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Co-occurrence information is powerful statistics that can model various discrete

objects by their joint instances with other objects. Transforming unsupervised

problems of learning low-dimensional geometry into provable decompositions

of co-occurrence information, spectral inference provides fast algorithms and

optimality guarantees for non-linear dimensionality reduction or latent topic

analysis. Spectral approaches reduce the dependence on the original training

examples and produce substantial gain in efficiency, but at costs:

• The algorithms perform poorly on real data that does not necessarily fol-

low underlying models.

• Users can no longer infer information about individual examples, which

is often important for real-world applications.

• Model complexity rapidly grows as the number of objects increases, re-

quiring a careful curation of the vocabulary.

The first issue is called model-data mismatch, which is a fundamental problem

common in every spectral inference method for latent variable models. As real

data never follows any particular computational model, this issue must be ad-

dressed for practicality of the spectral inference beyond synthetic settings. For

the second issue, users could revisit probabilistic inference to infer informa-

tion about individual examples, but this brings back all the drawbacks of tradi-

tional approaches. One method is recently developed for spectral inference, but



it works only on tiny models, quickly losing its performance for the datasets

whose underlying structures exhibit realistic correlations. While probabilistic

inference also suffers from the third issue, the problem is more serious for spec-

tral inferences because co-occurrence information easily exceeds storable capac-

ity as the size of vocabulary becomes larger.

We cast the learning problem in the framework of Joint Stochastic Ma-

trix Factorization (JSMF), showing that existing methods violate the theoreti-

cal conditions necessary for a good solution to exist. Proposing novel recti-

fication paradigms for handling the model-data mismatch, the Rectified An-

chor Word Algorithm (RAWA) is able to learn quality latent structures and

their interactions even on small noisy data. We also propose the Prior Aware

Dual Decomposition (PADD) that is capable of considering the learned in-

teractions as well as the learned latent structures to robustly infer example-

specific information. Beyond the theoretical guarantees, our experimental re-

sults show that RAWA recovers quality low-dimensional geometry on various

textual/non-textual datasets comparable to probabilistic Gibbs sampling, and

PADD substantially outperforms the recently developed method for learning

low-dimensional representations of individual examples.

Although this thesis does not address the complexity issue for large vocab-

ulary, we have developed new methods that can drastically compress co-occur-

rence information and learn only with the compressed statistics without losing

much precision. Providing rich capability to operate on millions of objects and

billions of examples, we complete all the necessary tools to make spectral infer-

ence robust and scalable competitor to probabilistic inference for unsupervised

latent structure learning. We hope our research serves an initial basis for a new

perspective that combines the benefits of both spectral and probabilistic worlds.
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CHAPTER 1

MOTIVATIONAL STUDY AND VISUALIZATION

The anchor words algorithm performs provably efficient topic model infer-

ence by finding an approximate convex hull in a high-dimensional word co-

occurrence space. However, the existing greedy algorithm often selects poor

anchor words, reducing topic quality and interpretability. Rather than finding

an approximate convex hull in a high-dimensional space, we propose to find

an exact convex hull in a visualizable 2- or 3-dimensional space. Such low-

dimensional embeddings both improve topics and clearly show users why the

algorithm selects certain words.

1.1 Introduction

Statistical topic modeling is useful in exploratory data analysis [15], but model

inference is known to be NP-hard even for the simplest models with only two

topics [72], and training often remains a black box to users. Likelihood-based

training requires expensive approximate inference such as variational methods

[15], which are deterministic but sensitive to initialization, or Markov chain

Monte Carlo (MCMC) methods [34], which have no finite convergence guar-

antees. Recently Arora et al. proposed the Anchor Words algorithm [9], which

casts topic inference as statistical recovery using a separability assumption: each

topic has a specific anchor word that appears only in the context of that single

topic. Each anchor word can be used as a unique pivot to disambiguate the

corresponding topic distribution. We then reconstruct the word co-occurrence

pattern of each non-anchor words as a convex combination of the co-occurrence

1



patterns of the anchor words.

burger

salad
pizza

chicken
good

told

popcorn
stadium
views

tire

movies
screen

sashimi

car
called

hotel

yoga

bagels

shoppingdog

movie

Figure 1.1: 2D t-SNE projection of a Yelp review corpus and its convex hull.
The words corresponding to vertices are anchor words for topics, whereas non-
anchor words correspond to the interior points.

This algorithm is fast, requiring only one pass through the training docu-

ments, and provides provable guarantees, but results depend entirely on select-

ing good anchor words. [9] propose a greedy method that finds an approximate

convex hull around a set of vectors corresponding to the word co-occurrence

patterns for each vocabulary word. Although this method is an improvement

over previous work that used impractical linear programming methods [8], se-

rious problems remain. The method greedily chooses the farthest point from

the current subspace until the given number of anchors have been found. Par-

ticularly at the early stages of the algorithm, the words associated with the far-

thest points are likely to be infrequent and idiosyncratic, and thus form poor

bases for human interpretation and topic recovery. This poor choice of anchors

noticeably affects topic quality: the anchor words algorithm tends to produce

large numbers of nearly identical topics.

Besides providing a separability criterion, anchor words also have the poten-
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tial to improve topic interpretability. After learning topics for given text collec-

tions, users often request a label that summarizes each topic. Manually labeling

topics is arduous, and labels often do not carry over between random initial-

izations and models with differing numbers of topics. Moreover, it is hard to

control the subjectivity in labelings between annotators, which is open to inter-

pretive errors. There has been considerable interest in automating the labeling

process [60, 49, 24]. [24] propose a measure of saliency: a good summary term

should be both distinctive specifically to one topic and probable in that topic.

Anchor words are by definition optimally distinct, and therefore may seem to

be good candidates for topic labels, but greedily selecting extreme words often

results in anchor words that have low probability.

In this work we explore the opposite of Arora et al.’s method: rather than

finding an approximate convex hull for an exact set of vectors, we find an ex-

act convex hull for an approximate set of vectors. We project the N × N word

co-occurrence matrix to visualizable 2- and 3-dimensional spaces using meth-

ods such as t-SNE [79], resulting in an input matrix up to 3600 times narrower

than the original input for our training corpora. Despite this radically low-

dimensional projection, the method not only finds topics that are as good or

better than the greedy anchor method, it also finds highly salient, interpretable

anchor words and provides users with a clear visual explanation for why the

algorithm chooses particular words, all while maintaining the original algo-

rithm’s computational benefits.

3



1.2 Related Work

Latent Dirichlet allocation (LDA) [15] models D documents with a vocabulary

N using a predefined number of topics by K. LDA views both {Bk}
K
k=1, a set of

K topic-word distributions for each topic k, and {Wm}
M
m=1, a set of M document-

topic distributions for each document m, and {zm}
M
m=1, a set of topic-assignment

vectors for word tokens in the document m, as randomly generated from known

stochastic processes. Merging {Bk} as k-th column vector of N × K matrix B,

{Wm} as m-th column vector of K × M matrix W, the learning task is to estimate

the posterior distribution of latent variables B, W, and {zm} given N × M word-

document matrix H̃, which is the only observed variable where m-th column

corresponds to the empirical word frequencies in the training documents m.

[9] recovers word-topic matrix B and topic-topic matrix A = E[WWT ] in-

stead of W in the spirit of nonnegative matrix factorization. Though the true

underlying word distribution for each document is unknown and could be far

from the sample observation H̃, the empirical word-word matrix C converges

to its expectation BE[WWT ]BT = BABT as the number of documents increases.

Thus the learning task is to approximately recover B and A pretending that the

empirical C is close to the true second-order moment matrix.

The critical assumption for this method is to suppose that every topic k has a

specific anchor word sk that occurs with non-negligible probability (> 0) only in

that topic. The anchor word sk need not always appear in every document about

the topic k, but we can be confident that the document is at least to some degree

about the topic k if it contains sk. This assumption drastically improves inference

by guaranteeing the presence of a diagonal sub-matrix inside the word-topic

4



matrix A. After constructing an estimate C, the algorithm in [9] first finds a set

S = {s1, ..., sK} of K anchor words (K is user-specified), and recovers B and A

subsequently based on S . Due to this structure, overall performance depends

heavily on the quality of anchor words.

In the matrix algebra literature this greedy anchor finding method is called

QR with row-pivoting. Previous work classifies a matrix into two sets of row

(or column) vectors where the vectors in one set can effectively reconstruct the

vectors in another set, called subset-selection algorithms. [35] suggest one impor-

tant deterministic algorithm. A randomized algorithm provided by [17] is the

state-of-the art using a pre-stage that selects the candidates in addition to [35].

We found no change in anchor selection using these algorithms, verifying the

difficulty of the anchor finding process. This difficulty is mostly because an-

chors must be nonnegative convex bases, whereas the classified vectors from

the subset selection algorithms yield unconstrained bases.

The t-SNE model has previously been used to display high-dimensional em-

beddings of words in 2D space by Turian.1 Low-dimensional embeddings of

topic spaces have also been used to support user interaction with models: [29]

use a visual display of a topic embedding to create a navigator interface. Al-

though t-SNE has been used to visualize the results of topic models, for example

by [48] and [86], we are not aware of any use of the method as a fundamental

component of topic inference.

1http://metaoptimize.com/projects/wordreprs/
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1.3 Low-dimensional Embeddings

Real text corpora typically involve vocabularies in the tens of thousands of dis-

tinct words. As the input matrix C scales quadratically with N, the Anchor

Words algorithm must depend on a low-dimensional projection of C in order

to be practical. Previous work [9] uses random projections via either Gaussian

random matrices [43] or sparse random matrices [1], reducing the representa-

tion of each word to around 1,000 dimensions. Since the dimensionality of the

compressed word co-occurrence space is an order of magnitude larger than K,

we must still approximate the convex hull by choosing extreme points as before.

In this work we explore two projection methods: PCA and t-SNE [79]. Prin-

ciple Component Analysis (PCA) is a commonly-used dimensionality reduction

scheme that linearly transforms the data to new coordinates where the largest

variances are orthogonally captured for each dimension. By choosing only a

few such principle axes, we can represent the data in a lower dimensional space.

In contrast, t-SNE embedding performs a non-linear dimensionality reduction

preserving the local structures. Given a set of points {xi} in a high-dimensional

space X, t-SNE allocates probability mass for each pair of points so that pairs of

similar (closer) points become more likely to co-occur than dissimilar (distant)

points.

p j|i =
exp(−d(xi, x j)2/2σ2

i )∑
k,i exp(−d(xi, xk)2/2σ2

i )
(1.1)

pi j =
p j|i + pi| j

2N
(symmetrized) (1.2)

Then it generates a set of new points {yi} in low-dimensional space Y so that

probability distribution over points in Y behaves similarly to the distribution
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Figure 1.2: 2D PCA projections of a Yelp review corpus and its convex hulls.

over points in X by minimizing KL-divergence between two distributions:

qi j =
(1 + ‖yi − y j‖

2)−1∑
k,l(1 + ‖yk − yl‖

2)−1 (1.3)

min KL(P||Q) =
∑
i, j

pi j log
pi j

qi j
(1.4)

Instead of approximating a convex hull in such a high-dimensional space,

we select the exact vertices of the convex hull formed in a low-dimensional pro-

jected space, which can be calculated efficiently. Figures 1.1 and 1.2 show the

convex hulls for 2D projections of C using t-SNE and PCA for a corpus of Yelp

reviews. Figure 1.3 illustrates the convex hulls for 3D t-SNE projection for the

same corpus. Anchor words correspond to the vertices of these convex hulls.

Note that we present the 2D projections as illustrative examples only; we find

that three dimensional projections perform better in practice.

In addition to the computational advantages, this approach benefits anchor-

based topic modeling in two aspects. First, as we now compute the exact convex

hull, the number of topics depends on the dimensionality of the embedding, v.

For example in the figures, 2D projection has 21 vertices, whereas 3D projection
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Figure 1.3: 3D t-SNE projection of a Yelp review corpus and its convex hull.
Vertices on the convex hull correspond to anchor words.

supports 69 vertices. This implies users can easily tune the granularity of topic

clusters by varying v = 2, 3, 4, ... without increasing the number of topics by

one each time. Second, we can effectively visualize the thematic relationships

between topic anchors and the rest of words in the vocabulary, enhancing both

interpretability and options for further vocabulary curation.

1.4 Experimental Results

We find that radically low-dimensional t-SNE projections are effective at find-

ing anchor words that are much more salient than the greedy method, and top-

ics that are more distinctive, while maintaining comparable held-out likelihood

and semantic coherence. As noted in Section 1.1, the previous greedy anchor

words algorithm tends to produce many nearly identical topics. For example,

37 out of 100 topics trained on a 2008 political blog corpus have obama, mccain,
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bush, iraq or palin as their most probable word, including 17 just for obama. Only

66% of topics have a unique top word. In contrast, the t-SNE model on the same

dataset has only one topic whose most probable word is obama, and 86% of top-

ics have a unique top word (mccain is the most frequent top word, with five

topics).

We use three real datasets: business reviews from the Yelp Academic

Dataset,2 political blogs from the 2008 US presidential election [30], and New

York Times articles from 2007.3 Details are shown in Table 1.1. Documents with

fewer than 10 word tokens are discarded due to possible instability in construct-

ing C. We perform minimal vocabulary curation, eliminating a standard list of

English stopwords4 and terms that occur below frequency cutoffs: 100 times

(Yelp, Blog) and 150 times (NYT). We further restrict possible anchor words to

words that occur in more than three documents. As our datasets are not ar-

tificially synthesized, we reserve 5% from each set of documents for held-out

likelihood computation.

Name Documents Vocab. Avg. length
Yelp 20,000 1,606 40.6
Blog 13,000 4,447 161.3
NYT 41,000 10,713 277.8

Table 1.1: Statistics for datasets used in experiments

Unlike [9], which presents results on synthetic datasets to compare per-

formance across different recovery methods given increasing numbers of doc-

uments, we are are interested in comparing anchor finding methods, and are

mainly concerned with semantic quality. As a result, although we have

2https://www.yelp.com/academic dataset
3http://catalog.ldc.upenn.edu/LDC2008T19
4We used the list of 524 stop words included in the Mallet library.
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conducted experiments on synthetic document collections,5 we focus on real

datasets for this work. We also choose to compare only anchor finding algo-

rithms, so we do not report comparisons to likelihood-based methods, which

can be found in [9].

For both PCA and t-SNE, we use three-dimensional embeddings across all

experiments. This projection results in matrices that are 0.03% as wide as the

original N × N matrix for the NYT dataset. Without low-dimensional embed-

ding, each word is represented by a N-dimensional vector where only several

terms are non-zero due to the sparse co-occurrence patterns. Thus a vertex cap-

tured by the greedy anchor-finding method is likely to be one of many eccentric

vertices in very high-dimensional space. In contrast, t-SNE creates an effective

dense representation where a small number of pivotal vertices are more clearly

visible, improving both performance and interpretability.

Note that since we can find an exact convex hull in these spaces,6 there is an

upper bound to the number of topics that can be found given a particular pro-

jection. If more topics are desired, one can simply increase the dimensionality

of the projection. For the greedy algorithm we use sparse random projections

with 1,000 dimensions with 5% negative entries and 5% positive entries. PCA

and t-SNE choose (49, 32, 47) and (69, 77, 107) anchors, respectively for each of

three Yelp, Blog, and NYTimes datasets.

5None of the algorithms are particularly effective at finding synthetically introduced anchor
words possibly because there are other candidates around anchor vertices that approximate the
convex hull to almost the same degree.

6In order to efficiently find an exact convex hull, we use the Quickhull algorithm.
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1.4.1 Anchor-word Selection

We begin by comparing the behavior of low-dimensional embeddings to the

behavior of the standard greedy algorithm. Table 1.2 shows ordered lists of

the first 12 anchor words selected by three algorithms: t-SNE embedding, PCA

embedding, and the original greedy algorithm. Anchor words selected by t-

SNE (police, business, court) are more general than anchor words selected by

the greedy algorithm (cavalry, al-sadr, yiddish). Additional examples of anchor

words and their associated topics are shown in Table 1.3 and discussed in Sec-

tion 1.4.2.

# t-SNE PCA Greedy
1 police beloved cavalry
2 bonds york biodiesel
3 business family h/w
4 day loving kingsley
5 initial late mourners
6 million president pcl
7 article people carlisle
8 wife article al-sadr
9 site funeral kaye
10 mother million abc’s
11 court board yiddish
12 percent percent great-grandmother

Table 1.2: The first 12 anchor words selected by three algorithms for the NYT
corpus.

The Gram-Schimdt process used by Arora et al. greedily selects anchors

in high-dimensional space. As each word is represented within V-dimensions,

finding the word that has the next most distinctive co-occurrence pattern tends

to prefer overly eccentric words with only short, intense bursts of co-occurring

words. While the bases corresponding to these anchor words could be theoret-

ically relevant for the original space in high-dimension, they are less likely to
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be equally important in low-dimensional space. Thus projecting down to low-

dimensional space can rearrange the points emphasizing not only uniqueness,

but also longevity, achieving the ability to form measurably more specific topics.

Concretely, neither cavalry, al-sadr, yiddish nor police, business, court are full

representations of New York Times articles, but the latter is a much better basis

than the former due to its greater generality. We see the effect of this difference

in the specificity of the resulting topics (for example in 17 obama topics). Most

words in the vocabulary have little connection to the word cavalry, so the prob-

ability p(z|x) does not change much across different x. When we convert these

distributions into P(x|z) using the Bayes’ rule, the resulting topics are very close

to the corpus distribution, a unigram distribution p(x).

p(x|z = kcavalry) ∝ p(z = kcavalry|x)p(x) ≈ p(x) (1.5)

This lack of specificity results in the observed similarity of topics.

1.4.2 Quantitative Results

In this section we compare PCA and t-SNE projections to the greedy algorithm

along several quantitative metrics. To show the effect of different values of K,

we report results for varying numbers of topics. As the anchor finding algo-

rithms are deterministic, the anchor words in a K-dimensional model are iden-

tical to the first K anchor words in a (K + 1)-dimensional model. For the greedy

algorithm we select anchor words in the order they are chosen. For the PCA and

t-SNE methods, which find anchors jointly, we sort words in descending order

by their distance from their centroid.
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Recovery Error. Each non-anchor word is approximated by a convex combi-

nation of the K anchor words. The projected gradient algorithm [9] determines

these convex coefficients so that the gap between the original word vector and

the approximation becomes minimized. As choosing a good basis of K anchor

words decreases this gap, Recovery Error (RE) is defined by the average `2-

residuals across all words.

RE =
1
N

N∑
i=1

‖Ci −

K∑
k=1

p(z1 = k|x1 = i)CS k‖2 (1.6)

Recovery error decreases with the number of topics, and improves substan-
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Figure 1.4: Recovery error is similar across algorithms.

tially after the first 10–15 anchor words for all methods. The t-SNE method has

slightly better performance than the greedy algorithm, but they are similar. Re-

sults for recovery with the original, unprojected matrix (not shown) are much

worse than the other algorithms, suggesting that the initial anchor words cho-

sen are especially likely to be uninformative.

