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We consider the classic School Bus Routing Problem (SBRP) combined with al-
ternate modes, where students are either picked up by a fleet of school buses
subject to some constraints or transported by alternate transportation modes to
a common destination (school). The constraints that are typically imposed for
school buses are a maximum fleet size, a maximum walking distance to a pickup
point and a maximum commute time for each student. This is a special case of
the Vehicle Routing Problem (VRP) with a common destination. We propose a
decomposition approach for solving this problem based on the existing notion
of a shareability network, which has been used recently in the context of dy-
namic ridepooling problems. Furthermore, we build a connection between the
weighted set covering problem and SBRP after decomposition via a shareabil-
ity network. To scale this method to large-scale problem instances, we propose
i) a node compression method of the shareability network based decomposi-
tion approach, and ii) heuristic-based edge compression techniques that works
well in practice. We show that the compressed problem leads to an Integer Lin-
ear Programming (ILP) of reduced dimensionality that can be solved very effi-
ciently using off-the-shelf ILP solvers. Numerical experiments on small-scale,
large-scale and benchmark networks are used to evaluate the performance of

our approach and compare it to existing large-scale SBRP solving techniques.
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CHAPTER 1
INTRODUCTION

According to the American School Bus Council, nearly 480,000 school buses
transported 25 million children to and from school and school-related activities
every school day in 2010 [3]. Meanwhile, based on a recent report from Nation
Center for Education Statistics, 23 billion dollars were spent on public school
transportation during the academic year 2013-2014, which is nearly 5 percent of
the total expenditures for public schools [20]. Every dollar spent on transporting
students is a dollar lost for direct spending to improve the education of students.
Therefore, the efficient and economical operation of school bus systems is of
significant importance to school districts that are trying to make the most of

their limited education budgets.

The major costs associated with operating a school bus service are the capital
and operational cost of the buses and the wages of the drivers. Thus, an efficient
solution will serve the students by traveling the shortest distance and using the
fewest buses. This needs to be done subject to getting everyone to school on
time and not making some students spend a very long time sitting on a bus (e.g.
one hour maximum in Boston). This leads to the so-called school bus routing
problem (SBRP). Furthermore, we incorporated alternate transportation modes
in SBRP by allowing students of senior years to take other transportation modes
(dedicated vehicles for instance) to school, which could be beneficial for the

whole bus routing scheduling by reducing the number of buses.

The SBRP is a generalization of the metric Traveling Salesman Problem (TSP)
and a special case of Vehicle Routing Problem (VRP), both of which are NP-hard

problems [19]. While the metric TSP has a number of good approximation tech-



niques for obtaining provable guarantees on the solution accuracy, the VRP and
SBRP problems are harder to approximate and typically solved using heuris-
tic techniques. Therefore, the state-of-art methods for solving SBRP can only
solve small-scale problems optimally. To solve the SBRP at scale, the problem is
typically formulated as an Integer Linear Programming (ILP) and solved using
different heuristics techniques [13, 15, [17]. One limitation of these approaches
is that they lead to very high dimensional ILP problems that have a very large
decision space, and are hard to solve well at-scale even with very sophisticated

heuristic techniques.

This paper proposes a new approach for solving the SBRP considering alter-
nates modes at-scale with a decomposition approach via a shareability net-
work. Compared to classical approaches, our decomposition method consists
of a multi-step approach that leads to a much simpler ILP problem compared
to the traditional ILP formulations. Our decomposition approach utilizes the

following steps:

e Decoupling the bus routing and student matching problems via the con-

struction of a shareability network and student-trip assignment graph.

e Using a node compression technique for the shareability network by as-

signing students to bus stops subject to maximum walking constraints.

e Using a set of heuristic-based edge compression techniques for the share-

ability network to delete edges and compress the feasible set.

The steps described above lead to a much simpler and smaller ILP. For extreme
large-scale problems, node and edge compression techniques for the shareabil-

ity network can be combined with the traditional large-scale ILP heuristics to



obtain solutions more efficiently (column generation for instance).

The contributions of this article include the following three components:

. Considering to offer students alternates modes in the SBRP for the first

time, which could benefit the whole bus scheduling.

. Modeling the SBRP using the shareability network framework (used in
high-capacity ridepooling), defining the corresponding student-trip graph

and formulating the corresponding ILP problem.

. Showing that techniques used in high-capacity ridepooling using a share-
ability network can not be applied to the SBRP directly, due to the density
of the resulting shareability network, and developing network compres-

sion techniques to improve the tractability of the problem.

. Connecting SBRP with weighted set covering problem with the decompo-

sition approach via a shareability network.

. Numerical results that validate the performance of our approach in solv-
ing large-scale SBRPs efficiently. Conducting benchmark testing with two
different approach for solving SBRPs and showing the improvement on

the objective function.

The rest of the article is organized as follows. Chapter 2 reviews the related

literature. Chapter 3 provides a basic definitions for the SBRP with alternate

modes. The model formulation for our decomposition approach via a com-

pressed shareability network is shown in Chapter 4. Chapter 5 states the numer-

ical experiments, benchmark testing and sensitivity analyses for our approach.

Finally, Chapter 6 recaps the main ideas of this thesis and lists future directions

for this research.



CHAPTER 2
LITERATURE REVIEW

The SBRP has been studied since 1969 when Newton and Thomas first proposed
a method to generate school bus routes and schedules [10]. A comprehensive
review of the SBRP can be found in Park and Kim [12], where SBRP is decom-
posed into five steps including data preparation, bus stop selection, bus route
generation, school bell time adjustment and route scheduling. This paper fo-
cuses on solving the bus stop selection and bus route generation aspects of the

SBRP, which we refer to as the SBRP.

Bekta’s et al. [4] proposed an ILP model based on the open vehicle routing prob-
lem (OVRP), in which vehicles do not return to the depot after serving the last
demand, to solve the real-life SBRP for transporting the students of an elemen-
tary school throughout central Ankara, Turkey. They considered a capacity
constraint for the vehicles and a maximum travel distance constraint for each
student, and an objective of minimizing the bus operating cost. This paper pro-

vides a basic mathematical formulation of the SBRP.

Different constraints and objectives for the SBRP have been considered in the lit-
eratures. Park et al. [13] developed a mixed load algorithm for the SBRP, where
students from different schools can be served using the same bus. The problem
is modeled using an ILP and solved by a post-improvement algorithm applied
to a single load solution. The algorithm they proposed is an improvement on the
mixed load algorithm given by Braca et al. [7], which addressed the New York
City school bus routing problem. Shafahi et al. [18] proposed a new formulation
of the SBRP with a homogeneous fleet that maximized trip compatibility (two

trips are compatible if they can be served by the same bus) while minimizing the



total travel time, and generated eight mid-size data sets to test the performance

of the model.

