∈ X and R > 0.

Let U ⊂ X be an unbounded uniform domain in (X, ρ). Then there exists a

constant A0 > 1 depending only on c0, c1, c2, c3 such that for any ξ ∈ ∂U and

any R > 0, the following boundary Harnack principle holds. Suppose u and v are

positive local solutions of Lu = 0 in U ∩B(ξ, A0R), bounded on U ∩B(ξ, A0R) and

vanishing q.e. on ∂U ∩B(ξ, A0R). Then

u(x)

u(x′)
≍ v(x)

v(x′)
uniformly for x, x′ ∈ U ∩ B(ξ, R)

where the constant of comparison depends only on the constants c0, c1, c2, c3 ap-

pearing in (2.12), (2.13) and in Definition 3.1.1.

We follow the proof of H.Aikawa [2] making use of the Dirichlet Green function

estimates proved in Lemma 5.3.2.

Definition 5.4.3 Let 0 < η < 1. For V ⊂ X we define the capacitary width

wη(V ) by

wη(V ) = inf

{
r > 0 :

CapB(x,2r)(B(x, r) \ V )

CapB(x,2r)(B(x, r))
≥ η for all x ∈ V

}
.
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Proposition 5.4.4 In the setting of Theorem 5.4.2 there exist constants A1, η > 0

depending only on the constants c0, c1, c2, c3 appearing in (2.12), (2.13) and in

Definition 3.1.1 such that for any r > 0 we have

wη({x ∈ U : δU (x) ≤ r}) ≤ A1r (5.9)

Proof. Let V = {x ∈ U : δU(x) ≤ r}. Using the uniform property of U , for every

y ∈ V , there exists a point z ∈ B(y, 2
c1
r) ∩ U with ρ(z, ∂U) ≥ 2r. Let A = 2

c1
+ 1.

Then B(z, r) ⊂ B(y, Ar) \ V , and therefore

CapB(y,2Ar)(B(z, Ar) \ V ) ≥ CapB(y,2Ar)(B(z, r)) ≥ CapB(z,3Ar)(B(z, r))

It remains to prove that

CapB(z,3Ar)(B(z, r)) ≍ CapB(y,2Ar)(B(y, Ar))

This follows from the following capacity estimate for X proven in our setting in

[36]

CapB(y,R)(B(y, r)) ≍
∫ R

r

s

µ(B(y, s))
ds

which together with the volume doubling condition (2.12) implies

CapB(z,3Ar)(B(z, r)) ≍ (3Ar − r)
r

µ(B(z, 2Ar))

CapB(y,2Ar)(B(y, Ar)) ≍ (2Ar −Ar)
Ar

µ(B(y, Ar))

and the right hand sides are comparable. �

The following Lemma relates harmonic measure to capacitary width, and for

the proof we closely follow [2].

Lemma 5.4.5 In the setting of Theorem 5.4.2 there is a positive constant A2

depending only on the constants c0, c1, c2, c3 appearing in (2.12), (2.13) and in
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Definition 3.1.1 such that for any nonempty open subset V of X, any x ∈ V and

any R > 0, we have

ω(x, V ∩ ∂B(x,R), V ∩B(x,R)) ≤ exp

(
2 − A2

R

wη(V )

)
(5.10)

Proof. For any ε > 0 we can choose r with wη(V ) ≤ r < wη(V ) + ε, such that

CapB(y,2r)(B(y, r) \ V )

CapB(y,2r)(B(y, r))
≥ η for all y ∈ V (5.11)

For a moment we fix y ∈ V . Let E = B(y, r)\V and let GB be the Green function

GB(y,2r). Let µE be the capacitary measure of E, i.e.

µE is supported on E ⊂ X,

||µE|| = CapB(y,2r)(E),

GBµE = 1 q.e. on E.

The existence of such a measure can be established in the general context in a way

similar to [31, (2.2.13)]. We claim

GBµE ≥ ǫη on B(y, r) (5.12)

for some constant ǫ depending only on the constants c0, c1, c2, c3 appearing in

(2.12), (2.13) and in Definition 3.1.1. To this end let ν be the capacitary mea-

sure of B(y, r). Then ν is supported on B(y, r) and ||ν|| = CapB(y,2r)(B(y, r)). By

Harnack principle,

GB(·, x) ≍ GB(·, y) on ∂B

(
y,

3

2
r

)

uniformly for x ∈ B(y, r). Hence

GBµE(z) =

∫

E

GB(z, x)dµE(x) ≍ GB(z, y)||µE||,

GBν(z) =

∫

E

GB(z, x)dν(x) ≍ GB(z, y)||ν||
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uniformly for z ∈ ∂B(y, 3
2
r). Since GBν ≍ 1 on ∂B(y, 3

2
r), it follows from (5.11)

that on ∂B(y, 3
2
r),

GBµE ≍ GBµE

GBν
≍ ||µE||

||ν|| =
CapB(y,2r)(E)

CapB(y,2r)(B(y, r))
≥ η.

By the maximum principle of Proposition 5.1.14 applied to the function −GBµE,

(5.12) follows.

Now let us move on to the proof of Lemma 5.4.5. For simplicity write Ω for

ω(·, V ∩ ∂B(x,R), V ∩ B(x,R)). Because of the factor of e2 on the right hand

side of the desired estimate (5.10), without loss of generality we may assume that

R/wη(V ) > 2 and let k be the positive integer such that 2kwη(V ) < R < 2(k +

1)wη(V ). Take r > wη(V ) so close to wη(V ) that 2kr < R. We claim

sup
V ∩B(x,R−2jr)

Ω ≤ (1 − ǫη)j (5.13)

for j = 0, 1, . . . , k. Since k ≈ R
2wη(V )

, (5.13) implies

Ω(x) ≤ (1 − ǫη)k ≤ exp

(
−A2

R

wη(V )

)

where A2 ≈ −1
2

log(1 − ǫη) > 0.

To prove (5.13) by induction, we start with the obvious estimate (5.13) for

j = 0. Assume that (5.13) holds for j − 1 and we shall prove (5.13) for j. In view

of the maximum principle of Proposition 5.1.14, it is sufficient to show that

sup
V ∩∂B(x,R−2jr)

Ω ≤ (1 − ǫη)j. (5.14)

Let y ∈ V ∩ ∂B(x,R − 2jr). Then B(y, 2r) ⊂ B(x,R − 2(j − 1)r), so that (5.13)

for j − 1 implies

Ω ≤ (1 − ǫη)j−1 on V ∩B(y, 2r).

Since Ω vanishes q.e. on ∂V ∩ B(x,R) ⊃ ∂V ∩ B(y, 2r), the maximum principle

of Proposition 5.1.14 implies

Ω ≤ (1 − ǫη)j−1ω(·, V ∩ ∂B(y, 2r), V ∩ B(y, 2r)) on V ∩B(y, 2r). (5.15)
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Let us compare ω(·, V ∩ ∂B(y, 2r), V ∩B(y, 2r)) and 1 −GBµE where µE is as in

(5.12). By the maximum principle of Proposition 5.1.14, we have

ω(·, V ∩ ∂B(y, 2r), V ∩ B(y, 2r)) ≤ 1 −GBµE on V ∩ B(y, 2r),

because this inequality holds q.e. in the limit sense on ∂(V ∩ B(y, 2r)) and both

functions are harmonic inside. In particular

ω(y, V ∩ ∂B(y, 2r), V ∩ B(y, 2r)) ≤ 1 −GBµE(y) ≤ 1 − ǫη

by (5.12). Substituting this into (5.15), we obtain Ω(y) ≤ (1 − ǫη)j for any point

y ∈ V ∩ ∂B(x,R − 2jr). Hence (5.14) and (5.13) follows. �

Lemma 5.4.6 For any point ξ ∈ ∂U and any R > 0 there exists a point ξR ∈ U

with

ρ(ξ, ξR) = 4R, and δU (ξR) = ρ(ξR, ∂U) ≥ 4c1R (5.16)

Proof. Choose ξ ∈ ∂U ⊂ X. Choose an integer i > 0. Applying the uniform

condition (3.5) to some point ξi ∈ U with ρ(ξ, ξi) = 1/i and some other point

ξ′i ∈ U with ρ(ξ, ξ′i) = i, we obtain a path γ connecting ξi and ξ′i satisfying the

condition in Definition 3.1.1. For any R > 0 let ξi,R be a point on this path

with ρ(ξi, ξi,R) = 4R. Then the uniform condition (3.5) together with a triangle

inequality gives

ρ(ξi,R, ∂U) ≥ 4c1R

(
ρ(ξi,R, ξ

′
i)

ρ(ξi, ξ
′
i)

)
≥ 4c1R

(
1 − ρ(ξi,R, ξi)

ρ(ξi, ξ
′
i)

)
≥ 4c1R

(
1 − 4R

i− 1/i

)

letting i go to ∞ we obtain a sequence of points ξi,R in B(ξ, 5R). Since the balls

in X are compact, we can choose a subsequence converging to some point ξR with

ρ(ξ, ξR) = 4R and ρ(ξR, ∂U) ≥ 4c1R, as desired. �
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For any r > 0 we let Ur = B(x, r) ∩ U and we let Gr to be the Green function

for the Dirichlet form (ED
Ur
,D(ED

Ur
)), i.e. the Dirichlet Green function in Ur. This

function has been studied in Chapter 5.3.

Lemma 5.4.7 In the setting of Theorem 5.4.2 there exists a positive constant A3

and A5 depending only on the constants c0, c1, c2, c3 appearing in (2.12), (2.13) and

in Definition 3.1.1, such that for any ξ ∈ ∂U , any R > 0, and any k ≥ A3 we have

ω(·, U ∩ ∂B(ξ, R), U ∩ B(ξ, R)) ≤ A5
µ(B(ξ, R))

R2
GkR(·, ξR) on U ∩B(ξ, R)(5.17)

where ξR is any point in U that satisfies ρ(ξR, ξ) = 4R and 4c1R ≤ δU(ξR) ≤ 4R,

e.g. a point produced in Lemma 5.4.6.

