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Abstract

This paper develops a denotational and abstract model based on closure operators for con-
current constraint logic programming. The denotational semantics is built domain theoretically
and not from the computation sequences. The denotational semantics is related to an opera-
tional semantics. The operational semantics distinguishes successful and unsuccessful compu-
tations and observes intermediate results of divergent computations. The paper extends to the
indeterminate setting, previous work on functional languages with logic variables [9].

1 Introduction

A fundamental problem in the theory of concurrency is integrating concurrency with abstraction.
Kahn’s work on determinate dataflow [10] is an example where concurrency meshes smoothly with
abstraction. In the denotational model, the internal operational details are abstracted away and
processes are viewed as continuous functions on streams. The match between the two different views
of processes is quite tight. The denotational semantics is an accurate guide to operational behaviour
in all contexts. Kahn’s semantics was restricted to determinate behaviours with unidirectional flow
of information. This has motivated the study of more general models of computation, for example,
process algebras [14, 6].

Logic programming generalises Kahn’s original model in two ways. The presence of OR-
parallelism entails indeterminacy. The bidirectional nature of the flow of information comes from
unification. Pure logic programming has an elegant declarative basis based on viewing compu-
tations as proofs carried out with a single inference rule, namely resolution. However, efficiency
considerations have motivated the addition of various control features. These control constructs
enable the use of logic programming for specification and implementation of systems of processes.
In the presence of these control constructs, the correspondence of computations of logic programs to
proofs in first order logic becomes weak and tenuous. This is the motivation for investigations into
an abstract semantics for logic programs. Motivated by Kahn’s elegant model of static dataflow, it
is natural to demand that the semantics provide the missing declarative framework for concurrent
logic programs. Thus, the denotational semantics should provide a conceptually simpler view of
processes than the operational semantics.
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This paper is intended to be a piece in this program. The main contribution of the pa-
per is a fully-abstract semantics of concurrent constraint programming languages similar to Flat
GHC [22]. The language has input matching and committed choice (also called don’t know non-
determinism) and flat guard predicates. Related and more powerful languages have been studied
extensively [22] [18] [26].

The main feature of the semantics is that it captures enough information about processes to
make purely local reasoning about processes sufficient for reasoning in arbitrary contexts. This is
achieved without resorting to operational notions like renaming. Our semantics follows previous
work in the semantics of functional languages with logic variables [9]. This work views unification as
constraint-solving and identifies closure operators [21] as the domain theoretic models of constraints.
The semantics is couched in terms of solving of equations. The semantics in this paper can be viewed
as the extension of these ideas to an indeterminate setting. Our constructions can be interpreted
as the domain-theoretic analogues of ideas in previous work on semantics of logic programming
without occur check [27] [12].

Two key points are worth mentioning. Firstly, the use of closure operators as the meanings of
processes makes explicit the bidirectional flow of information. Secondly, the mathematical struc-
tures that we use in the denotational semantics are naturally endowed with a notion of parallel
composition. There is an elegant characterisation of the parallel composition operation as set
intersection. The semantics makes no atomicity assumptions and handles infinite behaviours. Fur-
thermore, the semantics works correctly only under the assumption of AND-fairness. The structure
used to model indeterminacy is a variant [8] of the standard powerdomains used to model indeter-
minacy in imperative languages [15, 23].

It is worthwhile to contrast our techniques against the existing work. There is a denotational
model for a more powerful language than the one we are considering [11]. The semantics is based
on a powerdomain of resumptions, and can be viewed as explicitly keeping track of the flow of data
and demand tokens. The relationship between the two models is not addressed in this work. A full
abstraction result has been proved for a related and more powerful language [17]. The semantics
gives the meaning of processes as sets of pairs of substitutions and suspensions. The meaning
of parallel composition is got by explicitly combining these sets. The most significant difference
between our approaches is in the observations allowed. In keeping with the constraint view, we
think of failed computations as imposing inconsistent constraints on the environment and do not
observe the substitutions of failed computation. There is a fully abstract semantics for a language
based on the Ask-Tell paradigm [26]. The semantics is inspired by work in process theory, and
intuitively associates processes with the set of the sequence of interactions on possible paths to a
point of data quiescence. Both the above papers [17] [26] do not handle infinite computations.

The significant difference between this work and the papers cited above arises from the different
motivations. Previous work [17] [26] can be viewed as starting out with some reasonable notion of
observation and attempting to find the minimal information that needs to be encoded to be able
to distinguish programs. Rather informally, this extra information took the form of interactions
with the environment along every possible computation path. The aim of this paper is to simplify
the programmer’s view of processes and is intended as a programmer’s first approximation in
thinking about processes. In fact, aided by powerful tools from domain theory, the semantics here
essentially presents a process as an input-output relation: i.e the possible output environments
got by executing a process in a given input environment. However, this enormous simplification is
attained at some cost: the semantics identifies programs that are distinguishable in previous work.



In particular, the semantics is inadequate for studying “progress properties”. The full-abstraction
result identifies precisely the notion of distinguishability that the semantics captures. We hope
to convince the reader that the view of observability modelled by the semantics is a significant
and non-trivial subset of the observations modelled in previous work. Thus, we hope to convince
the reader that the work here constitutes significant progress towards a declarative semantics for
concurrent constraint logic programming.

The paper is organised as follows. First, we sketch the operational semantics of a less powerful
language. This language is intended to make the exposition clearer, and establish the connections
with datflow that help to understand the semantics. Next, we give a detailed description of our
notion of tests. In the next section, we decribe the domain theoretic structures needed for the de-
notational model. Then, we describe the denotational semantics. In the next section, we sketch the
proof of full-abstraction. The detailed proofs are rather long and are presented in the appendices.
In the final section, we sketch the extra strutures needed to model the full language.

2 Transition system

In this section, we define the language studied first. The language is very similar to the language
flat GHC [22]. This is a restriction of the more general language GHC [25], to have only flat guard
predicates. The language that we study initially is more restrictive. The basic difference is the
restrictions on the predicates in the guards. Intuitively, the restrictions on the guard predicates
amount to restricting the guard predicates to look at only the values of variables. For example, we
allow checks of the form z = ¢, where c is a 0-ary fucntion symbol (constant). However, checks of
the type z = vy, for z and y variable names are disallowed. Even with this restriction, it is possible
to code typical programs, such as the short-circuit protocol. Furthermore, we wish to emphasize
that this restriction is only for expository purposes. The intention is to motivate the dataflow view
of computation. These restrictions are removed in the last section of this paper.
We follow standard syntax,as for example in [22].

Definition 1 (Definition of some standard syntactic entities)

o z, Le Id = countable set of identifiers
o fe Functions = set of function symbols
o pe Pred = set of predicate symbols

o teTerms = Variables or a function symbol of arity n applied to n terms.

A, BeAtoms = p(ty,...t,), where p is an n ary predicate and t; are terms.

For presenting the operational semantics, we need a notion of environment. The following
definitions follow earlier work [9].

Ee Alias-set ::= {t1,...,tn}

pe Environment ::= @|{Ey, ..., E,.}



We use the unification algorithm, without occurs check. This has been extensively studied, for
example in [20] [1] [7] [27]. This is an algorithm for the unification problem in the domain of
regular infinite trees. Hence, infinite data structures are considered to be legitimate objects of
computation. Below, we present the main results without proofs. The unification algorithm is
described in terms of a binary relation ~» on environments.

Definition 2 ~» is a binary relation on environments defined as follows:

1. If A1 and A2 are members of an enviroment p, and A1 and A2 have an identifier in common,
then p~ (p - {A1} - {A2}) U {A1U A2}

2. IF {f(t1y o ta) f(thr 1)} C Aep then pnr pU {{t1, 8}, o {tmr 20} .
8 If {f(t1,--»tn)> (2}, ..y th)} C Ae€p and f # g then p ~» error.

Intuitively, these two transformations on environments that leave the meaning of an environment
unchanged. The first clause says that in any environment, two alias-sets that contain the same
identifier can be merged. The second clause says that if two terms with same function symbol are
in an alias-set, their arguments must be in alias-sets as well. The third clause detects constraints
that are impossible to satisfy.

If p1 ~ p2 and p; Xp2, we say that p; reduces to p;. In this case, p; is said to be reducible;
otherwise, it is érreducible. Let ~> be the reflexive and transitive closure of ~». The following
properties of ~» are well-known.

Lemma 1 The relation ~>has the following properties:

1. If p1~5p2 and p1~p3 then pydpy and p3Srpy for some py.
2. There is no infinite sequence of distinct enviroments p; such that p; ~» p;41 for all i.

3. For any environment p, there is a unique, irreducible p; such that p5p;.

The first property states that reduction of environments has the Church-Rosser property. The
second property states that an environment cannot be reduced indefinitely. The third property
is an immediate consequence of the first two. In the rest of the paper, we will nusually not be
concerned with the explicit details of the algorithm. in particular, we will usually not distinguish
between syntactic environments and their reduced forms.

The presentation of the reduction relation follows [22] closely. The transition system is defined
in terms of a input match and try function. A guarded clause is of form, A « G|By,...B,, where
A, B; are atoms, and G is called the guard predicate. A concurrent constraint logic program is a set
of guarded clauses. We assume that the heads A is made up of distinct variables. These restrictions
ensure that input match never suspends or fails.

First, we define the notion of input matching. This is formalised as a function match that takes
two terms and an environment as arguments. The definition here is more general than is needed.
The exact type is given by match : Terms X Terms X Environment — {Environments, fail}.
This is done by structural induction on terms.

_ | fail,if pU{z,t} = error
match(z,t, p) - { pU{x,t}, othe'rwise

. fail, if p|Z), @} = error
match(Z, @) = { pU{Z, @}, otherwise



Match can be easily extended to a function with domain Atoms X Atoms x Environment and range
{Environments, fail, susp}

First, we define formally the value of a term in a syntactic environment. Let p be a syntactic
environment, in reduced form, that is consistent. Consider the following transition system. Let s
denote a finite sequence. Let t = f*(t1,...t,) be any term. Then, we define ¢ T s inductively as
follows:

et10=f"

o tiTs=g=>tT[is]=¢g
The following rules “evaluate” an expression of form ¢ 1 s in an environment p.

1. < z,p >— undefined
if the alias set of 2 contains no non-variable terms.

2. <z,p>—>1t
if t is in the alias set of z. Note that there may be may be many different terms in the alias
set of . t is arbitrarily chosen from this alias set, by some rule, say lexicographic ordering.
(The following lemma essentially states that this seemingly arbitrary choice does not affect
the results of the evaluation of (e, p), in the interesting cases)

3 <ep>—1
"<efls,p>—1tTs

Lemma 2 Let p be a consistent syntactic environment. Let < e,p >— f:, where fi is a function
symbol. Then, < e,p >— f} is independent of the choice made in rule 2 of the transition system
above.

