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ABSTRACT 

We study the dynamics of sexually-transmitted pathogens in a heterosexually active 

population, where females are divided into two different groups based on their suscep­

tibility to two distinct pathogenic strains. It is assumed that a host cannot be invaded 

simultaneously by both disease agents and that when symptoms appear-a function of 

the pathogen, strain, virulence, and an individual's degree suceptibility-then individ­

uals are treated and/or recover. Heterogeneity in susceptibility to the acquisition of 

infection and/ or in variability in the length of the infection period of the female subpop­

ulations is incorporated. Pathogens' coexistence is highly unlikely on homogeneously 

mixing female and male populations with no heterogeneity among individuals of ei­

ther gender. Variability in suceptibility in the female subpopulation makes coexistence 

possible albeit under a complex set of circumnstances that must include differences in 

contact/mixing rates between the groups of females and the male population as well as 

differences in the lengths of their average periods of infectiousness for the three groups. 

Coexistence seems quite difficult but not impossible if heterogeneity is limited. 
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1. INTRODUCTION 

A <;entral question in evolutionary biology, still demanding a satisfactory explana­

tion, focuses on the evolutionary need/advantage of sexual versus asexual reproduction. 

A quick glance at the literature on the evolution of sexual reproduction reveals (not 

surprisingly) a tremendous amount of interest and research activity on this question 

amongst theoretical and field biologists (see Maynard Smith, 1978). Most theoret­

ical studies on the importance of sexual reproduction have been carried out within 

the field of theoretical population genetics and with the help of mathematical mod­

els that must necessarily incorporate mating systems at the level of the gene. This 

article begins with the obvious-but often ignored-assumption that the evolution 

of sexually-transmitted diseases (STDs) among biological organisms must be closely 

linked to the evolution of sexual reproduction and, therefore, diseases that are trans­

mitted through some type of sexual activity cannot be systematically studied without 

frameworks and models that include males and females. 

In previous papers (Castilla-Chavez, Huang, and Li, 1993, 1994), we have analyzed 

S-I-S STD models with multiple competing strains in an exclusively heterosexually­

active population and concluded that in a behaviorally and genetically homogeneous 

population coexistence is not possible except under very special and nongeneric circum­

stances. Our analysis under these assumptions is complete; that is, we have provided 

the global stability analysis of the stationary states for two-strain models. In addition, 

we have also provided the local stability analysis of models where a host faces any 

number competing strains. We have also partially analyzed a model extension to deal 

with STD dynamics in a two-sex population that is also stratified by the individuals' 

infection stages. This level of stratification does not increase the level of heterogeneity 

needed to rule out competitive exclusion. 



4 

Biologists have been concerned with evolutionary interactions that result from chang­

ing host and pathogen populations. Advances in evolutionary biology, behavior, and 

social' dynamics have brought to the forefront of research the importance of a multi­

tude of factors that influence not only disease dynamics but that also play a role on the 

evolution of virulence (Anderson and May 1991; Ewald, 1993, 1994; Brauer et al. 1992; 

Blythe et al. 1993; Hadeler and Castilla-Chavez 1994; Castilla-Chavez et al. 1993a,b, 

1994; Heiderich et al. 1994; Velasco et al. 1994; Hsu-Schmitz 1993), Castilla-Chavez, 

Velasco, and Fridman 1994). Host-vector interactions such as those observed in the 

myxoma-rabbit system (Levin and Pimentel1981; Levin 1983a, b; May and Anderson 

1983, 1990) argue against pathogen evolution towards reduce virulence while.providing 

rich systems for the study of coexistence and coevolution. 

A useful view within the context of host-parasite systems is to think of susceptible 

hosts as patches available for colonization by infectious pathogens. Hence it is possible 

to pose general questions such as: What are the possible outcomes of coevolutionary 

races when different strains of the same pathogen compete for the same patches? When 

is competitive exclusion the rule? What happens if the quality or desirability of a 

patch changes over time? Mathematical models and field studies have begun to yield 

useful results and have helped us formulate new paradigms on which we can study the 

outcomes of coevolution (see Anderson and May, 1982, 1991; Beck, 1984; Bremermann 

and Pickering, 1983; Bremermann and Thieme, 1989; Castilla-Chavez et al., 1988, 1989; 

Dietz, 1979; Dwyer et al., 1990; Fenner and Myers, 1978; Fenner and Ratcliffe, 1965; 

Levin, 1983a, 1983b; Levin and Pimentel, 1981; May and Anderson, 1983). 

