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Problems at the intersection of reasoning, optimization, and learning often in-

volve multi-stage inference. For example, making decisions based on machine

learning models often leads to multi-stage inference problems where probabilis-

tic models learned from data are embedded as first-stage subproblems within

a global second-stage problem for decision-making. Multi-agent reasoning also

involves multi-stage inference, since the reasoning of any given agent has to

incorporate the goals of the other agents. As a result, the decision processes

of the other agents are embedded as first-stage subproblems within the overall

decision-making problem of that agent. With formal complexities beyond NP,

multi-stage inference problems are often highly intractable.

In this thesis, I introduce a novel computational framework, based on em-

beddings, to tackle multi-stage inference problems. Our embedding technique

approximates the intractable sub-problems of a multi-stage inference problem

through a series of novel representations. We then embed these representations

into the global problem, effectively reducing a multi-stage inference to a single-

stage inference. As one example, I present a novel way to encode the reward

allocation problem for a two-stage organizer–agent game as a single-stage op-

timization. The encoding embeds an approximation of the agents’ decision-

making process into the organizer’s problem in the form of linear constraints.



We apply this methodology to eBird, a well-established citizen-science program

for collecting bird observations, in a game called Avicaching. Our AI-based re-

ward allocation was shown to be highly effective, surpassing the expectations

of the eBird organizers and bird conservation experts. As another example, I

present a novel constant approximation algorithm to solve stochastic optimiza-

tion problems which identify the optimal policy that maximizes the expectation

of a stochastic objective. To tackle this problem, I propose the embedding of

its intractable counting subproblems as queries to NP oracles subject to addi-

tional XOR constraints. As a result, the entire problem is encoded as a single

NP-equivalent optimization. This approach outperforms state-of-the-art solvers

based on variational inference and MCMC sampling, on probabilistic inference

benchmarks, deep learning applications, and a novel decision-making applica-

tion in network design for wildlife conservation.

I also apply the embedding technique to automated reasoning and machine

learning for dimensionality reduction in scientific discovery. As one example, I

propose the use of embeddings based on Fourier analysis as a compact repre-

sentation of high-dimensional probability distributions. As a second example, I

show how human computation, crowdsourcing, and parallel computation can

identify key backdoor information, thereby drastically reducing the computa-

tion time from days to minutes in a dimensionality reduction application with

complex physical constraints. Our novel integration of reasoning and learning

has led to the discovery of new solar light absorbers by solving a dimensionality

reduction problem to characterize the crystal structure of metal oxide materials

using X-ray diffraction data.
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CHAPTER 1

INTRODUCTION

Over the last decade, artificial intelligence (AI) has achieved tremendous

success in computer vision, speech recognition, language understanding, and

game playing. In terms of learning, the latest machine learning technologies en-

able an AI system to perceive the world better than what human beings are

capable of (Krizhevsky, Sutskever, & Hinton, 2012; He, Zhang, Ren, & Sun,

2016). In terms of reasoning, modern inference engines can handle sophisti-

cated reasoning tasks that involve millions of variables and constraints (Biere,

2013). With the great progress that has been made in both fields, the time has

come to address the “last mile” of AI, which is to bridge learning and reasoning,

building fully automated systems that are capable of making optimal decisions based on

high-dimensional and uncertain machine learning models.

Nevertheless, problems at the intersection of learning and reasoning pose

unique challenges and require fundamentally novel thinking. First, many prob-

lems at this intersection are high dimensional in nature and require dimension-

ality reduction tools to extract meaningful patterns from data. Second, many

problems at this intersection involve multi-stage inference which is highly in-

tractable. For example, making decisions based on machine learning models of-

ten leads to multi-stage inference problems where probabilistic models learned

from data are embedded as first-stage subproblems within a global second-stage

problem for decision-making. Multi-agent reasoning also involves multi-stage

inference where the reasoning of any given agent has to incorporate the rea-

soning of the other agents, hence the decision processes of the other agents are

embedded as first-stage subproblems within the overall decision-making prob-
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lem of that agent. Overall, multi-stage reasoning generally leads to highly in-

tractable problems whose complexity lies beyond NP.

Formally, a decision problem is said to be within the NP-class if given a solu-

tion to the problem, one can verify its correctness (i.e., check whether it satisfies

all the constraints or not) in polynomial time. NP-complete problems are the

most difficult problems within the NP-class. A problem is NP-hard if it is at least

as challenging as solving an NP-complete problem. For example, a #P-complete

problem, which counts the number of feasible solutions to a NP-complete prob-

lem, is NP-hard, because knowing the number of solutions implies the feasibil-

ity of the problem.

Many problems at the intersection of learning and reasoning are beyond the

NP-complexity class, because they have NP-hard problems embedded as sub-

problems. As an example, consider the stochastic optimization problem which

finds the optimal policy intervention that maximizes the expectation of a prob-

abilistic outcome. Typical applications of this problem include managing an as-

set portfolio that maximizes future return, or protecting landscape to facilitate

the movement of wild animals over a large landscape. The stochastic relation-

ship between the outcome and the policy is often modeled using a probabilistic

model which is learned from data. For a given policy, computing the expecta-

tion of the probabilistic outcome requires averaging over exponentially many

probabilistic outcomes, which is #P-complete in terms of formal complexity.

The decision-making problem on top of the probabilistic model subsumes the

#P-complete problem as a first-level subproblem, thereby constituting a highly

intractable multi-level inference.

As another example, consider a multi-agent setting where each agent

2



searches for the best action that maximizes his or her own utility function. Even

when the actions of all but one of the agents are fixed, the optimization problem

for that one agent is often NP-hard, because it requires optimizing over an ac-

tion space whose size is exponential in the size of the input. In a more complex

setting, where the utility function of one agent depends on the utility functions

of the others, the reasoning of that one agent has to take into account the reason-

ing of the other agents as well. As a result, this leads to a multi-level inference

problem with NP-hard problems of the other agents embedded as first-level

subproblems. Over the years, there has been tremendous progress in solving

NP-complete problems. Nevertheless, little progress has been made for highly

intractable multi-level inference problems.

In this thesis, I introduce a new computational framework based on so-called

embeddings to tackle highly intractable problems at the intersection of learning

and reasoning. For multi-level inference problems beyond the NP complexity

class, I propose embedding of approximations of the intractable sub-problems into the

global optimization task through a series of novel representations. As a result, the

entire multi-level inference problem can be approximated with guarantees by a sin-

gle optimization. This novel embedding framework allows us to take advantage

of recent progress in solving NP-complete problems which enables us to tackle

problems of higher complexity.

I also apply the embedding technique in automated reasoning and machine

learning for dimensionality reduction in scientific discovery. As one example, I

propose the use of embeddings based on Fourier analysis as a compact repre-

sentation of high-dimensional probability distributions. As a second example, I

show how human computation, crowdsourcing, and parallel computation can

3



identify key backdoor information, thereby drastically reducing the computa-

tion time from days to minutes in a dimensionality reduction application with

complex physical constraints, motivated by the crystal structure identification

problem in high-throughput materials discovery.

Our novel embedding technique is motivated by real-world problems in

computational sustainability, a new interdisciplinary field that aims to develop

inference techniques and decision-support tools for tackling high-dimensional

computational problems that arise in the quest for sustainability of human, ani-

mal, and plant life far into the future.

My research would not have been possible without my collaboration with

the eBird team of the Cornell Lab of Ornithology and the Joint Center for Ar-

tificial Photosynthesis (JCAP) at Caltech. eBird is a successful citizen science

program of the Cornell Lab of Ornithology, which engages the general public

in bird conservation. To understand the distribution and migration of birds,

eBird enlists bird watchers to identify bird species. To date, more than 360,000

individuals have volunteered more than 400 million bird observations, which in

terms of man-hours is equivalent to the work required to build several Empire

State buildings. Since 2006, eBird data have been used to study a variety of sci-

entific questions, from highlighting the impact of climate change to designing

plans for conservation (Sullivan et al., 2014; Kelling et al., 2012).

Our embedding technique was also motivated by a collaboration with the

Joint Center for Artificial Photosynthesis (JCAP) at Caltech to interpret X-ray

diffraction data in the presence of physical constraints. We were very fortunate

to deploy our system at JCAP. Materials scientists have been able to analyze

thousands of X-ray diffraction patterns with our system, and the results have
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yielded the discovery of new materials for energy applications (Y. Xue, Bai, et

al., 2017; Bai et al., 2017). Our work was featured as the cover article and the

Editors’ Choice in the journal Combinatorial Science of the American Chemical

Society (Suram et al., 2016). It also received recognition with the IAAI-2017

Innovative Application Award (Y. Xue, Bai, et al., 2017).

1.1 Embedding for Multi-stage Inference beyond NP

Many problems at the intersection of machine learning, optimization, and

decision-making have intractable sub-problems embedded in the global opti-

mization problem, leading to multi-stage inference problems whose compu-

tational complexity lies beyond NP. Computing optimal strategies in a multi-

agent setting is a good example: As the individual optimization problems de-

pend on one another, each agent effectively needs to maximize his or her own

utility while taking into account the fact that the other agents are solving their

own optimization problems as well. Finding optimal strategies in multi-agent

systems is therefore generally significantly harder than solving a single-agent

optimization problem.

Many types of stochastic optimization problems are also good examples of

reaching beyond NP. Such problems arise naturally in a variety of settings with

decision-making under uncertainty, where the objective is to find the policy in-

terventions that yield the best stochastic outcomes. Such stochastic decision

problems have intractable counting problems embedded in the global optimiza-

tion challenge. High-complexity problems can be found within machine learn-

ing as well; for example, learning a statistical model with latent variables lies

beyond NP, since it involves optimizing over model parameters while marginal-
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Figure 1.1: The organizer–agent interaction

izing over the hidden variables.

As mentioned earlier, I propose a novel computational framework based on

so-called embeddings to tackle these highly intractable problems. The general

idea is to embed approximations of the intractable sub-problems into the global

optimization task through a series of novel representations. As a result, the

entire problem can be approximated with guarantees by a single optimization

problem. The approach is quite general and can be applied in different contexts.

I will illustrate the embedding idea using the following two examples. In the

first example, I demonstrate the effectiveness of the embedding approach by

encoding the reward allocation problem in organizer–agent games as a single

optimization problem in the citizen science domain. In the second example, I

provide a constant factor approximation algorithm to solve stochastic optimization

problems, by embedding the intractable counting sub-problems into the global

optimization problem as queries to NP oracles subject to additional XOR con-

straints.
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Embedding for Optimal Reward Allocation in Organizer-Agent Games

In an organizer–agent incentive game, the organizer allocates external incen-

tives selectively on a few tasks to encourage agents to complete a subset of cru-

cial tasks. The agents complete tasks that maximize their own utilities, taking

into consideration the external incentives offered by the organizer, subject to re-

source constraints. The optimal reward allocation problem is to determine an

optimal plan for the organizer to allocate the rewards under a fixed budget—a

plan which most effectively drives the agents to complete the crucial tasks.

As a concrete example, consider the citizen science program eBird, which

analyzes bird distributions and migration patterns by collecting observational

data from bird enthusiasts all over the world. We developed a new game, called

Avicaching, in which the organizer, eBird, uses additional bonus points to incen-

tivize avid bird watchers to go to undersampled locations, where observational

data for statistical modeling are needed the most. The optimal reward allocation

problem is to determine how many bonus points we should allocate for each

location in order to most effectively drive bird watchers to undersampled loca-

tions. In many scenarios, it is already NP-hard to solve an individual agent’s

utility optimization problem. The reward allocation problem, to be solved by

the organizer, embeds the agents’ decision processes as subtasks, and is there-

fore even more challenging.

Our novel solution to the reward allocation problem (Y. Xue, Davies, Fink,

Wood, & Gomes, 2016b, 2016a) considers a setting in which agents have

bounded rationality and their own decision processes can be captured by a

polynomial approximation scheme. We convert the polynomial approximation

scheme from a procedural encoding into a declarative encoding, and then em-
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bed the declarative encoding in the form of linear constraints into the bi-level

optimization. As a result, the reward allocation problem can be encoded into a

single optimization problem, and can be solved using an off-the-shelf optimiza-

tion package.

The effectiveness of our novel approach has been demonstrated with the

field deployment of Avicaching, to reduce the bias in data collected within the

well-established eBird citizen science program. Under our novel reward alloca-

tion, we were able to shift 19% of the effort in two counties in upstate New York

from oversampled locations to undersampled locations during the period from

April to August in 2015, thereby significantly reducing the data bias.

Embedding for Stochastic Optimization using NP Oracles and XOR Con-

straints

Stochastic optimization, also known as the Marginal Maximum-A-Posteriori

(MMAP) problem in the probabilistic graphical model community, searches for

an optimal policy that performs the best, in expectation, across multiple proba-

bilistic scenarios. Stochastic optimization arises in a broad range of applications

at the intersection of decision-making and machine learning under uncertainty,

ranging from machine learning to financial engineering, computer vision, and

conservation. This problem unifies two main classes of probabilistic inference,

namely maximization (optimization) and marginal inference (counting), and is be-

lieved to have higher complexity than both of them (NPPP).

We propose a novel approach XOR MMAP (Y. Xue, Li, Ermon, Gomes, & Sel-

man, 2016) , which gives a constant factor approximation for the stochastic opti-
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Figure 1.2: Multiple applications of solving stochastic optimization prob-
lems with XOR constraints. Probabilistic inference (upper left).
Deep belief network (upper right). Network design (bottom).

mization problem. In this approach, we represent the intractable counting sub-

problem as queries to NP oracles, subject to additional XOR constraints. We

then embed the NP oracles as sub-optimization problems into the global prob-

lem, and the entire problem becomes a single optimization. We can prove that

XOR MMAP provides a constant factor approximation for the stochastic optimiza-

tion problem. We evaluated our approach on classical probabilistic inference

benchmarks and on deep learning applications, as well as on a novel decision-

making application in network design. We show that our approach outper-

forms state-of-the-art solvers based on variational inference as well as MCMC

sampling.

Application to Network Design In follow-up work (Y. Xue, Wu, et al., 2017;

Wu, Xue, Selman, & Gomes, 2017), we embed a spatial-capture-recapture model

that estimates the density, space usage, and landscape connectivity of a given

species into a dynamic landscape connectivity optimization problem. In order
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to scale up our encoding, we propose a sampling scheme via random partition-

ing of the search space with XOR constraints, closely related to the novel embed-

ding proposed in XOR MMAP. We show that our method scales to real-world-size

problems and dramatically outperforms the solution quality of an expectation

maximization approach and a sample average approximation approach.

1.2 Embedding for Dimensionality Reduction in Scientific Dis-

covery

The area of automated scientific discovery presents unique challenges for the

integration of learning and reasoning. I have developed several dimensionality

reduction tools to facilitate the discovery of useful patterns in data with compli-

cated physical constraints.

Dimensionality Reduction with Discrete Fourier Representation

Finding good representations of high-dimensional probability distributions is a

core challenge for probabilistic methods. I introduced a novel compact repre-

sentation to encode probabilistic information using the discrete Fourier trans-

form of weighted Boolean functions (Y. Xue, Ermon, Bras, Gomes, & Selman,

2016). This approach complements the classical approach based on conditional

independence. We show that a large class of probabilistic graphical models have

compact Fourier representations. A variable elimination strategy that uses the

Fourier representation shows superior performance on a series of probabilistic

inference challenge instances.
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Dimensionality Reduction with Combinatorial Constraints

Motivated by an application in materials discovery with complex physical con-

straints, we work on decomposing signals in a high-dimensional space into a

linear combination of a few basis patterns, subject to additional physical rules.

The decomposed signals are used to interpret the crystal structures of new ma-

terials.

We first encountered the phase map identification problem as part of our

computational sustainability effort to address pressing problems in renewable

energy. Collaborating with materials scientists, we made significant progress

in this domain. We first model the phase map identification problem using a

constraint reasoning approach (Ermon, Le Bras, Gomes, Selman, & van Dover,

2012). In (Le Bras, Xue, Bernstein, Gomes, & Selman, 2014), we demonstrate

how human computation and crowdsourcing can speed up pattern decompo-

sition with complex combinatorial constraints, by identifying key backdoor in-

formation.

I will introduce a novel way to boost dimensionality reduction solvers with

parallel problem-solving (Y. Xue, Ermon, Gomes, & Selman, 2015). In our ap-

proach, we use parallelism to exploit hidden structure of dimensionality re-

duction problems with combinatorial constraints. Our approach complements

divide-and-conquer and portfolio approaches to parallel problem-solving. In

our scheme, a set of parallel processes are first deployed to solve a series of

related subproblems. Next, the solutions to these subproblems are aggregated

to obtain an initial guess for a candidate solution to the original problem. The

aggregation is based on a key empirical observation that solutions to the sub-

problems, when properly aggregated, provide information about solutions for
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the original problem. Lastly, a global sequential solver searches for a solution

in an iterative deepening manner, starting from the promising portion of the

search space identified by the previous aggregation step.

We show that the solution time can be reduced drastically from days to min-

utes when we initialize a combinatorial solver with the backdoor information

discovered by parallel problem-solving. To show the broad impact of this ap-

proach, we also demonstrate the effectiveness of our parallel problem decom-

position on the set basis problem in combinatorial optimization.

1.3 Summary

In this thesis, I introduce a novel computational framework based on embed-

ding to tackle problems that are at the intersection of constraint-based reasoning

and machine learning, with high-dimensional and uncertain real-world appli-

cations. For multi-level inference problems beyond the NP complexity class,

I propose to embed approximations of the intractable sub-problems into the

global optimization task through a series of novel representations. As a result,

the entire multi-level inference problem can be approximated with guarantees

by a single optimization. I also apply the embedding technique to automated

reasoning and machine learning in order to achieve dimensionality reduction

in scientific discovery. I propose novel embeddings based on Fourier analysis

as a compact representation of high-dimensional probability distributions. For

each embedding strategy, I show that the resulting framework leads to a signif-

icant computational advance over previous methods. The increase in efficiency

makes a new range of applications feasible. My research was motivated by
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key problems across multiple scientific domains, focusing on developing cross-

cutting computational methods in the areas of computational sustainability and

scientific discovery. Results in this thesis have been reported in the following

peer-reviewed publications:

1. Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Long-

pre, L., Suram, S. K., van Dover, R. B., Gregoire, J., Gomes, C. P. (2017).

Phase-mapper: An AI platform to accelerate high throughput materials

discovery. In Proceedings of the 29th Annual Conference on Innovative Appli-

cations of Artificial Intelligence (IAAI); IAAI Innovation Application Award.

2. Wu, X.∗, Xue, Y.∗, Selman, B., Gomes, C. P. (2017). XOR-sampling for net-

work design with correlated stochastic events. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelligence (IJCAI). ∗equal

contributions.

3. Xue, Y., Wu, X., Morin, D., Dilkina, B., Fuller, A., Royle, J. A., Gomes,

C. P. (2017). Dynamic optimization of landscape connectivity embedding

spatial-capture-recapture information. In Proceedings of the 31th AAAI Con-

ference on Artificial Intelligence (AAAI).

4. Bai, J., Bjorck, J., Xue, Y., Suram, S. K., Gregoire, J., Gomes, C. P. (2017). Re-

laxation methods for constrained matrix factorization problems: Solving

the phase mapping problem in materials discovery. In Proceedings of the

14th International Conference on Integration of Artificial Intelligence and Oper-

ations Research Techniques in Constraint Programming (CPAIOR).

5. Xue, Y., Li, Z., Ermon, S., Gomes, C. P., Selman, B. (2016). Solving marginal

map problems with NP oracles and parity constraints. In Proceedings of the

29th Annual Conference on Neural Information Processing Systems (NIPS).
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6. Xue, Y., Davies, I., Fink, D., Wood, C., Gomes, C. P. (2016a). Avicaching: A
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tification in two-stage games for incentivizing citizen science exploration.

In Proceedings of the 22nd International Conference on Principles and Practice

of Constraint Programming (CP).

8. Xue, Y., Ermon, S., Bras, R. L., Gomes, C. P., Selman, B. (2016). Variable

elimination in the Fourier domain. In Proceedings of the 33nd International

Conference on Machine Learning (ICML).
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phase mapping with AgileFD and its application to light absorber discov-

ery in the V–MN–NB oxide system. In American Chemical Society Combina-

torial Science; Editors Choice and Cover Story.

10. Xue, Y., Ermon, S., Gomes, C. P., Selman, B. (2015). Uncovering hidden

structure through parallel problem decomposition for the set basis prob-

lem: Application to materials discovery. In Proceedings of the Twenty-fourth

International Joint Conference on Artificial Intelligence (IJCAI).
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man computation framework for boosting combinatorial solvers. In Pro-

ceedings of the Second AAAI Conference on Human Computation and Crowd-

sourcing (HCOMP).
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CHAPTER 2

EMBEDDING FOR MULTI-STAGE INFERENCE BEYOND NP

Many problems at the intersection of machine learning, optimization, and

decision-making have intractable sub-problems embedded in the global opti-

mization problem, leading to highly intractable multi-stage inference problems.

Multi-stage inference problems often arise in a multi-agent setting, in which

the optimal strategy of any given agent depends on those of others. Hence, the

optimal decision of the given agent has to take into account of other agents. For

example, in the following two-stage game, both Alice and Bob are optimizing

their objective functions, subject to their own constraints.

(Alice) maximize x U(x, y),

subject to Ca(x),

(Bob) y = argmax y V (x, y),

subject to Cb(y).

(2.1)

Here, x and y are Alice and Bob’s actions, respectively. U(x, y) and V (x, y) are

Alice’s and Bob’s objective functions, both of which depend on their joint ac-

tions. Ca(x) and Cb(x) are their personal constraints.

Multi-agent games often lead to highly intractable problems whose com-

plexity lies beyond NP. For example, we can reduce a Σp
2-complete problem to

the aforementioned two-stage game in Equation. 2.1.

Theorem 2.0.1. Assuming that U(x, y) and V (x, y) can encode arbitrary Boolean

functions, then the two-stage game in (2.1) is Σp
2-hard1.

1Under restrictive cases whereU(x, y) and V (x, y) are boolean functions with binary outputs,
Ca(x) and Cb(y) are boolean constraints, we can prove that the decision version of the two-stage
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Here, Σp
2 denotes the complexity class of the second-level polynomial hierar-

chy. We prove Theorem 2.0.1 with a reduction from the following Σp
2-complete

problem, which is to decide the truth of the following logic statement:

∃x ∈ {0, 1}m ∀y ∈ {0, 1}n, F (x, y) = 1. (2.2)

Here x and y represent two sets of disjoint binary variables. F (x, y) :

{0, 1}m+n → {0, 1} is a Boolean function with binary variables as both its in-

put and output.

