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Variations in the gene CACNA1C, which encodes the protein Cav1.2, has been 

identified as a risk factor for a number of neuropsychiatric disorders including major 

depressive disorder, schizophrenia, bipolar disorder, attention deficit hyperactivity 

disorder and autism spectrum disorder. Follow up studies revealed that an intronic single 

nucleotide polymorphism (SNP) rs1006737 of CACNA1C can lead to both higher or lower 

CACNA1C expression as well as altered Cav1.2 function in neurons. Therefore, in this 

dissertation, I use cacna1c transgenic mouse models that harbor Cav1.2 knockout in 

specific brain regions and cell types to study the role of the L-type calcium channel, Cav1.2 

in neuropsychiatric disorders.  

 Using a transgenic mouse model, I discovered that Cav1.2 in the glutamatergic 

neurons of the forebrain regulate anxiety-like behaviors in mice. Using stereotaxic 

delivery of virus mediated gene transfer, I further showed that Cav1.2 in the 

glutamatergic neurons of the prefrontal cortex within the forebrain regulates anxiety-like 

behaviors in mice.  

 I also report a role for Cav1.2 in regulating depressive-like behaviors via 

Regulated in Development and DNA Damage (Redd1) in the prefrontal cortex. More 

specifically, Cav1.2 in non-glutamatergic neurons of the prefrontal cortex was found to 

modulate depressive-like behaviors in mice. 



 

 Since hippocampal adult neurogenesis is a process that has been associated with 

anxiety and depression, I studied the role of Cav1.2 in this process.  I found that Cav1.2, 

but not Cav1.3, is necessary for the survival, but not proliferation, of new born neuronal 

progenitor cells.  

 Since carriers of the SNP rs1006737 have been shown to have deficits in reward 

response, and drug addiction is so often co-morbid with anxiety and depression, I studied 

the role of Cav1.2 in cocaine addiction using the cocaine conditioned place preference 

behavioral paradigm. I found that Cav1.2 in the hippocampus is required for the normal 

decay of cocaine-context association memories following a long-term withdrawal from 

cocaine. I discovered that decreased Cav1.2 in the hippocampus leads to the preferential 

activation of the calcium calmodulin kinase pathway and increased phosphorylation of 

nuclear factor of activated T-cells (NFATc) in the nucleus accumbens, which underlies 

the maintenance or decay of cocaine-context association memories by Cav1.2.   
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For Grandma-  
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Chapter 1: Introduction 

One of the most significant findings in the field of voltage-gated L-type 

calcium channel (LTCC) research in recent years is that in the largest human 

neuropsychiatric genetic study to date, CACNA1C, the gene that encodes for the 

Cav1.2 protein, was identified as one of only two genes and one of only four identified 

genomic loci to be a common risk factor for five major neuropsychiatric disorders; 

major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder 

and attention deficit hyperactivity disorder (ADHD) (1). In previous studies, multiple 

different genes have been implicated as risk factors in the highly complicated 

landscape of neuropsychiatric disorders. The significance of the Lancet (2013) study 

however, is that it has identified CACNA1C as a common risk factor in multiple and 

across diverse neuropsychiatric disorders suggesting that CACNA1C may underlie 

pathological mechanisms and behaviors common across these disorders. It is truly 

exciting to consider that CACNA1C, which functions to regulate activity-dependent 

gene transcription during early development and in brain plasticity-dependent events, 

may be a master regulatory gene that is commonly dysregulated across an array of 

neuropsychiatric diseases, thereby altering a host of other downstream genes and 

transcriptional programs to ultimately cause functional abnormalities that underlies 

pathological mechanisms and behaviors in a variety of neuropsychiatric diseases. This 

highlights the urgency to further characterize the role of CACNA1C in common major 

underlying symptoms of neuropsychiatric disorders such as anxiety, depression and 

reward responses. A more thorough understanding of the role of CACNA1C and its 

downstream molecular mechanisms that underlie these symptoms will not only 
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provide the field with a deeper appreciation of the role of CACNA1C in 

neuropsychiatric disorders, but also provide potential novel targets for more effective 

treatment for these devastating diseases. In this dissertation, I use a multidisciplinary 

approach in preclinical mouse models to investigate the role of Cav1.2 and its 

downstream signaling molecules in specific brain regions in anxiety, depressive 

behaviors and reward responses.  

 

Voltage gated L-type calcium channels  

Voltage gated calcium channels (VGCCs) are key proteins that mediate Ca2+ 

entry into cells in response to membrane depolarization.  VGCCs are classified into 

different types based on their pharmacological and biophysical properties (Table 1); 

(2, 3).  Members of the L-type VGCC (LTCC) subfamily are high voltage-activated 

Ca2+ channels and are sensitive to dihydropyridines. One or more LTCC isoform is 

expressed in essentially all electrically excitable cells (4). There are four LTCC 

isoforms; Cav1.1, Cav1.2, Cav1.3 and Cav1.4 that form the primary Ca2+ pore for Ca2+ 

influx into the cell (Figure 1).  In addition, they complex with auxiliary , 2-, and  

subunits (Figure 1) that regulate the functional properties of the Cav subunit.  Cav1.2, 

encoded by the gene CACNA1C, and Cav1.3, encoded by CACNA1D, are the 

predominant LTCC isoforms found in neurons (5). These neuronal LTCCs are 

important for regulating activity dependent gene expression, cell survival and synaptic 

plasticity (6-8).  
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Brain specific L-type calcium channels: Cav1.2 and Cav1.3 

Cav1.2 and Cav1.3 have different functions and distribution in the brain (9-12). 

Cav1.2 and Cav1.3 differentially activate Ca2+ signaling cascades due to their distinct 

biophysical properties and distinct signaling complexes that they associate with (13-

16). Cav1.2 is the predominant LTCC in the brain, and accounts for about 90% of all 

LTCCs in the brain (17, 18). Cav1.2 and Cav1.3 are both present in overlapping brain 

regions such as the hippocampus, cortex, striatum, and cerebellum, but their 

subcellular distribution differs: Cav1.2 is mainly present in postsynaptic dendrites and 

Cav1.3 in cell bodies (17). In midbrain structures such as the ventral tegmental area, 

Cav1.3 is the predominant LTCC isoform (12). 

To date, no pharmacological agent specific for Cav1.2 or Cav1.3 exists (5). 

Therefore currently, transgenic animal models and focal genetic manipulations for 

either the cacna1c or cacna1d gene is the only way to study the specific role of Cav1.2 

or Cav1.3 in neuronal function and behavior.  

 

CACNA1C genetic variants and neuropsychiatric disorders 

In humans, genome-wide association studies (GWAS) have linked multiple 

single nucleotide polymorphisms (SNPs) in the CACNA1C gene to neuropsychiatric 

disorders. Several SNPs and in particular SNP rs1006737 has been widely reproduced 

and strongly associated to bipolar disorder (19), major depressive disorder (20, 21) 

and schizophrenia (20, 22).  Clinical and brain imaging studies have reported altered 

brain volume (23, 24), connectivity (25), and cognitive performance (24, 26-28) 
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further underscoring the functional contribution of CACNA1C to the neuropathology 

underlying neuropsychiatric disorders.  

The majority of identified CACNA1C SNPs are present within non-coding 

regions (intronic, 5’ and 3’ untranslated regions). Recent studies have revealed that 

non-coding SNPs can result in both an increase or decrease of CACNA1C mRNA, 

suggesting that gain or loss of Cav1.2 function can be detrimental (29, 30).  Using 

induced pluripotent stem cell (iPSC)-derived neurons from rs1006737 carriers, 

Yoshimizu et al found higher CACNA1C mRNA and LTCC current (30).  A similar 

increase in mRNA was found in the postmortem brains of rs2006737 carriers by Bigos 

et al (31).  In contrast, the same SNP was associated with lower CACNA1C levels in 

postmortem cerebellum with no difference in the parietal cortex (32).  Another study 

examined a schizophrenia risk CACNA1C SNP in human iPSC-derived neurons, 

postmortem brain and in vitro cell lines, and found lower CACNA1C expression, 

suggesting brain region specific, as well as potentially neuron subtype-specific 

regulation (29).  

The CACNA1C risk allele was found to be associated with increased brain 

stem volume (33), smaller putamen (23) and decreased activity in the right inferior 

parietal lobe and medial frontal gyrus (34).  

 

L-type Ca2+ channels and anxiety 

Since anxiety is a prominent common underlying symptom in all five of the 

neuropsychiatric disorders that the CACNA1C risk allele has been linked to, I 

investigated the role of cacna1c in anxiety-like behaviors in mice. In Chapter 2, I 
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explore the role of cacna1c in select brain regions that have been implicated in 

regulating anxiety and I explore the role of cacna1c in specific cell-types within focal 

brain regions. 

Several human (35-38) and rodent (39, 40) studies establish the prefrontal 

cortex (PFC) as playing a critical role in emotional states such as anxiety.  The role of 

PFC in regulating fear extinction, another way to measure anxiety-like behavior in 

rodents is also well established (41). Therefore, I first focused on the role of cacna1c 

in the PFC in anxiety. 

The PFC receives excitatory inputs from the hippocampus (HPC), (42) another 

important brain region suggested to be involved in regulating anxiety behaviors (43-

45). Furthermore, in humans the CACNA1C neuropsychiatric risk variant has been 

associated with altered connectivity between the PFC and HPC (46). Therefore, I 

further investigated the consequences of cacna1c KO in the HPC to see whether 

elimination of Cav1.2 in the HPC can recapitulate the behavioral phenotype observed 

in the PFC Cav1.2 knockout mice by altering the HPC-PFC circuitry. 

 

L-type Ca2+ channels and depression 

The CACNA1C risk allele has been most strongly associated with bipolar 

disorder (19, 47), which includes clinical manifestations of depression and mania; and 

also with unipolar depression (48). The risk variant has also been associated with 

altered neural processing in major depressive disorder (26). Further, carriers of the 

CACNA1C risk allele show altered neural activity in the limbic system, which includes 

the PFC, during emotional processing (49). It is now well established from human and 



8 
 

rodent studies that the PFC is a critical brain region involved in regulating affect, 

including depression (50-52). 

  Preclinical studies have found that intraperitoneal (i.p.) injection of a  

dihydropyridine LTCC blocker resulted in an anti-depressive phenotype as measured 

by the forced swim test (FST) (53), whereas i.p. injection of the dihydropyridine 

LTCC agonist BayK 8644, resulted in a depressive-like phenotype (54). Constitutive 

cacna1c heterozygous mice (HET) also show an anti-depressive like phenotype as 

measured by FST and by tail suspension test (55).  

Since it is established that Cav1.2 regulates depressive-like behaviors in mice 

and that the PFC is a critical brain region in regulating these behaviors, I investigated 

the role of Cav1.2 and its downstream molecular mechanisms that have also been 

implicated in depression, within the PFC. I also explored the role of Cav1.2 in the HPC 

in depressive behaviors, as this brain region has projections to the PFC (42), has also 

been implicated in regulation of emotional behaviors (43, 56), and showed altered 

activity during emotional processing that was associated with the CACNA1C risk 

allele (31).   

 

L-type Ca2+ channels in adult hippocampal neurogenesis 

Many rodent models of mood disorders have been shown to have deficits in 

adult hippocampal neurogenesis (HPC NG) (57, 58), and drugs that alleviate 

symptoms of anxiety and depression also improve these HPC NG deficits (57, 58). 

Disrupting adult HPC NG has been shown to produce anxiety (59) and depression (60, 

61) in some cases and not in others (58), which underscores the complexity of adult 
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HPC NG and its involvement in mood disorders. Interestingly, in vitro 

pharmacological studies using dihydropyridines to block LTCCs have found that they 

are involved in adult HPC NG, (62). As LTCCs are also implicated in anxiety and 

depressive behaviors, and adult HPC NG has been involved in these same behaviors, I 

investigated whether LTCCs regulate adult HPC NG in vivo by using transgenic 

mouse models and site-specific virus mediated deletion of cacna1c (Cav1.2) or 

cacna1d (Cav1.3).  

 

CACNA1C and brain reward systems 

Altered reward brain circuitry and responsiveness is another common, co-

morbid condition often associated with various psychiatric disorders (63, 64). Many 

studies reveal the convergence of the pathways and molecular mechanisms involved in 

mood disorders and reward systems (41, 65, 66). Recently, human carriers of the 

bipolar disorder and schizophrenia-associated CACNA1C SNP rs1006737 were found 

to be associated with decreased reward responsiveness compared to non-carriers (67, 

68). Importantly, drug abuse is commonly found to be co-morbid with mood disorders 

(63, 68-70). Patients with anxiety disorders for example, were shown to have higher 

likelihood of cocaine use even after correcting for other contributing factors such as 

socio-economical and other co-morbid disorders (71, 72). 

 

L-type Ca2+ channels and cocaine addiction 

We and others have shown that LTCCs are involved in the rewarding effects of 

cocaine (73, 74). Specifically, only Cav1.2, and not Cav1.3, is up-regulated by repeated 
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cocaine, especially in the PFC (68, 75), a brain region critically implicated in the long-

lasting effects of cocaine. Other studies have shown that LTCCs are involved in 

cocaine seeking behavior (76, 77). Further, systemic LTCC antagonists attenuate 

cocaine conditioned place preference (CPP) (78, 79), whereas focal infusion of LTCC 

antagonist into the nucleus accumbens shell, a critical brain reward region, facilitates 

cocaine CPP (80), highlighting the different roles LTCCs can have on cocaine seeking 

behavior, based on their neuroanatomical location. 

Cocaine CPP is a simple, non-invasive procedure wherein animals are trained 

to associate a specific environment with the rewarding effects of a drug. When 

animals are allowed to freely explore the drug paired and non-drug paired 

environment, they prefer the drug-paired environment, indicating development of 

cocaine preference or CPP. The CPP protocol has been extended to include extinction 

and reinstatement of drug seeking, to explore mechanisms of drug craving and relapse 

(81-86). The conditioned response is thought to be relevant to human drug-seeking 

behavior and drug- and cue-induced relapse (84-86).  

 

L-type Ca2+ channels in maintenance of cocaine memory following long-term 

withdrawal from cocaine CPP 

Even after extinction of cocaine seeking behaviors, relapse is not uncommon in 

cocaine addiction. Preventing relapse is a main goal of cocaine addiction treatment. 

