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Abstract 

Using vee and Kronecker product operators, a detailed derivation 

is given of fourth moments in the general linear model and of the 

variance of translation invariant quadratic forms. 

Introduction 

We consider the general linear model 

+ ••• (l) 

where X of order n X p and Z of order n X c , m = 1, • • ·, k .:::re known incidence 
~m m 

matrices, ~- is an unknown vector of p fixed effects, and the u , of order c x l 
-m m 

form= l, •••, k, are unknown vectors of random effects such that 

* 

(i) 

(ii) 

the elements of u are independent having common variance cr2 and 
-m m 

kurtosis ~ , and 
m 

u and u , are independent for m f m' • 
-m -m 

Department of Animal Science. 

Biometrics Unit 

Paper No. BU-630-M in the Biometrics Unit. 



- 2 -

Accordingly, the variance-covarianc·e matrix of the vector ~ is 

As far a.s the ensuing algebra is concerned, a more convenient representation 

of (1) is 

y = Xt3 + Zu (2) - -- --
where Z is the n X c - (c. = ~c) partitioned matrix~= [~1 ••• ~ ), and~ is 

m=l m ~ 

the c X 1 vector u' = [u' •.• u.']. 
-1 -.K 

Corresponding to model (2), the variance-

covariance matrix of y is then -
V = ZDZ' ... 

where 

D = E(uu 1 ) = (3) - ...,..., 

and ~+~1 denotes the direct sum of matrices ~i· • 

Fourth Moments 

The matrix of central fourth moments of the vector "l is_. by definition) 

F = Var[(l- ~) ~~ (y- X(:3)] (4) 

where A ~ B is the direct (Kronecker) product of A and B. Substituting in terms 

of (2), 
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F = Var[(Zu) * (~~)]. 

= Var[(z * z)(u ~ u)] - - - -
= (z * z)[var(u * u)](z * z)' (5) ... ... -

Defining the vee of a matrix to be the Me matrix first introduced by Roth [1934], -
namely,the vector obtained from stacking the columns of the matrix one beneath the 

other in a single vector, and noting that vee(;:;:')=;:-~~;: it follows that 

Var(u * u) = E[(u * u)(u -:~ u)']- [E(u -:~ u)][E(u * u)]' - - - - - - - - - -
= E[(~;:') * (~;:')]- E[vec(;:;:')]E[vec(;:::')]' 

= E[(~;:') * (;:;:')} vecE(vecD)' (6) 

on using E of (3). 

To simplify (6) we define 

c = c = c + c + •.. + c 
1 2 k (7) 

and 

' c • (8) 

Then v.1 has the properties -
E(;:) = 0, E(;:_;;:') = var(w) = !c (9) 

and 

c (10) 

llhere 
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k 

y = ith diagonal element of E+ y I 
i m=l :m,...cm 

(11) 

Then for (6) 

(12) 

on defining 

c . (13) 

Now for i = j 
. 

3 + Y 1 1vhen i = k = .t 

1 when if k = ~ (14) 

0 othen1ise 

and for i f j 

1 when i = k, j = .R, 

E(wiW/lkW ~) = 1 when i = £,, j = k (15) 

0 otherHise, 

so that, on defining 

e. = ith column of I 
-~ -c 

(16) 

(14) and (15) give the sub-matrices of (13) as 

Ei. = I + (2 + yi)e.e! - ~ - -~-~ 
(17) 
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and 

Z.. = eie~ + e.e 1 for i /: j 
-~J - ~J -J-i 

(18) 

Therefore in (13) J noting that 2e.e! = e. e ~ + e.e~ for i = j, 
-~-~ -~-J -J-~ 

c 
E = [E .. } = I+ [e.e! + e.ei1 } for i,j = 1, 

-~J -~-J -J-
'V+ • I c, + L.. Y.e.e. 

i=l ~-l-~ 
(19) 