Proof. (Theorem 2.0.1) Suppose we have an oracle to solve an arbitrary two-

stage game as in Equation 2.1, then we can set U(x, y) = F (x, y) and V (x, y) =

−F (x, y). Constraint sets Ca(x) and Cb(y) are both set to be empty. Suppose

statement (2.2) is true, then Alice can find an x such that F (x, y) evaluates to

1, regardless of what Bob chooses. Hence, V (x, y) is 1 in the optimal play of

the two-stage game in (2.1). Conversely, if statement (2.2) is false, then for all x

played by Alice, Bob is able to find a y such that F (x, y) evaluates to 0. Hence,

V (x, y) is 0 in the optimal play of the two-stage game in (2.1). In summary, the

truth value of (2.2) is equivalent to deciding if V (x, y) is 1 in the optimal play of

the two-stage game (2.1).

Multi-stage inference problems also arise in stochastic optimization, which

encompasses a wide variety of applications in financial engineering, optimal

control, computer vision, and conservation planning. The goal of stochastic

optimization is to find the best policy interventions that maximize a stochastic

game in (2.1) is in Σp
2, therefore it is Σp

2-complete. Notice that the difference between the two-
stage game and the classical Nash Equilibrium setting is that Alice commits to a strategy first,
anticipating all possible actions of Bob.
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outcome. In mathematical language, such problem becomes

max
a∈A

Ex f(x, a). (2.3)

In other words, we would like to search for the optimal assignment to vari-

ables a, such that the expectation of function f is maximized. The complexity of

stochastic optimization problems in general lies beyond NP, because it requires

to solve a counting sub-problem2 to compute the expectation.

The challenge of tackling highly intractable problems beyond the NP is often

due to the intractable sub-problems embedded in the global problem. For exam-

ple, the reasoning process of other agents serve as the intractable subproblems

in the two stage game in (2.1). The expectation computation is the intractable

subproblem in the case of stochastic optimization (2.3).

To solve these highly intractable problems, I propose a novel computational

framework to embed approximations of the intractable sub-problems through a series

of novel representations into the global optimization task. As a result, the whole

problem can be approximated with guarantees by a single optimization problem that

can be solved by an off-the-shelf optimization package. This approach is general

and can be applied in different contexts.

For example, to solve the two-stage game (2.1), we embed (an approxima-

tion of) the agents’ intractable sub-problems into the global problem. The core

idea is to approximate the agents’ reasoning process with a tractable algorithm.

We then compile this algorithm into a declarative encoding as a set of linear

constraints. The compilation process mimics the execution of the approxima-

tion algorithm, introducing one constraint for each operation. After obtaining
2A counting problem is to count the number of solutions to an NP-complete problem. Prob-

abilistic inference tasks, such as computing marginals and expectations, can be formulated as
special cases of counting problems.
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the declarative representation in the form of linear constraints, we embed them

into the two-stage game, collapsing the entire problem as a single optimization.

In the first part of this section, we illustrate this idea with an example of

solving a real two-stage game called Avicaching to reduce the data bias problem

in citizen science domain. In the Avicaching game, the organizer, which cor-

responds to experts who can influence the citizen science program, uses addi-

tional bonus points to stimulate agents towards undersampled locations, where

observational data is needed the most for statistical modeling. The optimal re-

ward allocation problem is to determine how many bonus points that the or-

ganizer should allocate for each location in order to motivate the agents to go

to undersampled locations the most effectively. We show that the Avicaching

game can be encoded exactly as a two-stage game in (2.1), where the optimal

reward allocation can be computed using the embedding technique. We further

demonstrate the effectiveness of our reward allocation by deploying it to eBird,

a well-known citizen science program. We show that our AI-based reward al-

location is highly effective, surpassing the expectations of eBird organizers and

conservation scientists.

Highly intractable stochastic optimization problems can be also solved using

the embedding technique. In this case, we represent the intractable expectation

operation as queries to optimization problems with additional XOR constraints,

which in turn can be embedded into the global optimization task. As a result, we

effectively collapse a two-stage stochastic optimization problem to a single joint

inference of polynomial size of the original problem, and obtain a constant factor

approximation guarantee.

In the second part of this section, We discuss methodologies using the em-
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bedding technique to solve stochastic optimization problems, with applications

in probabilistic inference, deep learning, and network design.
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Figure 2.1: Highly biased distribution of eBird observations until 2014.
(Left) continental US (Right) Zoom in Midwest US. Submis-
sions coincide with urban areas.

2.1 Embedding for Bias Reduction in Citizen Science

Over the past decade, along with the emergence of the big data era, the data col-

lection process for scientific discovery has evolved dramatically. One effective

way of collecting large datasets is to engage the public through citizen science

projects, such as Zooniverse, Cicada Hunt and eBird (Lintott, Schawinski, Slosar, et

al., 2008; Zilli, Parson, Merrett, & Rogers, 2014; Sullivan et al., 2014). The success

of these projects relies on the ability to tap into the intrinsic motivations of the

volunteers to make participation enjoyable (Bonney et al., 2009). Thus in order

to engage large groups of participants, citizen science projects often have few re-

strictions, leaving many decisions about where, when, and how to collect data

up to the participants. As a result, the data collected by volunteers are often

biased, more aligned with their preferences, rather than providing systematic

observations across various experimental settings. Moreover, since participants

volunteer their effort, personal convenience is an important factor that often

determines how data are collected. For spatial data, this means more searches

occur in areas close to urban areas and roads (Fig. 2.1).
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We provide a general methodology to mitigate the data bias problem, as a

two-stage game in which the game organizer, e.g., a citizen-science program,

provides incentives to the agents, the citizen scientists, to perform more crucial

scientific tasks. We apply it to eBird, a well-established citizen-science program

for collecting bird observations, as a game called Avicaching.

Our proposed two-stage game is related to the Principal-Agent framework,

originally studied in economics (Shavell, 1979), and more recently in computer

science (Aggarwal, Feder, Motwani, & Zhu, 2004; Guruswami et al., 2005; En-

driss, Kraus, Lang, & Wooldridge, 2011), and to the Stackelberg games (Conitzer

& Sandholm, 2006; Conitzer & Garera, 2006; Paruchuri et al., 2008; Fang, Stone,

& Tambe, 2015), which also involves e.g., a principal or a leader and agents or fol-

lowers. These games have been studied under different assumptions regarding

the agents’ preferences and computational abilities (Hartline & Koltun, 2005;

Briest, Hoefer, Gualà, & Ventre, 2009). In crowdsourcing, there has been related

work on mechanisms to improve the crowd performance (Radanovic & Falt-

ings, 2015; Li et al., 2015; Jain, Chen, & Parkes, 2014; Kawajiri, Shimosaka, &

Kashima, 2014; Singla et al., 2015; Minder, Seuken, Bernstein, & Zollinger, 2012;

Tran-Thanh, Huynh, Rosenfeld, Ramchurn, & Jennings, 2015; Bragg, Mausam,

& Weld, 2013). Notable works include using incentives to promote exploration

activities (Frazier, Kempe, Kleinberg, & Kleinberg, 2014), and steering user par-

ticipation with badges (Anderson, Huttenlocher, Kleinberg, & Leskovec, 2013).

(Singer & Mittal, 2013; Chen, Lin, & Zhou, 2013; Cai, Daskalakis, & Papadim-

itriou, 2014) discuss the optimal reward allocation to reduce the empirical risk

of machine learning models.

In our two-stage game setting, the agents are citizen scientists maximizing
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their intrinsic utilities, as well as the incentives distributed by the game orga-

nizer, subject to a budget constraint. The organizer corresponds to an organi-

zation with notable influence on the citizen scientists. The organizer factors in

the reasoning process of the citizen scientists to optimize an incentive scheme.

In our setting, the game organizer’s goal is to optimize an incentive scheme in

order to induce a uniform data collection process.

We considered several models both for the organizer and the agents. Herein

we present a model in which the organizer explicitly models each agent’s

choice as a knapsack problem. We refer to this two-stage game as the Opti-

mal Incentives for Knapsack Agents (OptIKA) game. In a follow-up work, we

provide an alternative agent behavior model based on the discrete choice model

in behavioral economics (Y. Xue, Davies, et al., 2016b), which can be solved with

similar embedding techniques as presented here.

We provide several novel algorithms to solve the OptIKA game. In partic-

ular, we propose a novel embedding technique to convert the two-stage game

into a single optimization problem by embedding (an approximation of) the

agents’ problems into the organizer’s problem. The core idea is to approximate

the agents’ reasoning process with a tractable algorithm. We then compile this

algorithm as a set of linear constraints. The compilation process mimics exactly

the execution of the algorithm, introducing one constraint for each operation.

After obtaining all the linear constraints, we embed them in the bi-level opti-

mization, collapsing the entire problem to a single optimization.

We consider (1) different objectives for the organizer, corresponding to dif-

ferent measures of data uniformity using Mixed Integer Programming and Mixed

Integer Quadratic Programming formulations. We also consider (2) different lev-
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els of rationality for the agents, which result in different approaches to fold the

agents’ knapsack problems into the organizer’s problem. For the scenario in

which the agents have unbounded rationality, we developed an iterative, row

generation method, given the exponential number of constraints induced by

agents’ knapsack problems. We also consider two scenarios in which the agents

have bounded rationality: one in which the agents use a greedy heuristic and

another one based on a dynamic programming (DP), polynomial time approxi-

mation scheme for the knapsack problem. For (3) scalability, we use the Taylor

expansion of the L2-norm and develop a novel approach based on the Alter-

nating Direction Method of Multipliers. (4) We propose a novel structural SVM

framework to solve the so-called identification problem, which learns agents’

behaviors under different incentive schemes.

We applied our methodology to eBird as a game called Avicaching, deploy-

ing it as a pilot study in two New York counties. Since the inception in March

2015, 19% of the eBird observations in our pilot counties shifted from traditional

locations to Avicaching locations with no previous observations. Our field re-

sults show that our Avicaching incentives are remarkably effective at encour-

aging the bird watchers to explore under-sampled areas and hence it allevi-

ates the data bias problem in eBird. We also showed that under our Avicaching

scheme, agents can cover the area more uniformly, which leads to higher per-

formance on a predictive model for bird occurrence than the no-incentive case,

with the same amount of effort devoted. Our methodology is general and can be

applied to other citizen science applications as well as similar scenarios, beyond

citizen science.
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2.1.1 Problem Formulation

We consider the setting in which citizen scientists are encouraged to conduct

scientific surveys. For example in eBird, bird watchers survey a given area, and

record all the interesting species observed in that area. This setting can be gen-

eralized to other scientific exploration activities. The general formulation of the

two-stage game is:

(Organizer) maximize r Uo(v, r),

subject to Bo(r),

(Agents) v = argmax v Ua(v, r),

subject to Ba(v),

(2.4)

where r is the external reward that the organizer (e.g., a citizen science program)

uses to steer the agents (e.g., citizen scientists), and v are the reactions from the

agents, which is the result of optimizing their own utilities. Uo(v, r) and Ua(v, r)

are the utility functions of the organizer and agents, respectively, and Bo(r) and

Ba(v) are their respective budget constraints.

The Organizer’s Objective is to promote a balanced exploration activ-

ity, which corresponds to sending people to under-sampled areas. Let L =

{l1, l2, . . . , ln} be the set of locations, and X0,i the number of historical visits at

location li at the beginning of a time period T . Suppose there are m citizen sci-

entists b1, b2, . . . , bm. During time period T , each citizen scientist bj chooses a set

Lj ⊆ L of locations to explore. At the end of time period T , location i received a

net amount of visits Vi = |{li ∈ Lj : j = 1, . . . ,m}| and its total number Yi of vis-

its corresponds to Yi = X0,i+Vi. We denote by Y the column vector (Y1, . . . , Yn)T

and by Y the constant column vector (Y , . . . , Y )T where Y = 1
n

∑n
i=1 Yi. As the

organizer aims to promote a more uniform sampling effort among different lo-

24



cations, this objective can be expressed as the reduction Dp = 1
n
||Y−Y||pp of the

difference between Y and Y. Given this definition, D1 corresponds to the mean

absolute deviation, while D2 corresponds to the sample variance. Other objectives

could be used, e.g., maximizing the entropy of the sample distribution in order

to minimize the distance to a uniform distribution.3

The Agents’ Model – Each agent is maximizing her own utility subject to

her budget constraint. Namely, if a citizen scientist bj chooses to visit location

li, she will receive an intrinsic utility uj,i, at a cost cj,i. We assume that agent bj

has a given budget Cj , so the total cost of all the places explored by bj cannot

exceed Cj .

To incentivize citizen scientists to visit undersampled areas, the organizer

introduces an extra incentive ri for each location li. Every citizen scientist visit-

ing location li receives an extra reward ri, besides their internal utility uj,i. For

the sake of fairness, we require that these rewards only vary across locations

and are the same for all agents. In addition, to make it easier to communi-

cate with the agents, we assume that all rewards come from a fixed discrete set:

ri ∈ R = {r∗1, . . . , r∗k}. Taking into account intrinsic utilities, external rewards

and the budget constraint, the citizen scientist bj’s planning problem becomes:

maximize
Lj⊆L

∑
li∈Lj

uj,i + wr · ri,

subject to
∑
li∈Lj

cj,i ≤ Cj.

(2.5)

In this formulation, uj,i is the intrinsic utility, ri is the external reward, wr is the

relative importance ratio between the intrinsic utilities and the external rewards,

3Note: uncertainty measures, often used in active learning (Settles, 2010), are typically tied to
a particular predictive model and therefore do not serve our goal of meeting multiple scientific
objectives with balanced sampling. We cannot commit to improving one particular predictive
model.
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cj,i is the cost, and Cj is the total budget for an agent. Overall, combining the

organizer’s goal and the agents’ models, the pricing problem of the Optimal

Incentives for Knapsack Agents (OptIKA) game is:

(OptIKA) minimize
r

1

n
||Y −Y||pp

subject to Lj = argmax
Lj⊆L

∑
i∈Lj

uj,i + wr · ri,

∑
li∈Lj

cj,i ≤ Cj, j ∈ {1, . . . ,m},

ri ∈ R, i ∈ {1, . . . , n}.

(2.6)

The Identification Problem Citizen scientists do not reveal their reward pref-

erences to the organizer directly. Instead, the organizer must infer the agents’

utility functions based on their response to different reward treatments. In our

application, the identification problem is to capture the values of uj,i and wr in

agents’ behavior model. The identification problem is related to Inverse Rein-

forcement Learning (Ng & Russell, 2000; Syed, Bowling, & Schapire, 2008; Hu

& Wellman, 1998), in which one also assumes that the agents are optimizing for

long-term rewards.

The Pricing Problem is to solve agents’ decision problem in Equation. 2.6 of de-

termining the optimal rewards to induce the desired behavior from the agents,

namely sending them to undersampled areas. The challenge in solving the pric-

ing problem is mainly that it is a two-stage game, in which has the agents’ deci-

sion problems embedded as sub-problems of the bi-level optimization.
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Figure 2.2: Illustration of the embedding idea to solve the pricing problem
of the Avicaching game.

2.1.2 Algorithms

Pricing Problem

Embedding Technique to Solve the Pricing Problem Our novel contribution

is to embed (an approximation of) the agents’ problems into the organizer’s

problem. The core idea is to approximate the agents’ reasoning process with

a tractable algorithm. We then compile this algorithm as a set of linear con-

straints. The compilation process mimics exactly the execution of the algorithm,

introducing one constraint for each operation. After obtaining all the linear con-

straints, we embed them in the bi-level optimization, collapsing the entire prob-

lem to a single optimization. The high-level idea is illustrated in Figure 2.2.

More specifically, we assume that agents use polynomial-time approxima-

tion schemes to solve the intractable sub-problems. In our case that the agents

solve knapsack problems, we assume they use dynamic programming or greedy
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algorithms to come up with near optimal plans. It is valid to assume that

agents in our game have bounded rationality. These polynomial approximation

schemes are in procedural form, which cannot be embed directly into the bi-level

optimization problem. We therefore compile these polynomial approximation

schemes from to a declarative form, by mimicking their execution (detailed be-

low). The compilation process allows us to transform agents’ decision process

into a set of mixed-integer linear constraints, which then can be embedded into

the bi-level optimization problem.

Embedding for Dynamic Programming Agents Suppose citizen scientist

bj solves knapsack problems using a dynamic algorithm up to certain preci-

sion. We first discretize the budget Cj into Nb equal-sized units. Let Dj =

{kCj/Nb|k = 0, . . . , Nb} be the set of all discrete units. We further round the

cost cj,i to its nearest discrete unit from above in Dj . We introduce extra vari-

ables opt(j, i, c), for i ∈ {1, . . . , n} and c ∈ Dj , to denote the optimal utility for

agent bj if we only consider the first i locations l1, . . . , li and the total cost cannot

exceed c. Consider the Dynamic Programming recursion to solve the Knapsack

Problem:

opt(j, i, c) =



max{opt(j, i− 1, c− cj,i) + uj,i + wr · ri,

opt(j, i− 1, c)}, if i > 1, c ≥ cj,i,

opt(j, i− 1, c), if i > 1, c < cj,i,

0, otherwise.

(2.7)

The key insight is that this recursion can be translated as a set of linear inequal-

ities. As an example, when i > 1 and c ≥ cj,i, the recursion can be encoded
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as,

opt(j, i, c) ≥ opt(j, i− 1, c), (2.8)

opt(j, i, c) ≥ opt(j, i− 1, c− cj,i) + uj,i + wr · ri. (2.9)

There are similar inequalities to capture other cases in Equation 2.7. Denote

uknapDj
as the optimal utility for solving the knapsack problem for citizen scientist

bj . We must have uknapDj
≥ opt(j, n, c), for all c ∈ Dj . Let vj,i be a binary variable,

which is 1 if and only if li ∈ Lj . Using vector representations, we set vj =

(vj,1, . . . , vj,n)T , uj = (uj,1, . . . , uj,n)T , cj = (cj,1, cj,2, . . . , cj,n)T , r = (r1, . . . , rn)T ,

s = (s1, . . . , sn)T . In summary, agent bj’s knapsack problem can be encoded as:

(uj + wr · r)T · vj ≥ uknapDj
, (2.10)

cTj · vj ≤ Cj and uknapDj
≥ opt(j, n, c), ∀c ∈ Dj,

Here, opt(j, n, c) is encoded by linear inequalities similar to the ones in Equa-

tions 2.8 and 2.9. There is a multiplication in Equation 2.10. We use a big-M

notation to linearize this inequality.

If we bound Nb, this encoding introduces O(mnNb) extra variables and

O(mnNb) extra constraints. Notice that this encoding can be combined with the

row generation approach. We can first solve the problem under limited preci-

sion using this dynamic programming encoding, then further refine the solution

using the row generation approach.

Embedding for Greedy Agents Suppose each agent follows a simple greedy

heuristic: first, rank all the locations based on their efficiency, i.e. the ratio be-

tween the utility (including the external reward) and the cost; then greedily

select locations with the highest efficiency, without exceeding the budget limit.
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This simple heuristic is a 2-approximation for the Knapsack problem, and works

well in practice. Define ψj,i = (wr · ri + uj,i)/cj,i as the efficiency of location li

according to agent bj . Our formulation is based on the following theorem:

Theorem 2.1.1. Assume for all i 6= i′, ψj,i 6= ψj,i′
4, then {vj,1, . . . , vj,n} is a decision

made by the greedy algorithm if and only if the following two constraints hold:

vj,i = 0⇒ cj,i > Cj −
∑
i′ 6=i

vj,i′cj,i′1 (ψj,i′ ≥ ψj,i) , (2.11)

for all i ∈ 1, .., n, and
∑n

i=1 cj,i · vj,i ≤ Cj .

In this theorem, 1 (ψj,i′ ≥ ψj,i) is an indicator variable, which is one if and

only if ψj,i′ ≥ ψj,i. Theorem 2.1.1 translates the greedy process into a set of

constraints. The intuitive meaning of inequality (2.11) says that if location li

is not in the knapsack (vj,i = 0), then it must be the case that some locations

with higher efficiency than li has already taken up its space. We can use big-M

notation to transform Inequality (2.11) into a set of linear constraints.

Modeling the Organizer’s Objective A first measure of sample uniformity

is the mean absolute deviation D1, which allows us to formulate the objec-

tive function as a MIP. For every location li, introduce a variable Zi such that

Zi ≥ |Yi − Y |. Overall, the organizer’s objective function can be captured as:

min
∑n

i=1 Zi, s.t. Zi ≥ Yi − Y , Zi ≥ Y − Yi. We refer to this formulation as

OptIKA-L1. A second formulation (OptIKA-L2) uses the L2-norm sample vari-

ance (D2). In this case, the organizer’s objective is quadratic, and hence the

entire problem becomes a Mixed Integer Quadratic Program (MIQP). As a third

option, we model the organizer’s objective using the Taylor approximation of

the sample variance (OptIKA-L2T), in which case the organizer’s problem trans-

lates into minimizing S =
∑n

i=1 siVi, where si = 2
n

(
X0,i −X0

)
. Notice that the

4In practice, efficiencies almost always differ when they are learned from data.
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MIP/ADMM

MIQP

Organizer’s 
Objective

Agents’ Rationality
Bounded

Full DP Greedy
L1-Norm OptIKA-L1-Full OptIKA-L1-DP OptIKA-L1-Greedy

L2-Norm OptIKA-L2-Full OptIKA-L2-DP OptIKA-L2-Greedy

L2-Taylor OptIKA-L2T-Full OptIKA-L2T-DP OptIKA-L2T-Greedy

Iterative Row Gen Single Constraint Programming instance

MIP

Figure 2.3: Two stage game scenarios and corresponding algorithms for
the pricing problem described in Section 2.1.2.

Stackelberg pricing games studied in (Guruswami et al., 2005) is a special case

of OptIKA in this form, therefore OptIKA is APX-hard.

Other Algorithms for the Pricing Problem Aside from making an assumption

that the agents solve their optimization problems using polynomial approxima-

tion schemes, we also developed a variety of algorithms to solve the pricing

problem, capturing different organizer’s objectives and agents’ computational

capabilities, as summarized in Fig. 2.3. More specifically, the computational ca-

pability of the agents impacts how one can embed the constraints of the agents

into the organizer’s problem. We consider in the previous section the case in

which agents have bounded rationality, whether the agent solves her knapsack

using a dynamic programming-based approach or in a greedy fashion. There the

polynomial number of linear constraints to consider can be encoded in a single

Constraint Programming instance. In this section, we further consider the case

in which the agent solves her knapsack problem optimally with full rationality.

We will see that it yields an exponential number of constraints to be handled by

the organizer, thus raising scalability issues and requiring an iterative approach

(see the Row Generation encoding below). Furthermore, in order to scale up with

the number of agents, we improve our approach with a decomposition method
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Algorithm 1: Row Generation-OptIKA-LX-Full
1 Φ← ∅;
2 OptimalF lag ← False;
3 while OptimalF lag = False do
4 (r†,v1†, . . . ,vm†)← Rowgen-Relax(Φ);
5 OptimalF lag ← True;
6 for j ∈ {1, . . . ,m} do
7 v∗j ← argmax (uj + wr · r†)T · vj,
8 subject to cTj · vj ≤ Cj ;
9 if (uj + wr · r†)T · v∗j > (uj + wr · r†)T · vj† then

10 Φ← Φ ∪ { (uj + wr · r)T · vj ≥ (uj + wr · r)T · v∗j };
11 OptimalF lag = False;
12 end
13 end
14 end

that decouples the agents’ optimization problems (see ADMM). Fig. 2.3 reports

all different algorithm variants in additional to the three organizer’s objective

functions that we considered in the previous section.