One of the biggest obstacles in preventing relapse, or reinstatement in rodent models, 

is the potent associative learning that is established between the effects of cocaine and 

the drug-taking context. These associative memories can be so strong that even after 



11 
 

years of withdrawal from drug, just the context without the presence of cocaine, can 

be enough to trigger drug-seeking behavior  (81). These long-lasting context-cocaine 

association memories are thought to be regulated by cocaine induced persistent 

changes in gene transcription in the brain (87), such as those regulated by LTCC (88). 

It is well established that the HPC is critically involved in regulating context-

reward memories (89-92). Interestingly, LTCCs have been implicated in long-term 

retention of spatial memory, another type of HPC dependent memory (93). Mice 

harboring forebrain specific knockout of Cav1.2 have been shown to have deficits in 

specifically the retrieval of long-term spatial memories (94). Furthermore, studies 

report an increase in Cav1.2 signaling in the HPC during aging, potentially 

contributing to the cognitive deficits such as forgetfulness, commonly associated with 

aging (95, 96). Importantly, carriers of the CACNA1C risk allele display abnormal 

reward response (67). Therefore, in Chapter 6, I investigated the role of Cav1.2 and its 

downstream molecules in the HPC in the maintenance of cocaine-context association 

memories following long-term withdrawal from drug.  
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Chapter 2: Forebrain elimination of cacna1c mediates anxiety-like behavior in 

mice*  

 

Introduction 

The CACNA1C gene encoding the Cav1.2 subunit of the L-type calcium 

channel (LTCC) has emerged as a new candidate gene for neuropsychiatric disease, 

including bipolar disorder, major depression, schizophrenia, autism and attention 

deficit hyperactivity disorder (1-4).  We report that global haploinsufficiency, 

forebrain-specific elimination, and prefrontal cortex (PFC)-specific knockdown of 

cacna1c in mice all increase anxiety-related behavior, without affecting compulsive 

behavior, a prominent component of the forms of neuropsychiatric disease in which 

aberrations in CACNA1C have been implicated.   

 

Methods and Materials 

Animals 

Male C57BL/6 mice (Jackson Laboratories, Bar Harbor, Maine), constitutive cacna1c 

HETs (5), and forebrain-cacna1c cKO and their respective WTs were 8-10 weeks old 

at the start of the experiments. For the grooming behavioral assay, 3-month old mice 

were used.  Forebrain-cacna1c cKO mice were generated by crossing homozygous 

cacna1c floxed mice (cacna1cfl/fl) (5); with mice expressing Cre recombinase under  

 

* A. S. Lee et al., Forebrain elimination of cacna1c mediates anxiety-like behavior in 

mice. Mol Psychiatry 17, 1054-1055 (2012). 
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the control of the alpha-CaMK2 promoter (CaMK2-Cre).  The CaMK2alpha-Cre T29-

1 line from Jackson Laboratories was used.  In this line, Cre expression is activated at 

postnatal day 18, thereby circumventing developmental compensatory adaptations.  

HETs and forebrain-cacna1c cKO were indistinguishable from WTs in weight, 

development and general health.  To generate region-specific deletion of cacna1c, 

AAV-Cre virus was stereotaxically delivered into the brain of homozygous cacna1cfl/fl 

mice.   Mice were provided food and water ad libitum.  Animals were maintained on a 

12-hr light/dark cycle (from 7 A.M. to 7 P.M.).  All procedures were conducted in 

accordance with the Weill Cornell Medical College and UT Southwestern Medical 

Center Institutional Animal Care and Use Committee rules.  

 

Quantitative real-time PCR (QPCR) 

Mice were euthanized by rapid decapitation and whole brains were rapidly dissected 

and frozen in isopentane at -40C.  Frozen brains were mounted in the coronal plane 

on a cryostat (Leica) and tissue punches from the specific regions listed in Table 1 

were obtained by unilateral (PFC, ventral tegmental area, cerebellum) or bilateral 

(hippocampus, basolateral amygdala, striatum, nucleus accumbens) as previously 

described (6).  RNA was isolated and Cav1.2 QPCR performed as previously 

described (6).  Briefly, tissue punches were processed for RNA using the RNeasy Mini 

Kit (QIAGEN) and cDNA was synthesized from purified RNA using the High 

Capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA).  Cacna1c mRNA 

levels were measured using CACNA1C specific primers (QuantiTect Primer assay 

QT00150752; QIAGEN) on an ABI PRISM 7000 Sequence Detection System with 
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SYBR Green PCR Master Mix (Applied Biosystems).  Cycle threshold (Ct) values for 

target genes were normalized to the housekeeping gene -actin (primers as previously 

published) (7). Each experiment was performed in triplicate and values were averaged.  

 

Generation of region-specific elimination of cacna1c 

Stereotaxic delivery of AAV-Cre was performed as previously described (6).  Prior to 

surgery, mice were anesthetized with a ketamine (100 mg/ml) and xylazine (20 

mg/ml) cocktail, and mounted to a stereotaxic surgical unit (David Kopf Instruments, 

Tujunga, CA).  A midline incision was made atop the scalp, skin was retracted, the 

head was leveled based on bregma and lambda, and holes were formed through the 

skull using a 25 gauge needle.  AAV-GFP, AAV-Cre (Vector BioLabs, Philadelphia, 

PA) or AAV2/8-GFP , AAV2/8-CaMK2-Cre (University of Iowa, Iowa City, IA) were 

delivered into the PFC of cacna1cfl/fl mice with a 2.5µl, 30-gauge Hamilton syringe at 

a rate of 0.1µl/min (0.5µl/hemisphere).  The needle was left in place for an additional 

5 min after the infusion to ensure complete delivery of the virus.  Mice were allowed 

to recover for at least two weeks prior to behavioral testing to allow for maximal 

virus-mediated GFP expression and Cav1.2 knockdown. Stereotaxic coordinates for 

PFC (+2.0 AP, -2.5 DV, ±0.1ML) were adopted from Gourley et al., 2010 (8). A total 

of 1µl per mouse of AAV2/5-GFP or AAV2/5-Cre (University of Iowa, Iowa City) 

was injected into the vHPC using the coordinates: -3.5 AP, -4.2 DV, ±2.8 ML, at a 4° 

angle. A total of 0.4µl per mouse of AAV2/2-GFP or AAV2/2-Cre was injected into 

the dHPC using the coordinates: -1.4 AP, -2 DV, ±1.1ML at a 10° angle. 
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GFP immunohistochemistry 

GFP fluorescent immunohistochemistry was used to confirm injection placement.  

Upon completion of behavioral testing, mice were sacrificed and perfused with 4% 

paraformaldehyde (PFA). Brains were dissected and post-fixed overnight in 4% PFA 

followed by cryo-protection in 30% sucrose at 4C for at least 72 hours.  Forty µm 

sections spanning the PFC were obtained using a sliding microtome and incubated in 

anti-rabbit GFP (1:500) primary antibody for 24 hours at 4C.   The sections were 

rinsed in 0.1M phosphate-buffer (PB) and incubated with donkey anti-rabbit Cy2 

(1:500) antibody for 1 hour at room temperature.  Animals with improper bilateral 

injection placement were excluded from behavioral data analysis.   

 

Cav1.2 immunohistochemistry 

Fluorescent immunohistochemistry was used to confirm knockdown of Cav1.2. 

Cacna1cfl/fl mice that received infusions of AAV-GFP or AAV-Cre were deeply 

anesthetized with pentobarbital (150mg/kg, i.p.) and perfused as described in 

Beckerman and Glass, 2011 (9). Briefly, mice were transcardially perfused with 10ml 

of 2% Heparin in 0.9% saline followed by 40ml of 3.75% acrolein in 2% PFA in 0.1M 

PB, (pH 7.4), followed by at least 50ml of 2% PFA in 0.1M PB. Brains were then 

post-fixed in 2% PFA in 0.1M PB for at least 30 minutes prior to sectioning on a 

vibratome. Forty µm sections spanning the PFC were collected, rinsed with 0.1M PB 

and incubated in 1% NaBH4 for 30 minutes at room temperature to permeabilize the 

tissue.  Sections were thoroughly rinsed with 0.1M PB then blocked in 0.5% bovine 

serum albumin (BSA) in 0.1M PB with 0.3% triton.   
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For Cav1.2 immunohistochemistry, sections were incubated in anti-rabbit Cav1.2 

(1:5000) (Amy Lee, University of Iowa, Iowa City, IA) and anti-chicken GFP 

(1:3000) for 24hrs at room temperature and for an additional 72hrs at 4C.  Sections 

were rinsed with 0.1M PB and incubated with 1mg/ml biotinylated donkey anti-rabbit 

(Jackson Labs) and donkey anti-chicken Alexa-fluor 488 (1:300) for 1 hour at room 

temperature.  After another rinse, sections were incubated in horseradish peroxidase 

conjugated streptavidin (SA-HRP) (1:500) for 1 hour at room temperature,  rinsed 

again, and then incubated in Alexa Fluor 647 labeled tyramide (1:100) in 0.0015% 

H2O2 amplification buffer for 10 minutes at room temperature.  Sections were rinsed 

with 0.1M PB and fluorescence detected with a confocal microscope. 

 

Basal locomotor activity 

Horizontal locomotor activity was assessed by computer-assisted activity monitoring 

software (Med Associates) in a polycarbonate test chamber (27.3 cm x 27.3 cm) 

equipped with three infrared beam arrays.  Locomotor activity was measured as total 

distance traveled in centimeters.  For each test session, animals were placed in the 

chamber and recorded for 2 h without interruption.  

 

Open field test 

Mice were placed in a 38 cm x 54 cm Plexiglas open field arena and their activity was 

monitored for 10 min with a video tracking system using EthoVision software (Noldus 

Information Technology, Leesburg, VA).  Duration of time spent in the center of the 
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open field (13 x 28 cm) and frequency to enter the center of the open field were 

analyzed. 

 

Light and dark conflict test 

During testing, mice were placed in the light half of a polycarbonate (27.3 cm x 27.3 

cm) chamber, which consisted of transparent walls and bright illumination by an 

incandescent lamp (~650 lux).  An acrylic, opaque dark insert comprised the other half 

of the chamber.  This insert did not obstruct the path of infrared beams, and also 

contained a small opening (5.5 cm x 7 cm) that allowed the subject to traverse each 

side freely while being sufficiently small to minimize the amount of light from 

entering (~1 lux) the dark side.  Mice were allowed to freely explore the chamber for 

10 min.  The number of transitions to and from each side as well as the time spent in 

each respective compartment was analyzed by post-hoc analysis using Med Associates 

(St. Albans, VT) Activity Monitor software. 

 

Elevated plus maze 

Mice were placed in the center of a cross-shaped maze elevated 38 cm above the floor 

and consisting of two open and two closed arms (50 cm).  The behavior of the mice 

was then monitored for 5 min by a video tracking system.  Time spent in the open and 

closed arms was obtained using the EthoVision software. 

Grooming Assay 

Three-month old mice were habituated to the test chamber for 30 minutes and 

videotaped for 5 minutes to assess their baseline state.  Mice were then sprayed 3 
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times on the head with a handheld water spray bottle and videotaped for a 5-minute 

period of time.  Video clips were viewed and scored by independent and blinded 

investigators, and the amount of time spent grooming was recorded with a handheld 

stopwatch. 

 

Statistics 

 For all experiments, data was analyzed by a one-way or two-way ANOVA followed 

by the Bonferroni-Dunn post-hoc test.  A value of p ≤ 0.05 was considered to be 

statistically significant. Statview 4.5 software (SAS Institute Inc., Cary, NC) was used 

for all statistics.   

 

Results 

Constitutive cacna1c heterozygous mice (HET) were evaluated in three 

behavioral assays related to anxiety:  open field test, light-dark conflict test and 

elevated plus maze (EPM).  HETs displayed anxiety-like behavior in the EPM (Figure 

1c), spending significantly less time exploring the open arms compared to wild-type 

littermate controls (WT) (F1,19 = 6.437; P < 0.05).  However, no differences were 

observed between HETs and WTs in the open field and light-dark conflict test, (Figure 

1a, 1b).  In the EPM test, we also observed a statistically significant effect of increased 

anxiety-like behavior in adult female HETs (Figure 1d) and adolescent male HETs 

(Figure 1e) compared to WTs. To more specifically investigate the function of 
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Figure 1. Cacna1c HET mice do not show differences in (a) open field and (b) 

light/dark as compared to WT mice. (n=11-16 per group). (c) Cacna1c HET 

(HET n=10; WT n=11), (main effect of genotype, F
1,19 

= 6.437; P < 0.05), **P 

< 0.01 (d) Adult female cacna1c HET (HET n =8; WT n = 11), (main effect of 

genotype, F
1,17 

= 4.673; P < 0.05). *P <  0.05. and (e) adolescent male cacna1c 

HET (HET n=8; WT n=9) show increased anxiety-like behavior as reflected by 

decreased time in the open arm of the EPM, compared to WT littermates, (main 

effect of genotype, F
1,15 

= 7.638; P < 0.05).*P <  0.05. 
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cacna1c in the brain, we generated forebrain-specific conditional cacna1c-deficient 

mice (forebrain-cacna1c cKO) by crossing cacna1c-floxed mice with mice harboring 

alphaCaM Kinase 2 (CaMK2) promoter-driven expression of Cre recombinase.  

Relative to WTs, this strategy achieved approximately 70% elimination of cacna1c 

mRNA in the hippocampus, PFC, basolateral amygdala, striatum and nucleus 

accumbens, as assessed by quantitative PCR (Table 1).  Cacna1c mRNA levels were 

unaffected in the ventral tegmental area and cerebellum.  With this greater reduction in 

cacna1c in forebrain than could be achieved in HETs, significantly increased anxiety-

like behavior was observed across all three behavioral assay. In the open field test, 

forebrain-cacna1c cKO mice spent less time exploring the center of the chamber 

compared to WTs (Figure 2a, F1,16 = 5.588; p < 0.05).  In the light-dark conflict test, 

forebrain-cacna1c cKO mice spent significantly less time in the brightly lit side 

compared to WTs (Figure  2b, F1,16 = 6.544; p < 0.05). In EPM, forebrain-cacna1c 

cKO mice spent significantly less time exploring the open arms compared to WTs 

(Figure 2c, F1,16 = 68.587; P < 0.0001).  Thus knockout of cacna1c in the CaMK2 

expressing neurons of the forebrain results in anxiety-like behavior. 

