
HIDDEN REGULAR VARIATION AND THE RANK TRANSFORM

JANET HEFFERNAN AND SIDNEY RESNICK

Abstract. Random vectors on the positive orthant whose distributions possess hidden regular variation
are a subclass of those whose distributions are multivariate regularly varying with asymptotic independence.
The concept is an elaboration of the coefficient of tail dependence of Ledford and Tawn (1996, 1997). We
show that the rank transform which brings unequal marginals to the standard case also preserves the hidden
regular variation. We discuss applications of the results to two examples involving flood risk and Internet
data.

1. Introduction

A refinement of the class of multivariate regularly varying distributions, which we call hidden regular
variation, is a semi-parametric subfamily of the full family of distributions possessing multivariate regular
variation and asymptotic independence. Various cases of hidden regular variation have received consider-
able attention recently as part of the program to distinguish statistically asymptotic independence from
dependence. See Campos et al. (2004), Coles et al. (1999), de Haan and de Ronde (1998), Draisma et al.
(2001), Heffernan (2000), Ledford and Tawn (1996, 1997), Peng (1999), Poon et al. (2003), Resnick (2004),
Stărică (1999, 2000). In particular, hidden regular variation is based on the analysis of the coefficient of tail
dependence of Ledford and Tawn (1996, 1997).

Treatments of hidden regular variation, placing it in relation to the concepts of asymptotic independence
and second order regular variation and giving characterizations and examples were given in Resnick (2002)
and Maulik and Resnick (2003). Here we discuss how the rank transformation yielding standard form regular
variation preserves the hidden regular variation.

1.1. Outline. The rest of this section reviews notation (Subsection 1.2) and the polar coordinate transfor-
mation (Subsection 1.3). Section 2 defines multivariate regular variation and hidden regular variation for
heavy tailed vectors without distributionally equal components. We review the rank method for estimating
the spectral measure in Section 3 and show that the rank transform can also be used to estimate the hidden
spectral measure. Section 4 gives some remarks on estimation of the hidden spectral measure since the limit
result of Section 3 involves a function which, typically, would not be known. Section 5 gives a high level
view of several problems where existence of hidden regular variation allows for improved accuracy when
estimating probabilities of extreme events. Two examples are given in Section 6, one requiring estimation of
the risk of flooding and a second where the problem is to ascertain whether response size and transfer rate
in Internet traffic exhibit asymptotic independence.

1.2. Notation. For simplicity we will generally assume that random vectors have non-negative components.
Set

E := [0,∞]d \ {0}
so that the origin is excluded from E. Compact subsets of E are compact sets of [0,∞]d which do not intersect
the origin; see the discussion in Resnick (2002). In some applications, for instance in finance, it is natural
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to consider the cone [−∞,∞]d \ {0}. We leave it to the reader to make the modest changes necessary to
generalize to this case, by considering the orthants individually.

Vectors are denoted by bold letters, capitals for random vectors and lower case for non-random vectors.
For example: x = (x(1), . . . , x(d)) ∈ Rd. Operations between vectors should be interpreted componentwise so
that for two vectors x and z

x < z means x(i) < z(i), i = 1, . . . , d, x ≤ z means x(i) ≤ z(i), i = 1, . . . , d,

x = z means x(i) = z(i), i = 1, . . . , d, zx = (z(1)x(1), . . . , z(d)x(d)),

x
∨

z = (x(1) ∨ z(1), . . . , x(d) ∨ z(d)),
x

z
=

(x(1)

z(1)
, . . . ,

x(d)

z(d)

)
,

and so on. Also define 0 = (0, . . . , 0). For a real number c, denote as usual cx = (cx(1), . . . , cx(d)). We denote
the rectangles (or the higher dimensional intervals) by

[a, b] = {x ∈ E : a ≤ x ≤ b}.
Higher dimensional rectangles with one or both endpoints open are defined analogously, for example,

(a, b] = {x ∈ E : a < x ≤ b}.
Complements are taken with respect to E, so that for x > 0,

[0, x]c = E \ [0, x] = {y ∈ E :
d∨

i=1

y(i)

x(i)
> 1}.

For i = 1, . . . , d, define the basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0) so that the axes originating at 0 are
Li := {tei, t > 0}, i = 1, . . . , d. Then define the cone

E0 = E \
d⋃

i=1

Li = {s ∈ E : For some 1 ≤ i < j ≤ d, s(i) ∧ s(j) > 0}.

If d = 2, we have E0 = (0,∞]2. The cone E0 consists of points of E such that at most d− 2 coordinates are
0.

1.3. The polar coordinate transformation. It is sometimes illuminating to consider multivariate regular
variation for the distribution of a random vector after a polar coordinate transformation. Suppose ‖ · ‖ :
Rd 7→ [0,∞) is a norm on Rd. The most useful norms for us are the usual Euclidean L2 norm, the Lp norm
for p > 0 and the L∞ norm: ‖x‖ =

∨n
i=1 |x(i)|. Assume the norm has been scaled so that ‖ei‖ = 1 for

i = 1, . . . , d. Given a chosen norm ‖ · ‖, the points at unit distance from the origin 0 are

ℵ := {x ∈ E : ‖x‖ = 1}.
For the purpose of hidden regular variation, we need to look at smaller subcone E0 of E and restriction of ℵ
to E0 is denoted by ℵ0 = ℵ ∩ E0. Recall norms on Rd are all topologically equivalent in that convergence in
one norm implies convergence in another.