The literatures on solving large-scale SBRPs are dominated by heuristic ap-
proaches. Riera-Ledesma and Salazar-Gonzalez [15] solved the large-scale
SBRPs by modeling it as an ILP of the multi-vehicle traveling purchaser prob-
lem, which is a generalization of the VRP. The LP-relaxation method was used
to efficiently solve the high dimensional ILP and a heuristic algorithm was pro-
posed to round the fractional results. This approach was tested by using syn-

thetic data and shown to solve instances with up to 125 students.

Schittekat et al. [17] proposed a sophisticated ILP considering both the bus stop
selection and the bus routing generation simultaneously and used a metaheuris-
tic approach to solve the problem. The metaheuristic approach contains two
steps i) a construction phase that uses a greedy randomized adaptive search pro-
cedure to compute sub-optimal starting solutions for improvement phase and
ii) an improvement phase where a variable neighborhood descent method is
applied, it uses different neighborhood structures and ensures a local optimum
in all neighborhoods. The method can produce satisfying solutions within one
hour for problems of up to 80 stops and 800 students, and therefore we use the

generated instances from this paper as the benchmark for testing our method.

More recently, Bertsimas et al. [5] proposed the first optimization model for the
School Time Selection Problem(STSP), which is a generalization of the school
bus routing problem. A state-of-art bus routing algorithm, named BiRD (Bi-
objective routing decomposition), was proposed by them. The BiRD algorithm
consists of generating single-school bus routes as sub-problems and combining

sub-problems via mixed-integer optimization to identify a trip-by-trip itinerary



for each bus in the fleet. The implementation of their approach led to a $5 mil-
lion annually saving in Boston. The BiRD algorithm will serve as a benchmark
to test our shareability network based decomposition approach in the experi-

ments section.

In summary, most of the recent papers use ILP as a basic approach and con-
centrate on proposing heuristic techniques to improve efficiency for solving the
ILP. To improve the efficiency and accuracy of current approaches, this paper
will propose a shareability network based decomposition approach to solve
large-scale SBRPs and conduct real-world experiments of Boston public schools.
Our approach modeling the SBRP is used in dynamic high-capacity ridepooling
problem [2]], which is a special case of dynamic open capacitated VRP with time
windows. They proposed a sequential approach via the shareability network to
get a low dimensional ILP for solving the real-time high-capacity ride-sharing
systems, and this approach is adapted to the SBRP. The notion of the shareabil-
ity network is firstly described by Santi et al. [16], which helps them efficiently

compute optimal sharing strategies on a massive dataset.



CHAPTER 3
PROBLEM FORMULATION

In this chapter, we will give a formal definition of the school bus routing prob-
lem (SBRP) with alternate modes. The problem description will be consistent

throughout the paper.

Let G.(V,, E,) denote the road network, for any pair of nodes i, j € V,, d;; rep-
resents the shortest path distance and #;; stands for the corresponding travel
time. Consider a set of students S need to be transported to a single destina-
tion(school) v; € V, with a fleet of school buses V, in which the fleet is homo-
geneous with capacity C and it consists of at most K"** buses. Without loss of
generality, we define that each student s € S is located at some location v, € V,
and the set D indicates students pickup locations, D C V,. Moreover, we let M

represent the set of potential bus stops, where M C V, E

Giving a set of alternate modes A, each student s € S could either take school

buses or an alternate transportation mode a € A to the school. We define o7, as

the cost for possessing a bus per day, a. as the cost for operating a bus per mile
and af. as the cost for taking an alternate mode a per mile H The objective of this

problem is to minimize the total cost for the school bus scheduling. Figure

illustrates a simple instance of this problem.

We enforce the following constraints in the SBRP formulation:

1. The maximum travel time for any student s staying on the school bus is

!The graph can be augmented to add vertexes corresponding to each pickup or bus stop
location.

2For the simplicity, we assume the cost for the alternate mode a has a linear relation with the
trip distance, which can be replaced by a cost function in the future.
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Figure 3.1: Instance of SBRP with alternate modes
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2. Each student s € S has a maximum walking distance d{"™ from their resi-
dence to bus stops. This distance can be student specific and equal to zero
if the students need a door-to-door pickup. Furthermore, we let N, repre-

sent the set of reachable stops for student s, i.e., Ny = {m € M|d,,, < d}"*}.

3. All school buses start at a single pre-specified location v, € V..

Welet N = DU M U {v,v,} denote the set of pickup locations combined with
potential bus stops, bus depot and school location. The decision variables for
this problem are x;j, yi, zisx and u,;, where x;; = 1 if bus k travels from vertex i to
Jj through the shortest path, y; = 1 if bus k visits vertex i, z; = 1 if student s is
picked up by bus k at vertex i and u,, = 1 if student s takes an alternate mode a to
the destination. Assuming each bus stop or student residence can be visited by
at most one bus, the ILP formulation for the SBRP considering alternate modes

is described in the following:



min a’él K+ a/éz : Z Zdijzxuk + Zac Z Usally,v, 3.1)

iEN jeN Jjev acA SES
st > xg=) Xu=yx YieNVkeV (3.2)

JEN JEN

D xer= . Xua VkEV (3.3)
JEN\{vo,va} i€N\{vo,va}
Zx,-jklel—l VO C N,VkeV (3.4)
i,jeQ

Z lij - Xijk <" VkeV (35)
i,JEN\{vo}
> > aw<C Vkev (3.6)
ieEN seS§
Zyik <1 VieN\({vyvs} (3.7)
keV
Zik <yx VYieN,VseS,VkeV (3.8)
Dt D Y zw=1 VseS (3.9)
acA iIEN;U{vs} keV
>0 Xia = K < K™ (3.10)
keV ieN
Xijk € {O, 1} VZ,] e NVkeV (311)
vk €{0,1} Vie N,VkeV (3.12)
Zisk €10,1} Vie N,Vse S ,VkeV (3.13)
u, €{0,1} VseS,VaecA (3.14)

The objective function (3.1) minimizes the overall school bus scheduling cost
considering the number of buses, vehicle miles travel and alternate modes cost.
Constraints (3.2) ensure that if bus k visits pickup location i, then there will be
a flow entering i and a flow leaving out of i for bus k. Constraints (3.3) impose

that the bus entering the destination should also have left the depot. Constraints



(3.4) keep the connectivity for bus k, which eliminates the potential sub-tours.
Constraints (3.5) consider the maximum travel time for each student by restrict-
ing the total travel time for each bus route. Constraints (3.6) enforce that the
number of students in bus k never exceed the capacity C. Constraints (3.7) guar-
antee that each vertex should be visited at most once. Constraints (3.8) ensure
that student s will not be picked up by bus k at vertex i if bus k never visit the
vertex i. Constraints (3.9) impose that student s either takes an alternate mode
or be picked up by a school bus to the destination. Constraint (3.10) enumerates
the number of non-idle buses and enforces the maximum number of available
buses K"**. Constraints (3.11) - (3.14) make sure that the decision variables are

binary.