The guard predicate is conjunction of primitive guards. The primitive guards are one of the
following:

l.z1s=f,z1s# f,where f is a function symbol and z is a variable name.
2. Various numeric predicates, for example =:=, <, #:#,

The meaning of a guard is defined relative to a syntactic environment p. We define below the
meaning of one of the primitive guards. The meanings of the other primitive guards are defined
similarly.

fail,ifzTs# f
(zTs=f,p) = true, ifzTs=f

susp otherwtse
The meaning of conjunction of primitive guards in a syntactic environment is defined as follows.

true, if(Vi) [(Gi,n) = true]
(G1AGaAGnyp) = { fail, if (3i) [(Girn) = fail)
susp otherwise



We can now define the clause try function.

_ _ fail, if pU{t1,t2} = error
try(tl = t2,X1 - X27p) { pU{t1,t2},0th€7"U)i5@
fail, ifmatch(A, A’,Tho) = fail
V[match(A,A',p) = p' A (G,p') = fail]
p'y if match(A,A',p)=p' A (G,p') = true
susp, otherwise

try(A, A’ — G|B, p)

The following definitions are in the context of a concurrent constraint logic program P. The
operational semantics is presented in the form of configurations. A configuration is either a pair
({C:}, p), or of the form fail. In the first case, the first component of the pair is a multiset of
atoms. The reduction rules are presented following the presentation of [22].

1. Reduce:
({Al . .A,’, .o A,,},p)——»({Al .o -Bla . .Bm, . .An},p,>
if try(Ai,C,p) = p', where C = A « G|B; ... B,, is some renamed apart clause of the program
P.

2. Fail:
({A1...4,... A}, p)— fail
if for some i and for every renamed apart clause A « B; ... B, of P, try(A;,C) = fail.

The supend result of the ¢ry function is not used in the transitions. If A is a goal atom, for which
try(A, C) = susp for some clause C in P, and try(A,C’) = suspViry(A,C’) = fail, for all clauses
C'in P, A is suspended. A configuration in which all atoms are suspended is said to be deadlocked.
We make a fairness assumption on the transition system. This is called AND-fairness. We follow
the definitions of previous work [22]. Define a computation ¢ to be a sequence of configurations
(S, pi), such that (S;, pi) —(Si4+1,pi+1). Then, c is said to be AND-fair, if there is no reduce or
fail transition that remains enabled in almost all the configurations of c.

3 Observations and Tests

The aim of this section is to develop a theory of observations and tests, for the restricted language.
The essentials of the theory go through for the full language. The minor changes that are required
are discussed in section 8.

We first define the notion of finite observations. The intuitive meaning of saying that an
observation is finite is that it can be made in a finite amount of time. For example, an observation
of form “ x = 17, is deemed to be finite. The formal statement of this idea of finiteness is in terms
of the recursive enumerability of the set of observables. The set of observables that we present here
forms a recursive enumerable set. The theory is closely related to previous work in the context of
process calculi [5]. A notion of tests is then defined. The tests that we allow correspond roughly to
placing the process in arbitrary contexts. The framework of observations and tests presented here
handles infinite computations.

Recall that the syntactic environment p, was presented as a set of alias sets. Intuitively, finite
observations of environments correspond to looking at the tree structure of finitely many variables
to a finite depth.



Define a set of finite terms Finterms as follows:
Definition 83 The set Finterms is defined inductively as follows:
1. @ € Finterms
2. t1...ta € S=>f(t1...fn) € Finterms, where f is an n-ary function symbol.

Note that the set of alias sets implicitly contains the notion of a variable evaluating to a value
better than a given finite term. tCp(z) if p U{z,t} = p. Note that there is a need for an extra rule
for reduction in the alias sets, as we have a new symbol . This rule is motivated by thinking of
Q as a symbol of no information.

p {41 UL} ~ o U{A1}
An example will help make the idea clearer. Let p = {{z, f(y))},{v,9(2)}}. Then,

F(Ep(2), f(9(2))En(2), f(9(f(2)) & p(2)

Now, we define the notion of observations. Denote by Primobs, all expressions of the form
tCp(z), where t € Finterms. The relation FC SYNENYV x Primobs defined below models the
primitive propostions true in a given syntactic environment. |= is written infix.

Definition 4 The = relation is defined as follows:
1. p |E p, for all p € Primobs, if p is inconsistent.
2. tCp(z)=p | tCp(z)

Note the handling of inconsistent environments. The inconsistent environment satisfies any con-
straint. This is motivated by the constraint view of the environment [19]. An environment that
has inconsistent constraints imposed on it logically implies any constraint.

Let Term = {success,donotcare}. Then, define OBS as the the set of all expressions generated
from Term X Primobs using the boolean connectives A and V. FC CONF x OBS, is the relation
that indicates properties true of a configuration. We assume that the variables occurring in the
OBS part occur in the CONF part. Let (C, p) be an operational configuration.

Definition 5 (Definition of )
1. C = (true,p) A p = p=(C, p) b (success, p)
2. p E p=(C,p) }- (donotcare, p)
C = fail=(C, p) I (donotcare, p)
(C,p)Fpror (C,p) k- py =(C,p)F 1V P2
(C,p) k- p1and (C,p)F p2 =(C,p) F p1 A2

Let (C, p)—{C;, pi),1 < i < n, be all the valid one step transitions from (C,p). Let (p,t) €
OBS x Term be such that all variables occurring in p occur in (C,p). Furthermore, let
(Cia pi) F (tvp)' Then, (C,p) Fp

S &



There are a number of points worth mentioning.

1. Handling non-successful computations
Unsuccessful computations have been made observable. With deadlocked computations, the
bindings in the environment can be observed. Infinite computations fall naturally in our
framework. Even if a computation fails to terminate, bindings in the environments can be
observed at intermediate stages of computation. A failed computation is interpreted as impos-
ing an inconsistent constraint on the environment. However, note that only terminated and
non-terminated computations can be distinguished. There are no mechanisms to distinguish
deadlocked and infinite computations.

2. Total correctness approach
The observables have the flavor of total correctness reasoning. This is because we demand
that every valid computation sequence satisfies the predicate given by the observables.

The notion of tests depends on the contexts that can be used by the interpreter to differentiate
the given programs. Let C[] be a program definition, with a hole. The hole corresponds to a
predicate whose definition is unknown. We say that C[] is a valid context for a given program p if
the predicate symbols used in the definitions of C[] and p are disjoint. Thus, our notion of context
is related to the notion of composable logic modules [3].

4 Domain-theoretic facts

In this section, the domain-theoretic tools needed for the semantics are sketched in an abstract
setting.

4.1 Domain of values

The presentation of this subsection follows previous work [9]. To define the domain of terms we use
a standard construction for defining a domain of (possibly infinite) terms in logic programming,
see, for example, Lloyd [12]. First we need some notation. Let w be the set of natural numbers.
We use w* for the set of finite sequences of integers. A sequence is written [i1,...,1,]. If s and ¢
are sequences then [s,t] denotes their concatenation, if s is a sequence and 7 is a natural number
then [s,n] is the sequence s with n added to the end. The size of a set X is witten |X| and the size
of a sequence s is written |s].

Definition 6 A tree T is a subset of w* satisfying
1. Vs € w* and Vi,j € w we have ([s,i] € TAj<i)=>(s€TA[s,jleT).
2. |{i|[s,i] € T}| is finite for all s€ T. |

These define finitely branching trees that may be infinitely deeply nested. The sequences are the
tree addresses of the nodes of the tree. We define br(s,t) to be the number of successors of the
node s in the tree t, is the tree is clear from context we will write br(s). If this number is 0 we
have a leaf.

The domain V is defined in two stages. First we define a domain W and then we add a top
element, written T. The domain W is defined as follows. Let Atom be a given set of function
symbols. Let A = Atom U {Q} U {f'} where Q stands for the undefined element.



Definition 7 An element of W is a function F :t — A where t is a non-empty tree. The function
f satisfies
Vs € t.br(s) = n = F(s) = f, where f is some arbitrary n-ary functional symbol, Q treated as a
0-ary functional symbol.

The ordering between elements of W is defined as follows: F C G iff

o dom(F) C dom(G)
o Vs € dom(F).F(s) # 2 = G(s) = F(s)

The ordering between elements of W allows one to replace occurrences of {2 with other elements
to obtain a larger element. This domain describes infinitely deeply nested terms but all terms
must have finite “width”. Note that if two terms have different main function symbol, they are
incomparable. Thus the domain decomposes into subdomains corresponding to different main
function symbols. We denote the subdomain corresponding to the primary fucntion symbol f by
Wy. If f is an n-ary function symbol, note that

€Wz =1L V(3ay...an € W) [z = f(a;...a,)]

V is got from W by adding a top element denoted T'. T is the model for inconsistent constraints.
It is straightforward to check that the domain V is algebraic and consistently complete. Actually,
V is an algebraic lattice.

In the sequel, we will be interested in algebraic lattices in which T is a finite element. The
operational meaning of this assumption is the finite detectability of inconsistent constraints. Note
that the domain V satisifes this property. We define below the T-strict product domain of algebraic
lattices with finite ', D; and D,. This is denoted D, xT D,. The definition resembles the usual
product structure except that, the top elements are “coalesced”, so that the pairing operator is
strict with respect to T. We denote the infinite T-strict product of D; by H:TPD;. An example of
such an infinite product is the space of semantic environments ENV = IIIV,, where z ranges over
variable names. The motivation for the definition of a T-strict product, is the need to propagate
the error results of computations. For example an environment is inconsistent if any of the variables
are bound to inconsistent values.

Definition 8 Let Dy, D, be algebraic lattices with finite- T. D1xT D, is the partial order defined
as follows:

o The elements of D1xT D, are :

— Tuples (d,ds), where d; € D;A N d; # T
— A element T

o The ordering relation is defined as follows:

— T 1s the top element of the partial order.

— The ordering between two tuples is the usual pointwise ordering.



It is easy to check that DyxT D, is an algebraic lattice with T as a finite element. Note that
D1 xT D, is the cartesian product (in the categorical sense) in the category of algebraic lattices with
finite T and T-strict continuous maps. So, given T-strict continuous maps f; € Dy — Dj, f2 €
D; — D), we can define the map f; xTf, € DyxTDy — DixTDQ in the natural manner. The
construction x7 is easily generalised to handle infinite products.