For a fixed norm, define the polar coordinate transformation T : [0,∞)d \ {0} 7→ (0,∞)× ℵ by

T (x) =
(
‖x‖, x

‖x‖
)

=: (r,a),

and the inverse transformation T← : (0,∞)× ℵ 7→ [0,∞]d+ \ {0} by

T←(r,a) = ra.

Think of a ∈ ℵ as defining a direction and r telling how far in direction a to proceed. Since we excluded 0
from the domain of T , both T and T← are continuous bijections.

When d = 2, it is customary, but not obligatory, to write T (x) = (r, θ), where x = (r cos θ, r sin θ), with
0 ≤ θ ≤ π/2, rather than the more consistent notation T (x) =

(
r, (cos θ, sin θ)

)
. For a random vector X in

Rd we sometimes write T (X) = (RX ,ΘX). When there is no risk of confusion, we suppress the subscript.
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2. Multivariate regular variation and hidden regular variation.

We start with the definition of regular variation with unequal components.

2.1. Regular variation on E. Suppose Z is a d-dimensional random vector on [0,∞)d. The distribution
of Z is regularly varying (with unequal components) if there exist functions b(j)(t) ↑ ∞, as t →∞ such that
for a Radon measure ν on E we have

(2.1) tP [
( Z(j)

b(j)(t)
, j = 1, . . . , d

)
∈ ·] = tP [

Z

b(t)
∈ ·] v→ ν

on E (cf. de Haan and Omey (1984), Greenwood and Resnick (1979)). We assume the marginal convergences
satisfy

(2.2) tP [
Z(j)

b(j)(t)
> x] → να(j)(x,∞] = x−α(j)

,

where α(j) > 0, j = 1, . . . , d. Then b(j)(t) ∈ RV1/α(j) and we can and do assume each b(j)(t) is continuous
and strictly increasing.

2.2. Standard form of regular variation. By a change of variables, regular variation with unequal
components can be converted into regular variation where the marginal distributions of the each Z(j) are
tail equivalent. The relation (2.1) is equivalent to (cf. for example, Resnick (1987, page 277))

(2.3) tP [
(b(j)←(Z(j))

t
, j = 1, . . . , d

)
∈ ·] v→ νstandard(·)

on E where νstandard satisfies the homogeneity condition

(2.4) νstandard(t·) = t−1νstandard(·)
on E. Relation (2.3) is the standard form of regular variation where each component of the random vector
is normalized by the same function. The measures νstandard and ν are related by the relation

(2.5) ν([0,x]c) = νstandard([0, xα]c), x ∈ E
where we continue to use our vector conventions so that

xα =
(
(x(1))α(1)

, . . . , (x(d))α(d)
)
.

After transforming to polar coordinates, the homogeneity property in (2.4) becomes

(2.6) νstandard{x ∈ E : ‖x‖ > r,
x

‖x‖ ∈ ·} = cr−1S(·),

where c > 0 and S is a probability measure on Borel subsets of ℵ.

2.3. Hidden regular variation. We say that the distribution of Z has hidden regular variation if in
addition to (2.1) or (2.3) we have the following property after transforming to the standard case: There
must exist a function b0(t) ∈ RV1/α0 with b0(t) ↑ ∞, α0 ≥ 1 and

(2.7) lim
t→∞

t

b0(t)
= ∞,

such that on E0

(2.8) tP [
(b(j)←(Z(j))

b0(t)
, j = 1, . . . , d

)
∈ ·] v→ ν0,

for some Radon measure ν0 on E0. Note that (2.8) is equivalent to

(2.9) tP [
( Z(j)

b(j)(b0(t))
, j = 1, . . . , d

)
∈ ·] v→ ν̃0,

on E0 where ν0 and ν̃0 are related by

(2.10) ν̃0(x,∞] = ν0(xα, ∞], x ∈ E0.
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The measure ν0 is also homogeneous on E0

ν0(t·) = t−α0ν0(·)
but ν0 can be either finite or infinite on E0 (Maulik and Resnick (2003), Resnick (2002)) and when we
transform ν0 to polar coordinates, we get

(2.11) ν0{x ∈ E : ‖x‖ > r,
x

‖x‖ ∈ ·} = r−α0S0(·),

where S0 is a Radon measure on Borel subsets of

ℵ0 = ℵ
⋂
E0.

Since the region

ℵinv := {x ∈ E0 :
d∧

j=1

x(j) ≥ 1}

is a compact subset of E0 and hence will always have finite hidden measure, we can (and do) always choose
b0(t) so that,

(2.12) ν0(ℵinv) = 1.

Recall that the presence of hidden regular variation implies that the vector Z possesses asymptotic inde-
pendence (Resnick (2002)), which in our case is equivalent to

νstandard(E0) = 0.