The ILP is constructed for solving the optimal school bus routing schedules
for a single school. The single school setting reduces the problem complex-
ity, and moreover, it has real-world meanings. Different schools may obtain
school bus services from different providers and potential conflicts could be in-
duced by sharing buses among schools. The large-scale SBRP considering alter-
nate modes is intractable for the state-of-art ILP solvers. Therefore, solving this
problem at scale in a computationally tractable manner requires some decompo-
sition and heuristic methods. The following section describe our new approach
and heuristics for the SBRP with alternate modes that scales better than existing

techniques, while still preserving the same quality of solutions.
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CHAPTER 4
METHODOLOGY

In this chapter, we will propose a decomposition method through the shareabil-
ity network framework, which is recently used in the shared mobility literature
[2, [16], to solve the SBRP with alternate modes. Furthermore, we will show the
connection between the weighted set covering problem and decomposed SBRP.
This theoretical connection provides a different perspective with underlying ap-
proach to deal with the SBRP. In the last part, we will increase the tractability
for large-scale instances by introducing network compression techniques based

on the shareability network.

4.1 Decomposition through the shareability network

In order to reduce the complexity and dimensionality of the ILP for solving
the SBRP with alternate modes, we propose a decomposition method which
consists of several steps leading to an assignment problem via the shareability

network, which yields a much-simplified ILP.

The shareability network [16] is an undirected graph G = (V, E), where V cor-
responds to the set of trips and each edge (i, j)) € E indicates that trip i can
share a vehicle with trip j under some compatibility constraints. The shareabil-
ity network under the SBRP setting is constructed as follows. The vertex set V
designates to be the set of students and each edge (s;,s;) € E reflects that stu-
dents s; and s; can share the same school bus. The students s; and s; can share

a same bus if both of them could be picked up by the same bus at reachable bus

11



stops or their residences and arrive at the destination v, within the maximum

travel time "* using the same bus.

Figure [4.1(a) shows an instance of a shareability network for four students.

Students Trips

st

Figure 4.1: Instance of the shareability network and ST-graph

Next, we establish a bipartite graph Gs;y = (Vsr, Esy) with a set of students
and a set of all possible trips allocations (school bus or alternate modes assign-
ment) based on the shareability network. This bipartite graph is referred as the
student-trip graph (ST-graph). The set of feasible trips T includes bus trips 7,
and trips 7, for an alternate mode a ,i.e., T = T) | J e Tu- Let S (1) denote the set
of students who participate in a feasible bus trip 7, € T,. A bus trip 7, € T is
feasible if the travel time ¢, < ", ¥s € S (1) and the total number of students
s € S(1p) is smaller than bus capacity C. For each student s € §, 7} € T, repre-
sents the trip that student s directly takes the alternate mode a to school. The
node set Vs7 is the union of the set of student and the set of feasible trips, i.e.

Vsr = SUT, and there will be an edge e(s, 7)) € Esrif s € S, 7, € T}, s € S(1,), and

12



an edge e(s, 7)) € Egr for every students s € §,7) € T,. Figure 4.1(b) shows an
instance of ST-graph corresponding to the shareability network in Figure[4.1(a).

The set of feasible bus trip T}, is generated using the shareability network. The
following observation is typically made to efficiently compute the feasible bus

trips in 7}, based on the shareability network G [2].

Lemma 1 (Lemma 1 in [2]) A bus trip T), can be feasible only if all students s in the bus

trip T, forms a clique in the shareability network G (i.e. Vs;, s; € S (1), e(s;, s;) exists).

Given this observation, if any pair of students in a bus trip does not have an
edge in the shareability graph G, this bus trip will be infeasible. Thus, if a set of
n students can not form a feasible bus trip, we know that they can not form any
teasible bus trips that include another additional student s,.,;. We construct the
set of feasible bus trip T}, by first considering trips which consist of one student
and progressively considering larger sets only when the smaller set is feasible.
Algorithm [1| describes the details for generating the feasible trip list 7,. The
input function PATHTSP(:) is a blackbox for solving the path traveling salesman
problem (path-TSP), which is NP-hard. We will give a decent heuristic approach
for solving the path-TSP in the experiments section. In general, this algorithm
provides an efficient pruning mechanism that eliminates the consideration of

infeasible bus trips.

The last step of our approach is to compute the optimal student-trip assign-
ment given the ST-graph G, and it is formalized as an ILP. From the ST-graph
Gsr, we can calculate the travel cost C; for each trip 7 € T. Therefore, we can

formulate an assignment problem based on Gy which assigns all students to

13



Algorithm 1 Generating the set of feasible bus trips. Input: the shareability
network G, the set of students S, maximum travel time 7", bus capacity C,
path-TSP solver for any trip v with optimal travel time * as the output, i.e.,
t* = PATHTSP(7)

1: function BUSTRIPGENERATION(G = (V,E), S, ", C, PATHTSP("))
2 Tb, Tbl —0
3: forseS do > Generate the trip list with one student
4: T« {5}
5: T; — T; U{t}
6: Ty —T,UT,
70 ke 2 > [terate from trips with two students
8: while true do
9: Tf 0 > Initialize the trip list with k students
10: forte T, ' do
11: forse S and s ¢ T do
12: T < 1U{s} » Add one more student to the trip with k — 1 students
13: if CLIQUECHECK(t, s, G(V, E)) = true then
14: if FEASIBILITYCHECK(7, "**, C, PATHTSP(-)) = true then
15: Tf — T/ U{r’} > Add feasible trips with k students into the list
16: if |T| = 0 then »> Break when there are no feasible trips with k students
17: break

18: Ty —TyUTS; k—k+1

19:  return T,

20: function CLIQUECHECK(7, 5, G(V, E))

21: fors € S(7)do

22: if e(s, s’) ¢ E then

23: return false

24: return true

25: function FEASIBILITYCHECK(T, ", C, PATHTSP("))
26:  t* «— PATHTSP(7)

27:  ifr < and |S(1)|+ 1 < C then

28: return true
29: else
30: return false

14



trips while minimizing the overall school bus scheduling cost which consists of

number of buses, vehicle miles travel and the cost for alternate modes.

Decision variables are x,, and y,, where x,, = 1 represents that student s chooses
trip 7 and y, = 1 if trip 7 is chosen in optimal trip set, forall s € S and 7 € T. Let
L(t) denote the number of students in trip 7, L(r}) = 1 and L(1,) = |S(1)|, and

we have the following ILP for student-trip assignment:

min Z [ag, + @l - Cqlyr, + Z Z ¢ Cq oy, (4.1)
€T} acA 1,€T,
s.t. Z X =y L(t) V1€T 4.2)
seS
Z Xe=1 VseS (4.3)
TeT
X €1{0,1} VseS,VreT (4.4)
v, €{0,1} VreT (4.5)

The objective function (4.1) minimizes the overall school bus scheduling cost.
Constraints (4.2) ensure that if a trip 7 is selected, then all students participated
in this trip 7 won’t be considered by other trips. Constraints (4.3) impose that
the student s € S are considered exactly once in all selected trips. Constraints

(4.4) and (4.5) make sure that decision variables are binary.

