FOURITH MOMENTS IN THE GENERAL LINEAR MODEL; AND THE VARIANCE OF TRANSIATION INVARIANT QUADRATIC FORMS

R. D. Anderson $1 /$, R. L. Quaas $1 /$ and S. R. Searle $e^{2 /}$

Cornell University

Abstract

Using vec and Kronecker product operators, a detailed derivation is given of fourth moments in the general linear model and of the variance of translation invariant quadratic forms.

Introduction

We consider the general linear model
where $\underset{\sim}{X}$ of order $n \times p$ and $\underset{\sim}{Z}$ m order $n \times c_{m}, m=1, \cdots, k$ are known incidence matrices, $\underset{\sim}{\beta}$ is an unknown vector of p fixed effects, and the $\underset{\sim}{u}$, of order $c_{m} \times I$ for $m=1$, m, k, are unknown vectors of random effects such that
(i) the elements of $\underset{\sim}{u}$ are independent having common variance σ_{m}^{2} and kurtosis γ_{m}, and
(ii) $\underset{\sim}{u} \mathrm{~m}^{\prime}$ and $\underset{\sim}{u} \mathrm{~m}^{\prime}$ are independent for $\mathrm{m} \neq \mathrm{m}^{\prime}$.

1/ Department of Animal Science.
2/ Biometrics Unit

* Paper No. BU-630-M in the Biometrics Unit.

Accordingly, the variance-covariance matrix of the vector $\underset{\sim}{y}$ is

$$
\operatorname{Var}(\underset{\sim}{y})=\sum_{\mathrm{m}=1}^{\mathrm{k}} \sigma_{\mathrm{m} \sim \mathrm{~m} \sim \mathrm{~m}}^{2} Z_{\sim}^{\prime}=\underset{\sim}{V}
$$

As far as the ensuing algebra is concerned, a more convenient representation of (1) is

$$
\begin{equation*}
\underset{\sim}{y}=\underset{\sim}{X \beta} \underset{\sim}{\beta}+\underset{\sim}{Z u} \tag{2}
\end{equation*}
$$

where $\underset{\sim}{Z}$ is the $n \times c .\left(c,=\underset{m=1}{k} c_{m}\right)$ partitioned matrix $\underset{\sim}{Z}=[\underset{\sim}{Z} \underset{\sim}{Z} \cdots \underset{\sim}{Z}]$, and $\underset{\sim}{u}$ is the $c . \times 1$ vector $\underset{\sim}{u}{ }^{\prime}=\left[{\underset{\sim}{1}}_{1}^{\prime} \cdots{\underset{\sim}{k}}^{\prime}\right]$. Corresponding to model (2), the variancecovariance matrix of $\underset{\sim}{y}$ is then

$$
\underset{\sim}{V}=\underset{\sim}{Z D Z} Z_{\sim}^{\prime}
$$

where

$$
\begin{equation*}
\underset{\sim}{D}=E\left(u_{\sim \sim}^{\prime}\right)=\sum_{m=1}^{k} \sigma_{\min c_{m}^{2}}^{I_{n}} \tag{3}
\end{equation*}
$$

and $\Sigma^{+} A_{i}$ denotes the direct sum of matrices A_{i}.

Fourth Moments

The matrix of central fourth moments of the vector $\underset{\sim}{y}$ is, by definition,

$$
\begin{equation*}
\underset{\sim}{F}=\operatorname{Var}[(\underset{\sim}{y}-\underset{\sim}{X} \underset{\sim}{X}) *(\underset{\sim}{y}-\underset{\sim}{X} \underset{\sim}{X})] \tag{4}
\end{equation*}
$$

Where $\underset{\sim}{A} \underset{\sim}{B}$ is the direct (Kronecker) product of $\underset{\sim}{A}$ and $\underset{\sim}{B}$. Substituting in terms of (2),

$$
\begin{align*}
\underset{\sim}{F} & =\operatorname{Var}[(\underset{\sim}{Z u}) * \underset{\sim}{(Z u})] \\
& =\operatorname{Var}[(\underset{\sim}{z} * \underset{\sim}{z})(\underset{\sim}{u} * \underset{\sim}{u})] \\
& =(\underset{\sim}{z} * \underset{\sim}{z})[\operatorname{Var}(\underset{\sim}{u} * * \underset{\sim}{u})](\underset{\sim}{z} * \underset{\sim}{z})^{\prime} . \tag{5}
\end{align*}
$$