This means the probability of two components of the vector being simultaneously large is negligible compared
to the probability of one component being large. The motivation (Ledford and Tawn (1996, 1997)) behind the
concept of hidden regular variation is to create a tractable subclass of the distributions possessing asymptotic
independence which would allow statistical analysis.

3. Rank methods for estimating the spectral and hidden spectral measures.

We now review and extend a method based on ranks for estimating the spectral measure S which is
discussed by Huang (1992). This rank method overcomes discomfort inherent in multivariate methods which
first require one to estimate tail indices α(j), j = 1, . . . , d. Assume we wish to estimate the spectral measure
S and the hidden spectral measure S0 on the basis of a sample Z1, . . . , Zn of size n.

3.1. Review of diagnostics based on ranks for estimating the spectral measure S. Continue to
suppose multivariate regular variation (without tail equivalent marginal distributions) given by (2.1). It
follows from Resnick (1986) (see also Resnick (1987, Exercise 3.5.7, page 161)) that the empirical measures
converge

(3.1) νn(·) :=
1
k

n∑

i=1

ε(
Z

(1)
i

b(1)(n/k)
,...,

Z
(d)
i

b(d)(n/k)

)(·) P→ ν(·)

in M+(E), the space of Radon measures on E. Here k = k(n) is a function of n satisfying k(n) → ∞ but
k/n → 0 so that k/n is a vanishing proportion of the sample size. For the sample (Z(j)

1 , . . . , Z
(j)
n ) of jth

components, let
Z

(j)
(1) ≥ · · · ≥ Z

(j)
(n)

be the order statistics in decreasing order starting with the biggest. Taking the marginal convergences in
(3.1) and inverting yields for each j = 1, . . . , d

(3.2)
Z

(j)

(dkt(j)e)
b(j)(n/k)

P→ (t(j))−1/αj ,
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in D(0,∞]. Because convergence is to a constant limit, we may append this to (3.1) to get

(3.3)
(
νn(·), (

Z
(j)

(dkt(j)e)
b(j)(n/k)

; j = 1, . . . , d
)) ⇒

(
ν,

(
(t(j))−1/αj ; j = 1, . . . , d

))

in M+(E)×D(0,∞]× · · · ×D(0,∞].
Recall (2.5) and convert (3.3) into

(3.4)
(
νn([0, x]c),

( Z
(j)

(dkt(j)e)
b(j)(n/k)

; j = 1, . . . , d
)) ⇒

(
ν([0, x]c),

(
(t(j))−1/αj ; j = 1, . . . , d

))

and then apply the almost surely continuous map

(ν([0, x]c), t) 7→ ν([0, t]c)

to (3.4) to get

(3.5) νn

(
[
0,

( Z
(j)

(dkt(j)e)
b(j)(n/k)

; j = 1, . . . , d
))]c

)
⇒ ν([0, t−1/α]c).

Unpack the left side of (3.5). We have

νn

(
[
0,

( Z
(j)

(dkt(j)e)
b(j)(n/k)

; j = 1, . . . , d
)]c

)
=

1
k

n∑

i=1

1
[

Z
(j)
i

b(j)(n/k)
≤

Z
(j)

(dkt(j)e)
b(j)(n/k)

;j=1,...,d]c

=
1
k

n∑

i=1

1
[Z

(j)
i ≤Z

(j)

(dkt(j)e)
;j=1,...,d]c

.(3.6)

Define the anti-ranks for j = 1, . . . , d

r
(j)
i =

n∑

l=1

1
[Z

(j)
l ≥Z

(j)
i ]

to be the number of j-th components bigger than or equal to Z
(j)
i . Rephrase (3.6) as

1
k

n∑

i=1

1
[r

(j)
i ≥kt(j); j=1,...,d]c

.

Change variables s 7→ t−1 to get

1
k

n∑

i=1

1
[r

(j)
i ≥k(s(j))−1; j=1,...,d]c

⇒ ν
(
[0, s1/α]c

)

or
1
k

n∑

i=1

1[ k

r
(j)
i

≤(s(j)); j=1,...,d]c ⇒ ν
(
[0, s1/α]c

)

or

(3.7) ν̂standard,n =:
1
k

n∑

i=1

ε(
k

r
(j)
i

; j=1,...,d

) ⇒ νstandard

in M+(E) where we used (2.10). A polar coordinate transformation of the points

{
( k

r
(j)
i

; j = 1, . . . , d
)
; i = 1, . . . , n}
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allows one to estimate the spectral measure S. Suppose the polar coordinates of (1/r
(j)
i , j = 1, . . . , d) are

(Ri,Θi). Then the empirical measure

(3.8)
∑n

i=1 1[kRi≥1]εΘi∑n
i=1 1[kRi≥1]

=
∑n

i=1 1[Ri≥k−1]εΘi∑n
i=1 1[Ri≥k−1]

⇒ S

is a consistent estimator of S.

3.2. Finding the hidden spectral measure with the rank transform. Now suppose both regular
variation represented by (2.1) and hidden regular variation represented by (2.8) hold. How can we use the
rank transform to estimate the hidden measure S0?