Proof. We follow the structure of the proof in the paper of H.Aikawa [2]. Choose

A3 = 100c0 large enough so that in particular all the paths given by the uni-

form condition (3.5) connecting points in B(ξ, 10R) must stay in UA3R/2 = U ∩

B(ξ, A3

2
R). By the monotonicity of the Green function on the domain it suffices

to prove the lemma with k = A3. Since

B(ξR,
1

2
δU(ξR)) ⊂ U ∩B(ξ, 6R) \B(ξ, 2R) ⊂ UA3R \B(ξ, 2R),

it follows from the maximum principle of Proposition 5.1.14 that

GA3R(·, ξR) ≤ sup
y∈∂B(ξR , 1

2
δU (ξR))

GA3R(y, ξR) on U ∩B(ξ, 2R)

The right hand side is comparable to R2

µ(B(ξ,R))
by Lemma 5.3.2 since both y and

ξR are in BU(ξ, A3R
4c0

). Hence we can find ǫ1 > 0 such that

ǫ1
µ(B(ξ, R))

R2
GA3R(·, ξR) < exp(−1)

on U ∩ B(ξ, 2R). Then

U ∩B(ξ, 2R) =
⋃

j≥0

Uj ∩ B(ξ, 2R), (5.18)
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where

Uj =

{
x ∈ U : exp(−2j+1) ≤ ǫ1

µ(B(ξ, R))

R2
GA3R(x, ξR) < exp(−2j)

}
.

Let Vj =
(⋃

k≥j Uk

)
∩ B(ξ, 2R). We claim that

wη(Vj) ≤ AR exp

(
−2j

λ

)
(5.19)

with some constants A, λ depending only on the constants c0, c1, c2, c3 appearing

in (2.12), (2.13) and in Definition 3.1.1. Suppose x ∈ Vj . Observe that for z ∈

∂B(ξR,
1
2
δU(ξR)), by the uniform condition (3.5), the length of the Harnack chain of

balls in UA3R \{ξR} connecting x to z is at most ǫ2 log
(
ǫ3

R
δU (x)

)
for some constants

ǫ2, ǫ3 depending only on c0, c1, c2, c3, and therefore

exp(−2j) > ǫ1
µ(B(ξ, R))

R2
GA3R(x, ξR)

≥ ǫ4
µ(B(ξ, R))

R2
GA3R(z, ξR)

(
δU(x)

ǫ3R

)λ

≥
(
δU(x)

ǫ5R

)λ

by Lemma 5.3.2 for some positive constants ǫ4, ǫ5, λ depending only on the con-

stants c0, c1, c2, c3. To apply Lemma 5.3.2 we have used that both z and ξR are in

BU(ξ, A3R
4c0

) and that ρ(z, ξR) ≥ 2R. Therefore for any x ∈ Vj we have

δU(x) ≤ ǫ5R exp

(−2j

λ

)

This together with (5.9) yields (5.19).

We proceed by induction. Let R0 = 2R and

Rj =

(
2 − 6

π2

j∑

k=1

1

k2

)
R

for j ≥ 1. Then Rj ↓ R and

∞∑

j=1

exp

(
2j+1 − A2 (Rj−1 −Rj)

AR exp(−2j/λ)

)
(5.20)

=

∞∑

j=1

exp

(
2j+1 − 6A2

Aπ2
j−2 exp

(
2j

λ

))
< C <∞.
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where the constant C is independent of R. Let ω0 = ω(·, U ∩ ∂B(ξ, 2R), U ∩

B(ξ, 2R)) and

dj =






supx∈Uj∩B(ξ,Rj)
R2ω0(x)

µ(B(ξ,R))GA3R(x,ξR)
, if Uj ∩ B(ξ, Rj) 6= ∅,

0, if Uj ∩ B(ξ, Rj) = ∅.

It is sufficient to show that there exists a constant C depending only on the

constants c0, c1, c2, c3 appearing in (2.12), (2.13) and in Definition 3.1.1, such that

sup
j≥0

dj ≤ C <∞

Since ω0 < 1, we have by definition of U0,

d0 = sup
U0∩B(ξ,2R)

R2ω0(x)

µ(B(ξ, R))GA3R(x, ξR)
≤ ǫ1e

2

Let j > 0. For x ∈ Uj−1 ∩B(ξ, Rj−1) we have

ω0(x) ≤ dj−1
µ(B(ξ, R))

R2
GA3R(x, ξR)

Also ω0 ≤ 1. Therefore the maximum principle of Proposition 5.1.14 yields

that

ω0(x) ≤ ω(x, Vj ∩ ∂B(ξ, Rj−1), Vj ∩ B(ξ, Rj−1)) + dj−1
µ(B(ξ, R))

R2
GA3R(x, ξR)

(5.21)

for x ∈ Vj∩B(ξ, Rj−1). If x ∈ U∩B(ξ, Rj), then B(x,Rj−1−Rj)∩∂B(ξ, Rj−1) = ∅,

so that the first term on the right hand side is not greater than

ω(x, Vj ∩ ∂B(x,Rj−1 −Rj), Vj ∩ B(x,Rj−1 − Rj)) ≤ exp

(
2 − A2

Rj−1 − Rj

wη(Vj)

)

≤ exp

(
2 − A2

A
exp

(
2j

λ

)
Rj−1 −Rj

R

)
= exp

(
2 − ǫ6j

−2 exp

(
2j

λ

))

by Lemma 5.4.5 and (5.19). Here ǫ6 = 6A2

π2A
. Moreover, ǫ1

µ(B(ξ,R))
R2 GA3R(x, ξR) ≥

exp(−2j+1) for x ∈ Uj by definition. Hence (5.21) becomes

ω0(x) ≤ exp

(
2 − ǫ6j

−2 exp

(
2j

λ

))
+ dj−1

µ(B(ξ, R))

R2
GA3R(x, ξR)

≤
(
ǫ1 exp

(
2j+1 − ǫ6j

−2 exp

(
2j

λ

))
+ dj−1

)
µ(B(ξ, R))

R2
GA3R(x, ξR)
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Dividing both sides by µ(B(ξ,R))
R2 GA3R(x, ξR) and taking the supremum over x ∈

Uj ∩B(ξ, Rj), we obtain

dj ≤ ǫ1 exp

(
2j+1 − ǫ6j

−2 exp

(
2j

λ

))
+ dj−1

and hence for every integer i > 0

di ≤ ǫ1

∞∑

j=1

exp

(
2j+1 − 6A2

π2A
j−2 exp

(
2j

λ

))
<∞

by (5.20). �

Let A3 be the constant appearing in Lemma 5.4.7. The next lemma is a version

of a boundary Harnack estimate for Green’s functions. For the proof we follow H.

Aikawa [2].

Lemma 5.4.8 In the setting of Theorem 5.4.2, there exists a constant A4 depend-

ing only on the constants c0, c1, c2, c3 of (2.12), (2.13) and Definition 3.1.1 with

A4 ≥ A3 + 7, such that for any ξ ∈ ∂U and any R > 0, we have

GA4R(x, y)

GA4R(x′, y)
≍ GA4R(x, y′)

GA4R(x′, y′)
for x, x′ ∈ B(ξ, R) and y, y′ ∈ U ∩ ∂B(ξ, 6R) (5.22)

with the constant of comparison depending only on the constants c0, c1, c2, c3 ap-

pearing in (2.12), (2.13) and in Definition 3.1.1.

Proof. Set A4 = A3 + 7 ≥ 100c0 + 7 so that in particular all the paths given by

the uniform condition (3.5) connecting points in B(ξ, 10R) must stay in UA4R/2 =

U ∩ B(ξ, A4

2
R). Let us take x∗ ∈ U ∩ ∂B(ξ, R) and y∗ ∈ U ∩ ∂B(ξ, 6R) such that

c1R ≤ δU (x∗) ≤ R and 6c1R ≤ δU (y∗) ≤ 6R. It is sufficient to show

GA4R(x, y) ≍ GA4R(x∗, y)

GA4R(x∗, y∗)
GA4R(x, y∗) (5.23)

for x ∈ U ∩ B(ξ, R) and y ∈ U ∩ ∂B(ξ, 6R).

First we show that the left hand side of (5.23) is not less than the right hand

side of (5.23) up to a multiplicative constant. To this end we fix y ∈ U ∩∂B(ξ, 6R)

and observe that
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• u(x) = GA4R(x, y) is a positive harmonic function on UA4R \ {y} vanishing

q.e. on ∂UA4R;

• v(x) =
GA4R(x∗,y)

GA4R(x∗,y∗)GA4R(x, y∗) is a positive harmonic function on UA4R \ y∗

vanishing q.e. on ∂UA4R.

Since y∗ ∈ U ∩ ∂B(ξ, 6R) and 6c1R ≤ δU(y∗) ≤ 6R, it follows that the ball

B(y∗, 3c1R) ⊂ U ∩ B(ξ, 9R) \B(ξ, 3R) ⊂ U .

Let us prove that u ≥ Av on ∂B(y∗, c1R). Take z ∈ ∂B(y∗, c1R). Then by

repeated application of the Harnack inequality,

v(z) =
GA4R(x∗, y)

GA4R(x∗, y∗)
GA4R(z, y∗) ≍ GA4R(x∗, y)

GA4R(x∗, y∗)
GA4R(x∗, y∗)

= GA4R(x∗, y) ≤ C1
R2

µ(B(ξ, R))
. (5.24)

by Lemma 5.3.2.

If y ∈ B(y∗, 2c1R), then u(z) = GA4R(z, y) ≥ C2
R2

µ(B(ξ,R))
by Lemma 5.3.2,

so that u(z) ≥ Av(z) for some constant A independent of R and ξ. If y ∈ U \

B(y∗, 2c1R), then z and x∗ can be connected by a Harnack chain in UA4R \ {y} of

fixed length, and so

v(z) ≍ GA4R(x∗, y) ≍ GA4R(z, y) = u(z)

by (5.24). Hence we have u ≥ Av on ∂B(y∗, c1R) in any case. By the maximum

principle of Proposition 5.1.14, u ≥ Av on UA4R \ B(y∗, c1R) which includes U ∩

B(ξ, R).