Normalized Entropy. As shown in Eq. 1.5, if the probability of topics given

a word is close to uniform, the probability of that word in topics will be close to

the corpus distribution. Normalized Entropy (NE) measures the entropy of this

distribution relative to the entropy of a K-dimensional uniform distribution:

NE =
1
N

N∑
i=1

H(z|x = i)
log K

. (1.7)
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The normalized entropy of topics given word distributions usually decreases
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Figure 1.5: Words have higher topic entropy in the greedy model, especially in
NYT, resulting in less specific topics.

as we add more topics, although both t-SNE and PCA show a dip in entropy for

low numbers of topics. This result indicates that words become more closely

associated with particular topics as we increase the number of topics. The low-

dimensional embedding methods (t-SNE and PCA) have consistently lower en-

tropy.

Topic Specificity and Topic Dissimilarity. We want topics to be both spe-

cific (that is, not overly general) and different from each other. When there are

insufficient number of topics, p(x|z) often resembles the corpus distribution p(x),

where high frequency terms become the top words contributing to most topics.

Topic Specificity (TS) is defined by the average KL divergence from each topic’s

conditional distribution to the corpus distribution.7

TS =
1
K

K∑
k=1

KL
(
p(x|z = k) || p(x)

)
(1.8)

One way to define the distance between multiple points is the minimum ra-

dius of a ball that covers every point. Whereas this is simply the distance form

the centroid to the farthest point in the Euclidean space, it is an itself difficult

7We prefer specificity to [2]’s term vacuousness because the metric increases as we move away
from the corpus distribution.
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optimization problem to find such centroid of distributions under metrics such

as KL-divergence and Jensen-Shannon divergence. To avoid this problem, we

measure Topic Dissimilarity (TD) viewing each conditional distribution p(x|z) as

a simple N-dimensional vector in RN . Recall Bik = p(x = i|z = k),

T D = max
1≤k≤K

‖
1
K

K∑
k′=1

B∗k′ − B∗k‖2. (1.9)

Specificity and dissimilarity increase with the number of topics, suggesting that

Yelp Blog NYTimes

0.0

0.5

1.0

1.5

2.0

0 30 60 90 0 30 60 90 0 30 60 90
Topics

S
pe

ci
fic

ity

Algorithm

Greedy

PCA

tSNE

Yelp Blog NYTimes

0.0

0.2

0.4

0.6

0 30 60 90 0 30 60 90 0 30 60 90
Topics

D
is

si
m

ila
rit

y Algorithm

Greedy

PCA

tSNE

Figure 1.6: Greedy topics look more like the corpus distribution and more like
each other.

with few anchor words, the topic distributions are close to the overall corpus

distribution and very similar to one another. The t-SNE and PCA algorithms

produce consistently better specificity and dissimilarity, indicating that they

produce more useful topics early with small numbers of topics. The greedy

algorithm produces topics that are closer to the corpus distribution and less dis-

tinct from each other (17 obama topics).

Topic Coherence is known to correlate with the semantic quality of topic
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judged by human annotators [63]. Let X(T )
k be T most probable words (i.e., top

words) for the topic k.

TC =
∑

x1,x2∈X
(T )
k

log
D(x1, x2) + ε

D(x1)
(1.10)

Here D(x1, x2) is the co-document frequency, which is the number of documents

in M consisting of two words x1 and x2 simultaneously. D(x) is the simple doc-

ument frequency with the word x. The numerator contains smoothing count ε

in order to avoid taking the logarithm of zero. Coherence scores for t-SNE and
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Figure 1.7: The greedy algorithm creates more coherent topics (higher is better),
but at the cost of many overly general or repetitive topics.

PCA are worse than those for the greedy method, but this result must be under-

stood in combination with the Specificity and Dissimilarity metrics. The most

frequent terms in the overall corpus distribution p(x) often appear together in

documents. Thus a model creating many topics similar to the corpus distribu-

tion is likely to achieve high Coherence, but low Specificity by definition.

Saliency. [24] define saliency for topic words as a combination of distinc-

tiveness and probability within a topic. Anchor words are distinctive by con-

struction, so we can increase saliency by selecting more probable anchor words.

We measure the probability of anchor words in two ways. First, we report the

zero-based rank of anchor words within their topics. Examples of this metric,
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which we call “hard” rank are shown in Table 1.3. The hard rank of the an-

chors in the PCA and t-SNE models are close to zero, while the anchor words

for the greedy algorithm are much lower ranked, well below the range usually

displayed to users. Second, while hard rank measures the perceived difference

in rank of contributing words, position may not fully capture the relative impor-

tance of the anchor word. “Soft” rank quantifies the average log ratio between

probabilities of the prominent word x∗k and the anchor word sk.

S R =
1
K

K∑
k=1

log
p(x = x∗k |z = k)
p(x = sk|z = k)

(1.11)
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Figure 1.8: Anchor words have higher probability, and therefore greater
salience, in t-SNE and PCA models (1 ≈ one third the probability of the top
ranked word).

Lower values of soft rank (Fig. 1.8 indicate that the anchor word has greater

relative probability to occur within a topic. As we increase the number of topics,

anchor words become more prominent in topics learned by the greedy method,

but t-SNE anchor words remain relatively more probable within their topics as

measured by soft rank.

Held-out Probability. Given an estimate of the topic-word matrix A, we

can compute the marginal probability of held-out documents under that model.

We use the left-to-right estimator introduced by [80], which uses a sequential

algorithm similar to a Gibbs sampler. This method requires a smoothing pa-
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rameter for document-topic Dirichlet distributions, which we set to αk = 0.1.

We note that the greedy algorithm run on the original, unprojected matrix has
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Figure 1.9: t-SNE topics have better held-out probability than greedy topics.

better held-out probability values than t-SNE for the Yelp corpus, but as this

method does not scale to realistic vocabularies we compare here to the sparse

random projection method used in [9]. The t-SNE method appears to do best,

particularly in the NYT corpus, which has a larger vocabulary and longer train-

ing documents. The length of individual held-out documents has no correlation

with held-out probability.

We emphasize that Held-out Probability is sensitive to smoothing parame-

ters and should only be used in combination with a range of other topic-quality

metrics. In initial experiments, we observed significantly worse held-out per-

formance for the t-SNE algorithm. This phenomenon was because setting the

probability of anchor words to zero for all but their own topics led to large nega-

tive values in held-out log probability for those words. As t-SNE tends to choose

more frequent terms as anchor words, these “spikes” significantly affected over-

all probability estimates. To make the calculation more fair, we added 10−5 to

any zero entries for anchor words in the word-topic matrix B across all models

and renormalized.
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Because t-SNE is a stochastic model, different initializations can result in

different embeddings. To evaluate how steady anchor word selection is, we ran

five random initializations for each dataset. For the Yelp dataset, the number of

anchor words varies from 59 to 69, and 43 out of those are shared across at least

four trials. For the Blog dataset, the number of anchor words varies from 80 to

95, with 56 shared across at least four trials. For the NYT dataset, this number

varies between 83 and 107, with 51 shared across at least four models.

1.4.3 Qualitative Results

Table 1.3 shows topics trained by three methods (t-SNE, PCA, and greedy) for

all three datasets. For each model, we select five topics at random from the t-SNE

model, and then find the closest topic from each of the other models. If anchor

words present in the top eight words, they are shown in boldface.

A fundamental difference between anchor-based inference and traditional

likelihood-based inference is that we can give an order to topics according to

their contribution to word co-occurrence convex hull. This order is intrinsic to

the original algorithm, and we heuristically give orders to t-SNE and PCA based

on their contributions. This order is listed as # in the previous table. For all but

one topic, the closest topic from the greedy model has a higher order number

than the associated t-SNE topic. As shown above, the standard algorithm tends

to pick less useful anchor words at the initial stage; only the later, higher ordered

topics are specific.

The most clear distinction between models is the rank of anchor words rep-

resented by Hard Rank for each topic. Only one topic corresponding to (initial)
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has the anchor word which does not coincide with the top-ranked word. For the

greedy algorithm, anchor words are often tens of words down the list in rank,

indicating that they are unlikely to find a connection to the topic’s semantic

core. In cases where the anchor word is highly ranked (unbelievers, parenthood)

the word is a good indicator of the topic, but still less decisive.

t-SNE and PCA are often consistent in their selection of anchor words, which

provides useful validation that low-dimensional embeddings discern more rel-

evant anchor words regardless of linear vs non-linear projections. Note that

we are only varying the anchor selection part of the Anchor Words algorithm

in these experiments, recovering topic-word distributions in the same manner

given anchor words. As a result, any differences between topics with the same

anchor word (for example chicken) are due to the difference in either the num-

ber of topics or the rest of anchor words. Since PCA suffers from a crowding

problem in lower-dimensional projection (see Figure 1.2) and the problem could

be severe in a dataset with a large vocabulary, t-SNE is more likely to find the

proper number of anchors given a specified granularity.

1.5 Conclusion

One of the main advantages of the anchor words algorithm is that the running

time is largely independent of corpus size. Adding more documents would not

affect the size of the co-occurrence matrix, requiring more times to construct the

co-occurrence matrix at the beginning. While the inference is scalable depend-

ing only on the size of the vocabulary, finding quality anchor words is crucial

for the performance of the inference.
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[9] presents a greedy anchor finding algorithm that improves over previ-

ous linear programming methods, but finding quality anchor words remains

an open problem in spectral topic inference. We have shown that previous ap-

proaches have several limitations. Exhaustively finding anchor words by elim-

inating words that are reproducible by other words [8] is impractical. The an-

chor words selected by the greedy algorithm are overly eccentric, particularly

at the early stages of the algorithm, causing topics to be poorly differentiated.

We find that using low-dimensional embeddings of word co-occurrence statis-

tics allows us to approximate a better convex hull. The resulting anchor words

are highly salient, being both distinctive and probable. The models trained with

these words have better quantitative and qualitative properties along various

metrics. Most importantly, using radically low-dimensional projections allows

us to provide users with clear visual explanations for the model’s anchor word

selections.

An interesting property of using low-dimensional embeddings is that the

number of topics depends only on the projecting dimension. Since we can ef-

ficiently find an exact convex hull in low-dimensional space, users can achieve

topics with their preferred level of granularities by changing the projection di-

mension. We do not insist this is the “correct” number of topics for a corpus,

but this method, along with the range of metrics described in this paper, pro-

vides users with additional perspective when choosing a dimensionality that is

appropriate for their needs.

We find that the t-SNE method, besides its well-known ability to produce

high quality layouts, provides the best overall anchor selection performance.

This method consistently selects higher-frequency terms as anchor words, re-
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sulting in greater clarity and interpretability. Embeddings with PCA are also

effective, but they result in less well-formed spaces, being less effective in held-

out probability for sufficiently large corpora.

Anchor word finding methods based on low-dimensional projections offer

several important advantages for topic model users. In addition to producing

more salient anchor words that can be used effectively as topic labels, the re-

lationship of anchor words to a visualizable word co-occurrence space offers

significant potential. Users who can see why the algorithm chose a particular

model will have greater confidence in the model and in any findings that re-

sult from topic-based analysis. Finally, visualizable spaces offer the potential to

produce interactive environments for semi-supervised topic reconstruction.
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Type # HR Top Words (Yelp)
t-SNE 16 0 mexican good service great eat restaurant authentic delicious
PCA 15 0 mexican authentic eat chinese don’t restaurant fast salsa

Greedy 34 35 good great food place service restaurant it’s mexican
t-SNE 6 0 beer selection good pizza great wings tap nice
PCA 39 6 wine beer selection nice list glass wines bar

Greedy 99 11 beer selection great happy place wine good bar
t-SNE 3 0 prices great good service selection price nice quality
PCA 12 0 atmosphere prices drinks friendly selection nice beer ambiance

Greedy 34 35 good great food place service restaurant it’s mexican
t-SNE 10 0 chicken salad good lunch sauce ordered fried soup
PCA 10 0 chicken salad lunch fried pita time back sauce

Greedy 69 12 chicken rice sauce fried ordered i’m spicy soup
Type # HR Top Words (Blog)
t-SNE 10 0 hillary clinton campaign democratic bill party win race
PCA 4 0 hillary clinton campaign democratic party bill democrats vote

Greedy 45 19 obama hillary campaign clinton obama’s barack it’s democratic
t-SNE 3 0 iraq war troops iraqi mccain surge security american
PCA 9 1 iraq iraqi war troops military forces security american

Greedy 91 8 iraq mccain war bush troops withdrawal obama iraqi
t-SNE 9 0 allah muhammad qur verses unbelievers ibn muslims world
PCA 18 14 allah muhammad qur verses unbelievers story time update

Greedy 4 5 allah muhammad people qur verses unbelievers ibn sura
t-SNE 19 0 catholic abortion catholics life hagee time biden human
PCA 2 0 people it’s time don’t good make years palin

Greedy 40 1 abortion parenthood planned people time state life government
Type # HR Top Words (NYT)
t-SNE 0 0 police man yesterday officers shot officer year-old charged
PCA 6 0 people it’s police way those three back don’t

Greedy 50 198 police man yesterday officers officer people street city
t-SNE 19 0 senator republican senate democratic democrat state bill
PCA 33 2 state republican republicans senate senator house bill party

Greedy 85 33 senator republican president state campaign presidential people
t-SNE 2 0 business chief companies executive group yesterday billion
PCA 21 0 billion companies business deal group chief states united

Greedy 55 10 radio business companies percent day music article satellite
t-SNE 14 0 market sales stock companies prices billion investors price
PCA 11 0 percent market rate week state those increase high

Greedy 77 44 companies percent billion million group business chrysler people

Table 1.3: Example t-SNE topics and their most similar topics across algorithms.
The Greedy algorithm can find similar topics, but the anchor words are much
less salient.
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CHAPTER 2

RECTIFICATION FOR ROBUST LOW-RANK SPECTRAL TOPIC

INFERENCE

Robust Spectral inference provides fast algorithms and provable optimality for

latent topic analysis. But for real data these algorithms require additional ad-

hoc heuristics, and even then often produce unusable results. We explain this

poor performance by casting the problem of topic inference in the framework of

Joint Stochastic Matrix Factorization (JSMF) and showing that previous meth-

ods violate the theoretical conditions necessary for a good solution to exist. We

then propose a novel rectification method that learns high quality topics and

their interactions even on small, noisy data. This method achieves results com-

parable to probabilistic techniques in several domains while maintaining scala-

bility and provable optimality.

2.1 Introduction

Summarizing large data sets using pairwise co-occurrence frequencies is a pow-

erful tool for data mining. Objects can often be better described by their relation-

ships than their inherent characteristics. Communities can be discovered from

friendships [65], song genres can be identified from co-occurrence in playlists

[23], and neural word embeddings are factorizations of pairwise co-occurrence

information [70, 53]. Recent Anchor Word algorithms [8, 9] perform spectral

inference on co-occurrence statistics for inferring topic models [39, 15]. Co-

occurrence statistics can be calculated using a single parallel pass through a

training corpus. While these algorithms are fast, deterministic, and provably
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Figure 2.1: 2D visualizations show the low-quality convex hull found by Anchor
Words [9] (left) and a better convex hull (middle) found by discovering anchor
words on a rectified space (right).

guaranteed, they are sensitive to observation noise and small samples, often

producing effectively useless results on real documents that present no prob-

lems for probabilistic algorithms.

We cast this general problem of learning overlapping latent clusters as Joint-

Stochastic Matrix Factorization (JSMF), a subset of non-negative matrix factor-

ization that contains topic modeling as a special case. We explore the conditions

necessary for inference from co-occurrence statistics and show that the Anchor

Words algorithms necessarily violate such conditions. Then we propose a rec-

tified algorithm that matches the performance of probabilistic inference—even

on small and noisy datasets—without losing efficiency and provable guaran-

tees. Validating on both real and synthetic data, we demonstrate that our recti-

fication not only produces better clusters, but also, unlike previous work, learns

meaningful cluster interactions.

Let the matrix C represent the co-occurrence of pairs drawn from N objects:

Ci j is the joint probability p(X1 = i, X2 = j) for a pair of objects i and j. Our goal

is to discover K latent clusters by approximately decomposing C ≈ BABT . B

is the object-cluster matrix, in which each column corresponds to a cluster and

Bik = p(X = i|Z = k) is the probability of drawing an object i conditioned on the
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Domain Object Cluster Basis
Document Word Topic Anchor Word

Image Pixel Segment Pure Pixel
Network User Community Representative

Legislature Member Party/Group Partisan
Playlist Song Genre Signature Song

Figure 2.2: JSMF applications, with anchor-word equivalents.

object belonging to the cluster k; and A is the cluster-cluster matrix, in which

Akl = p(Z1 = k,Z2 = l) represents the joint probability of pairs of clusters. We call

the matrices C and A joint-stochastic (i.e., C ∈ JSN , A ∈ JSK) due to their cor-

respondence to joint distributions; B is column-stochastic. Example applications

are shown in Table 2.1.

Anchor Word algorithms [8, 9] solve JSMF problems using a separabil-

ity assumption: each topic contains at least one “anchor” word that has

non-negligible probability exclusively in that topic. The algorithm uses the

co-occurrence patterns of the anchor words as a summary basis for the co-

occurrence patterns of all other words. The initial algorithm [8] is theoretically

sound but unable to produce column-stochastic word-topic matrix B due to un-

stable matrix inversions. A subsequent algorithm [9] fixes negative entries in B,

but still produces large negative entries in the estimated topic-topic matrix A.

As shown in Figure 2.4, the proposed algorithm infers valid topic-topic interac-

tions.

26



A

α

Z1

Z2

X1

X2

Bk

nm(nm − 1)

1 ≤ m ≤M

1 ≤ k ≤ K

1Figure 2.3: The JSMF event space differs from LDA’s. JSMF deals only with pairwise
co-occurrence events and does not generate observations/documents.

2.2 Requirements for Factorization

In this section we review the probabilistic and statistical structures of JSMF and

then define geometric structures of co-occurrence matrices required for success-

ful factorization. C ∈ RN×N is a joint-stochastic matrix constructed from M train-

ing examples, each of which contain some subset of N objects. We wish to find

K � N latent clusters by factorizing C into a column-stochastic matrix B ∈ RN×K

and a joint-stochastic matrix A ∈ RK×K , satisfying C ≈ BABT .

Probabilistic structure. Figure 2.3 shows the event space of our model. The

distribution A over pairs of clusters is generated first from a stochastic process

with a hyperparameter α. If the m-th training example contains a total of nm ob-

jects, our model views the example as consisting of all possible nm(nm − 1) pairs

of objects.1 For each of these pairs, cluster assignments are sampled from the se-

lected distribution ((z1, z2) ∼ A). Then an actual object pair is drawn with respect

to the corresponding cluster assignments (x1 ∼ Bz1 , x2 ∼ Bz2). Note that this pro-

1Due to the bag-of-words assumption, every object can pair with any other object in that
example, except itself. One implication of our work is better understanding the self-co-
occurrences, the diagonal entries in the co-occurrence matrix.
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cess does not explain how each training example is generated from a model, but

shows how our model understands the objects in the training examples.

Following [8, 9], our model views B as a set of parameters rather than

random variables.2 The primary learning task is to estimate B; we then esti-

mate A to recover the hyperparameter α. Due to the conditional independence

X1 ⊥ X2 | (Z1 or Z2), the factorization C ≈ BABT is equivalent to

p(X1, X2|A; B) =
∑

z1

∑
z2

p(X1|Z1; B)p(Z1,Z2|A)p(X2|Z2; B).