To find the hidden angular measure, we expect we have to use points

{
( k

r
(j)
i

; j = 1, . . . , d
)
; i = 1, . . . , n}

thresholded at a lower level than in (3.8). Since b0(t)/t → 0 (see (2.7)), it seems plausible to use the points

{( k

r
(j)
i

b0(n/k)/(n/k)
; j = 1, . . . , d

)
; i = 1, . . . , n

}
=

{( n/r
(j)
i

b0(n/k)
; j = 1, . . . , d

)
; i = 1, . . . , n

}
.

This scheme yields the hidden measure.

Proposition 1. Assume Z1, . . . , Zn is an iid sample from a distribution on [0,∞)d which possesses both
regular and hidden regular variation so that (2.1) and (2.8) hold. Then we have

(3.9)
1
k

n∑

i=1

ε(
n/r

(j)
i

b0(n/k) ; j=1,...,d

) ⇒ ν0,

in M+(E0) where recall ν0 is given in (2.8).

Proof. The proof mimics the scheme followed for using ranks to estimate ν or S. Observe for x ∈ E0 that

1
k

n∑

i=1

ε(
n/r

(j)
i

b0(n/k) ; j=1,...,d

)[x, ∞] =
1
k

n∑

i=1

1
[n(x(j))−1b−1

0 (n/k)≥r
(j)
i ; j=1,...,d]

=
1
k

n∑

i=1

1
[

Z
(j)
i

b(j)(b0(n/k))
≥

Z
(j)

(dn(x(j)b0(n/k))−1e)
b(j)(b0(n/k))

; j=1,...,d]

.

We claim (see below for the proof) that for each j = 1, . . . , d,

(3.10)
Z

(j)

(dn(x(j)b0(n/k))−1e)
b(j)(b0(n/k))

P→ (x(j))1/α(j)
.

Using this to scale the convergence in (2.9) we get

1
k

n∑

i=1

ε(
n/r

(j)
i

b0(n/k) ; j=1,...,d

)[x,∞] ⇒ ν̃0[x1/α, ∞] = ν0[x,∞],

where we used (2.10) for the last equality. This suffices to prove the result modulo the claim. ¤

Lemma 1. Assume Z1, . . . , Zn is an iid sample from a distribution on [0,∞)d which possesses both regular
and hidden regular variation so that (2.1) and (2.8) hold. Then (3.10) holds in D[0,∞) for each j = 1, . . . , d.

Proof. We have for each j = 1, . . . , d,

b0(n/k)
n

n∑

i=1

ε
Z

(j)
i /b(j)(b0(n/k))

⇒ να(j)
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in M+(0,∞] using Resnick (1986) or Resnick (1987, Exercise 3.5.7, page 161). In particular

b0(n/k)
n

n∑

i=1

ε
Z

(j)
i /b(j)(b0(n/k))

(x−1,∞] ⇒ xα(j)

in D[0,∞). This is a sequence of non-decreasing functions converging to a continuous limit and so the inverse
functions converge as well. This yields the statement of the Lemma. ¤

If one converts (3.9) to polar coordinates in order to estimate S0 one gets the analogue of (3.8). As in (3.8),
set Θi for the polar angular coordinate of (1/r

(j)
i , 1 ≤ j ≤ d) and let Ri be the norm of (1/r

(j)
i , 1 ≤ j ≤ d).

Then assuming S0 is finite (otherwise one has to restrict Θi to a compact subset of ℵ0)

(3.11)
∑n

i=1 1[Ri≥n−1b0(n/k)]εΘi∑n
i=1 1[Ri≥n−1b0(n/k)]

⇒ S0,

in M+(E0). Since b0(n/k) is unknown for statistical purposes, it must be estimated before we can regard
(3.11) as a suitable estimate of S0.

4. Estimation of the hidden measure.

For this section, recall

ℵinv := {x ∈ E0 :
d∧

j=1

x(j) ≥ 1}

for the set of vectors all of whose components are at least 1. Define

mi =
d∧

j=1

1

r
(j)
i

, i = 1, . . . , n

and further suppose
m(1) ≥ m(2) ≥ · · · ≥ m(n)

is the ordering of m1, . . . ,mn with the biggest first. We have the following result.

Proposition 2. Assume Z1, . . . , Zn is an iid sample from a distribution on [0,∞)d which possesses both
regular and hidden regular variation so that (2.1) and (2.8) hold and continue to assume that ν0(ℵinv) = 1.
Then we have in M+(E0)

(4.1) ν̂0 :=
1
k

n∑

i=1

ε
(
1/r

(j)
i

m(k)
,1≤j≤d)

⇒ ν0.

Thus we have removed the unknown b0(n/k) and replaced it by a random variable.

Proof. On D[0,∞) we have from Proposition 1 and continuous mapping that

ηn(t) :=
1
k

k∑

i=1

ε n
b0(n/k)∧d

j=1
1

r
(j)
i

(t−1,∞] ⇒ ν0{x : ∧d
j=1x

(j) ≥ t−1} = tα0ν0(ℵinv) = tα0 =: η∞(t).