This paper focusses on the dynamics of sexually-transmitted pathogens in a hetero­

sexually active population, where females are divided into two groups based on their 

susceptibility to infection (colonization) by two distinct pathogenic strains of an STD. 
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It is assumed that a host cannot be invaded simultaneously by both disease agents 

(that is, there is no superinfection) and that when symptoms appear-a function of the 

pathogen, strain, virulence, and an individual's degree suceptibility-then individuals 

are treated and/or recover. Heterogeneity in susceptibility to the acquisition of infec­

tion and/ or in variability in the length of the infection period of female populations 

is incorporated in an expanded two-sex model. The presence of only a homogeneous 

female group and a homogeneous male group make disease coexistence impossible. 

Variability in suceptibility in female subpopulations (two groupsO makes coexistence 

possible albeit under a complex sets of circumnstances that must take into account 

differences in contact/mixing rates between females and males as well as differences in 

the lengths of their average periods of infectiousness. Coexistence seems difficult to 

achieve but it is not impossible. 

This manuscript is organized as follows: Section 2 introduces our model and sim­

plifies it using some recent results on asymptotically autonomous epidemic models 

(Castilla-Chavez and Thieme, 1993; Thieme, 1992, 1993, 1994). The necessary thresh­

olds are computed and the stability of the infection-free state is studied in Section 3; 

A principle of competitive exclusion for SIS models with homogeneous mixing is es­

tablished in Section 4; Section 5 provides our coexistence results; and in Section 6 we 

discuss the consequences of our results and outline some future work. 

2. MODEL DESCRIPTION AND THE GENERATED MONOTONE FLOW 

The use of differential equations for STD models began with Ross in 1911. Ross intro­

duced a differential equation model for the transmission dynamics of vector-transmitted 

diseases which, as he recognized, was formally equivalent to a model for the transmis­

sion dynamics of STDs. Ross' theoretical work was driven by his efforts to develop 
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management strategies for the control of malaria. The formulation of the first explicit 

STD model, a gonorrhea model, is due to Cooke and Yorke (1973) . 

. 
An important observation made by Ross is that the average total rate of contacts 

between host and vectors must be conserved (Ross, 1911, p.667). This simple conser-

vation law of contact rates has become the basis for modeling heterogeneous contact 

structures (Busenberg and Castilla-Chavez, 1989, 1991; Castilla-Chavez and Busen­

berg, 1991). We use it in this Section. 

A common but limiting assumption is that the sizes of the interacting sexually-active 

populations are constant (Lajmanovich and Yorke, 1976; Hethcote and Yorke, 1984; 

and references therein). Variable population size may seriously impact the qualita­

tive dynamics of epidemic models (Castilla-Chavez et al., 1989a; Huang et al., 1992). 

Here it is assumed that the population under consideration does not experience disease 

induced mortality. We also assume assume that the recruitment of new hosts (all sucep­

tible) occurs at a constant rate and, consequently, the total population sizes of males 

and females (both groups) become asymptotically constant. It is therefore possible to 

replace the "real" model with a an asymptotically autonomous limiting system (see 

Thieme, 1992; Thieme 1993, 1993a; Castilla-Chavez and Thieme, 1994). Consequently, 

we implicitly assume (as Lajmanovich and Yorke, 1976) that social dynamics does not 

play any role on the qualitative dynamics of the model. This is a strong assump­

tion/limitation which is justified, in part, because our efforts are directed to the study 

of the dynamics of two competing strains in a minimally heterogeneous population. 

To be explicit, we consider an S-I-S STD model for a heterosexually-active popu-

lation. The population consists of susceptibles and infecteds. Among the population, 

there are two different groups of female individuals in the transmission of diseases, 

denoted by superscripts f and c, which are determined by their sexual behavior, ge-
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netics, or other factors. We assume that the infecteds are divided into 2 classes based 

on the pathogen strains in their body, and that susceptibles infected by infecteds with 
• 

a certain pathogen strain have the same pathogen strain. We use Sk, k = m, J, c to 

denote the susceptible males, susceptible females in two different groups, and use If, 

k = m, f, c, i = 1, 2, to denote the infecteds with strain i. Then the dynamics of the 

spread of the disease are governed by 

where 

with the constraint 

sm =Am- Bm- J.Lsm + L rf'Ii, 
i 

sf =Af _ Bf _ J.Lsf + L ,[If, 
i 

I·J -Bf ( I) If 
i - i - J.L + 'Yi i ' 

se =Ae- Be- J.Lese + L rfif, 
i 

2 

Bm = "'B!'n L.....t z ' 
i=l 

2 

B' = LB{, 
i=l 

2 

Be="' BC: L.....t p 

i=l 

(2.1) 