Under the separability assumption, each cluster k has a basis object sk such that

p(X = sk|Z = k) > 0 and p(X = sk|Z , k) = 0. In matrix terms, we assume the

submatrix of B comprised of the rows with indices S = {s1, . . . , sK} is diagonal.

As these rows form a non-negative basis for the row space of B, the assumption

implies rank+(B) = K = rank(B).3 Providing identifiability to the factorization,

this assumption becomes crucial for inference of both B and A. Note that JSMF

factorization is unique up to column permutation, meaning that no specific or-

dering exists among the discovered clusters, equivalent to probabilistic topic

models (see the Appendix).

Statistical structure. Let f (α) be a (known) distribution of distributions from

which a cluster distribution is sampled for each training example. Saying

Wm ∼ f (α), we have M i.i.d samples {W1, . . . ,WM} which are not directly ob-

servable. Defining the posterior cluster-cluster matrix A∗M = 1
M

∑M
m=1 WmWT

m and

2In LDA, each column of B is generated from a known distribution Bk ∼ Dir(β).
3rank+(B) means the non-negative rank of the matrix B, whereas rank(B) means the usual

rank.
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the expectation A∗ = E[WmWT
m], Lemma 2.2 in [8] showed that4

A∗M −→ A∗ as M −→ ∞. (2.1)

Denote the posterior co-occurrence for the m-th training example by C∗m and all

examples by C∗. Then C∗m = BWmWT
m BT , and C∗ = 1

M

∑M
m=1 C∗m. Thus

C∗ = B
 1

M

M∑
m=1

WmWT
m

 BT = BA∗M BT . (2.2)

Denote the noisy observation for the m-th training example by Cm, and all ex-

amples by C. Let W = [W1|...|WM] be a matrix of topics. We will construct Cm so

that E[C|W] is an unbiased estimator of C∗. Thus as M → ∞

C −→ E[C] = C∗ = BA∗M BT −→ BA∗BT . (2.3)

Geometric structure. Though the separability assumption allows us to iden-

tify B even from the noisy observation C, we need to throughly investigate the

structure of cluster interactions. This is because it will eventually be related to

how much useful information the co-occurrence between corresponding anchor

bases contains, enabling us to best use our training data. SayDNNn is the set of

n×n doubly non-negative matrices: entrywise non-negative and positive semidef-

inite (PSD).

Claim A∗M, A∗ ∈ DNNK and C∗ ∈ DNNN

Proof Take any vector y ∈ RK . As A∗M is defined as a sum of outer-products,

yT A∗My =
1
M

M∑
m=1

yTWmWT
my =

1
M

∑
(WT

my)T (WT
my) =

∑
(non-negative) ≥ 0.

4This convergence is not trivial while 1
M

∑M
m=1 Wm → E[Wm] as M → ∞ by the Central Limit

Theorem.
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Thus A∗M ∈ PSDK . In addition, (A∗M)kl = p(Z1 = k,Z2 = l) ≥ 0 for all k, l. Proving

A∗ ∈ DNNK is analogous by the linearity of expectation. Relying on double

non-negativity of A∗M, Equation (2.3) implies not only the low-rank structure of

C∗, but also double non-negativity of C∗ by a similar proof (see the Appendix).

The Anchor Word algorithms in [8, 9] consider neither double non-negativity

of cluster interactions nor its implication on co-occurrence statistics. Indeed, the

empirical co-occurrence matrices collected from limited data are generally in-

definite and full-rank, whereas the posterior co-occurrences must be positive

semidefinite and low-rank. Our new approach will efficiently enforce double

non-negativity and low-rankness of the co-occurrence matrix C based on the

geometric property of its posterior behavior. We will later clarify how this pro-

cess substantially improves the quality of the clusters and their interactions by

eliminating noises and restoring missing information.

2.3 Rectified Anchor Words Algorithm

In this section, we describe how to estimate the co-occurrence matrix C from

the training data, and how to rectify C so that it is low-rank and doubly non-

negative. We then decompose the rectified C′ in a way that preserves the doubly

non-negative structure in the cluster interaction matrix.

Generating co-occurrence C. Let Hm be the vector of object counts for the m-th

training example, and let pm = BWm where Wm is the document’s latent topic

distribution. Then Hm is assumed to be a sample from a multinomial distribu-
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tion Hm ∼ Multi(nm, pm) where nm =
∑N

i=1 H(i)
m , and recall E[Hm] = nm pm = nmBWm

and Cov(Hm) = nm

(
diag(pm) − pm pT

m

)
. As in [9], we generate the co-occurrence for

the m-th example by

Cm =
HmHT

m − diag(Hm)
nm(nm − 1)

. (2.4)

The diagonal penalty in Eq. 2.4 cancels out the diagonal matrix term in the

variance-covariance matrix, making the estimator unbiased. Putting dm =

nm(nm − 1), that is E[Cm|Wm] = 1
dm
E[HmHT

m] − 1
dm

diag(E[Hm]) = 1
dm

(E[Hm]E[Hm]T +

Cov(Hm) − diag(E[Hm])) = B(WmWT
m)BT ≡ C∗m. Thus E[C|W] = C∗ by the linearity

of expectation.

Rectifying co-occurrence C. While C is an unbiased estimator for C∗ in our

model, in reality the two matrices often differ due to a mismatch between our

model assumptions and the data5 or due to error in estimation from limited

data. The computed C is generally full-rank with many negative eigenvalues,

causing a large approximation error. As the posterior co-occurrence C∗ must

be low-rank, doubly non-negative, and joint-stochastic, we propose two recti-

fication methods: Diagonal Completion (DC) and Alternating Projection (AP).

DC modifies only diagonal entries so that C becomes low-rank, non-negative,

and joint-stochastic; while AP enforces modifies every entry and enforces the

same properties as well as positive semi-definiteness. As our empirical results

strongly favor alternating projection, we defer the details of diagonal comple-

tion to the Appendix.

Based on the desired property of the posterior co-occurrence C∗, we seek

to project our estimator C onto the set of joint-stochastic, doubly non-negative,

5There is no reason to expect real data to be generated from topics, much less exactly K latent
topics.
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low rank matrices. Alternating projection methods like Dykstra’s algorithm [18]

allow us to project onto an intersection of finitely many convex sets using pro-

jections onto each individual set in turn. In our setting, we consider the inter-

section of three sets of symmetric N ×N matrices: the elementwise non-negative

matrices NNN , the normalized matrices NORN whose entry sum is equal to 1,

and the positive semi-definite matrices with rank K, PSDNK . We project onto

these three sets as follows:

ΠPSDNK (C) = UΛ+
KUT , ΠNORN (C) = C +

1 −
∑

i, j Ci j

N2 11T , ΠNNN (C) = max{C, 0}.

where C = UΛUT is an eigendecomposition and Λ+
K is the matrix Λ modi-

fied so that all negative eigenvalues and any but the K largest positive eigen-

values are set to zero. Truncated eigendecompositions can be computed effi-

ciently, and the other projections are likewise efficient. While NNN and NORN

are convex, PSDNK is not. However, [54] show that alternating projection with

a non-convex set still works under certain conditions, guaranteeing a local con-

vergence. Thus iterating three projections in turn until the convergence rectifies

C to be in the desired space. We will show how to satisfy such conditions and

the convergence behavior in Section 2.5.

Selecting basis S . The first step of the factorization is to select the subset S

of objects that satisfy the separability assumption. We want the K best rows of

the row-normalized co-occurrence matrix C so that all other rows lie nearly in

the convex hull of the selected rows. [9] use the Gram-Schmidt process to select

anchors, which computes pivoted QR decomposition, but did not utilize the spar-

sity of C. To scale beyond small vocabularies, they use random projections that

approximately preserve `2 distances between rows of C. For all experiments we
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Figure 2.4: The algorithm of [9] (first panel) produces negative cluster co-occurrence
probabilities. A probabilistic reconstruction alone (this paper & [8], second panel) re-
moves negative entries but has no off-diagonals and does not sum to one. Trying after
rectification (this paper, third panel) produces a valid joint stochastic matrix.

use a new pivoted QR algorithm (see the Appendix) that exploits sparsity in-

stead of using random projections, and thus preserves deterministic inference.6

Recovering object-cluster B. After finding the set of basis objects S , we can

infer each entry of B by Bayes’ rule as in [9]. Let {p(Z1 = k|X1 = i)}Kk=1 be the

coefficients that reconstruct the i-th row of C in terms of the basis rows corre-

sponding to S . Since Bik = p(X1 = i|Z1 = k), we can use the corpus frequencies

p(X1 = i) =
∑

j Ci j to estimate Bik ∝ p(Z1 = k|X1 = i)p(X1 = i). Thus the main

task for this step is to solve simplex-constrained QPs to infer a set of such coeffi-

cients for each object. We use an exponentiated gradient algorithm to solve the

problem similar to [9]. Note that this step can be efficiently done in parallel for

each object.

6To effectively use random projections, it is necessary to either find proper dimensions based
on multiple trials or perform low-dimensional random projection multiple times [85] and merge
the resulting anchors.
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Recovering cluster-cluster A. [9] recovered A by minimizing ‖C − BABT ‖F ;

but the inferred A generally has many negative entries, failing to model the

probabilistic interaction between topics. While we can further project A onto

the joint-stochastic matrices, this produces a large approximation error.

We consider an alternate recovery method that again leverages the separabil-

ity assumption. Let CS S be the submatrix whose rows and columns correspond

to the selected objects S , and let D be the diagonal submatrix BS ∗ of rows of B

corresponding to S . Then

CS S = DADT = DAD =⇒ A = D−1CS S D−1. (2.5)

This approach efficiently recovers a cluster-cluster matrix A mostly based on the

co-occrrurence information between corresponding anchor basis, and produces

no negative entries due to the stability of diagonal matrix inversion. Note that

the principle submatrices of a PSD matrix are also PSD; hence, if C ∈ PSDN then

CS S , A ∈ PSDK . Thus, not only is the recovered A an unbiased estimator for A∗M,

but also it is now doubly non-negative as A∗M ∈ DNNK after the rectification.7

2.4 Experimental Results

Our Rectified Anchor Words algorithm with alternating projection fixes many

problems in the baseline Anchor Words algorithm [9] while matching the per-

formance of Gibbs sampling [34] and maintaining spectral inference’s determin-

ism and independence from corpus size. We evaluate direct measurement of

matrix quality as well as indicators of topic utility. We use two text datasets:

7We later realized that essentially same approach was previously tried in [8], but it was not
able to generate a valid topic-topic matrix as shown in the middle panel of Figure 2.4.
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Dataset M N Avg. Len
NIPS 1,348 5k 380.5

NYTimes 269,325 15k 204.9
Movies 63,041 10k 142.8
Songs 14,653 10k 119.2

Table 2.1: Statistics of four datasets.

NIPS full papers and New York Times news articles.8 We eliminate a minimal

list of 347 English stop words and prune rare words based on tf-idf scores and

remove documents with fewer than five tokens after vocabulary curation. We

also prepare two non-textual item-selection datasets: users’ movie reviews from

the Movielens 10M Dataset,9 and music playlists from the complete Yes.com

dataset.10 We perform similar vocabulary curation and document tailoring, with

the exception of frequent stop-object elimination. Playlists often contain the

same songs multiple times, but users are unlikely to review the same movies

more than once, so we augment the movie dataset so that each review contains

2 × (stars) number of movies based on the half-scaled rating information that

varies from 0.5 stars to 5 stars. Statistics of our datasets are shown in Table 2.1.

We run DC 30 times for each experiment, randomly permuting the order of

objects and using the median results to minimize the effect of different order-

ings. We also run 150 iterations of AP alternating PSDNK , NORN , and NNN in

turn. For probabilistic Gibbs sampling, we use the Mallet with the standard op-

tion doing 1,000 iterations. All metrics are evaluated against the original C, not

against the rectified C′, whereas we use B and A inferred from the rectified C′.
8https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
9http://grouplens.org/datasets/movielens

10http://www.cs.cornell.edu/˜shuochen/lme
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Arora et al. 2013 (Baseline)
neuron layer hidden recognition signal cell noise
neuron layer hidden cell signal representation noise
neuron layer cell hidden signal noise dynamic
neuron layer cell hidden control signal noise
neuron layer hidden cell signal recognition noise
This paper (AP)
neuron circuit cell synaptic signal layer activity
control action dynamic optimal policy controller reinforcement
recognition layer hidden word speech image net
cell field visual direction image motion object orientation
gaussian noise hidden approximation matrix bound examples
Probabilistic LDA (Gibbs)
neuron cell visual signal response field activity
control action policy optimal reinforcement dynamic robot
recognition image object feature word speech features
hidden net layer dynamic neuron recurrent noise
gaussian approximation matrix bound component variables

Table 2.2: Each line is a topic from NIPS (K = 5). Previous work simply repeats the
most frequent words in the corpus five times.

Qualitative results. Although [9] report comparable results to probabilistic al-

gorithms for LDA, the algorithm fails under many circumstances. The algo-

rithm prefers rare and unusual anchor words that form a poor basis, so topic

clusters consist of the same high-frequency terms repeatedly, as shown in the

upper third of Table 3. In contrast, our algorithm with AP rectification success-

fully learns themes similar to the probabilistic algorithm. One can also verify

that cluster interactions given in the third panel of Figure 2.4 explain how the

five topics correlate with each other.

Similar to [52], we visualize the five anchor words in the co-occurrence space

after 2D PCA of C. Each panel in Figure 2.1 shows a 2D embedding of the

NIPS vocabulary as blue dots and five selected anchor words in red. The first

plot shows standard anchor words and the original co-occurrence space. The

second plot shows anchor words selected from the rectified space overlaid on
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the original co-occurrence space. The third plot shows the same anchor words

as the second plot overlaid on the AP-rectified space. The rectified anchor words

provide better coverage on both spaces, explaining why we are able to achieve

reasonable topics even with K = 5.

Rectification also produces better clusters in the non-textual movie dataset.

Each cluster is notably more genre-coherent and year-coherent than the clusters

from the original algorithm. When K = 15, for example, we verify a cluster

of Walt Disney 2D Animations mostly from the 1990s and a cluster of Fantasy

movies represented by Lord of the Rings films, similar to clusters found by prob-

abilistic Gibbs sampling. The Baseline algorithm [9] repeats Pulp Fiction and

Silence of the Lambs 15 times.

Quantitative results. We measure the intrinsic quality of inference and sum-

marization with respect to the JSMF objectives as well as the extrinsic quality of

resulting topics. Lines correspond to four methods: ◦ Baseline for the algorithm

in the previous work [9] without any rectification, 4 DC for Diagonal Comple-

tion, � AP for Alternating Projection, and � Gibbs for Gibbs sampling.

Anchor objects should form a good basis for the remaining objects. We mea-

sure Recovery error
( 1

N

∑N
i ‖Ci −

∑K
k p(Z1 = k|X1 = i)CS k‖2

)
with respect to the

original C matrix, not the rectified matrix. AP reduces error in almost all cases

and is more effective than DC. Although we expect error to decrease as we in-

crease the number of clusters K, reducing recovery error for a fixed K by choos-

ing better anchors is extremely difficult: no other subset selection algorithm [19]

decreased error by more than 0.001. A good matrix factorization should have

small element-wise Approximation error
(
‖C − BABT ‖F

)
. DC and AP preserve
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Figure 2.5: Experimental results on real dataset. The x-axis indicates logK where K
varies by 5 up to 25 topics and by 25 up to 100 or 150 topics. Whereas the Baseline
algorithm largely fails with small K and does not infer quality B and A even with large
K, Alternating Projection (AP) not only finds better basis vectors (Recovery), but also
shows stable and comparable behaviors to probabilistic inference (Gibbs) in every met-
ric.

more of the information in the original matrix C than the Baseline method, es-

pecially when K is small.11 We expect non-trivial interactions between clusters,

even when we do not explicitly model them as in [14]. Greater diagonal Domi-

nancy
( 1

K

∑K
k p(Z2 = k|Z1 = k)

)
indicates lower correlation between clusters.12 AP

and Gibbs results are similar. We do not report held-out probability because we

find that relative results are determined by user-defined smoothing parameters

11In the NYTimes corpus, 10−2 is a large error: each element is around 10−9 due to the number
of normalized entries.

12Dominancy in Songs corpus lacks any Baseline results at K > 10 because dominancy is un-
defined if an algorithm picks a song that occurs at most once in each playlist as a basis object. In
this case, the original construction of CS S , and hence of A, has a zero diagonal element, making
dominancy NaN.
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[52, 67].

Specificity
( 1

K

∑K
k KL (p(X|Z = k)‖p(X))

)
measures how much each cluster is

distinct from the corpus distribution. When anchors produce a poor basis,

the conditional distribution of clusters given objects becomes uniform, making

p(X|Z) similar to p(X). Inter-topic Dissimilarity counts the average number of

objects in each cluster that do not occur in any other cluster’s top 20 objects. Our

experiments validate that AP and Gibbs yield comparably specific and distinct

topics, while Baseline and DC simply repeat the corpus distribution as in Table

3. Coherence
( 1

K

∑K
k
∑∈Topk

x1,x2
log D2(x1,x2)+ε

D1(x2)

)
penalizes topics that assign high proba-

bility (rank > 20) to words that do not occur together frequently. AP produces

results close to Gibbs sampling, and far from the Baseline and DC. While this

metric correlates with human evaluation of clusters [63] “worse” coherence can

actually be better because the metric does not penalize repetition [52].

In semi-synthetic experiments [9] AP matches Gibbs sampling and outper-

forms the Baseline, but the discrepancies in topic quality metrics are smaller

than in the real experiments (see Appendix). We speculate that semi-synthetic

data is more “well-behaved” than real data, explaining why issues were not

recognized previously.

2.5 Analysis of Algorithm

Why does AP work? Before rectification, diagonals of the empirical C matrix

may be far from correct. Bursty objects yield diagonal entries that are too large;

extremely rare objects that occur at most once per document yield zero diago-

nals. Rare objects are problematic in general: the corresponding rows in the C

39



matrix are sparse and noisy, and these rows are likely to be selected by the piv-

oted QR. Because rare objects are likely to be anchors, the matrix CS S is likely to

be highly diagonally dominant, and provides an uninformative picture of topic

correlations. These problems are exacerbated when K is small relative to the

effective rank of C, so that an early choice of a poor anchor precludes a better

choice later on; and when the number of documents M is small, in which case

the empirical C is relatively sparse and is strongly affected by noise. To mitigate

this issue, [67] run exhaustive grid search to find document frequency cutoffs

to get informative anchors. As model performance is inconsistent for different

cutoffs and search requires cross-validation for each case, it is nearly impossible

to find good heuristics for each dataset and number of topics.

Fortunately, a low-rank PSD matrix cannot have too many diagonally-

dominant rows, since this violates the low rank property. Nor can it have di-

agonal entries that are small relative to off-diagonals, since this violates posi-

tive semi-definiteness. Because the anchor word assumption implies that non-

negative rank and ordinary rank are the same, the AP algorithm ideally does

not remove the information we wish to learn; rather, 1) the low-rank projection

in AP suppresses the influence of small numbers of noisy rows associated with

rare words which may not be well correlated with the others, and 2) the PSD

projection in AP recovers missing information in diagonals. (As illustrated in

the Dominancy panel of the Songs corpus in Figure 2.5, AP shows valid domi-

nancies even after K > 10 in contrast to the Baseline algorithm.)