Defining the vec of a matrix to be the $\underset{\sim}{M}{ }^{c}$ matrix first introduced by Roth [1934], namely, the vector obtained from stacking the columns of the matrix one beneath the other in a single vector, and noting that $\left.\underset{\sim}{\operatorname{vec}\left({\underset{\sim}{\sim}}_{\sim}^{u}\right)}{ }^{\prime}\right) \underset{\sim}{u}{ }_{*}^{\sim} \underset{\sim}{u}$ it follows that

$$
\begin{align*}
& \operatorname{Var}(\underset{\sim}{u} * \underset{\sim}{u})=E\left[(\underset{\sim}{u} * \underset{\sim}{u} \underset{\sim}{u})(\underset{\sim}{u} * \underset{\sim}{u})^{\prime}\right]-[E(\underset{\sim}{u} * \underset{\sim}{u})][E(\underset{\sim}{u} * \underset{\sim}{u})]^{\prime} \\
& =E\left[\left({\underset{\sim}{\sim}}_{\sim}^{\prime}{ }^{\prime}\right) *\left({\underset{\sim}{u}}^{\prime}\right)\right]-E\left[\operatorname{vec}\left({\underset{\sim}{u}}^{\prime}\right)\right] E\left[\operatorname{vec}\left(\underset{\sim}{u}{ }^{\prime}\right)\right]^{\prime} \\
& =E\left[\left(\operatorname{uu\sim }_{\sim}^{\prime}{ }^{\prime}\right) *\left(\underset{\sim}{u}{ }^{\prime}\right)\right]-\operatorname{vecE}\left({\underset{\sim}{\sim}}_{\sim}^{\prime}\right)\left[\operatorname{vec} E\left(\underset{\sim}{u}{ }_{\sim}^{\prime}\right)\right]^{\prime} \\
& =E\left[\left(\text { uu~ }_{\sim}^{\prime}\right) *\left(\underset{\sim}{u}{ }^{\prime}\right)\right]-\operatorname{vec} \underset{\sim}{D}(\underset{\sim}{\operatorname{vec} D})^{\prime}, \tag{6}
\end{align*}
$$

on using $\underset{\sim}{D}$ of (3).
To simplify (6) we define

$$
\begin{equation*}
c \equiv c_{0}=c_{1}+c_{2}+\cdots+c_{k} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\sim}{w} \equiv{\underset{\sim}{D}}^{-\frac{1}{2}} \underset{\sim}{u}=\left\{w_{i}\right\} \quad i=1, \cdots, c . \tag{8}
\end{equation*}
$$

Then $\underset{\sim}{w}$ has the properties

$$
\begin{equation*}
E(\underset{\sim}{W})=0, \quad E\left(\underset{\sim}{W}{ }_{\sim}^{\prime}\right)=\operatorname{var}(\underset{\sim}{W})={\underset{\sim}{C}}^{I} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(w_{i}^{4}\right)=3+\dot{\gamma}_{i} \quad \text { for } i=1, \cdots, c \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{Y}_{i}=i^{\text {th }} \text { diagonal element of } \sum_{m=1}^{k} Y_{m \sim c_{m}} \text {. } \tag{11}
\end{equation*}
$$

Then for (6)

$$
\begin{align*}
& E\left[\left(\underset{\sim}{u}{ }^{\prime}\right) *\left(\underset{\sim}{u}{ }^{\prime}\right)\right]=\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) E\left[\left(\underset{\sim}{w}{ }_{\sim}^{\prime}\right) *\left(\underset{\sim}{w}{ }^{\prime}\right)\right]\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right)^{\prime}, \\
& =\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \underset{\sim}{\sim}\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \tag{12}
\end{align*}
$$

on defining

$$
\begin{align*}
\sum_{\sim} c^{2} x c^{2} & \equiv\left\{\sum_{\sim i j}\right\} \quad \text { for } i, j=1,2, \cdots, c \\
& =\left\{E\left(w_{i} w_{j} W_{\sim}{ }^{\prime}\right)\right\} \\
& =\left\{E\left(w_{i} w_{j} w_{k} w_{l}\right)\right\} \quad \text { for } 1, j, k, l=1,2, \cdots, c . \tag{13}
\end{align*}
$$