Definition 9 3 is the domain with two elements L, T, ordered as L CT.

5 Function spaces

5.1 Closure Operators

We first define closure operators on an algebraic lattice with finite top D. The definition is a variant
of the defintion of closure operators [21]. For motivation, note that imposing a constraint on the
environment increases the information in the environment. Furthermore, imposing a constraint
twice is equivalent to imposing the constraint once.

Definition 10 Let D be an algebraic lattice with finite T. [[D) > (D) X 3)] is the set defined as
follows. The elements f of (D) = (D) x 3)] are continuous functions from D to D x 2, such that

f(z) = (g, )= [cCy A f(y) = (y,1)]

Note that the elements f of [(D) = (D) x 3)] are “idempotent” and “extensive”. The second
component of the result is intended to keep track of the termination of the computation.

A couple of examples will help to make the idea of closure operators clearer. Both the examples
given below are used in the semantics later.

e Let f be a syntactic function symbol of arity n. We define a closure operator £[f] on H;-IV;,
where 1 < ¢ < (n+ 1). The intuition is that the first n arguments are approximations to the

n argument places of the function. The last argument is an approximation to the final result.
E[f] is defined by cases as follows:

Elfle = (a1...an,f(a1...05) if @ny1) =1L
Elfle = T if Q(n41) ¢ Wy
€lfle = (a1 lubby...an|Jbnf(a1...an)a(ny1) otherwise

e Let Dy, Dy be algebraic lattices with finite 7. Let f be an element of [(D1) = (D1) x 3)).
fixTIdp, € [(D1xTD3) 5 (D1xT Dy) x 3)] is defined as :

(fixTIdp,)(z,y) = (i(fi(2)), ), Mo fo()))

Thus the computation of fyxTIdp, on (z,y) terminates if and only if the computation of
fi(z) terminates, as Idp, terminates always.

Let f be an closure operator on D. f can be equivalently characterised in terms of the “fixpoint”
set. The “fixpoints” of f are elements z of D such that f(z) = (z,t). Define

Fiz(f) = {{z, )| f(z) = (z,1)}
Let S C D x 3. Denote by S, the subset of elements of S of form (y,t) such that zCy. Note that
S, might be empty.

10



Definition 11 Let D be an algebraic lattice with finite T. A subset S of D X 2 is said to be a valid
set of fizpoints if it satsifies:

1. S is closed under least upper bounds of directed sets.
2. (z,t1) € SA(y,t2) € S AzCy=1,Cty

3. (Vz € D) [nS, € S].

It is easy to see to see that the fixpoint set of a closure operator is a valid set of fixpoints.
Furthermore, given a valid set of fixpoints, we can recover the coresponding closure operator. Let
S be a valid set of fixpoints. Then, the corresponding partial closure operator fs is defined as
follows. Let z € D. Then,

f(z) =nS,

Now, we define a parallel composition operation ||.

Definition 12 Given f,g € [(D) = (D) x 3)], h = f||g is the closure operator defined as follows.
Letz € D. Lety = [|;(((Tly 0 g) o (11 © £)))'(2)), so that, f(y) = (y,11),9(y) = (y ). Define,

h(z) = (y, t1Mt2)
Lemma 38 h = f||g defined as above is a member of (D) = (D) x 3)].

The proof is easy and is omitted.
Note that h(z) is the least solution of a system of equations as follows:

zCy
h(z) = lesq (y,t1) = f(y) otherwise in (y,t1MNty)
(y,t2) = 9(y)

This yields an elegant characterisation of the fixpoint set of f||g in terms of the fixpoint sets of f
and g. The proof follows easily from the the definition of ||.

Lemma 4 (z,t) € Fiz(f||g)&(3(z,t1) € Fiz(f)) (3(z,t2) € Fiz(g)) [t = t1MNty]

It is immediate from the above lemma that the parallel composition operation has the expected
desired properties.

Lemma 5 || is commutative, associative.

Thus we can write the parallel composition of n elements f; ... f, without ambiguity as ||{f; ... fn}.

For the denotational semantics, we will need a variant of the parallel composition operator.
Let Do, D; ... D, be algebraic lattices with finite T. Let f; € [((DoxT D;) = (DoxT D;) x 3)]. We
define the “shared” parallel composition of f ... f, as a closure oeprator on DoxT DyxT ...D,.
The intuition is that Dy is “shared” among the f;’s. This operation arises in the semantics because
the environment is shared among the processes. Roughly speaking, the meanings of processes will
be closure operators on ENVXxTV. To compute the parallel compostion of two such processes rq, 73,

11



we need to ensure that both r; and 7, “see” the same environment. We write this as ||p,(f1 ... fa)-
Let Id; denote the identity function on D;. Define

fl = (Tpo fi o (Mo, I;))xTId; ... (IL; o f; o (To, IL;))x T Id,,

Then, ||po(f1...fa)= I{fi--- fu}-
We make [(D) = (D) x 23)] into a partial order by defining an order relation on D.

fE g¢ (Vz € D) [f(z)Cy(z)]

The order relation can be expressed in terms of the fixpoint sets.

Lemma 6 Let f,g € (D)= (D) x 2)]. Then
fEg& (3=, t2) € Fiz(g))=>(3(z,t1) € Fiz(f)) [t1Ct2]

Proof: Let {z,t) € Fiz(g). Then, f(z)Cg(z). Note that g(z) = (z,t;). Hence, f(z) = (z,t1) and
the forward implication follows.
For the reverse implication, note that the condition implies

(Vz € D) [Fiz(g)s # ¢= (Fiz(f)z # ¢ AN(Fiz(f):)EN(Fiz(9)z))] N

For the denotational semantics we need a notion of guarded closure operators. Let Bool ==
{L,tt, ff, T} be the lattice of truth values. Let s be a continuous function from ENV to Bool.
We can define a continuous operator s| on [(Dg) = (Do) X 3)]. We write this infix. Let f €
[(Do) = (Do) X 2)]. Then, s|f is defined as

f(v) if s(v) =1t
(slf)v=q (T,T) if ffCs(v)

(v, L) otherwise

The monotonicity and the continuity of the above are easy to check.
Finally, the following lemma enables us to set up the usual cpo framework for the semantics of
recursion.

Lemma 7 Let D be an algebraic lattice with finite T. Then, the space [(D) > (D) x 3)] is an
algebraic lattice.

Proof: (Sketch)
Let f,g be elements of [(D) = (D) x 2)]. The least upper bound of h of f and g is defined as

_ Ly in
h(z) = lcs{ (:11) = F(3)(y,t2) = 9(¥) (y,talit2)

Note the close similarity between the above definition and the definition of the parallel composition
operation. Least uuper bounds of chanis are got by the usual pointwise limit, and the finite elements
are lubs of finite sets of functions of the form f; 3, where aCb are finite elements and defined by

_J zifaZz
fap(z) = { z|_|b otherwise [ |
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5.2 Powerdomain constructions

The modelling of indeterminacy requires machinery to handle sets of closure operators. The de-
velopment of these tools is is the primary aim of this section. The powerdomain construction that
is used here is a variant [8] of the standard powerdomain constructions [23]. The relationship of
the powerdomian construction used here to the usual powerdomian constructions is described in
Appendix D.

Let B(D) be the basis of D. The basis of the Smyth powerdomain of D, denoted by Ps(D) is
the finite powerset of the basis elements, Psin(B(D)), ordered as

{d1...d}C{ey...em}=>(V1<j<m) (31 <i< n)[diCey]

The Smyth powerdomain [23] of D, denoted Ps(D), is the ideal completion of Ps([(D) = (D) x 2)]),
i.e we have

e The elements of Ps(D) are downward closed and directed subsets S of Ps(D)
e The ordering relation is C.
Ps(D) can be made into a continuous algebra [23] with a union operation #, defined as follows:
51985, = {31U82|51 € S1,82 € Sa}

Note that the operation W is idempotent, commutative and associative.
The new powerdomain construction is based on an “extenstional” ordering among sets of func-
tions. Define a set-theoretic function App, from Py;,(B([(D) = (D) x 2)]))x D to Ps(D) as follows.

App({fl .. -fn}’z) = U.‘f,‘(.’lf)

The ordering relation is defined in terms of the partial function App.

Definition 18 P([(D) = (D) x 3))) is the preorder whose carrier is Psin(B([(D) = (D) x 3)))).
The ordering relation is defined as follows.Let F = {fy...f,},G={g1...9m}. Then FCG if,

FCG=[(Vz) App(F,z)CApp(G, )]

P((D) = (D) x 3)]) is the ideal completion of P([(D) < (D) x 3)]). P((D) = (D) x 2)]) can be

made into a continuous algebra [23] with a union operation W, defined as follows:
S14S,; = {81 U32|31 € 51,82 € 52}

. ¥ is idempotent, commutative and idempotent.
There is a singleton embedding function { [} from [(D) = (D) x 3)] to P([(D) = (D) x 3)]),
defined on the basis of [(D) = (D) x 3)] by

{rb=1{f}

. { [} as defined above is monotone, and can be extended uniquely to a continuous function.

The parallel composition operation on P([(D) = (D) X 2)]) can be defined, in a natural fashion.
The following definition is on the basis elements P([(D) = (D) x 2))).

{fl o 'fﬂ}“{gl . --gm} = Eﬂ{.)‘.i“g.iliuj}
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Lemma 8 || as defined above is monotone in both arguments.

Proof: Let F = {fi...fa}, G = {91...9m} and GCF. Let H = {hy...hr}. Let (y,term) €
App(F||H,z). Then, we have f; € F,hx € H such that f;||hx(z) = (y,term). Since f; and hy are
finite, there is an ¢ such that

y = (o f;)o (Il ohg)))(z))

fi(y) = (Z/, tl)
he(y) = (y,t2)
term = t1MNt,

Since GCF (3g;) [9;(y)Cfi(y)]. Thus g;(y) = (y,t}), for some #;C¢;. Thus

gillhe(v)Efillhe(y)

Since zCy,
9;illhe(z)Cygj||hr(y)Cfil lhe(y) = Cfil|hx(z)

Thus, App(G||H,z)CApp(F||H,z). B

So, || can be extended uniquely to a continuous function on the whole space. The || operation is
commutative and associative. As before, the parallel composition operation with sharing can also
be defined. The definition of the operation of parallel composition with sharing, requires a notion
of FxTIdp,, F € P([(D2) 5 (D2) x 3)]). We define a continuous function x”Idp,. The domain
of xTIdp, is P([(D1) = (D;) x 3)]) and its range is P([(D1xTD3) = (D1xT D) x 3)]). This is
written postfix for readability. As usual, we define sxTIdp,, for s € P([(D1) = (D1) x 3)]). Let
s=1{fi-. fu).