 Clinically, anxiety is often accompanied by compulsive behavior, such as in 

obsessive-compulsive disorder (OCD) in which patients seek alleviation from 

recurrent bouts of anxiety-inducing intrusive thoughts by engaging in compulsively 

repetitive behaviors.  Experimental models for OCD, such as SAPAP3 (10) or 

SLITRK5 (11) deficient mice, display pathologically high compulsive grooming that is 

readily quantified by the spray-induced grooming test.  Compared to respective  
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WTs, we did not observe elevated grooming in either HETs (Figure 3a) or forebrain-

cacna1c cKO mice (Figure 3b).  Thus, the form of anxiety associated with cacna1c 

function is distinct from that associated with OCD-spectrum illnesses. 

Some genetic variations in CACNA1C have been associated with altered PFC 

function (12-14) in neuropsychiatric disease, so we next generated focal elimination of 

cacna1c in the PFC with adeno-associated viral (AAV) vector-expressing Cre 

recombinase (AAV-Cre) (6).  AAV-Cre was stereotaxically delivered bilaterally into 

the PFC of cacna1cfl/fl mice (Figure 4a), and regional elimination of Cav1.2 was 

immunohistochemically confirmed (Figure 4b).   Following elimination of cacna1c in 

the PFC, mice showed no differences in basal locomotor activity compared to AAV-

GFP control injected mice (Figure 4c).  However, selective elimination of cacna1c in 

the PFC was associated with less time spent exploring open arms of the EPM, 

compared to control AAV-GFP injected mice (Figure 4d, F1,16 = 5.477; p < 0.05).  To 

evaluate the specificity of PFC cacna1c knockout in mediating anxiety, we used AAV 

expressing cacna1d siRNA (6) to selectively eliminate cacna1d in the PFC, the other 

LTCC isoform expressed in brain.  Selective knockdown of cacna1d in the PFC had 

no effect on locomotor behavior (Figure 5a) or time spent in open arms in the EPM 

(Figure 5b). 

To evaluate the contributing cell type within the PFC, we next generated a 

focal knockout of cacana1c in only the glutamatergic neurons of the PFC using AAV-

CaMK2-Cre (University of Iowa, Iowa City). Mice harboring knockout of cacna1c in 

glutamatergic neurons of the PFC showed increased anxiety-like phenotype as 

measured by decreased time spent in the open arms in the EPM test (Figure 6). Thus, 
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knockout of cacna1c in the glutamatergic neurons of the PFC results in anxiety-like 

behavior.  

The hippocampus (HPC) is another brain region that is mediating anxiety-

related phenotypes.  Lesion studies (15, 16) and more recently, optogenetic studies 

(17) identify the HPC, and in particular the ventral hippocampus (vHPC) as being 

involved in anxiety-like behaviors. The dorsal hippocampus (dHPC) on the other 

hand, has been attributed to cognitive processes such as spatial learning (17, 18). The 

vHPC, unlike the dHPC, sends glutamatergic projections to the PFC (19, 20) and the 

two regions show synchronous activity which increases with anxiety (21). Therefore, 

we next tested the role of cacna1c in the vHPC in mediating anxiety-like behavior.  

We generated focal knockout of cacna1c in the vHPC with AAV-Cre (Figure 7a). As 

a control region, we also generated focal knockout of cacna1c in the dHPC (Figure 

8a). Neither the vHPC nor the dHPC cacna1c KO mice showed any differences in the 

open field test, light-dark conflict test, or EPM (vHPC: Figure 7b-d, dHPC: Figure 8b-

d).  Thus, knockout of cacna1c in the vHPC or dHPC has no effect on anxiety-like 

behavior.   
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Discussion 

In summary, we report here the first direct evidence for a role of forebrain 

cacna1c in regulating anxiety.   Mice harboring forebrain-specific elimination of 

cacna1c may thus provide a useful tool for studying the pathophysiology of anxiety in 

forms of neuropsychiatric diseases in which CACNA1C in involved. Furthermore, 

although the anxiety in the forebrain-cacna1c cKO may rise from developmental 

compensatory changes from lacking cacna1c from around P18, we showed that 

knockout of cacna1c, and not cacna1d, in the adult PFC, and specifically in 

glutamatergic PFC neurons, is sufficient to replicate the anxiety phenotype. We also 

find that cacna1c elimination in the vHPC and dHPC does not affect anxiety-like 

behaviors. Thus, these findings demonstrate that dysregulation of Cav1.2 in the PFC 

and not the HPC, is involved in regulating anxiety-like behaviors.  
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Chapter 3: Cacna1c in the prefrontal cortex regulates depressive-like behavior 

via REDD1. 

 

Introduction 

Depression affects more than 350 million people and is the leading cause of 

disability worldwide (1). Not only does depression manifest as major depressive 

disorder, it is also a major component of other neuropsychiatric disorders such as 

bipolar disorder and schizophrenia (2). Despite its current and rising prevalence, the 

etiology of depression still remains largely unknown.  

The largest genome wide association study to date has identified single 

nucleotide polymorphisms (SNP) in the CACNA1C gene as a common risk variant 

across major depressive disorder, bipolar disorder, and schizophrenia (3). Constitutive 

cacna1c heterozygous mice (HET), that have global 50% knockdown of the Cav1.2 

protein that cacna1c encodes, have been shown to display an anti-depressive 

phenotype (4), suggesting that this protein is important for modulating depressive 

behaviors. However, the specific brain regions, the specific cell types and downstream 

molecular mechanisms by which Cav1.2 channels may be modulating depressive-like 

behavior have yet to be identified.  

Depressed patients who are also carriers of a CACNA1C SNP show altered 

neural processing in the prefrontal cortical region compared to non-carrier depressed 

patients, suggesting that the genotype confers a functional consequence in the 

prefrontal cortical brain region (5). Depressed patients have been shown to have lower 

brain volume, smaller size and density of neurons (6, 7) and abnormal activity (8) in 
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the prefrontal cortex (PFC). Stimulation of the PFC in treatment resistant depressed 

patients (9, 10) and in mice susceptible to depressive behavior (11) has been shown to 

have antidepressant effects. The hippocampus (HPC), which receives input from and 

sends output to the PFC, has also been heavily implicated in the pathophysiology of 

depression (12-15). Lesion studies (16) and more recent optogenetic studies (17) 

identify the ventral hippocampus (vHPC) in particular, as another brain region 

critically involved in emotional behaviors. The dorsal hippocampus (dHPC) on the 

other hand, has been attributed to cognitive processes such as spatial learning (17). 

The vHPC, unlike the dHPC, sends glutamatergic projections to the PFC (18, 19) and 

the two regions show synchronous activity (20).  Interestingly, human imaging studies 

reveal that carriers of the CACNA1C SNP rs 1006737, a highly significant SNP linked 

to bipolar disorder, major depressive disorder, and schizophrenia (21, 22), show 

altered brain activity in the PFC and HPC (23-25) suggesting that Cav1.2 channels in 

these regions may underlie neuropathology relevant to depressive phenotypes.  

A recent molecular study has identified that, depressed patients have higher 

levels of the protein Regulated in Development and DNA damage responses 1 

(REDD1), in the PFC (26). REDD1 specifically in the PFC, has also been shown to 

regulate depressive-like behavior in rodent models of depression (26). Therefore, in 

this study we sought to test the hypothesis that Cav1.2 in the PFC and HPC modulate 

depressive-like behaviors in mice via regulation of REDD1. 

 

Methods and Materials 

Animals 
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Male C57BL/6 mice (Jackson Laboratories, Bar Harbor, Maine), constitutive cacna1c 

HETs (27) and homozygous cacna1c floxed mice (cacna1cfl/fl ) (27) were at least 8 

weeks old at the start of the experiments. HETs and cacna1cfl/fl  mice were 

indistinguishable from respective wildtype littermates (WT) in weight, development 

and general health. Animals were maintained on a 12-hr light/dark cycle (from 7 A.M. 

to 7 P.M.). Mice were provided food and water ad libitum. All procedures were 

conducted in accordance with the Weill Cornell Medical College Institutional Animal 

Care and Use Committee rules.  

 

Surgeries  

To generate region-specific deletion of cacna1c, AAV-Cre was stereotaxically 

delivered into the brain of cacna1cfl/fl mice. Stereotaxic delivery of AAV-Cre was 

performed as previously described (28).  Prior to surgery, mice were anesthetized with 

a ketamine (100 mg/ml) and xylazine (20 mg/ml) cocktail, and mounted to a 

stereotaxic surgical unit (David Kopf Instruments, Tujunga, CA).  A midline incision 

was made atop the scalp, skin was retracted, the head was leveled based on bregma 

and lambda, and holes were formed through the skull using a 25-gauge needle.  AAV-

GFP or AAV-Cre (Vector BioLabs, Philadelphia, PA) were delivered into the PFC of 

cacna1cfl/fl mice with a 2.5µl, 30-gauge Hamilton syringe at a rate of 0.1µl/min 

(0.5µl/hemisphere) (+2.0 AP, -2.5 DV, ±0.1ML).  A total of 1µl per mouse of 

AAV2/5-GFP or AAV2/5-Cre (University of Iowa, Iowa City) was injected into the 

vHPC using the coordinates: -3.5 AP, -4.2 DV, ±2.8 ML, at a 4° angle. A total of 

0.4µl per mouse of AAV2/2-GFP or AAV2/2-Cre was injected into the dHPC using 
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the coordinates: -1.4 AP, -2 DV, ±1.1ML at a 10° angle. The needle was left in place 

for an additional 5 min after the infusion to ensure complete delivery of the viral 

vector.  Mice were allowed to recover for at least two weeks prior to behavioral testing 

to allow for maximal virus-mediated GFP expression and Cav1.2 knockout (KO). 

AAV-Cav1.3 siRNA was generated as described in Schierberl et al. (29) and was used 

to create a focal knockdown (KD) of Cav1.3 in the PFC (0.5µl/hemisphere) (-2 AP, 

+1.6 ML, -1.8 DV at a 10° angle). AAV2/8-CaMKII-Cre (University of Iowa, Iowa 

City, IA) was used to generate Cav1.2 KO specifically in CaMKII expressing 

excitatory neurons in the PFC of cacna1cfl/fl mice (0.5µl/hemisphere) (AP: +1.8, ML: 

+1.3, DV: -2, at a 30° angle ). AAV-REDD1 was generated as described in Ota et al. 

(26) and was used to over-express REDD1 in the PFC of Cav1.2 HET mice 

(1.2µl/hemisphere) (+2.3 AP, +1.7 ML, -2.8 DV). Mice were allowed to recover for at 

least three weeks prior to behavioral testing to allow for maximal virus mediated 

Cav1.3 KD, CaMKII-specific Cav1.2 KO and REDD1 overexpression.  

 

Green Fluorescent Protein (GFP) immunohistochemistry 

GFP immunohistochemistry was used to confirm injection placement.  Upon 

completion of behavioral testing, mice were anesthetized with euthasol and 

transcardially perfused with 4% paraformaldehyde (PFA). Brains were dissected and 

post-fixed overnight in 4% PFA followed by cryo-protection in 30% sucrose at 4C 

for at least 72 hours.  Forty µm sections spanning the PFC were obtained using a 

sliding microtome and incubated in anti-chicken GFP (1:2500) primary antibody for 

24 hours at 4C.   The sections were rinsed in 0.1M phosphate-buffer (PB) and 
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incubated with anti-chicken peroxidase secondary (1:300) antibody for 1 hour at room 

temperature. GFP staining was detected using the 3, 3’-diaminobenzidine peroxidase 

substrate kit (Vector Laboratories). Animals with improper bilateral injection 

placement were excluded from behavioral data analysis.   

 

Sucrose preference 

Mice were single housed for the duration of the sucrose preference behavior. The 

water bottle from each cage was removed and replaced with two smaller bottles, one 

containing drinking water and the other containing 5% sucrose dissolved in drinking 

water. A hole was drilled into each small bottle, allowing the mice to lick the solution 

from the drilled hole. Body weights and the mass of water and sucrose consumption 

were monitored once a day, for 4 days. Sucrose preference was calculated as ((sucrose 

consumed (g) – water consumed (g))/(sucrose consumed (g) + water consumed 

(g)))x100.  Mice were group housed after the completion of the sucrose preference 

test. 

 

Forced Swim Test 

Mice were placed into a 2L beaker containing 1800ml of 26°C water, one at a time, 

for 10 minutes each. Each mouse was video recorded from the front of the beaker and 

their time spent mobile was scored by an experimenter blind to the conditions using 

the ButtonBox software (Behavioral Research Solutions).  

 

Western Immunoblotting 
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To examine levels of REDD1, brains were isolated and PFC was isolated from freshly 

dissected brains.  Synaptosomal fractions were isolated as previously described (30). 

Briefly, tissue was homogenized in 250µl of sucrose/HEPES buffer in a glass dounce 

homogenizer using a teflon pestle. The homogenate was spun down at 1000g for 10 

minutes, the supernatant collected, and the pellet resuspended in another 250µl of 

sucrose/HEPES buffer and spun down again. The supernatant was collected and 

combined with the original supernatant on ice. The combined supernatants were spun 

down at 1000g for 6 minutes. The resulting supernatant was collected, and spun down 

at 12,000g for 20 minutes, and the pellet was resuspended in 100µl of Hepes/EDTA 

buffer and spun down at 12,000g for 20 minutes. The supernatant was discarded, and 

the synaptosomal pellet was resuspended in another 75µl of Hepes/EDTA buffer and 

spun down again at 12,000g for 20 minutes.  Protein concentration was determined 

using the BCA assay.  Protein lysates were separated on a 10% SDS gel. Blots were 

probed with anti-rabbit REDD1 (1:1000), (Cell Signaling) primary antibody overnight 

at 4°C. Blots were then incubated with goat anti-rabbit horseradish peroxidase linked 

IgG. Protein bands were visualized by chemiluminescence.  

 

Statistics 

 For all experiments, data was analyzed by a one-way or repeated measures ANOVA.  

If main effect was achieved, pairwise comparisons were performed by the Bonferroni-

Dunn post-hoc test.  A value of p ≤ 0.05 was considered to be statistically significant.  

Statview 4.5 software (SAS Institute Inc., Cary, NC) was used for all statistics.   



48 

 

 

Results 

Constitutive Cav1.2 heterozygous mice display anti-depressive behavior 

To examine the role of Cav1.2 in depressive-like behavior, Cav1.2 heterozygous (HET) 

mice were tested in the forced swim test (FST), a behavioral test previously described 

to measure depressive-like behaviors in mice and in the sucrose preference test, a 

related behavioral paradigm (31) with greater validity as a test for depression (32), that 

measures anhedonia (reflected as decreased sucrose consumption) (33), a core 

component of depression.  In FST, HET mice displayed significantly more time 

mobile compared to wildtype (WT) littermates (Figure 1a; main effect of genotype 

F1,23 = 6.334; p < 0.05), supporting  an anti-depressive phenotype.  In the sucrose 

preference test, HET mice showed significantly higher sucrose preference compared to 

WT mice (Figure 1b; main effect of genotype, F1,8 = 5.719; p < 0.05). 