Now for $i=j$

$$
E\left(w_{1} w_{i} w_{k} w_{\ell}\right)=\left\{\begin{array}{cl}
3+\dot{\gamma}_{i} & \text { when } i=k=\ell \tag{14}\\
I & \text { when } i \neq k=\ell \\
0 & \text { otherwise }
\end{array}\right.
$$

and for $i \neq j$

$$
E\left(W_{i} W_{j} W_{k} W_{l}\right)= \begin{cases}I & \text { when } i=k, j=\ell \tag{15}\\ I & \text { when } i=l, j=k \\ 0 & \text { othervise, }\end{cases}
$$

so that, on defining

$$
\begin{equation*}
{\underset{\sim}{e}}_{i}=i^{t h} \text { column of } \underset{\sim}{I} \text {, } \tag{16}
\end{equation*}
$$

(14) and (15) give the sub-matrices of (13) as

$$
\begin{equation*}
\sum_{\sim i i}=I+\left(2+\dot{\gamma}_{i}\right) e_{\sim}^{e} e_{\sim}^{\prime} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\sim i j}={\underset{\sim i}{i}}_{e_{\sim j}^{\prime}}+\underset{\sim j}{e_{j} e_{i}^{\prime}}, \quad \text { for } i \neq j \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\sim}{\sum}=\left\{\underset{\sim}{\sum_{i j}}\right\}=\underset{\sim}{I}+\left\{\underset{\sim}{e} e_{\sim j} e_{j}^{\prime}+\underset{\sim}{e} e_{\sim}^{\prime}\right\} \text { for } i, j=1, \cdots, c,+\underset{i=1}{c} \dot{\gamma}_{i} e_{\sim i} e_{\sim}^{\prime} . \tag{19}
\end{equation*}
$$

In (19) it is important to note that for the matrix $\left\{\underset{\sim}{e_{i}}{\underset{\sim}{j}}_{j}+\underset{\sim}{e} j_{\sim}^{e} e_{i}^{\prime}\right\}$ the sequence of subscripts is $j=1, \cdots$, c within $i=1, \cdots$, c. This being so, it can be noted that

$$
\begin{equation*}
\left\{\underset{\sim j}{e_{j i}} e_{i}^{1}\right\} \text { for } i, j=1, \cdots, c,=\underset{\sim}{I}(c, c), \tag{20}
\end{equation*}
$$

the permuted identity matrix of order c^{2}, as used by Tracy and Dwyer [1969] and MacRae [1974]; and

$$
\begin{equation*}
\left\{{\underset{\sim}{e}}_{i} e_{\sim}^{\prime}\right\} \text { for } i, j=1, \cdots, c,=\operatorname{vec} \underset{\sim}{I}(\operatorname{vec} \underset{\sim}{I}) \tag{21}
\end{equation*}
$$

Furthermore, using (11) in the last term of (19) gives, for $t_{m-1}=c_{1}+c_{2}+\cdots$ $+c_{m-1}$

$$
\begin{equation*}
\underset{i=1}{\Sigma^{+}} \dot{\gamma}_{i} e_{i}^{e} e_{i}^{\prime}=\sum_{m=1}^{k} \gamma_{m}^{+}\left(\underset{i=t_{m-1}^{+1}}{\sum_{m}^{+}} \underset{\sim}{e} e_{i}^{e}\right) . \tag{22}
\end{equation*}
$$