.SXTIdD2 = (f1 XTIdDZ,)&i ce (anTIdpz)

It is easy to check that the above definition defines a monotone function from P([(D;) = (D2) x 3)])
to P([(D1xTDy) 5 (D1xTD3) x 3)]). So, it can be extended uniquely to a continuous function
from P([(D1) 5 (D1) x 3))) to P([(D1x” D2) = (D1x” Da) x ).

As in the determinate case, we can define a continuous opertor on s| on P([(D) = (D) x 2))),
where s is a continuous function from ENV to Bool. As usual, we define s only on the finite

elements of P([(D) = (D) x 3)]).

si{fi.. . fa} = wi{s|fi}

Monotonicity is easily checked. Furthermore, the function defined above preserves b, i.e is linear.
So, it can be extended uniquely to a continuous, linear operator on P([(D) = (D) x 2)]).

6 Denotational Semantics

The types of the denotations of various syntactic entities is as follows:

e Terms : [(ENVXTV) S (ENVXTV) x 3)].

e n-ary predicates p : element of P([(HrlrSiSnV;) 5 (HfsiSnW) x D))
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e Atoms and sequences of atoms: P([(ENV) = (ENV) x 2)]).

The definition of the denotations of terms is by structural induction on terms. The definition
will encompass meanings of sequences of terms, £[(¢;...t,)]. The denotation of a sequence of
terms of length = is a closure operator on the space EN VxTHITV. The intuitive way to read the
definition is to treat the ENV argument to the function as the environment of evaluation of the
term, and the V argument to the function as the approximation to the final result of evaluating
the term.

e Variables :
E[z] (env,a) = ({env[z > b],b),T) where b = env(z)|Ja

e Sequences of terms:
Let = (t; ...t,). Note that by structural induction hypothesis, f; = £[t;] are defined. Then,

E[(t1-..ta)] = llEnv(ELEIIE)

e Terms:
Consider a term of form g(#;...t,). By structural induction hypothesis, £[f] is known.
Define,

Elg(t1- . .ta)] = (TENV, D(ni1)) 0 (EEIXT Tdy (ny1))|I(TdEnvXTEG]))

Now we define the meaning of the equality predicate, as a closure operator on ENV. The deno-
tation of t; = t3 is a closure operator on ENV. The result of evaluating ¢; = ¢; in an environment
is the environment got by adding this constraint. In keeping with the spirit of constraints, the
resulting environment can be thought of as the smallest environment more refined than the input
environment such that both ¢; and ¢, evaluate to the same value. Since least common solutions were
captured by the parallel composition operation, the following definition should not be surprising.

E[ts = t2](env) = [Ny o (E[t:]l|€[t2])] (env, L))

Thus the resulting environment is got by applying the parallel composition of £[t;] and £[¢;] to
the initial environment, and projecting out the resulting environment.

The denotation of a sequence of clauses C is built up by induction on length. The following
definition builds up the denotations of larger sequences from smaller sequences.

E[C1,Co] = E[Ch]lE[C.]

Under AND-fairness, note that the constraints imposed by C;,C, is the intersection of the con-
straints imposed by the C;’s. The denotational semantics models this view of the operational
semantics, with intersection of constraints being modelled by the parallel composition operator ||.
Furthermore, the computation corresponding to the sequence of atoms above terminates exactly
when both the subcomputations C; and C; terminate. Note that this was built into the domain
theoretic definition of the parallel composition operator: the greatest lower bound oepration in
defining the termination signal of the result of the parallel composition operation in definition 12
captures exactly this notion.
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We now define the meaning of guarded clauses of the form G|C. This requires the definition of
the denotation of guards. The denotation of guards is a continuous function mapping the space of
environments ENV to the lattice of truth values Bool. Let G be a guard predicate. Let env be an
element of ENV. Then, £[G] env = tt is intended to mean that the guard evaluates to true in the
environment env. Similarly, £[G] env = ff is intended to mean that the guard evaluates to true
in the environment env, and £[G] env =L is intended to mean that the evaluation of the guard in
the environment env leads to a suspended computation. The formal definition is given below.

T, if env = envr
tt,if env(z)Ts=f
ffyifenv(z)Ts=g#f

1 otherwise

Elz 1 s = flenv =

The conjunction of a list of primitive guards is defined using the “parallel AND” function, defined
as follows. Let f;, fo be continuous functions from ENV to Bool.

T, if env = envr

ffyif ienv=ffV frenv=ff
tt, if fr env =1t A fy env = tt

1 otherwise

Pand( f1, f2)env =

Define
e[G|C] = €[G]€[C]

This is motivated by considering the three cases of the try function for the guard predicate:

e (Success)
This happens operationally when the environment has sufficient constraints to make the guard
predicate succeed. Semantically, this is modelled by checking that £[G] in the environment
returns true. Recall E[G]|E[C] returned the result of £[C] if the input environment was more
refined than £[G].

e Failure
This happens operationally when the environment has sufficient constraints to make the
guard predicate fail. Semantically, this is modelled by checking that £[G] in the environment
evaluates to false. Recall that E[G]|E[C] returned T if the input environment was such that
E[G] evaluated to ff.

e Suspend
This happens operationally when neither of the above happens. In this case, this branch of
computation suspends. Semantically, this is modelled by returning the input environment as
the resulting environment, and keeping track of the fact that computation has not terminated.

The denotation of pis an element of [(I]¢;<, Vi) = (Hfsian;) x 2)]. For motivational purposes,
consider the simple case when there is only one non-recursive definition for the 1-ary predicate p.
Let the definition be p(z) « G|C. Define

Elp] = Aadl; 0 E[G|C] o env [z — a]
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The handling of renaming by the above definition needs some explanation. Intuitively, the above
definition can be viewed as setting up a new local environment for the execution of p, and throwing
it away when execution of p is done. This is brought out by the following observations:

o The environment passed to £[G|C] is uninitialised except for the variable z.

o The resulting environment is thrown away at the end, and only the value of the environment
at z is returned as the resulting semantic value.

Now, consider the general case. The meanings of n-ary predicates are elements of the powerdo-
main of the closure operators on II1 V. The elements of £[p] correspond to the different choices of
execution. Furthermore, each element(choice) has the same intutive reading that we gave above.
We pass approximations to the arguments to £[p] and £[p] returns a set of refined results corre-
sponding to the different possible execution paths.

Let the defining clauses for p be given by

p(f) — G1|Cl

p(T) « Gm|Cm

Because of recursion, some of the atoms in some C; might have predicate name p.
We present the motivation for the definitions first.

e Handling many clauses with same head:
Given a set of clauses for p, we have different possible choices for expanding the occurrence
of a p in a goal. Thus p can be viewed as imposing one of a set of constraints. Note that the
W operation of the powerdomain constructions models this presence of choice.

e Recursion :
Handling of recursion is standard. The correspondence between least fixed points and recur-
sive definitions is well known and has been widely studied, in various settings.

The denotation of p, £[p], is defined by as the least fixed point of a functional 7. 7 is of type
Ps([(V™) = (V™) x D)]) = Ps([(V™) = (V™) x 3)]). 7 is defined as follows:

7(f) = wi{€[n(HI1 < i < m}
where, £[;(f)] is defined as follows:

E[ri(f)] = MA@z 0 E[G;|Ci] o [envy [Z — d]]

Note that 7;(f) depends on f if there is an occurrence of p in C;.

A notion of application is defined next, i.e the denotation of p(@) assuming that £[p] is known.
This semantic function is intended to model the result got by executing the goal query p(%) in an
environment. This is the base case for the denotation of clauses. The definition is motivated by
studying the operational rule for the reduce transition. Informally, the reduce transition has the
following components:

e A renamed apart definition of p.
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e A unifier that binds some of the renamed apart variables to compnents of the term .

The first item above was modelled by £[p]. The effects on the environment is only through the
unifier in the second step. The connection between the local environment of p and the global
environment is that the result of evaluating @ in the global environment is the same as the result
of evaluating the relevant vector of local variables in the local environment. Define

Elp(@)] = Tenv o (IdenvxTEDII({ [ 1) o (Idpnv, L)

Note that the global environment is affected only by £[#]. Also, the result of evaluating the
relevant vector of local variables in the local environment of p was the result returned by p. Thus,
the parallel composition operation (read as common solution) ensures that the “value” resulting
from evaluating £[#] in the global environemnt and the value returned by execution of p are equal.

7 Relating the two semantics

In this section, we outline the proof that the operataional and denotational views of programs
coincide. Here, we restrict ourselves to an informal description of the key ideas underlying the
proof. Formal definitions and detailed proofs can be found in the appendices. The proof itself can
be viewed as the extension of the full-abstraction proof of previous work [9] to an indeterminate
setting.

Reduction preserves meaning

The first step in a full-abstraction proof is a soundness result of the denotational semantics. The
aim of this is to show that the denotation of a program remains invariant during reduction. In
the setting of determinate languages, this soundness result is proved by showing that one step of
the reduction relation does not alter the denotation of the program. In an indeterminate setting a
reduction step could involve making a choice among competing and mutually exclusive reductions.
Thus, it is unrealistic to expect such a result in the indeterminate setting.

We first need to associate denotations with operational configurations. The syntactic environ-
ment can be translated into a set of equations in the following way. Let A be an alias set. Then,
EQ(A) is the set of all pairs of terms in the alias set. EQ(p), the set of equations generated
from p, is the reflexive, transitive and symmetric closure of the union of the equations gener-
ated from each alias set in p.. The semanticfunction M[] assigns to configurations an element of

P([(ENV) S (ENV) x 3)).

MI(C,p)] = E[C]IIETEQ(P)]

Thus, it is intended that MJ] represents the effect of the complete computation on a configura-
tion. M[(C, p)] evaluated in an initial environment yields a set of possible results, say S. Let
confy ...conf, be all the possible configurations reachable in one-step from (C, p). Consider the
sets S;, where S; is the set of possible results got by evaluating M[conf;] in the same initial envi-
ronment. Then, we show that S = 4;S;. As a corollary, we show if a process passes a finite test,
the set of possibel results produced by the denotational semantics attests this fact.
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Computational adequacy

The hardest part of the proof is the converse to the result stated at the end of the last subsection,
namely that a process passes a test only if the results predicted by the denotational semantics
indicate so. This is proved by showing that the operational semantics attains the values predicted
by the denotational semantics. More precisely, it is shown that the operational semantics attains
every finite approrimant to the result predicted by the denotational semantics. Analagous properties
have been termed computational adequacy [13].