Here A k, k = m, f, c denote the input flow (recruitment) entering the sexually active 

subpopulations; 1/ J.Le is the average sexual life span for people in group c, and 1/ J.L is 
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the average sexual life span for people not in group c; If are the rates of recovery; 

yk = Sk + I: Ij are the total number of males, females in group j and group c, 
j 

respectively; rk, as functions of ym, T f, and yc, are the numbers of partners per 

individual per unit of time; and /3f are the rates of infection. The constraint indicates 

that the total number of female sexual partners of males per unit of time and the total 

number of male partners of females per unit of time given the current availability of 

partners must be balanced. 
N 

Since yk = Sk + I: If, (2.1) is equivalent to 
i 

tc =A c _ p,cTc, 

j;n =- (p. + -y;") Ji" + rm (Tm, yf, T') ( ym- l(IJ') (!3J ~ + f3j;:) , 

( T f - I: I!) I:rt 
j[ =- (u +, .. ./)If+ rf (Tm Tf Tc) f3!Yt j J 

2 

t r It t ' ' t ym ' 

( Tc - I: IC?) J!ft 

if = - (p,c + "ti) If + rc (Tm' yf' Tc) /3;" ~m J t 

The asymptotic equilibrium values for Tk are 

ym_ Am 
- J1. ' 

y! = Af 
' J1. 

If we define 

Then it follows from the constraint (2.2) that 

(2.3) 
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as t -too. 

The limiting system of (2.1) or (2.3) is therefore given by the following set of equa-

tions: 

(2.4) 

To simplify the notation, we define the follmving quantities: 
Ak ~c 

o-f := (f.l +If), k = m, J, o-f:= (f.lc +/f), pk := -, k = m, J, pc := -, ai := 
f.J, f.J,c 

bm {3! bf (37!L be {37!L bm ;3c 
__ z af ·- __ z_ ac ·- __ z_ and arne·- __ t ' .. - ' .. - ' .. -pf t pm z pm t pc 

System (2.4) can therefore be rewritten as 

i;" =- <T;"l;" + (Pm- Jtlj) (a;" I{+ a;"clf), 

j! =-a-! I 1 +a! (pf- "\:' Jf) J:n z zt t ~J z' 
j 

jc;- = _ a-<! JC + a<! (pc _ "\:' JC) Jm 
t zt z ~J z• 

j 

If we now let 

IR~:={(Ir,I{,If,I;\I{,In; It?_O, k=m,j,c, i=1,2}, 

and define the subset of IR~ by 

2 2 

""'Jm < pm 
~ J- ' 'L.JJ ~ pf, 
j=l j=l 

(2.5) 
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we then observe that the flow generated by (2.5) is positively invariant on n. FUrther­

more, the flow is monotone under the special order (see Castilla-Chavez et al. 1994) 

given by 

Definition 2.1. Let K = { x = (x1, · · · , x6) E IR6; Xi;::: 0, i = 1, 2, 3, Xj :::; O,j = 4, 5, 6}. 

A type K order, denoted by " ::;K ", is defined in such a way that 

X :::;K Y if and only if x - y E K. (2.6) 

Using this order, it is easily seen that the flow generated by (2.5) is monotone. 

Theorem 2.2. Let I= (If',I{,If,l21 ,I{,Ii) and let I(t,/0 ) be a solutio_n of (2.5) 

with 1(0, 10 ) = Io. Then 

I (t,I0) :::;K I (t, Ig), t;::: 0, 

if 10 J8 E n and 10 :::;K I8. 

Proof. Let Q = diag(qi) with Q1 = Q2 = q3 = 1, Q4 = Qs = Q6 = -1. Then the 

matrix QJ(I)Q has nonnegative off-diagonal elements for every I E n, where J(I) is 

the Jacobian matrix of (2.5) evaluated at I. It follows from Lemma 2.1 in Smith (1988) 

that the flow I (t, 10 ) preserves a type K order on 0; that is, the flow is monotone 

under this type K order. 