Now for $i=1, \cdots, c$

$$
\begin{aligned}
{\underset{\sim}{i}}_{i}^{e} & e_{i}^{\prime}= \\
& \text { a diagonal matrix of order } c \text { with its only } \\
& \text { nonement being } l \text { in the }(i, i) \text { position }
\end{aligned}
$$

and

$$
\left[\begin{array}{cc}
\underset{\sim}{e} \underset{\sim}{e}{ }_{\sim}^{\prime} & \stackrel{0}{\sim} \\
\underset{\sim}{\sim} & {\underset{\sim}{e}}_{i+1}{\underset{\sim}{e}}_{i}^{\prime}+1
\end{array}\right]=\begin{aligned}
& \text { a diagonal matrix of order } 2 c \text { with its only non-zero } \\
& \text { elements being } 1 \text { in the }(i, i) \text { and }(c+i+1, c+i+1) \\
& \text { positions. }
\end{aligned}
$$

Consider just the diagonal elements of this last matrix. Between the two l's there are $c-i+i=c$ zeros; and this is true for all 1. Denote a row vector of c zeros by $\underset{\sim}{\circ} \underset{\sim}{\prime}$. Then the diagonal elements of (22) are
where γ_{m} occurs c_{m} times for $m=1,2, \cdots, k$. This is a vector of c^{2} elements and by its nature is $\operatorname{vec}\left(\begin{array}{c}k \\ \sum_{m=1}^{+} \\ Y_{m} I_{m}\end{array}\right)$. Hence, on using the definition

$$
\text { diag } \underset{\sim}{x} \equiv \text { diagonal matrix with diagonal elements }
$$

we have (22) as

$$
\begin{equation*}
\sum_{i=1}^{c} \dot{\gamma}_{i} e_{i} e_{i}^{\prime}=\operatorname{diag}\left\{\operatorname{vec}\left(\Sigma^{+} \gamma_{m_{\sim}^{n}}^{I}\right)\right\} . \tag{24}
\end{equation*}
$$

Substituting (20), (21) and (24) into (19) gives

$$
\begin{equation*}
\underset{\sim}{\Sigma}={\underset{\sim}{c}}^{I^{2}}+\underset{\sim}{I}(c, c)+\left(\operatorname{vec}{\underset{\sim}{I}}^{I_{c}}\right)\left(\operatorname{vec} I_{\sim}\right)^{\prime}+\operatorname{diag}\left\{\operatorname{vec}\left(\Sigma^{+} \gamma_{\operatorname{m\sim }}^{I_{n}}\right)\right\} . \tag{25}
\end{equation*}
$$

Using \sum_{\sim} in (12) now gives

$$
\begin{align*}
& =\left(\underset{\sim}{D^{\frac{1}{2}}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right)\left[\underset{\sim}{I}+\underset{\sim}{I}(c, c)+\left(\operatorname{vec} I_{\sim}^{I}\right)\left(\operatorname{vec} I_{\sim}\right)^{\prime}+\operatorname{diag}\left\{\operatorname{vec}\left(\Sigma^{+} \gamma_{m \sim C_{u}} I_{\sim}\right)\right\}\right]\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \\
& \left.=\underset{\sim}{D} * \underset{\sim}{D}+\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \underset{\sim}{I}(c, c) \underset{\sim}{D^{\frac{1}{2}}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right)+\underset{\sim}{z Z}{ }^{\prime}+\underset{\sim}{\Gamma} \tag{26}
\end{align*}
$$

where we define

Also, use is made of the results in MacRae [19"4] that
and

$$
\begin{equation*}
\left[\underset{\sim}{I}(p, p)^{2}=I_{\sim} p^{2}\right. \tag{29}
\end{equation*}
$$

so that

Hence for (26)

$$
\begin{equation*}
\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \underset{\sim}{I}(c, c)\left({\underset{\sim}{D}}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right)=(\underset{\sim}{D} * \underset{\sim}{D}) \underset{\sim}{I}(c, c) \text {. } \tag{31}
\end{equation*}
$$

