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In this paper we discuss and illustrate sampling based computations that are useful for 

likelihood methods. We make use of convenient representations of various conditional and 

unconditional distributions for the sampling based computations. Once the distributional 

relations are established we use the Gibbs sampler and other resampling schemes to 

simulate the distributions of various likelihood quantities. We apply the method to 

Bamdorff-Nielsen's formula for the distribution of maximum likelihood estimates, non-

• normal regression, and to MANOVA. 

• 

1. Introduction 

In this article we address the relationships between resampling based methods and their 

use in modem likelihood theory. We will consider several problems with the format of the 

article being that of a case study. 

One of the main limitations of classical parametric likelihood theory is its dependence 

on the large sample sizes and the normal distribution for calculating the distribution theory 

for likelihood estimators. There has been much progress in recent years in extending the 

classical In theory to higher order approximations. Although the better approximations 

promise small sample distribution theory, they may be difficult to compute in practice. 

At the same time as the developments in likelihood theory were taking place, there were 

great advances in Bayesian computations. Aside from the subjective dogma inherent in the 

Bayesian paradigm, a major criticism had been the lack of methods for the complete 

implementation of a Bayesian solution. The new methods of sampling based calculations 
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have gone a long way in remedying this problem, allowing exact solutions in difficult 

problems. 

In this article we apply the sampling based calculations, which the Bayesian have 

developed, to some likelihood problems. It is known that there are many instances where 

the Bayesian and likelihood answers agree. This usually happens when one assumes a flat 

prior distribution for the parameter of interest, a phenomenon which often has a group 

theoretic explanation (Casella and Wells, 1992). However here we are not taking the 

approach of solving likelihood problems via Bayesian methods, but rather we study the 

likelihood quantities on their own merit without any lurking Bayesian theory. Note that 

we are interested in Monte Carlo procedures for the assessment of the properties of 

likelihood estimates. This goal is different than that in Wei and Tanner (1990), Gelfand 

and Carlin (1991) or Carlin and Gelfand (1992), where the objective was to use Monte 

Carlo methods in the construction of likelihood estimates in non-standard problems. 

In the next section we review some of the current methods of resampling based on 

distribution theory. In Section 3.1 we study the location-scale problem, while in Section 

3.2 we look into the non-normal multiple regression problem, a problem that was initially 

studied by Fraser, Lee and Ried (1990). In these examples we study the sampling based 

computations of marginal distributions and p- values. In Section 3.3 we apply the 

resampling based methodology to the MANOVA problem, and finally, Section 4 contains a 

short discussion. 

• 

• 

• 
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2. Sampling Based Calculations. 

2.1 Gibbs Sampling 

3 

The Gibbs Sampler is one of the more popular Markov Chain simulation methods for 

constructing random variables from a specified distribution. The history and recent 

developments are reviewed by Casella and George (1992). To use the Gibbs sampler one 

must be able to generate random samples from the complete set of conditional distributions. 

Given this complete set of conditionals, the Gibbs Sampler is one of the simpler Markov 

Chain simulation methods available for generating samples from a joint distribution. To 

generate a sample from a distribution with density f(x) = f( x 1, .•. , xk) the Gibbs sampler 

begins with starting values ( x ~OJ, ... , x ~OJ), then iterates through the following loop: 

1.) Sample x Y +l) from .I( x 11x g J, ... , x Z)) 
2.) Samplexg+JJ from.t(x21xy+n, x~>, ... , xg>) 

Under certain regularity conditions it can be shown that as the number of iterations tend 

toinfinitythedistributionofthegeneratedsample(xy+lJ, ... , xg+l)) converges to a 

sample fromf(x) at a geometric rate. See Casella and George (1992), Tanner (1991), 

Tierney (1991) and Smith and Roberts (1992) for further details and a complete set of 

many references on the literature for the Gibbs sampler. 