Therefore we also have in D[0,∞) that the inverse processes converge:

η←n (s) ⇒ η←∞(s) = s1/α0 .

Unpack the left hand side. We have

η←n (s) = inf{u : ηn(u) ≥ s}

= inf{u :
n∑

i=1

ε n
b0(n/k) mi(u

−1,∞] ≥ ks}
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=
(
sup{v :

n∑

i=1

ε n
b0(n/k) mi(v,∞] ≥ ks}

)−1

=
b0(n/k)

n

(
sup{w :

n∑

i=1

εmi
(w,∞] ≥ ks}

)−1

=
b0(n/k)

n
m−1

([ks]).

Therefore we see that

(4.2)
n

b0(n/k)
m([ks]) ⇒ s−1/α0

in D(0,∞].
The rest is a scaling argument. Couple (4.2) with (3.9) and compose to get in D(E0)

1
k

n∑

i=1

ε(
n/r

(j)
i

b0(n/k) , j=1,...,d

)[
n

b0(n/k)
m(k)x, ∞] =

1
k

n∑

i=1

ε(
1/r

(j)
i

m(k)
, j=1,...,d

)[x,∞] ⇒ν0(x,∞]

as required. ¤
This suggests a way forward around the problem of the unknown function b0(n/k) in (3.11): We replace

n−1b0(n/k) by m(k). We can then write the analogue of (3.11). If ν0 is infinite, let ℵ0(K) be a convenient
compact subset of ℵ0. For d = 2 where ℵ can be parameterized as ℵ = [0, π/2] and ℵ0 = (0, π/2), we can set
ℵ0(K) = [δ, π/2− δ] for some small δ > 0. Then we have from Proposition 2,

(4.3)

∑n
i=1 1[Ri≥m(k),Θi∈ℵ0(K)]εΘi∑n

i=1 1[Ri≥m(k),Θi∈ℵ0(K)]

⇒ S0

(·
⋂
ℵ0(K)

)
.

If ν0 is finite, we can replace ℵ0(K) with ℵ0 as was done in (3.11).
Thus, to summarize, we proceed as follows when estimating S0:
(1) Replace the heavy tailed multivariate sample Z1, . . . , Zn by the n vectors of anti-ranks r1, . . . , rn,

where

r
(j)
i =

n∑

l=1

1
[Z

(j)
l ≥Z

(j)
i ]

; j = 1, . . . , d; i = 1, . . . , n.

(2) Compute the normalizing factors

mi =
d∧

j=1

1

r
(j)
i

; i = 1, . . . , n,

and their order statistics
m(1) ≥ · · · ≥ m(n).

(3) Compute the polar coordinates {(Ri,Θi); i = 1, . . . , n} of {(1/r
(j)
i ; j = 1, . . . , d); i = 1, . . . , n}.

(4) Estimate S0 using the Θi corresponding to Ri ≥ m(k).
For estimating S0 these results offer some advice on how to pick thresholds to estimate both S and S0 but

of course one must still choose k. The Stărică scaling device (Resnick (2003), Stărică (1999, 2000)) seems to
offer some guidance, though nothing, presently, is known about its theoretical properties.

5. Why estimation of the hidden measure matters.

Hidden regular variation is designed to produce a model subclass of the multivariate regularly varying
distributions possessing asymptotic independence. This model subclass is better suited to estimating very
small probabilities that the random vector falls in jointly remote regions well beyond the range of the observed
data. (See de Haan and de Ronde (1998), Ledford and Tawn (1996, 1997).) In this section we review how
hidden regular variation can help in the estimation of small probabilities.

For example, consider the following problems.
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5.1. Estimate the probability of non-compliance. Supppose the vector Z = (Z(1), . . . , Z(d)) represents
concentrations of a specific pollutant at d locations. (Alternatively, Z could represent concentations of
different pollutants at a single site.) Environmental agencies set standards by insisting that critical levels
t0 = (t(1)0 , . . . , t

(d)
0 ) not be exceeded at each of the d sites; that is, that Z ≤ t0. Non-compliance is represented

by the event

[non-compliance] = [Z ≤ t0]c =
d⋃

j=1

[Z(j) > t
(j)
0 ].

Non-compliance results in a fine or withdrawal of government support; it has various economic and political
implications, none of which is desirable. How do we estimate the probability of non-compliance?

We assume only that (2.1) and (2.8) hold and that d = 2 for simplicity. We observe that the probability
of non-compliance is

P{
d⋃

j=1

[Z(j) > t
(j)
0 ]} =

2∑

j=1

P [Z(j) > t
(j)
0 ]− P [Z(1) > t

(1)
0 , Z(2) > t

(2)
0 ].(5.1)

Assuming only asymptotic independence is present, one would be inclined to neglect the joint probability on
the right since it is negligible compared with the univariate probabilities. However, as the following outline
shows, the assumption of hidden regular variation allows for reasonable estimation of the joint probability.