3. THRESHOLDS 

The linearization about the infection-free equilibrium of System (2.5) is 

i = 1, 2. (3.1) 
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System (3.1) consists of two decoupled systems of three equations. The diagonal ele-

ments of the coefficient matrix of each system are negative and the off-diagonal elements . 
are nonnegative. Then, from the theory of M-matrices, it is easy to see that if 

Pmpfa7!1a! ,.-<? + pmpcamca<?,..[ < a7!1,..[ ,.c w· 
~ ~V~ t ~V~ ~V~Vp V'l, 

then the infection-free equilibrium is table, and that if there exists i = 1, or 2, such 

that 

the infection-free equilibrium is unstable. Define the reproductive number, Ri, in the 

ith subgroup by 

(p,c + ~if) bf /3{ + (1-L + 'J{) be /3f 
=bm~m--------~--~~--~----

t (J-L + ~:i) (f-l + "Y/) (J-LC + fn 
(3.2) 

We can now make the following observations: If Ri:::; 1, (r;n,I{,If)----* (0,0,0). If 

Ri :::; 1 for both i = 1 and 2 then the infection-free equilibrium is stable; that is, ~ < 1 

for both i = 1 and 2 leads to the extinction of the disease in the population. If there 

exists at least one strain such that Ri > 1 then (r;_n,I{,If)-/-+ (0,0,0), that is, the 

disease will spread in the population. 

Rk will characterize the reproduction numbers of the three different groups respec-

tively. 

Hence 

(3.3) 

and consequently 
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Following the approach in Castillo-Chavez et al. (1994), it can be shown that the 

infection-free equilibrium and the boundary equilibrium (given explicitly in the next 

section) of this model are globally stable under the appropriate threshold conditions. 

Here we only state the results, that is, we omit the details as the approach follows 

directly from our published work (see Castillo-Chavez et al. 1994). 

Lemma 3.1. Let E1 = (I! ,I {,If, 0, 0, 0) and E2 = ( 0, 0, 0, I2 ,I{ ,12) be equilibria 

of (2.5), where Ii ,I{ ,If > 0, if Ri, > 1, and Ii = I{ = If = 0, if Ri ::; 1. Let 

e = (pm,pf,pc,o,o,o) and ~2 = (O,O,O,pm,pf,pc). Then 

i = 1, 2. 

Theorem 3.2. Let the reproductive number Ri, for each group be defined in (3.2). If 

Ri ::; 1 for both i = 1, 2 then the epidemic goes extinct regardless of the initial levels of 

infection . If on the other hand Ri > 1 for i = 1 or i = 2 then the epidemic will spread 

in the population. 

4. COMPETITIVE EXCLUSION 

Because the model that we are investigating in this paper is decomposable then 

there exist two types of endemic equilibria: one type consisting of only one nonzero 

triple ( Ii, I{, If) and a second type will all positive components. We call the first 

type boundary equilibria and the second type coexistence equilibria. 

4.1. Existence of the Boundary Equilibrium. 

The boundary equilibrium always exists whenever the epidemic spreads in the pop-

ulation. We collect this result in the following theorem: 

Theorem 4.1.1. Assume that Ri > 1, i = 1, 2. Then the nontrivial equilibrium 

( Sk > 0, If > 0, Ij = 0, j =/- i) exists. 



Proof. We need to solve 

crl? Jf? =al? (pc - Jf?) I~ 
~ ~ ~ ~ ~ ' 

for If, 0 < If < pk. 

First, we solve (4.1.1b) and (4.l.lc) to get 

f f[m 
I!= p ai i ' 

t cr! +a! [:n 
t t t 

Substituting (4.1.2) into (4.l.la) yields 

ar:n ( pf a"!'-a! pcar:ncac; ) 
~ - t t + ~ ~ = 0. 

pm- Ii a!+ a! [TTL af + afli 
t t t 

13 

(4.l.la) 

(4.l.lb) 

(4.l.lc) 

(4.1.2) 

(4.1.3) 

The left hand side of (4.1.3) can be seen as a function of i\ namely f (Ii). It is easy 

to check that f'(Ii) > 0 and that lim f(Ii) = +oo. Consequently, (4.1.3) has a 
l["-+p'"' 

unique solution 0 < Ii < pm if and only if f(O) < 0. Furthermore, because 

then it follows that there exists a unique positive solution Ii of ( 4.1.3) if and only if 

Ri > 1. This unique positive Ii uniquely determines positive I{ and If via Equation 

(4.1.2). The proof then is complete. 

Remark. The component Ii of the nontrivial equilibrium, or the solution of (4.1.3), 

can be represented by the following explicit formula 
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where 

K1 =a{ af ((1m+ b;n (!3{ + f3f)), 
' 

K2 =£r;n ( af£7{ +a{ £rf) + pf a'fa{ £rf + pca;rcafa-{ - pm (p1 a~ a{ af + pca;rca{ af) 

= £ri(7{ £ri (f3i (RC?- P.) + f3i (R!- R·) + R·) 
m {3~ t .L Lt {31 2 t t , 

p t i 

K3 =£r;n£r{ £rf (1- Ri). 

Because K 3 < 0 and because there is only one positive solution of ( 4.1.3) then it 

follows since Ii is the solution of a quadratic equation that K 2 must be positive. 