We simplify the ILP (3.1) - (3.14) via the shareability network and ST-graph to
the ILP (4.1) - (4.5). However, this simplified ILP is still intractable when con-
sidering the large-scale SBRP since the size of the feasible bus trip list |T},| will
increase exponentially when |S | increases. The shareability network is dense be-

cause of the loose constraint, which is the maximum travel time /"** (usually

15



1 hour) for the SBRP. The loose constraints induce many large-sized cliques in
the shareability network compared to the dynamic ridepooling problem where
stricter quality of service constraints lead to a sparser shareability network. In
order to address this issue, we will propose some network compression tech-
niques to induce sparsity in the shareability network that arises from a SBRP

and make the problem tractable to solve.

4.2 Connection between SBRP and weighted set covering prob-

lem

After decomposing SBRP through the shareability network, it offers us a chance

to build the connection between the weighted set covering problem and SBRP.
Definition 1 (Weighted set covering problem) Giving a set of n elements U =
{e1, e, ...,e ) and msubsets of U, S = {S1,S 2, ..., S} with a cost function c : S — R*,

(S ;) denote the cost of subset S ;. The objective is to find a set A C S such that:

o All elements are covered by the set ‘A, and

o The sum of the cost of the subsets in A is minimized.

Let xg be the binary variable for whether choosing subset S € S in the set A,

and the weighted set covering problem can be formulated as the following ILP:
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min Z (S) - xs (4.6)

SeS

st. Y x21 Yeel (4.7)
S:eeS
xs €{0,1} VS eS8 (4.8)

In the weighted set covering problem, if we consider the non-overlapping con-
straints

VSi,SjEﬂ,SiﬂSj:®,

which means the set A is a collection of disjoint subsets in S, the problem be-
comes the weighted set partitioning problem. For the ILP above, constraints
(4.7) become

dxs=1 Veed, (4.9)

S:eeS
which imply that each element in U will be covered by A exactly once.

In order to build the connection between the SBRP and the weighted set cover-

ing problem, we first make the following claims:

Claim 1 The SBRP (4.1)-(4.5) with a’éz = l,a’é] = a% = 0and T = Ty, which repre-
sents the feasible bus trip list, is a special case of the weighted set partitioning problem

with the following constraints:
VS €S, {S':8'cS)eS (4.10)
VS C8S,cS) = c(S). (4.11)
Proof. For the ST-graph of the SBRP, we let each student s € S as an element.

The set of elements will be ¢ = S and each bus trip 7, is the subset of § with
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trip cost C,. The feasible bus trip list T}, is the collection of subsets S, and the
SBRP is equivalent to the weighted set partitioning problem if we only mini-
mize the overall trip cost for the SBRP (ap, = 1,af. = a¢ = 0). However, the
SBRP is a special case of the weighted set partitioning problem since it has more

constraints on the collection of subsets S.

When generating the feasible bus trips 7, € T}, let 7, € T}, be a feasible bus trip
and le”b = {1}, : S(1}) € S(1)} be the collection of sub-trips for 1, which S (7})
represents the set of all students in the bus trip 7,. Because the students in the
trip 7, should form a clique in the shareability network, the students in the trip
7, will also form a clique. Also, the trip cost for 7, is smaller than the cost for
7p. Thus, Y1, € T3*, 7} € T),. And we have constrains (4.10) and (4.11) for the

collection of subsets T}, (or S). m]

Claim 2 The weighted set partitioning problem with constraints (4.10) and (4.11) can

be solved by the algorithm for the weighted set covering problem.

Proof. We prove this claim by the contradiction. Let A be the optimal solu-
tion for the weighted set covering problem, and suppose there exits two subsets

Sl,SQEﬂ,SlﬂS2¢®.

LetS" =8,nS, S, =5\8and S, = 5, \ S’. According to the constraints
(4.10), §7,8, € Ssince §7 € §; and S, € S,. By the constraints (4.11), we
have ¢(S}) < ¢(S1) and ¢(S) < ¢(S,). We can reduce the total cost for A by
replace either S; with S or S, with §’, in the optimal set A while still covering
all elements. Thus, the optimal set A should be a collection of disjoint subsets
in S, and the optimal set A is also optimal for the set partitioning problem with

same U and S. O
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Corollary 1 The SBRP with the objective function for minimizing the overall bus trip
cost (a}, = 1,07, = af = 0) can be solved by the algorithm for the weighted set covering

problem.

Proof. Combining Claim 1 and Claim 2, the SBRP that only minimizes overall
bus trip cost (ap, = 1,0z = a¢ = 0) can be solved by the algorithm of the

weighted set covering problem. o

And problem (4.1)-(4.5) with @7 = 1,07, = ¢ =0and T = T, can be solved by

the following ILP:
min Z C:-y, (4.12)
teTl
s.t. Z y,>1 VYses (4.13)
v, €{0,1} VreT (4.14)

Thus, the SBRP benefits from approaches for solving the weighted set cover-
ing problems. However, the weighted set covering problem is NP-hard and the
state-of-art methods for solving the weighted set covering problems are meta-
heuristics. The large-scale problems are intractable and hard to reach the opti-
mality. In the experiment section, we will compare the decomposition approach
with a state-of-art metaheuristic method for solving the SBRP instead of the
weighted set covering problem. The main take-away for this section is to offer a
new perspective for solving the SBRP, which could lead to potential theoretical

analyses.
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4.3 Network compression techniques

Our approach considering the shareability network is intractable for large-scale
instances as the size of the feasible bus trip list T}, is enormous (over billions).
Generating the feasible trip list 7' is a time-consuming job, and T as the input
for the student-trip assignment ILP (4.1) - (4.5) make this program intractable
for off-the-shelf ILP solvers.

To eliminate the computation bottleneck of our decomposition approach, we
present the network compression techniques aiming to induce sparsity in the
shareability network while retaining all (or most of the) useful information that
is embedded in the network. We present compression techniques from two per-
spectives that work by either pruning the nodes or the edges in the shareability
network. The sparse shareability network will lead to a shorter feasible trip list,

which makes the large-scale SBRPs tractable to solve.

4.3.1 Node compression technique

For the node compression technique, we reduce the number of nodes in the
shareability network by generating bus stops and allowing students to walk to
bus stops within their maximum walking distance. The school buses will pick
up students at bus stops instead of students” residence, and the shareability

network will be constructed based on bus stops.

With the set of potential bus stops M, We formulate the following ILP to gen-
erate the minimum number of bus stops with the binary decision variable x,,,

where x,, = 1 represents picking the potential bus stops m € M.
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min Z Xom (4.15)

meM

s.t. Z x,>1 VseS (4.16)
meN;
X, €{0,1} VmeM (4.17)

The objective function (4.15) minimizes the total number of bus stops which
have been chosen. Constraints (4.16) ensure that each student could find at least
one bus stops within their maximum walking distance. Constraints (4.17) im-
pose that decision variables are binary. This ILP generates the minimum num-
ber of bus stops while covering all students within their maximum walking

distance.