 

Focal knockout of Cav1.2 in the prefrontal cortex results in anti-depressive 

behavior 

Next to test the role of Cav1.2 channels in the prefrontal cortex (PFC) in 

depressive like behavior, focal knockout of Cav1.2 was generated by injection of 

AAV-Cre into the PFC of cacna1cfl/fl mice. These mice were tested in FST. Mice 

harboring focal KO of Cav1.2 in the PFC spent significantly more time mobile in FST 

compared to AAV-GFP injected control mice (Figure 2a; main effect  
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of viral vector, F1,7 = 4.945; p < 0.05), demonstrating an anti-depressive phenotype.  

To test the specificity of Cav1.2 in mediating the anti-depressive phenotype, we 

generated focal knockdown of Cav1.3, the other neuronal L-type Ca2+ channel (LTCC) 

isoform in the PFC using AAV-expressing Cav1.3 siRNA.  Knockdown of Cav1.3 had 

no effect on depressive-like behavior in FST. There was no significant difference in 

AAV-Cav1.3 siRNA injected mice compared to AAV-Cav1.3 mismatch control virus 

injected mice (Figure 2b). These results demonstrated that knockout of Cav1.2 in the 

PFC regulates depressive-like behavior. 

 

Focal knockout of Cav1.2 in the ventral or dorsal hippocampus does not 

modulate depressive-like behavior 

To test the role of Cav1.2 in the hippocampus on depressive-like behavior, we 

generated mice with focal knockout of Cav1.2 in the ventral hippocampus (vHPC), a 

brain region implicated in depressive-like behaviors (34), with AAV-Cre. As a control 

region, in a separate cohort of mice, we generated focal knockout of Cav1.2 in the 

dorsal hippocampus (dHPC). Neither the vHPC (Figure 2c) nor the dHPC (Figure 2d) 

Cav1.2 KO mice showed any difference in time spent mobile in FST compared to 

control mice. These findings demonstrate that Cav1.2 in the HPC is not involved in 

regulating depressive-like behavior in mice. 

 

Focal KO of Cav1.2 in glutamatergic neurons of the prefrontal cortex does not 

modulate depressive-like behavior 
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As glutamatergic neurons of the PFC have been shown to regulate depressive-

like behavior (35) and as Cav1.2 are expressed in most excitable glutamatergic neurons 

(36), we used an AAV-Cre driven by a CaMK2 promoter (AAV-CaMK2-Cre) to 

selectively knockout Cav1.2 in the CaMK2-expressing glutamatergic neurons to test 

the role of Cav1.2 in this subset of neurons in the PFC in mediating the anti-depressive 

phenotype observed in Cav1.2 HET mice. Interestingly, mice with focal KO of Cav1.2 

in glutamatergic neurons of the PFC did not show a difference in sucrose preference 

(Figure 3a) or FST (Figure 3b) compared to AAV-GFP control mice.  

 

REDD1 protein levels are lower in the prefrontal cortex of Cav1.2 heterozygous 

mice  

We next explored potential Cav1.2-mediated molecular mechanisms in the PFC 

underlying the anti-depressive-like phenotype observed in Cav1.2 HET mice. We 

measured levels of REDD1 protein, since it was shown to be expressed at lower levels 

in the PFC of depressed humans as well as in the PFC of rats subjected to chronic 

unpredictable stress, a rodent model of depression (26).  Examination of REDD1 

levels in the PFC using Western blot analysis revealed that HET mice have 

significantly lower levels of REDD1 protein in the PFC compared to WT (Figure 4).  

 

REDD1 overexpression in PFC reverses the anti-depressive phenotype in HET 

mice 
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Since REDD1 has been shown to regulate depressive-like behaviors (24), we 

next tested whether REDD1 is responsible for the anti-depressive phenotype observed 

in Cav1.2 HET mice.  REDD1 was over-expressed  in the PFC of HETs by  bilateral 

stereotaxic delivery of a REDD1-expressing viral vector (AAV-REDD1) (26). AAV-

REDD1 injected HET mice showed significantly lower sucrose preference compared 

to HET mice injected with control AAV-eYFP  (Figure 5; main effect of viral vector, 

F1, 17 = 7.191; p < 0.05), indicating that over-expression of REDD1 completely 

reversed the anti-depressive phenotype observed in the HETs (Figure 5). These results 

demonstrate that REDD1 in the PFC is responsible for the anti-depressive phenotype 

observed in Cav1.2 HET mice. 

 

Discussion 

   

In this study, we report that Cav1.2 plays an important role in regulating 

depression-related behaviors.  We find that constitutive Cav1.2 HET mice exhibit an 

anti-depressive phenotype using FST and the sucrose preference test.  Our findings are 

consistent with previous findings of Dao et al. (2010) (4) where they report that 

constitutive Cav1.2 HET mice exhibit an anti-depressive phenotype using FST and the 

tail suspension model of depression.  We extend this finding and demonstrate for the 

first time that Cav1.2 channels in the PFC and not the ventral or dorsal hippocampus is 

responsible for the anti-depressive phenotype. We further demonstrate for the first 

time that the depression-related protein, REDD1, is altered in the PFC of Cav1.2 HET 

mice and that REDD1 is responsible for the anti-depressive behavior seen in this  



56 

 

 

  



57 

 

mouse model.   Taken together, this study directly links a role of Cav1.2 in the PFC in 

regulating depressive-like behavior. 

 

CACNA1C SNPs and depression 

Numerous studies have associated genetic variants in CACNA1C with 

depression (3, 5, 21, 37).   All reported SNPs to date are present in noncoding intronic 

or untranslated 5’ and 3’ regions and recent studies have explored the consequence of 

these noncoding SNPs on transcriptional regulation of CACNA1C.  Two studies have 

found that one of the most common and widely reproduced intronic SNPs rs1006737 

in major depressive disorder and also in bipolar disorder and schizophrenia, results in 

higher CACNA1C mRNA levels in human iPSC-derived neurons from carriers of the 

homozygous SNP (24, 38) and in human brain (24).    This data suggests that higher 

levels of cacna1c (Cav1.2) results in depression.  This is consistent with our findings 

in Cav1.2 HET mice that have lower cacna1c mRNA levels resulting in an anti-

depressive phenotype.  Interestingly, one of the most commonly associated CACNA1C 

SNP, rs 1006737, is an intronic SNP. Although several studies have tried to reveal the 

functional consequence of one of the most commonly associated CACNA1C SNP, rs 

1006736 and have had varied results, it is clear that there exists a functional 

consequence (5, 24, 38, 39).  

 

PFC circuitry, cell types and depression-related behavior 
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Dao et al., (4) reported that a functional consequence of global Cav1.2 

heterozygous knockout was a depressive-like phenotype in mice. However, the 

relevant brain region, cell type and potential molecular mechanisms downstream of 

Cav1.2, had yet to be identified. Our finding that Cav1.2 plays a role in the PFC in 

regulating depression-related behavior is consistent with a growing body of evidence 

that dysfunction of the PFC underlies depression (11, 15, 35).  Human imaging and 

postmortem studies demonstrate structural and functional changes in the PFC of 

patients suffering from major depressive disorder (6, 7).  Our findings further suggest 

that the antidepressive effect seen in Cav1.2 HET mice is a result of loss of Cav1.2 in 

non-glutamatergic neurons of the PFC as knockout of Cav1.2 in glutamatergic neurons 

using focal delivery of AAV-CamK2-Cre into the PFC has no effect on depressive-

like behavior.  Non-glutamatergic neurons that are immuno-reactive for calcium 

binding proteins in the PFC have been shown to be altered in major depression (40). 

These GABAergic interneurons exert inhibitory control over pyramidal projection 

neurons of the PFC (41). Although the expression of Cav1.2 in PFC GABAergic 

neurons has not been examined, Cav1.2 is highly expressed in cultured GABAergic 

neurons of the cerebral cortex (42) and in the hippocampus (43). LTCCs have been 

found to regulate parvalbumin expression and interneuron development (44), 

suggesting that there could be lower levels of parvalbumin expression in Cav1.2 HET 

mice. Taken together, we propose that PFC Cav1.2 KO results in decreased 

parvalbumin interneuron activity, leading to decreased inhibition of glutamatergic 

neurons, resulting in an overall increase in PFC output.   This hypothesis is consistent 

with the observation that decreased function of NMDA receptors in the PFC that 
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closely interact with LTCCs has been shown to predominantly decrease the activity of 

PFC interneurons (45). Moreover, in line with our hypothesis, Covington et al., (11) 

suggest that a net increase in the output of PFC projections neurons likely underlies 

the modulation of depressive-like behavior via optogenetic stimulation of the PFC.  

Future studies knocking out Cav1.2 in GABAergic interneurons of the PFC will serve 

to further address these questions. 

 

REDD1 and depressive-like behavior 

Another novel finding from this study is that we identified REDD1 as a 

molecular target downstream of Cav1.2 that is responsible for the anti-depressive 

phenotype in cacna1c HET mice. Cacna1c HETs show lower REDD1 protein in the 

PFC and REDD1 over-expression was sufficient to reverse the sucrose preference 

phenotype. Consistent with lower REDD1 protein resulting in an anti-depressive 

phenotype, higher REDD1 has been reported in human depressed patients as well as in 

rodent models of depression (26).  

Activation of REDD1 promotes protein phosphatase 2A-dependent de-

phosphorylation of molecules that have been linked to depressive- and anxiety-like 

behaviors. One interesting molecular target downstream of REDD1 is the Forkhead 

Box, Class O transcription factors (FoxO). FoxOs have been shown to regulate 

emotional behavior (46). Specifically, FoxO1 is associated with anxiety behaviors, 

whereas FoxO3a is associated with anti-depressive behaviors (46). FoxOs are directly  
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regulated by REDD1 as well as by downstream targets of REDD1, such as Akt (Figure 

6), (47, 48). REDD1 promotes PP2A dependent de-phosphorylation of Akt (49), 

which leads to reduced phosphorylation and therefore activation of FoxO1 and 

FoxO3a (50). Therefore, we hypothesize that the Cav1.2 HETs, which have 

significantly lower REDD1 in the PFC, have higher phosphorylation and activity of 

Akt, leading to increased phosphorylation, hence inhibition of FoxO1 and FoxO3a, 

resulting in an anti-depressive phenotype.  Future molecular studies are needed to 

confirm this hypothesis. 

 In summary, in this report we identify the PFC as a key brain region where 

Cav1.2 and its molecular pathways exert their effects on regulation of depressive-like 

behavior. The above findings advance our understanding of Cav1.2 in depression by 

showing that decreased Cav1.2 in the non-glutamatergic neurons of the PFC regulates 

depressive-like behaviors.  
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Chapter 4: Cacna1c mediates survival of adult newborn hippocampal neural 

precursor cells. 

 

Intoduction 

CACNA1C was recently identified in the largest human genome-wide study to 

date as one of only two genes, and one of only four gene loci, presenting a common 

risk factor across five major forms of neuropsychiatric illness: autism, bipolar 

disorder, major depression, schizophrenia, and attention deficit hyperactivity disorder 

(ADHD) (1). Currently, it is not known how voltage gated calcium channel activity 

genes have such pleiotropic effects on psychopathology. CACNA1C encodes the 

voltage-gated L-type calcium channel (LTTC) Cav1.2, which is activated upon 

transient changes in membrane potential to allow influx of calcium into the cell, which 

activates downstream pathways resulting in transcription of genes such as that 

encoding for brain derived neurotrophic factor (BDNF) (2, 3).  Cav1.2 has been shown 

to play an important role in synaptic plasticity and a number of behaviors and 

phenotypes related to neuropsychiatric illness, including drug addiction (4-6), reward-

driven behavior (7, 8), establishment and extinction of fear conditioning (9, 10), and 

normal cognition (11, 12). We and others have also shown that Cav1.2, and not the 

other brain-specific LTCC subunit Cav1.3, mediates anxiety-like behavior in mice (13, 

14). Specifically, forebrain-cacna1c cKO mice show higher anxiety-like behavior in 

the open field test, light dark conflict test, and the elevated plus maze test (13), and 

anxiety is a prominent component of all of the neuropsychiatric illnesses in which 

CACNA1C has thus far been implicated.  
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Regulation of adult hippocampal neurogenesis (HPC NG), in which newborn 

neurons are continually incorporated into the dentate gyrus of the hippocampus 

(HPC), has been implicated in the pathophysiology of various neuropsychiatric 

disorders including depression and schizophrenia (15-19). The neurogenesis theory of 

depression hypothesizes that since stress is a core component of depression, and stress 

modulates adult HPC NG and there is hippocampal atrophy in depressed patients, 

adult HPC NG may underlie the pathophysiology of major depression (18). 

Furthermore, numerous animal studies show that antidepressant treatment, in 

particular, monoaminergic antidepressants like imipramine and fluoxetine require 

adult HPC NG to exert its antidepressant effects (20-22), further supporting the 

involvement of adult HPC NG in affective disorders. Although such studies have not 

been performed in humans, postmortem studies in depressed patients reveal decreased 

dentate gyrus size and granule cell number, suggesting decreased adult HPC NG (22). 

Ericksson et al. (23) provided the first direct evidence for adult HPC NG in humans. 

More recently, Spalding et al., confirmed these findings and further showed that about 

one third of HPC neurons are subject to change and that the extent of adult NG is 

comparable in adult humans and adult mice (24).   

Previously, Deisseroth et al. have shown that LTCCs exert bi-directional 

regulation of proliferation of adult-derived neural precursor cells (25). However, these 

experiments did not look in vivo to determine whether the two forms of LTCCs, 

Cav1.2 and Cav1.3, exert different or complementary roles, which could serve to guide 

future therapeutic approaches in patients.  Here, we apply genetic approaches to 

address this important issue, using both the Cre-loxP system and virus-mediated gene 
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transfer in mice, to achieve in vivo spatial and temporal control of Cav1.2 and Cav1.3 

gene expression. 

 

Methods and Materials 

Animals 

All experimental procedures were conducted in accordance with the rules of the Weill 

Cornell Medical College and University of Iowa Carver College of Medicine 

Institutional Animal Care and Use Committees. All animals were housed in 

temperature controlled conditions, provided food and water ad libitum, and maintained 

on a 12-hr light/dark cycle (7 A.M. to 7 P.M.).  Forebrain-cacna1c cKO mice, and 

cacna1c fl/fl mice were generated as previously described (13, 26).  