Row Generation Encoding We present the algorithm OptIKA-LX-Full, (where

X is either 1, 2 or 2T) in which we assume the agents have full rationality, and

their reasoning process is captured by an iterative row generation method. This

algorithm can be combined with any of the three organizer’s objectives.

The agents’ optimization problem can be transformed into an exponential

number of constraints of the type:

(uj + wr · r)T · vj ≥ (uj + wr · r)T · v′j, (2.12)

in which v′j ranges over all vectors in {0, 1}n, which satisfies cTj · v′j ≤ Cj , for all

j ∈ {1, . . . ,m}. The intuitive meaning of Inequality 2.12 is that the location set

that the agent chooses is better in terms of utility values than any other location

set within the budget constraint. We use Φ to denote a set of constraints of
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this form, and we write {v1, . . . ,vm} ∈ Φ to mean that v1, . . . ,vm satisfy all the

constraints in Φ.

We cannot add all the constraints upfront, as there are exponentially many

of them. Instead, we add them in an iterative manner until proving optimality.

The row generation scheme starts by solving a relaxation of the original pric-

ing problem: OptIKA-LX-Full-Relax(Φ), with a small initial constraint set Φ of

constraints as shown in Inequality 2.12:

OptIKA-LX-Full-Relax(Φ) : Min: (organizer’s obj) Dp or S,

s. t. cTj · vj ≤ Cj, j ∈ {1, ..,m},

{v1, . . . ,vm} ∈ Φ,

ri ∈ R, i ∈ {1, . . . , n}.

Then the algorithm seeks to enlarge the set Φ with new constraints of the form

in Inequality 2.12 to further improve the objective function. This step is done

by solving the Knapsack problem for each agent. If the current response of one

agent bj is not the optimal response to the Knapsack problem, then it implies

that at least one constraint of the form shown in Inequality 2.12 is violated. We

then add in the constraint into Φ and solve again. The whole algorithm iter-

ates until no new constraints can be added to Φ, at which point we can prove

optimality. The algorithm is shown as Algorithm 1.

There is one last subtlety: the Inequality (2.12) is not a linear one, because

both r and vj are variables. To linearize it, we bring in an extra variable urj,i,

and we add constraints to ensure that urj,i is always equal to vj,i · (uj,i + wr · ri).
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The constraints needed are:

urj,i ≥ 0,

urj,i ≤ uj,i + wr · ri,

vj,i = 0⇒ urj,i ≤ 0, (2.13)

In this case, Inequality (2.12) can be rewritten as
∑n

i=1 urj,i ≥ (uj + wr · r)T · v′j .

Eq. (2.13) is an indicator constraint, which can be linearized with the big-M

formulation (Chvatal, 1983).

Scaling to Many Agents with ADMM In order to model a large number

of citizen scientists, the pricing algorithm needs to be able to scale. To that

end, we develop OptIKA-L2T-ADMM, harnessing a variant of the Alternating Di-

rection Method of Multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011;

Martins, Figueiredo, Aguiar, Smith, & Xing, 2011). This approach decomposes

the global problem of designing the rewards for all agents to a series of sub-

problems, each of which designs the optimal rewards for one agent. Then the

algorithm matches the local rewards for all agents using an iterative approach.

To the best of our knowledge, this is the first time that a decomposition based

method is introduced to solve the optimal pricing problem. Because ADMM re-

quires a decomposable objective function, this variant only applies to the third

organizer’s objective function that uses the Taylor expansion (OptIKA-L2T). We

introduce a local copy of the reward vector for each agent bj : rj = (rj,1, . . . , rj,n)T ,

and we rewrite the global problem as:

min S =
m∑
j=1

sT · vj,

s.t. (rj,vj) ∈ Σj, rj = r, ∀j ∈ {1, . . . ,m}.

In this formulation, we use (rj,vj) ∈ Σj to mean that vj is optimal for agent bj
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given rewards rj :

(rj,vj) ∈ Σj ⇐⇒ rj,i ∈ R, ∀i ∈ {1, . . . , n},

vj = argmax (uj + wr · rj)T · vj,

s.t. cTj · vj ≤ Cj.

Our variant of the ADMM can be derived via the Augmented Lagrangian:

Lρ =
m∑
j=1

sT · vj + λTj · (rj − r) + (ρ/2)||rj − r||22.

in which λj’s are Lagrangian multipliers, ρ > 0 is the penalty parameter. Our

variant starts with an initial r0
j , v0

j , λ
0
j and r0, and updates the Lagrangian in

an alternating manner for T steps. At the k-th step, (vk+1
j , rk+1

j ) and rk+1 are

obtained by minimizing Lρ(.) w.r.t. (vj, rj) and r, respectively. λk+1
j is updated

by taking a subgradient step in the dual. The updates of OptIKA-L2T-ADMM are:

(vk+1
j , rk+1

j ) =argmin(vj ,rj)∈Σj
sTvj + λkTj (rj − rk)

+ (ρ/2)||rj − rk||22, (2.14)

rk+1 =
1

m

m∑
j=1

(1/ρ)λkj + rk+1
j , (2.15)

λk+1
j =λkj + ρ(rk+1

j − rk+1). (2.16)

The difference of our variant with classical ADMM is that we impose extra con-

straints (vj, rj) ∈ Σj in the first optimization step in Equation 2.14. This makes it

computationally hard. In practice, we solve it via MIP, using the three encodings

as described above.5 However, the benefit of this algorithm is that the optimiza-

tion problem for agent bj is localized: it only involves variables and constraints

for agent bj herself, which represents a significant improvement over the previ-

ous algorithms, in which we need to consider all m agents all together in one

encoding.
5In the case of OptIKA-L2T-DP (or greedy), Σj is then a relaxed constraint set, which only

has constraints specified by the dynamic programming (or greedy) encoding. We use a big-M
notation to handle the quadratic term ||rj − rk||22.
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ADMM allows us to derive a series of interesting properties about the ob-

tained solution. The Lagrange dual function g({λj}) is defined as:

g({λj}) = infr,vj ,rj :(vj ,rj)∈Σj
Lρ ({rj}, {vj}, {λj}, r) .

We can view OptIKA-L2T-ADMM as an alternating direction descend algorithm try-

ing to find the optimum of the optimization problem max{λj} g({λj}).We have

the following theorectic results:

Theorem 2.1.2. (Weak Duality) The optimal objective value to the problem

max{λj} g({λj}) is a lower bound on the optimal value of the global problem (OptIKA).

Theorem 2.1.3. g({λj}) is concave for {λj|j = 1 . . .m}.

Theorem 2.1.4. If OptIKA-L2T-ADMM converges, then r1, .., rm and r all converge to

the same vector.

Identification Problem

In practice, parameters governing agents’ preferences, such as uj , wr, are un-

known to us. The identification problem therefore is to learn these parameters

by observing agents’ reactions under different reward schemes. In our setting,

we use road distance as cost cj,i (which is the main factor for accessibility) and

we learn each agent’s budget Cj from the historical mean. The variables left

to estimate are the intrinsic utilities uj,i and the elasticity of external rewards

wr. We further assume that the intrinsic utility uj,i is parameterized by a set

of features: uj,i = wT
u · fj,i, in which fj,i includes both personal features re-

lated to agent bj and environmental features related to location i. We assume

agents are rational, therefore, their choices should always maximize the over-

all utility. In other words, suppose one agent chooses location set Lj , then

36



∑
i∈Lj

wT
u · fj,i + wr · ri ≥

∑
i∈L′ w

T
u · fj,i + wr · ri, holds for any other set of loca-

tions L′, when the total distance to reach all locations in L′ is within the budget.

The identification problem then corresponds to finding (wu, wr) to satisfy all in-

equalities of this type. Because of the trivial solution wu = 0, wr = 0, we aim to

maximize the margin:

Min ||wu||2 + w2
r ,

s.t.
∑
i∈Lj

wT
u · fj,i + wr · ri ≥

∑
i∈L′

wT
u · fj,i + wr · ri+

Φ(Lj, L
′), ∀L′ :

∑
i∈L′

cj,i ≤ Cj. (2.17)

Here Φ(Lj, L
′) is a loss function, which applies different levels of penalties to

location set L′, depending on how similar L′ and Lj are. We choose Φ(Lj, L
′) =

|Lj \ L′| + |L′ \ Lj| in the experiment. In practice, not all constraints shown in

Equation 2.17 can be satisfied. Therefore, we introduce linear slack variables,

and the whole identification problem becomes:

Min ||wu||2 + w2
r + C

m∑
j=1

ξj,

s.t.
∑
i∈Lj

wT
u · fj,i + wr · ri ≥

∑
i∈L′

wT
u · fj,i + wr · ri+

Φ(Lj, L
′)− ξj, ∀L′ :

∑
i∈L′

cj,i ≤ Cj. (2.18)

This is a novel application of structural SVM (Tsochantaridis, Joachims, Hof-

mann, & Altun, 2005). As another contribution, we developed a modified

delayed constraint generation approach to solve the optimization problem as

shown in Equation 2.18, which involves solving knapsack-type problems for

both the prediction and the separation problem within the structural SVM.
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Figure 2.4: Comparison between OptIKA-L2T-Full and OptIKA-L2T-DP.
(blue) Improvement of the objective function for OptIKA-L2T-
Full over time. (red) Approximate solution value found by
OptIKA-L2T-DP from solving a single MIP (very close to opti-
mal, and much faster).

Method Red. δr

OptIKA-L2-Full 44% 0
OptIKA-L2-DP(50) 41% 1.36
OptIKA-L2-DP(100) 42% 1.13
OptIKA-L2-Greedy 41% 1.30

Method δr

OptIKA-L2-Full 0
OptIKA-L1-Full 1.20
OptIKA-L2T-Full 0.74

Table 2.1: (Left) Comparison of different agents’ rationality level. Red. is the L2-
norm reduction w.r.t. the non-incentive case, while δr is the average
hamming distance of the reward vector w.r.t. the Full-rational case.
(Right) Comparison of different organizer’s objectives, where δr is the
average hamming dist. of the reward vector w.r.t. the L2 case.

2.1.3 Experiments

Algorithm Performance

We first compare algorithms assuming different levels of rationalities for the

organizer and agents, on synthetically generated benchmarks, in which the ini-

tial number of visits X0,i is drawn from a geometric distribution in order to

introduce some spatial bias, and other variables are drawn from uniform distri-

butions. All the experiments are run using IBM CPLEX 12.6, on machines with

a 12-core Intel x5690 3.46GHz CPU, and 48GB of memory. We implement the

distributed version of the ADMM-based algorithms with 12 cores, in which each

agent problem is allocated to one core.

38



Comparing Organizer’s Objectives & Agents’ Rationality Levels: We test

our algorithms with 300 synthetic benchmarks. We fix the organizer’s goal (L2-

norm), and consider the case where agents are planning with different levels of

rationality. The left panel of Table 2.1 reports the reduction in terms of the or-

ganizer’s objective, and the mean hamming distance of the reward vectors ob-

tained (i.e. the total number of locations in which the two reward vectors differ).

Regarding the solution quality, the performance of the different approaches is

similar in terms of the reduction in L2 and, while these approaches recommend

5 locations with positive rewards in the median case, the hamming distance be-

tween the reward vectors is barely more than 1. This suggests that the different

models for the agents yield very similar results.

On the other hand, they largely differ in terms of computational complex-

ity. When assuming full rationality of the agents, the row generation approach

needs to solve multiple CPLEX instances iteratively. Fig. 2.4 depicts the run-

ning time for OptIKA-L2T-Full for one instance, compared with OptIKA-L2T-DP.

As we can see, it takes the row generation algorithm a very long time to prove

optimality, while OptIKA-L2T-DP finds a solution, close to optimal, and it is much

faster. For a set of instances with 10 locations and up to 10 agents, the median

completion time for the Full case is 1, 251 seconds, while it corresponds to 80,

93 and 38 seconds for the single MIP in the DP case with Nb = 50, Nb = 100 and

in the Greedy case, respectively.

Second, we study the impact of choosing different organizer’s objectives. As

shown in the right panel of Table 2.1, the difference in terms of the solution

quality is again very small. However, the running times vary significantly. The

median completion times are 1, 251, 11 and 10 seconds for L2, L1 and L2T objec-
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Figure 2.5: (Left) The mean variance and the relative error of OptIKA-ADMM-
L2T-DP vs. iteration on small instances. (Right) Mean vari-
ance vs. iteration on a real eBird instance with 3,000 observers.
ADMM converges very quickly.

tives, respectively.

Convergence of ADMM: In order to measure how fast OptIKA-ADMM-L2T-DP con-

verges, we first run OptIKA-ADMM-L2T-DP for a set of small benchmarks with 20

or 30 agents and 20 locations. Although OptIKA-ADMM-L2T-DP works for prob-

lems of much larger scale, we still experiment with small benchmarks in order

to compare it with non-decomposition based methods. In this experiment, the

ADMM algorithm allocates one subproblem per agent. Because the main goal is

to examine the decomposition method, each subproblem is solved by an OptIKA-

L2T-DP module, and we compare the result with another OptIKA-L2T-DP which

considers all agents at once. The two OptIKA-L2T-DP algorithms share a common

discretization. The ρ for OptIKA-ADMM-L2T-DP is selected to be 1.

The blue line (top curve) in the left plot of Fig. 2.5 shows the relative error in

the objective function as a function of the iteration number. The relative error is

defined as |Sdp − Sadmm|/|Sdp|, in which Sdp and Sadmm are the objective values

found by OptIKA-L2T-DP and OptIKA-ADMM-L2T-DP, respectively. The mean rela-

tive error is averaged among all benchmarks. As we can see, the error quickly

drops from 10% to about 2% in only 3 iterations. At the same time, the red line
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Figure 2.6: (Left) The change of spatial variance with and without incen-
tives in the simulation study. (Right) The change of Log-loss
to predict the occurrence of Horned Lark (with and without
incentives). Dashed line is the performance limit.

shows how quickly the local copies rj converge towards a common r. For one

benchmark, the variance is defined as: 1
nm

∑m
j=1 ||r−rj||2, in which r is the mean

of r1, . . . , rm. The mean variance is taken among all benchmarks. As we can see,

the variance drops to close to zero after 3 iterations.

Next we show the performance of OptIKA-ADMM-L2T-DP on an instance with

63 locations and 3,000 agents, which cannot be solved by non-decomposition

methods at all. The agents’ behavior parameters come from real eBird data. We

would like to emphasize that 3, 000 is enough for real use, since there are in total

2, 626 bird observers in New York State who submitted 3 or more observations

in the past 10 years. The right plot of Fig. 2.5 shows the mean variance w.r.t.

different iterations. Again we see that the local copies rj almost converge to a

common r in a few iterations.

Avicaching in eBird

eBird is a well-established citizen-science program for collecting bird obser-

vations. In its first years of existence, eBird mainly focused on appealing to

birders to help address science objectives. The participation rates were disap-
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Metric SVM-struct #Species Popularity
Percentage Loss 3.9% 10.6% 8.2%
Utility Percentile 2.3% 46.0% 20.3%

Environmental Diff 2.0 5.9 4.9

Table 2.2: The Structural SVM model outperforms two other models on
identifying people’s behavior (#Species: model based on esti-
mated species num; Popularity: model based on location popu-
larity).

Year norm D2

2015 0.010
2014 0.016
2013 0.018

Treatment norm D2

OptIKA 0.015
B1: Inv-correlate #visits 0.021

B2: Uniform-in-Avicache 0.017
Manual (Expert’s) 0.020

Table 2.3: (Left) Visits are more uniform (in normalized D2) from April to
August, 2015, when Avicaching is introduced, compared to pre-
vious years. (Right) Visits are more uniform under rewards de-
signed by OptIKA against baseline B1 which assigns rewards in-
versely correlates to the number of visits to locations, B2 which
assigns uniform rewards to all Avicaching locations, zero to oth-
ers, and manually designed rewards (average over weeks of
each treatment) in summer 2015.

pointing. After 3 years, in order to make participation more fun and engaging,

in the spirit of “friendly competition” and “cooperation”, eBird started provid-

ing tools to allow birders to track and rank their submissions (e.g., leaderboards

by region, number of species, and number of checklists). This approach resulted

in an exponential increase of submissions (Sullivan et al., 2014). Nevertheless,

like most citizen-science programs, eBird suffers from sampling bias. Birders

tend to visit locations aligned with their preferences, leading to gaps in remote

areas and areas perceived as uninteresting, as shown in Fig. 2.1.

In order to address this data bias, we gamified our methodology via a web-

based application called Avicaching, explaining to birders that the goal of Avi-

42



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 2.7: Heatmaps for the prediction of the White-throated Sparrow.
(Upper 4 figures) Models for April. (Lower 4 figures) Mod-
els for July. A model trained on small, only 5% of the original
data, but spatially uniform dataset (Grid, 2 in the leftmost col-
umn) has comparable accuracy with a model trained on the
whole, big dataset that experts consider close to the ground
truth (Complete, 2 in rightmost column), while other biased
datasets have lower accuracy (Urban, 2nd column, Random Sub-
sample, 3rd column).
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Figure 2.8: The number of eBird submissions in Tompkins and Cortland
County in New York State. The circle sizes represent the num-
ber of submissions in each location. (Left) from Mar 28 to Oct
31, 2014 before Avicaching. (Right) from Mar 28 to Oct 31, 2015
when Avicaching is in the field. 19% effort is shifted to under-
sampled Avicaching locations.

caching is to “increase eBird data density in habitats that are generally under-

represented by normal eBirding”. We deployed Avicaching as a pilot study

in Tompkins and Cortland counties, NY, starting in March 2015. Tompkins is

known for a high participation rate for eBird, while surprisingly, Cortland, a

county adjacent to Tompkins, receives much fewer observations. We identified
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a set of locations with no prior observations and defined them as Avicache loca-

tions: bird watchers receive extra avicache points for every checklist submitted

in those locations. The locations were selected around undercovered regions,

emphasizing on important yet undersampled land types. We also ensure that

all locations are publicly accessible. Avicache points have intrinsic values to bird

watchers, because these points mark their contribution to science. In addition,

participants have a chance to win a pair of binoculars from a lottery drawn

based on their avicache points.

Pricing and Agents’ Model We update the Avicaching points every week.

In the first few weeks, the allocation of points is manually assigned, based only

on the number of previous visits to locations. This phase is designed to col-

lect data to fit participants’ behavior model. After the initial phase, the points

are assigned by the pricing algorithm (OptIKA-L1-DP). We fit the agents’ model

using data from the two counties in 2015 (with Avicaching rewards), as well

as data from the same season in 2013 and 2014 (without rewards). The results

of the structural model are shown in Table 2.2, in which we predict the loca-

tion set that people will visit per week. We randomly split all the data into a

90% training set and a 10% test set. The scores shown in the table are eval-

uated on the separate test set. The first measure is the the percentage loss:

1
n
(|Lpred\Ltrue|+ |Ltrue\Lpred|), which is the difference between the predicted lo-

cation set with respect to the ground truth set. As shown in the table, the mean

percentage loss is merely 4%. This result is remarkably good, especially tak-

ing into account of the fact that we are modeling complex and noisy human

behaviors. We also look at how good our model is in terms of capturing peo-

ple’s rationality. Ideally, we would like to see that our model always ranks the

ground truth behavior the highest in terms of the utility score. Yet, this is impos-

44



sible, because human beings occasionally take suboptimal actions. In the utility

percentile row, we show the percentile of the ground truth actions in terms of the

utility scores among all valid actions. For example, the score 2.3% means that

on average the utility scores of the ground truth actions are ranked at top 2.3%

among all valid actions. Because the action set is big, we sample 10,000 location

sets per test point. The low rank indicates that people are indeed motivated by

the utilities defined in our model. Finally, the third row shows the difference

of the environmental variables (NLCD values (Homer et al., 2007), normalized)

between the predicted location set and the ground truth set. We compare our

learned model with two other models. One chooses the set of locations which

maximizes the estimated number of species (column #Species), and the other

maximizes the total popularity of locations (column Popularity). These are the

two main factors when planning a trip, according to expert opinions and birders’

surveys. In summary, our model is quite good at capturing agents’ preferences.

Field Results and Simulation We are delighted to see that people’s behav-

iors are changing with Avicaching. These results compared citizen scientists’

participation during the same period of time in the year 2015, when Avicaching

was in the field, and in the year of 2014, before the introduction of Avicaching.

Results include weeks during which OptIKA, which assumes that agents solve

knapsack problems as discussed in this thesis, were deployed, as well as weeks

during which the discrete choice behavior model of the followup work (Y. Xue,

Davies, et al., 2016b), were deployed.

1. Between Mar 28, 2015 and Aug 31, 2015, there have been 1,021 observa-

tions submitted from Avicaching locations, out of the 5,376 observations in

total for these two counties: 19% birding effort has shifted from tradi-
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tional locations to Avicaching locations, which received zero visits be-

fore. A few new birders also became more active, motivated by the Avi-

caching game.

2. In terms of locations, Cortland, an undersampled county, received only

128 observations from April to August in 2013 and 2014 combined. This

year during the same period of time, with Avicaching, it received 452 obser-

vations, over 3.5 times the total number of observations of the previous

2 years!

3. Serious bird watchers are motivated to participate in Avicaching. 14 out

of the Top 20 bird watchers in Tompkins and 15 out of the Top 20 bird

watchers in Cortland (ranked by the number of species discovered since

2015) participated in Avicaching. People who participated in Avicaching

submitted 64% of total observations in Tompkins and Cortland, from April

to August, 2015.

4. In terms of whether Avicaching is useful to motivate people to visit under-

sampled areas, we compare OptIKA against two baselines and a manually

designed scheme. To eliminate time effects, we ensure that the results

against baselines were all collected in summertime, with treatments inter-

leaved. All baselines and OptIKA were given two weeks time. The num-

bers of locations receiving each level of rewards were kept the same for

B1, OptIKA, and manual. The non-zero reward in B2 matches the mean

of other treatments. Table 2.3 shows the comparison on the normalized

D2 score, which is 1
n
||Y − Y||2/Y . The visits are more uniform in 2015,

when Avicaching is introduced. Moreover, OptIKA wins against baselines

in terms of uniformity. Figure 2.8 provides a visual confirmation on the

map. The success of Avicaching is the combination of the gamification
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and the algorithm. It is difficult to isolate the algorithm’s contribution,

because field implementation is time-consuming and we cannot afford to

alienate the community with drastic or complicated experiments. The Op-

tIKA algorithm is better in our experiment, but simpler algorithms may

also work, especially at a small scale. However, they are likely to perform

worse for new scenarios or over a large scale.