2.2 The Weighted Bootstrap 

The implementation of the Gibbs Sampler requires that one must be able to generate 

random samples from the complete set of conditional distributions. However, these 

conditionals may not always be available. Hence we need to have generation methods that 

are not dependent on knowledge of the full set of conditionals. The weighted bootstrap, a 

simple modification of importance sampling, gives such a method. We may approximately 

• resample fromf(x) = h(x)/]h(x) dx, where x = (x1, ... , xk) as follows. Suppose that we 

have a density gin hand which resemblesfand is easy to sample from. Given X;, i = 1, 
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... , m, a sample from g, calculate OJ;= h(x;)lg(x;) and then qi = OJI/t1 mj" Draw x*, 

from the discrete { x 1, ... , x ml placing mass q i on x ;· Then x * is approximately 

distributed according to f with the approximation improving as m increases. Note that 

this procedure is just a variant of the familiar bootstrap resampling procedure (Efron, 

1982), although it is used here for a different purpose. The usual bootstrap provides 

equally likely resampling of the x;. while here we have weighted resampling with weights 

determined by the ratio of h to g. Rubin (1988) refers to this non-iterative sampling 

based procedure as SamplingRmportance Resampling. 

Under the usual unweighted bootstrap, x* has probability element equal to 

lim P(x* E A)= lim .I ~ JA(x.) = E JA(x) = i g(x) dx 
m-+oo m-+oo I ~ I I g A 

so that x* is approximately distributed as an observation from g(x). Similarly, under the 

weighted bootstrap, x* has has probability element equal to 

h (x) 
E g g (x) lA (x) 

= -----=~~--,---
£ h (x) 

g g(x) 

i h (x)dx 

J. =J.f(x)dx 
h (x)dx A 

Rk 

so that x * is approximately distributed as an observation from f Note that the sample 

size, m, under such resampling can be as large as desired, with the approximation 

improving with m. An important caveat is that the less f resembles g the larger the 

sample size m will need to be in order that the distribution of x * approximates f well. 

The match in the tails is particularly important. 

Finally, the fact that either the Gibbs Sampler or the weighted bootstrap allowsfto be 

known only up to proportionality constant, that is, only through h, is crucial, since we 

wish to avoid the integration required to standardize h. Note that if the normalizing 

• 

• 

constant is required in some calculation m-1 J m; provides a consistent estimator. For • 
I= 1 

more on the weighted bootstrap in Bayesian analysis see the discussion by Smith and 
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Gelfand (1991). 

Various researchers have used importance sampling (IS) and its modifications in 

Bayesian calculations. Wei and Tanner (1990) use IS in the context of data augmentation. 

Zeger and Karim ( 1991) use acceptance/rejection in the context of the Gibbs sampler for 

generalized linear models. Ritter and Tanner (1992) use an approximate cumulative 

distribution function to sample in the context of the Gibbs sampler. The ideas of IS are 

not at all new, see Hammersley and Handscomb (1964) for the history and further details. 

2.3 Monte Carlo Marginalization 

Once the multivariate set of observations from the distribution with density j(x) have 

been generated we need to have a method for marginalization. When using the Gibbs 

Sampler marginalization is usually done by summing over the appropriate conditional 

distribution, as suggested in Gelfand and Smith (1990). Due to the complexity of some 

problems one may instead wish to marginalize using a Monte Carlo method. The method 

introduced below is convenient since we do not always have a closed form expression for 

the conditional density j(x,lx0 ), where we use the notation xr as the component of interest 

and x0 as the remaining component. 

LetS denote the support of the full joint density of x = (xo, Xr), and let So. Sr be the 

supports of the distribution x0 and the conditional distribution xrlx0 , respectively. 

Therefore the marginal of Xr is 

To estimatef(x,) using a generated sample {x(i)}j[!; 1 = {xSiJ, x~iJ}i ~ 1 fromj(x) = 

j(xa. x,), we calculate 

where the weight function, ¢, is any conditional density defined on S,. Note that if 

¢(x,lxo) = f(x,lx0), then 



1 m -:E m i = 1 

¢(x~iJixbi))f(x~iJ, Xbi)) 

j ( X ~ i ) ' X bi)) 

which is the standard Gibbs Sampler approximation. Moreover, since 

6 

• 

we have a good approximation to the marginal distribution of Xr • 

The interesting fact is that the above argument holds even if ¢(x7 1x0) :;e j(x7 1x0). 

