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Abstract

Using vec and Kronecker product operators, a detailed derivation
is given of fourth moments in.the general linear model and of the

T

variance of translation invariant quédratic forms.

Introduction

We consider the general linear model

y =Xt 2wy Fou, oot 4 (1)

~ro

where § of order n X p and ém of order n X cp o= l, *°*, k cre known incidence
matrices, g is an unknown vector of p fixed effects, and the U of order ch X 1
form=1, «++, k, are unknown vectors of random effects such that
(1) the elements of u are independent having common varilance 0; and
kurtosis Ym, and

(i1) u and u , are independent for m # m'
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Accordingly, the variance-covariance matrix of the vector y is

k
Var(y) = = °§?m§ﬁ =V.

As far as the ensuing algebra is concerned, a more convenient representation

of (1) is
y =X + Zu (2)
k
where Z 1s the n X ¢ (c = I cm> partitioned matrix Z = [Z. **- Zk], and u is
~ . . =l ~ ~ ~ ~

the ¢ X 1 vector u' [ui T uﬁ]. Correspending to model (2), the variance-

covariance matrix of y is then

o~

V = ZDZ'
where
k
D= E(w') = It oI (3)
~ ~~ C
m=1 »

and Z+Ai denotes the direct sum of matrices Ai- .

Fourth Moments

The matrix of central fourth moments of the vector y is, by definition,

F = Var[(y - X8) # (y - x8)] (1)

~e

where A #* B is the direct (Kronecker) product of A and B. Substituting in terms

of (2),




..3_

1
]

Var[ (Zu) * (Zu)],

n

var( (2 * 2)(u * u)]

n

(z ® 2)[var(u * u)I(z * 2)' . (5)

Defining the vec of a matrix to be the M® matrix first introduced by Roth [l93h],
namely, the vector obtained from stacking the columns of the matrix one beneath the

other in a single vector, and noting that vec(uu') = u * u it follows that

I

Var(u # u) = E[(u * u)(u * u)'] - [B(u * u)I[E(u * u)]’

1]

E[(EB') # (EE')] - E[vec(g&')}ﬁfvec(g&‘)]'

]

E[(wu') # (w')] - vecE(EE')[vecE(EE')]’

]

E[(wu') * (w')] - vecD(vecD)' , (6)

on using D of (3).

To simplify (6) we define

and

it}
] U'
ol
1l
~
=
’-l-
o
=~
Il
r
N
0
S
@
—"”

A\Y
~

Then w has the properties

E(w) =0, E(m')=var(w) = I, (9)
and
E(wi) =3+7%Y, fori=1, *++, ¢ (10)

where
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k
Y = jtb +
V; = 1** diagonal element of § szcm. (11)
m=1
Then for (6)
L1 32
E[(uu') * (uu')] = (D® * D*)E[(wv') * (wu')](D® * D*)' ,
R L
= (oF # D)z5(p? » 1) (12)

on defining

Zooge2 = (B35} for 1,5 =1,2, -+, c

1]

{E(wiwjzﬂ‘)}

[E(wiijkw‘e)} for 1,3,k,4=1, 2, ***, c . (13)

Now for i = j

3+Qi when 1 =k = £
E(wiwiwkwf/) = 1 when i #k = 4 (1)
0 othervise
and for i # j
1 when 1 =k, j= 4
E(w-zinwsz) N 1 vhen 1= 2, j =k (15)
0 otherwise,
so that, on defining
e, = i** column of I, (16)

(14) and (15) give the sub-matrices of (13) as

Zig = I+ (2% ¥ )eel (17)




and
. = 1 + 1 : ] .
Zig = eeyteey, ford 7 (18)
. . - LS 1 i = 3
Therefore in (13), noting that 2e.e! eyt 258y for i = j,

[¢]

= = 1 ' i 3 = ¢ 0. + v !
£= {2y =T+ {ee) teegl fori,y=1, cor, e, 4 i‘:“l Viees - (19)

In (19) it is important to note that for the matrix {eie3 + e ei} the sequence of