In (19) it is important to note that for the matrix [e.e~ + eje!} the sequence of 
-~-J - -~ 

subscripts is j = 1, · • ·, c 11i thin i = 1, · • ·, c. This being so, it can be noted 

that 

1 e e'} fori J. = 1 ··· 
l-j-i ' J ' 

c, = I( ) , - c,c 
(20) 

the permuted identity matrix of order c2 , as used by Tracy and Dwyer [1969] and 

MacRae [1974]; and 

[e.e 1 ] for i,j = 1, 
-~-J 

(21) 

Furthermore, using (11) in the last term of (19) gives, for tm-l = 

+ c 1 

c + c + •.• 
1 2 

m-

Now for i = 1, c 

I = e.ei 
-~-

and 

[···: :i+~iJ -l-1. = 
0 

c 
"+ • I 
L.. y.e.e. 

. 1 ~-l-1. l.= 

= ~+ ( t~+ I) L.. y '-' e.e .• 
m=l m i=t +l-1.-~ 

m-1 

a diagonal matrix of order c vith its 

non-zero element being 1 in the (i,i) 

only 

position 

a diagonal ~trix of order 2c vlith its only non-zero 

elements being l in the (i,i) and (c + i + 1, c + i 

positions. 

(22) 

+ l) 
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Consider just the diagonal elements of this last matrix. Betv1een the two 1' s 

there are c - i + i = c zeros; and this is true for all 1. Denote a row vector of 

c zeros by 0' . Then the diagonal elements of ( 22) are 
-c 

[y O' y O' ••• 0' y 0 1 y 0 1 • •• y O' ••• 
1 -c 1 -c ... c 1 ...c 2 -c 2 -c (23) 

where Y occurs c times for ·m = 1, 2, • • ·, k. This is a vector of c2 elements m m 
k 

and by its nature is vee( ~+ y I ). Hence, on using the definition 
m=l m...cm 

d . _ diagonal matrix with diagonal elements 
~ag x = 

- being the elements of the vector x , 

we have (22) as 

c 
._.,+ • I = " y.e.e. 

i=l l.-l.-l. 
diag{vec(~+ y I )} . 

m,...eo 

Substituting (20), (21) and (24) into (19) gives 

E = I 2 + I ( ) + (vee I ) (vee I ) 1 + diag( vee(~+ y I . ) } ... -c - e,e ... e ... e m-c0 

Using ~ in (12) now gives 

E[ ( uu I * uu I ) J -- --

'~here we define 

(24) 

(25) 

(26) 

(27) 
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Also, use is made of the results in MacRae [19{4] that 

I (A ·:!· B )I = B * A ... (p,p) ... pxq -pXq ... (q,q) _pxq ... pxq 
(28) 

and 

[I( )]2 = I 2 ... p,p ... p (29) 

so that 

I (A * A ) = (B * A )I . ... (p,p) ... pxq ... pxq ... pxq -pXq ... (q,q) (30) 

Hence for (26) 

(31) 

Furthermore, in (26) 

z E (D~ * D~)veci = vecD (32) ,... ,.,. ,.., ,.., 

because, in general, 

vee(~~) = (S' * ~)vee~ (33) 

as in Neudecker [1969]. 

Using (31) and (32) in (26) therefore gives 

E[(uu') ~:- (uu')] = (D ~~ D)(I +I ) + (vecD){vecD)' + f (34) 
_,... -- ~ - ,_ #>#( c' c) ,.. ~ ,_ 

where £ is as defined in (27), and so substitution into (6) gives 

var(u * u) = (D * D)(I + I( )) + r . 
~ - ~ ,... ~ ~ c,c N 

(35) 

Putting (35) into (5) gives the matrix of fourth moments as 
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and because ZDZ' = V this is: 
#'tt#IV~ ,... 

!: =:! -:t-! + (~~ * ~~)~(c,c)(~' * ~·) + (~ * z)r(z' n Z') • 

Using (30) again leads to 

(36) 

and on using (27) this has the equivalent form 

This, then, is the general expression for the matrix of fourth central moments of 

the vector of observations in linear model theory. 