Assume an iid random sample Z1, . . . , Zn. For the univariate probabilities we have
2∑

j=1

P [Z(j) > t
(j)
0 ] =

2∑

j=1

P [
Z(j)

b(j)(n
k )

>
t
(j)
0

b(j)(n
k )

]

≈k

n
ν

([
0,

( t
(1)
0

b(1)(n/k)
,

t
(2)
0

b(2)(n/k)

)]c
)

=
k

n

(( t
(1)
0

b(1)(n/k)

)−α1

+
( t

(2)
0

b(2)(n/k)

)−α2
)

≈k

n

(( t
(1)
0

b̂(1)(n/k)

)−cα1

+
( t

(2)
0

b̂(2)(n/k)

)−cα2

)
,

where
b̂(j)(n/k) = Z

(j)
(k),

the k-th largest of the j-th components of the data and α̂j is an estimate of αj obtained from the one-
dimensional sample of j-th components. For example, α̂j could be the Hill estimator or the MLE.

For the multivariate tail probability on the right side of (5.1), we estimate

P [Z(1) > t
(1)
0 , Z(2) > t

(2)
0 ] =P [

Z(j)

b(j)(b0(n
k ))

>
t
(j)
0

b(j)(b0(n
k ))

; j = 1, 2]

≈k

n
ν̃0

((( t
(1)
0

b(1)(b0(n
k ))

,
t
(2)
0

b(2)(b0(n
k ))

)
, ∞

])

from (2.9) and from (2.10) this is

=
k

n
ν0

(((( t
(1)
0

b(1)(b0(n
k ))

)α1

,
( t

(2)
0

b(2)(b0(n
k ))

)α2

)
, ∞

])

≈k

n
ν̂0

(((( t
(1)
0

̂b(1) ◦ b0(n
k )

)α̂1

,
( t

(2)
0

̂b(2) ◦ b0(n
k )

)α̂2

)
, ∞

])
.(5.2)
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For our estimate of ̂b(j) ◦ b0(n
k ) we use (j = 1, 2)

(5.3) ̂b(j) ◦ b0(
n

k
) = Z

(j)
([1/m(k)])

.

To see why this is the appropriate estimator of the composition, note that from (4.2) (with s = 1) and (3.10)
we have jointly

(5.4)
(Z

(j)
(dn(xb0(n/k))−1e)
b(j)(b0(n/k))

,
n

b0(n/k)
m(k)

)
P→ (

x1/αj , 1
)

in D(0,∞)× [0,∞). Therefore by scaling, using the map (x(·), t) 7→ x(t·), we get from (5.4) that

Z
(j)
(dn((nm(k)/b0(n/k))b0(n/k))−1e)

b(j)(b0(n/k))
=

Z
(j)
(d1/m(k)e)

b(j)(b0(n/k))
P→ 1.

Hence the choice given in (5.3)
Although the rank method of estimating ν0 obviates the need to compute the α’s, the α-estimates are

needed for estimating probabilities of remote events.
The calculation leading to (5.2) will be used in Subsection 6.2 to assess the risk of flooding. The data

analyzed there are precipitation in successive hours. For these bivariate data, simultaneous exceedance of a
threshold represents the the greatest risk of flooding due to rainfall.

5.2. Estimate the probability of a failure region. In certain water resource problems a failure region
is of the form

A := {z ∈ E : f(z, t0) > 0}
and it is required to estimate

P [Z ∈ A]

(Bruun and Tawn (1998), de Haan and de Ronde (1998)). For example, the failure probability could be of
the form

P [a(1)Z(1) + a(2)Z(2) > t0],

where Z(1) represents still water level and Z(2) represents wave height and a(j) > 0, j = 1, 2. If one
only assumes asymptotic independence, then one is tempted to approximate the failure probability with∑2

j=1 P [a(j)Z(j) > t0].
As before, assume estimation of the failure probability is based on an iid sample Z1, . . . , Zn and that

hidden regular variation is present. We may write a ·Z = a(1)Z(1) + a(2)Z(2) and then

P [a ·Z > t0] = P [a ·Z > t0, Z ∈ E0] + P [a ·Z > t0, Z ∈ E \ E0].

The second probability is approximately

k

n

2∑

j=1

P [a(j) Z(j)

b(j)(n/k)
>

t0
b(j)(n/k)

] ≈ k

n

2∑

j=1

( t0
a(j)b(j)(n/k)

)−αj ≈ k

n

2∑

j=1

( t0

a(j)Z
(j)
(k)

)−cαj

.

The probability on E0 is approximately

k

n
ν̃0{z ∈ E0 :

2∑

j=1

a(j)b(j)(b0(n/k))z(j) > t0} ≈ k

n
̂̃ν0{z ∈ E0 :

2∑

j=1

a(j)Z
(j)
([1/m(k)])

z(j) > t0}

and
̂̃ν0(x, ∞] = ν̂0(xα̂, ∞].

Recall that ν̂0 is given in (4.1) and α̂ = (α̂1, . . . , α̂2) can be estimated using the Hill or MLE estimator
applied to the marginal one-dimensional samples. Finally we give a reminder that

xα = (xα1
1 , xα2

2 ).
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6. Two examples.