4.2 Stability of the Boundary Equilibrium. 

The Jacobian at the equilibrium (If = 0, I~ > 0, k = m, j, c) has the form 

where 

i = 1, 2, 

0 
(4.2.1) 

with 8ij being the Kronecker delta function. 

In order to show that the matrix A22 is always locally stable, we need to establish 

the following lemma: 

Lemma 4.2.1. Let A be an n x n irreducible matrix with all off-diagonal elements 

nonnegative and B = diag(bj) with bj < 0, j = 1, · · · , n. If all nonzero eigenvalues of 

A have negative real parts, then all eigenvalues of A + B have negative real parts. 
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Proof. First, from the well-known M-matrices theory, there exists a positive vector x 

such that Ax < 0 and therefore (A+ B)x = Ax+ (b1x1, ... , bnxn) < 0. Hence, it 

follows that all eigenvalues of A + B have negative real parts (Fiedler and Ptak, 1962; 

Poole and Boullion, 1974). 

a2 (pm- r;:) 
-af- af Im 

2 2 2 

0 

then we only need to show that all nonzero eigenvalues of the matrix 

( 
-a2 a2 (pm- 12) 

J := a~ (pf - I{) -a{ 
a~ (pe- Ii) 0 

have negative real parts. Then it follows from Lemma 4.2.1 that A22 is stable. 

It is easy to check that det J = 0 and trJ =- L: a~ < 0. Let ~j be the 2 x 2 
k=m,J,c 

~ 

principal minor with row i and column j of J. Then 

-- amaf a me fC 
Jl2 2 2 2 2 > 0 

amif+amCIC ' 
2 2 2 2 

m c mif 
J_... - a2 a2a2 2 0 
13- f > ' 

a2I2 +a2cii 
-- f J23 =a2 a~ > 0. 

Hence, J has a zero eigenvalue and two eigenvalues with negative real parts, which im-

plies that A22 is locally stable. The stability of the nontrivial equilibrium (If = 0, If > 0, k = m, 

is determined from the stability of the matrix A11 . 

We note thatA11 is unstable if 

det An =a{ a~ arc (pm- I;') (pc- ID- af (a~ a{- a;na{ (pm- I;') (pf- I{)) 

f e me m e Ic e m f m f If 
"(a, a, u2 u2 2) + "f' a, u2 u2 2) - a;"u{ ui > 0. 

ae am If +a me Ie af am If +a me Ie 
2 22 2 2 2 22 2 2 
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Let 

Then det All can be rewritten as 

A straightforward algebraic manipulation yields 

det Au 
(am If+ arne Ic) (O"f + af Im) (O"c + ac Im) 

2 2 2 2 2 22 2 22 

· (pf O"{ (O"~ + aV;") (Rr;: R{- Rr; R{) + pcO"Ho-£ +a~ I;") (Rr;: R~- Rr;! R~)). 

If we denote 

and 

Then if ~1 > 0 and ~2 > 0 then the boundary equilibrium (If= 0, I~ > 0) is 

unstable. On the other hand, if ~1 < 0, ~2 < 0, and det All < 0 then since the 

diagonal elements of A11 are negative and the off-diagonal elements are nonnegative, 

it follows from M-matrix theory that Au is stable. 

In summary, we arrive at the following result: 
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Theorem 4.2.2. Let R~ > 1 be defined as in (3.2). Then if 

R ml R 11 > (<)R2mR!2 d RmRc > (<)RmRc an 1 1 2 2' 

the boundary equilibrium (It> 0, I~= 0) is stable (unstable) and (It= 0, I~ > 0) is 

unstable (stable). 

We may think of these equilibria as the the result of competition for resources be­

tween two populations of pathogens. Hence, if ~1 · ~2 > 0, one of the boundary 

equilibria is stable and the other is unstable, which implies one strain wins and the 

other loses. Hence1 under the hypotheses in Theorem 4.2.2, the principle of competi-

tive exclusion holds for the two competing strains. 