Why does AP converge? AP enjoys local linear convergence [54] if 1) the ini-

tial C is near the convergence point C′, 2) PSDNK is super-regular at C′, and 3)

strong regularity holds at C′. For the first condition, recall that we rectified C′ by
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pushing C toward C∗, which is the ideal convergence point inside the intersec-

tion. Since C → C∗ as shown in (5), C is close to C′ as desired.The prox-regular

sets13 are subsets of super-regular sets, so prox-regularity of PSDNK at C′ is suf-

ficient for the second condition. For permutation invariantM ⊂ RN , the spectral

set of symmetric matrices is defined as λ−1(M) = {X ∈ SN : (λ1(X), . . . , λN(X)) ∈

M}, and λ−1(M) is prox-regular if and only if M is prox-regular [25, Th. 2.4].

LetM be {x ∈ R+
n : |supp(x)| = K}. Since each element inM has exactly K pos-

itive components and all others are zero, λ−1(M) = PSDNK . By the definition

of M and K < N, PM is locally unique almost everywhere, satisfying the sec-

ond condition almost surely. (As the intersection of the convex set PSDN and

the smooth manifold of rank K matrices, PSDNK is a smooth manifold almost

everywhere.)

Checking the third condition a priori is challenging, but we expect noise in

the empirical C to prevent an irregular solution, following the argument of Nu-

merical Example 9 in [54]. We expect AP to converge locally linearly and we can

verify local convergence of AP in practice. Empirically, the ratio of average dis-

tances between two iterations are always ≤ 0.9794 on the NYTimes dataset (see

the Appendix), and other datasets were similar. Note again that our rectified

C′ is a result of pushing the empirical C toward the ideal C∗. Because approxi-

mation factors of [9] are all computed based on how far C and its co-occurrence

shape could be distant from C∗’s, all provable guarantees of [9] hold better with

our rectified C′.
13A setM is prox-regular if PM is locally unique.
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2.6 Related and Future Work

JSMF is a specific structure-preserving Non-negative Matrix Factorization

(NMF) performing spectral inference. [77, 47] exploit a similar separable struc-

ture for NMF problmes. To tackle hyperspectral unmixing problems, [66, 33]

assume pure pixels, a separability-equivalent in computer vision. In more gen-

eral NMF without such structures, RESCAL [68] studies tensorial extension of

similar factorization and SymNMF [45] infers BBT rather than BABT . For topic

modeling, [3] performs spectral inference on third moment tensor assuming

topics are uncorrelated.

As the core of our algorithm is to rectify the input co-occurrence matrix, it

can be combined with several recent developments. [67] proposes two regular-

ization methods for recovering better B. [52] nonlinearly projects co-occurrence

to low-dimensional space via t-SNE and achieves better anchors by finding the

exact anchors in that space. [85] performs multiple random projections to low-

dimensional spaces and recovers approximate anchors efficiently by divide-

and-conquer strategy. In addition, our work also opens several promising re-

search directions. How exactly do anchors found in the rectified C′ form better

bases than ones found in the original space C? Since now the topic-topic matrix

A is again doubly non-negative and joint-stochastic, can we learn super-topics

in a multi-layered hierarchical model by recursively applying JSMF to topic-

topic co-occurrence A?
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CHAPTER 3

APPLICATIONS AND COMPARISON WITH OTHER RELATED MODELS

Spectral topic modeling transforms learning a low-dimensional latent geometry

into a provable decomposition of co-occurrence statistics. Despite their theoret-

ical guarantees and vast scalability, spectral topic models are not widely used

due to the absence of reliability in real data. Matrix models and tensor models

often complain the less realistic assumption of each other without thoroughly

investigating their topic quality against the probabilistic counterparts. Param-

eter sensitivity of the matrix models and learning cost of the tensor models are

another main barriers that hinder the fair comparison between them. This pa-

per is the first work that provides unifying explanations of the two popular

approaches, measuring their real performance on various metrics. Proposing

robust and complete algorithms for the anchor-based topic inference, we then

demonstrate the versatile power of the matrix models in learning from corre-

lated to hierarchical topics within a simple framework.

3.1 Introduction

Increasing access to massive data streams can be strategic asset to both theo-

reticians and practitioners, but only if they are capable of extracting meaningful

patterns. Topic models learn low-dimensional hidden structures in arbitrary

type of data that involves groups of discrete observations [39, 15], thereby be-

ing flexibly applicable to a wide range of modalities without human annota-

tions. Users can find common themes that underlie text articles [34], expres-

sive features or segments that characterize image streams [82], hidden prefer-
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ences/genres on movie/music consumption [51], and latent communities from

network snapshots [57]. For clarity this paper sticks to using the standard terms

— words, documents, and topics — but the concepts generalize to various ap-

plications beyond these examples.

Standard probabilistic algorithms for topic modeling lack of scalability. To

learn quality topics, the likelihood-based inference such as Variational Bayes

(VB) or Markov Chain Monte Carlo (MCMC) needs to iterate through the

training data multiple times until parameter convergence, being hardly scal-

ing to millions and billions of documents.1 To learn correlations or hierarchies

of topics, more complex models are necessary with the expansive inference

[14, 22, 56, 62], setting the Latent Dirichlet Allocation [15] still as the default

tool for practitioners. Spectral algorithms are newer alternatives to likelihood-

based training. Since topics are frequently co-occurring terms in essence, these

algorithms explicitly construct word co-occurrence moments as statistically un-

biased estimators for the underlying generative process via a trivially paralleliz-

able single-pass iteration. Then users can infer latent topics via moment-match-

ing without revisiting the individual training documents.

Using the method of moments provides provable guarantees but becomes

susceptible to statistical noise. To learn the latent topics, matrix decomposition

algorithms [8, 9, 51, 12, 42] factorize the second-order co-occurrence between

pairs of words, matching its posterior moments. Tensor decomposition algo-

rithms [3, 5, 4, 6] factorize the third-order co-occurrence among triples of words,

matching its population moments. Whereas these algorithms do not suffer from

spurious local minima or slow mixing problems of VB/MCMC, the learning

1Leveraging the stochasticity like [38, 61] is not the major focus of this paper because the
same approach is also applicable to spectral algorithms.
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quality quickly degrades if the input data does not agree well with the under-

lying models. These spectral inference do not handle the model-data mismatch

as well as the likelihood-based inference [46, 59], being less useful in real data.

The practicality of topic learning also matters model assumptions and

learning complexity. The Anchor Words algorithms [8, 9, 51], the most

popular matrix-based approach, assume separable topics2, whereas the CP-

decomposition [3, 5], the most popular tensor-based approach, assume orthogo-

nal topics.3 Most topic models with large vocabulary are shown separable [27],

but the vocabulary is often tailored down for manageable inference. Topics are

rarely orthogonal unless we learn tiny topic models on the distinctive sets of

documents without sharing much of their vocabulary. While each approach has

pointed out the assumption of the other approach as a major weakness, no thor-

ough comparison has been made especially on real data. For the Anchor Words

algorithms, this is because the exponentiated gradient topic recovery requires

fuzzy tuning of learning rate and heterogeneous document frequency cut-offs.

For the tensor algorithms, even the simplest CP-decomposition takes too long

time in learning beyond the small topic models.

This paper provides unifying explanations for spectral topic inference.

Measuring the topic quality of matrix-based and tensor-based approaches

against the probabilistic inference on various metrics, we show that the Rec-

tified Anchor Words (RAW) algorithm [51] substantially outperforms the CP-

decomposition, better handling the model-data mismatch within a few orders

of magnitude smaller times. Revisiting the framework of the Joint Stochastic

Matrix Factorization (JSMF) [51], we propose the Robust RAW (RRAW) algo-

2Each topic has one specific anchor word that occurs only in the context of that topic.
3Topics which are probability vectors must be perpendicular, being uncorrelated.
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rithm that is complete and free from the intricate control of the model parame-

ters. Our new algorithm is based on Alternating Direction Method of Multipli-

ers (ADMM) with Douglas-Rachford splitting (DR), and further improves the

topic quality and sparsity from the previous work [51] without adding a com-

plex regularizer like [67]. We verify that the RRAW algorithm discover superior

topics than its probabilistic counterpart: the Correlated Topic Models (CTM)

[14], better explaining genre-topic associations at smaller costs. By maximally

reusing the learned topic correlations, we further propose a novel approach for

hierarchical topic modeling that can learn supertopics within the same simple

framework.

3.2 Spectral Topic Inference

Topic modeling assumes a document representation which is sufficiently sim-

ple to allow for tractable inference but sufficiently realistic to be useful. Each

topic k is defined as a distribution p(x|z = k) over words where p(x = i|z = k) is a

probability to choose a word i given the topic k. Assuming there are N words

in the vocabulary and K prepared topics, all topic can be compactly represented

by the column-stochastic matrix B ∈ RN×K , where each column vector bk ∈ ∆N−1

stands for the topic k.4 Suppose there are M documents in a corpus which are

all written by admixing some of these K topics with respect to a certain prior f.

Then topic models explain that each document m of the length nm is written by:

1) Select a topic composition wm ∈ ∆K−1 with respect to f; 2) Write nm words by

repeatedly selecting a topic z from the composition wm and a word x from the

4K is considerably smaller than N in the general settings. The setting with K > N is called
overcomplete, which requires additional assumptions for identifiability.
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topic bz.

Different models adopt different priors f to better explain proper admixing

of topics for the given data. For example, LDA assumes f=Dir(α) for α∈RK
+ [15].

In the correlated topic model (CTM) f=LN(µ,Σ) for µ ∈RK−1,Σ ∈R(K−1)×(K−1) [14,

22]. In the Pachinko allocation model f is not a parametric family, but a DAG-

induced distribution, which is not always uniquely identifiable [56, 62]. These

models differ only in explaining the stochastic generation of topic composition:

wm∼f. Note that entries in every column vector bk of B are parameters to recover

in our setting, whereas probabilistic topic models often put another parametric

prior g(β) from which each bk is sampled. The form of g is not as crucial in

learning quality topics as the form of f [11], and can be similarly incorporated

in spectral inference by putting additional regularizers when recovering each bk

[67].

Let H∈RN×M be the word-document matrix where the m-th column vector hm

indicates the observed term-frequencies in the document m. Topic compositions

of individual documents can also be described compactly by another column-

stochastic matrix W ∈ RK×M whose m-th column vector is wm ∈ ∆K−1. The main

learning task of topic models is to recover the word-topic matrix B and to infer

the topic-document matrix W. For certain parametric families like f=Dir(α), one

can recover the hyperparameter α [8].5

Say H̃ is the column-normalized H where each column is hm/nm. Then the

learning task of topic models can be viewed as an approximate Non-negative

Matrix Factorization (NMF): H̃ ≈ BW, which minimizes 1
2‖H̃ − BW‖2F with the

column-stochastic constraints B∈N×K ,W∈K×M. While this factorization could be
5We distinguish “recover” from “infer”. While one can infer (µ,Σ) by Gibbs sampling when

f =LN , it is unlikely to recover these parameters within a provable precision.
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identifiable under some additional sparsity constraints [41], solving it by the

NMF methods like [50] produces incoherent topics even if the approximation

error is small enough [73]. This is essentially because H itself is too noisy and

sparse statistics where only a tiny subset of vocabulary appears for each docu-

ment.

3.2.1 Joint Stochastic Matrix Factorization

Instead of directly decomposing the giant and noisy H̃, JSMF decomposes the

smaller and aggregated statistics toward revealing the latent topics and their

correlations. Let C ∈RN×N be the empirical word co-occurrence matrix where Ci j

is the joint probability px1 x2(i, j) to observe a pair of words i and j in the corpus.

Define the topic co-occurrence matrix A∈RK×K where Akl is the joint probability

pz1z2(k, l) between two latent topics k and l. Then JSMF transforms topic model-

ing objective into a second-order non-negative matrix factorization: C ≈ BABT ,

which is equivalent to p(x1, x2|A; B) =
∑

z1

∑
z2

p(x1|z1; B)p(z1, z2|A)p(x2|z2; B). The

question is how this formulation provides better hints to learn the latent topics

B from C.

Define x1 ∈RN as a random basis vector where only a single component cor-

responding to one randomly drawn word from the document m is 1. Let pm be

the vector where its i-th components means the probability for the word i to

occur in the document m. Then pm = Bwm ∈ RN , satisfying

x1 ∼ Categorical(pm) ⇒ E[x1|wm] = Bwm.

Denote nm consecutive draws of a word by {x1, x2, ..., xnm}, and say hm =
∑nm

t=1 xt.
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Then

hm ∼Mult(nm, pm) ⇒ E[hm|wm] = nmBwm.

As explained earlier, assuming that each observed hm follows this model does

not produce statistically meaningful information toward recovering B. Since

different words in each document m share the same topic composition wm,

however, the cross moments can provide useful information about co-occur-

ring words even within a single document: E[hmhT
m|wm] = E[hm|wm]E[hm|wm]T +

Cov(hm|wm) = nm(nm − 1)BwmwT
mBT + nm·diag(Bwm). Hence,

E[hmhT
m|wm]−nm·diag(Bwm)

nm(nm − 1)
= BwmwT

mBT .

Define the co-occurrence Cm for a single document m in terms of the observed

hm:

Cm =
hmhT

m − diag(hm)
nm(nm − 1)

. (3.1)

If our observation hm follows the model, then E[Cm|wm] = BwmwmBT by the

linearity of expectation. Then by the Law of Iterated Expectation,

E[Cm] = Ewm[E[Cm|wm]] = BEwm[wmwT
m]BT .

We can now construct the empirical word co-occurrence by averaging Cm across

M documents: C := 1
M

∑M
m=1 Cm. Denoting the posterior topic-topic matrix by

A∗ := 1
MWWT ∈ RK×K , it is proven that A is entry-wisely close to both A∗ and the

population moments Ew∼f[wwT ] when M is sufficiently large [8]. Thus

C ≈ E[C] = B
( 1
M

M∑
m=1

Ewm[wmwT
m]

)
BT

= BEw∼f[wwT ]BT ≈ BA∗BT ≈ BABT .
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Once constructing the empirical moment C from the input data as an un-

biased estimator of the underlying generative process, JSMF enables us to re-

cover the correct B and A up to some precision by matching C to its posterior

moments BA∗BT . For some known parametric families like a Dirichlet distri-

bution, furthermore, we can also recover the hyperparameter α by matching

the recovered topic-topic matrix A to the parametric second moments of f(α)

rahter than performing an inference [8]. The separability assumption implies

non-negative rank(B) = rank(B) = K, guaranteeing the existence of an identifiable

factorization.

3.2.2 Tensor Decomposition

The separability assumption in JSMF is necessary because having only up to the

second moments is not sufficient by itself to identify latent topics [4]. While one

could release this assumption by adopting sufficiently scattered condition, it maps

the factorization into another NP-hard optimization problem [42]. Alternatively,

one can leverage third-order moments to provide sufficient statistics for iden-

tifiable topic inference [3, 5]. In contrast to JSMF, tensor-based algorithms first

specify f as a tractable parametric prior like the Dirichlet distribution. For ex-

ample, if f = Dir(α) with α0 =
∑

k αk, then E(1st)
w∼f(α)[w] = α/α0, and

E(2nd)
w∼f(α)[wkwl] =


αk(αk+1)
α0(α0+1) (k = l)

αkαl
α0(α0+1) (k , l)

. (3.2)

It makes the marginal expectations E[x1] and E[x1xT
2 ] further parametrized
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by α.

E[x1] = Ewm[E[x1|wm]] = BEwm[wm] = BE(1st)
w∼Dir(α)[w],

E[x1xT
2 ] = Ewm[E[x1|wm] · E[x2|wm]T ]

= BEwm[wmwT
m]BT = BE(2nd)

w∼Dir(α)[wwT ]BT .

Similarly we can represent up to the third moments:

E[x1 ⊗ x2] = E(2nd)
w∼f(α)[w ⊗ w](B, B),

E[x1 ⊗ x2 ⊗ x3] = E(3rd)
w∼f(α)[w

⊗3](B, B, B).

By assuming w ∼ Dir(α), we can fortunately attain a closed form expressions

of all three population moments only in terms of B and α, allowing the non-

central second and third moments to be further represented by lower-order

moments and α0 [3]. Thus once users input α0, we can construct the empiri-

cal moments given the training data, and then tensor decomposition allows us

to recover B and α up to some precision by matching the empirical moments

to these population moments. Note that JSMF does not ask users to specify

α0, flexibly and transparently modeling arbitrary pairwise correlations between

topics by the co-occurrence between the pairs of the anchor words.

There are several caveats. First, finding such closed-form moment combina-

tions is not easy. Normally all higher-order moments are necessary for learning

with the general prior f [6]. Second, E[w⊗3] should be a diagonal tensor in order

to apply popular CP-decomposition for learning topics B. It means that we need

to assume the uncorrelated topics instead of the separable topics, though one

might later capture weak negative correlations via learned α given f = Dir. Us-

ing Tucker decomposition [78] is another option for learning correlated topics,
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but it instead requires additional sparsity constraints on B, asking notably more

parameters to be estimated [4]. Overall, correlated topic modeling via tensor

decomposition is not as transparent as using JSMF.

3.3 The Robust Rectified Anchor Word Algorithm

The first Anchor Word algorithm [8] works only in theory: many entries in B

that should be probabilities are negative due to the purely algebraic estimation

through the matrix inversion. While probabilistic inference in [9] fixes some

issues, the algorithm works only for large enough number of topics, and the

learned topic correlations A still consists of many negative entries whose mag-

nitudes are neither negligible nor interpretable. The Rectified Anchor Word

(RAW) algorithm [51] is the first working version that can learn quality topics

and their correlations under model-data mismatch. However it requires intri-

cate and heterogeneous tuning of model parameters. We propose the Robust

RAW (RRAW) algorithm based on ADMM-DR. This is the first complete version

comparable to full probabilistic inference. Thanks to the separability assump-

tion, the overall algorithm consists of four clearly divided steps: 1) construct the

word co-occurrence matrix C and rectify it; 2) find the set of anchor words S ; 3)

recover the topics B; 4) recover the topic correlations A and hyperparameter α

if available.

Step 0: Create C. For spectral inference, we need to first construct the empir-

ical word co-occurrence statistics as an unbiased estimator for the underlying

random process: C = (1/M)
∑M

m=1 Cm with Cm specified in Equation (3.1). Due

to the efficiency of the anchor-based inference, the moment construction often
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Algorithm 1 Alternate Projection (AP)
def RECTIFY-C(C,K)

1: CNN ← C
2: repeat
3: (U,ΛK) = TRUNCATED-EIG(CNN ,K)
4: Λ+

K ← diag(max{diag(ΛK), 0})
5: CPSD ← UΛ+

KUT

6: CNOR ← CPSD +
1−

∑
i, j CPSD(i, j)

N2 11T

7: CNN ← max{CNOR, 0}
8: until the convergence of CNN
9: return C← CNN/(

∑
i, j CNN (i, j))

(diag(·) is an operation that maps the input vector into the diagonal matrix or
extracts the diagonal vector from the input matrix.)

becomes the most expansive step for large corpora, but it is trivially paralleliz-

able for each document because the averaging at the end is the only between-

documents computation.