For this, we define a relationship < between sequences of atoms C and elements G of the
powerdomain of closure operators on ENV. The main theorem proves that for all sequences of
atoms C, £[C] < C. Informally, £[C] X C means the following. Recall that £[C] can be thought
of intuitively as a set of closure operators. £[C] < C means that every valid computation sequence
c of C corresponds to an element f. of £[C]. This correspondence takes the following form. Assume
that we are given a finite piece of the result predicted by f.. Then, c after a finite sequence of
reductions produces a more refined value.

The proof proceeds by structural induction. The difficult part of the proof is the construction
of a reduction sequences from semantic information. The subtle case is the handling of parallel
imposition of constraints. The special properties of the parallel composition of closure operators
enable us to carry out this construction. We make use of the fact that the semantic definition of the
least common fixed point of a pair of closure operators suggests an interleaving strategy. Suppose
that g, and g, are two closure operators that correspond to the imposition of two constraints given
by sequences of atoms C; and C;. Suppose that we know how to construct reduction sequences
corresponding to C; and C; individually. Then, from the definition of the parallel composition
g1 and go, we can construct an interleaved reduction sequence of C; and C, corresponding to the
computing the iterates of (g7 o g2).

Full-abstraction

Combining the above two results, we deduce that a process passes a finite test, if and only if the set of
possible results produced by the denotational semantics witnesses this fact. Since the denotational
semantics is compositional, if two processes have the same denotation, the tests passed by one
process are identical to the test passed by the second process. Thus, the denotational semantics is
correct for resoning about operational equality. This is called adequacy [2].

In fact the converse is also true. If two processes do not have the same denotation, there is
context that distinguishes the two processes, i.e the tests passed by the configuration got by placing
one process in the context differs from the tests passed by configuration got by placing the other
process in the same context. This is called full abstraction [16] [13].

8 Semantics of full language

This section extends the semantics to the full language. The syntactic differences arise from the
more powerful tests allowed int he gaurd predicate. The primitive guards are enhanced to allow
tests of the from z = y, where z,y are variable names. In general, the primitive guards can be of
form z =t , where ¢ is an arbitrary term.

In the semantics, this difference is reflected in the notion of observations. Primitive observations
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are now of the form z = t,z # t. A syntactic environment p models a primtive observation z = ¢
if p\U{z,t} = p, i.e the reduced form of p | J{z,t} is p.

The denotational semantics has the same structure as before. The domains ENV and V are
defined differently. However, as before, both these domains will be complete algebriac lattices
with finite 7. Thus, the original definitions of combinators like parallel composition are valid in
this context. The only semantic functions that change are the definitions of the denotations of
variables and guard predicates. There is also a slight difference in the definition of the denotation
of predicate symbols. Thus the proof of the match of the operational and denotational semantics
for the restricted language go through essentially unchanged.

The semantic domain of environments is constrcuted from the syntactic environments. Intu-
tively, the ordering relation captures the notion of “more defined”. So, p1Cp; is intended to mean
that the constraints imposed by p; are a subset of the constraints imposed by p;. This can be
captured operationally by saying that the reduced from of p; |Jp2 is p2. Since the denotational se-
mantics requires the presence of limits, the semantic domain ENV includes the limits of sequences
of finite syntactic environments. Indeed, ENV can be viewed as the ideal completion of the space
of finite syntactic environments oredered by the “refinement ordering”. A more explicit description
of the domain ENV is given below.

Definition 14 ENV is the preorder defined as follows.

o The elements of ENV are (possibly) infinite syntactic enviroments, in reduced form.

o [p2 inconsistent V p2 U p1 = p1]=>p1Cp2

ENYV shares the nice properties of the space of environments used for the simpler language.
Lemma 9 ENV is a complete algebraic lattice with finite T'.

Proof: (Sketch)
The finite elements are finite syntactic environments. The least upper bound of a set of syntactic
environments {p;|¢ € I}, where I is an index set, is given by the reduced form of |J; p;. The T
element is the inconsistent environment. N

To define the space of values, we need a notion of the value of a term in a syntactic environment.
Recall that this notion was used in defining the transition relation for the simpler language in
section 2.

The space of values V is defined as follows.

Definition 15 V is the preorder defined as follows.
o The elements of V are of the form (t,p), wheret is a term and p € ENV.

o (t1,p1)C(t2, p2), if p2 is inconsistent or both of the following conditions hold:

- p1Ep2
— (Vs) [(t1, p1) T=Fi=>(t2, p2) 1= 1]

Lemma 10 V is a complete algebraic lattice.
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Proof: (Sketch)
The finite elements are of the form (¢, p), where p is a finite element of ENV. The T elements are
of the form (¢, p), where p is inconsistent. The least upper bound of a set {(t;,p;)|I} is given by
(t1,p), where p is the reduced form of [\J; p;]U{t:|I}. N

Thus, the parallel composition combinator can be defined for all the cases required in the se-
mantics. Below, the definitions that differ from the semantics of the weaker language, are sketched.
The other definitions take exactly the same form as before, and are omitted.

e Variables :
Let v = (t,p). Then

E[z] (env,a) = ((env’,b),T), where = env(z) Ja
where env’ = envJpU{z = t} and b = (¢, env’).

e Guard predicates:
The guard predicate is conjunction of primitive guards.

—z=t,zTs=f,z1s# f,where f is a function symbol and z is a variable name and ¢
is a term.

— Various numeric predicates, for example =:=, <, #:#,

The denotation of guards is continuous function from ENV to Bool as before. The denotation
of primitive guards is defined below.

T, if env = envr
tt, if env|J{z,t} = env
ff, if env|J{z,t} = envr

L otherwise

E[z = t]lenv =

The conjunction of a list of primitive guards is defined using the “parallel AND” function,
defined as before.

e Predicate symbols :
Recall that the original definition went as follows. The denotation of p, £[p], is defined
by as the least fixed point of a functional 7. 7 is a continuous operator on the space

P([(V™) = (V™) x 3)]). 7 is defined as follows:

(f) = wi{€[n(HI1 < i < m}
where, £[;(f)] is defined as follows:

Elni(N] = /\5.11,(5,3) 0 .E[Gi|Ci] o [env,[Z — d]]
where HE 2,3) is a continuous function from ENV to V defined as follows:

H'(i,a)env = ((a1,env(z1)|7) . . .(an, env(z,)|r)

where env(zq)|r is the alis set of z; in env with all occurrences of ¥ removed. In the above
definition, there is an implicit assumption that Z() Var(@) = ¢. We can make this assumption
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because it suffices to define the value of £[r;(f)] on finite @. If @ is finite, the number of
variables in Var(@) is finite. So, the there are always unbound variables availabel for use as
Z in the above definition. Furthermore, note that the result returned is independednt of the
choice of the variable names Z as long as they satisfy the disjointness condition.

9 Conclusions

The semantics presented here presents a rather simple and straightforward view of programs. The
setting works naturally for infinite and deadlocked computations, and the AN D indeterminacy of
the operational semantics is abstracted away totally. However, the treatment of error in computa-
tions as “benign” is not very satisfying: for example the following two programs are identified:

p(z) « true|lz =1
and the predicate name ¢ with two definitions

g(z) « truelz =1
q(z) « true|fail

This issue is to be addressed in future work.
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A One-step Reduction Preserves Meaning

In this section we will show that the reduction relation preserves meaning, as given by the abstract
semantics. In particular, this shows that if a sequence of rewrites resulst in a configuration that
cannot be reduced any further then the constraints embodied in the configuration are predicted
by the abstract semantics. It also means that the constraints of intermediate configurations are
subsumed in the final result predicted by the environment. For this we need to translate the
syntactic environment into a set of equations. We formalise this notion first.

A syntactic environment p is a collection of alias sets and each alias set is a set consisting, in
general, of identifiers and terms. Suppose that p is a syntactic environment in reduced form. We
shall write EQ(p) for the set of equations generated from p. We define EQ(p) as the reflexive, tran-
sitive and symmetric closure of the union of the equations generated from each alias set A1, A2, ...
is p. We use the same notation, i.e. EQ(A) to stand for the equations generated from a single alias
set. Given an alias set A, we have three possibilities, (i) 4 consists entirely of identifiers, (ii) A has
a single term and (iii) A has several terms.

In generating EQ(A) we first generate a set of equations from the explicit representation of
the alias set and then we close under transitivity, reflexivity and symmetry. Let 4 be an alias set.
Then, EQ(A) is the set of all pairs of terms in the alias set.

In order to show that one-step reduction preserves meaning we need to associate meanings with
the basic entities used in the operational semantics, i.e. with configurations. In the following the
semantic function M[] assigns to configurations an element of P([(ENV) 5 (ENV) x 2)]).

MI(C,p)] = CIIE[EQ(p)]

We require that the semantic environment env and the syntactic environment p satisfy

Dom(env) N (Var — Dom(p) = ¢

Dom(env) is the set of names that are bound to a non-bottom value. Dom(p) refers to the set of all
names occurring in some alias set. This restriction ensures that there will be no conflicts occurring
when new names are allocated. The function M, defines the meaning of sequences of atoms in the
context of a syntactic environment p. Thus, it is intended that M[] represents the effect of the
complete computation on a configuration. The following theorem shows that, in a certain sense,
as we rewrite a configuration the meaning as given by M will not alter. More precisely, we prove
that the part of the environment that is initially relevant is preserved by the one-step reduction.
The reason we need this restriction is that some of the rewrites may cause new variables to be
generated; in that case one clearly cannot hope that the environments are identical. We use the
notation () to mean that the resulting environment is restricted to the variables that were bound
in the environment p.

Lemma 11 Let the defining clauses for p be given by
p(Z) — G1|Cy
P(£) « Gm|Crm
Consider the configuration (p(%),p). Then,
M[(p(D), p)] = WiM[(pi(F), p)]
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where the sole defining clause for p; is
p(%) « Gi|C;

Proof: The proof is a simple application of the linearity(#-preserving) properties of various oper-
ators. First, note that

Elp(?)]