Indeed,¢ may be any function, as long as it is a conditional density (a sufficient condition 

for the following argument to hold). Thus, the function ¢ may be chosen to have a 

convenient form. 

If we use (2.1) to approximate f( Xr), then for any x; , 

=i 

• 
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since ¢ is a conditional density defined on S r· The more closely ¢ resembles f(xrl x0), 

the better the estimate, but any conditional density ¢on Sr will work. The convergence 

result follows from the convergence of the Markov Chain sampling scheme or from the 

weighted bootstrap. A nice feature of this marginalization technique is that one does not 

have to develop new algorithms. For Bayesian applications of marginalization techniques 

see Gelfand, Smith and Lee (1991) and Chen (1992). The general theory of Monte Carlo 

marginalization is a consequence of the Conditional Monte Carlo method discussed in 

Hammersley and Handscomb (1964). 

2.4 Monte Carlo Acceleration 

There is also a simple method for accelerating the convergence of the Monte Carlo 

marginalization method, thereby reducing the number of draws required in order to achieve 

a preassigned level of numerical accuracy. One of the methods is an application of the 

theory of regression estimators from sampling theory, see Cochran (1977, Ch. 7) for more 

details. 

We will discuss this acceleration in the context of Monte Carlo marginalization. 

Suppose, as in the discussion above, we have the sample {x ( i) }f! = 1 = {x ~i), x ~ i)} ~= 1 

fromf(x) = f(xO> xr). Suppose there is also a function g, defined on the support of the 

distribution of x, which has values highly correlated withf(x,.lx0) and whose integral 

over the support of the distribution x0, g is known. Define the vector vas = 
{ v( x ( i J)} 'i=I to have components 

and define the Monte Carlo evaluation of the function g as 

g"(x ) = l ! g(x x8)). 
r m i= 1 r 

Now compute the linear regression slope .8 (xr) of von the vector {g (x r• x g ~}7;, 1 , and 

compute the regression estimator ofj(xr), f R ( x r), by 
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It is easy to see that the limiting sampling variance off R ( x,) equals ( 1 - p2) times the 

limiting sampling variance of {, where p is the correlation between the function 

evaluations off and g. Note that if the selection of g is quite poor the regression estimate 

will reduce to f since /1 (x,) will be approximately equal to zero. Therefore it is clear that 

when these are highly correlated it is possible to decrease the sampling variance 

dramatically, that is, a fewer number of draws are required in order to achieve a 

preassigned level of numerical accuracy. 

Another simple method for accelerating the convergence of the Monte Carlo 

. marginalizati~n method is to use common random numbers. This entails reusing the 

random number stream during the marginalization procedure. This is an example of the 

idea of blocks from the design of experiments. For more details and ideas on various 

Monte Carlo swindles for variance reduction and hence on reductions in the number of 

draws that are required in order to achieve a preassigned level of numerical accuracy see 

Ripley (1987, Ch. 5) and Tierney (1991). 

• 

• 

• 
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3. Applications of Gibbs Sample and the Weighted Bootstrap to 

Frequentist Inference. 

In this section we apply the Gibbs sampler and weighted bootstrap to several problems 

in frequentist inference. We first study the exact distribution of the likelihood estimates in 

the location-scale problem. Secondly we consider the problem of computing of observed 

significance levels in non-normal multiple regression. Lastly, we examine the computation 

of probabilities for Wilks' criterion for testing in MANOV A. 

3.1 The Location-Scale Problem 

In this example we can do the calculations exactly therefore we can assess the merits of 

our procedure. Upon simplifying the calculations in the linear model 

i = 1, ... , n, ei- iidf(-), 

and applying Barndorff-Nielsen's (1983) formula (also see Fisher, 1934) we fmd the joint 

distribution of the maximum likelihood estimators /1 and a' given the ancillary 

ai = (yi - ,t1 )I a to be 

By writing 

and transforming to ( t, v) we get 

n 
vn-l .II f(v(a· + t)) 

I=} I 

p(t, vla) = JJ . 
vn-l i.Q"I f(v(ai + t))dv dt 

In the usual case the error distribution is taken to be unit normal, and it then it follows 

that 
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n/2 (n -1 ) !0.-p(t,vla)= nl1f -2-2 2 vz-1 exp{-v2(1+i2)12} 

n 
since . I a f = n. Upon further calculation it can be shown that the conditional 

' = I 
distribution of t given a has a t(n-1 )!Jn-1 distribution and v given a has a 

J X 2 ( n -1 )In distribution. It can also be shown that the conditional distribution of t 

given v and a has a N(O, 1)1(/il v) distribution and the distribution of v given t and v 

has a V X f n / n (1 + t 2 ) distribution. 

