Common Phrases and Minimum-Space

Text Storage

by

Robert A. Wagner

Technical Report
No. 70-74
September 1970

Computer Science Department
Upson Hall

Cornell University

Ithaca, New York 14850



Common Phrases and Minimum-Space Text Storage

by

Robert A. Wagner*

Abstract: A method for saving storage space for text strings,
such as compiler diagnostic messages, is described. The method
relies on hand-selection of a set of text-strings which are
common to one or more messages. These phrases are then stored
only once. The storage technique gives rise to a mathematical
optimization problem: determine how each message should use

the available phrases to minimize its storage requirement.

This problem is non-trivial when phrases which overlap exist.
However, we present a dynamic programming algorithm which solves
the problem in time which grows linearly with the number of

characters in the text.
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Introduction

The PL/C compiler includes an extensive body of diagnostic
messages [3]. A high premium has been placed on reducing the
total amount of space used by this compiler. These facts
prompted an effort to study means of reducing the storage-space
cost of storing the diagnostic messages. The approach we took
appears to be useful whereever a fixed collection of utterances
must be stored.

We chose to select, by hand, a collection of phrases, each
of which appeared in several messages. Instead of storing
multiple copies of the common characters? only one copy was
stored in full. Each occurrence of the common phrase, in
messages or other phrases, could be replaced by a "reference"
to the phrase. Only two bytes (characters) sufficed to record
a phrase reference. Thus we hoped to achieve significant space
savings by selecting repeated phrases each more than two
characters in length.

An interpreter was designed to print messages and expand
phrase references. We then attacked the resultiﬁg mathematical
optimization problem. Here, we assume that a set of common phrases
is given. Only these phrases may be referenced within messages or
phrases. The problem is to discover for each message or phrase,
that "parse" into non-overlapping phrases which minimizes the
message's storage requirement. The present work concentrates on an
efficient algorithm we have developed for so parsing messages.

The designers of at least two other fast, compile-into-core

compilers (PUFFT [4] and CUPL [5]) have attacked the message-
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storage problem. In both instances, the solution -- some form

of phrase-reference -- was similar to ours. Neither design-

group has reported any automatic techniques for selecting phrases,

or for parsing messages.

Analysis of Space Requirements

In order to motivate the parsing algorithm, it will be
necessary to describe the formats of phrases and messages. From
the message format, and the format of accompanying tables, we will
derive the cost function for the optimization problem we are to
solve. This function requires a solution in integers to a non-
linear optimization problem (Appendix A) in even the simplest case.
Solutions to such non-linear problems are usually costly to compute.
However, a re-formulation of the problem, using the principles of
dynamic programming, produced a computationally efficient procedure.
The interpreter which printed messages accepted the following

message syntax:

"

<message> :: <phrase reference><message>|<character string>

<message>|<end mark>

<phrase reference> :!: P<number>

<end mark> :: = E

<character-string> :: C<number><string>

<string> :: = any string of 1 to 256 printable characters

<number> :: = any integer in the range 0 to 255, represented
in binary as a single character.
The <number> occurring in a <phrase reference> indicates which

of 256 phrases is intended; the <number> appearing in a <character-
string> is a count of the number of characters in the <string> ,

minus one.
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We assume throughout that no character-string larger than
256 characters ever occurs. The space requirement for each

possible component of a message are then (in 8-bit bytes):

<phrase reference> 2 bytes

<end mark> - 1 byte

<character string> 2 + % bytes, where the <string> contains

2 characters.

A <phrase reference> simply refers to one of a distinguished
subset of messages. This selected phrase is substituted for its
<phrase reference> by the interpreter. Phrases and messages are
syntactically identical. Thus, the interpreter recursively
expands any <phrase references> in each referenced phrase.