 

Surgeries 

Stereotaxic surgery was performed in 8 week old mice as described (13, 26). Briefly, 

anesthesia was induced by intraperitoneal (i.p.) injection of ketamine (1000mg/kg) 

xylazine cocktail (200mg/kg). A midline incision was made, local anesthesia 

(Marcaine) applied, the head leveled and holes formed through the skull using a 25 

gauge needle. Region-specific deletion of cacna1c was generated by manual bilateral 

infusion of AAV-Cre (Vector BioLabs, Philadelphia, PA), (0.75ul/side) into the 

hippocampus of cacna1cfl/fl mice through a 2.5ul Hamilton syringe at a rate of 

0.1ul/minute. AAV-GFP (Vector BioLabs, Philadelphia, PA) was used as a control. 

Region-specific knockdown of cacna1d was generated by manual bilateral infusion of 
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0.5ul per side of AAV-cacna1d siRNA (4) into the hippocampus through a 2.5ul 

Hamilton syringe at a rate of 0.1ul/minute. AAV-mismatch siRNA was used as a 

control virus. The coordinates for the HPC were anterior-posterior -2mm; medial-

lateral ±1.6mm; dorsal-ventral -1.8mm, at a 10˚ angle.  The needle was left in place 

for an additional 5 min after infusion in order to ensure complete delivery of virus. 

After a minimum of 3 weeks to allow for maximal virus expression, mice were 

administered 50mg/kg BrdU for 5 days and transcardially perfused with 4% 

paraformaldehyde (PFA) 24hrs after the last injection of BrdU.  

 

P7C3-A20 treatments 

All mice were single housed for the duration of their treatment. Forebrain-cacana1c 

cKO and wild type (WT) littermate mice received 10mg/kg P7C3-A20 or vehicle (5% 

DMSO, 20% cremaphor in 5% dextrose), i.p, twice a day 28 days, or twice a day for 7 

days, starting after P60. Mice were transcardially perfused with 4% PFA 24hrs after 

the last BrdU injection. In separate experiments, brains were flash frozen and 

processed for BDNF ELISA. 

 

BDNF ELISA  

Mature BDNF protein level was measured using the BDNF Emax ImmunoAssay 

(ELISA) system (Promega, Madison, WI), with recombinant mature BDNF as a 

standard. Standard and samples were performed in duplicate, with each group 

containing 10 to 14 samples. Protein was extracted and quantified following the 

manufacturer protocol. Tissue samples were homogenized in lysis buffer (150mM 
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NaCl, 1% Triton X-100, 25mM HEPES, 2mM NaF) containing phosphatase and 

protease inhibitors, and then incubated by rotation at 4C for 1 hour. Homogenized 

tissue was centrifuged at maximum speed and the supernatant containing total protein 

was collected and quantified using the BCA protein assay kit (Thermo Fisher 

Scientific, Rockford, IL). Each sample was diluted 1:1 with block and sample buffer 

(BSB), and placed in designated wells of a 96-well plate previously coated with 

BDNF antibody in carbonate buffer (25mM Na2CO3 and 25mM Na2HCO3, pH 9.7, 

incubated at 4C), followed by blocking with BSB. A second coating of primary anti-

human BDNF antibody was added, followed by horseradish peroxidase-conjugated 

secondary antibody. The colorimetric reaction was initiated by tetramethylbenzidine. 

After 10 minutes, the reaction was stopped by addition of 1N HCl, and absorbance 

was read at 450 nm on a plate reader (iMark Absorbance Microplate Reader, Bio-Rad 

Laboratories, Hercules, CA). 

 

Fluorescent Immunohistochemistry 

Cav1.2 fluorescent immunohistochemistry was performed to confirm elimination of 

Cav1.2 as previously described (13, 26). Fluorescent immunohistochemistry was also 

used to confirm injection placement. Mice were transcardially perfused with 4% PFA, 

and brains were dissected and post-fixed overnight in 4% PFA followed by cryo- 

protection in 30% sucrose at 4C for at least 72 hours. Forty um-thick sections 

spanning the hippocampus were obtained using a sliding microtome and incubated in 

anti-chicken GFP (1:5,000) (Aves Labs, Tigard, Oregon) and anti-rabbit glial fibrillary 

acidic protein (GFAP) (1:1000) (Invitrogen) primary antibody overnight at 4C. 
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Sections were rinsed in 0.1M phosphate-buffer (PB) and incubated with Alexa Fluor 

488 (1:300) and Alexa Fluor 568 (1:300) antibody for 1 hour at room temperature.   

 

BrdU Staining 

As previously described (27-30), 24 hours after the final BrdU administration mice 

were sacrificed by transcardial perfusion with 4% paraformaldehyde at pH 7.4, and 

their brains were processed for immunohistochemical detection of incorporated BrdU 

in the hippocampus. Dissected brains were immersed in 4% paraformaldehyde 

overnight at 4 °C, then cryoprotected in sucrose before being sectioned into 40 μm 

thick free-floating sections. Unmasking of BrdU antigen was achieved through 

incubating tissue sections for 2 hours in 50% formamide / 2X saline-sodium citrate 

(SSC) at 65 °C, followed by a 5 minute wash in 2X SSC and subsequent incubation 

for 30 minutes in 2M HCl at 37 °C. Sections were processed for immunohistochemical 

staining with mouse monoclonal anti- BrdU (1:100). The number of BrdU+ cells in 

the entire dentate gyrus subgranular zone (SGZ) was quantified by counting BrdU+ 

cells within the SGZ and dentate gyrus in every fifth section throughout the entire 

hippocampus and then normalizing for dentate gyrus volume using Nikon Metamorph 

software. 

 

Corticosterone levels 

To measure baseline and stress-induced corticosterone levels, plasma samples were 

isolated from 7-15 week old forebrain-Cav1.2 cKO and WT mice at 1:00-2:00pm and 

stored at -20°C. For all restraint stress experiments, mice were restrained for 30min in 
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decapicones (Snyder et al., 2011). Plasma corticosterone levels were measured using 

the high sensitivity corticosterone enzyme immunoassay (EIA) kit (AC-15F1, 

Immunodiagnostic Systems, Fountain Hills, AZ). Samples were analyzed in duplicate. 

Concentrations were determined as per manufacturer’s instructions.  

Morphometric Analysis of Hippocampal Size 

As previously described (31), PFA-fixed mouse brains were sectioned in the coronal 

plane, paraffin-embedded, sectioned at 8 uM thickness, and stained with hematoxylin 

and eosin. Histological sections were obtained at 50-mm intervals. Measurements of 

the hippocampus, dentate granular cell layer, and forebrain were taken at the coronal 

level in which CA1 approaches the midline and the upper blade of the dentate gyrus 

runs parallel to the surface of the brain. An ocular lens fitted with an etched grid was 

used to measure the dentate, CA1 and CA3 height and neuronal size (60X), as well as 

hippocampal dimensions (2X).  

 

Results 

Cav1.2 but not Cav1.3 L-type calcium channels are necessary for adult 

hippocampal neurogenesis.  

We first examined adult hippocampal neurogenesis (HPC NG) in forebrain- 

cacna1c cKO mice (Figure 1a). All mice received intraperitoneal (i.p.) injections of 

the cell proliferation tracer, bromodeoxyuridine (BrdU), once a day, for a total of 5 

days. Mice were transcardially perfused with 4% paraformaldehyde (PFA) 24hrs after 

the last injection of BrdU. Forty micron brain sections were immunostained for BrdU, 

and the number of immunoreactive cells was counted in the subgranular and granular  
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cell layers of the dentate gyrus. Forebrain-Cav1.2 cKO mice show significantly lower 

(approximately 50% lower) number of BrdU positive cells compared to wildtype 

littermate controls (Figure 1b).  

Next, to directly test the effect of Cav1.2 knockout in the HPC on adult HPC 

NG, we generated focal knockout of Cav1.2 via stereotaxic delivery of AAV-Cre-GFP 

into the HPC of adult cacna1cfl/fl mice (Figure 2a, b).   Cav1.2 KO in the HPC resulted 

in significantly lower number of BrdU positive cells compared to that seen in control 

AAV-GFP injected mice (Figure 2c), similar to that observed in forebrain-Cav1.2 cKO 

mice (Figure 1b).  

The other neuronal LTCC, Cav1.3, has also been shown to be involved in 

affective behaviors (9, 32), which have been associated with changes in adult HPC NG 

(22). Specifically, Cav1.3 KO show anti-depressive-like phenotype as measured by 

decreased immobility in forced swim test and tail suspension test, an anxiety 

phenotype as measured by increased time in open arms of the EPM (32) as well as a 

deficit in the consolidation of fear conditioning (9). Therefore we generated focal 

knockdown of Cav1.3 in the HPC of adult C57BL/6 mice via stereotaxic delivery of 

AAV-Cav1.3 siRNA (Figure 2d, e).  Knockdown of Cav1.3 did not affect the number 

of BrdU immunoreactive cells compared to control scrambled siRNA injected mice 

(Figure 2f). These results demonstrate that HPC Cav1.2, and not Cav1.3 regulates adult 

HPC NG. 

 

Cav1.2 channels are necessary for survival and not proliferation of adult born 

neural progenitor cells.  
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Adult HPC NG consists of several different stages which can be loosely 

grouped as proliferation and survival (33). Various factors that affect adult HPC NG 

such as neurotrophic factors, antidepressant drugs and stress, have different effects on 

the proliferation and survival in the adult dentate gyrus (34, 35). Therefore, we 

investigated whether Cav1.2 regulates the proliferation or survival stage of adult HPC 

NG. To examine proliferation of adult born neural progenitor cells (NPC), 8-week old 

male forebrain-cacna1c cKO received 1 injection of BrdU. Mice were perfused 1hr 

after the BrdU injection, and brains were sectioned and processed for 

immunohistochemical staining for BrdU.  To examine survival of adult NPCs, brains 

were processed 30 days after a single injection of BrdU. One hour after BrdU 

injection, there was no difference in number of BrdU positive cells in forebrain-

cacna1c cKO compared to WT (Figure 3a). However, 30days after a single injection 

of BrdU, there were significantly lower number of BrdU positive neurons in 

forebrain-cacna1c2 cKO versus WT (Figure 3b). These results demonstrate that 

forebrain-cacna1c cKO have normal proliferation but have a significant deficit in the 

survival of newborn neurons in the dentate gyrus. 

 

Lower adult HPC NG in forebrain-cacna1c cKO does not affect hippocampus size  

Deficits in adult HPC NG can result in changes in the size of the HPC, such as 

those observed for other mouse models with more severe deficit in adult HPC NG 

(30). Moreover, neurotrophic factors and exercise, which increase adult HPG NG, 

increases the size of the HPC, suggesting that changes in HPC size may correlate with 

HPC NG and have functional consequences (36). Furthermore, decrease in HPC size 
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in depressed patients is one of the core components of the neurogenesis hypothesis of 

depression; it is assumed that since depressed patients have smaller HPC, they also 

have a deficit in HPC NG (18).  Therefore, we compared size of the hippocampus and 

its subregions between forebrain-cacna1c cKO and their WT littermates. Forebrain-

cacna1c cKO mice displayed normal hippocampus size (Figure 4a) as well as normal 

dentate gyrus, CA1 and CA3 thickness (Figure 4b). Therefore, impaired adult HPC 

NG in the forebrain-cacna1c cKO does not affect hippocampal morphology.  

 

Lower adult HPC NG in forebrain-cacna1c cKO is not mediated by 

gluococorticoids.  

We have previously reported that forebrain-Cav1.2 cKO display an anxiety-

like phenotype (13). Corticosterone, the primary glucocorticoid produced by the 

adrenal cortex, has been shown to induce anxiety-like behaviors (37) via the 

glucocorticoid receptors (38).  Corticosterone (37) and glucocorticoid receptors have 

also been shown to modulate the connectivity and integration of newborn neurons in 

the adult hippocampus (39, 40). Therefore, we considered corticosterone as a potential 

mechanism underlying the impaired survival of newborn neurons observed in 

forebrain-cacna1c cKO mice. Corticosterone levels were measured in the trunk blood 

of forebrain-cacna1c cKO and WT mice at basal conditions and following acute 

immobilization stress. There was no difference in corticosterone levels in either basal 

condition or after acute immobilization stress (Figure 5), suggesting that the deficit in 

adult HPC NG in forebrain-cacna1c cKO is not mediated by corticosterone.  
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The neuro-protective aminopropyl carbazole P7C3A-20 rescues adult HPC NG 

deficit in forebrain-cacna1c cKO. 

The compound P7C3-A20 has been identified as a pro-neurogenic agent that 

specifically improves survival of new born neurons (30). Thus, we next examined if 

P7C3-A20 treatment can rescue the deficit in survival of newborn neurons in 

forebrain-cacna1c cKO mice. We examined levels of doublecortin (DCX), a 

molecular marker of new born neurons committed to neuronal fate, unlike BrdU, 

which is unable to distinguish between neuronal versus non-neuronal committed cells 

(17). P7C3-A20 treatment increased the number of newborn neurons in forebrain-

cacna1c cKO and WT mice (Figure 6a), and significantly increased DCX mRNA in 

the HPC of both forebrain-cacna1c cKO and WT (Figure 6b), thereby rescuing the 

Cav1.2 induced deficit in adult HPC NG.    

We additionally tested the effect of the selective serotine reuptake inhibitor 

(SSRI) fluoxetine, and found that fluoxetine treatment also increased DCX labeling in 

forebrain-cacna1c cKO and WT (Figure 7a). However, fluoxetine treatment did not 

affect DCX mRNA levels in forebrain-cacna1c cKO and WT (Figure 7b). 

 

P7C3-A20 rescues adult HPC NG deficit in forebrain-cacna1c cKO via a BDNF 

independent mechanism.  

A downstream target of Cav1.2, brain derived neurotrophic factor (BDNF), is 

known to regulate adult HPC NG (41, 42). Additionally SSRIs such as fluoxetine 

work in part via increasing BDNF (42).   Thus we next examined levels of BDNF 

protein using ELISA.  We found that forebrain-cacna1c cKO have significantly lower 
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levels of BDNF protein compared to WT mice (Figure 8a), suggesting BDNF as a 

potential mechanism that underlies the neurogenesis deficit in forebrain-cacna1c cKO 

mice.   Next we examined the effect of P7C3-A20 and fluoxetine on BDNF levels in 

forebrain-cacna1c cKO and WT mice.  We found that P7C3-A20 had no effect on 

hippocampal BDNF in either genotype (Figure 8a).  In contrast, fluoxetine treated 

mice showed the expected robust increase in hippocampal BDNF in WT mice and also 

in forebrain-cacna1c cKO mice (Figure 8b). These results suggest P7C3-A20 rescues 

the deficit in adult HPC NG in the forebrain-cacna1c cKO via a BDNF independent 

mechanism. 