5. COEXISTENCE 

5.1. Existence And Uniqueness Of The Positive Endemic Equilibrium. 

In order to have coexistence, we need to solve 

<Ji If'= (Pm - (Irn +If)) (ai If+ aic If), 

<lf If =a{ (pf- (I{+ I{) )If\ (5.1.1) 

<Jf If =af (pc- (If+ I~)) If', 

for If. From (5.1.1)2, 

(5.1.2) 

Solving (5.1.2) yields 

(5.1.3) 
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Similarly, 

(5.1.4) 

Set 
A ·= pcamcacac/am 

2· 1 1 2 1' 

Then, by substituting (5.1.3) and (5.1.4) into (5.1.1)1, we have 

1 A1 A2 
pm- (I1 + T!J:) = B1 + B2Tf + B3T!2 + C1 + C2I1 + C3T!J:' 

1 D1 D2 
pm- (I1 + T!J:) = B1 + B2Tf + B3T2 + C1 + C2I1 + C3T!J:. 

(5.1.5) 

From (5.1.5), it follows that 

( C2(A1- D1) + B2(A2- D2) )rr = 

- ( (B1(A2- D2) + C1(A1- DI)) + (B3(A2- D2) + C3(A1- D1 ))T!J:), 

or equivalently, 

If both .6.1 > 0 and .6.2 > 0 or if both .6.1 < 0 and .6.2 < 0 then (5.1.6) gives a 

line that does not go through the first quadrant and, consequently, there is no positive 

solution (I1 > 0, Tz > 0) for (5.1.5). Hence we have the following result: 

Theorem 5.1.1. Coexistence is not possible if 6.1 · .6.2 = (Rf R{- R2 Rt) · (Rf R{­

R2 R~) > 0, that is, either R'l R~ > R2 R~, or R'l R~ < R2 R~, for both k = f, c. 

Now we consider the case of 6.1 · .6.2 < 0, which is equivalent to 

Rf Rm Rc 
1 2 1 

R~ > Rf > fr2' 
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or 
R1 Rm Rc 1 2 1 
f<Rm<Rc" 
Jl2 1 2 

Solving (5.1.6) for I:F gives 

(5.1.7) 

where 

(5.1.8) 

a2 :=- J J . 
!3i (fJf Ri .6.1 + fJ1 R1 !J.2) 

Then, substituting (5.1.7) into (5.1.5) gives the following equation 

1 

pm- a2- (a1 + 1)12 

- ( B1 + Bza2 + 1~2a1 + Ba)I2 + C1 + C2a2 + 1~2a1 --'- Ca)I'!{") = O. 
(5.1.9) 

However, since a 1 and a2 can be rewritten as 

a simple calculation shows that 

B1 + B2a2 C1 + C2a2 
B2a1 + Ba - C2a1 + C3. 

Using the above results, we see that (5.1.9) is reduced to 

1 
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or equivalently to 

If we now introduce the following combination of parameters 

Then it follows (solving (5.1.10)) that 

m T p -0:2--
Im _ E 

2 - 1 
E + a1 + 1 

E(pm- a2)- T 

1 __:_ E ( a 1 + 1) · 

The substitution of (5.1.12) into (5.1.7) yields the desired result. 

I;n = cx1 (Epm- r) + o2(1 +E) 
1 + E(a1 -:-1) 

Therefore, we have established the following result 

(5.1.10) 

(5.1.11) 

(5.1.12) 

(5.1.13) 

Theorem 5.1.2. Let ai, r, and E be defined as in (5.1.8) and (5.1.11) respectively. 

Then if 

(H1a) 

and 

(H1b) 

there is a unique positive endemic equilibrium, and if 

or 

then there is no positive endemic equilibrium. 
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5.2. Stability of The Positive Endemic Equilibrium. 

We need the following two lemmas in order to establish our stability results. 

Lemma 5.2.1. The matrices 

p _(A B) 
- C D and 

have the same eigenvalues. 

The proof is trivial. 

Lemma 5.2.2. Let A be an n x n matrix whose diagonal elements are negative and 

off-diagonal elements are nonnegative. Let Alk be the leading principal sublY!atrix with 

k rows. Assume (-1)kdetAlk > 0, for 1 :S k :S n-1. Then 

i) If(-1)ndetA = (-l)ndetA1n > 0, A is stable; that is, all eigenvalues of A have 

negative real parts. 

ii) If det A = 0, there is a unique zero eigenvalue of A. The other eigenvalues all 

have negative real parts. 

iii) If ( -1 )n det A < 0, there is a unique positive eigenvalue of A. The other eigen­

values all have negative real parts. 

Proof. 

i) Follows from the theory of M-matrices. 

ii) We only prove this in the case when n is even. The proof is similar when n is 

odd. 

Because det A 1n-l < 0 then the first n- 1 columns are linearly independent, which 

implies the uniqueness of the zero eigem·alue. Secondly, we consider matrix B defined 

by 
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where E is a small positive number such that 

detB = -cdetA1n-1 + detA = -cdetA1n-1 > 0 

Thee theory of M -matrices implies that all the eigenvalues of B have negative real 

parts. We complete the proof via a continuity argument, that is, we let c approach 

zero. There is an eigenvalue reaching zero but this eigenvalue is unique from i). Hence 

the real parts of the other eigenvalues remain negative. 

iii) The conclusion follows using the same approach used in ii). 