Ienv o (IdenvxTE[PDII({ £[@] I) o (Idenv, petp)
Igny o (Idpnvx T [w:E[nIDII{ €[@] §) o (Idpnv, pétp)
= ;[Ieny o (IdenvxTE[pDII EL@] 1) o (Tdenv, pétp)]
= wil€[p@]

So, we have

MEp(@,0)] = El@NIEIERQ(P)]
[w:E[p:(DNNIELEQ(0)]
= wlEln@IE[EQ()] N

Corollary 1 Let Let the defining clauses for p be given by

p(Z) « G1|Cy
P(f) — GulCm
Consider the configuration (p(%), p). Furthermore, assume that M[(pi(?), p)lenvy = T. Then,

M(p(®), p)] = S MI(pi(®), Mli =2...n
where the sole defining clause for p; is
p(Z) « GilC;

Proof: The result follows by above lemma, by observing that for all elements S of Ps(ENV),
Se{T}=S5. 1

The following lemma is the heart of the proof. Intuitively, this lemma states that, under some
restrictions, the replacement of a predicate name by its definition does not change the denotation
of a configuration.

Lemma 12 Let the unique defining clause for p be
p(Z) < G|C

where the variables in T are distinct. Also, assume that the above clause has distinct names from
p. Consider the configuration (p(%), p). Then,

M[(p(®), p)] = M[(GIC,p & = 1)]
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Proof: Recall that the denotation of p(f) was defined as follows:
E[p(D] = Tenv o (ZdenvxTE[PDII{ €[8 }) o (Tdpnv, pérp)
where £[p] was defined as
Elp] = Aa.1lz o0 E[G|C] o [envy [Z — @]

Consider M[(G|C,pU{Z =t )]. Since, the variables in G|C are all distinct from the variables in
p, E[G|C] can be rewritten as IdgnvxT E[G|C] to indicate that E[G|C] affects only the variables
#, and ENV is the variables that are not any of the Z. So, we have:

MI(GIC,pU{Z =T)] E[GICIIE[EQ(p U Z = })]

= (IdpnvxTE[GICDIIEIEQ(pU{Z = T})]
= (IdpnvxTE[GIC))I{Z = HIE[EQ(p)]

Since we are interested only in the effect on the variables in p, the actual function of interest is
Mgy o M[(G|C,pU{Z =T )]

Note that,
Ognv o (IdenvxTE[GICDI{Z = T} EQ(p)

can be rewritten as

Oenv o (IdenvxTE[PDII{ E[A B) o (Idenv, pérp)

becuase the effect of the equation {Z¥ = f} is captured by the parallel composition operation
(IdgnvXTEPDII({ €[] ). Hence, we have the result. W

Theorem 1 Let conf = (C,p) be an initial configuration. Let conf ...confy, be such that every
non-failing computation path of conf passes through one of con fi—scon fn,. Then,

M{con flenv = W;M[conf;]

Proof: The proof follows by induction on the number of steps of reduction, if we prove the result
for one step reductions. That is, if conf ...conf,, be all the possible configurations attainable in
one step from conf, then

M{[conflenv = w;M[conf;]

But, this is immediate from the previous two lemmas and the compositionality of the denotational
sematntics. W
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B Computational adequacy

In this section, we prove that the operational semantics actually attains the values predicted by
the denotational semantics. Along with the fact that one-step reduction preserves meaning, this
means that the results predicted by the operational and denotational semantics match exactly; this
is usually called computational adequacy [13]. The difficult constituent of this proof is that one
has to construct a reduction sequence from semantic information.

B.1 Relating Denotational and Operational environments

For defining the inclusive predicate relating predicate symbols and partial closure operators, we
need to develop notation that relates syntactic and semantic values, syntactic and syntactic envi-
ronments.

Recall that a notion of the value of a term in a syntactic environemnt was defined. Th definition
is reprodcued below. First, we define formally the value of a term in a syntactic environment. Let
p be a syntactic environment, in reduced form, that is consistent. Consider the following transition
system. Let s denote a finite sequence. Let t = f*(t1,...t,) be any term. Then, we define ¢t T s
inductively as follows:

et70=f"
et;Ts=g=>t1[ils]=g
The following rules “evaluate” an expression of form ¢ T s in an environment p.

1. < z,p>— undefined
if the alias set of z contains no non-variable terms.

2. <z,p>>1
if ¢ is in the alias set of z. Note that there may be may be many different terms in the alias
set of z. t is arbitrarily chosen from this alias set, by some rule, say lexicographic ordering.
(The following lemma essentially states that this seemingly arbitrary choice does not affect
the results of the evaluation of (e, p), in the interesting cases)

<ep>—t
<els,p>—ot]s

Lemma 13 Let p be a consistent syntactic environment. Let < e,p >— f,‘;, where fi is a function
symbol. Then, < e,p >— f is independent of the choice made in rule 2 of the transition system
above.

The following sequence of definitions are intended to set a up a relationship between syntactic
and semantic environments. The following definition relates syntactic expressions and semantic
values. Intuitively, v < (¢, p) means that that ¢ when evaluated in syntactic environment p gives a
value that is more defined than v. t DOMINATES v in p, written v < (¢, p) is defined inductively

as follows:

Definition 16 (Relating terms and semantic values)
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o v < (z,p) if for all finite sequences s,
ols] € W=z 1 [s/0], o) f

LAY i (tlap)/\ e Un j (tn,p)z> f(vl ---’Un) ﬁ (f(tla---tn)vp)

We write @ < (£, p) as shorthand for a; < (¢;,p),¢=1...n.

The following definition relates syntactic and semantic environments. It can be viewed as saying
that the syntactic environment p is more constrained than env. p dominates env, written env < p,
is defined as follows:

Definition 17 (Relating semantic and syntactic environents)
env X p&
p consistent=>env # envr A (Vz) [env(z) X (z, p))

Both the relations defined above possess some monotonicity properites.
Lemma 14 (Monotonicity properties of <)

o V'Co=> [v X (8, p)=>v" < (2,p)]

o env'Cenv= [env X p=env’ <X p]

The following lemma states that the relations < defined above is inclusive( [24]). The proof is
immediate and is omitted.

Lemma 15 (Inclusive predicates )

o Letv =|J;{vi}. Then
[(V'Ui) Vs .'5 (tv p)]:>v j (t,p)

o Let env = | |;{env;}. Then
[(Venv;) env; X p|=>env < p

The above two definitions can be combined in the natural manner.

Definition 18 env,a < p,t& a X (t,p)Aenv < p

B.2 Determinate case
First, we assume that there is only one definition per predicate name.
Definition 19 (Definition of relation — )

o confy—confy=>confi—rsconf,

o (C,p) —4(C,C",p)

When (C, p) —=,(D, p'), we will sometimes write (C, p) —,(UcWUe, p'), to indicate that the
atoms in Ug arose by reductions from C. Thus the atoms in U, arise from the atoms addded in
step two of the above definition, the subscript e is intended to indicate “extra”.

Lemma 16 ({C,p)—,(C,p')) A env X p=>env <X p’
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The following lemma is a restricted Church-Rosser like property.

Lemma 17 Let the set of clauses satisfy the property that there is atmost one definition for each
predicate. Let ({C;},p) be a configuration. Let conf; and conf, be two configurations such that

({Ci},p)—confi A ({Ci},p)—conf;
Then, there is a configuration conf such that
confi—conf A confy—rconf

Lemma 18 Let the set of clauses satisfy the property that there is atmost one definition for each
predicate. let (C, p) be a configuration. Let conf; and conf; be two configurations such that

(C,p)—*—>,conf1 A (C’ p)_*_’aconf2
Then, there is a configuration conf such that
confi—sconf A confy—s conf

Definition 20 (Definition of inclusive predicate for terms)
Letge ([ENVXTOIV) S (ENVXTOIV) x 3)]. T < g if , we have

env,@ < p,tAp#error=r < p,t
where g{env, @) = (r,term)

The following definition is the definition of the relation g < C, between sequences of atoms C
and closure operators ¢ on ENV. The following definition can be intuitively saying that every
finite portion of the answer predicted by the denotational semantics is attained by the operatonal
semantics after a finite number of steps. In particular, the semantics handles failed computations
too.

Definition 21 (Definition of inclusive predicate)
Letge [ENV) 5 (ENV) x 3)]. g X C if the following holds. Let,

o (C,%)—4 (UcUUe,p)
e env=Xp
Let g(env) = (env’,term). Then, (VenvsCenv’) (I(UsWUL, p')) such that
o (UgwU.,p) —(ULWUL, p"))
e envy X p

e term = T=>Ué =¢
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Suppose that g; and g, are partial two closure operators that correspond to the imposition of
two constraints given as sequences C; and C;. Suppose that we know how to construct reduction
sequences corresponding to C; and C; individually. Then, from the definition of the parallel compo-
sition ¢g; and g, we can construct an interleaved reduction sequence of C; and C; corresponding to
the computing the iterates of (g3 0 g2). In other words, the special form of the fixed point iteration
corresponding to the parallel composition operation provides guidance about how to construct the
interleaved reduction sequence. The proof of the following lemma formalizes this intuition.

Lemma 19 Let g,h € [ENV) S (ENV) x 2)]. Then,
g CAh=<D=g||lh<C,D

Proof: Let

o g||h env = (env’, term)

o (C,D,x)—,(UcwUpwU,,p)

e envXp
Let (env;,term;) = (go h)‘ env. We prove by induction on : that

(VenvsCenv;) ((ULWULWUe, pres))

such that

o (UcwUpWU,, p)— (ULWULWU., pres)

o envf X Pres-

o term; = T=>[UpwUp = ]

Base: (i = 0)
In this case, envsCenv and the configuration (UcwUpwU,, p) satisfies required properties.
Induction: (assume result for 7)

From the continuity of all functions involved, we deduce the existence of finite environments
env; and envy such that,

o (envy,term(;11))Cg env;
o (envy,term(iyy))Ch env,
o (envy, L)C(go h)'env

We can assume the same second coordinates for both g env; and h env, because we know that the
second coordinate of g||h applied to env is the greatest lower bound of the second coordinates of g
and h applied to env. This is the semantic way of capturing the intuitive idea that g||h terminates
if and only if both h and g terminate. From induction hypothesis, (J(USWULWUe, p2)) such that

o (UcwUpWU,, p)— (ULWURWU., p2)

e envy X Po.
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Now, we construct the required reduction sequence in two stages. In the first stage, the re-
ductions come from C. In the second stage, the reductions come from D. This is the precise
formulation of the operational interleaving alluded to in the discussion preceding the statement of

this lemma.
Since (Up, p) — ,(ULWURWU,, p2) and h <X D, (H(USWUpWU, ps)) such that

o (USWUBWU,, po)—(ULWUpWU,, p1)
o envy X Py
o term; =T=>Up =¢
Since (Ug, p) —s{ULwUpwUe,p1) and g X C, (H(UpwUpWU,, pre,)) such that
o (USWULWU,, p1)——(ULWULWU,, pres)
® envs X Pres
o term; =T=>U,=¢
Hence,we have the result. W
Corollary 2 < £[f]

Proof: Structural induction on terms. The result is immediate for variables. The inductive step
for sequences of terms uses the above result.