For the opposite estimate we make use of Lemma 5.4.7. For x ∈ U ∩ B(ξ, 2R)

and z ∈ U ∩ B(ξ, 9R) \B(ξ, 3R) we have

GA4R(x, z) ≤ C1
R2

µ(B(ξ, R))
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by Lemma 5.3.2. Regarding GA4R(x, z) as a harmonic function of x, we obtain

from the maximum principle of Proposition 5.1.14 that

GA4R(·, z) ≤ C1
R2

µ(B(ξ, R))
ω(·, U ∩ ∂B(ξ, 2R), U ∩ B(ξ, 2R)) on U ∩B(ξ, 2R)

We obtain from Lemma 5.4.7 and the Harnack inequality that

GA4R(x, z) ≤ C1
R2

µ(B(ξ, R))
A5
µ(B(ξ, R))

R2
GA4R(x, ξR) ≤ ǫ1GA4R(x, y∗) (5.25)

for x ∈ U ∩ B(ξ, R) and z ∈ U ∩ B(ξ, 9R) \ B(ξ, 3R) and some constant ǫ1 >

0 independent of ξ, R. Now fix x ∈ U ∩ B(ξ, R) and y ∈ U ∩ ∂B(ξ, 6R). If

δU(y) ≥ 1
2
c1R, then GA4R(x, y) ≍ GA4R(x, y∗) and GA4R(x∗, y) ≍ GA4R(x∗, y∗)

by the Harnack inequality, so that (5.23) follows. Hence we can assume that

δU(y) < 1
2
c1R. Then we can find a point ξ′ ∈ ∂U such that ρU(ξ′, y) < 1

2
c1R.

Observe that y ∈ U ∩ B(ξ′, 1
2
c1R) ⊂ U ∩ B(ξ, R) since without loss of generality

c1 < 1. Also

U ∩B(ξ′, 2R) ⊂ U ∩ B(y, 3R) ⊂ U ∩ B(ξ, 9R) \B(ξ, 3R).

Hence (5.25) implies GA4R(x, z) ≤ ǫ1GA4R(x, y∗) for z ∈ U ∩B(ξ, 2R), so that

GA4R(x, y) ≤ ǫ1GA4R(x, y∗)ω(y, U ∩ ∂B(ξ′, 2R), U ∩ B(ξ′, 2R)). (5.26)

Let us invoke Lemma 5.4.7 with replacing ξ by ξ′. Since ρ(ξ, ξ′) ≤ ρ(ξ, y) +

ρ(y, ξ′) ≤ 7R, it follows that U ∩ B(ξ′, A3R) is a subset of U ∩ B(ξ, (A3 + 7)R) =

UA4R. Hence

ω(y, U ∩ ∂B(ξ′, 2R), U ∩ B(ξ′, 2R)) ≤ A5
µ(B(ξ′, R))

R2
GU∩B(ξ′,A3R)(y, ξ

′
R)

≤ A5
µ(B(ξ′, R))

R2
GA4R(y, ξ′R) ≍ µ(B(ξ, R))

R2
GA4R(ξ′R, y) (5.27)

with ξ′R ∈ U ∩ ∂B(ξ′, 4R) such that 4c1R ≤ δU(ξ′R) ≤ 4R. Here we have used the

symmetry of Green function and the doubling condition (2.12). Hence (5.26) and

(5.27) give

GA4R(x, y) ≤ ǫ2GA4R(x, y∗)
µ(B(ξ, R))

R2
GA4R(ξ′R, y).
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for some constant ǫ2 > 0 independent of ξ and R. Observe that since w.l.o.g.

c1 < 1, we have

ρ(ξ′R, y) ≥ ρ(ξ′R, ξ
′) − ρ(ξ′, y) ≥ 4R− 1

2
c1R ≥ 2R,

ρ(x∗, y) ≥ ρ(ξ, y) − ρ(x, ξ) = 6R− R = 5R.

Therefore using the uniform property of U we can connect x∗ and ξ′R by a fixed

length chain of balls B(xi, ǫ3R) in U \ {y} so that B(xi, 2ǫ3R) ⊂ U \ {y} and

B(xi, ǫ3R) ∩ B(xi+1, ǫ3R) 6= ∅. Here the constant ǫ3 depends only on the con-

stants c0, c1, c2, c3. Then by Harnack principle GA4R(ξ′R, y) ≍ GA4R(x∗, y). Since

GA4R(x∗, y∗) ≍ R2

µ(B(ξ,R))
by Lemma 5.3.2, it follows that

GA4R(x, y) ≤ ǫ4
GA4R(x∗, y)

GA4R(x∗, y∗)
GA4R(x, y∗)

for some constant ǫ4 which depends only on the constants c0, c2, c3, c4 appearing

in (2.12), (2.13) and in Definition 3.1.1. This completes the proof of the upper

estimate in (5.23) and thus the proof of this lemma. �

In order to prove Theorem 5.4.2 we represent u and v as regularized reduced

functions and then as Green potentials. In general let E be a subset of UA4R and

let u be a positive harmonic function on UA4R. Let ΦE
u be he family of all positive

superharmonic functions v on UA4R such that v ≥ u on E and let

RE
u (x) = inf{v(x) : x ∈ ΦE

u }

The lower regularization R̂E
u is called the regularized reduced function of u to E

relative to UA4R. It is known that R̂E
u ≤ u in UA4R, R̂E

u = u q.e. on E and that R̂E
u

is superharmonic on UA4R and harmonic on UA4R \ Ē, see [14, §5.3]. The global

positivity and superharmonicity of u over UA4R is essential.
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Proof of Theorem 5.4.2. Let u, v be positive harmonic functions as in Theorem

5.4.2. Then R̂
U∩∂B(ξ,6R)
u is a lower semicontinuous superharmonic function on UA4R

such that R̂
U∩∂B(ξ,6R)
u = u q.e. on U ∩ ∂B(ξ, 6R) and harmonic on U ∩ B(ξ, 6R).

Moreover 0 ≤ R̂
U∩∂B(ξ,6R)
u ≤ u and u vanishes q.e. on ∂UA4R∩∂U6R by assumption.

Hence R̂
U∩∂B(ξ,6R)
u = u on U ∩B(ξ, 6R) by the maximum principle of Proposition

5.1.14. By [14, Proposition 5.3.5], R̂
U∩∂B(ξ,6R)
u is a Green potential of some Borel

measure µ supported on U ∩ ∂B(ξ, 6R), we have

u(x) =

∫

U∩∂B(ξ,6R)

GA4R(x, y)dµ(y) for x ∈ U ∩ B(ξ, 6R)

Choose any y′ ∈ U ∩ ∂B(ξ, 6R). Using Lemma 5.4.8, we can write

u(x) ≍ GA4R(x, y′)

∫
U∩∂B(ξ,6R)

GA4R(x′, y)dµ(y)

GA4R(x′, y′)
for x, x′ ∈ U ∩B(ξ, R)

Therefore

u(x)

u(x′)
≍ GA4R(x, y′)

GA4R(x′, y′)
≍ v(x)

v(x′)
for any x, x′ ∈ U ∩ B(ξ, R)

�

5.5 Construction and properties of a réduite

Let X be a connected locally compact separable metric space, µ - a positive Radon

measure on X with full support. Throughout this section we assume that (E ,D(E))

is a strictly local regular Dirichlet form on L2(X,µ) satisfying the conditions (A1-

A4) of Chapter 2. Let U be an unbounded domain in X.

In this section we will construct a réduite, i.e. a local (weak) solution h ∈

F0
loc(U) of the equation Lh = 0 in U , see Definition 2.4.3. As a consequence of the

remark following Definition 2.4.3, the harmonic function h that we are looking for
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will equal to zero on ∂U in quasi-continuous sense. For our construction we will

assume that the following local boundary Harnack principle is satisfied for local

(weak) solutions of Lu = 0 in U with the Dirichlet boundary conditions on ∂U ,

see [6].

Definition 5.5.1 Let (E ,D(E)) be a strongly local regular Dirichlet form on L2(X,µ).

Let U ⊂ X be an open subset of X. We say that a local boundary Harnack princi-

ple is satisfied for the set U if for any ξ ∈ ∂U there exists exist constants A > 1,

C > 0 and R > 0, such that the following boundary Harnack principle holds. Sup-

pose u and v are positive local solutions of Lu = 0 in U ∩ B(ξ, AR), bounded on

U ∩B(ξ, AR) and vanishing q.e. on ∂U ∩B(ξ, AR). Then

u(x)

u(x′)
≤ C

v(x)

v(x′)
for all x, x′ ∈ U ∩B(ξ, R) (5.28)

Remark. In case when U is a uniform domain in (X, ρ), a stronger boundary

Harnack principle holds by Theorem 5.4.2.

Fix a point y ∈ U . Let {ri}∞i=1 be an increasing sequence of radii, ri → ∞

as i → ∞. Let {Bi}∞i=1, Bi = BU(y, ri) be a sequence of balls in (U, ρU). Let

xi ∈ BU(y, ri/2), i = 1, 2, . . . be a sequence of points converging to a point at

infinity of the one-point compactification of X. Consider the sequence of functions

hi(x) =
GBi

(xi, x)

GBi
(xi, y)

.

We will construct a réduite function h as a limit of some subsequence of {hi}∞i=1.

We prepare a sequence of lemmas in the above context.

Lemma 5.5.2 There exists a subsequence of {hi}∞i=1 that converges uniformly on

K and in L2(K,µ) for every compact subset K ⊂ U .