Step 1: Rectify C. The typical failure mode of low-rank spectral learning is

mimatch between the model and the data. Thus rectifying the co-occurrence

estimator is the key to successful inference [51]. Though C is shown statisti-

cally more stable than H̃ [8], its empirical construction does unlikely exhibit the

proper structures of the posterior moments BA∗BT : a low-rank (LR), positive

semidefinite (PSD), nonnegative (NN), and normalized (NOR).6 The rectifi-

cation step transforms the noisy C into the desirable estimator via alternately

projecting to each space until convergence [51].

By running the truncated eigenvalue decomposition, it only finds K largest

eigenvalues ΛK with the corresponding eigenvectors U at tiny cost. Then it

projects C to PSDN and LRK spaces by the reconstruction UΛ+
KUT . The next

6Due to the diagonal penalty in (3.1) for the unbiased construction and the variance of the
generative process, C is almost always full-rank and indefinite in limited real data.
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Algorithm 2 Sparse Implicit Column-pivoted QR

def FIND-S(C,K)
1: (P, Q, S , r)← (C

T
, 0N×K ,∅, 0K)

2: u← (‖p1‖
2
2, ..., ‖pN‖

2
2) ∈ R1×N

3: for k = 1 to K do
4: n← argmax1≤i≤N ui

5: (S , qk, rk)← (S ∪ {n}, pn,
√

un)
6: qk ← (qk −

∑k−1
l=1 〈ql, pn〉ql)/rk

7: u← u − (qT
k P) ◦ (qT

k P)
8: end for
9: return (S , r)

(◦ : RN × RN → RN is the Hadamard Product that performs an entry-wise
multiplication of the two operand vectors.)

is an orthogonal projection to NORN by subtracting mean overage entry-wisely

from the desired total, 1.0. The negative entries from this procedure are later

zeroed out in the subsequent projection to NNN . While the sequence of projec-

tions does not matter, performing NNN-projection at the end of the loop helps

the feasibility.7 Note that tensor-based methods similarly have a whitening step

for handling the model-data mismatch. By running a full SVD, they transform

the third-order moments into an orthogonal tensor for CP-decomposition.

Step 2: Find S . Once the rectified co-occurrence C is ready, the next step is

to find the anchor words. If denoting the set of the K anchor words by S =

{s1, ..., sK}, the separability assumption means: p(z = k′|x = sk) = 1 if k′ = k and

p(z = k′|x = sk) = 0 if k′ , k. Let C be the row-normalized version of C. Then by

the conditional independence between a pair of words given one of their topics

(x1 ⊥ x2|z1 or z2) and the separability, Ci j = p(x2 = j|x1 = i) =
∑

k′ p(x2 = j|z1 = k′)p(z1 =

k′|x1 = i). So, Csk , j = p(x2 = j|z1 = k). Thus Ci j =
∑

k p(z = k|x = i)Csk , j, implying that

every row vector of C corresponding to a non-anchor word can be represented

7After convergence, we normalize the co-occurrence via dividing by the entry sum just for
consistent comparison.
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by a convex combination:
∑

k p(z = k|x = i) = 1 of the rows {Csk} corresponding to

the anchor words {sk}. Therefore the inference quality depends primarily on the

quality of the anchor words S , providing a clear metric for diagnosis. Since the

rectification is proven crucial for finding better anchors [51], it again articulates

the importance of the rectification step.

While using the pivoted QR [9] substantially expedites the running time

against solving a number of LPs [8], it cannot maintain the sparsity of C be-

cause it explicitly projects every non-anchor row to the orthogonal complement

for each iteration. Random projections are suggested for sizable vocabulary, but

such projections can no longer maintain the insisted structures of the rectified C

and likely degrade the topic quality [52]. Our Algorithm 2 requires only O(NK)

space to store Q and performs implicit updates on u in O(nnz(C)K) times without

modifying the input C.

Step 3: Recover B. Provided with the set of the anchor words S and the convex

coefficients B̆ki = {p(z = k|x = i)}, one can easily recover B by applying the Bayes

rule:

Bik = p(x = i|z = k) =
p(z = k|x = i)p(x = i)∑N

i′=1 p(z = k|x = i′)p(x = i′)
=

B̆kici∑N
i′=1 B̆ki′ ci′

,

where ci := p(x = i) is the unigram probability for the word i, which can be ac-

quired by
∑

j Ci j. Hence the core of this step is to find the coefficient matrix B′

by solving multiple Simplex-constrained Non-negative Least Squares (SNLS)

hat satisfies Ci j =
∑

k B̆kiCsk , j for each i. While the exponentiated gradient (Exp-

Grad) algorithm used in the previous work [9, 51] quickly converges, tuning

the learning rate is mysterious, less ensuring the confidence of the results. In-

stead, we propose another algorithm that uses Alternating Direction Method of

Multipliers (ADMM).
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Algorithm 3 ADMM by Douglas-Rachford (DR)

def RECOVER-B(C, c, S , λ, γ)
1: (U, B̆, B)← ((CS ∗)T , 0K×N , 0N×K)
2: B̆∗S ← IK (IK = K × K identity matrix)
3: F← (γUT U + IK)−1

4: for each i ∈ {1, ...,N} \ S (in parallel) do
5: (v, f )← ((Ci∗)T , γUT v)
6: y(0) ← Π∆K−1

(
(UT U)−1( f/γ)

)
7: q(0) ← y(0)

8: repeat
9: p(t) ← F(2y(t−1) − q(t−1) + f )

10: q(t) ← q(t−1) + λ(p(t) − y(t−1))
11: y(t) ← Π∆K−1(q(t))
12: until the convergence of y(t)

13: B̆∗i ← y(t)

14: end for
15: for (i, k) ∈ {1, ...,N} × {1, ...,K} do
16: Bik ← (B̆kici)/(

∑N
i′=1 B̆ki′ ci′)

17: end for
18: return B

(Π∆K−1(·) is the orthogonal projection to the K − 1 simplex. See the reference for
the implementation.)

Let UT be the wide submatrix of C consisting only of the rows corresponding

to the anchor words S . Say vT is a row vector corresponding to any non-anchor

word i. Then Algorithm 3 tries to find y ∈ ∆K−1 that minimizes 1
2‖Uy − v||22 by

solving SNLS for each i in parallel by Douglas-Rachford (DR) splitting with

the rate parameter λ. Since the γ-proximal solution close to the current x is

given by proxγ(x) = (γUT U + IK)−1(x + γUT v), we can evaluate the first invariant

F = (γUT U + IK)−1 just once and the second invariant f = γUT v only N − K times

for different v’s.8

8Note first that this inversion is performed only for small K×K matrix rather than N×N. Note
second that Algorithm 3 (at line 6) projects the least square solution by the normal equation to
the simplex ∆K−1 in order to speculate a reasonable initialization. Whereas this procedure aggra-
vates the performance of the ExpGrad due to its multiplicative nature, it benefits the ADMM-DR
to achieve sparser solutions without putting another prior g(β) [67].
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Algorithm 4 Diagonal Recovery and α-learning
def RECOVER-A(C, B, S )

1: (CS S , D)← (C(S , S ), B(S , ∗))
2: A← D−1CS S D−1

3: return A

def RECOVER-ALPHA(A)
1: a← A1
2: A← the row-normalized A
3: A0 ← A − diag(diag(A))
4: u← (1T A0)/(K − 1)
5: v← (diag(A) − u)† − 1T

6: α(0)
0 ← (

∑
k vk)/K

7: repeat
8: ∇α0 ← (1 − α0 − K) + α0K

∑
k a2

k+

9: (α0 + 1)
∑

k Akk − (α0 + 1)
∑

k(Aa)k

10: α(t)
0 ← (α(t−1)

0 − η∇α0)+

11: until the convergence of α(t)
0

12: return α(t)
0 ·a

(Set indexing extracts a principle submatrix whose rows and columns
correspond to the arguments. The † operation means entrywise scalar inverse.)

Step 4: Recover A and α. The final step is to recover the topic-topic matrix A

and the hyperparameter α if learnable (e.g., f(α) = Dir(α)). Again leveraging the

separability assumption, p(x1 = sk, x2 = sl) =
∑

l′
(∑

k′ p(x1 = sk|z1 = k′)p(z1 = k′, z2 =

l′)
)
p(x2 = sl|z2 = l′) = p(x1 = sk|z1 = k)

∑
l′ p(z1 = k, z2 = l′)p(x2 = sl|z2 = l′) = p(x1 = sk|z1 =

k)p(z1 = k, z2 = l)p(x2 = sl|z2 = l). Thus Akl = p(x1 = sk|z1 = k)−1Csk ,sl p(x2 = sl|z2 = l)−1.

Algorithm 4 concisely performs this derivation in terms of two matrix multipli-

cations at line 2. Thus the co-occurrence of the anchor words sk and sl trans-

parently captures the correlation between a pair of topics k and l. Note that the

anchor words are generally rare words (in order to be the vertices of underlying

convex hull of the word co-occurrence space) whose co-occurrences are even

rarer and noisier. JSMF effectively balances these entries via the rectification
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[51], thereby realizing correlated topic modeling.

Suppose that the recovered A is close to the population second moments

(3.2) of Dir(α). Then its row sum vector a becomes α/α0, the first moments of

Dir(α)), meaning we can easily recover the α up to the scalar. Let A be the

row-normalized A. In theory the diagonal entries of A should always be bigger

than the off-diagonal entries in the same column by 1/(α0 + 1). As the real data

never satisfies the model, we evaluate the average u of the off-diagonal entries

and compute the K candidates for 1/(α0 + 1). Then the vector v stores the K

corresponding candidates for α0, and we start fitting the learned A to the row-

normalized version of the second moments (3.2) by finding α0 > 0 that mini-

mizes the Frobenius norm of their difference:
∑K

k=1(α0ak+1
α0+1 −Akk)2+

∑
k,l(

α0a j

α0+1 )−Akl)2.

We verify that the optimal α0 is quickly attained inside the candidate inter-

val, and agrees well with the result of the exhaustive line-search within the off-

set of 10−3. While our algorithm outperforms the previous α-recovery method

proposed by [8], we do not compare the learned α with other inference-based

algorithms like the fixed-point iteration [64].9

3.4 Hierarchical Topic Modeling

Topics help users organize documents, but as the number of topics grows, it be-

gins to be important to organize the topics themselves. One option is to arrange

topics in hierarchies [16, 56, 62]. As the correlations A learned by the RRAW

algorithm have the same positive semidefinite and joint-stochastic structures as

9Whereas the JSMF can capture arbitrary topic correlations, fitting to Dirichlet can only
model weakly negative correlations. Indeed we are solving a highly over-determined system to
find α0, loosing rich correlation information.
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the original matrix C, one might want to further factorize A in order to learn

a smaller number of “supertopics.” This approach should only be effective if

there are non-trivial off-diagonal entries in A, since otherwise the matrix would

have no more interesting low-dimensional structure, and indeed this is true of

non-rectified algorithms [8, 9]. Rectification can effectively balance the diagonal

entries (if they meaningfully exist), thus transforming the topic co-occurrence

into a further decomposable low-rank matrix. Therefore we can recursively ap-

ply the RRAW algorithm on the recovered A, learning supertopics of the current

topics.

Suppose that the initial run of the RRAW algorithm factorizes C=C1≈B1 A1BT
1

with K1 subtopics. Define Ct+1 as the rectified At, and then the next run factorizes

Ct+1≈Bt+1 At+1BT
t+1, resulting Kt+1 supertopics (Kt+1 < Kt). The recursive applica-

tions allow users to achieve a level-wise DAG of hierarchical topics where the

lowest level (t = 0) corresponds to the observed words, the next level (t = 1) indi-

cates the subtopics, and the upper level describes their (t = 2) supertopics, and

so on. The learned At explains topic correlations within each level t, whereas

the learned Bt analyzes the weights between two consecutive levels t − 1 and t.

Most interestingly, we may attain better Kt+1 anchors with the cleaner topics at

the upper levels comparing to the direct application with Kt+1 topics because of

the continuous noise balancing via the intermediate rectifications.

3.5 Experimental Results

We evaluate our algorithms on two standard textual datasets: NIPS full papers

(NIPS) and New York Times news articles (NYTimes). We also prepare two
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small textual datasets: political blogs (Blog) [29] and business reviews (Yelp)

[52] especially for tensor decomposition. In addition, we adopt two non-textual

preference datasets: Movielens 10m reviews (Movies) and Yes.com complete

playlists (Songs).10 In contrast to textual datasets, we can retrieve genre infor-

mation for Movies and Songs.11 We process training documents identically to

[51] for fair comparison. Basic statistics of each dataset are available in Figure

3.1 and 3.2.

3.5.1 Quantitative Analysis

After constructing C (Step 0), Baseline method [9] jumps to the anchor-finding

(Step 2) to demonstrate the power of the rectification. However we do not use

any random projection or pseudo-inverse recovery of A given in [9] to prevent

further degradation of learning quality. For methods within the framework

of the JSMF, we execute 150 iterations of Alternating Projection (AP) for the

rectification (Step 1).12 Since our new anchor-finding (Step 2) only improves

time/space complexity, topic learning (Step 3) contrasts our work from the pre-

vious work [51].

For the exponentiated gradient (ExpGrad), we set the learning rate and

the document frequency cut-offs as the best known values from [51]. For our

ADMM with DR splitting (ADMM-DR), we set λ = 1.9, the widely known best,

and γ = 3.0 as the algorithm is not sensitive within γ ∈ [1.0, 5.0]. For likelihood-

10Movies: https://grouplens.org/datasets/movielens/10m/ and Songs: http:
//csinpi.github.io/lme/data_page.html

11We maximally use the existing genre information and user tags given in the datasets. If no
information is provided, we scrape from IMDB and Discogs.com, respectively.

12We verify that running only 5 iterations of AP is sufficiently practical, and 15 iterations
makes closer to the current results.
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Figure 3.1: Matrix vs Tensor. Tensor algorithm performs better than Baseline Anchor
Word algorithm [9], but much poorer than the Rectified Anchor Word algorithm: Exp-
Grad [51] and Gibbs. Surprisingly, tensor algorithm does not show consistent behavior
for increasing numbers of topics in X-axis. Close to Gibbs is generally better in Y-axis.

based inference, we identically use Gibbs Sampling (MCMC) with 1,000 itera-

tions after the initial 200 burn-in samples. We run the CP-decomposition for

Tensor algorithm.13

Following the metrics on [51], we transform Recovery and Approxima-

tion errors to logarithms of 1
N

∑
i ‖Ci −

∑
k B̆kiCsk‖2 and ‖C − BABT ‖F to bet-

ter compare ADMM-DR against ExpGrad. We also add two new metrics:

Entropy ( 1
N

∑
i

H(z|x=i)
log2 K ) [52] and Sparsity ( 1

K

∑
k

√
N−(‖bk‖1/‖bk‖2)
√

N−1
) [40]. As given in Fig-

ure 3.1, only Entropy in Tensor algorithm grows as K increases, unusually say-

ing that topic distribution given a words becomes closer to the uniform distri-

bution. For sparsity closer to 1.0 is better. Sparsity of Tensor algorithm fluc-

tuates as well, questioning the consistency of its spectral aspect. Specificity

( 1
K

∑
k KL(p(x|z = k)‖p(x))) measures the average KL-distance of each topic from

13https://github.com/FurongHuang/TensorDecomposition4TopicModeling
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Figure 3.2: ADMM-DR vs ExpGrad. Our ◦ADMM-DR algorithm outperforms the pre-
vious state-of-the-art rectified algorithm 4 ExpGrad, being more comparable to proba-
bilistic �Gibbs sampling. � Baseline algorithm without rectification works consistently
poor due to model-data mismatch. Panel 1, 2, 3: lower is better / 4, 5, 7: higher is better
/ 6: closer to Gibbs is better.

the unigram distribution of the corpus. Dissimilarity counts the mean number

of top words in each topic that do not belong to the top 20 words of other top-

ics. Coherence ( 1
K

∑
k
∑x1,x2∈Top20

x1,x2
log D2(x1,x2)+ε

D1(x2) ) penalizes any pair of top words in

each topic that do not appear together in the training documents. But Coher-

ence could be deceptive if a model learns many duplicated topics containing the

frequent words [42]. In every metric, being closer to Gibbs is generally better,

implying that the matrix model (ExpGrad) outperforms the tensor model.

Figure 3.2 shows that the Baseline method works notably worse than other

methods and is far behind the trend of Gibbs sampling, reconfirming [51].

ADMM-DR generally agree well with ExpGrad on many metrics, but ADMM-

DR produces more specific and sparse topics with the lower entropies without

requiring mysterious tuning of the learning rate and the document frequency

cut-offs. ADMM-DR also improves inference quality by decreasing Recovery
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Figure 3.3: ADMM-DR (left) vs CTM (right). The column 0 shows the genre distri-
bution of the entire corpus. Each column 1-15 stands for k-th topic where two most
prominent genres are of orange colors. The size of each box is proportional to the rel-
ative intensity. The number below each topic indicates the marginal probability pz(k).
ADMM-DR topics capture more about genres.

and Approximation errors especially when K is small. For running time, Sparse

Implicit Column-pivoted QR takes in average 0.71 shorter times than the ex-

plicit anchor finding given in [9]. For topic recovery, ADMM-DR takes 1.92

more times than ExpGrad if using the same maximum number of 500 iterations.

3.5.2 Qualitative Analysis

Evaluating correlated topic models is not easy due to the potential subjectiv-

ity in analysis. If models are capable of considering and learning topic cor-

relations, the genres of top “words” (i.e., songs) in each topic are more likely

to align with human classifications. The standard probabilistic topic model is

CTM [14], which uses logistic-normal priors with pairwise covariance between

topics. When running Varational CTM [14] with the default parameters, the
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resulting topics do not show distinguishable genre associations. Most topics in-

volve with Pop and Rock, emulating the overall genre distribution of the corpus

as illustrated in Figure 3.3. In contrast, our ADMM-DR captures three Jazz top-

ics (T1: Electronic, T5: Pure, T9: Blues style) and four specific Rock topics (T3:

Folk Rock, T4: Rock n Roll, T12: Pop style, T15: Alternative Rock). While both

models discover Reggae and Latin genres, CTM’s associate more with generic

Other genres, whereas ADMM-DR’s associate more with Folk/Country or Pop,

respectively.

In addition, CTM puts spuriously high marginal topic probability on T1,

which is the closest topic to the corpus genre distribution. While it can highly

contribute to maximizing the data likelihood, an unseen playlist would be most

likely classified as a mixture of Pop and Rock if it contains just a couple of Pop

or Rock songs. This also happens in Movies, explaining why we prefer using

various metrics than merely showing the held-out likelihood. Genre association

in Movies is less clear than Songs because each playlist more likely has genre-

specific themes, whereas people often watch and review newly released movies

rather than consuming only similar genres. Thus Movies consist of year-specific

topics as well as Fantasy or Sci-Fi.