As an experiment we studied the accuracy of two resampling methods for the normal 

location scale problem. The first is Gibbs sampling while the second is the weighted 

bootstrap. Using the conditionals of (tlv, ·a) and (vlt, a) it is easy to generate a random 

sample from the joint distribution of (t, via). Note that to use the Gibbs sampler we need 

to have closed form expressions for (tlv, a) and (vlt, a) whereas for the weighted 

bootstrap we only need to know the joint distribution up to a multiplicative constant. The 

• 

result for the Gibbs sample of normal location-scale problem are reported in Figures 3.1 • 

and 3.2. Figure 3.1 shows that the approximation to the density of the location estimate is 

very good in the tails and misses a bit in the center. Figure 3.2 shows that the 

approximation to the density of the scale estimate is spectacular throughout the entire range. 

Both these were run with n =15, by taking the last random quantity in a stream of 4000 

and repeat this m = 200 times. Marginalization is given by summing over the appropriate 

conditional distribution, as suggested in Gelfand and Smith (1990). The time taken was 

approximately 4 minutes on an IBM 486. 

When using the weighted bootstrap we originally choose the approximate joint density 

g (as discussed above) of (t, via) as a Normal(O, lin) times the square root of a 

X2(n)!n. The results of the weighted bootstrap for the normal location-scale problem are 

reported in Figures 3.3 and 3.4 plotting the differences of the true and simulated pdfs of 

the location and scale estimates, respectively. The story is similar to the one for Gibbs 

sampling. We used 800 samples the get one observation, this was replicated 8000 times. 

Marginalization was done via the Monte Carlo marginalization scheme discussed in Section 

2.3. The time taken was approximately 3 minutes on an IBM 486. 

Comparing the two sampling schemes we find the weighted bootstrap to be much more • 



• 
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convenient for this problem. We did not need to have a closed fonn for the conditionals 

and it took much less time. 

As the next example we consider the exponential location-scale problem. If the error 

distribution is taken to be unit exponential then it follows that fl = Y( I) the sample 

minimum, 8 = y- fi and ai = (Yi - /l)l 8 = (Yi - Y(l)) I (y- {l). Then 

n 
p(t, via)= ( nn-2)! vn-1 exp{- n v (1 + t)} 

since here .I ai = n. Upon further calculation it can be shown that the conditional 
'= 1 

distribution oft given a has an F(2, 2n- 2)/ (n -1) distribution and v given a has a 

Gamma(n -1, n -1) distribution. It can also be shown that the conditional distribution of 

t given v and a has a Exponential((n v J-1) distribution and the distribution of v given t 

and v has a Gamma( n , [ n ( 1 + t)] -1) distribution. 

Since we have the full conditionals we could use the Gibbs Sampler, although we do 

not since the weighted bootstrap turns out to be more efficient. In this case we use the 

weighted bootstrap with approximate joint density of (t, via) as a Gamma( 1, n) times an 

Exponential(n). Marginalization was done via the Monte Carlo marginalization scheme 

discussed in Section 2.3. The results of this example are reported in Figures 3.5 - 3.8. 

Figures 3.5 and 3. 7 plot the differences of the true and simulated of the location parameter 

estimate's pdf and cdf, respectively. Figures 3.6 and 3.8 plot the differences of the true 

and simulated of the scale parameter estimate's pdf and cdf, respectively. We used 1600 

samples the get one observation, this was replicated 32000 times. The time taken was 

approximately 6 minutes on an IBM 486. 