 

Discussion 

Although LTCCs have been implicated to be involved in adult HPC NG (43), 

the specific isoform of LTCC that modulates adult HPC NG had not yet been 

identified. Here, we report for the first time, that Cav1.2, and not Cav1.3, regulates 

adult HPC NG. We further show in forebrain-cacna1c cKO that Cav1.2 specifically 

regulates the survival and not the proliferation of adult born newborn precursor cells. 

The Cav1.2-regulated deficit in adult HPC NG is likely not a developmental 

compensatory effect as focal knockout of Cav1.2 specifically in the adult dentate gyrus 

of the HPC also results in a severe deficit in adult HPC NG.  

We also show that P7C3-A20 restored adult HPC NG as measured by DCX 

protein and mRNA (Figure 6), without correcting BDNF levels in forebrain-cacna1c 

cKO (Figure 8a). Fluoxetine on the other hand, increased DCX protein, but not DCX  
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mRNA (Figure 7) and drastically increased BDNF in both WT and KO mice (Figure 

8b).    

Interestingly, the BDNF Val66Met human knockin mouse model has been 

shown to be resistant to the neurogenic effects of fluoxetine (42). Since P7C3-A20 

rescues adult HPC NG in a BDNF independent mechanism, this compound could be a 

better treatment for individuals with BDNF genetic variants. We find that fluoxetine 

and P7C3-A20 alter adult HPC NG as measured by DCX via different molecular 

mechanisms (i.e. via BDNF dependent and independent mechanism), but the two 

treatments also affect different aspects (translation versus transcription) of DCX 

expression.  Recent studies have highlighted the mTOR pathway at that controls 

protein translation at neuronal synapses, in the antidepressant actions of ketamine (44). 

It remains to be explored if fluoxetine regulates the mTOR pathway.   However it is 

possible that even though fluoxetine requires two weeks to exert its behavioral anti-

depressive effects, it could recruit a protein translation mechanism at the synapse. 

Collectively, these results show that Cav1.2-induced deficit in adult HPC NG can be 

rescued via both BDNF dependent and independent mechanisms.  

The role of adult HPC NG in mood behaviors has been a topic of controversy 

(22). Future experiments will test whether the deficit in adult HPC NG observed in the 

forebrain-cacna1c cKO, which have an anxiety-like phenotype (13), is involved in 

modulating mood. If adult HPC NG is found to be involved in mood regulation in the 

forebrain-cacna1c cKO, since CACNA1C has been selectively implicated in 

neuropsychiatric disease, pharmacologic restoration of HPC NG, such as through 
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treatment with the P7C3-class of neuroprotective agents, may provide a new 

opportunity for therapeutic intervention in patients.   



89 

 

REFERENCES 

 

1. C.-D. G. o. t. P. G. Consortium, Identification of risk loci with shared effects 

on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 

1371-1379 (2013). 

2. X. Tao, S. Finkbeiner, D. B. Arnold, A. J. Shaywitz, M. E. Greenberg, Ca2+ 

influx regulates BDNF transcription by a CREB family transcription factor-

dependent mechanism. Neuron 20, 709-726 (1998). 

3. A. Ghosh, J. Carnahan, M. E. Greenberg, Requirement for BDNF in activity-

dependent survival of cortical neurons. Science 263, 1618-1623 (1994). 

4. K. Schierberl et al., Cav1.2 L-type Ca²⁺ channels mediate cocaine-induced 

GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent 

on ventral tegmental area Ca(v)1.3 channels. J Neurosci 31, 13562-13575 

(2011). 

5. T. P. Giordano, S. S. Satpute, J. Striessnig, B. E. Kosofsky, A. M. 

Rajadhyaksha, Up-regulation of dopamine D(2)L mRNA levels in the ventral 

tegmental area and dorsal striatum of amphetamine-sensitized C57BL/6 mice: 

role of Ca(v)1.3 L-type Ca(2+) channels. J Neurochem 99, 1197-1206 (2006). 

6. A. M. Rajadhyaksha, B. E. Kosofsky, Psychostimulants, Protein 

phosphorylation and Gene expression: a growing role of L-type calcium 

channels. Cellscience 2, 127-144 (2005). 

7. T. M. Lancaster, E. A. Heerey, K. Mantripragada, D. E. Linden, CACNA1C 

risk variant affects reward responsiveness in healthy individuals. Transl 

Psychiatry 4, e461 (2014). 

8. M. Wessa et al., The CACNA1C risk variant for bipolar disorder influences 

limbic activity. Mol Psychiatry 15, 1126-1127 (2010). 

9. B. C. McKinney, G. G. Murphy, The L-Type voltage-gated calcium channel 

Cav1.3 mediates consolidation, but not extinction, of contextually conditioned 

fear in mice. Learn Mem 13, 584-589 (2006). 

10. N. Langwieser et al., Homeostatic switch in hebbian plasticity and fear 

learning after sustained loss of Cav1.2 calcium channels. J Neurosci 30, 8367-

8375 (2010). 

11. J. A. White et al., Conditional forebrain deletion of the L-type calcium channel 

Ca V 1.2 disrupts remote spatial memories in mice. Learn Mem 15, 1-5 (2008). 



90 

 

12. S. Moosmang et al., Role of hippocampal Cav1.2 Ca2+ channels in NMDA 

receptor-independent synaptic plasticity and spatial memory. J Neurosci 25, 

9883-9892 (2005). 

13. A. S. Lee et al., Forebrain elimination of cacna1c mediates anxiety-like 

behavior in mice. Mol Psychiatry 17, 1054-1055 (2012). 

14. D. T. Dao et al., Mood disorder susceptibility gene CACNA1C modifies 

mood-related behaviors in mice and interacts with sex to influence behavior in 

mice and diagnosis in humans. Biol Psychiatry 68, 801-810 (2010). 

15. S. Campbell, G. Macqueen, The role of the hippocampus in the 

pathophysiology of major depression. J Psychiatry Neurosci 29, 417-426 

(2004). 

16. A. Reif et al., Neural stem cell proliferation is decreased in schizophrenia, but 

not in depression. Mol Psychiatry 11, 514-522 (2006). 

17. G. Kempermann, J. Krebs, K. Fabel, The contribution of failing adult 

hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 21, 

290-295 (2008). 

18. B. L. Jacobs, Adult brain neurogenesis and depression. Brain Behav Immun 16, 

602-609 (2002). 

19. H. D. Schmidt, R. S. Duman, The role of neurotrophic factors in adult 

hippocampal neurogenesis, antidepressant treatments and animal models of 

depressive-like behavior. Behav Pharmacol 18, 391-418 (2007). 

20. A. Surget et al., Drug-dependent requirement of hippocampal neurogenesis in 

a model of depression and of antidepressant reversal. Biol Psychiatry 64, 293-

301 (2008). 

21. L. Santarelli et al., Requirement of hippocampal neurogenesis for the 

behavioral effects of antidepressants. Science 301, 805-809 (2003). 

22. B. R. Miller, R. Hen, The current state of the neurogenic theory of depression 

and anxiety. Curr Opin Neurobiol 30, 51-58 (2015). 

23. P. S. Eriksson et al., Neurogenesis in the adult human hippocampus. Nat Med 

4, 1313-1317 (1998). 

24. K. L. Spalding et al., Dynamics of hippocampal neurogenesis in adult humans. 

Cell 153, 1219-1227 (2013). 

25. H. E. Covington et al., Antidepressant effect of optogenetic stimulation of the 

medial prefrontal cortex. J Neurosci 30, 16082-16090 (2010). 



91 

 

26. A. S. Lee et al., Selective genetic deletion of cacna1c in the mouse prefrontal 

cortex. Mol Psychiatry 17, 1051 (2012). 

27. A. K. Walker et al., The P7C3 class of neuroprotective compounds exerts 

antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol 

Psychiatry,  (2014). 

28. J. Naidoo et al., Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-

dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(-)-

P7C3-S243], with improved druglike properties. J Med Chem 57, 3746-3754 

(2014). 

29. K. S. MacMillan et al., Development of proneurogenic, neuroprotective small 

molecules. J Am Chem Soc 133, 1428-1437 (2011). 

30. A. A. Pieper et al., Discovery of a proneurogenic, neuroprotective chemical. 

Cell 142, 39-51 (2010). 

31. A. A. Pieper et al., The neuronal PAS domain protein 3 transcription factor 

controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl 

Acad Sci U S A 102, 14052-14057 (2005). 

32. P. Busquet et al., CaV1.3 L-type Ca2+ channels modulate depression-like 

behaviour in mice independent of deaf phenotype. Int J 

Neuropsychopharmacol 13, 499-513 (2010). 

33. C. Zhao, W. Deng, F. H. Gage, Mechanisms and functional implications of 

adult neurogenesis. Cell 132, 645-660 (2008). 

34. M. Sairanen, G. Lucas, P. Ernfors, M. Castrén, E. Castrén, Brain-derived 

neurotrophic factor and antidepressant drugs have different but coordinated 

effects on neuronal turnover, proliferation, and survival in the adult dentate 

gyrus. J Neurosci 25, 1089-1094 (2005). 

35. R. M. Thomas, G. Hotsenpiller, D. A. Peterson, Acute psychosocial stress 

reduces cell survival in adult hippocampal neurogenesis without altering 

proliferation. J Neurosci 27, 2734-2743 (2007). 

36. K. I. Erickson et al., Brain-derived neurotrophic factor is associated with age-

related decline in hippocampal volume. J Neurosci 30, 5368-5375 (2010). 

37. F. Murray, D. W. Smith, P. H. Hutson, Chronic low dose corticosterone 

exposure decreased hippocampal cell proliferation, volume and induced 

anxiety and depression like behaviours in mice. Eur J Pharmacol 583, 115-127 

(2008). 



92 

 

38. M. P. Boyle, B. J. Kolber, S. K. Vogt, D. F. Wozniak, L. J. Muglia, Forebrain 

glucocorticoid receptors modulate anxiety-associated locomotor activation and 

adrenal responsiveness. J Neurosci 26, 1971-1978 (2006). 

39. C. P. Fitzsimons et al., Knockdown of the glucocorticoid receptor alters 

functional integration of newborn neurons in the adult hippocampus and 

impairs fear-motivated behavior. Mol Psychiatry 18, 993-1005 (2013). 

40. D. J. Saaltink, E. Vreugdenhil, Stress, glucocorticoid receptors, and adult 

neurogenesis: a balance between excitation and inhibition? Cell Mol Life Sci 

71, 2499-2515 (2014). 

41. H. Scharfman et al., Increased neurogenesis and the ectopic granule cells after 

intrahippocampal BDNF infusion in adult rats. Exp Neurol 192, 348-356 

(2005). 

42. K. G. Bath et al., BDNF Val66Met impairs fluoxetine-induced enhancement of 

adult hippocampus plasticity. Neuropsychopharmacology 37, 1297-1304 

(2012). 

43. K. Deisseroth et al., Excitation-neurogenesis coupling in adult neural 

stem/progenitor cells. Neuron 42, 535-552 (2004). 

44. R. S. Duman, N. Li, R. J. Liu, V. Duric, G. Aghajanian, Signaling pathways 

underlying the rapid antidepressant actions of ketamine. Neuropharmacology 

62, 35-41 (2012). 



93 

 

Chapter 5: Loss of Cav1.2 in the hippocampus results in long-term molecular 

changes in the nucleus accumbens that underlies sustained cocaine context-

association memory. 

 

Introduction 

Drug addiction is a chronic, relapsing disorder (1-3). Relapse can be triggered 

by the drug itself, or by a drug-associated cue such as drug related context, despite 

extended drug-free periods (4-6). Preventing relapse is one of the major goals as well 

as a major challenge of treating cocaine addiction. It is widely accepted that cocaine-

induced changes in gene expression and synaptic plasticity via activation of molecular 

signaling pathways within the brain’s reward circuitry underlies the high rates of 

relapse despite prolonged abstinence from cocaine (7, 8).  

L-type calcium channels (LTCCs) mediate activity-dependent gene expression 

and synaptic plasticity that underlies long-term memory mechanisms (9-12). We and 

others have shown that the two main LTCC isoforms expressed in the brain, Cav1.2 

and Cav1.3, are necessary for long-term cocaine-induced molecular and behavioral 

plasticity (13-15) and cocaine seeking behavior (16-18). Interestingly, two studies 

have reported that Cav1.2 may also contribute to loss of memory (19, 20), suggesting 

that LTCCs can activate pathways that contribute to formation and loss of memories. 

The hippocampus (HPC) is a brain region that is critically involved in 

regulating context-reward memories (21-24). Indeed, it is essential for acquisition of 

cocaine conditioned place preference (CPP), a cocaine reward-context association task 

(25). Cocaine CPP is a simple, non-invasive procedure wherein animals are trained to 



94 

 

associate a specific context with the rewarding effects of a drug. When animals are 

allowed to freely explore the drug paired and non-drug paired context, they prefer the 

drug-paired context, indicating development of cocaine preference or CPP. LTCCs in 

the HPC are involved in long lasting synaptic changes that are critical for long-term 

potentiation (LTP), a process thought to underlie memory storage (26-29). 

Importantly, the HPC sends glutamatergic projections to the NAc (30, 31), one of the 

most important brain regions involved in reward in general (32) and more specifically, 

in cocaine reward (33, 34). The HPC-NAc pathway is necessary for expression of 

cocaine CPP behavior (33-35). 