Based on Lemmas 5.2.1 and 5.2.2, the stability of the coexistence equilibrium can 

be stated as follows: 

Theorem 5.2.3. The coexistence equilibrium E* := (Ir > 0, I:f > 0, I{> 0, I{ > 0, 

If> 0, Ii > 0), give by (5.1.3), (5.1.4), (5.1.12), and (5.1.13) is asymptotically stable 

if the determinant of the following matrix 

)11 J12 )13 )14 0 0 
Jz1 )22 0 0 )25 0 

J* = J31 0 )33 0 0 )36 

J41 0 0 J44 )45 J46 
0 )52 0 )54 )55 0 
0 0 )63 )64 0 J66 

where 
m mim m mcim 

. m . (J 1 a1 1 . (7 1 a1 1 
Ju := -u1 - G1, J12 := G1 , J13 := G1 , 

~fJf ~CfC 
G · v 1 1 · . _ f f 1m · . _ Jim · . _ v 1 1 J14 := 1> J21 := -y;t' J22 ·- -u1 - a1 1 , )25 .- a1 1 , )31 .- Im , 

1 1 

. c elm · elm · G · m G )33 := -u1- a1 1 , )36 := a1 1 , )41 := z, )44 := -uz - z, 

m mim m merm !If u 2 az 2 · . _ u 2 az 2 · . _ f m · . _ u 2 2 
J45 := Gz , )46 .- G2 , )52 .- a 2 Iz , )54 .- Tf" , 

(JCJC 
· f fJm · elm · 2 2 · ·- e elm 

)55 := -<72 - a2 2 ' )63 := a2 2 , )64 := Im , )66 .- -u2- a2 2 , 
2 



with 

G m]f + mc]c 
1 := al 1 al 1· G ·- m]f + mc]c 

2 .- a2 2 a2 2· 
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evaluated at E* is positive. Furthermore, if the determinant of J* is negative then the 

stable manifold and the unstable manifold of the system at E* are five-dimensional and 

one-dimensional respectively. 

Proof. Denote the leading principal minors of J* with i rows by Jt. Then, by tedious 

algebraic manipulations, 

and 

Since the determinant of J* is positive then from Lemma 5.2.2 it follows that all 

the eigenvalues of J* have negative real parts and, therefore, E~ is stable. If the 

determinant of J* is negative then J* has five eigenvalues with negative real parts and 

one positive eigenvalue. Hence, the rest of the conclusions of the theorem follow. 

We end this section with two examples. 
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Example 1 Set the following set of parameters: 

J-L = 0.025, J-Lc = 0.025, Am= Af = 1000, bm =6, bf =4, be= 4, 
/31·= 0.25, /32 = 0.2, !3{ = 0.05, !3{ = 0.1, !31 = 0.05, !32 = 0.1, 
1i = 0.02, 12 = 0.1, 1{ = 0.02, ,{ = 0.6, 11 = 0.7, 12 = 0.03. 

( 1 + E(a1 + 1)) ( E(pm- n2)- r) = 1982582, 

and 

( 1 + E(a1 + 1)) (al (Epm- r) + a2(1 +E)) = 3877073. 

Then, (H1) is satisfied and hence, there exists a positive equilibrium. In fact, this 

endemic equilibrium can be determined numerically as 

Ii = 24156, 
Tf" = 12352, 

I{= 36233, 
I{= 1067, 

If= 2634, 
I2 = 14204. 

Since det J* = 0.004 then Theorem 5.2.3 implies the asymptotic stability of the coex­

istence equilibrium. This can be confirmed numerically by a direct computation of the 

eigenvalues of H* which are 

.\1 = -1.46, 

.\4 = -0.84, 
.\2 = -0.38, .\3 = -1.98, 
.\s = -0.37, >.6 = -1.17. 

The two female groups have different recovery rates or incubation periods to the two 

strains. More specifically, females in group f with strain 1 have a longer incubation 

period or need longer time to recover than females in group c infected with strain 1. 

However the situation is reversed for strain 2, namely, females in group c with strain 

2 have a longer incubation period than their counterparts from group f. We can also 

interpret these differences in If not as directly linked to the incubation period distri­

butions but rather to the ability of these strains to conceal themselves (asymptomatic 

individuals) in different populations to "retard" treatment. In this example, females in 
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group f with strain 1 and in group c with strain 2 can be thought as having the longer 

strain-specific asomptomatic periods . . 
Because (H1) is satisfied, it follows from Theorem 5.1.2 that there exists a positive 

endemic equilibrium. However, it may be unstable. 