3.2 Non-Normal Multiple Regression 

Consider the linear regression model for non-normal errors of the form y = X/3 + Ue, 

where e has a density J;J e) on Rn and X is an n x p design matrix with regression 

parameter vector /3. In principle f.t may depend on unknown parameters AE Rq, 

however, we will assume that A is fixed. Standard methods of conditioning in 

transformation models (Fraser, 1979, p. 113) use the one-to-one change of variables from 

y to ftJ(y), a(y), d(y)}, where tJ(y) and a(y) are estimates of location and scale, 
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respectively d(y) = (y- X/] (y))lu(y), is a standardized residual. The conditional joint 

distribution of/] (y) =band 8(y) = s given d by Fraser (1979, p. 114) as 

p(b, sld) db ds = h l 1( d)!;., { (X(b - /3) + sd)a -J} ( sla)n s-(p+l) IXTXI 112 db ds 

on RP x R+. The ancillary statistic d(y) are standardized residuals and have distribution 

By applying the transformation w = log u(y) , the density on RP X R+ is given by 

p(b, wid) db dw = h l 1(d) J;./ e- loge; (X(b- /3) + ewd)} en(w- loga)e- pw IXTX1 112 db 

dw. 

Note that the desired quantities are 

t = (/] (y)- /3)18-(y) and w = w(y) -log a=log (O"(y) 1 a). (3.1) 

The conditional joint distribution of (t, w) is 

When we are interested in inference on a single parameter, say /3p' thus inference will 

be based on the marginal density which is obtained by integrating out the appropriate 

components. That is, we want to compute 

fttp) = J f(t, wld) dt1 dt2 ... dtp-J dw. 

• 

• 

the pivotal density that provides inference for /3p through the pivot tp = (/] P (y) -

/3p)l&(y). • 
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As in Fraser et al. (1990) we propose to approximate the marginal density by a one­

dimensional conditional density. Fraser et al. use an analytic approximation method, 

while we will use a sampling-based approach. We will use the notation xr as the 

component of interest and x0 as the remaining component. In particular, we wish to test 

H0 : f3p = f3po• and, for the regression problem, using the notation discussed earlier, let 

(xo, xr) = (w, tb t2, ... , tp-1> tp) where Xr = tp = (/1 p(Y) - /3p0 )/s. Although we will only 

discuss examples with scaler xr, the component of interest, the component may be a 

vector. 

Fraser et al. (1990) approximate the density of j(xr) by the one-dimensional 

conditional density which is proportional to j(io(xr), xr) where io (xr) is the value of x0 

that maximizes f( x0, xr) for each xr. To improve the approximation of the marginal 

density by the conditional density Fraser et al. (1990) modify the original point 

distribution in a way that does not change the marginal distribution of the component of 

interest but may improve the approximations of the conditional distribution to the marginal. 

• This involves the construction of a pseudo-model for the data that has the same marginal 

density for the component of interest. Let 

• 

r =[- d f(x)] 
dxd X T (- -) 

Xo,Xr 

be the xr Hessian of f(x) = logf(xD' xr) evaluated at the overall maximum (£0 , xr), and 

let 

be the (r- 1) x (r- 1) negative Hessian of f(x0 , Xr) for fixed xr at its restricted 

maximum. By defining the new variable zo = {112(xr) [xo- xo (xr)} one can see that the 

joint density of (z0, xr) is proportional to g(zo, xr) = i{(xr)l- 112 j(i o (xr) + {112(xr) z0, 

xr). Hence the observed level of significance P(xr 2: x/bs) may be approximated by 
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Fraser et al. ( 1990) refer to this as the ridge observed level of significance. 

In this example we compare our technique with Fraser et al. (1990) using one of their 

examples found in their article. Here we combine the marginalization technique with the 

weighted bootstrap method. We consider the regression model y = a+ f3 x + ae, where 

e is a standardized Student random variable on A.. degrees of freedom. For 25 values of 

the explanatory variable x at unit step size from -12 to + 12, the response values for y are 

recorded in Table 3.1. The data were generated with a= 20, f3 = 1, CJ = 1.1966 and A,= 