5. We further simulate, for a longer period, a set of virtual agents whose be-

haviors are learned from the real bird watchers. At the end of each round,

we fit a predictive model based on all the data virtually collected so far,

to see how much the species distribution model can be affected by agents’

shifts of exploration efforts. We use the collected data to predict the oc-

currence of the Horned Lark in Spring. The left plot of Fig. 2.6 illustrates

the sample variance D2 as a function of the number of iterations with and

without extra incentives. The right plot of Fig. 2.6 shows the Log-loss

of the fitted predictive model in the first few iterations. This simulation

shows that under the Avicaching scheme, agents cover the area more uni-

formly than the no-incentive case, which leads to higher performance on

a predictive model for bird occurrence, with the same amount of effort de-

voted.

Power of Uniform Sampling Finally, we also illustrate the benefit of incen-

tivizing people to sample areas uniformly, by comparing the performance of a

random forest classifier trained on four datasets, subsampled in different ways

from the real eBird dataset. In Fig. 2.7, we show that the predictive model fit on

a small, but spatially uniformly subsampled dataset is close to the ground truth,

and outperforms the model fit on biased datasets.
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2.1.4 Discussion

We introduced a methodology to improve the scientific quality of data collected

by citizen scientists, by providing incentives to shift their efforts to more crucial

scientific tasks. We formulated the problem of Optimal Incentives for Knapsack

Agents (OptIKA) as a two-stage game and provided novel algorithms on op-

timal reward design and on behavior modeling. Our algorithms are based on

a novel embedding idea to convert the two-stage game into a single optimiza-

tion problem by embedding (an approximation of) the agents’ problems into the

organizer’s problem.

In our follow-up work (Y. Xue, Davies, et al., 2016b), we develop a proba-

bilistic agent behavioral model that takes into account variable patterns of hu-

man behavior and suboptimal actions, adapting ideas from discrete choice mod-

eling in behavioral economics. By modeling deviations from baseline behavior,

we are able to accurately predict future agent behavior based on limited, sparse

data. Similar to the knapsack model, we provide a novel scheme to embed the

agent model into a bi-level optimization as a single Mixed Integer Program, and

scale up our approach by adding redundant constraints, based on insights of an

easy-hard-easy phase transition phenomenon.

We applied our methodology to eBird as a gamified application called Avi-

caching, deploying it in two NY counties. Our results show that our incentives

are remarkably effective at steering the bird watchers’ efforts to explore under-

sampled areas, which alleviates the data bias problem and improves species

distribution modeling.
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2.2 Embedding for Stochastic Optimization with XOR Con-

straints

Stochastic optimization problems arise naturally in the context of decision-

making under uncertainty, where the goal is to find a decision that maximizes

the expectation of a stochastic function across multiple probabilistic scenarios.

It is challenging because it integrates optimization into probabilistic inference.

Stochastic optimization arises in a broad selection of applications at the inter-

section of machine learning and decision-making, ranging from financial engi-

neering, optimal control, computer vision, and conservation planning.

In machine learning, stochastic optimization is often formulated as the so-

called Marginal Maximum a Posteriori (MMAP) problem, which unifies the

maximum a posteriori (MAP) inference, which computes the most likely assign-

ment of a set of variables, as well as the marginal inference, which computes

the marginal probability of an event. MMAP problems arise naturally in many

machine learning applications. For example, learning latent variable models

can be formulated as a MMAP inference, where the goal is to optimize over the

model’s parameters while marginalizing all the hidden variables.

Stochastic optimization is known to be NPPP-complete (Park & Darwiche,

2004), which is commonly believed to be harder than both MAP inference (NP-

hard) and marginal inference (#P-complete). As supporting evidence, stochastic

optimization are NP-hard even on tree structured probabilistic graphical mod-

els (Liu & Ihler, 2013). Aside from attempts to solve this problem exactly (Park

& Darwiche, 2003; Marinescu, Dechter, & Ihler, 2014, 2015; Mauá & de Campos,

2012), previous approximate approaches fall into two categories, in general. The
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core idea of approaches in both categories is to effectively approximate the in-

tractable marginalization step, which often involves averaging over an expo-

nentially large number of terms for the expectation. One class of approaches

(Liu & Ihler, 2013; Jiang, Rai, & III, 2011; Ping, Liu, & Ihler, 2015; Lee, Mari-

nescu, Dechter, & Ihler, 2016) use variational forms to represent the intractable

expectation. Then the entire problem can be solved with message passing algo-

rithms, which correspond to searching for the best variational approximation in

an iterative manner. As another family of approaches, Sample Average Approx-

imation (SAA) (Sheldon et al., 2010; S. Xue, Fern, & Sheldon, 2015) uses a fixed

set of samples to represent the intractable expectation, which then transforms

the entire problem into a restricted optimization, only considering a finite num-

ber of samples. Both approaches treat the optimization and marginalization

components separately. However, we will show that by solving these two tasks

in an integrated manner, we can obtain significant computational benefits.

Ermon et al. (Ermon, Gomes, Sabharwal, & Selman, 2013c, 2014) recently

proposed an alternative approach to approximate intractable counting and

marginalization problems. Their key idea is a mechanism to transform a count-

ing problem into a series of optimization problems, each corresponding to the

original problem subject to randomly generated XOR constraints. Based on this

mechanism, they developed an algorithm providing a constant-factor approxi-

mation to the counting (marginalization) problem.

We propose a novel algorithm, called XOR MMAP, again using our embedding

idea. Our approach approximates the intractable expectation with a series of

optimization problems. Then we embed these optimization problems into the

global optimization task, and effectively reduce the stochastic optimization in-
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ference to a single joint optimization of polynomial size of the original problem.

We show that XOR MMAP provides a constant factor approximation to the orig-

inal stochastic optimization problem. Our approach also provides upper and

lower bounds on the final result. The quality of the bounds can be improved

incrementally with increased computational effort.

We evaluate our algorithm on unweighted SAT instances and on weighted

Markov Random Field models, comparing our algorithm with variational meth-

ods and sample average approximation. We also show the effectiveness of

our algorithm on applications in computer vision with deep neural networks

and in computational sustainability. Our sustainability application shows how

stochastic optimization is also found in scenarios of searching for optimal policy

interventions to maximize the outcomes of probabilistic models. As an example,

we consider a network design application to maximize the spread of cascades

(Sheldon et al., 2010), which include modeling animal movements or informa-

tion diffusion in social networks. In this setting, the marginals of a probabilistic

decision model represent the probabilities for a cascade to reach certain target

states (marginalization), and the overall network design problem is to make

optimal policy interventions on the network structure to maximize the spread

of the cascade (optimization). We show that XOR MMAP is able to find consider-

ably better solutions than those found by previous methods, as well as provide

tighter bounds.

2.2.1 Preliminaries

Problem Definition Let a = (a1, . . . , am) be a set of binary control variables whose
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possible assignments are from A = {0, 1}m. x = (x1, . . . , xn) are a set of binary

random variables whose possible assignments are from X = {0, 1}n. f(x, a) is a

stochastic function, which depends on not only control variables a but also ran-

dom variables x. A stochastic optimization problem searches for an optimal

policy intervention that maximizes the expectation of a stochastic function. In

other words, the problem becomes

max
a∈A

Ex f(x, a). (2.19)

Stochastic optimization has many natural applications. For example, in robotics,

a denotes a control sequence, while x represents the stochastic response of the

environment. We therefore look for an optimal control sequence a so that the

robot performs well in expectation over multiple probabilistic scenarios.

In machine learning, stochastic optimization is often formulated as a

Marginal Maximum A Posteriori (MMAP) problem. Let w(x, a) : X × A → R+

be a function that computes Ex f(x, a). In other words,

w(x, a) = Ex f(x, a) =
∑
x∈X

f(x, a)Pr(x).

We can write a stochastic optimization problem in the following general form:

max
a∈A

∑
x∈X

w(x, a). (2.20)

which is often denoted as a Marginal Maximum A Posteriori (MMAP) problem.

We consider the case where the counting problem
∑

x∈X w(x, a) and the maxi-

mization problem maxa∈A#w(a) are defined over sets of exponential size, there-

fore both are intractable in general.

Typical queries over a probabilistic model include the optimization task,

which requires the computation of maxa∈Aw(a), and the marginal inference task
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∑
x∈X w(x), which sums over X . optimization with marginal inference, and

therefore is believed to have a higher complexity (NPPP-complete, proved in

(Park & Darwiche, 2004)).

Counting by Hashing and Optimization Our approach is based on a recent

theoretical result that transforms a counting problem to a series of optimization

problems (Ermon et al., 2013c, 2014; Belle, Van den Broeck, & Passerini, 2015;

Achlioptas & Jiang, 2015). A family of functions H = {h : {0, 1}n → {0, 1}k}

is said to be pairwise independent if the following two conditions hold for any

function h randomly chosen from the family H: (1) ∀x ∈ {0, 1}n, the random

variable h(x) is uniformly distributed in {0, 1}k and (2) ∀x1, x2 ∈ {0, 1}n, x1 6= x2,

the random variables h(x1) and h(x2) are independent.

We sample matrices A ∈ {0, 1}k×n and vector b ∈ {0, 1}k uniformly at ran-

dom to form the function family HA,b = {hA,b : hA,b(x) = Ax + b mod 2}. It is

possible to show that HA,b is pairwise independent (Ermon et al., 2013c, 2014).

Notice that in this case, each function hA,b(x) = Ax + b mod 2 corresponds to k

parity constraints. One useful way to think about pairwise independent func-

tions is to imagine them as functions that randomly project elements in {0, 1}n

into 2k buckets. Define Bh(g) = {x ∈ {0, 1}n : hA,b(x) = g} to be a “bucket”

that includes all elements in {0, 1}n whose mapped value hA,b(x) is vector g

(g ∈ {0, 1}k). Intuitively, if we randomly sample a function hA,b from a pairwise

independent family, then we get the following: x ∈ {0, 1}n has an equal prob-

ability to be in any bucket B(g), and the bucket locations of any two different

elements x, y are independent.
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Algorithm 2: XOR Binary(w : A×X → {0, 1}, a0, k)
1 Sample function hk : X → {0, 1}k from a pair-wise independent function

family;
2 Query an NP Oracle on whether
3 W(a0, hk) = {x ∈ X : w(a0, x) = 1, hk(x) = 0} is empty;
4 Return true ifW(a0, hk) 6= ∅, otherwise return false.

2.2.2 Algorithms

Binary Case We first solve the stochastic optimization problem for the bi-

nary case, in which the function w : A × X → {0, 1} outputs either 0 or

1. We will extend the result to the weighted case in the next section. Since

a ∈ A often represent decision variables, we call a fixed assignment to vector

a = a0 a “solution strategy”. To simplify the notation, we use W(a0) to rep-

resent the set {x ∈ X : w(a0, x) = 1}, and use W(a0, hk) to represent the set

{x ∈ X : w(a0, x) = 1 and hk(x) = 0}, in which hk is sampled from a pairwise

independent function family that maps X to {0, 1}k. We write #w(a0) as short-

hand for the count |{x ∈ X : w(a0, x) = 1}| =
∑

x∈X w(a0, x). Our algorithm

depends on the following result:

Theorem 2.2.1. ((Ermon et al., 2013c)) For a fixed solution strategy a0 ∈ A,

• Suppose #w(a0) ≥ 2k0 , then for any k ≤ k0, with probability 1 − 2c

(2c−1)2
, Algo-

rithm XOR Binary(w, a0, k − c)=true.

• Suppose #w(a0) < 2k0 , then for any k ≥ k0, with probability 1 − 2c

(2c−1)2
, Algo-

rithm XOR Binary(w, a0, k + c)=false.

To understand Theorem 2.2.1 intuitively, we can think of hk as a function

that maps every element in setW(a0) into 2k buckets. Because hk comes from a
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pairwise independent function family, each element inW(a0) will have an equal

probability to be in any one of the 2k buckets, and the buckets in which any two

elements end up are mutually independent. Suppose the count of solutions for

a fixed strategy #w(a0) is 2k0 , then with high probability, there will be at least

one element located in a randomly selected bucket if the number of buckets 2k

is less than 2k0 . Otherwise, with high probability there will be no element in a

randomly selected bucket.

Theorem 2.2.1 provides us with a way to obtain a rough count on #w(a0)

via a series of tests on whetherW(a0, hk) is empty, subject to extra parity func-

tions hk. This transforms a counting problem to a series of NP queries, which

can also be thought of as optimization queries. This transformation is extremely

helpful for the stochastic optimization problem. As noted earlier, the main chal-

lenge for the stochastic optimization problem is the intractable sum embedded

in the maximization. Nevertheless, the whole problem can be re-written as a

single optimization if the intractable sum can be approximated well by solving

an optimization problem over the same domain.

We therefore design Algorithm XOR MMAP, which is able to provide a con-

stant factor approximation to the stochastic optimization problem. The whole

algorithm is shown in Algorithm 4. In its main procedure XOR K, the algorithm

transforms the stochastic optimization problem into an optimization over the

sum of T replicates of the original function w. Here, x(i) ∈ X is a replicate of

the original x, and w(a, x(i)) is the original function w but takes x(i) as one of

the inputs. All replicates share common input a. In addition, each replicate is

subject to an independent set of parity constraints on x(i). Theorem 2.2.2 states

that XOR MMAP provides a constant-factor approximation to the stochastic opti-
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mization problem:

Theorem 2.2.2. For T ≥ m ln 2+ln(n/δ)
α∗(c)

, with probability 1 − δ, XOR MMAP(w, log2 |X |,

log2 |A|, T ) outputs a 22c-approximation to the stochastic optimization problem:

maxa∈A#w(a). α∗(c) is a constant.

Let us first understand the theorem in an intuitive way. Without losing gen-

erality, suppose the optimal value maxa∈A#w(a) = 2k0 . Denote a∗ as the optimal

solution, ie, #w(a∗) = 2k0 . According to Theorem 2.2.1, the setW(a∗, hk) has a

high probability to be non-empty, for any function hk that contains k < k0 parity

constraints. In this case, the optimization problem max
x(i)∈X ,h(i)k (x(i))=0

w(a∗, x(i))

for one replicate x(i) almost always returns 1. Because h(i)
k (i = 1 . . . T ) are sam-

pled independently, the sum
∑T

i=1w(a∗, x(i)) is likely to be larger than dT/2e,

since each term in the sum is likely to be 1 (under the fixed a∗). Furthermore,

since XOR K maximizes this sum over all possible strategies a ∈ A, the sum it

finds will be at least as good as the one attained at a∗, which is already over

dT/2e. Therefore, we conclude that when k < k0, XOR K will return true with

high probability.

We can develop similar arguments to conclude that XOR K will return false

with high probability when more than k0 XOR constraints are added. Notice

that replications and an additional union bound argument are necessary to es-

tablish the probabilistic guarantee in this case. As a counter-example, suppose

function w(x, a) = 1 if and only if x = a, otherwise w(x, a) = 0 (m = n in this

case). If we set the number of replicates T = 1, then XOR K will almost always

return 1 when k < n, which suggests that there are 2n solutions to the stochas-

tic optimization problem. Nevertheless, in this case the true optimal value of

maxx #w(x, a) is 1, which is far away from 2n. This suggests that at least two
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Algorithm 3: XOR K(w : A × X →
{0, 1}, k, T )
1 Sample T pair-wise independent

hash functions
2 h

(1)
k , h

(2)
k , . . . , h

(T )
k : X →

{0, 1}k;
3 Query Oracle

max
a∈A,x(i)∈X

T∑
i=1

w(a, x(i))

s.t. h
(i)
k (x(i)) = 0, i = 1, . . . , T.

(2.21)4

Return true if the max value is
larger than dT/2e, otherwise
return false.

Algorithm 4: XOR MMAP(w : A×
X → {0, 1},n = log2 |X |,m =
log2 |A|,T )
1 k = n;
2 while k > 0 do
3 if XOR K(w, k, T ) then
4 Return 2k;
5 end
6 k ← k − 1;
7 end
8 Return 1;

replicates are needed.

Lemma 2.2.3. For T ≥ ln 2·m+ln(n/δ)
α∗(c)

, procedure XOR K(w,k,T ) satisfies:

• Suppose ∃a∗ ∈ A, s.t. #w(a∗) ≥ 2k, then with probability 1− δ
n2m

, XOR K(w, k−

c, T ) returns true.

• Suppose ∀a0 ∈ A, s.t. #w(a0) < 2k, then with probability 1 − δ
n

, XOR K(w, k +

c, T ) returns false.

Proof. Claim 1: If there exists such a∗ satisfying #w(a∗) ≥ 2k, pick a0 = a∗. Let

X(i)(a0) = max
x(i)∈X ,h(i)k−c(x(i))=0

w(a0, x
(i)), for i = 1 . . . , T . From Theorem 2.2.1,

X(i)(a0) = 1 holds with probability 1 − 2c

(2c−1)2
. Let α∗(c) = D(1

2
‖ 2c

(2c−1)2
). By

Chernoff bound, we have

Pr

[
max
a∈A

T∑
i=1

X(i)(a) ≤ T/2
]
≤ Pr

[
T∑
i=1

X(i)(a0) ≤ T/2
]
≤ e−D( 1

2
‖ 2c

(2c−1)2
)T

= e−α
∗(c)T ,

(2.22)
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where

D

(
1

2
‖ 2c

(2c − 1)2

)
= 2 ln(2c − 1)− ln 2− 1

2
ln(2c)− 1

2
ln((2c − 1)2 − 2c) ≥ (

c

2
− 2) ln 2.

For T ≥ ln 2·m+ln(n/δ)
α∗(c)

, we have e−α∗(c)T ≤ δ
n2m

. Thus, with probability 1 − δ
n2m

,

we have max
a∈A

∑T
i=1X

(i)(a) > T/2, which implies that XOR K(w, k − c, T ) returns

true.

Claim 2: The proof is almost the same as Claim 1, except that we need to use a

union bound to let the property hold for all a ∈ A simultaneously. As a result,

the success probability will be 1− δ
n

instead of 1− δ
n2m

. The full proof is in (Y. Xue,

Li, et al., 2016).

Proof. (Theorem 2.2.2) With probability 1 − n δ
n

= 1 − δ, the output of n

calls of XOR K(w, k, T ) (with different k = 1 . . . n) all satisfy the two claims in

Lemma 2.2.3 simultaneously. Suppose max
a∈A

#w(a) ∈ [2k0 , 2k0+1), we have (i)

∀k ≥ k0 +c+1, XOR K(w, k, T ) returns false, (ii) ∀k ≤ k0−c, XOR K(w, k, T ) returns

true. Therefore, with probability 1− δ, the output of XOR MMAP is guaranteed to

be among 2k0−c and 2k0+c.

The approximation bound in Theorem 2.2.2 is a worst-case guarantee. We

can obtain a tight bound (e.g. 16-approx) with a large number of T replicates.

Nevertheless, we keep a small T , therefore a loose bound, in our experiments,

after trading between the formal guarantee and the empirical complexity. In

practice, our method performs well, even with loose bounds. Moreover, XOR K

procedures with different input k are not uniformly hard. We therefore can run

them in parallel. We can obtain a looser bound at any given time, based on all

completed XOR K procedures. Finally, if we have access to a polynomial approx-

imation algorithm for the optimization problem in XOR K, we can propagate this
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bound through the analysis, and again get a guaranteed bound, albeit looser for

the stochastic optimization problem.

Implementation We solve the optimization problem in XOR K using Mixed In-

teger Programming (MIP). Without losing generality, we assume w(a, x) is an

indicator variable, which is 1 iff (a, x) satisfies constraints represented in Con-

junctive Normal Form (CNF). We introduce extra variables to represent the sum∑
iw(a, x(i)). The XORs in Equation 2.21 are encoded as MIP constraints using

the Yannakakis encoding, similar as in (Ermon, Gomes, Sabharwal, & Selman,

2013b).

Extension to the Weighted Case In this section, we study the more gen-

eral case, where w(a, x) takes non-negative real numbers instead of integers in

{0, 1}. Unlike in (Ermon et al., 2013c), we choose to build our proof from the

unweighted case because it can effectively avoid modeling the median of an

array of numbers (Ermon, Gomes, Sabharwal, & Selman, 2013a), which is diffi-

cult to encode in integer programming. We noticed recent work (Chakraborty,

Fried, Meel, & Vardi, 2015). It is related but different from our approach. Let

w : A×X → R+, and M = maxa,xw(a, x).

Definition 2.2.4. We define the embedding Sa(w, l) of X in X × {0, 1}l as:

Sa(w, l) =

{
(x, y)|∀1 ≤ i ≤ l,

w(a, x)

M
≤ 2i−1

2l
⇒ yi = 0

}
. (2.23)

Lemma 2.2.5. Let w′l(a, x, y) be an indicator variable which is 1 if and only if (x, y) is

in Sa(w, l), i.e., w′l(a, x, y) = 1(x,y)∈Sa(w,l). We claim that

max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y) ≤ 2 max
a

∑
x

w(a, x) +M2n−l.6 (2.24)

6If w satisfy the property that mina,x w(a, x) ≥ 2−l−1M , we do not have the M2n−l term.
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Proof. Define Sa(w, l, x0) as the set of (x, y) pairs within the set Sa(w, l) and

x = x0, ie, Sa(w, l, x0) = {(x, y) ∈ Sa(w, l) : x = x0}. It is not hard to see

that
∑

(x,y) w
′
l(a, x, y) =

∑
x |Sa(w, l, x)|. In the following, first we are going to

establish the relationship between |Sa(w, l, x)| and w(a, x). Then we use the re-

sult to show the relationship between
∑

x |Sa(w, l, x)| and
∑

xw(x, a). Case (i): If

w(a, x) is sandwiched between two exponential levels: M
2l

2i−1 < w(a, x) ≤ M
2l

2i

for i ∈ {0, 1, . . . , l}, according to Definition 2.2.4, for any (x, y) ∈ Sa(w, l, x), we

have yi+1 = yi+2 = . . . = yl = 0. This makes |Sa(w, l, x)| = 2i, which further

implies that
M

2l
· |Sa(w, l, x)|

2
< w(a, x) ≤ M

2l
· |Sa(w, l, x)|, (2.25)

or equivalently,

w(a, x) ≤ M

2l
· |Sa(w, l, x)| < 2w(a, x). (2.26)

Case (ii): If w(a, x) ≤ M
2l+1 , we have |Sa(w, l, x)| = 1. In other words,

w(a, x) ≤ 2w(a, x) ≤ 2
M

2l+1
|Sa(w, l, x)| = M

2l
|Sa(w, l, x)|. (2.27)

Also, M2−l|Sa(w, l, x)| = M2−l ≤ 2w(a, x) + M2−l. Hence, the following bound

holds in both cases (i) and (ii):

w(a, x) ≤ M

2l
|Sa(w, l, x)| ≤ 2w(a, x) +M2−l. (2.28)

The lemma holds by summing up over X and maximizing over A on all sides

of Inequality 2.28.

With the result of Lemma 2.2.5, we are ready to prove the following approx-

imation result:
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Theorem 2.2.6. Suppose there is an algorithm that gives a c-approximation to solve

the unweighted problem: maxa
∑

(x,y)w
′
l(a, x, y), then we have a 3c-approximation al-

gorithm to solve the weighted stochastic optimization problem maxa
∑

xw(a, x).