Proof. For every index i, we have hi(y) = 1. Therefore, the sequence hi is

bounded on every compact subset of U by Harnack inequality that follows from
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Theorem 2.6.1. We aim to apply the Arzela-Ascoli theorem to show that there

exists a convergent subsequence for {hi}∞i=1. We need to show that this sequence

is equicontinuous, i.e. ∀x ∈ U, ∀ε > 0 there exists an open neighborhood V of x in

U such that whenever z ∈ V ,

|hi(x) − hi(z)| ≤ ε

for i large enough. This estimate follows from the Hölder continuity estimates for

local (weak) solutions of Lu = 0 in X, see Chapter 2.5. Indeed for every δ > 0

and any open ball BU(x,R) ⊂ U we can choose small enough radius r such that

for any z ∈ BU(x, r) we have

|hi(x) − hi(z)| ≤ δ

[
sup

BU (x,R)

hi − inf
BU (x,R)

hi

]
≤ δ sup

BU (x,R)

hi ≤ Cδhi(y) = Cδ

for i large enough by Harnack inequality. It remans to choose δ = ε/C.

The Arzela-Ascoli theorem implies that there exists a subsequence converging

pointwise to some function h. Moreover the convergence is uniform on compact

subsets of U . The convergence is then in L2(K,µ) for any compact subset K ⊂ U

since µ(K) <∞. �

Without loss of generality we assume that the subsequence chosen in Lemma

5.5.2 is the sequence hi itself, and it converges almost everywhere on U to some

function h.

Lemma 5.5.3 The subsequence {hi}∞i=1 constructed in Lemma 5.5.2 converges to

h in L2
loc(Ũ , µ|U).

Proof. Let hi be the subsequence constructed in Lemma 5.5.2, and let h be its

limit. Choose any compact subset V ⊂ X, and let V ′ = V ∩U . It suffices to show

that for any such V , the sequence hi is Cauchy in L2(V ′, µ|U). For every ε > 0
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we define a compact set

Vε = {x ∈ V ∩ U : ρ(x, ∂U) ≥ ε}

Choose any point z ∈ ∂U . Let R be twice the diameter of V ′ ∪ {z}. Let g be

any positive local weak solution of Lg = 0 in U ∩ B(z, AR) vanishing q.e. on

∂U ∩B(z, AR), e.g., the Dirichlet Green function. For large enough i and j we can

use the local boundary Harnack principle (5.28) to estimate the difference |hi−hj |

in V by |2Cg| and therefore

||hi − hj ||2L2(V ′, µ|U ) =

∫

Vε

|hi − hj |2dµ+

∫

V ′\Vε

|hi − hj |2dµ

≤ ||hi − hj ||2L2(Vε, µ) +

∫

V ′\Vε

|2Cg|2dµ

Since the sets Vε exhaust V ′ and h1 ∈ L2(V ′, µ|U), we can choose ε small enough

so that the second term in the estimate above becomes arbitrarily small. The first

term tends to zero as i, j → ∞ for any ε > 0 because hi → h in L2(Vε, µ) by

Lemma 5.5.2. �

Proposition 5.5.4 The subsequence {hi}∞i=1 constructed in Lemma 5.5.2 con-

verges to h in the Hilbert space F(V ) for every open set V ⊂ U relatively compact

in X. The limit function h belongs to the space F0
loc(U) and is a local (weak) so-

lution of Lh = 0 in U with weak Dirichlet boundary conditions on ∂U . Also the

function h vanishes quasi everywhere on ∂U .

Proof. Let hi be the subsequence constructed in Lemma 5.5.2. Let V ⊂ U be an

open set in U which is relatively compact in X, i.e. the closure V of V in X is

compact. To show that the convergence hi → h is in F(V ), we set

φ(x) = (1 − ρ(x, V ))+ = max(1 − ρ(x, V ), 0).
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We know by [58, Lemma 1] that φ ∈ Floc(X) with dΓ(φ, φ) ≤ dµ, thus φ ∈ Fc(X).

Let V ′ be the support of φ in X and let V ′′ = V ′∩U . Since hi ∈ F0
loc(Bi\{xi}, Bi),

for large enough i we know that xi 6∈ V ′′ and V ′′ ⊂ Bi. Thus V ′′ ⊂ Bi \ {xi} and

so φhi ∈ D(ED
Bi

) ⊂ D(ED
U ) by Proposition 5.3.3. Let V ′′′ be some neighborhood of

V ′′ in U . Assume without loss of generality that ρU(xi, V
′′′) > 0.

If we prove that the sequence φhi is Cauchy in the Hilbert space D(ED
U ) then we

would know that hi → h in F(V ), φh ∈ D(ED
U ) and thus h ∈ F0

loc(U) by Definition

2.4.3. Since the sequence φhi converges to φh in L2(Ũ , µ|U), it is left to estimate

the energy

ED
U (φ(hj − hi), φ(hj − hi)) =

∫

U

dΓ(φ(hj − hi), φ(hj − hi))

=

∫

U

(hj − hi)
2dΓ(φ, φ) + 2

∫

U

φ(hj − hi)dΓ(φ, hj − hi) +

∫

U

φ2dΓ(hj − hi, hj − hi)

=

∫

U

(hj − hi)
2dΓ(φ, φ) +

∫

U

dΓ(hj − hi, φ
2(hj − hi))

Let’s integrate by parts to get rid of the second term in the last line. Integrating

by parts works because the function hj − hi is a weak solution of Lu = 0 in V ′′′

with Dirichlet boundary conditions on ∂U . Also the function φ2(hj − hi), which

is zero in the open set U \ V ′′ is in D(ED
U ) by Proposition 5.3.3, and therefore in

D(ED
V ′′′) thus can be approximated in D(E) by functions in Fc(V

′′′). Therefore,

ED
U (φ(hj − hi), φ(hj − hi)) ≤

∫

V ′′
(hj − hi)

2dΓ(φ, φ) ≤
∫

V ′′
(hj − hi)

2dµ→ 0,

as i, j → ∞ because the sequence hi converges to h in L2
loc(Ũ , µU) and V ′′ is

relatively compact in Ũ . Here we have used the inequality dΓ(φ, φ) ≤ dµ. There-

fore the sequence φhi is indeed Cauchy in the Hilbert space D(ED
U ). In particular

h ∈ F0
loc(U) by Definition 2.4.3.

To show that h is a weak solution of Lh = 0 in U with weak Dirichlet boundary

conditions on ∂U , take any test function φ ∈ Fc(U) with support in any compact
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K ⊂ U , let W be a relatively compact in U neighborhood of K and write

∫

U

dΓU(h, φ)dµ =

∫

W

dΓU( lim
i→∞

hi, φ) = lim
i→∞

∫

W

dΓU(hi, φ) = lim
i→∞

∫

U

dΓU(hi, φ) = 0

because each of the functions hi is a weak solution of Lhi = 0 in Bi \ {xi}. Here

we have used that the sequence hi converges to h in F(W ) to interchange the

operations of taking the limit and integration.

Choose any point z ∈ ∂U . To show that the function h vanishes quasi every-

where on ∂U ∩ B(z, 1) it remains to notice that each of the functions hi used to

approximate h does so in a controlled way. More specifically, let g be any positive

local weak solution of Lg = 0 in U ∩B(z, A) vanishing q.e. on ∂U ∩B(z, A), e.g.,

the Dirichlet Green function for the set U ∩B(z, 2A). For large enough i and j we

can use the local boundary Harnack principle (5.28) to estimate hi in B(z, 1) by

cg for some positive constant c. We get hi ≤ cg for large enough i and therefore

h ≤ cg and so the function h vanishes q.e. on U ∩ B(z, 1). This holds for any

z ∈ ∂U as desired. �

The next Lemma is an interesting result which could be used to alternatively

show that h ∈ F0
loc(U).

Lemma 5.5.5 Let U be an open subset of X. Let Ui be an exhaustion of the set

U and let {fi}∞i=1 be a sequence of functions such that fi ∈ Floc(Ui). Extend each

of fi to all of U by zero. Assume that for some bounded compactly supported in Ũ

function φ there exist constant Cφ and Nφ such that φfi ∈ D(ED
U ) and

ED
U (φfi, φfi) ≤ Cφ.

for every index i ≥ Nφ. Assume that fi converges in L2
loc(Ũ) to some function f .

Then f ∈ Floc(U), φf ∈ D(ED
U ) and

ED
U (φf, φf) ≤ Cφ. (5.29)
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Proof. According to the spectral theorem for the nonnegative self-adjoint operator

LD
U associated with the form ED

U , for any function f ∈ D(LD
U ) we have

LD
U f =

∫ ∞

0

λdEλ(f)

where E−∞ = 0, E∞ = Id and for every λ1, λ2 ∈ [−∞,+∞] with λ1 > λ2,

the expression Eλ1
− Eλ2

is a bounded linear orthogonal projection operator on

L2(U, µ). In particular Eλ is a self-adjoint operator of orthogonal projection.

Let 〈·, ·〉 denote the inner product on L2(U, µ). As in [31, (1.3.8)], for any two

functions f, g ∈ D(ED
U ) we can express ED

U as a Lebesgue-Stiltjes integral

ED
U (f, g) =

∫ ∞

0

λd〈Eλ(f), g〉

D(ED
U ) =

{
f ∈ L2(U, µ) :

∫ ∞

0

λd〈Eλ(f), f〉 <∞
}
. (5.30)

It suffices to prove (5.29). For any f ∈ L2(U, µ) the quadratic form

Rλ(f) := 〈Eλ(f), f〉 ≤ 〈Eλ(f), f〉 ≤ 〈f, f〉 (5.31)

is a nonnegative nondecreasing function of λ because for λ1 > λ2, the difference

〈Eλ1
(f) − Eλ2

(f), f〉 > 0 is an inner product of f and its orthogonal projection.