3.5.3 Hierarchy and Further Analysis

For hierarchy analysis, we compare across three different settings with our

ADMM-DR in the NIPS dataset: 1) single JSMF with K =5 (JSMF-5); 2) recursive

JSMF with K = 25 then K = 5 (JSMF-25:5); 3) single LDA with K = 5 (Gibbs-5),

manually sorted to align with JSMF-5. Table 3.1 shows the most prominent 7
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Recursive JSMF with K = 25 then K = 5 (JSMF-25:5)
T0: neuron dynamic signal gradient matrix control solution
T1: action policy optimal reinforcement control states reward
T2: object hidden layer image representation recognition cell
T3: bound threshold theorem class dimension polynomial proof
T4: gaussian density likelihood noise mixture component prior
Single JSMF with K = 5 (JSMF-5)
T0: neuron circuit cell synaptic signal layer activity
T1: control action dynamic optimal policy controller reinforcement
T2: recognition layer hidden word speech image net
T3: cell field visual direction image motion orientation
T4: gaussian noise hidden approximation matrix bound examples
Single Probabilistic LDA (Gibbs-5)
T0: neuron cell visual signal response field activity
T1: control action policy optimal reinforcement dynamic robot
T2: recognition image object feature word speech features
T3: hidden net layer dynamic neuron recurrent noise
T4: gaussian approximation matrix bound component variables

Table 3.1: Top 7 words for each of five topics by three models.

words out of top 20 words for each topic similar to [51]. As expected, JSMF-5

and Gibbs-5 are fairly comparable. Whereas the five supertopics from JSMF-25:5

show different partitions: T3 is about machine learning theory and T4 is about

probabilistic models, JSMF-5 and Gibbs-5 mix these themes in their respective

T4s.

When we run the variational CTM-5 again with the default parameters [14],

the resulting topics do not have distinguishable genre associations as illustrated

in Figure 3.4. This failure may be the result of spurious correlations as pointed

out in [69]. However, the simple JSMF-5 captures Jazz (T0), Funk (T3), and

Folk (T4) genres as independent topics with two other relatively mixed topics.

Indeed JSMF-25 shows rather isolated topics of Jazz (T0, T2, T3, T10), Funk (T7),

Raggae (T5, T6, T15), Latin (T18), and Rock (T20), whereas Pop is often mixed

with every other genre. The five topics from the recursive run (JSMF-25:5) differ

from JSMF-5: they discover Rock (T0) and Latin (T4) instead of Jazz and Funk.
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Figure 3.4: Second row. 25 subtopics on Songs dataset. Given 20 top songs of each
topic, the stacked bar chart indicates the percentages of the most popular 9 genres.
The width of each topic is proportional to the marginal likelihood of the topic p(z = k) =∑

l Akl. First row. The leftmost and the rightmost panels show 5 topics from independent
running of the JSMF with the ADMM-DR and the CTM, respectively. The middle panel
represents 5 supertopics by recursive running of the same JSMF on top of 25 subtopics
given in the second row.

This could be because Jazz and Funk may be more distinctive than Rock and

Latin, but they are marginally much less probable as shown in JSMF-25.

3.6 Discussion

Tensor algorithm takes 5 hours for learning 5 topics on NIPS and 48 days for

learning 25 topics on Yelp, having not yet finished learning 20-25 topics on Blog

during 4 months. In the same computing environment, the Robust RAW algo-

rithm takes only a few seconds in these toy datasets and at most a couple hours

for processing the largest NYTimes. The CTM takes 15 mins for learning 15 top-

ics on Songs, but 6 hours for 50 topics. In contrast, our ADMM-DR takes less
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than 10 mins for finding 50 topics on Songs.

By removing the dependence on the training documents, spectral topic

modeling provides great scalability in finding compact high-level structures in

sparse and discrete data such as text and user-preference. Our Roubst RAW

algorithm enjoys its transparent and consistent behaviors, working well on var-

ious types textual and non-textual real datasets without asking intricate tuning

of model parameters. The experimental results show that the matrix-based in-

ference notably outperforms the tensor-based inference in both topic quality

and learning complexity. Our ADMM-DR algorithm further improves the pre-

vious ExpGrad [51], being more comparable to probabilistic Gibbs sampling

without increasing the model complexity. The anchor-based inference has high

potential for better modeling arbitrary pairwise topic correlations at the lower

cost than CTM and additional flexibility to model the hierarchical topics within

the one unified framework of the Joint Stochastic Matrix Factorization.
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CHAPTER 4

PRIOR-AWARE DOCUMENT-SPECIFIC TOPIC INFERENCE

Spectral topic modeling algorithms operate on matrices/tensors of word co-

occurrence statistics to learn topic-specific word distributions. This approach

removes the dependence on the original documents and produces substantial

gains in efficiency and provable inference, but at a cost: the model can no longer

produce information about individual documents. We introduce a novel Prior-

aware Dual Decomposition (PADD) method that estimates document-topic dis-

tributions using topic correlations. Experiments on several synthetic and real

collections demonstrate that PADD outperforms a variety of baseline methods

because of its better handling of correlated topics.

4.1 Introduction

Unsupervised topic modeling is a foundation of contemporary machine learn-

ing. It transforms a collection of documents into two matrices that represent

topics, which are distributions over words, and document compositions, which

are distributions over topics [39, 15]. Interpretable topics allow users to quickly

assess the main themes, common genres, and underlying communities in var-

ious types of data [51, 57], while document-topic compositions enable users to

retrieve documents that are representative of query topics or to measure con-

nections between topics and metadata like time variables. [14, 75, 36, 76, 32, 31].

Spectral topic models have emerged as an alternative to likelihood-based in-

ference such as Variational Bayes [15] or Gibbs Sampling [34], which provides
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provable optimality and transparent, deterministic inference. Anchor Word al-

gorithms [8, 9, 12, 51, 42] factorize the second-order co-occurrence matrix be-

tween pairs of words to recover the matrix of topic-word distributions. Higher-

order algorithms [3, 5, 4, 83] factorize a third-order tensor of word triples. Be-

cause the input to these algorithms is purely in terms of word-word relation-

ships, we can limit our interaction with the training documents to a single

trivially-parallelizable pre-processing step to construct the co-occurrence statis-

tics. We can then learn topic models of various sizes without revisiting the train-

ing documents.

But the efficiency advantage of factoring out the documents is also a weak-

ness: we lose the ability to say anything about the documents themselves. In

practice, users of spectral topic models must go back and apply traditional in-

ference on the original training documents as if these were new, held-out doc-

uments. That is, given topic-word distributions and a sequence of words for

each document, they need to estimate the posterior probability of topics, with

the assumption of a sparse Dirichlet prior or a more complex logistic-normal

prior [14] on the topic composition. Estimating topics with a sparse Dirichlet

prior can be NP-Hard even for trivial models [72]. Gibbs Sampling for topic

inference is asymptotically unbiased, but has no provable guarantees and may

require large numbers of samples for high-dimensional models [84]. Variational

Bayes often becomes trapped in local minima, learning inconsistent models for

various numbers of topics.

To learn the document-specific topic distributions for spectral topic mod-

els, [10] recently propose the Thresholded Linear Inverse (TLI) method. Since

the original document’s word-count vector could be modeled as the product of
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Figure 4.1: LDA asserts a topic composition wm for each document m. Dir(α) provides
prior information for the entire corpus.

the words-by-topics matrix and the document’s topic composition vector, TLI

multiplies the word count vector by the inverse of the words-by-topics matrix

and removes entries below a threshold, reconstructing the sparse topic com-

position vector. Unfortunately this non-square matrix inversion is expensive

for large vocabularies and numerically unstable, often producing NaN entries

and thereby learning compositions inferior to likelihood-based inference. Even

though TLI has provable guarantees, its thresholding scheme quickly loses both

precision and recall as the number of topics increases. More fundamentally, this

method only uses the matrix of topic-word probabilities, and makes no use of

prior information about topic correlations. In practice, topics are often strongly

correlated: biology occurs with chemistry more often than with economics.

In this work we propose two new methods. The first, Simple Probabilistic

Inverse (SPI), renormalizes the topic-word distributions into conditional dis-

tributions given words. This simple baseline can outperform TLI when top-

ics have no meaningful correlation structure. The second, Prior-aware Dual

Decomposition (PADD) is capable of learning quality document-specific topic

compositions by leveraging the learned joint distribution over pairs of topics as

a prior. PADD regularizes topic correlations of each document to be not too far

from the overall topic correlations, thereby guessing reasonable compositions

70



 

Figure 4.2: JSMF asserts a joint distribution Am over topic pairs for each document m.
A serves as a prior for the entire corpus.

even for short documents. Because PADD requires high-quality estimates of

topic correlation, it has only become feasible for spectral topic models with the

recent introduction of the rectified anchor words algorithm within the frame-

work of Joint Stochastic Matrix Factorization (JSMF) [51]. The anchor-word

assumption is applicable in most large topic models [26], but PADD can also be

extended to third-order tensor models that are capable of modeling topic corre-

lations [7].

We demonstrate the effectiveness of SPI and PADD on several real-world

document collections, as well as semi-synthetic corpora generated from those

real collections using both correlated and uncorrelated models. PADD is both

efficient and accurate, matching the performance of a long-running Gibbs Sam-

pler in a fraction of the time.

4.2 Foundations and Related Work

In this section, we formalize matrix-based spectral topic modeling, especially

JSMF. We call particular attention to the presence of a topic-topic matrix that

represents joint distribution between pairs of topics in overall corpus. This ma-
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trix will serve as a prior for document-specific joint probabilities between pairs

of topics in later sections.

Suppose that a dataset has M documents consisting of tokens drawn from

a vocabulary of N words. Topic models assume that K topics are used to gen-

erate this dataset, where each topic k is a distribution p(x|z = k) over N words.

Denoting all topics by the column-stochastic matrix B∈RN×K where the k-th col-

umn vector bk ∈ ∆N−1 corresponds to the topic k, each document m is written

by first choosing a composition of topics wm ∈ ∆K−1 from a certain prior f. Then

from the first position to its length nm, a topic z is selected with respect to the

composition wm, and a word x is chosen with respect to the topic bz. Different

models adopt different f. For example, Latent Dirichlet Allocation (LDA), [15]

f = Dir(α) as depicted in Figure 4.1. For the Correlated Topic Model (CTM), [14],

f = LN(µ,Σ).

Let H ∈ RN×M be the word-document matrix where the m-th column vector

hm indicates the observed term-frequencies in the document m. If we denote all

topic compositions by another column-stochastic matrix W ∈ RK×M whose m-th

column vector is wm ∈ ∆K−1, the two main tasks for topic modeling are to learn

topics (i.e., the word-topic matrix B) and their compositions (i.e., the topic-

document matrix W). Inferring the latent variables B and W are coupled through

the observed terms, making exact inference intractable. Likelihood-based al-

gorithms such as Variational EM and MCMC update both parts until conver-

gence by iterating through documents multiple times. If denoting the word-

probability matrix by H̃, which is the column-normalized H, these two learning

tasks can be viewed as Non-negative Matrix Factorization (NMF): H̃ ≈ BW,

where B and W are also coupled.
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Joint Stochastic Matrix Factorization The word-probability matrix H̃ is

highly noisy due to its extreme sparsity, and it does not scale well with the

size of dataset. Instead, let C ∈RN×N be the word co-occurrence matrix where Ci j

indicates the joint probability to observe a pair of words (i, j). Then we can rep-

resent the topic modeling as a second-order non-negative matrix factorization:

C≈BABT where we decompose the joint-stochastic C into the column-stochastic

B (i.e., the word-topic matrix) and the joint-stochastic A (i.e., the topic-topic ma-

trix). If the ground-truth topic compositions W∗ that generate the data is known,

we can define the posterior topic-topic matrix by A∗ := 1
MW∗W∗T ∈ RK×K where

A∗kl indicates the joint posterior probability for a pair of latent topics (k, l). In

this second-order factorization, C is constructed as an unbiased estimator from

which we can identify B and A close to the truthful topics and their correla-

tions.1.

It is helpful to compare the matrix-based view of JSMF to the generative

view of standard topic models. The generative view focuses on how to produce

streams of word tokens for each document, and the resulting correlations be-

tween words could be implied but not explicitly modeled. In the matrix-based

view, in contrast, we begin with word co-occurrence matrix which explicitly

models the correlations between words and produce pairs of words rather than

individual words. Given the prior topic correlations A between pairs of topics,

each document has its own topic correlations Am from A as a joint distribution

pm(z1, z2).2 Then for each of the possible nm(nm − 1) pairs of positions, a topic pair

(z1, z2) is selected first from Am, then a pair of words (x1, x2) is chosen with respect

1It is proven that the learned A is close to the A∗ and the prior Ew∼f[wwT ] (i.e., the population
moment) for sufficiently large M. It allows us to perform topic modeling [8].

2Strictly speaking, Am and A (also A∗) are all joint distributions, neither covariances or cor-
relations. However, as the covariance/correlations ∝ p(z1, z2) − p(z1)p(z2), which are directly
inducible from A′s, we keep using the naming convention from previous work, calling them
topic correlations.

73



to the topics (bz1 , bz2) as illustrated in Figure 4.2. Two important implications are:

• The matrix of topic correlations A represents the prior fwithout specifying

any particular parametric family.

• Am is a rank-1 matrix wmwT
m with wm ∼ f, providing the fully generative

story for documents.

Note that the columns of B in spectral topic models are sets of parameters

rather than random variables which are sampled from another distribution g

(e.g., g = Dir(β)). Other work relaxes this assumption [67], but we find that it is

not an issue for the present work. As putting a prior f over {wm} is the crux of

modern topic modeling [11], our flexible matrix prior A allows us to identify the

topics B from C without hurting the quality of topics. However, learning B and

A via the Anchor Word algorithms might seem loosely decoupled because the

algorithms first recover B and then A from B and C. Previous work has found

that rectifying C is essential for quality spectral inference in JSMF [51]. The em-

pirical C must match the geometric structure of its posterior BA∗BT , otherwise

the model will fit noise. Because this rectification step alternatingly projects C

based on the geometric structures of B and A until convergence, the rest of in-

ference would no longer require mutual updates.

Related work Second-order word co-occurrence is not by itself sufficient to

identify topics [4], so much work on second-order topic models adopts the sep-

arability assumption such that each topic has an anchor word which occurs only

in the context of that topic.3 However, the first Anchor Word algorithm [8] is

not able to produce meaningful topics due to numerical instability. A second
3Indeed, according to [26], most large topic models are separable.
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version [9] works if K is sufficiently large, but the quality of topics is not fully

satisfactory in real data even with the large enough K, and this version is not

able to learn meaningful topic correlations. Adding a rectification step [51] as in

JSMF results in high-quality topics and topic correlations, comparable to those

produced by more expensive probabilistic inference methods.

There have been several extensions to the anchor words assumption that also

provide identifiability. These include the Catchwords algorithm [12] and the

sufficient scatteredness condition [42], but neither offers a solution for document

composition inference.

Another approach to guarantee identifiability is to leverage third-order mo-

ments. The popular CP-decomposition [37] transforms the third-order tensor

into a orthogonally decomposable form4 and learns the topics under the as-

sumption that the topics are uncorrelated [3]. Another method is to perform

Tucker decomposition [78], which does not assume uncorrelated topics. This

approach requires additional sparsity constraints for identifiability and includes

more parameters to learn [4]. While correlations between topics are not an im-

mediate by-product of tensor-based models, the PADD method presented here

is still applicable for learning topic compositions of these models if the modeler

chooses proper priors that can capture rich correlations [7].5

4This step is called the whitening, which is conceptually similar to the rectification in JSMF.
5One can also use the simple Dirichlet prior, although in theory it only captures negative

correlations between topics.
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4.3 Document-specific Topic Inference

In Bayesian settings, learning topic compositions W of individual documents

is an inference problem, which is coupled with learning topics B. As each up-

date depends also on the parametric prior f and its hyper-parameters α, αmust

be optimized as well to fully maximize the likelihood of the data [81]. But in

the spectral setting, we can recover from higher order moments both the latent

topics B and their correlations A. The learned A implicitly contains the infor-

mation of the proper prior f(α) with respect to the data.6 Since B and A are both

provided and fixed, it is natural to formulate learning each column of W as an

estimation problem rather than an inference problem.

Beside likelihood-based inference methods, Thresholded Linear Inference

(TLI) is the only algorithm we are aware of in the recent literature that has been

designed for second-order spectral inference [10]. In this section, we begin by

describing TLI and SPI algorithms that only use the learned topics B, then we

propose our main algorithm, PADD, that uses the learned correlations A as well.

By formulating the estimation as a dual decomposition [44, 71], PADD can ef-

fectively learn the compositions W given B and A.

4.3.1 Simple Probabilistic Inverse (SPI)

Recall that selecting nm words in the document m is the series of multinomial

choices (i.e., hm ∼ Mult(nm, Bwm)). Denote hm/nm by h̃m, then the conditional

expectation satisfies Ewm[h̃m] = Bwm. If there is a left-inverse B† of B that satis-

6If f = Dir(α), we can estimate α via matching Ew∼f[wwT ] and A. A line search is sufficient to
learn a quality α.
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fies B†B ≈ IK , then Ewm[B† h̃m] = B†Bwm ≈ wm. However, not every left inverse

is equivalent. The less B†B is close to IK , the more bias the estimation causes.

On the other hand, large entries of B† increases variance of the estimation. To

recover a high-quality document-topic decomposition, one seeks a left-inverse

that balances the bias and the variance. One attractive choice for B† is the op-

timizer that minimizes its largest entry |B†|∞ under the small bias constraint:

|B†B − IK |∞ ≤ δ.

Let w∗m ∈ ∆K−1 be the true topic distribution used to generate the document m.

Denoting the value |B†|∞ at the optimum by λδ(B), one can bound the maximum

violation ‖B† h̃m − w∗m‖∞ by δ + 2λδ(B)
√

(log K)/nm for an arbitrary prior f from

which w∗m ∼ f [10]. Thus the TLI algorithm first computes the best left-inverse

B† of B given the fixed δ and linearly predicts W = B†H̃ via one single estimator

B†. Then for every column wm of W, it thresholds out each of the unlikely topics

whose mass is smaller than τ = 2λδ(B)
√

(log K)/nm + δ. While TLI is supported

by provable guarantees, it quickly loses accuracy if the given document m ex-

hibits correlated topics, its length nm is not sufficiently large, or w∗m is not sparse

enough. In addition, since the algorithm does not provide any guidance on the

optimal bias/variance trade-off, users might end up computing many inverses

with different δ’s.7

We instead propose the Simple Probabilistic Inverse (SPI) method, which is

a one-shot benchmark algorithm that predicts W as B̆H̃ without any additional

learning costs. Recall that Anchor Word algorithms first recover B̆ whose B̆ki =

p(z = k|x = i), and then convert it into B whose Bik = p(x = i|z = k) via Bayes rule [9].

For the probabilistic perspective, B̆ is a more natural linear estimator without

7Recall that computing this inverse is expansive and unstable.
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having any negative entries like B†.8 By construction, in contrast, the predicted

topic composition via SPI is more likely to contain all possible topics that each

word in the given document can be sampled from, no matter how negligible

they are. But it can still be useful for certain applications that require extremely

fast estimations with high recall. We later see in which conditions the SPI works

reasonably well through the various experiments.

4.3.2 Prior-aware Dual Decomposition (PADD)

To better infer topic compositions, PADD uses the learned correlations A as

well as the learned topics B. While people have been more interested in find-

ing better inference methods, many algorithms including the family of Varia-

tional Bayes and Gibbs Sampling turn out to be different only in the amount of

smoothing applied to the document-specific parameters for each update [11].