Proof. Let l = n in Lemma 2.2.5. By definition M = maxa,xw(a, x) ≤
maxa

∑
xw(a, x), we have:

max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y) ≤ 2 max
a

∑
x

w(a, x) +M ≤ 3 max
a

∑
x

w(a, x).

This is equivalent to:

1

3
· M

2l
max
a

∑
(x,y)

w′l(a, x, y) ≤ max
a

∑
x

w(a, x) ≤ M

2l
max
a

∑
(x,y)

w′l(a, x, y).

2.2.3 Experiments

We evaluate our proposed algorithm XOR MMAP against two baselines – the Sam-

ple Average Approximation (SAA) (Sheldon et al., 2010) and the Mixed Loopy

Belief Propagation (Mixed LBP) (Liu & Ihler, 2013). These two baselines are

selected to represent the two most widely used classes of methods that approx-

imate the embedded sum in stochastic optimization problems in two different

ways. SAA approximates the intractable sum with a finite number of samples,

while the Mixed LBP uses a variational approximation. We obtained the Mixed

LBP implementation from the author of (Liu & Ihler, 2013) and we use their de-

fault parameter settings. Since stochastic optimization problems are in general

very hard and there is currently no exact solver that scales to reasonably large

instances, our main comparison is on the relative optimality gap: we first ob-

tain the solution amethod for each approach. Then we compare the difference in
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Figure 2.9: (Left) On median case, the solutions a0 found by the pro-
posed Algorithm XOR MMAP have higher objective

∑
x∈X w(a0, x)

than the solutions found by SAA and Mixed LBP, on ran-
dom 2-SAT instances with 60 variables and various number
of clauses. Dashed lines represent the proved bounds from
XOR MMAP. (Right) The percentage of instances that each algo-
rithm can find a solution that is at least 1/8 value of the best so-
lutions among 3 algorithms, with different number of clauses.

objective function log
∑

x∈X w(amethod, x) − log
∑

x∈X w(abest, x), in which abest is

the best solution among the three methods. Clearly a better algorithm will find

a vector a which yields a larger objective function. The counting problem under

a fixed solution a is solved using an exact counter ACE (Chavira, Darwiche, &

Jaeger, 2006), which is only used for comparing the results of different MMAP

solvers.

Our first experiment is on unweighted random 2-SAT instances. Here,

w(a, x) is an indicator variable on whether the 2-SAT instance is satisfiable. The

SAT instances have 60 variables, 20 of which are randomly selected to form set

A, and the remaining ones form set X . The number of clauses varies from 1 to

70. For a fixed number of clauses, we randomly generate 20 instances, and the

left panel of Figure 2.9 shows the median objective function
∑

x∈X w(amethod, x)

of the solutions found by the three approaches. We tune the constants of our

XOR MMAP so it gives a 210 = 1024-approximation (2−5 · sol ≤ OPT ≤ 25 · sol,
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Figure 2.10: On median case, the solutions a0 found by the proposed
Algorithm XOR MMAP are better than the solutions found by
SAA and Mixed LBP, on weighted 12-by-12 Ising models with
mixed coupling strength. (Up) Field strength 0.01. (Down)
Field strength 0.1. (Left) 20% variables are randomly selected
for maximization. (Mid) 50% for maximization. (Right) 80%
for maximization.

δ = 10−3). The upper and lower bounds are shown in dashed lines. SAA uses

10,000 samples. On average, the running time of our algorithm is reasonable.

When enforcing the 1024-approximation bound, the median time for a single

XOR k procedure is in seconds, although we occasionally have long runs (no

more than 30-minute timeout).

As we can see from the left panel of Figure 2.9, both Mixed LBP and SAA

match the performance of our proposed XOR MMAP on easy instances. However,

as the number of clauses increases, their performance quickly deteriorates. In

fact, for instances with more than 20 (60) clauses, typically the a vectors returned

by Mixed LBP (SAA) do not yield non-zero solution values. Therefore we are

not able to plot their performance beyond the two values. At the same time, our

algorithm XOR MMAP can still find a vector a yielding over 220 solutions on larger
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instances with more than 60 clauses, while providing a 1024-approximation.

Next, we look at the performance of the three algorithms on weighted in-

stances. Here, we set the number of replicates T = 3 for our algorithm XOR MMAP,

and we repeatedly start the algorithm with an increasing number of XOR con-

straints k, until it completes for all k or times out in an hour. For SAA, we use

1,000 samples, which is the largest we can use within the memory limit. All

algorithms are given a one-hour time and a 4G memory limit.

The solutions found by XOR MMAP are considerably better than the ones found

by Mixed LBP and SAA on weighted instances. Figure 2.10 shows the perfor-

mance of the three algorithms on 12-by-12 Ising models with mixed coupling

strength, different field strengths and number of variables to form set A. All

values in the figure are median values across 20 instances (in log10). In all 6

cases in Figure 2.10, our algorithm XOR MMAP is the best among the three ap-

proximate algorithms. In general, the difference in performance increases as the

coupling strength increases. These instances are challenging for the state-of-the-

art complete solvers. For example, the state-of-the-art exact solver AOBB with

mini-bucket heuristics and moment matching (Marinescu et al., 2015) runs out

of 4G memory on 60% of instances with 20% variables randomly selected as max

variables. We also notice that the solution found by our XOR MMAP is already close

to the ground-truth. On smaller 10-by-10 Ising models which the exact AOBB

solver can complete within the memory limit, the median difference between

the log10 count of the solutions found by XOR MMAP and those found by the ex-

act solver is 0.3, while the differences between the solution values of XOR MMAP

against those of the Mixed BP or SAA are on the order of 10.

We also apply our solver to an image completion task. We first learn a
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Figure 2.11: (Left) The image completion task. Solvers are given digits of
the upper part as shown in the first row. Solvers need to com-
plete the digits based on a two-layer deep belief network and
the upper part. (2nd Row) completion given by XOR MMAP. (3rd
Row) SAA. (4th Row) Mixed Loopy Belief Propagation. (Mid-
dle) Graphical illustration of the network cascade problem.
Red circles are nodes to purchase. Lines represent cascade
probabilities. See main text. (Right) Our XOR MMAP performs
better than SAA on a set of network cascade benchmarks, with
different budgets.

two-layer deep belief network (Bengio, Lamblin, Popovici, & Larochelle, 2006;

G. Hinton & Salakhutdinov, 2006) from a 14-by-14 MNIST dataset. Then for a

binary image that only contains the upper part of a digit, we ask the solver to

complete the lower part, based on the learned model. This is a Marginal MAP

task, since one needs to integrate over the states of the hidden variables, and

query the most likely states of the lower part of the image. Figure 2.11 shows

the result of a few digits. As we can see, SAA performs poorly. In most cases,

it only manages to come up with a light dot for all 10 different digits. Mixed

Loopy Belief Propagation and our proposed XOR MMAP perform well. The good

performance of Mixed LBP may be due to the fact that the weights on pairwise

factors in the learned deep belief network are not very combinatorial.

Finally, we consider a stochastic optimization application that applies

decision-making into machine learning models. This network design applica-

tion maximizes the spread of cascades in networks, which is important in the
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domain of social networks and computational sustainability. In this application,

we are given a stochastic graph, in which the source node at time t = 0 is af-

fected. For a node v at time t, it will be affected if one of its ancestor nodes at

time t−1 is affected, and the configuration of the edge connecting the two nodes

is “on”. An edge connecting node u and v has probability pu,v to be turned on.

A node will not be affected if it is not purchased. Our goal is to purchase a set

of nodes within a finite budget, so as to maximize the probability that the target

node is affected. We refer the reader to (Sheldon et al., 2010) for more back-

ground knowledge. This application cannot be captured by graphical models

due to global constraints. Therefore, we are not able to run mixed LBP on this

problem. We consider a set of synthetic networks, and compare the performance

of SAA and our XOR MMAP with different budgets. As we can see from the right

panel of Figure 2.11, the nodes that our XOR MMAP decides to purchase result in

higher probabilities of the target node being affected, compared to SAA. Each

dot in the figure is the median value over 30 networks generated in a similar

way.

Dynamic Optimization of Landscape Connectivity Embedding Spatial-

Capture-Recapture Information Motivated by the network design applica-

tion, we further propose a novel approach to dynamically optimize landscape

connectivity, which an application in computational sustainability (Y. Xue, Wu,

et al., 2017). Our approach is based on a mixed integer program formulation,

embedding a spatial capture-recapture model that estimates the density, space

usage, and landscape connectivity for a given species. Our method takes into

account the fact that local animal density and connectivity change dynamically

and non-linearly with different habitat protection plans. In order to scale up our

encoding, we propose a sampling scheme via random partitioning of the search
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space using parity functions. We show that our method scales to real-world size

problems and dramatically outperforms the solution quality of an expectation

maximization approach and a sample average approximation approach.

2.2.4 Discussion

We propose a novel constant approximation algorithm to solve the stochastic

optimization problem. Our approach represents the intractable counting sub-

problem with queries to NP oracles, subject to additional parity constraints.

The NP queries then are embedded as optimization problems into the global

problem, therefore reducing the entire problem into a single optimization. We

evaluate our approach on several machine learning and decision-making appli-

cations. We are able to show that XOR MMAP outperforms several state-of-the-art

solvers. XOR MMAP provides a new angle to solving the stochastic optimization

problem, opening the door to new research directions and applications in real

world domains. Future work in this direction include devising strategies to

scale up this approach using shorter XOR constraints and considering iterative

approaches that gradually refine solutions.
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CHAPTER 3

EMBEDDING FOR DIMENSIONALITY REDUCTION IN SCIENTIFIC

DISCOVERY

Many problems at the intersection of reasoning and learning are high di-

mensional in nature, which requires effective dimensionality reduction tools to

navigate the solution space and extract meaningful information from data.

Our first dimensionality reduction application is in the domain of proba-

bilistic inference, a key computational challenge in statistical machine learning.

Inference methods have a wide range of applications, from learning models

to making predictions and informing decision-making using statistical mod-

els. Unfortunately, the inference problem is computationally intractable, and

standard exact inference algorithms have worst-case exponential complexity.

The key to address the challenges of probabilistic inference is to reduce high-

dimensional complex probability distributions into compact forms.

In this chapter, we first explore a novel compact representation of high-

dimensional distributions based on discrete Fourier embedding, complementing

the classical factored representation based on conditional independencies. We

show that a large class of probabilistic distributions have a compact Fourier

representation. This theoretical result opens up an entirely new way of ap-

proximating a high-dimensional probability distribution. We demonstrate the

significance of this approach by applying it to the variable elimination algo-

rithm for probabilistic inference. Compared with the traditional bucket rep-

resentation and other approximate inference algorithms, we obtain significant

improvements.
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Our second dimensionality reduction application focuses on the phase map

identification problem, a central task in combinatorial materials discovery, to

identify the crystalline phases of inorganic compounds based on an analysis of

high-intensity X-ray patterns. New materials will help us address some of the

key challenges our society faces today, in terms finding a path towards a sus-

tainable planet (White, 2012; Patel, 2011). In combinatorial materials discovery,

scientists experimentally explore large numbers of combinations of different el-

ements with the hope of finding new compounds with interesting properties,

e.g., for efficient fuel cells or solar cell arrays. We are collaborating with two

teams of materials scientists, one at the Department of Materials Science at Cor-

nell and the other in the Joint Center for Artificial Photosynthesis (JCAP) at Cal-

tech. An overall goal is to develop the capability of analyzing data from over

one million new materials samples per day. Automated data analysis tools will

be key to the success of this project.

The phase map identification problem is a dimensionality reduction prob-

lem. It focuses on discovering meaningful patterns corresponding to true mate-

rial structures out of many X-ray diffraction patterns generated from the high-

throughput experimental pipeline, which are mixed with other patterns and

corrupted with noise. Unlike dimensionality reduction problems from other

domains, our problem is subject to hard physical constraints, which bring addi-

tional challenges.

We first encountered the phase map identification problem as part of our

Computational Sustainability effort to address pressing problems in renewable

energy (Le Bras et al., 2011). Collaborating with materials scientists, we made

progress in this domain with a fruitful line of research. We first model the phase
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map identification problem using a constraint reasoning approach (Ermon et

al., 2012). In (Le Bras et al., 2014), we further integrate a state-of-the-art opti-

mization framework based on constraint reasoning with subtle human insights,

therefore drastically reducing the solution time. In (Y. Xue, Bai, et al., 2017),

we developed Phase-Mapper, a comprehensive platform that tightly integrates

materials science experimentation, AI problem solving, and human intelligence

for combinatorial materials discovery. We have deployed our approaches at

JCAP. Since its deployment, thousands of X-ray diffraction patterns have been

processed and the results are yielding discovery of new materials for energy ap-

plications. Our work (Suram et al., 2016) was featured as the cover article and

the Editors’ Choice in the journal Combinatorial Science of the American Chemi-

cal Society. The work of (Y. Xue, Bai, et al., 2017) also received recognition with

the IAAI-2017 Innovative Application Award.

In this thesis, we highlight a novel way to boost dimensionality reduction

solvers with parallel problem solving. In our approach, we use parallelism to

exploit hidden structure of dimensionality reduction problems with combinato-

rial constraints. Our approach complements divide-and-conquer and portfolio

approaches for parallel problem solving. We first illustrate our approach on

the minimum set basis problem: a core combinatorial problem with a range of

applications in optimization, machine learning, and system security. Then we

highlight the application of our parallel approach on combinatorial materials

discovery for renewable energy sources. In our approach, a large number of

smaller sub-problems are identified and solved concurrently. We then aggre-

gate the information from those solutions, and use this information to initialize

the search of a global, complete solver. We show that this strategy leads to

a substantial speed-up over a sequential approach, since the aggregated sub-
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problem solution information often provides key structural insights to the com-

plete solver. Our approach also greatly outperforms state-of-the-art incomplete

solvers in terms of solution quality. Our work opens up a novel angle for us-

ing parallelism to solve hard dimensionality reduction problems with complex

constraints.
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Figure 3.1: An example of a decision tree representing function f :
{x1, . . . , x7} → R+.

3.1 Dimensionality Reduction with Discrete Fourier Represen-

tation

The ability to represent complex high dimensional probability distributions in

a compact form is perhaps the most important insight in the field of proba-

bilistic inference. The fundamental idea is to exploit (conditional) independen-

cies between the variables to achieve compact factored representations, where a

complex global model is represented as a product of simpler, local models. Sim-

ilar ideas have been considered in the analysis of Boolean functions and logical

forms (Dechter, 1997), as well as in physics with low rank tensor decomposi-

tions and matrix product states representations (Jordan, Ghahramani, Jaakkola,

& Saul, 1999; Linden, Smith, & York, 2003; Sontag, Meltzer, Globerson, Jaakkola,

& Weiss, 2008; Friesen & Domingos, 2015).

Compact representations are also key for the development of efficient infer-

ence algorithms, including message-passing ones. Efficient algorithms can be

developed when messages representing the interaction among many variables
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can be decomposed or approximated with the product of several smaller mes-

sages, each involving a subset of the original variables. Numerous approximate

and exact inference algorithms are based on this idea (Bahar et al., 1993; Flerova,

Ihler, Dechter, & Otten, 2011; Mateescu, Kask, Gogate, & Dechter, 2010; Gogate

& Domingos, 2013; Wainwright, Jaakkola, & Willsky, 2003; Darwiche & Mar-

quis, 2002; Ihler, Flerova, Dechter, & Otten, 2012; Hazan & Jaakkola, 2012).

Conditional independence (and related factorizations) is not the only type of

structure that can be exploited to achieve compactness. For example, consider

the weighted decision tree in Figure 3.1. No two variables in the probability dis-

tribution in Figure 3.1 are independent of each other. The probability distribu-

tion cannot be represented by the product of simpler terms of disjoint domains

and hence we cannot take advantage of independencies. The full probability ta-

ble needs 27 = 128 entries to be represented exactly. Nevertheless, this table can

be described exactly by 8 simple decision rules, each corresponding to a path

from the root to a leaf in the tree.

We explore a novel way to exploit compact representations of high-

dimensional probability tables in (approximate) probabilistic inference algo-

rithms. Our approach is based on a (discrete) Fourier embedding of the tables,

which can be interpreted as a change of basis. Crucially, tables that are dense

in the canonical basis can have a sparse Fourier representation. In particular,

under certain conditions, probability tables can be represented (or well approx-

imated) using a small number of Fourier coefficients. The Fourier representation

has found numerous recent applications, including modeling stochastic pro-

cesses (Rogers, 2000; Abbring & Salimans, 2012), manifolds (Cohen & Welling,

2015), and permutations (Huang, Guestrin, & Guibas, 2009). Our approach is

73



based on Fourier representation on Boolean functions, which has found tremen-

dous success in PAC learning (O’Donnell, 2008; Mansour, 1994; Blum, Burch, &

Langford, 1998; Buchman, Schmidt, Mohamed, Poole, & de Freitas, 2012), but

these ideas have not been fully exploited in the fields of probabilistic inference

and graphical models.

In general, a factor over n Boolean variables requiresO(2n) entries to be spec-

ified, and similarly the corresponding Fourier representation is dense in general,

i.e., it has O(2n) non-zero coefficients. However, a rather surprising fact which

was first discovered by Linial (Linial, Mansour, & Nisan, 1993) is that factors

corresponding to fairly general classes of logical forms admit a compact Fourier

representation. Linial discovered that formulas in Conjunctive Normal Form

(CNF) and Disjunctive Normal Form (DNF) with bounded width (the number

of variables in each clause) have compact Fourier representations.

We introduce a novel approach for using approximate Fourier representa-

tions in the field of probabilistic inference. We generalize the work of Linial to

the case of probability distributions (the weighted case where the entries are not

necessarily 0 or 1), showing that a large class of probabilistic graphical models

have compact Fourier representation. The proof extends the Hastad’s Switch-

ing Lemma (Hrastad, 1987) to the weighted case. At a high level, a compact

Fourier representation often means the weighted probabilistic distribution can

be captured by a small set of critical decision rules. Hence, this notion is closely

related to decision trees with bounded depth.

Sparse (low-degree) Fourier representations provide an entirely new way of

approximating a probability distribution. We demonstrate the power of this

idea by applying it to the variable elimination algorithm. Despite that it is
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conceptually simple, we show in Table 3.2 that the variable elimination algo-

rithm with Fourier representation outperforms Minibucket, Belief Propagation

and MCMC, and is competitive and even outperforms an award winning solver

HAK on several categories of the UAI Inference Challenge.

3.1.1 Preliminaries

Inference in Graphical Models

We consider a Boolean graphical model overN Boolean variables {x1, x2, . . . , xN}.

We use bold typed variables to represent a vector of variables. For example, the

vector of all Boolean variables x is written as x = (x1, x2, . . . , xN)T . We also

use xS to represent the image of vector x projected onto a subset of variables:

xS = (xi1 , xi2 , . . . , xik)T where S = {i1, . . . , ik}. A probabilistic graphical model

is defined as:

Pr(x) =
1

Z
f(x) =

1

Z

K∏
i=1

ψi(xSi
).

where each ψi : {−1, 1}|Si| → R+ is called a factor, and is a function that depends

on a subset of variables whose indices are in Si. Z =
∑

x

∏K
i=1 ψi(xSi

) is the

normalization factor, and is often called the partition function. We will use −1

and 1 to represent false and true. We consider two key probabilistic inference

tasks: the computation of the partition function Z (PR) and marginal probabili-

ties Pr(e) = 1
Z

∑
x∼e f(x) (Marginal), in which x ∼ emeans that x is consistent

with the evidence e.

The Variable Elimination Algorithm is an exact algorithm to compute

marginals and the partition function for general graphical models. It starts with
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a variable ordering π. In each iteration, it eliminates one variable by multiplying

all factors involving that variable, and then summing that variable out. When

all variables are eliminated, the factor remaining is a singleton, whose value cor-

responds to the partition function. The complexity of the VE algorithm depends

on the size of the largest factors generated during the elimination process, and

is known to be exponential in the tree-width (Gogate & Dechter, 2004).

Detcher proposed the Mini-bucket Elimination Algorithm (Dechter, 1997),

which dynamically decomposes and approximates factors (when the domain

of a product exceeds a threshold) with the product of smaller factors during

the elimination process. Mini-bucket can provide upper and lower bounds on

the partition function. The authors of (van Rooij, Bodlaender, & Rossmanith,

2009; Smith & Gogate, 2013) develop fast operations similar to the Fast Fourier

transformation, and use it to speed up the exact inference. Their approaches

do not approximate the probability distribution, which is different from our

approach.

Hadamard-Fourier Transformation

Hadamard-Fourier transformation has attracted a lot of attention in PAC Learn-

ing Theory. Table 3.1 provides an example where a function φ(x, y) is trans-

formed into its Fourier representation. The transformation works by writing

φ(x, y) using interpolation, then re-arranging the terms to get a canonical term.

The example can be generalized, and it can be shown that any function defined

on a Boolean hypercube has an equivalent Fourier representation.

Theorem 3.1.1. (Hadamard-Fourier Transformation) Every f : {−1, 1}n → R can be
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uniquely expressed as a multilinear polynomial,

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi.

where each cS ∈ R. This polynomial is referred to as the Hadamard-Fourier expansion

of f .

Here, [n] is the power set of {1, . . . , n}. Following standard notation, we will

write f̂(S) to denote the coefficient cS and χS(x) for the basis function
∏

i∈S xi.

As a special case, χ∅ = 1. Notice these basis functions are parity functions. We

also call f̂(S) a degree-k coefficient of f iff |S| = k. In our example in Table 3.1,

the coefficient for basis function xy is φ̂({x, y}) = 1
4
(φ1 − φ2 − φ3 + φ4), which is

a degree-2 coefficient.

We re-iterate some classical results on Fourier expansion. First, as with the

classical (inverse) Fast Fourier Transformation (FFT) in the continuous domain,

there are similar divide-and-conquer algorithms (FFT and invFFT) which con-

nect the table representation of f (e.g., upper left table, Table 3.1) with its Fourier

representation (e.g., bottom representation, Table 3.1). Both FFT and invFFT run

in time O(n · 2n) for a function involving n variables. In fact, the length 2n

vector of all function values and the length 2n vector of Fourier coefficients are

connected by a 2n-by-2n matrix Hn, which is often called the n-th Hadamard-

Fourier matrix. In addition, we have the Parseval’s identity for Boolean Func-

tions as well: Ex[f(x)2] =
∑

S f̂(S)2.
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x y φ(x, y)
-1 -1 φ1

-1 1 φ2

1 -1 φ3

1 1 φ4

φ(x, y) =
1− x

2
· 1− y

2
· φ1+

1− x
2
· 1 + y

2
· φ2+

1 + x

2
· 1− y

2
· φ3+

1 + x

2
· 1 + y

2
· φ4.

φ(x, y) =
1

4
(φ1 + φ2 + φ3 + φ4) +

1

4
(−φ1 − φ2 + φ3 + φ4)x

+
1

4
(−φ1 + φ2 − φ3 + φ4)y +

1

4
(φ1 − φ2 − φ3 + φ4)xy.