Therefore Rλ(f) is almost everywhere continuous function of λ. Also for fixed

λ ∈ R, Rλ(·) : L2(U, µ) → R is a continuous functional. Therefore

ED
U (φf, φf) =

∫ ∞

0

λd〈Eλ(φf), φf〉 = lim sup
N→∞

∫ N

0

λdRλ(φf)

= lim sup
N→∞

[
NRN (φf) −

∫ N

0

Rλ(φf)dλ

]

= lim sup
N→∞

[
N lim

i→∞
RN(φfi) −

∫ N

0

lim
i→∞

Rλ(φfi)dλ

]

By (5.31), 0 ≤ Rλ(φfi) ≤ ||φfi||22, which is of bounded integral on [0, N ]. Therefore
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by the dominated convergence theorem, we can continue

ED
U (φf, φf) = lim sup

N→∞

[
N lim

i→∞
RN(φfi) − lim

i→∞

∫ N

0

Rλ(φfi)dλ

]

= lim sup
N→∞

lim
i→∞

∫ N

0

λdRλ(φfi) ≤ sup
i>0,N>0

∫ N

0

λdRλ(φfi)

= sup
i>0

∫ ∞

0

λdRλ(φfi) = sup
i>0

ED
U (φfi, φfi) ≤ Cφ

in particular φf ∈ D(ED
U ) by (5.30). �

Lemma 5.5.6 Let X be a connected locally compact separable metric space, µ -

a positive Radon measure on X with full support and (E ,D(E)) - a strictly local

regular Dirichlet form on L2(X,µ) satisfying the conditions (A1-A4) of Chapter

2. Let U be a uniform domain in X. Let h be a function constructed in Lemma

5.5.2. Then the measure h2dµ on U satisfies the following volume estimate

Vh2(x,R) =

∫

U∩B(x,R)

h2dµ ≍ h2(xR)µ(B(x,R)) (5.32)

for any x ∈ U , any R > 0 and any point xR with ρ(xR, x) = R
4

and ρ(xR, ∂U) ≥
c1
8
R. The following doubling condition

∀x ∈ X, ∀R > 0, Vh2(x, 2R) ≤ CVh2(x,R) (5.33)

holds for some constant C depending only on the constants c0, c1, c2, c3 appearing

in (2.12), (2.13) and in Definition 3.1.1.

Proof. Fix x ∈ U and R > 0. Let xR ∈ U be a point with ρ(xR, x) = R
4

and

ρ(xR, ∂U) ≥ c1
8
R given by Lemma 4.1.5. We know by Proposition 5.5.4 that h is a

local weak solution in U of Lh = 0. It suffices to prove (5.32) because the volume

doubling condition (5.33) would follow from the doubling condition (2.12) for the

measure µ and by comparing h(xR) to h(x2R) using the Harnack principle and the

curve γ between xR and x2R given by the uniform condition (3.5).
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Assume first that δU(x) = ρ(x, ∂U) > 2R. Then the doubling condition (5.33)

follows from the Harnack inequality for the function h and the doubling condition

for the measure µ.

Assume now that δU(x) ≤ 2R and choose a point ξ ∈ ∂U with ρ(x, ξ) ≤ 2R.

Let A0 be a constant appearing in Theorem 5.4.2. Let ξA0R be a point in U with

ρ(ξ, ξR) = 4A0R given by Lemma 5.4.6. For every R > 0 let Ur denote U ∩B(ξ, r)

and let Gr denote the Dirichlet Green function in Ur. Let k = 20A0c0 where c0 is

a constant appearing in (3.5).

Both h and GkR(·, ξR) are in F0
loc(U4A0R, U), both of these function are nonneg-

ative weak solutions of Lu = 0 in U4A0R and have a quasi-continuous representative

that is vanishing quasi-everywhere on ∂U ∩ B(x, 4A0R). Since h is vanishing q.e.

on ∂U by Proposition 5.5.4, we can use the boundary Harnack principle of Theorem

5.4.2 to see that

h(·)
h(xR)

≍ GkR(·, ξR)

GkR(xR, ξR)
on B(ξ, 5c0R)

which includes B(ξ, 4R) and therefore includes B(x, 2R). So if we denote ε1 =

h(xR)/GkR(xR, ξR) then we obtain

h(·) ≍ ǫ1GkR(·, ξR) (5.34)

on B(ξ, 4R). The lower estimate of (5.32),
∫

U∩B(x,R)

h2dµ ≥ ǫ2h
2(xR)µ(B(x,R))

follows by the doubling condition (2.12) for the measure µ and the Harnack esti-

mate for the function h since B(xR,
c1
16
R) ⊂ U ∩ B(x,R) and h is a positive weak

solution of Lh = 0 in B(xR,
c1
8
R) ⊂ U . The upper estimate of (5.32),

∫

U∩B(x,R)

h2dµ ≤ ǫ23h
2(xR)µ(B(x,R))

follows from the estimate h(·) ≤ ǫ3h(xR) on B(ξ, 4R). The latter estimate is true

because of (5.34) and Lemma 5.3.2 which estimates the supremum of the Green’s
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function GkR(·, ξR) in B(ξ, 4R) by its value at xR. Here we have used that both

ξR and xR are in the ball B(ξ, kR
4c0

) = B(ξ, 5A0R). �

5.5.1 Dirichlet type Dirichlet forms obtained by the change

of measure

Assume that the form (E ,D(E)) admits a carré du champ operator Υ : D(E) ×

D(E) → L1(X,µ). Let U ⊂ X be an open set and let v ∈ L∞
loc(U, µ) be a locally

uniformly positive and locally bounded measurable function on U . Similarly to the

Neumann type forms of (4.22) we define the Dirichlet type form associated with

the function v in the following way

Definition 5.5.7 We set (ED,v
U ,D(ED,v

U )) to be the closure of a symmetric form

ED,v
U (f, f) =

∫

U

vdΓU(f, f) =

∫

U

ΥU(f, f)vdµ (5.35)

on L2(U, vdµ) with initial domain Fc(U).

Such a form is indeed closable since Fc(U) ⊂ D(EN,v
U ) and the Neumann type form

(EN,v
U ,D(EN,v

U )) is closed by the proof of Proposition 2.4.9. In particular

D(ED,v
U ) ⊂ D(EN,v

U ).

If we take the function v to be constant one, the form we defined in (5.35) becomes

(ED
U ,D(ED

U )).

Notice that because of the special structure of this form, the normal con-

tractions operate on (ED,v
U ,D(ED,v

U )). The form (ED,v
U ,D(ED,v

U )) is symmetric and

densely defined in L2(U, vdµ) since compactly supported in U functions which are

Lipschitz with respect to the metric ρ are in D(ED,v
U ). It is also closed by defini-

tion, and so the form (ED,v
U ,D(ED,v

U )) is Dirichlet. It is also strongly local because
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the form (E ,D(E)) is. So each of the forms (ED,v
U ,D(ED,v

U )) is associated with

the nonnegative self-adjoint operator LD,v
U and a self-adjoint semigroup PD,v

U,t on

L2(U, vdµ). It is straightforward to see that the energy measure associated with

the form (ED,v
U ,D(ED,v

U )) on L2(U, vdµ) by (2.2) is simply

dΓv(f, g) = vdΓ(f, g) = Υ(f, g)vdµ.

and so the Radon-Nikodym derivative of dΓv with respect to the reference measure

vdµ is

Υv(f, g) =
dΓv(f, g)

vdµ
= Υ(f, g) (5.36)

In view of the main equivalence Theorem 2.6.1 notice that the volume doubling

condition (2.12) for the measure vdµ and the Poincaré inequalities for the Dirichlet

form (ED,v
U ,D(ED,v

U )) follow from the same estimate for the Neumann type form

(EN,h2

U ,D(EN,h2

U )) on L2(U, vdµ). We will use this fact to obtain the heat kernel

estimates for the Dirichlet form (ED
U ,D(ED

U )). Specifically, in the next section we

will explore the technique of h-transform which, if h is a harmonic function, will

in fact produce the form (ED,h2

U ,D(ED,h2

U )).

5.6 h-transform

In this section we will develop the technique of h-transform that allows one to con-

struct a family of symmetric forms associated with a Dirichlet form. Let (E ,D(E))

be a Dirichlet form on L2(X,µ) and let h be a measurable positive function on X.

Definition 5.6.1 Let H be a multiplication by h, as a unitary map:

H : L2(X, h2dµ) → L2(X,µ), f → hf

and let (Eh,D(Eh)), Lh and Ph,t be the pulled-back form, operator and semigroup
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on L2(X, h2dµ) defined by

Eh(f, g) = E(hf, hg), D(Eh) = H−1D(E)

Lh = H−1 ◦ L ◦H, D(Lh) = H−1D(L)

Ph,t(f) = H−1 ◦ Pt ◦H (5.37)

The form (Eh,D(Eh)) is a closed symmetric densely defined form on L2(X, h2dµ)

by the unitary nature of the map H . This form corresponds to the semigroup Ph,t

and the operator Lh on L2(X, h2dµ) in the usual way. The form (Eh,D(Eh)) is not,

however, Dirichlet for general function h because it is usually not Markovian, i.e.

normal contractions do not operate on (Eh,D(Eh)). It is Markovian if and only

if the semigroup Ph,t is Markovian, i.e. if and only if Ph,t1 ≤ 1 a.e. in X. This

happens if and only if Pth ≤ h a.e. in X. Here Ph,t and Pt are understood as

integral operators, initially defined on L2(X, h2dµ) and L2(X, dµ) respectively.

The following statements are immediate from Definition 5.6.1.

Lemma 5.6.2 Assume that the linear space W is dense in the Hilbert space D(E).

Then the set H−1(W ) is dense in the Hilbert space D(Eh).