Corollary 38 Let g1,92 € [ENV) S (ENV) x 3)]. Then,
922 CAgGXC=gillg2 2 C

Proof: Proof identical to proof of lemma. |}

Corollary 4 £t = t;] X {t1 = t2}

Lemma 20 g X C =£[G]|g X G|C

Proof: Note that the guard predicates satisfy the following “adequacy property”. Let env <X p.
Then,

o £[G] env = tt=(G, p) = true
o E[G] env = ff=>(G,p) = false

In case 1, result follows from assumption g < C. In case 2, (£[G]|g) env = envr. Operationally,
guard G evaluates to false and the execution of G|C in p fails. W

Recall that we defined the meanings of predicate symbols as elements of [(IIIV) 5 (IIIV) x 3)].
So,we need to develop some notation to relate elements of [(IIZV) = (IIZV)) x 3)] and predicate
symbols. The motivations for these definitions are quite the same as before.
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Definition 22 (Definition of inclusive predicate)
Let h € [(IIV) S (MIV) x 3)]. h < p if the following holds. Let

o (p(f), %)=, (UPWU, p)
e @2 (f0)
If, hity = (res,term), (¥(bs,term)Cres) (HU,wU', p")) such that
o (Upwl, p)—(UWU", o))
o by 2 (£,0)
o term=T=U'=¢
The following lemma captures the notion of alpha-conversion, in the semantics.

Lemma 21 (Renaming lemma)
Let X\ : Y7 — Y, be a bijection between two disjoint sets of variables Y1,Y;. Let C X g, where

Var(C) CY;. Then, Cy = gx, where
e C) denotes the result of simultaneous substitution of the variables ¢ € Y7 by A(z) € Y;.

e gn=AogoA, where
env(A(z)) ¢ €Yy
Alenv)(z) = { env(AVD(2)) z €Y,
env(z) 2 ¢ Y1 UY,

Proof: Note that C < g=> (z ¢ Y1=>[II; 0g(env)](z) = env(z)). Result now follows from definitions.
i

The following is the case of the structural induction that enables us to deduce the desired
properties for the predicate name p given that the properties hold for the clause body defining p.

Lemma 22 g < {G|C}=h < p where
o The defining clause for p is p(Z) — G|C.
o h=13z0&[G|C]oenv,[Z+— 7]
Proof: Let
o (p(),%)—s (UpWU, p)
o X (f,0)
Let ¥ be variables not found in p or U,wU. Note that
(p(1), %)—(G}ICy , %)

where G§|Cy is supposed to indicate a freshly renamed clause with variables § for . From 18, we
deduce the existence of a configuration conf such that

GZ|CZ, %)= ,conf A (U, p)—— conf
yl“y
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From lemma 21, g7 < Gg|Cy. Furthermore, @ < (£,p)=@ =< (%, peons)- Thus, we deduce @ < (¥, peonf)-
Result follows from hypothesis ¢ X {G|C}. &
The following lemma completes the cycle of structural induction proofs. The lemma proves that

the goal atoms of form p(7) inherit desired properties from p and {.

Lemma 23
hXpAg =X i=>hy < p(?)
where hy = IIgnv 0 (IdenvxTh)||g.
Proof: Note that we have,
o h X p=>IdgnvxTh < p(?)
o g Xig < p(d)

Using corollary 3, p(#) < IdgnvxThllg. 1

B.3 Determinisation

The motivation of this subsection is to set up tools to designate the possible execution sequences of
a program. Informally, this is done by associating with each predicate name a sequence of integers
that indicate the definition chosen at a reduction step. The sequence of integers can be thought
of as an oracle that identifies the choice to be made. For example, let a predicate name p has 5
definitions. Then, a sequence of integers starting with 3 indicates that the third definition is chosen
at the first call of p. However, note that we need more structure. Continuing the example sketched
above, let the third definition of p in the example above have the form

p(1) — Glai(f1), ¢2(f2)

Also assume that each of ¢; and ¢, have 3 definitions each. So, the information needed to determine
an execution sequence of p completely should contain the choices to be made for ¢; and ¢;. For
example, a tuple of the form (3, 1,2) identifies the choices to be made when reducing an atom with
head p: this information can be read as “Use the third definition for p, the first definition for ¢;
and the second definition for g, ”. Note that ¢; or g might be p. Thus, we need definitions that
can handle possible infinite reduction sequences. The following definitions should bne construed as
one way of stating everything formally.

Let N“ be the set of all finite and infinite sequences over the natural numbers N. Define R
inductively as follows:

N“Y C R
(Vn)[s1...5n ER = (s1...3,) € R]

Let L = II,P(R), where p are the predicate names in the program. Thus, L is a product of copies
of the powerset of R, the copies indexed by the predicate names p. Note that L is a complete lattice
under pointwise subset inclusion. With each predicate symbol p, we will associate a subset S, of L,
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that will denote the determinisations of p. The sets {S,} are constructed as the maximal fixpoint
of a monotone function F on L. Let {S,} be an element of L. Let the ith definition of p be

p() — G¥lgir - - - iw
Then, F({Sp}) = {Tp} is defined as follows:

(2,861 - Siu;) € Tp=>(8i5 € Sq;;,1 <5 < u;)
It is easy to check that F is monotone. Since F' is a monotone function on a complete lattice, F
has a maximum fixed point. Let {Det(p)} be the maximum fixed point of F.

Now, the definition of determinisation can be extended to sequences of atoms. A determinisation
of ¢1(.),.--gn(.) is an n-tuple {c; ...cn), where ¢; € Det(q;). Similarly a determinisation of G|C is
just a determinisation of C.

In the sequel, we will not explicitly refer to the structure of the sequences of the determinisation
of a program. Instead, we will identify the sequences with the (possibly infinite) deterministic

program that they encode.

B.4 Full proof
Definition 23 Let H € P((ILV) 5 (IZV) x 3))). Then, H < p if

(Ypa € Det(p)) (3h) [H¥{h [} = HA h =X p4]

Definition 24 For F € P([ENVXTNIV) S (ENVXTIIV) x 3)]), we define F < p(?) if

(Vp? € Det(p)) (3f) [Fe{ f } = F A f < pa(i]

Definition 25 Let G € P([[ENV) S (ENV)x 2))). Then, G X C if
(Ve! € Det(C)) (39) [Gw{ gt =G A g =X ]
Lemma 24 All the predicates defined above are inclusive.

Lemma 25 (Cases of structural induction)
1. Gl < Cl /\G2 < 02:>G1”G2 < Cl,Cz
2. G X C=£[Gu]|C X Gu|C

3. Let the defining clauses for p be p(ui) « Gu1|C1...p(un) « Gu,|Cp. Define new predicate
names p;, fori = 1...n, by the unique clause p;(4;) — Gu;|C;. Then,

(Vi=1...n)(H; 2 p;)=>4;H; <p

4. Let Gy < Gu|C} and the unique defining clause for p be p(Z — Gu|C. Then, H X p where
H =130 E[G|C] o env [T — 7]
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H<pAg=<i=Hy < p(i)
where Hy = (IdgnvxTH)|{ g [-

Proof: The proofs reduce the cases of structural induction to the corresponding cases of the
structural induction for the determiante case.

1. Every element of Det(C;,C,) has the form (cf,cg) where ¢! € Det(C;). From hypothesis
Fy X C1 A Fy < C,, there are g;, g2 such that

g 2dAG{a =G
and
gdAG{a =G

From lemma 19, we deduce that g;||g2 < c¢, 4. Furthermore,

Fl|G = F¢{flIG
= FllGe{ fHIGe{g [
= Fllee{ sHIGed s HH{ g
= Fyfl|Go{ fllg [
= FlGe{ fllg [

2. Every element of Det(Gu|C) is of form Gu|c? where ¢! € Det(C). From hypothesis on C
there is a g such that
g=<ctAGH{g}=G

From lemma 20 £[Gu]|g X Gulc. Furthermore,
E[Gu]IG = £[Gu]|(Gw{g D)

- E[Gu]|GUE[Gu]|{ ¢ )
= E[Gu]|Gw{ E[Gu]lg |

3. Given an element p% € Det(p), look at the first element of p?. If the first element is i, the
rest of p? induces a determinisation pf', of p;. From assumption, H; < p;, there exists h such
that

H;wh; = HAh; < p:—i

Hence, we have
Hwh; = H A h; jpd

4. Every element p? € Det(p) has the form Gu|c?. where ¢? € Det(C). From hypothesis,
G < {Gu|C}, there exists g such that

g2 {Gu|cd}AGe{g} =G
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From lemma 22, h < p® where

hzﬂfogoenvl[f»—»iﬂ

Hy{h[} = Hw{HOzogoenv [T ][}
= Hzo(Gw{g[})oenv, [T — 7]
= MzoGoenv, [T 7
= H
5. Every element p%(#) € Det(p(f)) is determined by an element p? € Det(p). From assumption

H < p, there exists h such that
h < p*A Heh =h

Consider hy = IdgnvxThl|g. From lemma 23, hy < p?. Furthermore,
Hpg{hy [ = (IdenvxTH)||{g bw{ TdenvxTh)llg }
= (IdenvxTH)|{ g bo(IdenvxT{r })I{g [
= (IdpnvxT(He{h[}))I{g }
= (IdgnvxTH)|{g [
= H, ]

Theorem 2 £[p] < p

Proof: The proof is by induction on the order of definitions of predicates. All cases of induction
except the case of definitions by recursive are carried out in the lemma 25. We give the proof for
the recursive case below.

Let the defining clauses for p be given by

p(f) — GU]lCl

P(Z) — Gup|Cry
Recall that 7;( H) was defined as follows:
E[Ti(H] = M(z..n41) © (E[GilCi] 0 [env [Z - &]])

Also, we defined 7(H) = W;7;(H).
We prove by fixpoint induction that H < p =7H < p. From lemma 25 above, it suffices to
prove that H < p =7, H < p;, where the sole defining clause is the ith clause of p.

e The ith defining clause for p contains no reference to p. In this case, proof does not require
the fixpoint induction hypothesis, and follows from the induction hypothesis on Gu;|C; and
from teh relevant cases of lemma 25.

e The ith defining clause for p contains references to p. Call this p;. Proof is by using the
relevant cases of lemma 25, using fixpoint induction hypothesis, to deduce that 7;(H) <X p;

Note that £[p] = |J;7*(L). Using the inclusivity of the predicate from lemma 24, we get £[p] < p.
|
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C Full-abstraction

The aim of this section is to use the proofs relating the operational and denotational semantics
coincide in their view of programs.