For the student who need door-to-door pickup (47" = 0 and N, = 0), the node
compression technique can be used by assigning a vitual walking distance to the
student and quantifying the penalty brought by this assumption. The penalty
is bounded by the distance of a round-trip between the assigned bus stop and
door-to-door students’ residence. This penalty will be incorporated in the input
function PATHTSP(-) when considering the feasibility of trips. Figure 4.2/ shows
an example of the shareability network before and after applying the node com-
pression technique with vitual distance 0.5 miles for students with door-to-door

pickups.

The node compression technique decreases the maximum number of effective
students for any trip 7, € T}, since each bus stop is now considered as a single
request with a larger capacity. Nonetheless, even with reduced number of nodes
in the shareability network in this manner, the density of the shareability net-

work still does not lead to an adequate level of sparsity for large-scale problem
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Figure 4.2: Instance of applying node compression technique

instances. Therefore, we also adopt a heuristic-based edge compression tech-
nique to delete edges that are unlikely to induce shared trips. This compression
can lead to a sub-optimal solution in theory because we are eliminating feasible
sharing possibilities, but our aim is to generate a set of rules that only eliminate

pairings that are very unlikely to occur in practice.

4.3.2 Edge compression technique

For the edge compression technique, we reduce edges in the shareability net-
work following some mechanisms. The main idea behind pruning edges in the
shareability network is to consider sharing trips with nodes that are relatively
close to each other (e.g. it is unlikely for a student 5 miles north of the school to
share a ride with a student 5 miles south of the school if there are enough stu-
dents to fill a bus from north of the school). Meanwhile, the travel time between
two nodes is not the only factor corresponding to the likelihood of sharing trips,
the relative position of the school and nodes also matters (e.g. two students
could share the same trip if they are at the same side of the school even if they

are far away from each other).

To incorporate both factors, we define the adjusted travel time 7;; = ¢;; - t;; be-
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tween any two nodes i and j in the shareability network, where ¢;; represents

tij+tjvd

the detour factor and ¢;; = ——

. The detour factor ¢;; > 1 reflects how much
d
detour for node i to share the trip with node j comparing to node i directly go

to the destination.

With the definition of the adjusted travel time, we apply a mechanism that a
node only share trips with nearby nodes in the shareability network. More for-
mally, the nearby nodes for any node i are generated by calculating the adjusted
travel time between node i and all other nodes V' \ {i}, sorting the nodes in as-
cending order by the adjusted travel time, and choosing the k closest nodes such
that k < 8- C. If nodes correspond to bus stops with multiple students as a result
of the node compression, we consider the k closest nodes such that the sum of
students is less than 8- C (i.e. Z’]‘.: n(mj) < B-C, where m; represents the bus stop

and n(m;) is the number of students at stop m;).

B is a control parameter and it should be greater than 1 (at least considering C
students nearby). The number of edges decreases while 8 decreasing, so the
number of feasible bus trips |T),| decreases. We choose 8 to keep an appropriate
size of feasible bus trip list |T,| while giving satisfying bus routes. If 8 is too
small, some feasible trips belong to the optimal solution will be eliminated. On
the other hand, if 8 is too large and only a few edges are eliminated in the share-
ability network, the large-scale SBRPs will keep intractable. As a conclusion, we
should choose a § to keep a balance between computability and optimality, the
value of 8 can be different with respect to different numbers and distributions
of the students. Figure 4.3|shows an example of the shareability network before

and after applying the edge compression technique.

The edge compression technique is a heuristic approach without guarantee for
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Figure 4.3: Instance of applying edge compression technique

the loss of optimality. When the size of SBRPs becomes larger, in order to make
problems tractable, we have to use a small value of § to restrict the size of fea-
sible bus trip list |7}|. By the criterion of finding a feasible trip in Lemma (1} all
students in the feasible trip form a clique in the shareability network. Therefore,
the edge compression technique could provide a terrible results when g is small.
In order to compensate for this side-effect, we propose a y-quasi-clique process
based on the Algorithm (1] to find groups of students who form quasi-cliques
in the shareability network. More precisely, the quasi-clique designates to be a
structure which is similar to the clique. The y-quasi-clique process replaces the
function CLIQUECHECK(t, G(V, E)) in the Algorithm [1|and details are shown in
the Algorithm

Algorithm 2 y-quasi-clique process. Input: the shareability network G, a feasi-
ble bus trip 7 € T}, a student s, heuristic parameter 7.

1: function y-QUASICLIQUEPROCESS(7, 5, G(V, E), )
2. x<0

3: fors €S(r)do

4 if e(s,s’) ¢ E then
5: xe—x+1
6
7
8

if x > vy - |7| then
return false
return true

The y-quasi-clique process is determined by a heuristic parameter vy, which in-

dicates the difference between quasi-cliques and cliques. y is upper bounded
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by 1 since a student s is not connected with at most |7| students in the trip 7.
By introducing the y-quasi-clique process in the Algorithm |1} we can maintain

a satisfying solution by having a large y while decreasing 8 to reduce the com-

putation time.
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CHAPTER 5
EXPERIMENTS

5.1 Real-world experimental results

To test the applicability of our proposed algorithm to at-scale SBRPs, we con-
ducted a number of numerical experiments using some publicly accessible
benchmark problem instances. All the experiments are run on a 2.7 GHz In-
tel Core i7 Processor with 16 GB Memory using Python 3.6. The first data set
we use is from Transportation Challenge held by Boston Public Schools (BPS),
which contains 22420 simulated students addresses (to protect student privacy)
from 134 public schools with the same aggregate pickup location distributions
as in the real-world. The simulated dataset can be downloaded from https://
www.bostonpublicschools.org/transportationchallenge. The spa-

tial distribution of this dataset is shown in the Figure

Figure 5.1: Simulated data from Boston Public School (BPS)
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The Boston road network G.(V,.,E,) is obtained from Open Street Maps
(OSM) [11] using the open source Python library OSMnx [6]. All the visual-
izations of the results are generated using the Python library NetworkX [9]. The
implementation for the function PATHTSP(:) is shown in [Al We used the state-
of-art ILP solver Gurobi [8] in the experiments with a 3600 seconds maximum
computation time. We make the following assumptions based on the BPS data

and requirements:

e Assume that school buses can start at any location in the network.

e The delay time d for buses at each bus stop m follows a function d = 15 +

5 - n(m), where n(m) is the number of students at the bus stop m.

e Each door-to-door student s € S has the same vitual maximum walking

distance d7'“* = 0.5 miles.

e The maximum number of school buses K™** = |§|, i.e. there is no restriction

on the bus fleet size.
e The school bus capacity C = 72.
o The maximum travel time for students is #"** = 3600 seconds.

e The set of potential bus stops M is same to the set of nodes in the road

network V,.
e The set of alternate modes A contains only the dedicated vehicles.