Ca2+ signaling pathways play a key role in activating mechanisms necessary 

for long-term memory formation.  The balance between kinase versus phosphatase 

activity has been proposed to underlie LTP, for memory storage, or LTD, for memory 

loss, respectively (36). The calcium influx from Cav1.2 channels activates 

Ca2+/calmodulin (CaM), which can then activate either a kinase or phosphatase 

pathway (37) CaMKII is an essential kinase for synaptic plasticity and memory 

formation (38-41). Activation of CaMKII phosphorylates the GluA1 subunit of the 

AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors) 

at Ser831, which results in the translocation of GluA2-lacking AMPAR to the surface 

membrane, resulting in increased AMPAR signaling (42).  Increased insertion of 

GluA2 lacking, Ca2+ permeable AMPAR has been shown to mediate cocaine craving 

after long-term abstinence from cocaine (43). Calcineurin, or PP2B, is a Ca2+/CaM-

dependent serine phosphatase that can also be activated by Cav1.2, which decreases 

Ser 831 GluA1 phosphorylation and contributes to memory loss (44).  PP2B can also 
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regulate gene transcription by dephosphorylating its molecular targets such as the 

transcription factor, NFATc3 (nuclear factor of activated T-cells c3) (45-47). Upon 

dephosphorylation, NFATc3 translocates into the nucleus where it associates with 

other proteins to activate gene expression (45-49). 

Together, the above findings suggest that the balance between the CaMKII 

pathway versus the PP2B pathway may dictate long-lasting cocaine-associated 

memories. Therefore, in this study, we examined the effect of knocking out Cav1.2 in 

the HPC on long-lasting expression of cocaine CPP behavior and on molecular 

changes in the HPC, NAc and the prefrontal cortex (PFC), important brain reward 

regions that the HPC projects to.  We find that loss of Cav1.2 in the HPC results in 

persistence of cocaine CPP when examined following 30 days of withdrawal 

compared to control WT mice.   

 

Methods and Materials 

Animals 

All experimental procedures were conducted in accordance with the rules of the Weill 

Cornell Medical College and University Animal Care and Use Committees. All 

animals were housed in temperature controlled conditions, provided food and water ad 

libitum, and maintained on a 12-hr light/dark cycle (7 A.M. to 7 P.M.).  Homozygous 

cacna1cfloxed/floxed (cacna1cfl/fl) male mice were generated as previously described (Lee 

et al., 2012).  

 

Surgeries 
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Stereotaxic surgery was performed in 8 week old mice as described (Lee et al., 2012). 

Briefly, anesthesia was induced by intraperitoneal (i.p.) injection of ketamine 

(1000mg/kg) xylazine cocktail (200mg/kg). A midline incision was made, local 

anesthesia (Marcaine) applied, the head leveled and holes formed through the skull 

using a 25 gauge needle. Region-specific deletion of Cav1.2 was generated by manual 

bilateral infusion of AAV-Cre (Vector BioLabs, Philadelphia, PA), (0.5ul/side) into 

the hippocampus of cacna1cfl/fl mice through a 2.5ul Hamilton syringe at a rate of 

0.1ul/minute. AAV-GFP (Vector BioLabs, Philadelphia, PA) was used as a control. 

The coordinates for the hippocampus were -1.4 AP, +1.2 ML, -2 DV, at a 10˚ angle. 

The mice were allowed to recover for at least 2 weeks to ensure maximal knockout of 

Cav1.2.    

 

Behavior 

Cocaine induced conditioned place preference (CPP) was performed as previously 

described (35) (Figure 1). Briefly, mice were placed into a three chamber place 

preference apparatus (Med Associates Inc, St Albans, VT, USA) with two 

experimental chambers that have distinct floors, lighting and wall color and one center 

habituation chamber. The three chambers were separated by a guillotine door. On Day 

1, mice were placed into the center habituation chamber to acclimate for 1 minute after 

which the guillotine doors on either side of the habituation chamber were opened. The 

mouse then had free access to all three chambers for 20 minutes, during which time  
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spent in each chamber is digitally recorded. If the mice showed preference for one 

experimental chamber on this baseline test, then the preferred chamber was paired 

with saline, and the other experimental chamber was paired with cocaine. On Days 2-

4, mice receive an intra-peritoneal (i.p.) injection of 10mg/kg cocaine immediately 

before being confined to the cocaine paired experimental chamber for 20 minutes. At 

least four hours later, mice received an i.p. injection of saline immediately before 

being confined to the saline paired experimental chamber for 20 minutes. On Day 5, 

the mice were again provided free access to all three chambers for 20 minutes to 

access the acquisition of cocaine CPP. Preference was defined as the difference in 

time spent in the cocaine-paired side on the acquisition test day and baseline test day 

and is reported as a difference score. On Withdrawal Days 1-3 (WD1-3), mice were 

kept in their home cage. On WD4, mice were subjected to another 20 minute CPP test. 

On WD 5-29, mice were kept in their home cage. On WD30, mice were subjected to a 

final 20 minute CPP test. 

 

Western immunoblotting 

Mice were sacrificed by rapid decapitation immediately after the final CPP test on 

WD30. Brains were dissected and the hippocampi sectioned on a 1mm brain block. 

GFP goggles (BLS-Ltd.com) were used to visualize GFP signaling in the HPC and to 

dissect out GFP positive tissue for western immunoblotting. Immunoblotting was 

performed as previously described by Giordano et al., (2010) (17). Twenty µg of 

protein was loaded on 10% SDS-polyacrylamide gels and run at 200V constant 

voltage. Blots were probed with anti-rabbit CaMKII, Thr 286 P-CaMKII, PP2B, Ser 
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197 P-PP2B, NFATc3, Ser240 P-NFATc3, GluA1, Ser 831 P-GluA1, Ser 845 P-

GluA1, tubulin or vinculin antibodies overnight at 4°C. Blots were then incubated 

with goat anti-rabbit horseradish peroxidase-linked IgG. Protein bands were visualized 

by chemiluminescence.   Films were scanned and optical density determined using 

Image J software. 

 

Statistics 

For cocaine CPP, difference score data and for western blots, the optical density data 

was analyzed by t-test.   

 

Results 

Knockout of Cav1.2 in the HPC results in persistence of the expression of cocaine 

CPP following long-term withdrawal 

The associations that are established between contextual cues and the drug 

produce a conditioned response: drug seeking in response to drug-paired cues even in 

absence of drug; and this conditioned response is thought to contribute to compulsive 

drug-seeking behavior and relapse (50-53).  We used cocaine CPP to model this 

phenomena in mice. Cocaine induced CPP has been shown to require the hippocampus 

(HPC) (25).   To test the role of HPC Cav1.2 channels in cocaine CPP behavior, AAV-

Cre was delivered into the HPC of cacna1cfl/fl mice to create focal knockout of Cav1.2 

specifically in the HPC. After allowing for AAV-Cre induced maximal knockout (KO) 

of HPC Cav1.2, mice were conditioned and tested for acquisition of cocaine CPP 

(Figure 1).  Control mice were injected with AAV-GFP.   Knockout of Cav1.2 in the 
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HPC had no effect on acquisition of cocaine CPP as there was no significant 

difference in acquisition between AAV-Cre and AAV-GFP injected mice (Figure 2). 

Mice were then subjected to 3 days of forced withdrawal, from cocaine, during which 

time they were kept in their home cage (Figure 1). Mice were tested for the recall of 

cocaine CPP memory on withdrawal day (WD) 4 and WD30. Interestingly, mice with 

HPC Cav1.2 KO showed persistent maintenance of cocaine CPP memory compared to 

control AAV-GFP injected mice, which showed normal decay of cocaine CPP 

memory across time (Figure 2).  At WD4 there was a non-significant difference 

between the AAV-Cre and AAV-GFP injected mice.  By WD30, AAV-Cre injected 

mice exhibited significantly higher cocaine CPP compared to control AAV-GFP 

injected mice (Figure 2). Thus, knockout of Cav1.2 in the HPC results in persistence of 

cocaine CPP following 30 days of withdrawal.   

 

Knockout of Cav1.2 in the HPC results in long-term molecular changes in the 

nucleus accumbens.    

Next, to examine molecular changes that may underlie the persistent cocaine 

CPP observed in HPC Cav1.2 knockout mice, following behavioral testing on WD30, 

the HPC, NAc and PFC were isolated for western blot analysis.  Interestingly at this 

time point, in the HPC (Figure 3a) and PFC (Figure 3b), there was no difference in 

total or phosphorylated levels of CaMKII, GluA1, PP2B or NFATc3.   

In the NAc, there was significantly higher levels of total CaMKII (Figure 3c). 

No difference in phospho-CaMKII was seen (Figure 3c).  Examination of GluA1 

revealed higher levels of S831 P-GluA1 that did not reach significance.  There was no  
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difference in phosphorylation of GluA1 at S845, a protein kinase A target or in total 

GluA1(Figure 3c).  Examination of PP2B revealed no different in total or 

phosphorylated PP2B.  However total and phospho-NFATc3 were significantly higher 

in the NAc of HPC Cav1.2 KO mice compared to control mice.  

 

Discussion 

In this study, we show that (1) knockout of Cav1.2 in the HPC results in 

persistence of cocaine CPP at withdrawal day 30 (WD30) (2) knockout of Cav1.2 in 

the HPC results in molecular changes in the NAc at WD30 and not the HPC or PFC 

and (3) persistence of cocaine CPP at WD30 is associated with increases in CaMKII 

and P-GluA1 Ser 831, a target of CaMKII, in addition to increase in the transcription 

factor NFATc3.     

 Many studies report that the excitatory projections from the ventral, and not the 

dorsal HPC to the NAc is associated with cocaine seeking behavior (30, 31, 54-58). 

Indeed, the dorsal and ventral HPC differ in behavioral regulation (59-61), LTP 

induction (62) and NMDAR subunit expression (63). Similarly, the NAc is also 

subdivided into more discrete anatomical regions. Recent studies report that ventral 

HPC provides the predominant glutamatergic input to specifically the medial NAc 

shell (30, 31). In the current study, due to the technical limitations of crude dissections 

of GFP positive tissue after AAV-Cre expression, it was not possible to distinguish 

between the dorsal and ventral HPC. Furthermore, in order to collect enough tissue for 

immunoblotting studies, it was also not possible to isolate the medial NAc shell, but 

rather the entire NAc was collected for analysis. However, despite the generalization 
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of various sub-regions of the HPC and NAc, we show, for the first time, that Cav1.2 in 

the HPC regulates the balance of kinase versus phosphatase pathway within the NAc 

to modulate long-term cocaine-context association memory.  

Cocaine memories have previously been shown to shift from one brain region 

to another. For example, when the association between cocaine related cues and 

maintenance of drug seeking becomes habitual, it shifts from the NAc to the dorsal 

striatum (3).  We have previously reported that the cocaine CPP memory in early 

withdrawal from cocaine (1d after last cocaine conditioning) lies in the HPC, as 

indicated by significant changes in molecular pathways involved in cocaine context 

association memory (35). In the current study, we found that after prolonged (31days 

after last cocaine conditioning session) withdrawal from cocaine, the cocaine CPP 

memory transfers from the HPC to the NAc. We did not observe any significant 

molecular changes in the HPC (Figure 3a) on WD30 and instead found significant 

changes in the NAc indicative of activation of the CaMKII pathway (Figure 3c). Total 

and P-PP2B levels remained unchanged in the NAc of HPC Cav1.2 KO mice (Figure 

3c) suggesting that the phosphatase pathway was not activated in these mice. 

Significant increases in total and P-NFATc3 S240 lends further support for the kinase 

pathway, rather than the phosphatase pathway being activated in the NAc of HPC 

Cav1.2 KO mice. NFATc3 is phosphorylated in its basal state (64, 65) and is 

dephosphorylated by LTCC activated PP2B at Ser240 (64-67) . The significant 

increase in P-NFATc3 Ser240 in the NAc of HPC Cav1.2 KO suggests decreased 

activity of PP2B (Figure 3c). 
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Within the NAc, we hypothesize that the effects are mainly in the D1R and not 

D2R medium spiny neurons, as these are the cell-types that have been shown to 

receive the potent glutamatergic input from the ventral HPC (31). Furthermore, D1, 

but not D2 antagonists have been shown to attenuate context induced reinstatement 

(68). Also, cocaine activates D1R which leads to the sequential activation of the cyclic 

AMP/PKA pathway, LTCC (69), and finally CaMKII (70); thereby leading to changes 

in gene expression  that are required for drug associated learning and memory (37, 

70). 

Glutamate induced potentiation at single synapses has been shown to induce 

robust increases in both total CamKII and CaMKII anchored to Cav1.2 (71). We 

propose that following long-term withdrawal, HPC Cav1.2 KO increases glutamate 

release at NAc which then preferentially activates the CaMKII pathway instead of the 

PP2B pathway (Figure 4a), (36, 72) to maintain cocaine-context association memories 

across a prolonged withdrawal period  (Figure 2). The increase in glutamate release 

from the HPC may activate Cav1.2 via NMDAR to then activate Ca2+/CaM, which 

preferentially activates the CaMKII pathway (Figure 4b). In addition to 

phosphorylating GluA1 Ser831, CaMKII may also activate CREB (cAMP response 

element-binding protein) binding to CRE, to induce transcription of genes such as 

NFATc3, which is a potential explanation for the increase in total NFATc3 in the NAc 

(Figure 3c).  

The HPC is known to project to the PFC, and this pathway has been shown to 

influence NAc activity (73). Moreover, the impairments in glutamate signaling in the 

PFC-NAc pathway is thought to underlie relapse vulnerability, especially after  
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withdrawal from cocaine (74, 75). Since the HPC also projects to the PFC, we asked 

whether HPC Cav1.2 may modulate this aspect of relapse vulnerability. Although we 

did not observe any significant molecular changes in the PFC in the CaMKII or PP2B 

pathways, other mechanisms in the PFC may be involved. For example, the PFC 

receives input from the VTA to then send projections to the NAc to modulate drug 

seeking behavior (76). Therefore, it is possible that the HPC induced molecular 

changes may serve to make the NAc more vulnerable to regulation by the PFC.   

The current study reports novel findings for the role of Cav1.2 in the HPC in 

the long-term maintenance of cocaine CPP memory. Drug addiction is a chronic 

disease, and context induced relapse is the biggest and most treatment resistant 

problem in drug addiction (6). Our findings offer further insight and novel molecular 

mechanisms underlying the maintenance of long-term cocaine-context association 

memory to work towards an effective pharmacological treatment for cocaine 

addiction. 
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Chapter 6: Conclusions & Future Directions 

Recent human and preclinical studies converge to suggest CACNA1C (Cav1.2) 

as a regulator of neuropsychiatric diseases. CACNA1C has been associated with a wide 

range of neuropsychiatric disorders including major depression, bipolar, 

schizophrenia, autism, attention deficit hyperactivity disorder (1), drug addiction (2-4), 

and even in cognitive deficits during normal aging (5, 6), highlighting its wide cast 

effect on symptoms that range from anhedonia to memory impairments.  Although its 

involvement in all these disorders and symptoms has been described, in many 

instances, the specific relevant brain regions and cell types have not yet been 

identified. In this dissertation, I explored the role of cacna1c (Cav1.2) in discrete brain 

regions and cell types (Figure 1) in key processes that underlie neuropsychiatric 

disorders such as anxiety, depression, reward systems and memory.  