This section illustrates the usefulness of the our theoretical results for the two contexts of Internet traffic
studies and flood risk analysis.

6.1. Internet HTTP response data. Our first example analyzes HTTP response data describing Internet
transmissions observed during a four hour period from 1:00pm-5:00pm on 26th April 2001 at the University
of North Carolina. The data sets were obtained from the University of North Caroline Computer Science
Distributed and Real-Time Systems Group under the direction of Don Smith and Kevin Jeffay. Interest in
this subject was stimulated by Steve Marron in his Mary Upson lectures at Cornell University in fall 2001.

Internet file transfers are subject to delays and although one expects larger file transfers to encounter
more delays, this is overly simplistic (Campos et al. (2004)). Large file transfers, while comparatively rare,
comprise a significant fraction of all the bytes transferred on the Internet and hence are important for
understanding the impact of diverse networking technologies such as routing, congestion control, and server
design on end-user performance measures. For HTTP (web browsing) responses, the joint behavior of large
values of three variables – size of response, time duration of response, and throughput (syonym: rate = size
/ time) – can be considered. All three quantities are typically heavy tailed but size and rate tend to be
asymptotically independent. See also Maulik et al. (2002), Resnick (2003). We consider here the existence
of hidden regular variation for the variables (size, throughput).

The dataset consists of responses (bytes) in the stated time period whose size is in excess of 100 000 bytes
coupled with the time required for transmission (seconds). There were 21829 such transmissions. As opposed
to the next example on flood risk, interest here is not specifically in estimating probabilities of rare events
such as joint threshold exceedance, but rather in understanding the underlying structure of the transmission
process. This is intended to aid network engineers in their development of realistic models of Internet traffic
processes, with which they simulate network behaviour. To this end, we focus on the establishment of
asymptotic independence and hidden regular variation between transmission size and throughput, and then
on obtaining an estimate of the hidden spectral measure characterizing the joint tail of the distribution of
these variables. This would suggest that a suitable model for (size, throughput) could be obtained from a
mixture model as in Maulik and Resnick (2003).
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Figure 1. Hill plots on two scales for estimating the coefficient of tail dependence η.
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Although estimation of the marginal distributions is not required for the examination of the dependence
structure, we first estimate the marginal tail parameters to establish the heavy tailed behaviour of the
transmission rate and size variables. We used Hill plots and AltHill plots (not shown) to choose values of
k = 150, 250 for the size and rate variables respectively. Estimates of α were relatively stable around the
values of α1 = 1.8 and α2 = 2.1 in the ranges [50, 3000] and [50, 400] for these variables respectively.

The next stage is to establish whether these Internet data exhibit asymptotic independence. We calculate
the coefficient of tail dependence η of Ledford and Tawn (1996, 1997) using the Hill estimator for the shape
parameter of the distribution of componentwise minima taken after rank transformation to standard Pareto
margins. The Hill and AltHill plots used to inform our choice of k for this estimation are shown in Figure 1.
These plots show estimates of α = 1/η constructed using different numbers of order statistics. The plots
show the estimated value of η to be stable at around 0.6 for k in the range [50, 400]. This value is consistent
with asymptotic independence and weak dependence between transmission size and rate at finite levels.
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Figure 2. Density estimates of the spectral measure S for the Internet transmission size
and rate data.

Another visual confirmation of asymptotic independence is to calculate the empirical measure (3.8) for
different values of k. Figure 2 shows kernel density estimates corresponding to these estimates for k =
300, 600, 900 and 1200. These plots clearly show the mass concentrating towards the endpoints of the
interval [0,1] as we use fewer and fewer order statistics. This gives further compelling evidence of asymptotic
independence.

Having established that our variables are both heavy tailed and asymptotically independent variables, we
can now employ steps 1)-4) given at the end of Section 4 to estimate the hidden measure. Implementation
of these steps involves choice of k, and we use the Stărică scaling device (Resnick (2003), Stărică (1999,
2000)) to aid this choice. This tool is motivated by the homogeneity property (2.4) of the spectral measure
νstandard. Recall from (3.7), that ν̂standard,n is the empirical estimate of νstandard and contains the parameter
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k which must be selected. Since νstandard is homogeneous, Stărică argues that a good choice of k is that for
which the following approximation is true:

ν̂standard,n(uA) ≈ u−1ν̂standard,n(A)

for u in a neighborhood of 1 and the set A = {x ∈ E : ‖x‖ > 1}. For the Internet data, the value of k for
which the scaling ratio

(6.1) ν̂standard,n(uA)/{u−1ν̂standard,n(A)}
is most stable around the value 1 for u in the interval [0.5,1.5] is k = 1112. The resulting a value of m[1112]

corresponds to the 0.45 quantile of the radial components. Figure 3 shows this scaling ratio calculated using
k = 1112 for u between 0 and 10.
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Figure 3. Stărică scaling plot for the Internet transmission size and rate data. Horizontal
axis shows scaling constant u and vertical axis shows scaling ratio (6.1) for k = 1112.