e The cost for owning a bus is @; = 200 dollars per day and the cost for
operating a bus is a; = 1 dollar per mile [1], which implies that the bus
capital cost is much larger than the bus operational cost. This leads to
solutions that minimize the number of buses needed. The cost for taking

a dedicated vehicle is @3 = 2 dollars per mile [14].
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With all the parameters and assumptions for running the experiments on the
Boston road network with simulated data from Boston Public School (BPS), we
picked ten schools and computation results are shown in Table Ns, Ns,,,
represent the number of students and door-to-door students, Ny denotes the
number of bus stops, Ny, designates for the length of the feasible bus trip list,
S ND indicates the objective value for the shareability network based decompo-
sition approach, Ny stands for the number of buses, Ny means the number of
students who take dedicated vehicles and T speaks for the overall computation

time (seconds). The optimal school bus schedules can be found in [B]

Table 5.1: Computational results for real-world experiments

School NS NS nd NM* NT;, ﬁ Y SND NB NU T
Tommy H. 51 7 19 62632 - - 34200 1 24 13.76
Craig K. 71 11 20 107253 - - 46139 2 2 2677
Deven M. 91 14 22 100021 - - 527.03 2 13 21.76
Frank M. 160 30 30 333994 1.2 03 76093 3 11 84.58
Dick W. 183 28 22 71672 - - 62207 2 42 18.36
Dick B. 208 40 35 760551 1.3 04 79047 3 23 191.25
Dutch L. 243 42 42 1951866 2 04 94285 3 36 515.85
Christian V. 344 66 35 553380 3 0.4 1109.87 5 0 3730.93
Dennis E. 403 75 45 322566 2 04 131287 5 44 4194.26
Rick F. 573 109 55 546319 2.5 04 178192 8 2 151.26

5.2 Benchmark testing
To further evaluate the performance and scalability of this approach, we com-
pared our approach with two state-of-art methods for solving the SBRP [17,5].

For the BiRD (Bi-objective Routing Decomposition) algorithm for SBRP [5], we

implemented the single-school routing algorithm and compared on the BPS

1w v

indicates that we didn’t use 8 or y heuristic in edge compression techniques.
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simulated data. In the comparison, we set @; = 500,@, = 1 and a3 = oo (con-
sider the school bus as the only transportation mode). In the BiRD algorithm,
N determines the optimality of solutions, which represents the number of feasi-
ble trips covering each bus stop. In the application in [5], N was set to be 400.
Because of the randomness in BiRD algorithm, we set N equal to 1000 and run
10 times to get the best results. Comparison results are shown in the Table
and the optimal school bus schedules can be found in|[C| Ny represents the num-
ber of students, Ny denotes the number of bus stops, § and y are parameters
for the edge compression techniques, S ND indicates the objective value for the
shareability network based decomposition approach, BiRD stands for the objec-
tive value for the Bi-objective Routing Decomposition algorithm, Improv’ shows
the improvement of routing cost for S ND compared to BiRD, Improv implies the

improvement of objective value for S ND compared to BiRD.

Table 5.2: Comparison results with BiRD algorithm [5]

School Ns Ny~ Ny, B v | SND BiRD | Improv’ Improv
Tommy H. 51 19 62632 - - |1549.16| 1553.44| 8.01% 0.28%
Craig K. 71 20 107253 - - | 1548.97| 1554.28| 9.78%  0.34%

Deven M. 91 22 100021 - - | 1553.94| 1558.34| 7.54% 0.28%
Frank M. 160 30 333994 1.2 0.3| 2080.18| 2081.9 | 2.10%  0.08%

Dick W. 183 22 71672 - - | 1559.98| 1560.32| 0.56%  0.02%
Dick B. 208 35 760551 1.3 0.4| 2083.13| 2083.91| 0.93%  0.04%
Dutch L. 243 42 1951866 2 0.4 2614.7 | 3120.28| 4.64% 16.20%

Christian V. | 344 35 553380 3 0.4 2609.87| 3113.03| 2.80% 16.16%
Dennis E. 403 45 548316 2.3 0.4 3127.26| 3632.52| 3.97% 13.91%
Rick F. 573 55 124257 2 0.4 4669.67 | 4673.46| 2.18%  0.08%

Schittekat et al. [17] used a metaheuristic approach combining a greedy search
procedure with a neighborhood search and solved the bus stop selection and
school bus routing problem together while we solved these two problems sep-
arately. We used the generated instances in Euclidean space given in [17] and

adopted our approach under their settings by assigning students to bus stops
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tirst and solving the optimal bus route. The comparison results are shown in
Table ID corresponds to the instance number, stop denotes the number of
bus stops, stud represents the number of students, cap indicates the bus capac-
ity, wd is the walking distance for students in Euclidean space, beta and y are
parameters for the edge compression techniques, Nr, stands for the number of
teasible bus trips, MH is the objective value for metaheuristic method [17], SND
indicates the objective value for the shareability network based decomposition
approach, Improv implies the improvement of objective value for SND com-
pared to MH. We picked instances with minimum students walking distance 5
because larger walking distance led to fewer selected bus stops and made prob-

lem not interesting any more with respect to S ND approach.

Table 5.3: Comparison results with metaheuristic method [17]

ID stop stud cap B vy Ny, MH SND Improv
73 40 200 25 3 03 2776  831.94 804.4 +3.31%
74 40 200 50 1.5 0.3 127211 593.35 585.08 +1.39%
81 40 400 25 - - 575 1407.05  1428.2 -1.5%

82 40 400 50 3 03 6514  858.80 848.8 +1.16%
89 40 800 25 - - 40 2900.14  3085.11  -6.38%
9 40 800 50 - - 726 1345.70  1404.61 -4.38%

97 80 400 25 3 04 5928 1546.23 149438  +3.35%
98 80 400 50 1.5 04 40583 1048.56  1025.62  +2.19%
105 80 800 25 - - 1410 252796 262377  -3.79%
106 80 800 50 5 04 45252 1530.58  1499.88  +2.01%

For instance 81, 89, 90 and 105, our approach yields worse solutions because
we split the bus stops selection and bus routing problem while applying the
node compression technique. Our approach has optimality limitations on these
instances. However, SND approach gets better solutions for instances without
such limitations while reducing a significant amount of time. From implemen-
tation perspective, it is intractable to solve both bus stops selection and bus

routing problem together for large instances. Solving them separately is a rea-
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sonable decomposition which increases the problem tractability and yields sat-

isfying school bus schedules.

5.3 Sensitivity analyses

Finally, we conduct a sensitivity analyses for network compression techniques
using the large-scale BPS instance of Christian Vazquez School with 344 stu-
dents, where 66 students need door-to-door pickup. We set a; = 500, a, = 1 and

@3 = oo (consider the school bus as the only transportation mode).

For measuring the sensitivity to the control parameter g for the edge compres-
sion technique, we choose 3 values ranging from 1 to 4 with a step size of 0.2
and keep the y equal to 0.4. The sensitivity analyses results are shown in Figure
The objective value and number of buses required decrease in unison as
increased, since a larger set of sharing options are made available via the share-
ability network and can be potentially fit into a smaller number of buses. As 8
decreases, fewer options are available and more buses maybe needed leading to
a higher objective function value. In contrast, both the running time and length
of the feasible trip list increase exponentially with respect to 3, since the share-
ability graph grows exponentially in size with respect to 8. The fluctuation of

the running time is induced by the uncertainty for solving the ILP.