J

subseripts is j =1, **°, ¢ within 1 = 1, ***, ¢. This being so, it can be noted

that
1 3 § = o0 o =
{iji} for i,J = 1, > C) N(C,C) ) (20}

the permuted identity matrix of order c®, as used by Tracy and Dwyer [19697 and

MacRae [1974]; and

{Sigj} for i,j =1, **+, c, = vec}(vec{)ﬁ . (21)
Furthermore, using (11) in the last term of (19) gives, for toq = ey tey oo
* Cp-1
ot o 4 n, .
ifl Vi€:8 T mfl Y i=ti-1+lSiSi . - (e2)

Now for i =1, ***, ¢

a diagonal matrix of order c¢ with its only

non-zero element being 1 in the (i,i) position

and

a diagonal matrix of order 2c with its only non-zero

e.e! 0
- elements being 1 in the (i,i) and (c + i+ 1, ¢ + 1 + 1)

~i~i

1
9 Si+18i41 positions.
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Consider just the diagonal elements of this last matrix. Between the two 1l's

there are ¢ - 1 + 1 = ¢ zeros; and this is true for all 1. Denote a row vector of

c zeros by 0! . Then the diagonal elements of (22) are
1 1 s ee ! 1 LR, T eeo ) ' LI !
[Yl 90 Yl gc gc Yl 90 Y2 Qc Y2 gc gc Vk gc gc YkJ (23)

where Ym occurs ¢ times form =1, 2, ***, k. This is a vector of c® elements

k
and by its nature is vec( ot Ym{c >. Hence, on using the definition
m=1 B

— disgonal matrix with diagonal elements

diag x =
being the elements of the vector x ,
we have (22) as
c, . +
Vo=
151 ;8584 diag{vec(z™ vy Icn)} . (24)

Substituting (20), (21) and (24) into (19) gives
= 1 s + .
L=1Igz+ E(c,c) + (veczc)(veczc) + diag{vec(Z {mEcn)} . (25)

Using £ in (12) now gives

E{ (g’ * w')]

¥t » . b
(D% * D3)(1 + Ie,e) ™ (vecEC)(veczc) + diag{vec(Z Ymgcm)}](g * D%)
+ : i i
=D W 9 + (92 % PQ)E(C,C)(PQ o 92) + EE: + E (26)
where we define

&
2.;\:.%

k
r= (D% #* D%)[diag{vec< zt szc)}](
~ ~ ‘ m=1

) . (27)

~ ~
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Also, use is made of the results in MacRae [1974] that

s,

I A ¥
~(p,p)(~qu

3

B, )I =B _ %A
~qu)~(q,Q) ~DXQ  pXq

and

n
L
N

I 2
["(P:P)] ~p
so that

= %A
) (gpxq ~pxq)£(q,Q)

I A %A
~(p,p)(~pxq ~pXq

Hence for (26)

f

~ o~

(D% % D=)I (D% # D%) (p * D)1
= " nlZe,e)s T2 - (c,e)

Furthermore, in (26)

~
P
o
o
1
0

vecD
because, in general,
vec(ABC) = (C' % A)vecB

as in Neudecker [1969].

Using (31) and (32) in (26) therefore gives
E[(wu') # (uu')] = (D * D)(T + I(c c)) + (vecD)(veecD)' + T
~r ~eo ~ ~ -~ ~ bl ~ ~ ~
where I' is as defined in (27), and so substitution into (6) gives
var(u ¥ u) = (D* D)(I + I + T,
ar(u * u) = (D * D)(I Ie,e)) * L

Putting (35) into (5) gives the matrix of fourth moments as

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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F= (2% DR * DT+ I o)) +1NE #2)
and because ZDZ' = V this is:
R AR RRC L) RS DR R AR DR
Using (30) again leads to |
P e (V8D I )+ (20 20E ) (36)

and on using (27) this has the equivalent form

% 1 k 1 1
) + (zDp® # ZD )[diag{vec( oty I )}](Dgz' % DRz'). (37)

r= (v = Y)(E * E(n,n)

This, then, is the general expression for the matrix of fourth central moments of

the vector of observations in linear model theory.