Table 3.1: (Upper Left) Function φ : {−1, 1}2 → R is represented in a table.
(Upper Right) φ is re-written using interpolation. (Bottom) The
terms of the upper-right equation are re-arranged, which yields
the Fourier expansion of function φ.

3.1.2 Low Degree Concentration of Fourier Coefficients

Fourier expansion replaces the table representation of a weighted function with

its Fourier coefficients. For a function with n Boolean variables, the complete

table representation requires 2n entries, and so does the full Fourier expansion.

Interestingly, many natural functions can be approximated well with only a few

Fourier coefficients. This raises a natural question: what type of functions can be

well approximated with a compact Fourier expansion?

We first discuss which functions can be represented exactly in the Fourier

domain with coefficients up to degree d. To answer this question, we show

a tight connection between Fourier representations with bounded degree and

decision trees with bounded depth. A decision tree for a weighted function

f : {−1, 1}n → R is a tree in which each inner node is labelled with one variable,

and has two out-going edges, one labelled with −1, and other one with 1. The
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leaf nodes are labelled with real values. When evaluating the value on an input

x = x1x2 . . . xn, we start from the root node, and follow the corresponding out-

going edges by inspecting the value of one variable at each step, until we reach

one of the leaf nodes. The value at the leaf node is the output for f(x). The depth

of the decision tree is defined as the longest path from the root node to one of

the leaf nodes. Figure 3.1 provides a decision tree representation for a weighted

Boolean function. One classical result (O’Donnell, 2008) states that if a function

can be captured by a decision tree with depth d, then it can be represented with

Fourier coefficients up to degree d:

Theorem 3.1.2. Suppose f : {−1, 1}n → R can be represented by a decision tree of

depth d, then all the coefficients whose degree are larger than d is zero in f ’s Fourier

expansion: f̂(S) = 0 for all S such that |S| > d.

We can also provide the converse of Theorem 3.1.2:

Theorem 3.1.3. Suppose f : {−1, 1}n → R can be represented by a Fourier expansion

with non-zero coefficients up to degree d, then f can be represented by the sum of several

decision trees, each of which has depth at most d.

Theorem 3.1.2 and Theorem 3.1.3 provide a tight connection between the

Fourier expansion and the decision trees. This is also part of the reason why

the Fourier representation is a powerful tool in PAC learning. Notice that

the Fourier representation complements the classical way of approximating

weighted functions exploiting independencies. To see this, suppose there is a

decision tree of the same structure as in Figure 3.1, but has depth d. According

to Theorem 3.1.2, it can be represented exactly with Fourier coefficients up to

degree d. In this specific example, the number of non-zero Fourier coefficients
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is O(22d). Nonetheless, no two variables in figure 3.1 are independent with each

other. Therefore, it’s not possible to decompose this factor into a product of

smaller factors with disjoint domains (exploiting independencies). Notice that

the full table representation of this factor has O(22d) entries, because different

nodes in the decision tree have different variables and there are O(2d) variables

in total in this example.

If we are willing to accept an approximate representation, low degree

Fourier coefficients can capture an even wider class of functions. We follow

the standard notion of ε-concentration:

Definition 3.1.4. The Fourier spectrum of f : {−1, 1}n → R is ε-concentrated on

degree up to k if and only ifW>k[f ] =
∑

S⊆[n],|S|>k f̂(S)2 < ε.

We say a CNF (DNF) formula has bounded width w if and only if every

clause (term) of the CNF (DNF) has at most w literals. In the literatures outside

of PAC Learning, this is also referred to as a CNF (DNF) with clause (term)

length w. Linial (Linial et al., 1993) proved the following result:

Theorem 3.1.5 (Linial). Suppose f : {−1, 1}n → {−1, 1} is computable by a DNF

(or CNF) of width w, then f ’s Fourier spectrum is ε-concentrated on degree up to

O(w log(1/ε)).

Linial’s result demonstrates the power of Fourier representations, since

bounded width CNF’s (or DNF’s) include a very rich class of functions. In-

terestingly, the bound does not depend on the number of clauses, even though

the clause-variable ratio is believed to characterize the hardness of satisfiability

problems.
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We extend Linial’s results to a class of weighted probabilistic graphical mod-

els, which are contractive with gap 1 − η and have bounded width w. To our

knowledge, this extension from the deterministic case to the probabilistic case

is novel.

Definition 3.1.6. Suppose f(x) : {−1, 1}n → R+ is a weighted function, we say f(x)

has bounded width w iff the number of variables in the domain of f is no more than w.

We say f(x) is contractive with gap 1 − η (0 ≤ η < 1) if and only if (1) for all x,

f(x) ≤ 1; (2) maxx f(x) = 1; (3) if f(x0) < 1, then f(x0) ≤ η.

The first and second conditions are mild restrictions. For a graphical model,

we can always rescale each factor properly to ensure its range is within [0, 1]

and the largest element is 1. The approximation bound we are going to prove

depends on the gap 1−η. Ideally, we want η to be small. The class of contractive

functions with gap 1−η still captures a wide class of interesting graphical mod-

els. For example, it captures Markov Logic Networks (Richardson & Domingos,

2006), when the weight of each clause is large. Notice that this is one of the pos-

sible necessary conditions we found success in proving the weight concentra-

tion result. In practice, because compact Fourier representation is more about

the structure of the weighted distribution (captured by a series of decision trees

of given depth), graphical models with large η could also have concentrated

weights. The main theorem we are going to prove is as follows:

Theorem 3.1.7. (Main) Suppose f(x) =
∏m

i=1 fi(xi), in which every fi is a contractive

function with width w and gap 1 − η, then f ’s Fourier spectrum is ε-concentrated on

degree up to O(w log(1/ε) logη ε) when η > 0 and O(w log(1/ε)) when η = 0.

The proof of theorem 3.1.7 relies on the notion of random restriction and our

own extension to the Hastad’s Switching Lemma (Hrastad, 1987).
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Definition 3.1.8. Let f(x) : {−1, 1}n → R and J be subset of all the variables

x1, . . . , xn. Let z be an assignment to remaining variables J = {−1, 1}n \ J . De-

fine f |J |z : {−1, 1}J → R to be the restricted function of f on J by setting all the

remaining variables in J according to z.

Definition 3.1.9. (δ-random restriction) A δ-random restriction of f(x) : {−1, 1}n →

R is defined as f |J |z, when elements in J are selected randomly with probability δ, and

z is formed by randomly setting variables in J to either −1 or 1. We also say J |z is a

δ-random restriction set.

With these definitions, we proved our weighted extension to the Hastad’s

Switching Lemma:

Lemma 3.1.10. (Weighted Hastad’s Switching Lemma) Suppose f(x) =
∏m

i=1 fi(xi),

in which every fi is a contractive function with width w and gap 1− η. Suppose J |z is

a δ-random restriction set, then

Pr
(
∃ decision tree h with depth t, ||h− fJ |z||∞ ≤ γ

)
≥ 1− 1

2

(
δ

1− δ8uw

)t
.

in which u = dlogη γe+ 1 if 0 < η < 1 or u = 1 if η = 0 and ||.||∞ means max |.|.

The formal proof of Lemma 3.1.10 is based on a clever generalization of the

proof by Razborov for the unweighted case (Razborov, 1995). We refer readers

to the full version of (Y. Xue, Ermon, et al., 2016) for the detailed proof.

Lemma 3.1.11. Suppose f(x) : {−1, 1}n → R and |f(x)| ≤ 1. J |z is a δ-random

restriction set. t ∈ N, γ > 0 and let

ε0 = Pr{¬∃ decision tree h with depth t such that ||f |J |z − h||∞ ≤ γ},

then the Fourier spectrum of f is 4 (ε0 + (1− ε0)γ2)-concentrated on degree up to 2t/δ.
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Proof. We first bound EJ |z
[∑

S⊆[n],|S|>t f̂ |J |z(S)2
]
. With probability 1−ε0, there is

a decision tree h with depth t such that ||f |J |z(x)− h(x)||∞ ≤ γ. In this scenario,∑
S⊆[n],|S|>t

f̂ |J |z(S)2 =
∑

S⊆[n],|S|>t

(
f̂ |J |z(S)− ĥ(S)

)2

. (3.1)

This is because due to Theorem 3.1.2, ĥ(S) = 0 for all S such that |S| > t. Because

|f |J |z(x)− h(x)| ≤ γ for all x, hence the right side of Equation 3.1 must satisfy

∑
S⊆[n],|S|>t

(
f̂ |J |z(S)− ĥ(S)

)2
≤
∑
S⊆[n]

(
f̂ |J |z(S)− ĥ(S)

)2
= E

[(
f |J |z(x)− h(x)

)2] ≤ γ2.

(3.2)

The second to the last equality of Equation 3.2 is due to the Parseval’s Identity.

With probability ε0, there are no decision trees close to f |J |z. However, because

|f |J |z| ≤ 1, we must have
∑

S⊆[n],|S|>t f̂ |J |z(S)2 ≤ 1. Summarizing these two

points, we have:

EJ |z

 ∑
S⊆[n],|S|>t

f̂ |J |z(S)2

 ≤ (1− ε0)γ2 + ε0.

Using a known result EJ |z
[
f̂ |J |z(S)2

]
=
∑

U⊆[n] Pr{U ∩J = S} · f̂(U)2, we have:

EJ |z

 ∑
S⊆[n],|S|>t

f̂ |J |z(S)2

 =
∑

S⊆[n],|S|>t

EJ |z
[
f̂ |J |z(S)2

]
=
∑
U⊆[n]

Pr{|U ∩ J | > t} · f̂(U)2.

(3.3)

The distribution of random variable |U∩J | is Binomial(|U |, δ). When |U | ≥ 2t/δ,

this variable has mean at least 2t, using Chernoff bound, Pr{|U ∩ J | ≤ t} ≤

(2/e)t < 3/4. Therefore,

(1− ε0)γ2 + ε0 ≥
∑
U⊆[n]

Pr{|U ∩ J | > t} · f̂(U)2 ≥
∑

U⊆[n],|U |≥2t/δ

Pr{|U ∩ J | > t} · f̂(U)2

≥
∑

U⊆[n],|U |≥2t/δ

(
1− 3

4

)
· f̂(U)2.

We get our claim
∑
|U |≥2t/δ f̂(U)2 ≤ 4((1− ε0)γ2 + ε0).
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Now we are ready to prove Theorem 3.1.7. Firstly suppose η > 0, choose

γ =
√
ε/8, which ensures 4(1 − ε0)γ2 ≤ 1/2 · ε. Next choose δ = 1/(16uw + 1),

t = C log(1/ε), which ensures

ε0 =
1

2

(
δ

1− δ8uw

)t
=

1

2
εC .

Choose C large enough, such that 4 ·1/2 ·εC ≤ 1/2 ·ε. Now we have 4((1−ε0)γ2 +

ε0) ≤ ε. At the same time, 2t/δ = C log(1/ε)(16uw + 1) = O(w log(1/ε) logη ε).1

3.1.3 Variable Elimination in the Fourier Domain

We have seen above that a Fourier representation can provide a useful com-

pact representation of certain complex probability distributions. In particular,

this is the case for distributions that can be captured with a relatively sparse

set of Fourier coefficients. We will now show the practical impact of this new

representation by using it in an inference setting. In this section, we propose

an inference algorithm which works like the classic Variable Elimination (VE)

Algorithm, except for passing messages represented in the Fourier domain.

The classical VE algorithm consists of two basic steps – the multiplication

step and the elimination step. The multiplication step takes f and g, and returns

f · g, while the elimination step sums out one variable xi from f by returning∑
xi
f . Hence, the success of the VE procedure in the Fourier domain depends

on efficient algorithms to carry out the aforementioned two steps. A naive ap-

proach is to transform the representation back to the value domain, carry out

the two steps there, then transform it back to Fourier space. While correct, this

1η = 0 corresponds to the classical CNF (or DNF) case.
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strategy would eliminate all the benefits of Fourier representations. Luckily, the

elimination step can be carried out in the Fourier domain as follows:

Theorem 3.1.12. Suppose f has a Fourier expansion: f(x) =
∑

S⊆[n] f̂(S)χS(x).

Then the Fourier expansion for f ′ =
∑

xi
f when xi is summed out is:∑

S⊆[n] f̂
′(S)χS(x), where f̂ ′(S) = 2f̂(S) if i 6∈ S and f̂ ′(S) = 0 if i ∈ S.

From Theorem 3.1.12, one only needs a linear scan of all the Fourier coeffi-

cients of f in order to compute the Fourier expansion for
∑

x0
f . Suppose f has

m non-zero coefficients in its Fourier representation, this linear scan takes time

O(m).

There are several ways to implement the multiplication step. The first option

is to use the school book multiplication. To multiply functions f and g, one mul-

tiplies every pair of their Fourier coefficients, and then combines similar terms.

If f and g have mf and mg terms in their Fourier representations respectively,

this operation takes time O(mfmg). As a second option for multiplication, one

can convert f and g to their value domain, multiply corresponding entries, and

then convert the result back to the Fourier domain. Suppose the union of the

domains of f and g has n variables (2n Fourier terms), the conversion between

the two domains dominates the complexity, which is O(n · 2n). Nonetheless,

when f and g are relatively dense, this method could have a better time com-

plexity than the school book multiplication. In our implementation, we trade

the complexity between the aforementioned two options, and always use the

one with lower time complexity.

Because we are working on models in which exact inference is intractable,

sometimes we need to truncate the Fourier representation to prevent an expo-

nential explosion. We implement two variants for truncation. One is to keep
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Figure 3.2: Weight concentration on low degree coefficients in the Fourier
domain. Weight random 3-SAT instances, with 20 variables
and nc clauses (Left) η = 0.1, (Right) η = 0.6.
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Figure 3.3: Log-partition function absolute errors for 15 × 15 small scale
mixed weights Ising Grids. Fourier is for the VE Algorithm in
the Fourier domain. mbe is for Mini-bucket Elimination. BP is
for Belief Propagation. (Left) Field 0.01. (Right) Field 0.1.

low degree Fourier coefficients, which is inspired by our theoretical observa-

tions. The other one is to keep Fourier coefficients with large absolute values,

which offers us a little bit extra flexibility, especially when the whole graphical

model is dominated by a few key variables and we would like to go over the

degree limitations occasionally. We found both variants work equally well.
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3.1.4 Experiments

Weight Concentration on Low Degree Coefficients

We first validate our theoretical results on the weight concentration on low-

degree coefficients in Fourier representations. We evaluate our results on ran-

dom weighted 3-SAT instances with 20 variables. Small instances are chosen

because we have to compute the full Fourier spectrum. The weighted 3-SAT in-

stances is specified by a CNF and a weight η. Each factor corresponds to a clause

in the CNF. When the clause is satisfied, the corresponding factor evaluates to 1,

otherwise evaluates to η. For each η and the number of clauses nc, we randomly

generate 100 instances. For each instance, we compute the squared sum weight

at each degree: Wk[f ] =
∑

S⊆[n],|S|=k f̂(S)2. Figure 3.2 shows the median value

of the squared sum weight over 100 instances for given η and nc in log scale. As

seen from the figure, although the full representation involves coefficients up to

degree 20 (20 variables), the weights are concentrated on low degree coefficients

(up to 5), regardless of η, which is in line with the theoretical result.

Applying Fourier Representation in Variable Elimination

We integrate the Fourier representation into the variable elimination algorithm,

and evaluate its performance as an approximate probabilistic inference scheme

to estimate the partition function of undirected graphical models. We imple-

mented two versions of the Fourier Variable Elimination Algorithm. One ver-

sion always keeps coefficients with the largest absolute values when we trun-

cate the representation. The other version keeps coefficients with the lowest

degree. Our main comparison is against Mini-Bucket Elimination, since the two
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Category #ins Minibucket Fourier (max coef) Fourier (min deg)
bn2o-30-* 18 3.91 1.21 · 10−2 1.36 · 10−2

grids2/50-* 72 5.12 3.67 · 10−6 7.81 · 10−6

grids2/75-* 103 18.34 5.41 · 10−4 6.87 · 10−4

grids2/90-* 105 26.16 2.23 · 10−3 5.71 · 10−3

blockmap 05* 48 1.25 · 10−6 4.34 · 10−9 4.34 · 10−9
students 03* 16 2.85 · 10−6 1.67 · 10−7 1.67 · 10−7

mastermind 03* 48 7.83 0.47 0.36
mastermind 04* 32 12.30 3.63 · 10−7 3.63 · 10−7
mastermind 05* 16 4.06 2.56 · 10−7 2.56 · 10−7
mastermind 06* 16 22.34 3.89 · 10−7 3.89 · 10−7
mastermind 10* 16 275.82 5.63 2.98

Category BP MCMC HAK
bn2o-30-* 0.94 · 10−2 0.34 8.3 · 10−4

grids2/50-* 1.53 · 10−2 – 1.53 · 10−2

grids2/75-* 2.94 · 10−2 – 2.94 · 10−2

grids2/90-* 5.59 · 10−2 – 5.22 · 10−2

blockmap 05* 0.11 – 8.73 · 10−9

students 03* 2.20 – 3.17 · 10−6

mastermind 03* 27.69 – 4.35 · 10−5
mastermind 04* 20.59 – 4.03 · 10−5

mastermind 05* 22.47 – 3.02 · 10−5

mastermind 06* 17.18 – 4.5 · 10−5

mastermind 10* 26.32 – 0.14

Table 3.2: The comparison of various inference algorithms on several cate-
gories in UAI 2010 Inference Challenge. The median differences
in log partition function | log10 Zapprox − log10 Ztrue| averaged
over benchmarks in each category are shown. Fourier VE algo-
rithms outperform Belief Propagation, MCMC and Minibucket
Algorithm. #ins is the number of instances in each category.

algorithms are both based on variable elimination, with the only difference be-

ing the way in which the messages are approximated. We obtained the source

code from the author of Mini-Bucket Elimination, which includes sophisticated

heuristics for splitting factors. The versions we obtained are used for Maxi-

mum A Posteriori Estimation (MAP). We augment this version to compute the

partition function by replacing the maximization operators by summation oper-

ators. We also compare our VE algorithm with MCMC and Loopy Belief Propa-
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gation. We implemented the classical Ogata-Tanemura scheme (Ogata & Tane-

mura, 1981) with Gibbs transitions in MCMC to estimate the partition function.

We use the implementation in LibDAI (Mooij, 2010) for belief propagation, with

random updates, damping rate of 0.1 and the maximal number of iterations

1,000,000. Throughout the experiment, we control the number of MCMC steps,

the i-bound of Minibucket and the message size of Fourier VE to make sure that

the algorithms complete in reasonable time (several minutes).

We first compare on small instances for which we can compute ground truth

using the state-of-the-art exact inference algorithm ACE (Darwiche & Marquis,

2002). We run on 15-by-15 Ising models with mixed coupling strengths and

various field strengths. We run 20 instances for each coupling strength. For a

fair comparison, we fix the size of the messages for both Fourier VE and Mini-

bucket to 210 = 1, 024. Under this message size VE algorithms cannot handle

the instances exactly. Figure 3.3 shows the results. The performance of the two

versions of the Fourier VE algorithm are almost the same, so we only show

one curve. Clearly the Fourier VE Algorithm outperforms the MCMC and the

Mini-bucket Elimination. It also outperforms Belief Propagation when the field

strength is relatively strong.

In addition, we compare our inference algorithms on large benchmarks from

the UAI 2010 Approximate Inference Challenge (UAI 2010 Approximate Inference

Challenge, n.d.). Because we need the ground truth to compare with, we only

consider benchmarks that can be solved by ACE (Darwiche & Marquis, 2002) in

2 hours time, and 8GB of memory. The second column of Table 3.2 shows the

number of instances that ACE completes with the exact answer. The 3rd to the

7th column of Table 3.2 shows the result for several inference algorithms, includ-
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ing the Minibucket algorithm with i-bound of 20, two versions of the Fourier

Variable Elimination algorithms, belief propagation and MCMC. To be fair with

Minibucket, we set the message size for Fourier VE to be 1,048,576 (220). Be-

cause the complexity of the multiplication step in Fourier VE is quadratic in the

number of coefficients, we further shrink the message size to 1,024 (210) dur-

ing multiplication. We allow 1,000,000 steps for burn in and another 1,000,000

steps for sampling in the MCMC approach. The same with the inference chal-

lenge, we compare inference algorithms on the difference in the log partition

function | logZapprox − logZtrue|. The table reports the median differences,

which are averaged over all benchmarks in each category. If one algorithm

fails to complete on one instance, we count the difference in partition func-

tion as +∞, so it is counted as the worst case when computing the median.

For MCMC, “–” means that the Ogata-Tanemura scheme did not find a belief

state with substantial probability mass, so the result is way off when taking

the logarithm. The results in Table 3.2 show that Fourier Variable Elimination

algorithms outperform MCMC, BP and Minibucket on many categories in the

Inference challenge. In particular, Fourier VE works well on grid and struc-

tural instances. We also listed the performance of a Double-loop Generalized

Belief Propagation (Heskes, Albers, & Kappen, 2003) in the last column of Ta-

ble 3.2. This implementation won one category in the Inference challenge, and

contains various improvements besides the techniques presented in the paper.

We used the parameter settings for high precision in the Inference challenge for

HAK. As we can see, Fourier VE matches or outperforms this implementation

in some categories. Unlike fully optimized HAK, Fourier VE is a simple variable

elimination algorithm, which involves passing messages only once. Indeed, the

median time for Fourier VE to complete on bn2o instances is about 40 seconds,
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Figure 3.4: Log-partition function absolute errors for Weighted Mod-
els with Backdoor Structure. (Left) Independent backdoors.
(Right) Linked backdoors.

while HAK takes 1800 seconds. We are researching on incorporating the Fourier

representation into message passing algorithms.

Next we evaluate their performance on a synthetically generated benchmark

beyond the capability of exact inference algorithms. For one instance of this

benchmark, we randomly generate factors of size 3 with low coupling weights.

We then add a backdoor structure to each instance, by enforcing coupling fac-

tors of size 3 in which the 3 variables of the factor must take the same value.