Example 2 We now use the following set of parameters: 

f.J, = 0.025, f.J,c = 0.015, Am= 200, AI= 100, 
bm =4, bf = 2, be= 4, 

f3F = 0.24, f3'!t = 0.2, /3{ = 0.05, /3{ = 0.1, /3f = 0.4, f3i = 0.15, 
IF= 0.15, l'!t = 0.08, I{= 0.1, I{= 0.15, If= 0.15, 1i = 0.1. 

Then 

( 1 + E ( a1 + 1)) ( E (pm - az) - r) = 1859598, 

and 

( 1 + E ( a1 + 1)) ( a1 ( Epm - r) + az ( 1 + E)) = 1110. 

Hence, the coexistence equilibrium exists and its components are 

IF= 8.6, 
I'ft = 14318.4 

I{= 0.6, If= 6.7, 
I{ = 549.8, I:j = 13435.2. 

However, since det H = -0.8 X w-7 ' it follows from Theorem 5.2.3 that this coex­

istence equilibrium is unstable and the unstable manifold is one dimensional. The 

corresponding set of eigenvalues of H, 

.A.1 = -0.95, 
A4 = -0.12, 

corroborates our conclusion. 

.A.2 = -0.78, 
.A.s = -0.5, 

.A.3 = -0.32, 
.A.6 = o.s x w-5 , 

In one-sex models as studied in Blythe et. al (1993), whenever a coexistence equi-

librium exists, it is always stable. This is not the case for our two-sex model. Hence, 

a heterosexual structure may have a destabilizing effect on coexistence. 
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6. CONCLUDING RE~1ARKS 

An important principle in theoretical biology is that of competitive exclusion which 

states that no two species can forever occupy the same ecological niche. Clarifications 

on the meaning of competitive exclusion and niche have been central to theoretical 

ecology (Butler et al., 1983; Levin, 1970; May 1975; Maynard Smiths, 1974). Sexually­

transmitted diseases like gonorrhea have incredibly high incidences throughout the 

world providing the necessary environment and opportunities for the evolution of new 

strains (see Hethcote and Yorke, 1984, and references therein). The co-existence of 

gonorrhea strains is becoming an increasingly serious problem. Understanding the 

mechanisms that lead to co-existence or competitive exclusion is central to the devel­

opment of disease management strategies as well as to our increase understanding of 

STD-dynamics. 

We previously formulated heterosexual models where two strains or any number of 

strains competed for "identical" hosts becausewe included only one homogeneous female 

group in the population. The outcome of these models was always the same: compet­

itive exclusion (Castilla-Chavez, Huang, and Li, 1993, 1994). In this article, we study 

a heterosexual model where two "genetically" different female groups interact with a 

homogeneous (genetically uniform) male population in the presence of two competing 

strains of a venereal disease. We have found out that, under various situations, both 

competitive exclusion and coexistence may occur. We saw that as expected, the strain 

with higher transmissibility (in all groups) or the strain to which both female groups 

are more suceptible (if such is the case) then we have competitive exclusion. Mathe­

matically, the result follows from the inequalities Ri R{ > Rj RJ and R'f" Ri > Rj Rj. 

Strain i wins and strain j loses. 

On the other hand, if the transmissibility of one strain is higher, let's say in group f 
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than group c then the transmissibility must be reversed for the other strain to make co­

existence likely. A similar level of asymmetry must exist between both group of females 

regarding their average periods of infection (or their average asymptomatic periods) to 

increase the likelihood of coexistence. Tne necessary conditions for coexistence require 

that inequalities like Ri R{ > Rj Rf and Ri Ri < Rj Rj be satisfied. Coexistence is 

possible only under a set of complex relationships between these factors as illustrated in 

the examples. Furthermore, we observe that the existence of a co-existence equilibrium 

did not guarantee its stability. 

It is clear to us that the limited heterogeneity available in our system makes the 

meeting of the conditions for coexistence difficult. It is even more difficult to meet 

the conditions for stabel co-existence. We have been unable to provide transparent and 

specific necessary and sufficient biological conditions guaranteeing stable co-existence in 

our system. Nevertheless, it is important to re-iterate a key feature of our investigations, 

that coexistence is indeed theoretically possible as soon as a minimal level of diversity 

is introduced. Preliminary results show that superinfection as defined in the works of 

Levin (1981, 1983a,1983b) provides a clear biological mechanism for co-existence. We 

will concentrate our efforts in elucidating the role of superinfection as a mechanism 

that supports a pathogens' diversity in a minimally heterogeneous host population. 
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