A more compact encoding for character strings would have
been possible. Specifically, we could have reduced the space-
cost of a character string to %, the number of characters occurring
in its <string>. However, this would have required the message-
printer to scan every character of the string, looking for either
the phrase reference (P) or the end mark (E). This appeared
to be unacceptably slow. Instead, we added two extra characters
to each string (the C <number>), allowing us to use the IBM 360
"Move Characters" instruction to move the entire string at once.
We refer to these extra characters as "overhead characters,"

and say that the character-string overhead equals 2 in this

scheme.



The Parsing Problem

Phrases and messages are initially presented in the
form of simple strings of characters, with no "overhead"
characters present. The length of each phrase or message is
also provided. In the required final form, <phrase references>
will be permitted to refer to that collection of strings
designated <phrases> originally; phrases and messages are
otherwise indistinguishable. 1In particular, all phrases and
all messages presented will be stored.

The set of phrases given initially acts like a partial
grammar for a context free language. The language consists
of a finite set of sentences (the phrase and message strings
themselves). The right-hand sides of its grammar rules contain
no non-terminal symbols. In addition, the "grammar" may be augmented
as needed by additional rules, which correspond to <character
string> occurrences. Nevertheless, we will term the translation
process which changes the simple initial strings into compact
final form "parsing."

Technically, a parse will be a set R of pairs (j,p), where
p 1is a phrase which matches characters j, j+1,...,j+[p|—1 of
the message text. Here we denote the length of a phrase p by
Ipl . Furthermore, if R contains pair (j,p), R must not also
contain a pair (k,q) where jfk<j+lp[ or kij<k+|q| . Each
parse corresponds directly to an acceptable final form for a

message.
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Several procedures have been proposed for solving
this problem, apart from the integer programming approach.
It seems worthwhile to examine one of these, since it illustrates
how such procedures can eliminate the non-linear constraint in
the integer-programming formulation, without incurring tremendous
time penalties.

The single non-linear constraint in the integer programming
formulation is designed to ensure that, if two phrases match
the same substring of the message, only one of the phrases is
used. Various other methods can be used to achieve the same end.
(For example, all acceptable parses could be enumerated, rather
than generated from the phrases and positions which make them up.)

Another technique involves repeated transformation of the
entire message-text to (supposedly) produce a minimum-space form.
Some particular phrase is selected, and all occurrences of that
phrase are replaced by references to phrase. The resulting
text is then scanned for occurrences of other phrases, without
"expanding" any existing phrase references. The scanning 1is
a simple comparison operation which treats the special "P" and
"E" parks as ordinary characters. The process is then performed
repeatedly, until all phrase occurrences have been extracted.

At each stage, some rule for selecting the phrase when
occurrenées are to be extracted is needed. One choice for this

rule is:
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"Select that phrase which is longest, of those phrases

remaining." However, this rule fails to yield truly minimal-
storage forms of message-text. Consider the message:
ABCDEABCD
where phrases
(1) ABCD and (2) CDEAB
are available.
The "largest first" rule yields:
AB (2) CD, where (2) represents a 2-byte phrase
reference to phrase 2. 1Its costis 6 bytes, excluding
character-string overhead.
The best parse is
(1) E (1): cost = 5 bytes, excluding character-string
overhead.
(The two illustrated strings would actually be stored as:
CLABP2C1CDE (11 bytes),
and PlCOEP1E | (8 bytes),
where the underlined numerals represent the character whose

8-bit binary representation equals the underlined number.)

The Optimal-Parsing Algorithm: Simple Case

An efficient algorithm for producing a space-optimal parse
of a body of text was developed. The algorithm is basically a

generalization of the procedure described above.
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Instead of heuristic rules, the algorithm uses a kind of
mathematical induction, to ensure that the parse it produces
is optimal.

First, by the conditions of the problem, each "message"
and "phrase" is presented initially in the form of a string of
characters. The total number of characters is also known, for
each message and phrase. This representation allows phrases to
be compared with substrings of messages easily, to see if a
"natch" is achieved at each character-position of the message.