3. Let t1 and t2 be the "!-statistics" for a and {3, respectively, and let be as in (3.1). 

Table 3 .1. A sample of 25 regression responses with Student ( 3) error 

7.9042 16.2425 9.9128 10.0184 12.8359 

12.8607 15.1697 16.0589 16.6068 18.5075 

19.1212 19.8824 21.3117 21.6194 21.6348 

23.2321 23.0110 24.7835 23.3734 26.7593 

29.1283 24.6564 29.9679 31.4070 32.6893 

• 

• 
Suppose we are interested in testing {3 = 1. The first thing that needs to be done is to 

generate data from the joint distribution of the two regression parameter test statistics and 

the scale statistics. We use the weighted bootstrap, for this will approximate the joint 

density N(O, lin) x N(O, 1) x Jz 2 (n)ln. We used 1600 samples to get one 

observation, this was replicated 32000 times. Marginalization was done via the Monte 

Carlo marginalization scheme discussed in Section 2.3, and was used to frnd the marginal 

density of the test statistic t2 = ( tJ - 1 )Is. The conditional density ¢(I·) weight in (2.1) 

was chosen to be a univariate normal with mean equal to zero and variance equal to the 

inverse of the sample variance of the independent variables. Recall that the choice of ¢(·1-) 

need only be a conditional density on the support of t 1 given the normalized t2 and w. 

Therefore our choice is a matter of convenience. A better weight function may be possible, 

however ours seems to work well in practice. We also used the regression acceleration 

method discussed in Section 2.4, with the regression function g equal to the product 

N(O, lin) x N(O, 1) x J X 2 ( n )In . Again the choice of this function is out of • 



• 
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convenience. 

The observed level of significance was then computed with Monte Carlo integration. Table 

3.2 compares the approximate value of Fraser et al. with our Monte Carlo method. The 

time taken was approximately 10 minutes. We see that the results are quite similar to the 

approach of Fraser et al.; whose approximation is much less computationally intensive, 

but requires more analytic calculations in addition to a one-dimensional Monte Carlo 

integration. 

Table 3.2: Observed level of significance for {3 using a Student (A) analysis with A= 1, 

3, 6, oo. 

A-=1 "-=3 A-=6 A=oo 

Fraser et al. ols .3113 .2607 .1643 .0238 

Monte Carlo ols .3297 .2724 .1762 .0361 

3.3 Wilks' Likelihood Ratio Test 

A p-dimensional multivariate analysis of variance (MANOV A) has error sum of square 

matrix Se with n degrees of freedom and a hypothesis sum of squares Sn with q degrees 

of freedom. To test the usual MANOV A hypothesis one rejects when the likelihood ratio 

Ap, q, n = ISe + Snl-liSel 

is smaller than a certain critical value, where I • I denotes the determinant. Under the usual 

normal sampling distribution assumptions Se and Sn are independent Wishart matrices 

with a common parameter matrix under the null hypothesis. Anderson (1984) shows that 

under the null hypothesis 

p 
Ap, q, n B: JI Bef(n - i + 1 )12, q/2], (3.1) 

i = I 
on (0, 1] where the B[-, ·l's are independent beta random variables with the indicated 

degrees of freedom. 

Butler, Huzurbazar and Booth (1992) use this characterization (and others) to derive a 

saddlepoint approximation to the null distribution of log Ap, q, n· This approximation is 

very accurate. However, as with any saddlepoint approximation in order to implement the 
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Figure 3.1: True versus estimated pdf for the location estimate problem using Gibbs for Normal 

data. 
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Figure 3.2: True versus estimated pdf for the scale estimate using Gibbs for Normal data. 
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Figure 3.3: Difference in the estimated and true pdfs of the location estimate using the weighted 

bootstrap for normal data. 
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Figure 3.4: Difference in the estimated and true pdfs of the scale estimate using the weighted 

bootstrap for Normal data. 
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Figure 3.5: Differences in the estimated and true pdfs of the location estimate using the weighted 

bootstrap for exponential data. 
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Figure 3.4: Differences in the estimated and true pdfs of the scale estimate using the weighted 
bootstrap for exponential data. 
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Figure 3. 7: Difference$ in the estimated and true pdf s of the location estimate using the weighted 

• bootstrap for exponential data. 
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Figure 3.8: Differences in the estimated and true pclfs of the scale estimate using the weighted 
bootstrap for exponential data. 