For measuring the sensitivity to the control parameter y for the edge compres-
sion technique, we consider a range from 0 to 0.9 with a step size of 0.1 meters
and keep the beta parameter fixed at 8 = 2. The sensitivity analyses results
are shown in Figure Unsurprisingly, we notice that the objective value will

decrease when y increases. The running time and the number of the feasible
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Figure 5.2: Sensitivity analysis for

bus trips increases when y increases. The number of buses required does not
change because we can get 5 buses even without applying y — quasi — clique

process, which is the minimum number of buses for this instance.
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CHAPTER 6
DISCUSSION

This thesis proposes a shareability network based approach for solving large-
scale SBRP considering alternate modes. We build the theoretical connec-
tions between SBRP and the weighted set covering problem by decomposition
through the shareability network. Moreover, we present a node compression
technique and heuristic edge compression techniques to obtain a simplified ILP
and enable tractable computation of the SBRP at-scale. The node compression
technique uses an ILP to generate bus stops while satisfying maximum walking
constraints for all students and decreases the number of nodes in the shareabil-
ity network. In contrast, the edge compression techniques are heuristics that
are applied to reduce the density of the shareability network, and work well in
practice. We evaluate our solution using synthetic data-sets from BPS and show
that our approach can compute decent solutions for large-scale problems. To
further evaluate the performance for our approach, two benchmark testings are
conducted with state-of-art SBRP sovling techniques. Finally, a sensitivity anal-
ysis of the parameters used for network compression techniques is provided to
get insights into how they influence the trade-off between solution quality and

computation time.

This work is the first attempt to adapt techniques from the ridepooling litera-
ture on the shareability networks to the SBRP, consider alternate modes in SBRP
and connect SBRP with the weighted set covering problem. The key extension
for enabling these techniques to work in practice for large-scale instances for
the SBRP is the compression of the shareability network. One important fu-

ture direction is to develop more sophisticated and nuanced edge compression
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schemes that more precisely target the edges that are unlikely to be relevant to
the optimal solution. Moreover, the simplified ILP we present can be combined
with state-of-art ILP solving techniques (e.g. column generation) to solve the
extreme large-scale SBRP instances or allow for larger g values. This is also an

area to be explored.
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APPENDIX A
HEURISTIC INSERTION PATH-TSP SOLVER

One of the most time-consuming parts in our decomposition method through
the shareability network is generating the bus trip list 7,. In Algorithm [1, we
need to solve a path-TSP every time we find a clique in the shareability net-
work to determine the feasibility of this trip. The path-TSP itself is NP-hard
and it takes an off-the-shelf solver seconds to solve even with small amount of
students as the input. The problem becomes intractable if we have to check mil-
lions of cliques in the Algorithm [I} Therefore, we propose a heuristic insertion
path-TSP solving technique to decrease the computation time while outputting

the satisfying feasible bus trip list 75,

The essential idea of this heuristic insertion path-TSP solving technique is that
if we know the optimal path p* for a set of k students S, we generate a sub-
optimal path for k + 1 students S, U {s} by fixing p* and inserting the student
s into the order of p* where yields a path with the minimal travel time. To be
specific, we modified the function FEASIBILITYCHECK(x, t,,ax, C, PATHTSP(-)) to
Algorithm 3| For the input of Algorithm 3, we need the optimal path and travel
time for a feasible trip 7. We can store the optimal routes and travel time once we
generate a feasible trip T with k students, which will be used when considering

trips with k + 1 students.

Algorithm 3| yields a sub-optimal route and travel time within linear time. The
experiment results in the chapter 5 show the routes computed by Algorithm

are decent.
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Algorithm 3 Trips feasibility check with the heuristic inserting path-TSP solving
technique. Input: a feasible bus trip 7 € T}, the optimal route p; for the trip 7, the
optimal travel time 7 for the trip 7, a student s, maximum travel time #"**, bus
capacity C, travel time function between any two vertices in the road network
{t,Vi, j € V,)

1: function HEURISTICFEASIBILITYCHECK(T, pi, £, s, ", C, {t;;IVi, j € V}})
2: n«|S(1)

3 pri=1[81,52 0 Sl

4: 1" oo, pr <0

5. foriin|0,1,...,n] do
6 if i = 0 then

7 Uty +1

8 if ¥ < ¢ then

9 Ut p" < [8,581, 8, Sl

10: else if i = n then

11: U=ty v+l =ty v T I

12: if ¥ < t* then

13: '« t;p" < [S1,852, s Su» S|
14: else

15: !« [ RS R t
16: if ¥ < t* then

17: U= p" = [S1y ey Sis Sy Sit1s eves S
18: ifr < and |S(1)|+ 1 < C then
19: return true

20: else

21: return false
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APPENDIX B
REAL-WORLD EXPERIMENT RESULTS

This section shows the optimal school bus schedules for the real-world experi-
ments with simulated data from Boston Public School (BPS). For figures in the
following, red stars denote the school location, blue dots represent student lo-

cations and red crosses indicate students who take dedicated vehicles.

-
W Common Routes

Figure B.1: Optimal school bus schedules for Tommy Harper
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W Routel; Total travel time: 3525; Number of students: 32
W Route2; Total travel time: 3443; Number of students: 37
-

Figure B.2: Optimal school bus schedules for Craig Kimbrel

el time: 3362; Number of students: 37
el time: 3587; Number of students: 41

Figure B.3: Optimal school bus schedules for Deven Marrero
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me: 3521; Number of students: 38
ime: 3565; Number of students: 72
ime: 3589; Number of students: 39
uuuuuuuuu

Figure B.4: Optimal school bus schedules for Frank Malzone

Figure B.5: Optimal school bus schedules for Dick Williams
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el time: 3593; Number of students: 70
el time: 3368; Number of students: 71



me: 3315; Number of students: 72
ime: 3528; Number of students: 49
ime: 3573; Number of students: 64

Figure B.6: Optimal school bus schedules for Dick Bresciani

Figure B.7: Optimal school bus schedules for Dutch Leonard
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Routel; Total travel time: 3434; Number of students: 72
Route2; Total travel time: 2696; Number of students: 66
Route3; Total travel time: 3544; Number of students: 64
Routed; Total travel time: 3531; Number of students: 70
Routes; Total travel time: 3177; Number of students: 72
Common Routes

Figure B.8: Optimal school bus schedules for Christian Vazquez

Route1; Total travel time: 2797; Number of students: 72
Route2; Total travel time: 3003; Number of students: 72
Route3; Total travel time: 3518; Number of students: 72
Route4; Total travel time: 3397; Number of students: 72
Routes; Total travel time: 3562; Number of students: 71
Common Routes