Furthermore, in (26)

$$
\begin{equation*}
\underset{\sim}{z} \equiv\left(\sim_{\sim}^{\frac{1}{2}} *{\underset{\sim}{D}}^{\frac{1}{2}}\right) \text { vecI }=\underset{\sim}{\operatorname{vec} \underset{\sim}{D}} \tag{32}
\end{equation*}
$$

because, in general,

$$
\begin{equation*}
\operatorname{vec}(\underset{\sim}{\mathrm{ABC}})=\left(\underset{\sim}{C}{ }^{\prime} * \underset{\sim}{A}\right) \operatorname{vec} \underset{\sim}{B} \tag{33}
\end{equation*}
$$

as in Neudecker [1969].
Using (31) and (32) in (26) therefore gives

$$
\begin{equation*}
\left.\left.\left.E\left[\left(\underset{\sim}{\sim} u^{\prime}\right) *(\underset{\sim}{u})^{\prime}\right)\right]=(\underset{\sim}{D} * \underset{\sim}{D})(\underset{\sim}{I}+\underset{\sim}{I}(c, c))+(\operatorname{vec})_{\sim}\right)(\operatorname{vec})_{\sim}\right)^{\prime}+\underset{\sim}{r} \tag{34}
\end{equation*}
$$

where $\underset{\sim}{\Gamma}$ is as defined in (27), and so substitution into (6) gives

$$
\begin{equation*}
\operatorname{var}(\underset{\sim}{u} * \underset{\sim}{u})=(\underset{\sim}{D} * \underset{\sim}{D})(\underset{\sim}{I}+\underset{\sim}{I}(c, c))+\underset{\sim}{\Gamma} . \tag{35}
\end{equation*}
$$

Putting (35) into (5) gives the matrix of fourth moments as

$$
\underset{\sim}{F}=(\underset{\sim}{Z} * \underset{\sim}{Z})[(\underset{\sim}{D} * \underset{\sim}{D})(\underset{\sim}{I}+\underset{\sim}{I}(c, c))+\underset{\sim}{\Gamma}]\left(\underset{\sim}{Z}{ }^{\prime} * \underset{\sim}{Z}\right)
$$

and because $\underset{\sim}{Z D Z} Z^{\prime}=\underset{\sim}{V}$ this is:

$$
\left.\underset{\sim}{F}=\underset{\sim}{V} * \underset{\sim}{V}+(\underset{\sim}{Z D} * \underset{\sim}{Z D}) \underset{\sim}{I}(c, c) \underset{\sim}{(Z}{ }^{\prime} * \underset{\sim}{Z}{ }^{\prime}\right)+(\underset{\sim}{Z} * \underset{\sim}{Z}) \underset{\sim}{\Gamma}\left(\underset{\sim}{Z}{ }^{\prime} \#{\underset{\sim}{\mid}}^{\prime}\right) .
$$

Using (30) again leads to

$$
\begin{equation*}
\left.\underset{\sim}{F}=(\underset{\sim}{V} * \underset{\sim}{V})(\underset{\sim}{I}+\underset{\sim}{I}(n, n))+(\underset{\sim}{Z} * \underset{\sim}{Z}) \underset{\sim}{\Gamma} \underset{\sim}{Z}{ }^{\prime} * \underset{\sim}{Z}{ }^{\prime}\right) \tag{36}
\end{equation*}
$$

and on using (27) this has the equivalent form

This, then, is the general expression for the matrix of fourth central moments of the vector of observations in linear model theory.

In the special case of normality assumptions, i.e., $\underset{\sim}{u} \sim \underset{\sim}{\sim}\left(\underset{\sim}{0}, \sigma_{m_{\sim c_{m}}^{2}}^{2}\right)$, we have $\gamma_{m}=0$ and (37) reduces to

$$
\begin{equation*}
\underset{\sim}{F}=(\underset{\sim}{V} * \underset{\sim}{V})(\underset{\sim}{I}+\underset{\sim}{I}(n, n)) \tag{38}
\end{equation*}
$$