In the special case of normality assumptions, i.e., u_ ~ N(O, oigc ), we have
-~ ~ m

Y, = 0 and (37) reduces to

F= (Y * Y>(E * E(n,n)) (38)

Variance of Translation Invariant Quadratic Forms

The quadratic form y'Ay is called translation invariant when A, as well as

~

being symmetric, satisfies AX =“O.' Then the variance of the translation invariant

quadratic form is

n

v(y'ay) = vI(y - x8)'Ay - 28)]

v(u'Z'Azu)

~ et

]

v{tr[é(Zuu‘g')]} .

~re
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Now use the general result for any product PQ, that
tr(PQ) = (vecP')'vecq

and so

v(y'ay) = v{(vecA)'vec(Zuu'z")}

(vech) 'var[vec(Zuu'z") JvecA

(vech)'varl(zu) * (zZu)'lvech

(vecA)'F(vecA), using (&)
and on using (36) this gives

' =
v(y'ay) = 8, + 8,

(39)

(40)

(41)

(52)

(43)

for
= 1y %
o, = (veet) (1 # V(L + I, oy Iveeh
and
% . ook : 5.
6, = (vechA)'(ZD? * ZD )[diag{vec( sty I >}]( =Z' ¥ D2Z')vech .
2 ~' Ve ~~ _+ I~Cy ~ ~ ~ o~ ~
s m=l
In 0, of (42), the elements of the [(i-1)n+ j1t* row of I(n n) &%e all zero
~ J

1

except for a 1 in the [(j-1)n+i]t® column (and vice versa); and also, because A

is symmetric, the [(i-1)n+ jJt" and [(j-1)n+1i]*? elements of vecA are the same.

Hence

E(n)n)(vecé) = vecA .
Also using (33) and (39)

(vecA) ' (V # V)vech = (vecA)'vec(VAV) = tr(AV)Z ,

(1)

(45)
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so that

6, = 2tr(éz)2 . (46)

Simplification of 6, in (43) starts with using (33) to get

2

ol

1
7' AZD?)

~

31 5
6, = [vec(DeZ'AZDz)]'[diag{vec( =ty I >}]vec(D
~ o~ o~ m= 1 m~C ol

which is of the form

o, = (vecE)'[diag{vecL}]vecH (L7)
for
% 3 x
H = D*Z'AZD and L= ZtvyI . (48)

The nature of the vec and diag operators means that (47) is

= 2 !

Oy = ZZhy 4, 5 (k9)
1J

for H = {hij} and L = {Eij} of (48). But with this L, the only non-zero zij's are

the diagonal ones, ﬁft = Ym for t =1, *-°-, cm and m= 1, **+, k. Furthermore, as

in (23), these diagonal elements have ¢ zeros between them in vecL so that the use

of (48) in (49) gives

k m
b, = Zv_ I n?
2 =1 m t=1 tt
for
1 1
hit = t*" diagonal element of the m'" diagonal sub-matrix of D®Z'AZD®

]

ci(t‘“ diagonal element of the m‘® diagonal sub~matrix of Z'AZ).

~ o~
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Therefore

k
= - 2 : 1
8, = milvmgm(sum of squares of diagonal elements of Z A%m) . (50)

Substituting (45) and (50) into (41) gives

k
v(y'Ay) = 2tr(AV)® + I Ymg;(sum of squares of diagonal elements of Zﬁézm). (51)
- - m=1 e
This is the variance, under non-normality, of a translation invariant (AX = 0)

quadratic form y'Ay. Under normality, Y = O for all m and (51) reduces to the

familiar form
v(y'Ay) = 2tr(AV)? . (52)
Equation (51) is, of course, equivalent to the result given by Rao [1971]

k ~
where he writes A, fTor Dand &_ = £¥ v 0*I  and B = diag{diagonal elements of B}
~1 ~ ~2 =1 I m~Cy ~ ~

and so gets
v(y'Ay) = 2tr(BAl)2 + tr(ﬁAgg) ,

for B = Z'AZ. With V being ZDZ' this is readily seen to be the same as (51).

~ o oo~y
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