It should be clear from the desired final form of messages,
that no phrase can "match" the boundary between two messages.
Minimizing the storage-space required for each individual
message will therefore miniﬁize the space needed for the entire
text. We can concentrate, then, on the algorithm which produces
a space-minimal parse of a single message, using a predetermined
set of phrases as possible phrase-references.

Consider one messége, presented initially as a simple
string of characters (no character-counts or "flags" present).
Number the character-positions in this finite string from 1 to N.
Suppose that, for all j, N>3j>I, the following function has been
computed:

f(j) = least space needed to store the final
form of the characters numbered j, j+1,...,N

of the given message.
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We will show how f(I) can be computed from this information,
the message string itself, and the given set of phrases. Using
this rule, the value of £(1) can eventually be determined, and
along with this value = "the least space needed to store the

' the optimal parse.

entire message,’

Let P = the set of all phrases.

If p€P, let |p| = length of p in characters, when p 1is in
initial (fully expanded) form.

Let ST(j,p) be a predicate which is true just when phrase p

- matches characters Jj, j+1,...,j+|bl—1 of the given message.

ST(j,p) is false whenever p 1is not a phrase, or when any of the

characters j,...,j+lP|-1 either doesn't exist or fails to equal

the character of p its position corresponds with.

To define a rule for computing f(I), consider first the simple

case when character-string-overhead = 0.

Let P(I)

"

“{plsT(1,p)}

min [F(I+|P|)+2, F(I+1)+1]
pEP(I)

Let F(I)

"

Take F(N+1l) = 1 as initial conditionmns.
Then we claim that £(I) = F(I), 1 < I < N, assuming that character-
string-overhead = 0.

For, if we assume by induction that £(j) = F(j) for N>j>I,
then if phrase pEP(I) should be used in the parse at I, then

that phrase will "match" characters I,...,I+|p|-1 of the message.
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The storage space for these characters will be reduced to the
2 characters needed for the phrase-reference to phrase p. The

remainder of the message, characters I+|p|,...,N, will require

£(I+|p|) characters for its storage. But £(1+|p ) F(I+|p]|)

by the induction hypothesis. If, on the other hand, no phrase
should be used in the parse at I, the one-character string at
position I can be stored, followed by the optimal parse for
characters I+1,...,N of the message. Since character-string
overhead is assumed zero for now, storage of a one-character
string requires one character (pius zero overhead characters).
Thus, the total storage requirement in this case is f(I+1)+1 =
F(I+1)+1. Finally, we minimize over all available alternatives
to compute F(I) = £(I).

The initial wvalue of F(N=1) = 1 was chosen to account
for the required <end mark> on the message.

The algorithm presented above is an example of the stage-
wise decomposition plus inductive reasoning which is characteristic
of dynamic programming algorithms [2]. It should also be
recognized that the search for phrases in P(I) required by this
algorithm can be greatly narrowed by the use of "hash table"
techniques [1]. In our problem, the cost of a <phrase reference>
is 2. This places a lower limit of 3§|p| on every phrase p which
is useful in reducing storage requirements. As a result, the
three characters numbered I,I+1,I+2 of the given message may be
"hashed," and only phrases beginning with these characters need

be compared using the ST(I,p) function.
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The Optimal-Parsing Algorithm: General Case

To remove the requirement that character-string-overhead =
it proves useful to define a pair of functions inductively. To
motivate the definition, consider:

g(j) = the least space needed to store characters Jj,...,N

of the message, provided that the final form of the

message begins with a <character-string> , and

h(j) = the least space needed to store character Jseoo N

o,

of the message, regardless of what the first component

of the final storage form of the message is.