Variance of Translation Invariant Quadratic Forms

The quadratic form $\underset{\sim}{y}{ }_{\sim}^{A} \underset{\sim}{x}$ is called translation invariant when $\underset{\sim}{A}$, as well as being symmetric, satisfies $\underset{\sim}{A X}=0$. Then the variance of the translation invariant quadratic form is

$$
\begin{aligned}
& v\left(\underset{\sim}{y}{ }^{\prime} \underset{\sim}{A y}\right)=v\left[(\underset{\sim}{y}-\underset{\sim}{x} \underset{\sim}{X})^{\prime} \underset{\sim}{A}(\underset{\sim}{y}-\underset{\sim}{x} \underset{\sim}{X})\right] \\
& =v(\underset{\sim}{u} \underset{\sim}{Z} \underset{\sim}{\prime} A Z \sim) \\
& =v\left\{\operatorname{tr}\left[\underset{\sim}{A}\left(\underset{\sim \sim}{\sim} \text { Zuu }_{\sim}^{\prime} Z_{\sim}^{\prime}\right)\right]\right\} .
\end{aligned}
$$

Now use the general result for any product $\underset{\sim}{P Q}$, that

$$
\begin{equation*}
\operatorname{tr}(\underset{\sim}{\mathrm{PQ}})=\left(\operatorname{vec}_{\sim}{ }_{\sim}^{\prime}\right)^{\prime} \mathrm{vec} Q \tag{39}
\end{equation*}
$$

and so

$$
\begin{align*}
& v\left(\underset{\sim}{\mathrm{y}}{ }^{\prime} \underset{\sim}{A y}\right)=\mathrm{v}\left\{(\mathrm{vec} \underset{\sim}{\text { a }})^{\prime} \operatorname{vec}\left(\underset{\sim}{\text { Zuu }}{ }_{\sim}^{\prime}{\underset{\sim}{Z}}^{\prime}\right)\right\} \\
& =(\operatorname{vec} \underset{\sim}{A}) ' \operatorname{var}\left[\operatorname{vec}\left(\underset{\sim}{\sim} \operatorname{Zuu}_{\sim}^{\prime}{\underset{\sim}{Z}}^{\prime}\right)\right] \operatorname{vec} \underset{\sim}{A} \\
& =(\operatorname{vec} \underset{\sim}{A})^{\prime} \operatorname{var}\left[(\underset{\sim}{Z u}) *(\underset{\sim}{Z u})^{\prime}\right] \operatorname{vec} \underset{\sim}{A} \\
& =(\operatorname{vec} A)^{\prime} \underset{\sim}{F}(\operatorname{vec} A), \quad u \operatorname{sing}(4) \tag{40}
\end{align*}
$$

and on using (36) this gives

$$
\begin{equation*}
\mathrm{v}\left({\underset{\sim}{y}}^{\prime} \underset{\sim}{A y}\right)=\theta_{1}+\theta_{2} \tag{4I}
\end{equation*}
$$

for

$$
\begin{equation*}
\theta_{1}=(\operatorname{vec} A)^{\prime}(\underset{\sim}{V} \approx \underset{\sim}{V})(\underset{\sim}{I}+\underset{\sim}{I}(n, n)) \operatorname{vec} A \tag{42}
\end{equation*}
$$

and

In θ_{1} of (42), the elements of the $[(i-1) n+j]$ th row of $\underset{\sim}{I}(n, n)$ are all zero except for a 1 in the $[(j-1) n+i]^{t h}$ column (and vice versa); and also, because A is symmetric, the $[(i-1) n+j]^{t h}$ and $[(j-1) n+i]^{t h}$ elements of vecA are the same. Hence

$$
\begin{equation*}
\underset{\sim}{I}(n, n)(\operatorname{vec} A)=\underset{\sim}{v e c A} . \tag{44}
\end{equation*}
$$

Also using (33) and (39)

$$
\begin{equation*}
(\underset{\sim}{\operatorname{vec} A})^{\prime}(\underset{\sim}{V} * \underset{\sim}{V}) \operatorname{vec} \underset{\sim}{\operatorname{van}}=(\underset{\sim}{\operatorname{vec} A})^{\prime} \operatorname{vec}(\underset{\sim}{\operatorname{VAV}})=\operatorname{tr}(\underset{\sim}{\operatorname{AV}})^{2}, \tag{45}
\end{equation*}
$$

so that

$$
\begin{equation*}
\theta_{1}=2 \operatorname{tr}(\underset{\sim}{A V})^{2} \tag{46}
\end{equation*}
$$