Lemma 5.6.3 If the semigroup Pt possesses a kernel p(t, x, y) with respect to the

measure µ, then the semigroup Ph,t also possesses a kernel with respect to the

measure h2dµ. This kernel ph(t, x, y) is related to the kernel of the semigroup

p(t, x, y) by

p(t, x, y) = ph(t, x, y)h(x)h(y) (5.38)

Proof. By definition for any function f ∈ L2(X,µ), we have

Ph,tf(x) =
1

h
Pt(hf) =

1

h(x)

∫

X

p(t, x, y)f(y)h(y)dµ(y) =

∫

X

p(t, x, y)

h(x)h(y)
f(y)h2(y)dµ(y)

and therefore the function

p(t, x, y)

h(x)h(y)
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is the kernel of the semigroup Ph,t with respect to the measure h2dµ. �

Let us now focus on the h-transform of the Dirichlet form (ED
U ,D(ED

U )), which

will be denoted by (ED
U,h,D(ED

U,h)).

Lemma 5.6.4 Assume that the function h ∈ Floc(U) is locally finite and locally

uniformly positive on U . Then the set H−1(Fc(U) ∩ L∞(U, µ)) is dense in the

Hilbert space D(ED
U,h), and

H−1(Fc(U) ∩ L∞(U, µ)) = Fc(U) ∩ L∞(U, h2dµ) (5.39)

Proof. The set H−1(Fc(U) ∩ L∞(U, µ)) is dense in the Hilbert space D(ED
U,h)

because the linear operator is unitary and the set Fc(U)∩L∞(U, µ) is dense in the

Hilbert space D(ED
U ). Since both h, 1

h
∈ Floc(U) ∩ L∞

loc(U, µ), the equality (5.39)

follows because the space Floc(U) ∩ L∞
loc(U, µ) is an algebra by Lemma 2.2.1. �

It turns out that if h is a weak solution of Lh = 0 in U then the form

(ED
U,h,D(ED

U,h)) is a Dirichlet form because it coincides with the form (ED,h2

U ,D(ED,h2

U ))

obtained from (ED
U ,D(ED

U )) by the change of measure.

Proposition 5.6.5 Assume that h is a weak local solution of Lh = 0 in U . Then

the form (ED
U,h,D(ED

U,h)) coincides with the form (ED,h2

U ,D(ED,h2

U )) defined in (5.35).

Proof. For both forms, the space Fc(U) ∩ L∞(U, dµ) is a dense subset of the

domain by Lemma 5.6.4 and by Definition 5.5.7. It remains to compare these

forms on this space. For any g ∈ Fc(U) ∩ L∞(U, µ), by Lemma 2.2.1 we know

that the functions g, g2, gh, g2h belong to the space Floc(U) and thus to the space

Fc(U) since they are compactly supported in U . Using the chain rule we have

ED
U,h(g, g) =

∫

U

dΓU(hg, hg) =

∫

U

g2dΓU(h, h) + 2

∫

U

ghdΓU(g, h) +

∫

U

h2dΓU(g, g)

=

∫

U

dΓU(h, g2h) +

∫

U

h2dΓU(g, g) =

∫

U

h2dΓU(g, g) = ED,h2

U (g, g)

because g2h ∈ Fc(U) and h is a weak solution in U of Lh = 0 by assumption. �
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5.7 Proof of Theorem 5.0.8

In this section we will prove Theorem 5.0.8, so the context of this section is that of

a Harnack-type Dirichlet space (X,µ, ρ, E ,D(E)) together with an inner uniform

subset U ⊂ X. Let L be a nonnegative self-adjoint operator on L2(U, µ) associ-

ated with the Dirichlet form (E ,D(E)). We are interested in the the heat kernel

associated with the Dirichlet form (ED
U ,D(ED

U )).

Notice that the form (ED
U ,D(ED

U )) can also be obtained from the form (EN
U ,D(EN

U ))

on Ũ by considering Dirichlet boundary value diffusion problem in U , i.e.

D(ED
U ) = D((EN

U )D
U )

ED
U (f, g) = (EN

U )D
U (f, g) =

∫

U

dΓU(f, g), whenever f, g ∈ D(ED
U )

The advantage of this approach is that now U is a uniform domain in (Ũ , ρU),

rather than only an inner uniform domain - and the theory developed in Chapter

5 applies, because according to Theorem 4.0.5 the form (EN
U ,D(EN

U )) is a strongly

local regular Dirichlet form on Ũ of Harnack type, see Definition 2.5.1.

The boundary Harnack principle proved in Theorem 5.4.2 provides the basis

for the construction of a réduite function h on U that is carried out in section 5.5.

The function h is in F0
loc(U) and is a nonnegative local (weak) solution in U of

Lh = 0 with weak Dirichlet boundary conditions on ∂U by Proposition 5.5.4. In

fact the function h is positive on U by Harnack inequality in any compact subset

of U , because h(y) = 1 for the point y chosen in Chapter 5.5.

Let (ED
U,h,D(ED

U,h)) denote the h-transform of the Dirichlet form (ED
U ,D(ED

U ))

on L2(U, µ). The following important lemma relates the closed form (ED
U,h,D(ED

U,h))

to the Dirichlet form (EN,h2

U ,D(EN,h2

U )) defined in (4.22).

Proposition 5.7.1 Let h be a positive local (weak) solution of Lh = 0 in U with

weak Dirichlet boundary conditions on ∂U . Assume that the measure h2dµ satisfies
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the doubling condition (4.27) for some ǫ > 0. Then the closed form (ED
U,h,D(ED

U,h))

coincides with the regular Dirichlet form (EN,h2

U ,D(EN,h2

U )) on Ũ defined by (4.22).

Proof. Since the forms in question are closed, it suffices to compare their cores and

the values of these form on each of the functions in their cores. A space Lipc(Ũ) is a

core for the form (EN,h2

U ,D(EN,h2

U )), by Proposition 4.2.1, while Fc(U)∩L∞(U, h2µ)

is a core for the form (ED
U,h,D(ED

U,h)) by Lemma 5.6.4. For any f ∈ Lipc(Ũ), we have

f ∈ D(EN
U ) and by Lemma 5.2.3, applied to the Dirichlet form (EN

U ,D(EN
U )) instead

of (E ,D(E)), we have hf ∈ D(ED
U ). Therefore by Definition 5.6.1, f ∈ D(ED

U,h). So

Lipc(Ũ) ⊂ D(ED
U,h)

and therefore it suffices to check that the two forms in question coincide on Fc(U)∩

L∞(U, h2µ), which is a core for the form (ED
U,h,D(ED

U,h)). For any g ∈ Fc(U) ∩

L∞(U, h2µ), by Lemma 2.2.1 we know that the functions g, g2, gh, g2h belong to

the space Floc(U) and thus to the space Fc(U) since they are compactly supported

in U . Using the chain rule we have

ED
U,h(g, g) =

∫

U

dΓU(hg, hg) =

∫

U

g2dΓU(h, h) + 2

∫

U

ghdΓU(g, h) +

∫

U

h2dΓU(g, g)

=

∫

U

dΓU(h, g2h) +

∫

U

h2dΓU(g, g) =

∫

U

h2dΓU(g, g) = EN,h2

U (g, g)

because g2h ∈ Fc(U) and h is a weak solution in U of Lh = 0 by assumption. �

Theorem 5.0.8 follows as the exact translation of results from Theorem 4.2.7

using the relationships between different Dirichlet forms, kernels, semigroups and

self-adjoint operators established in Lemma 5.6.3 and in Proposition 5.7.1. This

completes the proof of Theorem 5.0.8 and Theorem 1.3.3.

Theorem 1.3.4 follows from the parabolic Harnack estimate of Theorem 4.2.7

using the following relationship between the classical solutions and the weak solu-

tions of the heat equation with Dirichlet boundary conditions that we present in

the last proposition of this section. We will need the following notation.
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For any set V ⊂ Ũ we denote by C∞(V ) the set of smooth functions f on V ∩U

such that for any y ∈ V \ U and any integer k ≥ 0, the limit

lim
U∩V ∋x→y

f (k) exists .

Proposition 5.7.2 Let U be a domain in Rn. Let h be a positive harmonic func-

tion in U that belongs to F0
loc(Ũ). Set dν = h2dµ. Let I be an open time interval,

Ω be an open set in Ũ . Set Q = I×Ω. Let u be a continuous function on Q which

vanishes on I × (Ω ∩ (Ũ \ U)), is once continuously differentiable in time, twice

continuously differentiable in space and satisfies ∂tu + ∆u = 0 in Ω ∩ U . Then

v = u/h is a weak solution of the heat equation in I ×Ω in the sense of Definition

2.2.4 for the Dirichlet form (EN,h2

U ,D(EN,h2

U )) on L2(Ũ , dν).

Proof. This is essentially well known. For instance, [30, Corollary 2.3] is a very

similar (essentially equivalent) statement. However, we do not know of a proper

reference making use as we do here of the set Ũ . Since this is an important technical

result, we give a complete proof. Without loss of generality, we can assume that u

is bounded on Q (simply replace Q by an arbitrary Q′ = I ′×Ω′ relatively compact

in I × Ω). For every ǫ ∈ (0, 1), let Gǫ be a smooth function of one real variable

such that Gǫ, G
′
ǫ, G

′′
ǫ ≥ 0, Gǫ vanishes on (−∞, ǫ] and G′

ǫ ≡ 1 on (3ǫ,∞). Given u

as above, set uǫ = Gǫ(
√
u2 + ǫ2 − ǫ) on Q. This function has the same smoothness

property as u and vanishes on {u2 ≤ 3ǫ2}. Moreover, a simple computation shows

that ∂
∂t
uǫ + ∆uǫ ≤ 0 on Ω ∩ U . Let φ ∈ C∞(Ũ) with compact support in Ω and

0 ≤ φ ≤ 1. Note that φuǫ has compact support in Ω ∩ {u2 > 3ǫ2} ⊂ U . Now,
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using the inequality satisfied by uǫ and integrating by parts, we obtain

∂

∂t

(
1

2

∫

Ω

|φuǫ|2dµ
)

+

∫
|∇(φuǫ)|2dµ ≤ −

∫

Ω

φ2uǫ∆uǫ +

∫
φuǫ∆(φuǫ)dµ

=

∫

Ω

u2
ǫφ∆φdµ−

∫

Ω

φuǫ∇φ · ∇uǫdµ

=

∫

Ω

u2
ǫφ∆φdµ−

∫

Ω

uǫ∇φ · ∇(φuǫ)dµ+

∫

Ω

u2
ǫ |∇φ|2dµ

≤ Cφ

∫

Ω

u2
ǫdµ+

1

2

∫

Ω

|∇(φuǫ)|2dµ.