On the other hand, a good prior f and the proper hyper-parameter α are critical,

allowing us to perform successful topic modeling with less information about

documents, but these values are rarely considered [81].

Second-order spectral models do not specify f as a parametric family f(α),

but the posterior topic-topic matrix A∗ closely captures topic prevalence and

correlations. Since the learned A is close to A∗ given a sufficient number of

documents, one can estimate better topic compositions by matching the overall

topic correlations (by A) as well as the individual word observations (by B).9 For

8Due to the low-bias constraint, B† is destined to have many negative entries, thus yielding
negative probability masses on the predicted topic compositions B†H̃ even if its pure column
sums are all close to 1. While such negative masses are fixed via the thresholding step, zeroing
out both tiny positive masses and non-negligible negative masses is equally questionable.

9Because the learned B and the posterior moment A∗ are close to the population moment
Ew∼f[wwT ] if M is sufficiently large, PADD might not be able to find quality compositions if both
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a collection of M documents, PADD tries to find the best compositions W = {wm}

that satisfy the following optimization:

min
M∑

m=1

‖Bwm − h̃m‖
2
2 (4.1)

subject to wm ∈ ∆K−1 and
1
M

M∑
m=1

wmwT
m = A.

Solutions from (4.1) try to match the observed word-probability h̃m as individ-

uals (i.e., loss minimization), while simultaneously matching the learned topic

correlations A as a whole (i.e., regularization). Therefore, whereas the perfor-

mance of TLI depends only on the quality of the estimated word-topic matrix

B, PADD also leverages the learned correlations A to perform an analogous es-

timation to the prior-based probabilistic inference. With further tuning of the

balance between the loss and the regularization with respect to the particular

task, PADD can be more flexible for various types of data, whose topics might

not empirically well fit to any known parametric prior.

4.3.3 Parallel formulation with ADMM

It is not easy to solve (4.1) due to the non-linear coupling constraint

(1/M)
∑

wmwT
m = A. We can construct a Lagrangian by adding a symmetric matrix

of dual variables Λ ∈ RK×K . Then L(w1, ...,wM,Λ) is equal to

M∑
m=1

‖Bwm − h̃m‖
2
2 + 〈Λ,

( 1
M

M∑
m=1

wmwT
m

)
− A〉F

=

M∑
m=1

{
‖Bwm − h̃m‖

2
2 +

1
M
〈Λ,wmwT

m − A〉F
}

(4.2)

M and nm are small. However, this problem also happens in probabilistic topic models, and is
due to lack of information.
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Algorithm 5 Estimate the best compositions W.
(Master problem governing the overall estimation)
def PADD(H, B, A, λ, γ)

1: H̃ ← column-normalize(H)
2: Λ(0) ← 0K×K , W(0) ← B̆H̃, F← γBT H̃
3: repeat
4: G(t) ← (γ(BT B + 1

MΛ
(t−1)) + IK)−1

5: for each m ∈ {1, ...,M} (in parallel) do
6: fm ← Fm

7: w(0)
m ←W(0)

m (initial guess)
8: w̄m ← ADMM-DR(G(t), fm,w(0)

m , λ)
9: end for

10: Λ(t) ← Λ(t−1) − τt(A − 1
M

∑M
m=1(w̄mw̄T

m)))
11: until the convergence
12: return W = {w̄1|...|w̄M}

The equation (4.2) implies that given a fixed dual matrix Λ, minimizing the La-

grangian can be decomposed into M subproblems, allowing us to use the dual

decomposition [44, 71]. Each subproblem tries to find the best topic composi-

tion wm ∈ ∆K−1 that minimizes ‖Bwm − h̃m‖
2
2 + (1/M)〈Λ,wmwT

m − A〉F .10 Once ev-

ery subproblem is solved and has provided the current optimal solution w̄m,

the master problem simply updates the dual matrix based on its subgradient:

− 1
M (

∑M
m=1(w̄mw̄T

m − A)) ∈ ∂(Λ), and then distributes it back to each subproblem.

For robust estimation, we adopt the Alternating Direction Method of Multiplier

(ADMM) [13] with Douglas-Rachford (DR) splitting [55]. Then the overall pro-

cedures become as illustrated in Algorithm 5 and 6.

Note first that the outer loop in Algorithm 5 computes a matrix inverse, but

the computation is cheap and stable. This is because it only algebraically in-

verts a K × K matrix rather than solving a constraint optimization to invert an

N × K matrix as TLI does. Note also that the overall algorithm repeats the mas-

10The operation 〈·, ·〉F indicates the Frobenius product, which is the matrix version of the inner
product.
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Algorithm 6 Estimate the best individual wm.
(Subproblem running for each document m in parallel)
def ADMM-DR(G, f ,w(0), λ)

1: q(0) ← w(0)

2: repeat
3: p(t) ← G(2w(t−1) − q(t−1) + f )
4: q(t) ← q(t−1) + λ(p(t) − w(t−1))
5: w(t) ← Π∆K−1(q(t))
6: until the convergence of w(t)

7: w̄← w(t)

8: return w̄

(Π∆K−1(·) is the orthogonal projection to the simplex ∆K−1. See the reference for
the detailed implementation [28].)

ter problem only a small number of times, whereas each subproblem repeats

the convergence loop more times. The exponentiated gradient algorithm [9] is

also applicable for quick inference, but tuning the learning rate would be less

intuitive, although users of PADD should be careful in tuning the learning rate

τt due to its non-linear characteristics. Note last that we need not further project

the subgradient to the set of symmetric matrices because only the symmetric

matrices A and w̄mw̄T
m are added and subtracted from Λ for every iteration of the

master problem.

Why does it work? Probabilistic topic models try to infer both topics B and

document compositions W that approximately maximize the marginal likeli-

hood of the observed documents:
∏M

m=1

∫
wm

p(wm|α)
∏N

i=1(Bwm)hmi
i dwm, considering

all possible topic distributions wm ∈ ∆K−1 under the prior f(α). However, if the

goal in spectral settings is to find the best individual composition wm provided

with the learned B and A, the following MAP estimation

arg max
wm∈∆K−1

p(wm; A)
N∏

i=1

(Bwm)hmi
i (hmi = Him) (4.3)
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is a reasonable pointwise choice in the likelihood perspective. Recall that the

MLE parameters that maximize the likelihood of the multinomial choices hm is

to assign the word-probability parameters Bwm equal to the empirical frequen-

cies h̃m. The loss function of the PADD objective tries to find the best wm that

makes Bwm ≈ h̃m, maximizing the second term
∏N

i=1(Bwm)hmi
i in Equation (4.3).

While we are not aware of methods for sampling a rank-1 correlation ma-

trix Am = wmwT
m from A directly, PADD maximizes the first term p(wm; A) in

(4.3) by preventing wm’s from deviating too far from the learned topic corre-

lations A, which is a good approximation of the prior: the population moment

Ew∼f[wwT ]. Indeed, when learning the document-specific topic distributions for

spectral topic models, it is shown that a proper point estimation is likely a good

solution also in the perspective of Bayesian inference because the posterior is

concentrated on the ε-ball of the point estimator with high probability [10].

4.4 Experimental Results

We present experiments on real documents and two varieties of semi-synthetic

documents. Evaluating reconstructed topic compositions is not easy for real

data because no ground truth compositions exist for quantitative comparison.

Unlike topic-word distributions, document-topic distributions do not support

qualitative evaluations because of the number of documents, and because topics

in each document may not be as obviously coherent or incoherent as words

in each topic [21]. Synthesizing documents from scratch is an option as we

can manipulate the ground truth B and W∗, but the resulting documents would

not be realistic. Thus we generate documents from two distinct processes that
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Figure 4.3: Artificial experiment on Semi-Synthetic (SS) corpus with highly sparse
topics and little correlation. X-axis: # topics K. Y-axis: higher numbers are better for the
left three columns, lower numbers are better for the right four. SPI performs the best
with K ≥ 25.

sample synthetic documents based on models trained on real data, one that

samples uncorrelated topics and another that samples topics with correlation.

The uncorrelated setting (semi-synthetic, SS) involves sampling from an

LDA model with a Dirichlet prior. We first extract K topics B0 and their cor-

relations A0 from each real corpus of training data H0 using JSMF [51]. We next

sample M columns of W∗ from a rarely correlated Dir(α) with α = (5/K)~1, and

then synthesize a corpus HS S by sampling each document m with respect to the

topics B0 and the compositions W∗, matching the average document length of

the original corpus.

The correlated setting (semi-real, SR) involves sampling from a CTM model

[14] with a logistic-normal prior. We first learn K topics B0 with the topic means

µ0 and covariance Σ0 for each training corpus H0 using CTM-Gibbs [22]. We

then sample M columns of W∗ from LN(µ0,Σ0), synthesizing a corpus HS R anal-

ogously. While it is less realistic, the uncorrelated corpus SS provides a fair
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Figure 4.4: Realistic experiment on Semi-Real (SR) corpus with non-trivial topic corre-
lations. X-axis: # topics K. Y-axis: higher numbers are better for the left three columns,
lower numbers are better for the right four. PADD is consistent and comparable to
Gibbs Sampling.

comparison to the experiments of TLI in [10], whereas the correlated SR ex-

ploits the learned hyper-parameters (µ0,Σ0) so that it can maximally simulate

the real world characteristics with non-trivial correlations between topics. Note

that we use CTM-Gibbs for constructing synthetic data here only because it is

a well-known model that supports topic correlation; we do not find that it is a

competitive inference method.11

For Fully-Real (FR) experiments, we prepare the unseen documents HUS ,

which is 10% of the original data which has never been used in training (i.e.,

H0 ∩ HUS = ∅), and then test on HUS as well as the original training set H0. We

use the result of a long-running Gibbs sampler as a proxy to the ground-truth

W∗ equivalent to [10]. 12

11Similar to [69], we notice that CTM often puts spuriously high probability mass to one
particular topic, though it is capable of learning quality correlations. Thus we use Dir-Gibbs
instead of CTM-Gibbs in learning topic compositions.

12After 200 burn-in iterations we run 1,000 further iterations to gather samples from the pos-
terior using Mallet, providing the original topics B0 and fitted hyper-parameters based on A0.
Only the topic compositions W are updated over iterations.
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As strong baselines, we run TLI and SPI on the SS, SR, and FR corpora with

the real parameters: B0 and B̆0, while PADD also uses A0. For Gibbs Sampling,

we use the ground-truth hyper-parameters (5/K)~1 for the SS corpus, whereas

we determine the best Dirichlet hyper-parameters α for the SR and FR corpora

by matching the topic-topic moments between (1/M)W∗W∗ and Ew∼Dir(α)[wwT ].

Following [51], we use the standard sources: NIPS papers and NYTimes ar-

ticles. We also add political blogs [30] to experiment variations in document

lengths. For evaluating information retrieval performance, we first find the

prominent topics whose cumulative mass is close to 0.8 for each document, and

compute the precision, recall, and F1 score as [84]. For measuring distributional

similarity, we use KL-divergence and Hellinger distance. In contrast to assymet-

ric KL, Hellinger is a symmetric and normalized distance used for evaluating

the CTM. For comparing the reconstruction errors with TLI, we also report `1-

error and `∞-error [10]. For fully real experiments, we also report the distance to

prior ‖A0−(1/M)WWT ‖F and the mass on non-supports, the total probability that

each algorithm puts on non-prominent topics of the ground-truth composition

W∗.

In the uncorrelated Semi-Synthetic (SS) experiments given in Figure 4.3, SPI

performs the best as the number of topics K increases. As expected, SPI is good

at recall all possible topics but loses precision at the same time. Note that even

Gibbs Sampling shows relatively high `1-error especially for the models with

large K. This is because Dir((5/K)~1) generates highly sparse compositions, so

any variability in other topics causes catastrophic errors even with sufficiently

mixed Gibbs Sampling. The same problem also happens in [10]. TLI performs

well only for tiny topic models. Despite the unrealistic nature of SS, PADD
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outperforms TLI by a large margin in most cases, showing similar behaviors to

probabilistic Gibbs Sampling across all datasets.

The situation is quite different in the correlated Semi-Real (SR) experiments

shown in Figure 4.4. SPI’s high recall is no longer helpful because of its dras-

tic loss of precision, whereas PADD is comparable to Gibbs Sampling across all

models and datasets even with only 1,000 documents. We also vary the num-

ber of synthesized documents up to 100k, verifying that the results are mostly

stable. This is because PADD captures correlations through its prior-aware for-

mulation. TLI performs poorly because it is linear, and does not consider topic

correlations.

When testing on the Fully-Real (FR) corpora, PADD shows the best perfor-

mance on both training documents and the unseen documents. Considering

that Gibbs Sampling with the ground-truth parameters does not have perfect

accuracy in other settings, the metrics evaluated against Gibbs Sampling in Ta-

ble 4.1 are noteworthy. Prior-dist, the Frobenius distance to the prior A0, im-

plies PADD-learned wm likely improves p(wm; A0) than other algorithms. While

TLI uses provably guaranteed thresholding,13 Non-supp values show that it still

puts more than half of probability mass on the non-prominent topics in average.

Although we are optimizing for accuracy rather than speed, PADD con-

verges efficiently relative to comparable methods. We iterate 15 times for the

master procedure PADD and 150 times for the slave procedure ADMM-DR

with (λ, γ) = (1.9, 3.0).14 When using an equivalent level of parallel processing,

13We use the same less conservative threshold τ/4.5 and unbias setting with δ = 0 as con-
ducted in [10]. We also try to loosen the unbias constraint when the inversion fails, but it does
not help.

14Inference quality is almost equivalent when running only 100 times for each slave proce-
dure, and is not sensitive to parameter values: 1.0 ≤ γ ≤ 5.0. The parameter λ = 1.9 is known
best in optimization literature.
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computing B†0 via TLI takes 2,297 seconds,15 whereas PADD takes 849 seconds

for the entire inference on the semi-synthetic NIPS dataset with K = 100 and

M = 10, 000. SPI is the by far the fastest, requiring one matrix multiplication;

our Gibbs configuration takes 3,794 seconds on the same machine. While we

choose ADMM-DR mainly for the tightest optimization, one can easily incor-

porate faster gradient-based algorithms inside our formulation of prior-aware

dual decomposition.

4.5 Discussion

Fast and accurate topic inference for new documents is a vital component of a

topic-based workflow, especially for spectral algorithms that do not by them-

selves produce document-topic distributions even for training documents. For

mixed-membership data with little topic correlation, we find that our Simple

Probabilistic Inverse (SPI) performs well. Although this is rarely true for tex-

tual documents, topic models can be also applicable to a wide variety of other

modalities. SPI is extremely fast but fails when a word has large probability in

two or more topics, as it is not able to disambiguate based on context, thereby

naively distributing its prediction weights. Future research may offer ways to

threshold or post-process SPI’s estimation analogous to TLI, or in its use as an

initialization.

We find that Prior-aware Dual Decomposition (PADD) performs comparable

to probabilistic Gibbs Sampling especially for realistic data. PADD provides

15We also observe that AP-rectification in JSMF significantly boosts the condition of B0 on
various datasets, removing TLI’s failures in computing the left-inverse B†0. However, even if the
inverse is computed, TLI sometimes yields NaN values due to numerical instability of matrix
inversion. We omit those results in evaluation to prevent TLI’s quality degradation.
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rigorous theoretical motivation and an efficient parallel implementation. The

experimental results show that PADD also predicts the topic compositions of

unseen real data well, notably outperforming the existing TLI method. With

robust and efficient topic inference that is aware of topical correlations latent in

the data, we can now fill out the necessary tools to make spectral topic models a

full competitor to likelihood-based methods. Although the benefits of PADD for

topic inference are mostly relevant in second-order spectral methods, they are

flexibly applicable in any setting that involves inferring mixture proportions.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Introduction

This is a supplementary document for the paper: Robust Spectral Inference for

Joint Stochastic matrix Factorization. It is organized accordingly to the main pa-

per so that the readers can find the missing proofs, deferred details, and further

explanations in the corresponding sections. We also include more algorithms,

experiments, and analysis that are discarded from the main paper due to the

page limit.

A.2 Requirements for Factorization

Proof for uniqueness of JSMF. When factorizing co-occurrence matrix C into

BABT with constraints B: N×K column-stochastic and A: K×K joint-stochastic,

the resulting (B, A) may not be an unique decomposition of C if K ≥ 2. Assume

there exists a K × K column-stochastic square matrix Y such that Y and Y−1 are

both non-negative. Then,

C ≈ BABT = B(YY−1)A(YY−1)BT = (BY)(Y−1 AY−T )(BY)T . (A.1)

As BY is N × K column-stochastic and Y−1 AY−T is K × K joint-stochastic,

(BY,Y−1 AY−T ) can be another equally meaningful solution for JSMF of C. In fact,

it is known that if an inverse of non-negative matrix Y is again non-negative, Y
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must be a generalized permutation matrix which satisfies Y = DP for some diag-

onal matrix D and permutation matrix P. Since both BY and B are column-

stochastic, Y must be column-stochastic as well. Thus the only diagonal matrix

D that makes DP column-stochastic with respect to permutation matrix P is the

identity matrix. Therefore we can conclude that the only possible Y is a per-

mutation matrix. It means that our factorization is unique up to the column

permutation. This is equivalent to the fact that there is no order between result-

ing topics in probabilistic topic models.

Proof for double non-negativity of posterior co-occurrence. Take any vector

y ∈ RN and say y′ = BT y. Then

yTE[C∗]y = yT BA∗M BT y = (y′)T A∗My′ ≥ 0 (∵ A∗M ∈ PSDK). (A.2)

Thus C∗ ∈ PSDN . Also, C∗i j = p(X1 = i, X2 = j) ≥ 0 for all i, j. Therefore C∗ ∈

DNNN .

A.3 Rectified Anchor Word Algorithm

Rectifying co-occurrence C by Diagonal Completion (DC). As we explained

in Section 6 of the main paper, the diagonal entries of the co-occurrence matrix

are the most difficult elements to interpret and the least likely to conform to the

model. For instance, frequent words in a document are likely to be bursty, lead-

ing to large diagonal elements; but popular songs appear at most a few times

in any given playlist, leading to relatively small and noisy diagonal elements.

Instead of ignoring such high variance, we fix the diagonal so that C has low

rank.
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Algorithm 7 Diagonal Completion (DC)
In: F : (N/2) × (N/2) block of C in diagonal side

G : (N/2) × (N/2) block of C in off-diagonal side
Out: d ∈ RN/2 : a vector of new diagonal entries
def DIAGONAL-COMPLETE(F,G)

(U,Σ,V)← truncated-svd(G,K)
L← UT × (F − Fdiag)
for j = 1 to N/2 do

uT
j ← U j∗

d j ←
1

1−‖u j‖
2
2
(uT

j × L∗ j)
end for
return d

Algorithm 7 estimates the diagonal elements of C from the off-diagonal ele-

ments, assuming the off-diagonal elements come from a low-rank matrix. The

key observation is that the top or bottom halves of C are themselves low rank,

and we can find the range space for each matrix from those columns that are

completely known. Once we know a space in which all the columns of the

top half of C should belong, we can determine the unknown diagonal elements

through a least-squares fit using the known elements.