For these instances, we can compute the expected value of the partition func-

tion and compare it with the output of the algorithms. We report the results

on Figure 3.4. Here the experimental setup for each inference algorithm is kept

the same as the previous algorithm. The Mini-bucket approach is not reported,

as it performs very poorly on these instances. The performance of the two im-

plementations of Fourier VE are again similar, so they are combined into one

curve. These results show that the Fourier approach outperforms both MCMC

and Belief Propagation, and suggest that it can perform arbitrarily better than

both approaches as the size of the backdoor increases.
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Finally, we compare different inference algorithms on a machine learning

application. Here we learn a grid Ising model from data. The computation of

the partition function is beyond any exact inference methods. Hence in order to

compare the performance of different inference algorithms, we have to control

the training data that are fit into the Ising Model, to be able to predict what the

learned model looks like. To generate training pictures, we start with a template

with nine boxes (shown in Figure 3.5(a)). The training pictures are of size 25×25,

so the partition function cannot be computed exactly by variable elimination

algorithms with message size 220 = 1, 048, 576. Each of the nine boxes in the

template will have a 50% opportunity to appear in a training picture, and the

occurrences of the nine boxes are independent of each other. We further blur

the training images with 5% white noise. Figures 3.5(b) and 3.5(c) show two

examples of the generated training images. We then use these training images

to learn a grid Ising Model:

Pr(x) =
1

Z
exp

∑
i∈V

aixi +
∑

(i,j)∈E

bi,jxixj

 ,

where V , E are the node and edge set of a grid, respectively. We train the model

using contrastive divergence (G. E. Hinton, 2002), with k = 15 steps of blocked

Gibbs updates, on 20, 000 such training images. (As we will see, vanilla Gibbs

sampling, which updates one pixel at a time, does not work well on this prob-

lem.) We further encourage a sparse model by using a L1 regularizer. Once the

model is learned, we use inference algorithms to compute the marginal prob-

ability of each pixel. Figure 3.5(d,e,f,g) show the marginals computed for the

Fourier VE, MCMC, Minibucket Elimination, and the Mean Field on the learned

model (white means the probability is close to 1, black means close to 0). Both

the Minibucket and the Fourier VE keep a message size of 220 = 1, 048, 576,

so they cannot compute the marginals exactly. Fourier VE keeps coefficients

92



Figure 3.5: Comparison of several inference algorithms on computing the
marginal probabilities of an Ising model learned from synthetic
data. From left to right (a to g): (a) The template to generate
training images and (b,c) two example images in the training
set. (d,e,f,g) The marginal probabilities obtained via four in-
ference algorithms. (d) Fourier, (e) MCMC, (f) mbe, (g) mean
field. Only the Fourier algorithm captures the fact that the 9
boxes are presented half of the time independently in the train-
ing data.

with largest absolute value during multiplication. For pixels outside of the nine

boxes, in most circumstances they are black in the training images. Therefore,

their marginals in the learned model should be close to 0. For pixels within the

nine boxes, half of the time they are white in the training images. Hence, the

marginal probabilities of these pixels in the learned model should be roughly

0.5. We validated the two aforementioned empirical observations on images

with small size which we can compute the marginals exactly. As we can see,

only the Fourier Variable Elimination Algorithm is able to predict a marginal

close to 0.5 on these pixels. The performance of the MCMC algorithm (a Gibbs

sampler, updating one pixel at a time) is poor. The Minibucket Algorithm has

noise on some pixels. The marginals of the nine boxes predicted by mean field

are close to 1, a clearly wrong answer.

3.1.5 Discussion

We explore a novel way to exploit compact representations of high-dimensional

probability distributions in approximate probabilistic inference. Our approach
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is based on discrete Fourier embedding of weighted Boolean Functions, comple-

menting the classical method of exploiting conditional independence between

the variables. We show that a large class of weighted probabilistic graphical

models have a compact Fourier representation. This theoretical result opens up

a novel way of approximating probability distributions. We demonstrate the

significance of this approach by applying it to the variable elimination algo-

rithm, obtaining very encouraging results.
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3.2 Dimensionality Reduction using Parallel Problem Decom-

position

Exploiting parallelism and multi-core architectures is a natural way to speed

up computations in many domains. Recently, there has been great success in

parallel computation in fields such as scientific computing and information re-

trieval (Dean & Ghemawat, 2008; C. Chu et al., 2007).

Parallelism has also been taken into account as a promising way to solve

hard combinatorial problems. However, it remains challenging to exploit paral-

lelism to speed up combinatorial search due to the intricate non-local nature of

the interactions between variables in hard problems (Hamadi & Wintersteiger,

2013). One class of approaches in this domain is divide-and-conquer, which dy-

namically splits the search space into sub-spaces, and allocates each sub-space

to a parallel node (Chrabakh & Wolski, 2003; G. Chu, Stuckey, & Harwood, 2008;

Rao & Kumar, 1993; Regin, Rezgui, & Malapert, 2013; Moisan, Gaudreault, &

Quimper, 2013; Fischetti, Monaci, & Salvagnin, 2014). A key challenge in this

approach is that the solution time for subproblems can vary by several orders

of magnitude and is highly unpredictable. Frequent load re-balancing is re-

quired to keep all processors busy, but the load re-balancing process can result

in a substantial overhead cost. Another class of approaches harnesses portfolio

strategies, which runs a portfolio of solvers (of different type or with differ-

ent randomization) in parallel, and terminates as soon as one of the algorithms

completes. (Xu, Hutter, Hoos, & Leyton-Brown, 2008; Leyton-Brown, Nudel-

man, Andrew, Mcfadden, & Shoham, 2003; Malitsky, Sabharwal, Samulowitz, &

Sellmann, 2011; Kadioglu, Malitsky, Sabharwal, Samulowitz, & Sellmann, 2011;
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Hamadi & Sais, 2009; Biere, 2010; Kottler & Kaufmann, 2011; Schubert, Lewis,

& Becker, 2010; O’Mahony, Hebrard, Holland, & Nugent, 2008). Parallel port-

folio approaches can be highly effective. They do require however the use of

a collection of effective solvers that each excel at different types of problem in-

stances. In certain areas, such as SAT/SMT solving, we have such collections of

solvers but for other combinatorial tasks, we do not have many different solvers

available.

We exploit parallelism to boost dimensionality reduction with combinato-

rial constraints. Our framework complements the two parallel approaches dis-

cussed before. In our approach parallelism is used as a preprocessing step to

identify a promising portion of the search space to be explored by a complete

sequential solver. In our scheme, a set of parallel processes are first deployed to

solve a series of related subproblems. Next, the solutions to these subproblems

are aggregated to obtain an initial guess for a candidate solution to the original

problem. The aggregation is based on a key empirical observation that solutions

to the subproblems, when properly aggregated, provide information about so-

lutions for the original problem. Lastly, a global sequential solver searches for

a solution in an iterative deepening manner, starting from the promising por-

tion of the search space identified by the previous aggregation step. At a high

level, the initial guess obtained by aggregating solutions to subproblems pro-

vides the so-called backdoor information to the sequential solver, by forcing it

to start from the most promising portion of the search space. A backdoor set is a

set of variables, such that once their values are set correctly, the remaining prob-

lem can be solved in polynomial time (Williams, Gomes, & Selman, 2003; Dilk-

ina, Gomes, Malitsky, Sabharwal, & Sellmann, 2009; Hamadi, Marques-Silva, &

Wintersteiger, 2011).
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We empirically show that a global solver, when initialized with proper in-

formation obtained by solving the sub-problems, can solve a set of instances

in seconds, while it takes for the same solver hours to days to find the solution

without initialization. The strategy also outperforms state-of-the-art incomplete

solvers in terms of solution quality.

Our parallel approach compliments our previous work (Le Bras et al., 2014),

which integrates subtle human insights with combinatorial solvers for dimen-

sionality reduction. The parallel scheme presented here can be seen as to replace

crowdsourced human inputs with fully automatic parallel processes in search-

ing for backdoor information to initialize a combinatorial solver.

We first apply the parallel scheme to an NP-complete problem called the

Set Basis Problem, in which we are given a collection of subsets C of a finite

set U . The task is to find another, hopefully smaller, collection of subsets of U ,

called a “set basis”, such that each subset in C can be represented exactly by a

union of sets from the set basis. Intuitively, the set basis provides a compact

representation of the original collection of sets. The set basis problem occurs

in a range of applications, most prominently in machine learning, e.g., used as

a special type of matrix factorization technique (Miettinen, Mielikainen, Gionis,

Das, & Mannila, 2008). It also has applications in system security and protection,

where it is referred to as the role mining problem in access control (Vaidya,

Atluri, & Guo, 2007). It also has applications in secure broadcasting (Shu, Lee,

& Yannakakis, 2006) and computational biology (Nau, Markowsky, Woodbury,

& Amos, 1978).

While having many natural applications, our work is motivated by a novel

application in the field of computational sustainability (Gomes, Winter 2009),
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concerning the discovery of new materials for renewable energy sources such

as improved fuel cell catalysts (Le Bras et al., 2011). In this domain, the set basis

problem is used to find a succinct explanation of a large set of measurements

(X-ray diffraction patterns) that are represented in a discrete way as sets. Math-

ematically, this corresponds to a generalized version of the set basis problem

with extra constraints. Our parallel solver can be applied to this generalized

version as well, and we demonstrate significant speedups on a set of challeng-

ing benchmarks. Our work opens up a novel angle for using parallelism to solve

a set of dimensionality reduction problems with complex physical constraints.

3.2.1 Set Basis Problem

Sets will be denoted by uppercase letters, while members of a set will be de-

noted by lowercase letters. A collection of sets will be denoted using calli-

graphic letters.

The classic Set Basis Problem is defined as follows:

• Given: a collection C of subsets of a finite universe U , C = {C1, C2, . . . , Cm}

and a positive integer K;

• Find: a collection B = {B1, . . . , BK}where eachBi is a subset of U , and for

each Ci ∈ C, there exists a sub-collection Bi ⊆ B, such that Ci = ∪B∈BiB.

In this case, we say Bi covers Ci, and we say C is collectively covered by B.

Following common notations, B is referred to as a basis, and we call each

Bj ∈ B a basis set. If Bj ∈ Bi and Bi covers Ci, we call Bj a contributor of Ci,

and call Ci a sponsor of Bj . C1, C2, . . . , Cm are referred to as original sets.
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C0 {x0, x1, x2, x3} B0 ∪B2

C1 {x0, x2, x3} B0

C2 {x0, x1, x4} B2 ∪B4

C3 {x2, x3, x4} B1 ∪B4

C4 {x0, x1, x3} B2 ∪B3

C5 {x3, x4} B3 ∪B4

C6 {x2, x3} B1

B0 {x0, x2, x3} C0 ∩ C1

B1 {x2, x3} C3 ∩ C6

B2 {x0, x1} C0 ∩ C2 ∩ C4

B3 {x3} C4 ∩ C5

B4 {x4} C2 ∩ C3 ∩ C5

Table 3.3: (An example of set basis problem) C0, . . . , C6 are the original
sets. A basis of size 5 that cover these sets is given by B0, . . . , B4.
The rightmost column at the top shows how each original set
can be obtained from the union of one or more basis sets. The
given cover is minimum (i.e., containing a minimum number of
basis sets). The rightmost column at the bottom shows the du-
ality property: each basis set can be written as an intersection of
several original sets.

Intuitively, similar to the basis vectors in linear algebra, which provides a suc-

cinct representation of a linear space, a set basis with smallest cardinality K

plays the role of a compact representation of a collection of sets. The Set Basis

Problem is shown to be NP-hard in (Stockmeyer, 1975). We use I(C) to denote

an instance of the set basis problem which finds the basis for C. A simple in-

stance and its solution is reported in Table 3.3.

Most algorithms used in solving set basis problems are incomplete algo-

rithms. These algorithms are based on heuristics that work well in certain do-

mains, but often fail at covering sets exactly. For a survey, see Molloy et al

(Molloy et al., 2009). The authors of (Ene et al., 2008) implement the only com-

plete solver we are aware of. The idea is to translate the set basis problem as

a graph coloring problem, and then use existing graph coloring solvers. They

also develop a useful prepossessing technique, which can significantly reduce

the problem complexity.

The Set Basis Problem has a useful dual property, which has been implicitly
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used by previous researchers (Vaidya, Atluri, & Warner, 2006; Ene et al., 2008).

We formalize the idea by introducing Theorem 3.2.2.

Definition 3.2.1. (Closure) For a collection of sets C, define the closure of C, denoted

as C, which includes the collection of all possible intersections of sets in C:

• ∀Ci ∈ C, Ci ∈ C.

• For A ∈ C and B ∈ C, A ∩B ∈ C.

Theorem 3.2.2. For original sets C = {C1, C2, . . . , Cn}, suppose {B1, . . . , BK} is a

basis that collectively covers C. Define Ci = {Cj ∈ C|Bi ⊆ Cj}. Then B′i = ∩C∈CiC

(i = 1 . . . K) collectively covers C as well. Note for every B′i (i = 1 . . . K), B′i ∈ C.

One can check Theorem 3.2.2 by examining the example in Table 3.3. The

full proof is available in (Y. Xue et al., 2015). From the theorem, any set basis

problem has a solution of minimum cardinality, where each basis set is in C.

Therefore, it is sufficient to only search for basis within the closure C. Hence

throughout this paper, we assume all basis sets are within its closure for any

solutions to set basis problems. Theorem 3.2.2 also implies that each basis setBi ∈

C is an intersection of all its sponsor sets. One can observe this fact in Table 3.3. It

motivates our dual approach to solve the set basis problem, in which we search

for possible sponsors for each basis set.

3.2.2 Motivating Application in Materials Discovery

Our parallel scheme is motivated by a central task in combinatorial materials

discovery, namely the problem of identifying the crystalline phases of inorganic
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Figure 3.6: Demonstration of a phase identification problem. (Left) A set
of of sample points (blue circles) on a silicon wafer (triangle).
Colored areas show the regions where phase (basis pattern) α,
β, γ, δ exist. (Right) the X-ray diffraction pattern (XRD) for
sample points on the right edge of the triangle. The XRD pat-
terns transform from single phase region α to composite phase
region α+β to single phase region β, with small shiftings along
neighboring sample locations.

compounds based on an analysis of high-intensity X-ray patterns. Many in-

dustrial and technological innovations, from steam engines to silicon circuits

and solar panels, have been enabled through the discovery of advanced mate-

rials. Accelerating the pace of the discovery cycle of new materials is essential

to fostering innovative advances, improving human welfare and achieving sus-

tainable development.

In order to effectively assess many candidate materials, materials scientists

have developed high-throughput deposition techniques capable of generating

large composition-spread libraries (Takeuchi, Dover, & Koinuma, 2002). Once

synthesized, the promising libraries are characterized through X-ray diffraction

and fluorescence (Gregoire, Dale, Kazimirov, DiSalvo, & van Dover, 2009). The

goal of this characterization is to map the composition and the structure of each

library. This is called the phase identification problem and is the motivating ap-
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plication of our work. This problem aims to provide composition and structure

maps that can be correlated with interesting physical properties within an inor-

ganic library, such as conductivity, catalytic properties or light absorbency. Yet,

solving this problem remains a laborious time-consuming manual task that re-

lies on experts in materials science. The contribution of this work is to propose

a principled approach to solving this problem, accelerating the pace of analysis

of the composition libraries and alleviating the need for human experts.

In combinatorial materials discovery, a thin film is obtained by depositing

three metals onto a silicon wafer using guns pointing at three locations. As

metals are sputtered on the silicon wafer, different locations have different com-

binations of the metals, due to their distances from the gun points. As a result,

various crystal structures are formed across locations. Researchers then analyze

the X-ray diffraction patterns (XRD) at a selected set of sample points. The XRD

pattern at one sample point reflects the crystal structure of the underlying mate-

rial, and is a mixture of one or more basis patterns, each of which characterizes

one crystal structure. The overall goal of the phase identification problem is to

explain all the XRD patterns using a small number of basis patterns.

The phase identification problem can be formulated as an extended version

of the set basis problem. We begin by introducing some terminologies. Sim-

ilar to (Ermon et al., 2012), we use discrete representations of the XRD sig-

nals, where we characterize each XRD pattern with the locations of its peaks.

In this model, we define a peak q as a set of (sample point, location) pairs:

q = {(si, li)|i = 1, . . . , nq}, where {si|i = 1, . . . , nq} is a set of sample points

where peak q is present, and li is the location of peak q at sample point si, re-

spectively. We use the term phase to refer to a basis XRD pattern. Precisely, a
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phase comprises set of peaks that occur in the same set of sample points. We

use the term partial phase to refer to a subset of the peaks and/or a subset of the

sample points of a phase. We use lower-case letters p, q, r to represent peaks,

and use upper-case letters P,Q,R to represent phases. Given these definitions,

the Phase Identification Problem is:

Given A set of X-ray diffraction patterns representing different material com-

positions and a set of detected peaks for each pattern; and K, the expected

number of phases.

Find A set of K phases, characterized as a set of peaks and the sample points

in which they are involved.

Subject to Physical constraints that govern the underlying crystallographic

process. We use all the constraints in (Ermon et al., 2012). For example,

one physical constraint is that a phase must span a continuous region in

the silicon wafer.

Figure 3.6 shows an illustrative example. In this example, there are 4 peaks

for phase α, and 3 peaks for phase β. Peaks in phase α exist in all sample points

in the green region, and peaks in phase β exist in purple region. They co-exist

in several sample points in the mid-right region of the triangle.

There is an analogy between the Phase Identification Problem and the clas-

sical Set Basis Problem. In the Set Basis Problem, each original set is the union

of some basis sets. In the Phase Identification Problem, the XRD pattern at a

given sample point is a mixture of several phases. Here, the phase is analogous

to the basis set, and the XRD pattern at a given sample point is analogous to the

original set.
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3.2.3 Parallel Scheme

Set Basis Problem

We first illustrate of the idea of our parallel scheme in the context of the set ba-

sis problem. The main intuition of our parallel scheme comes from an empirical

observation on the structure of the solutions of the benchmark problems we con-

sidered. For each benchmark, we solve a series of related simplified subprob-

lems, where we restrict ourselves to finding basis for a subset of the original col-

lection of sets C. Interestingly, the solutions found by solving these subproblems

are connected to the basis in the global solution. Although strictly speaking, the

basis found for one sub-problem can only be expected to be a solution for that

particular sub-problem, we observe empirically that almost all basis sets from sub-

problems are supersets of one or more basis sets for the original, global problem. One

intuitive explanation is as follows: Recall that from Theorem 3.2.2 each basis

set can be obtained as the intersection of its sponsors. This fact applies both to

the original global problem and its relaxed versions (subproblems). Since there

are fewer sets to be covered in the subproblems, basis sets for the subproblems

are likely to have fewer sponsors, compared to the ones for the global problem.

When we take the intersection of fewer sets, we get a larger intersection. Hence

we observe that it is often the case that a basis set for a subproblem is a superset

of a basis set for the global problem.

Now suppose two subproblem basis sets A and B are both supersets of one

basis set C in the global solution. If we intersect A with B, then the elements

of C will remain in the intersection, but other elements from A or B will likely

be removed. In practice, we can often obtain a basis set in the global solution by
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Figure 3.7: A diagram showing the parallel scheme.

intersecting only a few basis sets from the solutions to subproblems.

Let us walk through the example in Table 3.3. First consider the subproblem

consisting of the first 5 original sets, C0...C4. It can be shown that a minimum set

basis is B1,1 = {x0, x1}, B1,2 = {x0, x3}, B1,3 = {x2, x3}, B1,4 = {x4}. As another

subproblem we consider the collection of all original sets except for C0 and C2.

We obtain a minimum basis B2,1 = {x0, x3}, B2,2 = {x2, x3}, B2,3 = {x3, x4},

B2,4 = {x0, x1, x3}. We see that each basis set of these two subproblems contains

at least one of the basis sets of the original, full set basis problem. For example,

B2 = {x0, x1} ⊆ B1,1 and B2 ⊆ B2,4. Moreover, one can obtain all basis sets

except B0 for the original problem by intersecting these basis sets. For example,

B3 = {x3} = B1,2 ∩B2,2.

Given this observation, we design a parallel scheme that works in two
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phases – an exploration phase, followed by an aggregation phase. The whole

process is shown in Figure 3.7, and the two phases are detailed in subsequent

subsections.

Exploration Phase: we use a set of parallel processes. Each one solves a sub-

problem obtained by restricting the global problem to finding the minimum basis

for a subset of the original collection of sets C.

Aggregation Phase: we first identify an initial solution candidate by looking at

all the possible intersections among basis sets found by solving sub-problems in

the exploration phase. We then use this candidate to initialize a complete solver,

which expands the search in an iterative deepening way to achieve complete-

ness, iteratively adding portions of the search space that are “close” to the initial

candidate.

Exploration Phase The exploration phase utilizes parallel processes to solve

a series of sub-problems. Recall the global problem is to find a basis of size K

for the collection C. Let {C1, C2, . . . , Cs} be a decomposition of C, which satisfies

C = C1 ∪ C2 ∪ . . . ∪ Cs. The sub-problem I(Ci) restricted on Ci is defined as:

• Given: Ci ⊆ C;

• Find: a basis Bi = {Bi,1, Bi,2, . . . , Bi,ki} with smallest cardinality, such that

every set C ′ ∈ Ci is covered by the union of a sub-collection of Bi.

The sub-problem is similar to the global problem, however, with one key

difference: we are solving an optimization problem where we look for a minimum

basis, as opposed to the global problem, which is the decision version of the

Set Basis Problem. In practice, the optimization is done by repeatedly solving

the decision problem, with increasing values of K. We observe empirically that
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the optimization is crucial for us to get meaningful basis sets to be used in later

aggregation steps. If we do not enforce the minimum cardinality constraint,

the problem becomes under-constrained and there could be redundant basis

sets found in this phase, which have no connections with the ones in the global

solution.

Sets C1, C2, . . . , Cs need not be mutually exclusive in the decomposition. We

group similar sets into one subproblem in our algorithm, so the resulting sub-

problem will have a small basis. To obtain collection Ci for the i-th subproblem,

we start from an initial collection of a singleton Ci = {Ci1}, where Ci1 is a ran-

domly picked element from C. We then add T − 1 sets most similar to Ci1 , using

the Jaccard similarity coefficient |A∩B||A∪B| . This results in a collection of T sets which

look similar. Notice that this is our method to find a collection of similar sets.

We expect other approach can work equally well.

Aggregation Phase In the aggregation phase, a centralized process searches

for the exact solution, starting from basis sets that are “close” to a candidate

solution selected from the closure of basis sets found by solving sub-problems,

and then expands its search space iteratively to achieve completeness.

To obtain a good initial candidate solution, we begin with a pre-solving step,

in which we restrict ourselves to find a good global solution only within the

closure of basis sets found by solving sub-problems. This is of course an incom-

plete procedure, because the solution might lie outside the closure. However,

due to the empirical connections between the basis sets found by parallel sub-

problem solving and the ones in the final solution, we often find the global

solution at this step.

107



If we cannot find a solution in the pre-solving step, the algorithm continues

with a re-solving step, in which an iterative deepening process is applied. It

starts with the best K basis sets found in the pre-solving step2, and iteratively

expands the search space until it finds a global solution. The two steps are

detailed as follows.

Pre-solving Step Suppose Bi is the basis found for sub-problem I(Ci), let

B0 = ∪si=1Bi and B0 be the closure of B0. The algorithm solves the following

problem in the pre-solving step:

• Given: B0;

• Find: Basis B∗ = {B∗1 , . . . , B∗K} from B0, such that B∗1 , . . . , B∗K minimizes

the total number of uncovered elements and falsely covered elements in

C3.

In practice B0 is still a huge space, so this optimization problem is hard to

solve. We thus apply an incomplete algorithm, which only samples a small

subset U ⊆ B0 and then select the best K basis sets from U . It does not affect the

later re-solving step, since it can start the iterative deepening process from any

B∗, whether optimal in B0 or not.