In the special case of normality assumptions, i.e., u ,.., N(O, cr2 I ), 1-1e have 
-m ... m,..cm 

Y = 0 and (37) reduces to 
m 

F = (V * V)(I + I( )) 
~ ~ ~ ~ ~ n,n 

Variance of Translation Invariant Quadratic Forms 

(38) 

The quadratic form y'Ay is called translation invariant when A, as well as 
#'It# #It#~ -

being sJ~etric, satisfies AX = 0. n1en the variance of the translation invariant --
quaoxatic form is 

v(y'Ay) = v[(y- ~)'A(y- ~)] - _,..,_ ,.., ,..,_ ,.,. -
= v{u'Z'AZu) 

=v(tr[A(Zuu'Z')]}. ,.. ,.,.,......, .... 
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NoH use the general result for any product PQ, that --
tr(~S) = (veeP') 'vecQ (39) 

and so 

v(y'Ay) = v((vecA)'vec(Zuu'Z')) - ~- - -~- -
= (vecA)'var[vec(Zuu'Z')]vecA 

~ --- - -

= (vecA)'F(vecA), using (4) (40) 
,... -

and on using (36) this gives 

(41) 

for 

el = (vee~) I(~* v)(I + ~(n,n))vec~ (42) 

and 

9 = (vecA)'(ZD~ ~(· ZD~)[c1iag~vec( ~+ 1' I )}J(D~Z' ·::- D~Z')vecA. (43) 
2 - ~- -- 1 ~C~ - - -• ·m= -

In e1 of (42), the elements of the [(i-l)n+j]th rov1 of I( ) are all zero 
- n,n 

except for a 1 in the [(j-l)n+i]th column (and vice versa); and also, because A 

is symmetric, the [(i-l)n+j]th and [(j-l)n+i]th elements of vecA are the same. 

Hence 

(44) 

Also using (33) and (39) 

(vecA) 1 (V ·:~ V)vecA = (vecA) 'vec(VAV) = tr(AV) 2 ( 1~5) --
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so that 

(46) 

Simplification of e2 in (43) starts with using (33) to get 

which is of the form 

for 

e = (vecH)'[diag{vecL}]vecH 
2 - - -

H = D~Z'AZD~ 
k 

and L = z+ y I 
m=l nJr.-em 

(47) 

(48) 

The nature of the vee and diag operators means that (47) is 

e0 = ZZh~ . .e.. (49) 
'- . . l.J l.J 

J.J 

for H = {h .. } and L = [ .Ci.} of (1~8). But vli th this L, the only non-zero !!- • . 1 s are 
- l.J - J J.J 

the diagonal ones, .Ctt = ym fort= 1, ···,em and m = 1, ···, k. Furthermore, as 

in (23), these diagonal elements have c zeros between them in vecL so that the use 

of (1+8) in (1~9) gives 

for 

k em 
e = z y z h 2 

2 m=l m t=l tt 

1.. 1.. 
h2 = tth diagonal element of the mth diagonal sub-matrix of D2Z'AZD2 
tt - - --~ 

= a2(tth diagonal element of the mth diagonal sub-matrix of Z'AZ). 
m - ~~ 



Therefore 

8 ::;:: 
2 

- ll -

k 
:2:: y cr"'""' (sum of squares of diagonal elements of Z 1AZ ) • 

l m m -m,...-m 
IlF 

Substituting (46) and (50) into (41) gives 

k 
v(y'Ay) - -- = 2tr(~~)2 + E Y cr~(sum of squares of diagonal elements of Z'AZ ). 

~- 1 m m -ro--m m= 

(50) 

(51) 

This is the variance, under non-normality, of a translation invariant (AX = 0) 

quadratic form y 1Ay. Under normality, Y ~ 0 for all m and (51) reduces to the 
- -- m 

familiar form 

(52) 

Equation (51) is, of course, equivalent to the result given by Rao [1971] 

where he writes ~l for ~ and ~2 = 

and so gets 

k -r;+ ''/ cr4 I and B = diag[ diagonal elements of B} 
m=l m m-cm 

:for B == Z 'AZ. vlith V being ZDZ 1 this is readily seen to be the same as (51). 

NacRae, E. c. [19(4]. 
decision problem. 
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