More concretely, the algorithm proceeds by partitioning C into four quad-

rants of near-equal size. Let F = C11 and G = C12, and for each j ∈ [1,N/2], let

J be all indices from 1 to N/2 except j. We want each column F∗ j to dwell in

the range space of G. We find a basis U for this range space from the first K left

singular vectors of G. To find F j j, we seek a K-dimensional vector y such that

(UJ∗)y = FJ j. Because we are unlikely to exactly satisfy this equation, we seek

the least-square solution

(UJ∗)T (UJ∗)y = (UJ∗)T FJ j. (A.3)

Denote the K × K identity matrix by IK and j-th row vector of U by uT
j . Since

U has orthonormal columns, (UJ∗)T (UJ∗) = IK − u juT
j . By the Sherman-Morrison
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formula, (
IK − u juT

j

)−1
= IK + u juT

j /(1 − uT
j u j). (A.4)

Let L∗ j = (UJ∗)T FJ j. Under the low rank assumption, the diagonal should be

d j = (Uy) j = (uT
j )y, and therefore

d j = (uT
j )

L∗ j +
u juT

j

1 − uT
j u j

L∗ j

 =
uT

j L∗ j

1 − uT
j u j

. (A.5)

As we precompute L and run the truncated SVD on a half-size block with

K � N, DC is efficient. Simply execute Algorithm 7 twice with the inputs

(C11,C12) and (C22,C21), and replace the existing diagonal with the output vector

e. We present an error analysis in Section 6.

Selecting basis S. After rectification, the next step is to select the subset S of

objects that satisfy the separability assumption. Our goal is to choose the K best

rows of the row-normalized co-occurrence matrix C so that all other rows lie

nearly in the convex hull of the selected rows. [9] use the Gram-Schmidt process

to select these anchor rows, but they do not use the sparsity of C. In order to

scale beyond relatively small vocabularies, they resort to random projections

that approximately preserve `2 distances.

Denote the row-normalized C matrix by C. Then by the conditional inde-

pendence,

Ci j = p(X2 = j|X1 = i) =
∑

k′
p(X2 = j|Z1 = k′)p(Z1 = k′|X1 = i). (A.6)

Let S = {s1, ..., sK} be the set of K basis objects. Then Csk , j = p(X2 = j|Z1 = k)
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Algorithm 8 Finding Bases S
In: P : N × N matrix (e.g., P← CT )
Out: S : the set of K indices

r ∈ RK : a vector of distances to each subspace
def FIND-S(P)

Initialize S ← ∅, Q← 0N×K , r ← 0K

norm← squared norms of column vectors of P
for k = 1 to K do

n← argmax1≤i≤N norm(i)
S ← S ∪ {n}, Q∗k ← P∗n, rk ←

√
norm(n)

Q∗k ← (Q∗k −
∑k−1

l=1 〈Q∗l, P∗n〉Q∗l)/rk

norm← norm − (QT
∗k P) ◦ (QT

∗k P)
end for
return (S , r)

(◦ operation is the Hadamard Product, a simple element-wise multiplication
between two vectors)

because the separability assumption implies

p(Z1 = k′|X1 = sk) =


1 (if k′ = k)

0 (if k′ , k)
. (A.7)

Thus Ci j =
∑

k p(Z1 = k|X1 = i)Csk , j, which means every row vector of C can be

represented by a convex combination of the row vectors corresponding to the

basis objects.

The (unprojected) Gram-Schmidt process in [9] computes a pivoted QR de-

composition [35]. Several other algorithms compute the same decomposition and

exploit sparsity [74]. In particular, one can find the set S with O(NK) auxiliary

space and O(nnz(C)K) time without modifying C; this has the advantage that C

is unchanged in memory and ready for use in the recovery step. Algorithm 8

requires only O(NK) space to store Q doing every update implicitly rather than

changing the original input matrix. Not modifying C in place has the additional

advantage of leaving C unchanged in memory and ready for use in the recovery
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step. Note that we only return the set of indices S corresponding to the basis

objects and the diagonal entries r of R as their absolute values.

In Algorithm 8, norm is a N-dimensional row vector that provides a criterion

to greedily choose the next best column for column-pivoting. It is updated once

at the end of each iteration because for each 1 ≤ j ≤ N,

‖P∗ j − 〈Q∗k, P∗ j〉‖
2
2 = 〈P∗ j, P∗ j〉 − 〈Q∗k, P∗ j〉

2. (A.8)

(norm was initialized as the first inner-product term). However, this greedy

strategy is only one way of approaching the general problem of subset selection.

Recent work on this subject includes [17, 19]. [58] present a CUR decompo-

sition whose matrix factors consist of columns and rows of the input matrix.

These alternate subset selection strategies were not designed for non-negative

approximation; unlike ordinary pivoted QR, they will not necessarily recover

the desired basis in the absence of noise. In the presence of noise and model

error, however, these alternate selection strategies may merit further attention.

Recovering cluster-example W. Recall that the standard topic modeling con-

sists of two inferences: inferring topic distributions in terms of words and in-

ferring document distributions in terms of topics. So far, we have recovered

the cluster-cluster interaction A, which is a noisy expectation of WWT instead

of directly seeking W. In our JSMF model, W is unknown and its columns (i.e.,

example-cluster distributions) are stochastically generated from a known distri-

bution f (α) governed by the hyperparameter α, rather than sets of parameters

to estimate. [9] points out that W is never be able to be recovered in this sense,

especially under the limited samples.

Once we recover quality object-cluster matrix B after rectification based on
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the doubly non-negative geometry of A∗M,C
∗, however, we can further try to re-

cover cluster-example matrix W assuming our recovered A is quite close to A∗M.

Since E[Hm] = nmBWm for each example m, we can compute Wm by solving the

following simplex-constrained Non-Negative Least Square (NNLS) problem:

min
Wm∈∆K

‖BWm − Hm/nm‖

This optimization can be solved via exponentiated gradient algorithm simi-

lar to what we use for recovering object-cluster matrix A. Analogously, it can be

easily parallelizable by per-document fashion because we are solving indepen-

dent optimization for each document given inferred B.

A.4 Experimental Results

Qualitative results. The 15 clusters from the Movies dataset is attached at the

end. One can verify that while Gibbs learns slightly better clusters, AP’s results

are comparable, whereas Baseline algorithm learns nothing.

Quantitative results. The following shows full results from real experiments.

Legality (
∑K

k=1
∑K

l=1 Akl =
∑K

k=1
∑K

l=1 p(Z1 = k,Z2 = l)) assesses how close the re-

covered cluster-cluster matrix A is to a legal joint distribution whose entries sum

to 1. The results show that the recovered A becomes close to a legal joint distri-

bution under the DC and AP rectification, whereas the entry sum for Baseline

is far higher than 1. Note that we intentionally avoid projecting the recovered

A down to DNNK in order to verify the quality of our new recovery algorithm

in terms of legality. Validity (KL
sym

(∑K
k=1 p(Z1,Z2 = k)‖

∑N
i=1 p(Z1|W1 = i)p(W1 = i)

)
)
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Figure A.1: Full experimental results on real dataset. The x-axis indicates logK where
K varies by 5 up to 25 topics and by 25 up to 100 or 150 topics.

gauges the discrepancy between two different constructions of the marginal

p(Z): column-sum of A vs applying Bayes’ rule. As shown in the results, DC

and AP eliminate the discrepancies between two different constructions. Note

that the behavior is similar to Legality because marginal construction from an

illegal A could be a source of discrepancies.

Synthetic experiments. With the same vocabulary curation, we generate

(10,000, 25,000, 50,000) semi-synthetic corpora from the models trained with

50/150/100/100 synthetic anchors for NIPS, NYTimes, Movies and Songs, re-

spectively. We sampled documents with 300 tokens for each dataset from a

Dirichlet with symmetric hyperparameters 0.03. The following shows full re-

sults on semi-synthetic data with M = 50, 000 corresponding to real experi-
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Figure A.2: Full experimental results on synthetic dataset. The x-axis indicates logK
where K varies by 5 up to 25 topics and by 25 up to 100 or 150 topics.

ments. You can verify AP and Gibbs are comparable, but the gaps against the

Baseline algorithm are lower than what we have seen in real experiments. This

is because semi-synthetic data is generated from the model, whereas the real

data in practice never precisely follows the model.

We also measure several parametric gaps between the learned matrices and

the truth matrices that we used for generating semi-synthetic documents vary-

ing two different sizes of documents. We can verify that AP not only learns

better topics B and their interactions A than the Baseline algorithm, but also

increases the anchor recovery rates. In addition, as we have more documents,

the gaps between AP and the Baseline algorithm decrease. We are also show-

ing how well our cluster-example recovery proposal works, and how much the

result is consistent to the learned cluster interaction by the panels in the second
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Figure A.3: Gaps between the learned and the truth parameters.

column. (Difference measure is Frobenius norm, but symmetric KL-divergence

shows the same behaviors.)

A.5 Analysis of Algorithm

AP Convergence. Figure A.4 shows the actual convergence behavior on NY-

Times. For 100 iterations, red solid line and blue dashed line illustrate log10(‖C′−

C‖F) and the logarithm of the average distance to each of three sets, respec-

tively.1

1While AP performs an alternating projection, we also keep track of the average of the pro-
jected points and the distance to each set per iteration for validation purpose.
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Figure A.4: Locally linear convergence of AP.

How does DC work? Diagonal completion is a special case of matrix com-

pletion, which is often solved by minimizing the nuclear norm consistent over

matrices with the known data. While first-order methods like [20] generally

provide an effective solution to general matrix completion, our alternative al-

gorithm takes advantage of the specific structure of the diagonal completion

problem. Suppose we bisects vocabulary intoV1 andV2. Then it yields a block

factorization.

C11 C12

C21 C22

 =

B1

B2

 A
[
BT

1 BT
2

]
=

B1 ABT
1 B1 ABT

2

B2 ABT
1 B2 ABT

2


Assume that each cluster associates with a sufficient number of objects, being

distinguishable only with either V1 or V2. It means neither B1 nor B2 should

be (nearly) rank deficient. Under this assumption, we find a basis for the range

space of C12 from the leading singular vectors, then fill the diagonal elements of

C11 to minimize the distance from B to this subspace. However, in practice, the

co-occurrence matrix is contaminated: rather having C12 = U1Σ12VT
2 , we actually

have Ĉ12 = C12 + E12 = Û1Σ̂12V̂T
2 .

Error analysis for DC. In practice, the co-occurrence matrix is contaminated:

rather having C12 = U1Σ12VT
2 , we actually have Ĉ12 = C12 + E12 = Û1Σ̂12V̂T

2 .

100



Using Wedin’s second sin Θ theorem (Stewart, V.4.1, Th 4.4) and norm

bounds, we have that the maximum sine between the desired space U1 and the

computed space Û1 is ‖ sin Θ‖2 ≤ ‖E12‖/σ̂k ≡ γ where σ̂k is the smallest retained

singular value of the empirical block Ĉ12 and ‖E12‖ is the magnitude of the dif-

ference. This leads to the bounds

min
WT W=I

‖U1W − Û1‖ ≤

√
2‖E12‖

σ̂k
≡

√
2γ,

min
WT W=I

‖eT
j U1W − eT

j Û1‖ ≤ γ.

Based on the diagonal reconstruction formula, our noisy diagonal will be

d̂ j = ûT
j L̂∗ j/(1 − ûT

j û j). We write the ratio between the approximate and true

values as
d̂ j

d j
=

 ûT
j L̂∗ j

uT
j L∗ j

 1 − uT
j u j

1 − ûT
j û j

 .
The former term in the product can be written 1 + δ1 with

|δ1| .
‖L∗ j − L̂∗ j‖ + ‖E11‖‖L∗ j‖

uT
j L∗ j

and the latter term can be bounded as 1 + δ2 with |δ2| ≤ γ/(1 − ‖û j‖
2).

A.6 Related and Future Work

Through this paper, we examine why rectification is necessary, proposing two

novel rectification algorithms. Whereas AP enforces every desirable property,

Diagonal Completion (DC) enforces only low-rank property on top of joint-

stochasticity without requiring positive semi-definiteness. While the results

show AP is the appropriate method for our configuration, DC can be also useful
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for other tasks based on the co-occurrence matrix. For example, many different

embeddings based on the co-occurrence statistics have their own treatment to

the diagonal entries, but most of them are based on simple heuristics or trial-

and-error approaches rather than strictly enforcing certain mathematical struc-

tures. Therefore one might test our DC toward their co-occurrence statistics if

low-rank structure is suitable for their tasks.

On the other side, AP finds better anchors as well as performs better infer-

ence for learning topics and their interactions. We conjecture that AP’s treat-

ment on bursty and rare words smoothen noisy eccentric vertices on the co-

occurrence space C, making most objects to be well spread out inside the convex

rather than being crowded. (The first figure on the main paper shows that rec-

tified space is significantly smaller than the original space in terms of the area,

but object vertices in general well spread out through the space, giving better

and clear cue of a convex shape.) Therefore, extreme vertices in this smooth

space are likely to be truly informative, well summarizing other objects based

on the underlying topic interactions.
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Arora et al. 2013 (Baseline) This paper (AP) Probabilistic LDA (Gibbs)
Pulp Fiction (1994) Aladdin (1992) Beauty and the Beast (1991)

Silence of the Lambs (1991) Toy Story (1995) Aladdin (1992)
Shawshank Redemption (1994) Beauty and the Beast (1991) Mary Poppins (1964)

Forrest Gump (1994) Babe (1995) Lion King (1994)
The Fugitive (1993) Lion King (1994) Little Mermaid (1989)
Pulp Fiction (1994) Shrek (2001) Lord of the Rings I (2001)

Forrest Gump (1994) Lord of the Rings II (2002) Lord of the Rings II (2002)
Silence of the Lambs (1991) Austin Powers (1990) Matrix (1999)

Shawshank Redemption (1994) Lord of the Rings I (2001) Lord of the Rings III (2003)
The Fugitive (1993) Lord of the Rings III (2003) Shrek (2001)
Pulp Fiction (1994) Star Wars V (1980) Alien (1979)

Silence of the Lambs (1991) Star Wars IV (1977) Aliens (1986)
Shawshank Redemption (1994) StarWars IV (1983) Blade Runner (1982)

Forrest Gump (1994) Indiana Jones (1981) Army of Darkness (1993)
The Fugitive (1993) Terminator (1984) Star Trek II (1982)
Pulp Fiction (1994) Independence Day (1996) Independence Day (1996)

Shawshank Redemption (1994) Twister (1996) The Rock (1996)
Silence of the Lambs (1991) The Rock (1996) Mission Impossible (1996)

Forrest Gump (1994) Mission (1996) Twister (1996)
Braveheart (1995) Broken Arrow (1996) Toy Story (1995)

Pulp Fiction (1994) Apollo 13 (1995) Apollo 13 (1995)
Shawshank Redemption (1994) Dances with Wolves (1990) The Fugitive (1993)

Silence of the Lambs (1991) True Lies (1994) Dances with Wolves (1990)
Forrest Gump (1994) Pulp Fiction (1994) Forrest Gump (1994)
The Fugitive (1993) Batman (1989) Pulp Fiction (1994)
Pulp Fiction (1994) Shawshank Redemption (1994) Maltese Falcon (1941)

Silence of the Lambs (1991) Matrix (1999) African Queen (1951)
Shawshank Redemption (1994) Silence of the Lambs (1991) Key Largo (1948)

Forrest Gump (1994) Pulp Fiction (1994) Double Indemnity (1944)
Star Wars Episode IV (1977) Lord of the Rings I (2001) American Graffiti (1973)

Pulp Fiction (1994) Pulp Fiction (1994) Remains of the Day (1993)
Silence of the Lambs (1991) Shawshank Redemption (1994) Much Ado about Nothing (1993)

Shawshank Redemption (1994) Usual Suspect (1995) Copycat (1995)
Forrest Gump (1994) The Piano (1993) The Piano (1993)
The Fugitive (1993) Sense and Sensibility (1995) What’s Eating Gilbert Grape (1993)
Pulp Fiction (1994) American Beauty (1999) American Beauty (1999)

Silence of the Lambs (1991) Sixth Sense (1999) Sixth Sense (1999)
Shawshank Redemption (1994) Austin Powers (1999) Gladiator (2000)

Forrest Gump (1994) American Pie (1999) American Pie (1999)
The Fugitive (1993) Shakespeare in Love (1998) Fight Club (1999)
Pulp Fiction (1994) Forrest Gump (1994) Amelie (2001)

Silence of the Lambs (1991) Jurassic Park (1983) Mulholland Drive (2001)
Shawshank Redemption (1994) Mrs. Doubtfire (1993) Lost in Translation (2003)

Forrest Gump (1994) Pretty Woman (1990) Adaptation (2003)
The Fugitive (1993) Ghost (1990) Memento (2000)
Pulp Fiction (1994) Godfather (1972) Godfather (1972)

Silence of the Lambs (1991) One Flew Over the Cuckoo’s (1975) Indiana Jones (1981)
Shawshank Redemption (1994) Casablanca (1942) Casablanca (1942)

Forrest Gump (1994) Godfather II (1974) One Flew Over the Cuckoo’s (1975)
The Fugitive (1993) Annie Hall (1977) Star Wars V (1980)
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Arora et al. 2013 (Baseline) This paper (AP) Probabilistic LDA (Gibbs)
Pulp Fiction (1994) Titanic (1997) Hunt for Red October (1990)

Silence of the Lambs (1991) The Game (1997) The Rock (1996)
Shawshank Redemption (1994) Liar, Liar (1997) Die Hard 2 (1990)

Forrest Gump (1994) Chasing Amy (1997) Face Off (1997)
The Fugitive (1993) Scream (1996) Air Force One (1997)
Pulp Fiction (1994) Tombstone (1993) Ferris Bueller’s Day Off (1986)

Silence of the Lambs (1991) The Specialist (1994) Breafast Club (1985)
Shawshank Redemption (1994) Judge Dredd (1995) Airplane (1980)

Forrest Gump (1994) Leon (1994) Big (1988)
The Fugitive (1993) Species (1995) Christmas Story (1983)
Pulp Fiction (1994) Pulp Fiction (1994) Tee Departed (2006)

Silence of the Lambs (1991) Silence of the Lambs (1991) Casino Royale (2006)
Shawshank Redemption (1994) Usual Suspects (1995) Little Miss Sunshine (2006)

Forrest Gump (1994) 12 Monkeys (1995) V for Vendetta (2006)
The Fugitive (1993) Seven (1995) Batman Begins (2005)
Pulp Fiction (1994) Star Wars IV (1977) Spider-Man (2002)

Silence of the Lambs (1991) Star Wars Episode IV (1983) Ocean’s Eleven (2001)
Shawshank Redemption (1994) Jerry Maguire (1996) Harry Potter I (2001)

Forrest Gump (1994) Godfather (1972) Lord Of the Rings I (2001)
The Fugitive (1993) Time to Kill (1996) My Big Fat Greek Wedding (2002)
Pulp Fiction (1994) Fargo (1996) Fargo (1996)

Silence of the Lambs (1991) Leaving Las Vegas (1995) Shakespeare in Love (1998)
Shawshank Redemption (1994) Dead Man Walking (1995) Good Will Hunting (1997)

Forrest Gump (1994) The Postman (1994) L. A. Confidential (1997)
The Fugitive (1993) Trainspotting (1996) Full Monty (1997)
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