We need both h(j) and g(j) to account for the effect that the

leading component of the meésage has when prefixed by another
character. If that leading component is itself a <character-
string>, the additional character can be absorbed at no extra
overhead cost; otherwise, a character-string-overhead cost is
incurred. We can now define:

G(I) = min [G(I+1)+1, H(I+1)+3]

H(I) = min [H(I+|p|)+2, 6(I)]
pEP(I)

G(N+1) = 3, H(N+1l) =1
The proof that G(j) = g(j) and H(j) = h(j), j=1,...,N.
follows closely the pattern of reasoning used in proving that
£(j) = F(j). Here we take as induction assumption the statement
G(3) = g(j) and H(j) = h(j) for N>j>I, and we prove
successively that

G(I) = g(I), then that H(I) = h(I).
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To show that G(I) = g(I), given the induction assumption,
we note that the conditions on parses from which g(I) is
computed, require that all parses must begin with a <character-
string> . The character whose number is I must therefore be a
member of a <character-string> . Either character I is added
to the beginning of an existing <character string> , or character
I must be the sole member of a new <character string> . These
alternatives yield space costs respectively of:

g(I+1)+1 (=G(I+1)+1 by the induction assumption.)

or

h(I+1)+3 (=H(I+1)+3).

The smallest of these two alternatives equals g(I). Hence,
by definition of G(I), g(i) = G(I).

The proof that H(I) = h(I) follows the proof that F(I) =
f(I) so closely that its repetition would be pointless.

In our implementation of this dynamic programming algorithm,
we record the choice seiected by each minimization function for
each j. We can then reconstruct the set of optimum choices by
reconstructing those G and H values needed for the computation
of H(1l). Appendix B gives an Algol version of the complete

parsing algorithm.

Summary

We have presented a method for storing textual messages

which reduces the storage-space they require by allowing them to
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refer cheaply to any of a fixed set of common phrases. An
efficient algorithm for determining exactly which combination of
phrase references and character strings produces the minimal
storage representation for each message has also been described.
This algorithm does not automatically choose the optimal set of
common phrases, however. Nonetheless, we have found the

parsing algorithm quite helpful in reducing the storage

requirements for error diagnostics printed by the PL/C compiler.
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Appendix A

An integer-programming formulation of a simple case of the

optimum parsing problem is presented here.

Let Pij = 1 if phrase i matches the given message
at position j, and
P.. = 0 otherwise.
1]
Let Li = length of phrase 1i.

The Pij and the Li can be calculated directly from the given

set of phrases and the message to be parsed.

Let Vij = 1 if parse i is to be used in the given
message at position j, and Vij = 0 otherwise.
Then Vij represents the required parse, in the case where the
character-string overhead = 0, just when Vij is the solution to:
maximize ) V,. (L, - 2)
. 2. ijt1i
1,
such that

(1) V..= 0 or Vij =1
(2) V.. <P,

(3) ) v,, <1
i

%) V.. * Az v = 0
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Condition (2) ensures that a phrase matches the message, if it
is used in a feasible parse. Condition (3) ensures that at most
one phrase is used at each starting position. Condition (4)
imposes the requirement that phrases selected must not overlap.
The criterion function represents the total characters saved

by phrase references. Maximizing this total-saved minimizes

the space needed for the message when character-string overhead

is zero.
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Appendix B

An Algol Procedure to Produce a Space-Minimal Parse of a

Text String

procedure PARSE(R,L,C,N,P,M); value C,N,P ,M;

integer array R,C,P; integer L,N,M;

comment: c[1],...,C[N] hold the characters in the text string,
p[i,11,...,P[i,P[1,0]] hold the characters making up
phrase 1.

R[1],...,R[L] will hold the optimum final form of
the character string, after PARSE
returns.

A1l characters are assumed to be encoded as

integers in the range 0 to 255 inclusive throughout

this algorithm;

comment: The flags 'C', 'P' and 'E' are coded respectively
as the integers 1, 2, and 3 in R;

bepin integer array G,H,Q[1:N+1], HSH[0:383];

integer 1,J,K,X,S5,T;
comment: G[i] will be the least space needed to store
the final form of C[il],...,CIN],
assuming the final form must begin with
a <character string>.
H[i] will be the least space needed to store

the final form of C[i],...,CIN].
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Q[i] will record a phrase number (when
H[i] < G[i]) or a character~string
length (when H[i] = G[il]).