Figure B.9: Optimal school bus schedules for Dennis Eckerley
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jumber of students: 7

Total travel time:
Common Routes

W Routel; Total travel time: 1680; Number of students: 72
W Route2; Total travel time: 3587; Number of students: 70
- ; Total travel time: 3496; Number of students: 72

; Total travel time: 3515; Number of students: 70
- : Total travel time: 3295; Number of students: 72

Total travel time: jumber of students: 72
- Total travel time: jumber of students: 72
-

Figure B.10: Optimal school bus schedules for Rick Ferrell
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APPENDIX C
BENCHMARK RESULTS

This section states the school bus schedules comparisons between the shareabil-
ity network based decomposition approach and BiRD algorithm. For figures in
the following, red stars represent school locations and blue dots denote student

locations.
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BN Routel; Total travel time: 1446; Number of students: 6
W Route2; Total travel time: 3248; Number of students: 15
W Route3; Total travel time: 2635; Number of students: 30
. Common Routes

mEm Routel; Total travel time: 2009; Number of students: 9
. Route2; Total travel time: 2792; Number of students: 10
W Route3; Total travel time: 3166; Number of students: 32
. Common Routes

Figure C.1: Bus routes comparison for Tommy Harper (SND on the left)
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NN Routel; Total travel time: 1523; Number of students: 11
W Route2; Total travel time: 2657; Number of students: 22
W Route3; Total travel time: 3121; Number of students: 38
. Common Routes

W Routel; Total travel time: 2361; Number of students: 26
. Route2; Total travel time: 3263; Number of students: 29
mmm Route3; Total travel time: 2471; Number of students: 16
. Common Routes

Figure C.2: Bus routes comparison for Craig Kimbrel (SND on the left)
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W Routel; Total travel time: 2219; Number of students: 33
W Route2; Total travel time: 2707; Number of students: 33
W Route3; Total travel time: 3116; Number of students: 25
. Common Routes

N Routel; Total travel time: 3377; Number of students: 39
. Route2; Total travel time: 2707; Number of students: 33
W Route3; Total travel time: 2614; Number of students: 19
. Common Routes

Figure C.3: Bus routes comparison for Deven Marrero (SND on the left)
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BN Routel; Total travel time: 2592; Number of students: 3:
W Route2; Total travel time: 2627; Number of students:
Em Route3; Total travel time: umber of students:

Routed; Total travel time: 3295; Number of students: 72
= Common Routes

54

W Routel; Total travel time: 3360; Number of students: 29
. Route2; Total travel time: 2874; Number of students:
. Route3; Total travel time: jumber of students:

Routed; Total travel time: 3352; Number of students: 4
= Common Routes

&5

Figure C.4: Bus routes comparison for Frank Malzone (SND on the left)
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N Routel; Total travel time: 2464; Number of students: 49
MW Route2; Total travel time: 3111; Number of students: 63
W Route3; Total travel time: 3368; Number of students: 71
. Common Routes

. Routel; Total travel time: 2628; Number of students: 70
. Route2; Total travel time: 3272; Number of students: 50
W Route3; Total travel time: 3094; Number of students: 63
. Common Routes

Figure C.5: Bus routes comparison for Dick Williams (SND on the left)
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NN Routel; Total travel time: 3292; Number of students: 70
W Route2; Total travel time: 2650; Number of students:
Em Route3; Total travel time: umber of students: 71

Routed; Total travel time: 2 umber of students: 45
= Common Routes

N Routel; Total travel time: 3514; Number of students: 66
. Route2; Total travel time: 2790; Number of students: 44
. Route3; Total travel time: umber of students: 70

Routed; Total travel time: 3074; Number of students: 28
= Common Routes

Figure C.6: Bus routes comparison for Dick Bresciani (SND on the left)
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= Common Routes
W Route3; Total travel time: 3567; Number of students: 64

Route4; Total travel time: 3553; Number of students: 25
WEN RouteS; Total travel time: 3588; Number of students:
-
-

58

Route?; Total travel time: 3488; Number of students: 33 %

Routel; Total travel time: 2907; Number of students: 57 .
.

N Routel; Total travel time: 3233; Number of students: 46
. Route2; Total travel time: 3227; Number of students:
. Route3; Total travel time: jumber of students:
-
-

au
24

Routed; Total travel time: 3211; Number of students:
Routes; Total travel time: jumber of students:
Routes; Total travel time: 1590; Number of students: 4
Common Routes

2

Figure C.7: Bus routes comparison for Dutch Leonard (SND on the left)
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Routel; Total travel time: 3434; Number of students: 72
Route2; Total travel time: 2696; Number of students:
Route3; Total travel time: 3544; Number of students:
Routed; Total travel time: 3531; Number of students:
Routes; Total travel time: 3177; Number of students: 72
Common Routes

2o
28

W Routel; Total travel time: 3155; Number of students: 3:
. Route2; Total travel time: 2507; Number of students:
. Route3; Total travel time: umber of students: 71
-
-

&

Routed; Total travel time: 2439; Number of students:
Routes; Total travel time: 2732; Number of students:
Routes; Total travel time: 3469; Number of students: 5:
Common Routes

2

Figure C.8: Bus routes comparison for Christian Vazquez (SND on the left)
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Routes; Total travel time: 3553; Number of students: 72
Common Routes

Route3; Total travel time: 3533; Number of students: 66
Routes; Total travel time: 3500; Number of students: 72
Routel; Total travel time: umber of students: 69
umber of students: 55
umber of students: 69

Route2; Total travel time:

Routel; Total travel time: 1800; Number of students: 5
Route2; Total travel time: 3276; Number of students:
Route3; Total travel time: jumber of students:
Routed; Total travel time: 3499; Number of students:
Routes; Total travel time: 2528; Number of students:
Routes; Total travel time: 3103; Number of students: 71
Route7; Total travel time: 3265; Number of students: 39
Common Routes

E

2uo
838

Figure C.9: Bus routes comparison for Dennis Eckerley (SND on the left)
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Routel; Total travel time: 1680; Number of students: 7:
Route2; Total travel time: 2867; Number of students:

te3; Total travel time: jumber of students:
Total travel time: jumber of students:
Total travel time: jumber of students:
6 Total travel time: iumber of students: 71
: Total travel time: 3258; Number of students:
; Total travel time: 2183; Number of students:
Routeg; Total travel time: 3459; Number of students: 50
Common Routes

$3IIN

b

Routel; Total travel time: 3567; Number of students: 6:
Route2; Total travel time: 2647; Number of students: 71
Route3; Total travel time: jumber of students:
Routed; Total travel time: 3125; Number of students:
Routes; Total travel time: jumber of students:
Routes; Total travel time: 3527; Number of students:
Route7; Total travel time: jumber of students:
Routes; Total travel time: 2767; Number of students:
Routes; Total travel time: 1680; Number of students: 7:
Common Routes

o u
g3

a0
54

oo
38

Figure C.10: Bus routes comparison for Rick Ferrell (SND on the left)
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