Hence

∂

∂t

∫

Ω

|φuǫ|2dµ+

∫
|∇(φuǫ)|2dµ ≤ 2Cφ

∫

Ω

u2
ǫdµ.

Multiplying φuǫ by an appropriate cutoff function in time and integrating in time

yields (after some simple manipulations)

sup
I′

[∫

Ω′
|uǫ|2dµ

]
+

∫

Q′
|∇uǫ|2dtdµ ≤ C(Q′)

∫

Q

u2
ǫdtdµ (5.40)

for any Q′ = I ′ × Ω′ relatively compact in Q. Next, observe that sgn(u)uǫ tends

to u in L2(Q) and that |∇uǫ| tends to |∇u| pointwise in Q′. Hence we also have

sup
I′

∫

Ω′
|u|2dµ+

∫

Q′
|∇u|2dtdµ ≤ C(Q′)

∫

Q

|u|2dtdµ (5.41)

By straightforward variant of Lemma 5.5.5 for functions of time and space it follows

that, for any function φ ∈ C∞(Ũ) with compact support in Ω, the function w =

φu(t, ·) is in D(ED
U ) for a.e. t ∈ I ′ and satisfies
∫

Q′
|w|2 + |∇w|2dtdµ ≤ C(φ,Q′)

∫

Q

|u|2dtdµ.

Moreover, for any ψ ∈ D(ED
U ) and a.e. t ∈ I ′, we have

∣∣∣∣
∫

U

ψ
∂

∂t
wdµ

∣∣∣∣ =

∣∣∣∣
∫

U

ψφ∆udµ

∣∣∣∣

≤
∣∣∣∣
∫

U

ψ∆(φu)dµ

∣∣∣∣+

∫

U

|ψ|[|u∆φ| + |∇u · ∇φ|]dµ

≤
∫

U

|∇ψ · ∇(φu)|dµ+

∫

U

|ψ|[|u∆φ| + |∇u · ∇φ|]dµ

≤ C1(φ,Q
′)

(∫

Ω′
|u|2 + |∇u|2dµ

)1/2

‖ψ‖D(ED
U ).
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for some constant C1 depending on φ and Q′. It follows that ∂
∂t
w belongs to the

dual D′(ED
U ) of D(ED

U ) and that

∫

I′
‖∂tw‖2

D′(ED
U

)dt ≤ C2(φ,Q′)

∫

Q

|u|2dtdµ.

We want to show that the function v = u/h is in the space Floc(I ×Ω) used in

Definition 2.2.4. For this it suffices to show that, for any φ ∈ C∞(Ũ) with compact

support in Ω′, we have φv ∈ F(I ′ × U), that is,

φv ∈ L2(I ′ → D(EN,h2

U ))

and

∂

∂t
(φv) ∈ L2(I ′ → D′(EN,h2

U )).

By Proposition 5.7.1, D(EN,h2

U ) = h−1D(ED
U ). Therefore, the two desired conclu-

sions for φv follow directly from the estimates of w = φu given above. �



Appendix A

Uniform domains
Proposition A.0.3 (postponed from Chapter 3.2) Let U be a domain of the

form U = Rn \ V for some closed convex set V ⊂ Rn. Then

(1) The domain U ⊂ Rn is inner uniform with c0 = 21, c1 = 1/462.

(2) For any x, y ∈ U there exists z ∈ U such that ρU(x, z) + ρU(z, y) ≤ 4ρ(x, y)

and ρU(x, z) ≤ 4|x− z|, ρU(z, y) ≤ 4|y − z|.

Proof of Proposition A.0.3 This result is not as obvious as it may first appear

and the proof is somewhat technical. We need some notation. For any x ∈ U , let

z(x) be the closest point of V . Set ~u(x) = (x − z(x))/|x − z(x)|. Both z(x) and

u(x) are continuous functions of x. See, e.g., [32, pages 11–12].

Claim. For any two points x, y ∈ U with min{ρU(x, V ), ρU(y, V )} = r > 0, there

exists an absolutely continuous curve γ ⊂ U joining x to y, of length at most

4(ρU(x, y) + 2r) such that ρU (γ, V ) ≥ r.

Proposition A.0.3(1) easily follows form this claim. Indeed, let x, y be points

in U with R = ρU(x, y), r = min{ρU(x, V ), ρU(y, V )}. If R ≤ r the straight line

segment [x, y] from x to y is contained in U . Moreover, [x, y] is contained in a

half-space E contained in U (to see this, consider a point ξ of [x, y] such that

ρU([x, y], V ) = ρU(ξ, V )). The semi-circle with diameter [x, y] contained in E and

orthogonal to the hyperplane bounding E yields a curve of length πρU (x, y) =

π|x− y| such that

ρU(z, V ) ≥ |z − x||z − y|
|x− y| =

ρU (z, x)ρU (z, y)

ρU (x, y)
.

Consider now the case where R > r. Let xR = x + (R/2)~u(x), yR = y +

126
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(R/2)~u(y) and let γ′ be the curve joining xR to yR given by the claim. Note that

min{ρU(xR, V ), ρU(yR, V )} ∈ (R/2, 3R/2).

Hence, ρU(γ′, V ) ≥ R/2 and γ′ has length at most 4(ρU(xR, yR) + 3R) ≤ 20R. Let

γ be the absolutely continuous curve that goes straight from x to xR, then from xR

to yR following γ′, and finally straight from yR to y. By construction, the length

of γ is at most 21R and for any point z on γ,

ρU (z, V ) ≥





ρU (z, x) if z ∈ [x, xR]

R/2 if z ∈ γ′

ρU (z, y) if z ∈ [yR, y].

If z ∈ [x, xR] (resp. z ∈ [yR, y]) then we have ρU(z, y) ≤ 3R/2 (resp. ρU(z, x) ≤

3R/2) and thus

ρ(z, V ) ≥ 2

3

ρU (z, x)ρU (z, y)

ρU(x, y)
.

If z ∈ γ then ρU(z, x)ρU (z, y) ≤ 231R2 and thus

ρ(z, V ) ≥ 1

462

ρU(z, x)ρU (z, y)

ρU (x, y)
.

To finish the proof of Proposition A.0.3(1) we are now left with the task of

proving the claim made above.

For any x ∈ U , let Hx be the linear hyperplane orthogonal to ~u(x). By con-

struction V is contained in the half-space {ξ : (ξ − z(x)) · ~u(x) ≤ 0} and we

have

ρU((x+Hx), V ) = ρU (x, V ).

Fix two points x, y ∈ U with min{ρU(x, V ), ρU(y, V )} = r > 0 and set

α = α(x, y) = ~u(x) · ~u(y).
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If α = 1 we must have Hx = Hy and it follows that the straight line segment [x, y]

satisfies the conditions required in the claim. Assume next that α ∈ (−
√

2/2, 1)

and let P be the (n− 2) dimensonal vector space Hx ∩Hy. The unit vectors

~v(y) = (1 − α2)−1/2(~u(x) − α~u(y)) ∈ Hy, ~v(x) = (1 − α2)−1/2(~u(y)− α~u(x)) ∈ Hx

are orthogonal to P and have scalar product

~v(x) · ~v(y) = (1 − α2)−1(−α + α3) = −α.

We can write (uniquely)

y − x = ~p+ a~v(x) + b~v(y), p ∈ P, a, b ∈ R.

Since x, y ∈ U , we must have (x − y) · ~u(y) > 0 and (y − x) · ~u(x) > 0, that is,

a < 0, b > 0. Thus if α ≥ −1/2,

|y − x|2 = |p|2 + a2 + b2 − 2abα ≥ |p|2 +
1

4
(a2 + b2).

Consider the curve γ made of the three straight line segments





[x, x + a~v(x)] ⊂ x +Hx,

[x + a~v(x), y − b~v(y)] ⊂ x + a~v(x) + P ⊂ (x +Hx) ∩ (y +Hy),

[y − b~v(y), y] ⊂ y +Hy.

Its length is

|p| + |a| + |b| ≤
√

3
√
|p|2 + a2 + b2 ≤ 2

√
3|y − x| ≤ 2

√
3ρU (x, y)

and

ρU (γ, V ) = min{ρU(x, V ), ρU(y, V )}.

Thus γ satisfies the conditions required in the claim.
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Finally, consider the case when α ∈ [−1,−
√

2/2]. Let γ′ be an absolutely

continuous path in U from x to y of length λρU(x, y) for some arbitrary λ > 1.

Let [0, T ] ∋ t 7→ γ(t) be the arclength parametrization of γ. and let α(t) = ~u(x) ·

~u(γ(t)). The function t 7→ α(t) is continuous and varies from α(0) = |~u(x)|2 = 1

to α(T ) = ~u(x) · ~u(y) = α ∈ [−1,−1/2]. Hence there exists t0 ∈ [0, T ] such

that α(t0) = 0. Let x0 = γ(t0). As the unit vectors , ~u(x), ~u(x0), ~u(y) satisfy

~u(x) ·~u(x0) = 0, ~u(x) ·~u(y) < −
√

2/2, we must have |~u(x0) ·~u(y)| ≤
√

2/2. Observe

however that x0 may be closer to V than x and y. Thus, let x′0 = x0 + r~u(x0) so

that

~u(x′0) = ~u(x0), ρU(x′0, V ) > r, ρU(x, x′0) + ρU (x′0, y) ≤ 2r + λρU(x, y)

As ~u(x) · ~u(x′0) = 0 and ~u(x′0) · ~u(y) ≥ −
√

2/2, the argument above yields curves

γ1, γ2 from x to x′0 and x′0 to y which stay at least distance r away from V and have

length at most 2
√

3ρU(x, x′0), 2
√

3ρU(x′0, y), respectively. Putting γ1, γ2 together

we obtain a curve from x to y that stays at distance at least r away from V and has

length at most 2
√

3(λρU(x, y) + 2r). Picking λ > 1 close enough to 1 proves the

claim. This finishes the proof of Proposition A.0.3(1). In addition, the argument

above also proves Proposition A.0.3(2). Indeed, if ~u(x) ·~u(y) ≥ −
√

2/2, take z = y

and if ~u(x) · ~u(y) < −
√

2/2, take z = x0. �

Proposition A.0.4 (postponed from Chapter 3.2) Let U be a domain in Rn

above the graph of a Lipschitz function Φ : Rn−1 → R with Lipschitz constant k.