Following this suggestion for the choice of k, we plot the estimated hidden measure for k = 1000, 1150, 1200
and 1250 in Figure 4. These plots show stability of the estimated measure for these values of k. Again, since
the measure may be infinite, we have bounded the interval on which we estimate the measure away from 0
and 1 and show the kernel density estimate on the interval [0.1,0.9]. An edge correction has been applied
so that the density integrates to 1 on this interval. All plots show the hidden measure to be bimodal with
peaks around 0.2 and 0.85.

6.2. Risk from flooding in Eskdalemuir. For our next example, we illustrate the estimation of risk from
flooding using hourly rainfall measurements (units: 0.1 mm) from Eskdalemuir in the south west of Scotland,
during the years 1970–1986 inclusive. The dataset has also been considered in Nadarajah et al. (1998). The
rainfall process exhibits both serial dependence and diurnal cycles. To avoid complications arising from
these features we focus on consecutive pairs of hourly observations taken from 1100 to 1200 and from 1200
to 1300 daily. The choice of this particular pair of consecutive hours is arbitrary but does not materially
affect the analysis which we now describe. This gives us a series of 6209 observations of the random pair
Z = (Z(1), Z(2)), which we assume i.i.d. Around 80% of the observations are zero, corresponding to dry
hours. The data are plotted in Figure 5.

Interest in extreme rainfall generally results from an intention to understand and protect against rainfall
which can result in flooding. Four factors contribute to the likelihood of flooding following a rain event:
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Figure 4. Density estimates of the hidden spectral measure S0 for the Internet transmission
size and rate data.

rainfall intensity and duration (meteorological), ground saturation and rainfall catchment response (hydro-
logical). We focus on the meteorological factors. A historical study of extreme rainfall events in the UK
(Hand (2002)) shows clearly that the rainfall events with the highest hourly precipitation rates in the UK
are the shortest events, typically lasting less than one hour and exclusively resulting from “convective” rain.
This type of precipitation is typically intense, of short duration, and is often accompanied by thunder and
lighting. This finding suggests that rainfall amounts may be asymptotically independent from one hour to
the next, as the intensity of such precipitation events is rarely sustained for long enough to make the rainfall
counts extreme in both hours. Our aim in this example is to estimate the probability of flooding, ie rainfall
in excess of threshold t0 in consecutive hours for large values of t0.

Diagnostic plots (not shown) such as the Hill, Alt Hill and QQ plots (Beirlant et al. (1996), Drees et al.
(2000), Kratz and Resnick (1996), Resnick (2003), Resnick and Stărică (1997)) suggest that k = 300 is
appropriate for estimation of the marginal parameters α1 and α2. These were estimated using the Hill esti-
mator as 1.66 and 1.57 for 1100-1200 and 1200-1300 respectively. We checked for asymptotic independence
by estimating S using the estimator in (3.8) for a variety of values of k. Plots of this empirical measure
(not shown) show the movement of the mass to the endpoints of its support as k decreases. We confirmed
this finding by estimating the coefficient of tail dependence of Ledford and Tawn (1996, 1997) using the Hill
estimator for the shape parameter of the distribution of componentwise minima taken after rank transfor-
mation to standard Fréchet margins. The estimated value of this parameter was stable at around 0.83 for
k in the range [10,500]. This value is consistent with asymptotic independence but with reasonably strong
dependence at finite levels.

We chose the value of k to use for the dependence estimation (4.1), using the Stărică scaling plot (Resnick
(2003), Stărică (1999, 2000)). This device suggests a value of k = 210 for this pair of variables. We use the
above values of α̂1, α̂2 and k = 210 to obtain estimates of the probability of joint exceedance of t0 = 4, 5, 6
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Figure 5. Scatter plot of 1 hour rainfall measurements Z = (Z(1), Z(2)) (0.1 mm) from
Eskdalemuir, 1970-1986: the lines show the exceedance thresholds t0 = 70, which are not
jointly exceeded by any pair in the dataset.

and 7mm using our method as 6.0e-5, 3.2e-5, 2.2e-5 and 1.6e-5 respectively. For such values of t0, empirical
exceedance rates using the observed counts of joint exceedances are based on too few data to be reliable. In
particular, for t0 = 70 (indicated by lines on plot in Figure 5) there are no observed joint exceedances of
this threshold. Our estimate of ν̂0 uses a greater proportion of the data, then scales by k/n, according to
expression (5.2).

An additional benefit of our proposed estimation scheme is the ability to visualise the hidden spectral
measure S0. We follow steps 1)-4) given at the end of Section 4 to construct points which we treat as a
sample from the hidden angular distribution. Figure 6 shows the kernel density estimate of the angular
components constructed using the L1 norm, and radial components above m[k] where k = 210. Since the
hidden spectral measure may be infinite, we have bounded the support of our estimate away from the ends
of the interval [0,1], and show the density estimate on the interval [0.1,0.9]. An edge correction has been
applied to ensure that the density integrates to one on this interval. This density estimate is relatively stable
for k in the range [100,300]. Note that m[210] corresponds to the 0.84 quantile of the distribution of radial
components.
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