HSH 1is a "hash table," holding phrase
numbers or zeros. Its size reflects
the restriction that no more than 256
phrases are present;

procedure ENTER(A); value A; integer Aj;

comment: This procedure enters a character into Rj;
begin L := L+1; R[L] := A; end ENTER:
Boolean procedure ST(j,p); value isp; integer j,p;
comment: ST(j,p) is true if phrase p matches characters

j,j+1,...,j+lp|—1 of the text string, and is
false otherwise;

begin integer 13

ST := false;
if j+P[p,0] > N+1 then goto L1;

for i := 1 step 1 until P[p,0] do

if C[j+i-1] =~ = P[p,i] then goto L1;

Ll: end ST;
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integer procedure HASH(Q,B,X); value Q; integer B,X;

comment: if Q < 0,
B should be an array reference, involving
the actual parameter, a variable,
substituted for the formal parameter X by
the call. HASH examines the 3 entries of
accessed when X = 1,2, and 3, and returns
an index to an entry in HSH which indexes
a phrase which begins with those same
three integers, if such an entry exists.
Otherwise, HSH returns the index to a
zero entry in HSH.

if Q > 0,

parameters B and X 1is ignored. The
values examined the last time HASH was
called with Q < 0 are used, together
with an internally-stored record of the
last value returned by HASH to compute
the index of the next entry in HSH which
indexes a phrase beginning with the three
examined characters. If no such entry
exists, the HSH entry contains 0;

comment : HASH uses a slightly modified version of the

quadratic quotient algorithm. [1]
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begin own integer Y,j,A,k; 1integer g;

if Q < 0 then begin

Y :=0

for X 1= 1 step 1 until 3 do

Y i= 256 * Y + B;
j := max(l, entier(Y/HSHL));

k = Y; A := 1;

end;
L1l: A = A+ j; k :=k + A
k := k - (k * HSHL) * HSHL;
if HSH[k] = 0 then goto L;
g := HSH[k];
if Y = = 256*%(256*P[g,1] + P[g,2]) + Pl[g,3]
then goto L1;
L: HASH := j;

end HASH;
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comment: body of PARSE procedure begins here, with

hash table initilization;

HSHL := 383; comment: chosen to be a prime N %*256,
where 256 = largest allowable
M value;

for I = 0 step 1 until HSHL do

HSH[I] := O;
comment: enter the phrases into HSH;

for I := 1 step 1 until M do begin

L1l: K := HASH(K,P[I,X],X);
if HSH[K] -~ = 0 Eﬁg& goto L1;
HSH[K] := I;
end;
comment: Compute G,H and Q;

G(N+1] := 3; H[N+1 := 1; Q[N+1] := § := 0;

for I := N step -1 until 1 do begin

G[I] := G[I+1l] + 1;

Q[I] := s3;

-

s= H[I+1] + 3;

e
Hh
L

< G[1] then begin

|

for K

o9

= HASH(K,C[I+X-1],X) while

HSH[K] = = 0 do

if ST(I,HSH[K]) then begin
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J := HSH[K];

T := H[I+P[J, 0]1] + 2;

I
=

< H[I] then begin

Q[I] := J;

H[I] := T end;

comment: Now, using G, H and Q we can construct the final
space-optimal form of message C;

L :=0; I :=1

ve

L3: if I > N then goto Lé;

if G[I] = H[I] then begin

ENTER(1) ; ' comment: <character string>;

ENTER(O[I] - I);

for J := I step 1 until QII] do

ENTER(C[J]);
I := Q[I] + 1; end

else begin

ENTER(2) comment: <phrase reference>;
J = QlI];
ENTER(J) ;
I := 1+ P[J,0];
end;
goto L3;
L4: ENTER(3); comment: <end mark>;

end PARSE;
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