Then U is (c0, c1)-uniform with respect to the usual metric in Rn, with c0 = 4k+ 3

and c1 = (2k + 2)−2.

Proof. Given any two points x, y ∈ U , let R = ρ(x, y) be the Euclidean distance

between x and y. Let ~en be the unit vector pointing ’up’, in relationship to the
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graph of the function Φ. Consider the path γ consisting of three line segments:

(x, x′), (x′, y′) and (y′, y),

where

x′ = x+ (2k + 1)R~en, and y′ = y + (2k + 1)R~en

We have ρ(x′, ∂U) ≥ 2R and ρ(y′, ∂U) ≥ 2R, while ρ(x′, y′) = R, so the second

segment of the curve γ is at least R away from ∂U . The length of the path γ is at

most (4k+ 3)R. It remains to confirm that on the first segment of the path γ, for

z = x + t~en with t ≤ (2k + 1)R,

ρ(z, ∂U) ≥ c1t
ρ(z, y)

R

Using the Lipschitz nature of the function Φ, after a simple trigonometry exercise

we obtain

ρ(x + t~en, ∂U) ≥ t√
k2 + 1

≥ t

k + 1
≥ t

ρ(z, y)

(k + 1)(2k + 2)R
≥ c1t

ρ(z, y)

R

�

Proposition A.0.5 (postponed from Chapter 3.2) The interior and the ex-

terior of von Koch snowflake discussed in Chapter 3.2 is a uniform domain in

R2.

Proof. Let U denote the interior of von Koch snowflake. Let x and y be any two

points in the interior of von Koch snowflake. Then both x and y belong to one

of the triangles that were part of the iterative construction. Say, x ∈ T0 for some

triangle T0 which was constructed on the n-th iteration. Consider the sequence

{Ti}k
i=1 of triangles constructed in the following way. Let T1 be the triangle which

side serves as a base b(T0) of the triangle T0, let T2 be the triangle which side serves
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as a base b(T1) of the triangle T1, etc., until Tk is the main triangle T of the von

Koch snowflake. Let {T ′
i}l

i=1 be a similar sequence for the point y ∈ T ′
0.

Let 1 be the side length of the main triangle in the von Koch snowflake, and let

R = ρ(x, y) be the Euclidean distance between x and y. Without loss of generality

we can assume that Tk−1 6= T ′
l−1, or otherwise we can zoom in and consider the

triangle Tk−1 as the main triangle of von Koch snowflake.

Since x and y are located in different triangles and since the Euclidean distance

ρ is comparable to the inner geodesic distance ρU in the interior of von Koch

snowflake, we know that

ρU(x, b(Tk−1)) ≤ CR, and ρU (y, b(T ′
l−1)) ≤ CR

for some positive universal constant C. Let γ′ be the geodesic curve in U connecting

x to the base b(Tk−1) and let x′i = γ′ ∩ b(Ti), i = 0, . . . , k − 1 . Let |Ti| denote the

length of the edge of the triangle Ti. Let xi be the closest point in the base b(Ti)

to x′i with

ρU(xi, ∂U) ≥ min

(
R

8
,
|Ti|
4

)
, (A.1)

so that

ρU(xi, x
′
i) ≤ min

(
R

4
,
|Ti|
2

)

and the sequence {xi}k−1
i=0 of points xi ∈ b(Ti) satisfies

k−1∑

j=1

ρU (xi, xi−1) ≤ L(γ′) +
k−1∑

i=0

2ρU (xi, x
′
i) (A.2)

≤ CR +
∑

i : |Ti|≤R/2

|Ti| +
∑

i : |Ti|>R/2

R/2

≤ CR +
R

2

(
1 +

1

3
+

1

9
+ . . .

)
+
R

2
·N

where N is the number of triangles in the family {Ti}k−1
i=0 with |Ti| > R

2
. The

diameters of the triangles in the sequence {Ti}k−1
i=0 are growing at least exponentially
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and there is at most one triangle in this sequence with |Ti| > ρU(x, y) because for

any index i < k − 1, we have

ρU (x, y) ≥ ρU(b(Ti), b(Ti+1)) ≥ |Ti|.

Therefore the constant N in (A.2) is uniformly bounded, and so there exists a

constant C ′ such that
k−1∑

j=1

ρU (yi, yi−1) ≤ C ′R.

Similarly consider a sequence {yj}l−1
j=0 of points yj ∈ b(T ′

j) in the base of the triangle

T ′
j with

ρU(yj, ∂U) ≥ min

(
R

8
,
|T ′

j |
4

)
,

l−1∑

j=1

ρU(yi, yi−1) ≤ C ′R.

Let z be the point in Tk = T ′
l with ρU (z, ∂U) ≥ R

8
, ρU(z, xk−1) ≤ 2CR and

ρU(z, yl−1) ≤ 2CR. The path γ consisting of line segments connecting the points

x, x0, x1, . . . , xk−1, z, yl−1, yl−2, . . . , y0, y

in this order is a desired path satisfying the uniform condition (3.5).

Similarly we can prove that the exterior of von Koch snowflake is a uniform

domain in R2, because it can be represented as a union of countably many triangles

constructed via similar procedure. �



Appendix B

Behavior of a réduite h
In this section we will focus on examples of the domains in Rn where the function

h constructed in Chapter 5.5 is known.

Proposition B.0.6 (see [9]) Let U = R+ × Ω ⊂ Rn be a cone in Rn based on

the spherical domain Ω ⊂ Sn−1, where a sphere Sn−1 is the unit sphere in Rn. Let

φ be the first Dirichlet eigenfunction of the spherical Laplacian with eigenvalue λ.

Then in polar coordinates,

h(x) = |x|αφ(x/|x|)

with

α =

√
(n− 2)2 + 4λ− (n− 2)

2
> 0

(so that α(α+ n− 2) = λ) is a positive harmonic function in U vanishing on ∂U .

Proof. This result follows from the positivity of the first Dirichlet eigenfunction

and the representation of ∆ in polar coordinates via spherical Laplacian LSn−1 ,

∆ =
1

r2
LSn−1 +

1

rn−1

∂

∂r

(
rn−1 ∂

∂r

)
(B.1)

�

Proposition B.0.7 Let U = Rn \H be the exterior in Rn of the half hyperplane

H = {(x1, . . . , xn) : x1 ≤ 0, x2 = 0}

Then the function

h(~x) = Re
√

x1 + ix2

is a harmonic function in U vanishing on ∂U . Here
√
z is taken to be an analytic

function on C \ R−, i.e. outside the set of non-positive reals.

133
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Proof. The function h is the real part of the conformal map from C \ R− to the

set of complex numbers with positive real part. Therefore h is harmonic, positive

and vanishes on ∂U . �

Notice that for n = 2, the level sets of the function h defined in Proposition

B.0.7 are parabolas, therefore the function h is given by a similar formula for the

exterior of the parabola in R2.

Proposition B.0.8 Let U ⊂ Rn be the exterior of the cylinder,

U = {~x = (x1, . . . , xn) : x2
1 + x2

2 + · · · + x2
n−1 ≥ 1}

and let r(~x) =
√
x2

1 + x2
2 + · · · + x2

n−1. Then for n ≥ 4 the function

h(~x) = 1 − r(~x)3−n

is a harmonic function in U vanishing on ∂U . For n = 3 the function

h(~x) = log r(~x)

is a harmonic function in U vanishing on ∂U .

Proof. We look for the function h(~x) among the functions independent of xn, thus

reducing the problem to dimension n−1. It remains to use the representation (B.1)

of ∆ in polar coordinates to check that h is harmonic. �

Proposition B.0.9 Let U ⊂ R2 = C be the complement of the infinitely winding

spiral S (see Figure 3.2 of Chapter 3.2) given in the parametric form by z(t) =

exp(t+ icπt) for some constant c > 0. Then the function

h(~x) = Im

[
exp

(
1 − icπ

2
log(x1 + icx2)

)]
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is a harmonic function in U vanishing on ∂U . Here the function log is considered

to be any branch of a complex logarithm function in the simply connected domain

C \ S.

Proof. For this result we constructed the function h as the imaginary part of the

combination of conformal maps,

h = Im ◦ φ−1 ◦ ψ,

where

φ : {z ∈ C : 0 ≤ Im(z) ≤ 2π

1 + c2π2
} → C \ S, z → exp (z + icπz)

and

ψ : {z ∈ C : 0 ≤ Im(z) ≤ 2π

1 + c2π2
} → H, z → exp

(
1 + c2π2

2
z

)
.

The function h is the imaginary part of the conformal map from C \ S to the set

H of complex numbers with positive real part. Therefore h is harmonic, positive

and vanishes on ∂U . �

Remark. For points in the complement of the spiral S of the form ~x = exp(t +

icπt− θ) with fixed θ ∈ (0, 2
c
), we have

h(~x) = Im

[
exp

(
1 − icπ

2
(t + icπt − θ)

)]
= exp

(
1 + c2π2

2
t

)
e−

θ
2 sin

(
θcπ

2

)
≍ |x̃| 1+c

2π2

2 .

This shows the growth of the function h in C \ S resembles that in the cone with

angle 2π
1+c2π2 .
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