In chapter one, I describe the role of Cav1.2 in anxiety-like behavior. I first 

reported that global constitutive cacna1c HET (HET) (Figure 2) mice display anxiety-

like behavior. Forebrain specific Cav1.2 conditional knockout mice (forebrain-

cacna1c cKO) (Figure 2) also display anxiety-like behavior, confirming the regulation 

of this phenotype by neuronal Cav1.2. With regards to the brain region involved, I 

showed a role for Cav1.2 in the prefrontal cortex (PFC), and not the hippocampus 

(HPC), (Figure 2) that modulates anxiety-like behavior. Furthermore, Cav1.3, the other 

neuronal L-type calcium channel (LTCC) isoform, in the PFC, is not involved in 

anxiety-like behaviors. Within the PFC, focal knockout of Cav1.2 in the excitatory 

glutamatergic neurons was sufficient to produce an anxiety-like phenotype.  
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These findings lead to other interesting experimental questions to be answered. 

For example, I have established that Cav1.2 in the excitatory neurons regulate anxiety-

like behavior by showing that AAV-CaMKII-Cre mediated knockout of Cav1.2 in the 

PFC recapitulates the anxiety-like phenotype. The PFC has excitatory projections to 

several brain regions including the VTA (7), striatum (8) and basolateral amygdala 

(BLA) (9), and we do not yet know which one of these brain regions is involved in 

regulating anxiety-like behavior downstream of PFC Cav1.2.  The BLA is an attractive 

candidate, as its function has been shown to be regulated by the CACNA1C risk 

variant, SNP rs1006737, in neuropsychiatric disorders such as schizophrenia and 

bipolar disorder (10, 11). Furthermore, human functional imaging studies show that 

even at rest, differences in functional connectivity between the PFC and amygdala 

differ in people with high versus low anxiety levels (12). Similarly in mice, 

synchronous activity between the PFC and BLA has been found to regulate anxiety-

related behaviors (13). Moreover, optogenetic stimulation of the glutamatergic 

projections from the PFC to the BLA rescues an anxiety phenotype in a rodent model 

of depression (14). To examine if the same PFC to BLA circuitry is also involved in 

Cav1.2 mediated anxiety behavior, current studies are ongoing to map the PFC 

CaMKII projection targets, including the BLA using the AAV-FLEX-GFP virus. 

Using this method, we are further able to dissociate the projection targets of CaMKII 

neurons from the distinct subregions of the PFC, the infralimbic (IL) and prelimbic 

(PrL) cortices, which not only have different functions, but also have different 

projections (15).  
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In chapter two, I describe the role of Cav1.2 in depressive-like behavior. I first 

show that Cav1.2 and not Cav1.3, specifically in the PFC and not the hippocampus 

(HPC) results in an anti-depressive behavior. This anti-depressive phenotype was also 

present in Cav1.2 HET mice. Within the PFC, I showed that Cav1.2 in the excitatory 

glutamatergic neurons do not modulate depressive behavior, suggesting a role for 

Cav1.2 in inhibitory interneurons of the PFC, contrary to the relevant cell type 

involved in anxiety-like behavior (Figure 1). A significant decrease in REDD1, a 

molecule previously associated with depression in humans and in rodent models was 

identified in the PFC of the HETs. Importantly, viral overexpression of REDD1 

reversed the higher sucrose preference phenotype in HETs, confirming that REDD1, 

downstream of Cav1.2, modulates depressive like behavior.  

Experiments are currently ongoing to explore the potential molecular targets 

downstream of REDD1. One promising target is the family of Forkhead Box, Class O 

transcription factors (FoxO), which have been shown to be involved in emotional 

behavior (16)(Polter et al., 2008). Specifically, FoxO1 has been associated with 

anxiety behaviors, whereas FoxO3a has been associated with antidepressive behavior 

(16). Importantly, FoxOs are regulated by REDD1 as well as by downstream targets of 

REDD1, such as Akt (17). REDD1 promotes PP2A-dependent dephosphorylation of 

Akt (18), which leads to reduced phosphorylation and therefore activation of FoxO1 

and FoxO3a (19). Therefore, it is possible that the HETs, which have significantly 

decreased REDD1 in the PFC, have higher phosphorylation and activity of Akt, 

leading to increased phosphorylation, hence inhibition of FoxO1 and FoxO3a. This 

pathway is particularly intriguing given that FoxO1 KO and FoxO3a KO display an 



124 

 

anxiety phenotype and anti-depressive phenotype, respectively (16), exactly as the 

HETs.  

Our data suggest that in depression, unlike in anxiety, Cav1.2 in the inhibitory 

neurons seem to be important for regulating depressive-like behaviors. The PFC 

contains both excitatory pyramidal neurons and inhibitory non-pyramidal neurons, 

including GABAergic interneurons (20) (Figure 1). Unpublished data from our lab 

shows that Cav1.2 are present in these PFC interneurons. In HETs, a 50% reduction in 

Cav1.2 channels likely results in decreased interneuron activity, which may lead to 

decreased inhibition within the PFC, resulting in an overall increase in PFC output. In 

line with this hypothesis, Covington et al., (21) suggest that a net increase in the 

output of PFC projections neurons likely underlies the modulation of depressive-like 

behavior via optogenetic stimulation of the PFC. 

 Within the PFC, it has been shown that activation of the PrL via 

overexpression of delta fos B affects depressive like behaviors whereas activation of 

the IL produced no change in baseline emotional response (14). Therefore, it would be 

interesting to see whether Cav1.2 in the inhibitory neurons of the PrL control the 

output of the PrL to regulate depressive like behavior. This leads to another question 

on a circuitry level: what is the projection target of the PFC that regulates depressive 

behavior? Optogenetic stimulation of the excitatory projections neurons from the PFC 

to the NAc has been shown to affect sucrose preference in a mouse model of 

depression (14) suggesting that NAc is a promising target. Furthermore, NAc is one of 
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the major projection sites of the PrL, but not the IL (15), further strengthening the 

argument for the involvement of the PrL to NAc pathway.   

In chapter three, I describe the role of Cav1.2 in adult hippocampal 

neurogenesis (HPC NG), a process that has been implicated in neuropsychiatric 

disorders (22). I first showed that forebrain-cacna1c cKO, which show an anxiety-like 

phenotype, show a significant deficit in adult HPC NG. I proposed that it is likely the 

Cav1.2 in the HPC that is responsible for this deficit as virus-mediated focal knockout 

of Cav1.2 in the HPC was sufficient to produce a significant deficit in adult HPC NG. 

Furthermore, I showed that the deficit in adult HPC NG of forebrain-cacna1c cKO 

does not affect HPC size and is due to decreased survival of new born neurons rather 

than a decrease in proliferation and is not due to differences in corticosterone levels.  I 

treated the forebrain-cacna1c cKO with P7C3-A20, a pro-neurogenic compound 

shown to increase survival of adult born neural progenitor cells in other mouse models 

with adult HPC NG deficits (23) and found that P7C3-A20 rescues the adult HPC NG 

deficit in forebrain-cacna1c cKO via a BDNF independent mechanism.  

Since the forebrain-cacna1c cKO have an anxiety phenotype, as well as a 

deficit in adult HPC NG, and we have shown that P7C3-A20 rescues this deficit in 

adult HPC NG, it would be worthwhile to test whether P7C3-A20 also rescues the 

anxiety phenotype. In another mouse model that also showed deficits in adult HPC 

NG, P7C3-A20 showed concomitant adult HPC NG and depressive phenotype rescue 

(24).  
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However, it is possible that P7C3-A20 may not affect anxiety, despite its 

effects on increasing adult HPC NG in forebrain-cacna1c cKO, especially given that 

focal KO of Cav1.2 in the HPC, which also results in decreased adult HPC NG, 

showed no anxiety phenotype. If this is the case, it would be interesting to test other 

behaviors that have been more heavily and reliably shown to be regulated by adult 

HPC NG, such as pattern separation (25). Pattern separation is a more subtle version 

of contextual fear conditioning wherein animals are required to differentiate between 

two similar yet distinct environments in a fear conditioning paradigm (25). This task is 

relevant to neuropsychiatric disorders such as post traumatic disorder (PTSD), in 

which people are unable to distinguish a previously traumatic scenario from a similar 

yet distinct, and non-traumatic scenario. Unpublished data from our lab show that the 

forebrain-cacna1c cKO do not show impairments in other hippocampus-dependent 

tasks such as the classic Morris Water maze, contextual fear conditioning or the 

acquisition of cocaine conditioned place preference. Therefore, it would be interesting 

to explore whether the forebrain-cacna1c cKO show a deficit in this more discrete 

dentate gyrus/ adult HPC NG dependent pattern separation task as a result of their 

deficit in adult HPC NG, and whether P7C3-A20 affects this behavior.  

If the rescue in adult HPC NG via P7C3-A20 is found to have functional 

relevance by showing a behavioral rescue in the forebrain-cacna1c cKO, the next 

experimental question to be answered would be, what are the molecular mechanisms 

that regulate the rescue of adult HPC NG?  Unpublished data from our lab show that 

several molecules known to be involved in adult HPC NG are not only expressed at 

lower levels in the HPC of forebrain-cacna1c cKO, but are also rescued by P7C3-A20 
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treatment. One such molecule of particular interest is p11, or S100-a10. p11 is present 

in the granule cells of the HPC (26), and has been shown to be required for the 

neurogenic effect of fluoxetine (26). Furthermore, decreased p11 mRNA and protein 

have been described in human depressed patients as well as in animal models of 

depression (27). BDNF increases p11 mRNA and BDNF KO mice have lower p11 

mRNA and protein (28), similar to the forebrain-cacna1c cKO that show lower BDNF 

protein as well as lower p11 mRNA in the HPC. The importance of BDNF in adult 

HPC NG is well established (29); BDNF is necessary for numerous modes of adult 

HPC NG enhancement such as exercise (30) and environmental enrichment (31) and 

BDNF on its own is enough to increase adult HPC NG (29). Therefore, it is plausible 

that BDNF may play a role in the deficit in adult HPC NG seen in the forebrain-

cacna1c cKO, and that P7C3-A20 rescues this deficit via affecting p11 directly. This 

hypothesis may be tested by virus-mediated overexpression of p11 in the HPC of 

forebrain-cacna1c cKO to see if the deficit in adult HPC NG is rescued. 

Adult HPC NG has been proposed to be involved in memory, in particular, 

HPC-dependent contextual memory (30, 32). Moreover, not only is there high co-

morbidity between anxiety and depression and drug addiction, but carriers of the 

CACNA1C SNP display abnormal reward response (33). Therefore, in chapter four, I 

explored the role of Cav1.2 in the maintenance of long-term cocaine-context 

association memory. I found that focal knockout of Cav1.2 in the HPC results in the 

persistent maintenance of cocaine-context association memory, even after long-term 

forced abstinence, or withdrawal, from cocaine. I showed that the maintenance of the 

cocaine context association memory is due to potentially increased glutamatergic 
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output from the HPC to the brain’s reward center, the NAc (Figure 1), and to the 

preferential activation of the CaMKII pathway, and not the PP2B pathway, in the 

NAc.  

All of the data presented above were collected after 30 days of cocaine 

withdrawal. It is difficult to pinpoint therefore, exactly what mechanisms the 

preferential activation of the CaMKII pathway regulates. For example, is the CaMKII 

pathway required for the reconsolidation of the cocaine-context association memory? 

Or is it required for the recall of the cocaine-context association memory? One way to 

answer these questions is to implant guide cannulae into the NAc of wildtype mice, 

and infuse CaMKII activator either during the duration of the withdrawal period or 

right before the WD30 test to address whether the preferential activation of the 

CaMKII pathway is required during these distinct processes of reconsolidation versus 

recall. Another interesting follow up experiment would be to test whether the CaMKII 

pathway is preferentially activated over the PP2B pathway in the NAc immediately 

after the acquisition test, an early withdrawal time point. The same pathways should 

be studied in the HPC of the same mice to see if initially, similar molecular processes 

occur in the HPC, which then transfers to the NAc following long-term withdrawal.  

At WD30 time point, another interesting question to be asked is whether the 

NMDAR in the NAc are upregulated. I hypothesize that the glutamatergic output from 

the HPC is increased in the HPC Cav1.2 KO; hence, I would predict that there would 

be an upregulation in the NMDAR in the NAc at this timepoint. Also, since there is a 

significant change in phosphoGluA1 S831, it would be interesting to test the GluA1 

S831 phospho-mutants to address whether this specific post-translational modification 
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is a required molecular event. The GluA1 S831 in these mice are not able to be 

phosphorylated (34). Therefore, one could knockout Cav1.2 in the HPC of these mice 

then test them in the long-term WD CPP task to address whether phosphorylation of 

S831 of GluA1 is required for Cav1.2 regulated maintenance of cocaine-context 

association memory.  

 Finally, although the molecular findings reported in this dissertation is likely 

to be specific to cocaine reward memories since the changes occur in the NAc, one 

could test whether KO of Cav1.2 in the HPC affects long-term recall of other types of 

HPC dependent memory such as Morris Water maze, or object location test or even 

conditioned aversion.  

 

In conclusion, in this dissertation, I report my findings on the role of Cav1.2 in 

specific brain regions and cell types in anxiety and depressive like behaviors. I report 

that Cav1.2 in the excitatory glutamatergic neurons of the PFC regulates anxiety-like 

behaviors, whereas Cav1.2 in non-glutamatergic neurons of the PFC regulates 

depressive-like behaviors (Figure 1). Furthermore, I report that Cav1.2 in the 

excitatory glutamatergic neurons of the forebrain are required for the survival of adult 

born neural progenitor cells, and that KO of HPC Cav1.2 even in adulthood, is 

sufficient to cause a deficit in adult HPC NG. Finally, I describe a role of HPC Cav1.2 

in regulating long-term cocaine context-association memories via the CaMKII 

pathway. These novel findings are significant to the field of LTCCs, as although much 

work has been done to investigate the molecular mechanisms of Cav1.2, not nearly as 
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much has been accomplished in describing the role of Cav1.2 in behavioral tasks that 

are translatable to human neuropsychiatric disorders. The findings I report in this 

dissertation lay the groundwork for various exciting future experiments that will 

further elucidate the role of Cav1.2 in neuropsychiatric disorders. 
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