The incomplete algorithm first forms U by conducting multiple random

walks in the space of B0. Each random walk starts with a random basis set

B ∈ B0, and randomly intersects it with other basis sets in B0 to obtain a new

member in B0. All these sets are collected to form U . With probability p, the al-

gorithm chooses to intersect with the basis which maximizes the cardinality of
2Best in terms of the coverage of the initial set collection.
3An uncovered element of set Cj is one element contained in Cj , but is not covered by any

basis set that are contributors to Cj . A falsely covered element of set Cj is one element that is in
one basis set that is a contributor to set Cj , but is not contained in Cj .
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the intersection. With probability (1−p), the algorithm intersects with a random

set. In our experiment, p is set to 0.95, and we repeat this random walk several

times with different initial sets to make U large enough. Next the algorithm se-

lects the optimal basis of size K from U which maximizes the coverage of the

initial set collection, using a Mixed Integer Programming (MIP) formulation.

Re-solving Step The final step is the re-solving step. It takes as input the basis

B∗ = {B∗1 , B∗2 , . . . , B∗K} from the pre-solving step, and searches for a complete

solution to I(C) in an iterative deepening manner. The algorithm starts from a

highly restricted space D1, which is a small space close to B∗. If the algorithm

can find a global solution inD1, then it terminates and returns the solution. Oth-

erwise, it expands its search space to D2, and searches again in this expanded

space, and so on. At the last step, searching in Dn is equivalent to searching

in the original unconstrained space C, which is equivalent to solving the global

set-basis problem without initialization at all. However, this situation is rarely

seen in our experiments.

In practice, D1, . . . ,Dn are specified by adding extra constraints to the origi-

nal MIP formulation for the global problem, then iteratively removing them. Dn
corresponds to the case where all extra constraints are removed.

The actual design of D1, . . . ,Dn relies on the MIP formulation. In our MIP

formulation, there are indicator variables yi,k (1 ≤ i ≤ n and 1 ≤ k ≤ K), where

yi,k = 1 if and only if the i-th element is contained in the k-th basis set Bk. We

also have indicator variables zk,j , where zk,j is one if and only if the basis set Bk

is a contributor of the original set Cj (or equivalently, Cj is a sponsor set for Bk).

Because we empirically observe that B∗1 , B∗2 , . . . , B∗K are often super-sets of
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the basis sets in the exact solution, we construct the constrained spaceD1, . . . ,Dn
by enforcing the sponsor sets of certain basis sets. Notice that this is a straight-

forward step in the MIP formulation, since we only need to fix the correspond-

ing indicator variables zk,j to 1 to enforce Cj as a sponsor set for Bk. The hope is

that these clamped variables will include a subset of backdoor variables for the

original search problem (Williams et al., 2003; Dilkina et al., 2009; Hamadi et al.,

2011). The runtime of the sequential solver is dramatically reduced when the

aggregation phase is successful in identifying a promising portion of the search

space.

As pointed out by Theorem 3.2.2, we can represent B∗1 , B∗2 , . . . , B∗K in terms

of their sponsors:

B∗1 = C11 ∩ C12 ∩ . . . ∩ C1s1

B∗2 = C21 ∩ C22 ∩ . . . ∩ C2s2

. . .

B∗K = CK1 ∩ CK2 ∩ . . . ∩ CKsK

in which C11, C12, . . . , C21, . . . , CKsK are all original sets in collection C. For the

first restricted search space D1, we enforce the constraint that the sponsors for

the i-th basis set Bi must contain all the sponsors of B∗i for all i ∈ {1, . . . , K}.

Notice this implies Bi ⊆ B∗i .

In later steps, we gradually relax these extra constraints, by freeing some of

the indicator variables zk,j’s which were clamped to 1 in previous steps. Dn de-

notes the search space when all these constraints are removed, which is equiv-

alent to searching the entire space. The last thing is to decide the order used to

remove these sponsor constraints. Intuitively, if one particular set is discovered

many times as a sponsor set in the solutions to subproblems, then it should have
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a high chance to be the sponsor set in the global solution, because it fits in the

solutions to many subproblems. Given this intuition, we associate each sponsor

set with a confidence score, and define n thresholds: 0 = p1 < . . . < pn = +∞. In

the k-th round (search in Dk), we remove all the sponsor sets whose confidence

score is lower than pk. We define the confidence score of a particular set as the

number of times it appears as a sponsor of a basis set in subproblem solutions,

which can be aggregated from the solutions to subproblems.

Phase Identification Problem

We employ a similar parallel scheme to solve the phase identification problem

of combinatorial materials discovery, which also includes an exploration phase

followed by an aggregation phase.

Exploration Phase In the Exploration Phase, a set of subproblems are solved

in parallel. For the Phase Identification Problem, a subproblem is defined as

finding the minimal number of phases to explain a contiguous region of sample

points on the silicon wafer.

This is analogous to the exploration phase defined for set basis problem –

finding basis for a subset of sets. The reason why we emphasize a contigu-

ous region is because of the underlying physical constraint: the phase found

must span a contiguous region in the silicon wafer. Figure 3.8 shows a sample

decomposition into subproblems. Here each colored small region represents a

subproblem.

Aggregation Phase The exploration phase produces a set of partial phases

from solving subproblems. We call them partial because each of them describes
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only a subset of sample points.

As in the Set Basis Problem, we find partial phases can be merged together

into larger phases. Figure 3.8 shows an illustrative example. Formally, two

phasesA andB may be merged into a new phase C, denoted as C = A◦B, which

contains all the peaks fromA andB whose locations match across all the sample

points they both present. The peaks inC then span the union of sample points of

A and B. The merge operator ◦ plays the same role as the intersection operator

of the Set Basis Problem. Similarly, we define S as the closure of (partial) phases

S with respect to the merge operator ◦, which generates all possible merging of

the phases in S.

Suppose B0 = ∪si=1Bi is the set of all (partial) phases identified by solving

subproblems, where Bi is the set of (partial) phases identified when solving

subproblem i. As with the Set Basis Problem, the aggregation phase also has

a pre-solving step, and a re-solving step. The pre-solving step takes as input the

responses B0 from all subproblems, and extracts a subset of K partial phases

from the closure B0 as the candidate solution, which explains as many peaks

on the silicon wafer as possible. The re-solving step searches in an iterative-

deepening way for an exact solution, starting from the phases close to the can-

didate solution from the pre-solving step.

As in the pre-solving step of the Set Basis Problem, B0 could be a large space

and we are unable to enumerate all items in B0 to find an exact solution. Instead,

we take an approximate approach which first expands B0 to a larger set B′ ⊆ B0

using a greedy approach. Then we employ a Mixed-Integer Program (MIP) for-

mulation that selects the bestK phases from B′ which covers the largest number

of peaks. The greedy algorithm and the MIP encoding are similar in concept to
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At sample point a, b, c: 

 p1  p2      p3   p4  p5 

a

b

c

Figure 3.8: An example showing subproblem decomposition and merging
of partial phases. (Subproblem decomposition) Each of the red,
yellow and blue areas represents a subproblem, which is to find
the minimal number of (partial) phases to explain all sample
points in a colored area. (Merging of partial phases) Suppose
partial phase A and B are discovered by solving the subprob-
lem in the blue and the yellow region, respectively. A has peaks
p1, p2, p3 and all these peaks span the entire blue region, while
B has peaks p2, p3, p5 and all these peaks span the entire yellow
region. Notice peaks p2, p3 match on sample points a, b and c,
which are all the sample points in the intersection of the blue
and yellow regions. Hence, the partial phases A and B can be
merged into a larger phase C, which has peaks p2 and p3, but
span all sample points in both the blue and yellow regions.

the ones used in solving the Set Basis Problem, but take into account extra phys-

ical constraints.

The Re-solving step expands the search from the pre-solving step in an iter-

atively deepening way to achieve completeness. Suppose the pre-solving step

produces K phases P ∗1 , P ∗2 , . . . , P ∗K . In the first round of the re-solving step, the

complete solver is initialized such that the first phase must contain all the peaks

of P ∗1 , the second phase must contain all the peaks of P ∗2 , etc. If the solver can

find a solution with this initialization, then the solver terminates and returns

the results. Otherwise, it usually detects a contradiction very quickly. In this
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case, we remove some peaks from P ∗1 , . . . , P
∗
K and re-solve the problem. We

continue this re-solving process, until all the peaks from the Pre-solving step

are removed, in which case the solver is free to explore the entire space without

any restrictions. Again, this is highly unlikely in practice. In most cases, the

solver is able to find solutions in the first one or two iterations.

3.2.4 Experiments

We test the performance of our parallel scheme on both the classic set basis

problem, and on the phase identification problem in materials science.

Classic Set Basis Problem

Setup We test the parallel scheme on synthetic instances. We use a random

ensemble similar to Molloy et al (Molloy et al., 2009), where every synthetic

instance is characterized by n, m, k, e, p. To generate one synthetic instance, we

first generate k basis sets. Every set contains [n p
100

] objects, uniformly sampled

from a finite universe of n elements. We then generate m sets. Each set is a

union of e randomly chosen basis sets from those initially generated.

We develop a Mixed Integer Programming (MIP) model to solve the set ba-

sis problem. The MIP model takes the original sets C and an integer K, and

either returns a basis of size K that covers C exactly, or reports failure. We com-

pare the performance of the MIP formulation with and without the initialization

obtained using the parallel scheme described in the previous section.

We empirically observe high variability in the running times of the sub-
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problems solved in the exploration phase, as commonly observed for NP-hard

problems. Luckily, our parallel scheme can still be used without waiting for ev-

ery sub-problem to complete. Specifically, we set up a cut-off threshold of 90%,

such that the central process waits until 90% of sub-problems are solved before

carrying out the aggregation phase. We also run 5 instances of the aggregation

phase in parallel, each with a different random initialization, and terminate as

soon as the fastest one finds a solution. In our experiment, n = m = 100. All

MIPs are solved using IBM CPLEX 12.6, on a cluster of Intel x5690 3.46GHz core

processors with 4 gigabytes of memory. We let each subproblem contain T = 15

sets for all instances.

Results Results obtained with and without initialization from parallel sub-

problem solving are reported in Table 3.4. First, we see it takes much less wall-

clock time (typically, by several orders of magnitude) for the complete solver

to find the exact solution if it is initialized with the information collected from

the sub-problems. The improvements are significant even when taking into ac-

count the time required for solving sub-problems in the exploration phase. In

this case, we obtain several orders of magnitude saving in terms of solving time.

For example, it takes about 50 seconds (wall-clock time) to solve A6, but about

5 hours without parallel initialization. Because we run s = 100 sub-problems in

the exploration phase, another comparison would be based on CPU time, which

is given by (100 · Exploration + 5 · Aggregation). Under this measurement, our

parallel scheme still outperforms the sequential approach on problem instances

A2, A3, A5, A6, A8. Even though our CPU time is longer for some instances,

our parallel scheme can be easily applied to thousands of cores. As parallel re-

4For this instance, 73 out of 100 subproblem instances complete within 2 hours. Thus the ag-
gregation phase is conducted based on these instances. This exploration time here is calculated
based on the slowest of the 73 instances.
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Instance Solution Quality
HPe Fast-Miner ASSO Complete

No. K K ′ E% K ′ E% K ′ E% K ′ E%
A1 8 65 0 8 100 8 26.56 8 0
A2 8 86 0 8 100 8 18.18 8 0
A3 10 41 0 10 96.67 10 25 10 0
A4 10 47 0 10 100 10 18.92 10 0
A5 10 58 0 10 100 10 52 10 0
A6 12 51 0 12 96.3 12 25 12 0
A7 12 63 0 12 100 12 38.46 12 0
A8 12 93 0 12 100 12 51.06 12 0

Instance Run-time for Complete Method (seconds)
Total Time Total Time

No. K Exploration Aggregation Parallel Sequential
A1 8 30.61 7.21 37.82 2199.07
A2 8 42.32 149.18 191.5 11374.34
A3 10 12.09 0.42 12.51 1561.46
A4 10 136.82 10.94 147.76 332.93
A5 10 55.52 2.60 58.12 57004.13
A6 12 46.85 0.75 47.6 17774.04
A7 12 6963.424 13.47 6967.89 > 72 hours
A8 12 176.4 5.77 182.17 > 72 hours

Table 3.4: Comparison of different methods on classic set basis problems.
K is the number basis sets used by the synthetic generator. In
the solution quality block, we show the basis size K ′ and the
error rate E% for incomplete method HPe, FastMiner and ASSO
and the complete method. K ′ > K means more basis sets are
used than optimal. E% > 0 means the coverage is not perfect.
The running time for incomplete solvers are little, so they are not
listed. In the run-time block, Exploration, Aggregation, Total Time
Parallel and Sequential show the wall times of the corresponding
phases in the parallel scheme and the time to solve the instance
sequentially (Total Time Parallel = Exploration + Aggregation).

sources are becoming more and more accessible, it is obvious to see the benefit

of this scheme. Note that we can also exploit at the same time the built-in par-

allelism of CPLEX to solve these instances. However, because CPLEX cannot

explore the problem structure explicitly, it cannot achieve significant speed-ups

on many instances. For example, it takes 12813.15, 259100.25 and 113475.12 sec-
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onds to solve the largest A6, A7 and A8 instances using CPLEX on 12-cores.

Although our focus is on improving the run-time of exact solvers, Table 3.4

also shows the performance of several state-of-the-art incomplete solvers on

these synthetic instances. We implemented FastMiner from (Vaidya et al., 2006),

ASSO from (Miettinen et al., 2008), and HPe from (Ene et al., 2008), which are

among the most widely used incomplete algorithms. FastMiner and ASSO take

the size of the basis K as input, and output K basis sets. They are incomplete

in the sense that their solution may contain false positives and false negatives,

which are defined as follows. c is a false positive element if c 6∈ Ci, but c is in

one basis set that is a contributor to Ci. c is a false negative element, if c ∈ Ci,

but c is not covered by any basis sets contributing for Ci. FastMiner does not

provide the information about which basis set contributes to an original set. We

therefore give the most conservative assignment: B is a contributor to Ci if and

only if B ⊆ Ci. This assignment introduces no false positives. Both FastMiner

and ASSO have parameters to tune. Our report are based on the best parame-

ters we found. We report the maximum error rate in Table 3.4, which is defined

as maxCi∈C{(fti + ffi)/|Ci|}, where fti and ffi are the number of false positive

and false negative elements at Ci, respectively. As seen from the table, neither of

these two algorithms can recover the exact solution. ASSO performs better, but

it still has 51.06% error rate on the hardest benchmark. We think the reason why

FastMiner performs poorly is because it is usually used in situations where cer-

tain number of false positives can be tolerated. HPe is a graph based incomplete

algorithm. It is guaranteed to find a complete cover, however it might require

a number of basis sets K ′ larger than the optimal number K. We implemented

both the greedy algorithm and the lattice-based post-improvement for HPe, and

we used the best heuristic reported by the authors. As we can see from Table 3.4,
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Figure 3.9: The overlap between the s-basis sets and the g-basis sets in each
benchmark. The bars show the median value for (inverse) hit-
ting rate, and error bars show the 10-th and 90-th percentile.

HPe often needs five times more basis sets to cover the entire collection.

The authors in (Ene et al., 2008) implemented the only complete solver we

are aware of. Unfortunately, we can not obtain their code, so a direct comparison

is not possible. However, the parallel scheme we developed does not make any

assumption on the specific complete solver used. We expect other complete

solvers (in addition to the MIP one we experimented with) will improve from

the initialization information provided by solving subproblems.

Discussion We now provide empirical evidence that justifies and explains the

surprising empirical effectiveness of our method. For clarity, we call a basis

set found by solving subproblems an s-basis set, and a basis set in the global

solution a g-basis set. For any set S, we define the hitting rate as: p(S) =

maxB∈B |S ∩ B|/|B|, and the inverse hitting rate as: ip(S) = maxB∈B |S ∩ B|/|S|,

where B is chosen among all g-basis set. Intuitively, p(S) and ip(S) measure the

distance between S and the closest g-basis set. Note that p(S) = 1 (respectively

ip(S) = 1) implies the basis S is the superset (respectively subset) of at least

one g-basis in the global solution. If p(S) and ip(S) are both 1, then S matches

exactly to one g-basis set5.

5Assuming no g-basis set is the subset of another g-basis set, which is the case in instances
A1 to A8.
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Figure 3.10: The median (inverse) hitting rate of a random intersection of
multiple s-basis sets. X-axis shows the number of s-basis sets
involved in the intersection. (Top) The basis sets in one in-
tersection are supersets of one g-basis set. (Bottom) The basis
sets in one intersection are randomly selected.

First, we study the overlap between a single s-basis set and all g-basis sets.

As shown in Figure 3.9, across the benchmarks we considered the hitting rate is

almost always one (with the lowest mean is for A2, which is 0.9983). This means

that the s-basis sets are almost always supersets of at least one g-basis set in the global

solution.

Next, we study the relationship between the intersection of multiple s-basis

sets and g-basis sets. Figure 3.10 shows the median hitting rate and inverse

hitting rate with respect to different number of s-basis sets involved in one in-

tersection. The error bars show the 10-th and 90-th percentile. The result is aver-

aged over all instances A1 through A8, with equal number of samples obtained

from each instance. In the top chart, the s-basis sets involved in one intersection

are supersets of one common g-basis set. In this case, the hitting rate is always 1.

However, by intersecting only a few (2 or 3) s-basis sets, the inverse hitting rate

becomes close to 1 as well, which implies the intersection becomes very close to

an exact match of one g-basis set. This is in contrast with the result in the bottom

chart, where the intersection is among randomly selected s-basis sets. In this

case, when we increase the size of the intersection, fewer and fewer elements

119



System # Points Parallel (secs) Sequential (secs)
A1 45 119.22 902.99
A2 45 156.24 588.85
A3 45 74.37 537.55
B1 60 118.97 972.8
B2 60 177.89 591.66
B3 60 122.4 1060.79
B4 60 133.25 633.52
C1 45 3292.44 17441.39
C2 45 1186.70 3948.41
D1 28 207.92 622.16
D2 28 281.4 2182.23
D3 28 903.41 2357.87

Table 3.5: The time for solving phase identification problems. # Points is
the number of sample points in the system. Parallel and Sequen-
tial show the time to solve the problem with and without paral-
lel initialization, respectively.

remain in the intersection. The bottom chart of Figure 3.10 shows the percent-

age of elements left, defined as | ∩ki=1 Ai|/maxki=1 |Ai|. When intersecting 5 basis

sets, in median case less than 10% elements still remain in the intersection.

The top and bottom charts of Figure 3.10 provide an empirical explanation

for the success of our scheme: as we randomly intersect basis sets from the

solutions to the subproblems, some intersections become close to the empty set

(as in the bottom chart case), but others converge to one of the g-basis sets in

the global solution (as in the upper chart case). In the second case, we obtain

good solution candidates for the global problem by intersecting solutions to

subproblems.
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Phase Identification Problem in Materials Discovery

Setup We augmented the Satisfiability Modulo Theory formulation as de-

scribed in (Ermon et al., 2012) with our parallel scheme and use the Z3

solver (De Moura & Bjørner, 2008) in the experiments. We use Z3 directly in

the exploration phase, and then use it as a component of an iterative deepen-

ing search scheme in the aggregation phase. Due to a rather more imbalanced

distribution of the running times across different sub-problems, we only wait

for 50% of sub-problem solvers to complete before conducting the aggregation

phase.

Table 3.5 displays the experimental results for the phase identification prob-

lem. We run on the same benchmark instances used in the work of Ermon et

al (Ermon et al., 2012). We can see from Table 3.5 that in all cases the solver

completes much faster when initialized with information obtained by parallel

subproblem solving. This improvement in the run-time allows us to analyze

much bigger problems than previously possible in combinatorial materials dis-

covery.

3.2.5 Discussion

We introduced a novel angle for using parallelism to exploit hidden structure of

hard dimensionality reduction problems with complex physical constraints. We

demonstrated empirical success in solving the Set Basis Problem, obtaining over

an order of magnitude speedups on certain problem instances. We also applied

our parallel scheme to a novel application area, concerning the discovery of

new materials for renewable energy sources. Future directions include applying

121



this approach to other combinatorial optimization problems, and exploring its

theoretical foundations.
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CHAPTER 4

CONCLUSION

In this thesis, I first introduce a novel computational framework, based on em-

beddings, to tackle multi-stage inference problems at the intersection of reason-

ing, optimization, and learning, whose complexity is beyond NP. As a first ex-

ample, I present a novel way to encode the reward allocation problem for a two-

stage organizer–agent game as a single-stage optimization problem. The encod-

ing embeds an approximation of the agents’ decision-making process into the

organizer’s problem. We apply this methodology to eBird, a well-established

citizen-science program for collecting bird observations, in a game called Avi-

caching. Our AI-based reward allocation was shown to be highly effective, sur-

passing the expectations of the eBird organizers and bird conservation experts.

As a second example, I present a novel constant approximation algorithm to

solve stochastic optimization problems which identifies the optimal policy that

maximizes the expectation of a stochastic objective. To tackle this problem, I

propose the embedding of its intractable counting subproblems as queries to

NP oracles subject to additional XOR constraints. As a result, the entire problem

is encoded as a single NP-equivalent optimization. The approach outperforms

state-of-the-art solvers based on variational inference as well as MCMC sam-

pling, on probabilistic inference benchmarks, deep learning applications, and a

novel decision-making application in network design for wildlife conservation.

In addition, I apply the embedding technique to automated reasoning and

machine learning for dimensionality reduction in scientific discovery. As one

example, I propose embeddings based on Fourier analysis as a compact rep-

resentation of high-dimensional probability distributions. I show that a large
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class of probabilistic models have a compact Fourier embedding. A simple

variable elimination algorithm equipped with the Fourier embedding is able to

match the performance of the state-of-the-art solvers in probabilistic inference.

Motivated by an application in materials discovery with complex physical con-

straints, we show that human computation, crowdsourcing, and parallel com-

putation can identify key backdoor information, thereby drastically reducing

the computation time from days to minutes in a novel dimensionality reduc-

tion application to decompose signals in a high-dimensional space into a linear

combination of a few basis patterns, subject to additional physical rules.

My research was made possible through the Computational Sustainability

research network, via our collaboration with the eBird team of the Cornell Lab

of Ornithology and the Joint Center for Artificial Photosynthesis (JCAP) at Cal-

tech. By collaborating with ecologists from Cornell Lab of Ornithology, we were

able to deploy our AI-based reward allocation in the field. The reward scheme

proved to be highly effective, surpassing the expectations of the eBird orga-

nizers and bird conservation experts. We were also fortunate to deploy our

materials discovery pipeline at JCAP. Materials scientists were able to analyze

thousands of X-ray diffraction patterns with our system, and the results led to

the discovery of new materials for energy applications. Our work was featured

as the cover article and the Editors’ Choice in the journal Combinatorial Science of

the American Chemical Society. It also received recognition with the IAAI-2017

Innovative Application Award.
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