For this, we first give a translation of primitive observations into finite elements of ENV. The
translation function Trans maps elements of OBS to finite elements of Ps(V'). For the purposes
of this definition, we assume that the elements of OBS are in disjunctive normal form, i.e as
disjunctions of conjunctions.

1. Trans(tiEp(z1) A ... t.Cp(z,)) = envy[zg = t,. . .20 > 1],
2. Trans(p1 V p2...pn) = W;Trans(p;)

The following lemma establishes a tight connection between the tests passed by a program and
the denotation of the program.

Lemma 26 (p(f),¢) F s& Trans(s)CE[p(f)|(envy, L)

Proof: Let Trans(s)CE[p(f)]env,. Consider any valid execution sequence from the configuration
(p(?),¢). The execution sequence induces a determinisation p® € Det(p(%)). From lemma 2, we
have g such that gw€[p(2)] = E[p()] A g < p?. Let g envy = r. Let s? = (envy,term) € Trans(s)
be such that s?Cr. Note that s? corresponds to a disjunct in s. From definition 21 of g <X p® in
Appendix B, there is a configuration conf = (U, p) such that :

e The execution sequence from (p(?), #) corresponding to p? reduces in finitely many steps to
conf

o envy X pAfterm =T=>U = ¢]

Thus, the execution sequence p? passes test s? and hence the test s. Since the proof is true for all
execution sequences, we deduce that (p(t), ¢) I s.

Let (p(f),#)  s. From definitions, every execution path passes test s. Since every predicate
symbol has only finitely many definitions, Ko6nig’s lemma proves the existence of finitely many
configurations conf;,i = 1...n such that

e Every valid execution sequence passes through one of the conf;
e Forall i, conf; passes test s

From lemma, 1,
Elp(?), p)]envy = WE[confilenvy

Thus,

conf; s = Trans(s)CE[confi]env,
=Trans(s)Cw;E[confilenvy 1B

Theorem 8 (Full abstraction) E[p] = £[q]< p and q are operationally indistinguishable.
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Proof: First, we prove the forward implication. This is called adequacy. Let (C[], p) be any context.
Then, from the compositionality of the semantics, we deduce that E[(C[p],p)] = £[(C[d],p)]. In

particular,
E[(Clp], plenvy = E[(Cg], p)lenvy

Let s be any finite test. Then

(Clp],p) passes s & Trans(s)TE[(C[p], p)lenvy
& Trans(s)CE[(Clg], p)lenvy
¢ (Clg],p) passes s

Next, we prove the reverse implication. Let £[p] # £[¢]. Then, we have either £[p] Z £[q] v
Elq] Z €[p]. Assume that E[p] Z £[g]. Then, there exists a finite € V such that E[p](z) ¥
£[q](z). Thus, there is a finite element s of Ps(IIT V) such that sCE[p](z) A s € E[q)e. Let t,
be the sequence of finite terms coding z, and let test, be the finite test corresponding to s. Then,
sC&[p]z implies that (p(t;), ¢) passes Test,. We claim that (p(t;),$) does not pass Test,. For, if
it did, we have Trans(Test;) = sCE[q(tz)]. W
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D Relating P() and Ps()

The powerdomain construction used in this paper and Ps([(D) = (D) x 2)]) are closely related.
The main technical result of this section defines a continuous surjection r from Ps([(D) = (D) x 3)])
onto P([(D) < (D) x 2)]) that preserves all operations of interest. In particular, it preserves W, ||.
Only sketches of proofs are presented.

Let B([(D) = (D) x 3)]) be the basis of [(D) = (D) x 3)]. The basis of the Smyth powerdomain
of [(D) = (D) x 2)], denoted Ps([(D) = (D) x 3)]), is the finite powerset of the basis elements,
denoted Py;n(B([(D) = (D) x 3)])). The ordering relation is defined as

{fl .. -fn};{gl .. -gm}=>(V1 <3< m) (31 <:< n) [fil;gj]

The Smyth powerdomain [23], Ps([(D) - (D) x 2)]) is the ideal completion of Ps([(D) = (D) x 2))),
i.e we have

¢ The elements are downward closed, directed subsets of Ps([(D) = (D) x 2)]).

e The ordering relation is C.

Note that the Ps([(D) > (D) x 2)]) can be made into a continuous algebra [23] with a union
operation W, defined as follows:

S14S, = {81U82|81 € 51,82 € 52}

Note that the operation Wis idempotent, commutative and associative.
Define an application function App from Ps([(D) = (D) x 3)]) X D to Ps(D) as follows. We
first define App on Ps([(D) = (D) x 2)]), the basis elements.

App({f1... fo},2) = wi{fi(z)|fi(z) |
Note that App({f1 ... fa}, ) is undefined if and only if z ¢ |J; Dom(f;).

Lemma 27 App is a monotone function from Ps([(D) = (D) x 3)]) x B(D) to B(D).

So, App can be extended uniquely to a continuous function from the domain Ps([(D) = (D) x 3)])x
D to Ps(D).

Notice however, that the ordering is not “extensional”, with respect to the application operation.
i.e. we may have two sets of functions {f1...f.} and {g1...9m}, such that

(V"E) [App({fl . -fn}7z) = App({gl .. -gm},z)]

From the universal properties of the Smyth powerdomain [23] [4], every continuous function
from [(D) = (D) x 3)] into a continuous algebra [4] extends uniquely to a continuous function
preserving Wfrom the Smyth-powerdomain of [(D) = (D) x 2)].

There is a singleton embedding function { [} that injects elements of [(D) > (D) x 2)] into

Ps([(D) = (D) x 2)]). { [} is defined first on the basis of [(D) = (D) x 3)]
{rb=1{f}
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It is easy to check that { [} is monotone. Hence, it can be uniquely extended to a continuous

function { [}, defined on the whole of Ps([(D) = (D) x 23)]).
Furthermore, a parallel composition operation can be defined. The following definition is on

the basis elements Ps([(D) = (D) x 2)]).
{fi-- fall{gr-..gm} = W{fillg;lt, 5}

Note that || as defined above is just the bilinear (preserving Win both arguments) extension of || as
defined on [(D) = (D) x 2)]. Monotonicity of || as defined above follows from the monotonicity of
|| on [(D) = (D) x 2)], and the monotonicity of ¥. So, it can be extended uniquely to a continuous
function. The || operation on Ps([(D) = (D) X 2)]) inherits the desirable properties from the ||
operation on [(D) = (D) x 3)].

Lemma 28 || is commutative and associative.

The definition of the operation of parallel composition with sharing, requires a notion of
FxTIdp,, F € Ps([(D3) > (D) x 3)]). We define a continuous function xTIdp, with domain
Ps([(D1) = (Dy) x 3)]) and range Ps([(D1xTD3) = (D1xTD3) x 3)]). This is written postfix for
readability. As usual, we define sxTIdp,, for s € Ps([(D1) = (D1) X 3)]). Let s = {f1... fa}.

SXTIdD2 =(f1 XTIdDQ)BJ .o (f,,XTIdpz)

It is easy to check that the above definition defines a monotone function from Pg([(D2) > (D2) x 3)])
to Ps([(D1xTDy) 5 (D1xT D3) x 3)]). So, it can be extended uniquely to a continuous function
from Ps([(D1) = (D1) x 3)]) to Ps([(D1xTD3) 5 (D1xTD3) x 3))).

We can define a continuous operator v¢| on Ps([(D) = (D) x 3)]), where vy is a finite element
of D. vy| is the unique Wpreserving continuous extension of the function v¢| on [(D) = (D) x 3)]-

Unwinding the definitions, we get the definition of v¢| on the finite elements of Ps([(D) = (D) x 3)])
as:

vil{fi... fa} = Wi{vs|fi}

Note that we can define a continuous & preserving surjection r from the Smyth powerdomain
onto the new powerdomain. On the basis of the Smyth powerdomain Ps([(D) = (D) X 2)]), r is
defined as

T({fl fn}) = {fl fn} l

where {fi ... fn} | indicates the downward closure of { f1 . .. f } in the preorder P([(D) = (D) x 2)]).
It is easy to check monotonicity and preservation of W. So, r can be uniquely extended to a

wpreserving, continuous function from Ps([(D) = (D) x 3)]) to P([(D) = (D) x 3)]).

Lemma 29 (Coherence properties of powerdomains)

1. Let f € (D) = (D) x 3)]. Then,
rrb={r1

2. Let S € Ps((D) > (D) x3))),s € Ps(D)Az € D. Then,

sCApp(S,z)s sCApp(r(S),z)
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3. Let S1,S2 € Ps([(D) = (D) x 3)]). Then

r(81l1S2) = r(51)[[7(S2)

4. Let S; € Ps([(Do x D;) > (Do x D;) x 3)]),i =1,2. Then
r(1Do(S1, S2)) = |lDo(r(S51),7(52))

5. Let vy € B(D). Then
r(vs|F) = vs|r(F)

Proof: It is easy to check the above for finite elements of the Smyth-powerdomain construction.
The result for arbitrary elements follows from the continuity of all functions involved. 1

Furthermore, the semantic definitions in the section on denotational semantics did not use any
special properties of the new powerdomain. The definitions only used the functions that were
used to compose definitions: for example, ||, vf| etc. Thus, teh semantics could have equally well
been defined using the Smyth powerdomain construction instead of the new powerdomain. This is
possible because all the operators that we have used to define the semantic function are defined for
the Smyth powerdomain construction also. In fact, we have a very tight correspondence between
the denotations so derived. The following lemma brings out this connection. Note that there are
two ways of getting the denotation of a predicate sympbol or term in the new powerdomain.

¢ Define the denotation directly in the new powerdomain. This was done in the section on the
denotational semantics.

e Define the denotation in the Smyth powerdomain, as alluded to above. Note that the function
r defined earlier, gives us away of going from the Smyth powerdomain to the new powerdo-
main. Use this function on the denotation of a predicate symbol or term in the Smyth
powerdomain.

The following lemma says that we get the same result in both cases. We use £[] ambiguously for
both definitions, the actual use being indicated by the context: both £[] on the left hand sides are
elements of some suitable Smyth powerdomain construction and all £[] on the right hand sides are
elements of the corresponding new powerdomain construction.

Lemma 30 Let p be an n-ary predicate. Then
1. r(€E[L]) = €[]
2. r(€[p]) = €[rl
3. r(E[p(@]) = E[p()]

Proof: Simple induction on the order of definition of the denotations using lemma 29. Wi
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