Simplification of θ_{2} in (43) starts with using (33) to get
which is of the form

$$
\begin{equation*}
\theta_{2}=(\operatorname{vec} \underset{\sim}{H}) \cdot[\operatorname{diag}\{\operatorname{vec} \underset{\sim}{L}\}] \operatorname{vec} \underset{\sim}{H} \tag{47}
\end{equation*}
$$

for

The nature of the vec and diag operators means that (47) is

$$
\begin{equation*}
\theta_{2}=\sum_{i j} \operatorname{hn}_{i j}^{2} l_{i j} \tag{49}
\end{equation*}
$$

for $\underset{\sim}{H}=\left\{h_{i j}\right\}$ and $\underset{\sim}{I}=\left\{l_{i j}\right\}$ of (48). But with this $\underset{\sim}{L}$, the only non-zero $l_{i j}$'s are the diagonal ones, $\ell_{t t}=\gamma_{m}$ for $t=1, \cdots, c_{m}$ and $m=1, \cdots, k$. Furthermore, as in (23), these diagonal elements have c zeros between them in vec $\underset{\sim}{\text { s }}$ so that the use of (48) in (4.9) gives

$$
\theta_{2}=\sum_{m=1}^{k} Y_{m} \sum_{t=1}^{c_{m}} h_{t t}^{2}
$$

for

$$
\begin{aligned}
h_{t t}^{2} & =t^{t h} \text { diagonal element of the } m^{t h} \text { diagonal sub-matrix of } \underset{\sim}{D^{\frac{1}{2}}{\underset{\sim}{Z}}^{\prime} A Z \sim_{\sim}^{D}} \\
& =\sigma_{m}^{2}\left(t^{t h} \text { diagonal element of the } m^{t h} \text { diagonal sub-matrix of } \underset{\sim}{Z}{\underset{\sim}{1}}^{\prime} A Z\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\theta_{2}=\sum_{m=1}^{k} Y_{m} \sigma_{m}^{A}\left(\text { sum of squares of diagonal elements of } \underset{\sim}{Z} Z_{\sim \sim m}^{\prime} A Z_{m}\right) \tag{50}
\end{equation*}
$$

Substituting (46) and (50) into (41) gives

$$
\begin{equation*}
\mathrm{v}\left(\underset{\sim}{y_{\sim}^{\prime}} \underset{\sim}{A y}\right)=2 \operatorname{tr}(\underset{\sim}{A V})^{2}+\sum_{m=1}^{k} \gamma_{m} \sigma_{m}^{\prime \leq}\left(\text { sum of squares of diagonal elements of } \underset{\sim}{Z}{ }_{m}^{\prime} A Z \sim m\right) . \tag{51}
\end{equation*}
$$

This is the variance, under non-normality, of a translation invariant $(\underset{\sim}{A X}=\underset{\sim}{x})$ quadratic form $\underset{\sim}{y}{ }^{\prime} \underset{\sim}{A y}$. Under normality, $\gamma_{m}=0$ for all mand (5I) reduces to the familiar form

$$
\begin{equation*}
v\left({\underset{\sim}{y}}^{\prime} \underset{\sim}{A y}\right)=2 \operatorname{tr}(\underset{\sim}{A V})^{2} \tag{52}
\end{equation*}
$$

Equation (51) is, of course, equivalent to the result given by Rao [1971]
 and so gets

$$
\mathrm{v}\left(\mathrm{y}_{\sim}^{\prime} \underset{\sim}{A y}\right)=2 \operatorname{tr}\left(\underset{\sim \sim}{B} \Delta_{\sim}\right)^{2}+\operatorname{tr}(\underset{\sim \sim}{\tilde{B} \Delta} \underset{\sim}{\tilde{B}})
$$

for $\underset{\sim}{B}=\underset{\sim}{Z}{ }^{\prime} \underset{\sim}{A Z}$. With $\underset{\sim}{V}$ being $\underset{\sim}{Z D Z} Z_{\sim}^{\prime}$ this is readily seen to be the same as (51).

References

MacRae, E. C. [19/4]. Matrix derivatives with an application to an adaptive linear decision problen. Annals of Statistics 2:337-346.

Neudecker, H. [190́9]. Some theorems on matrix derivatives in multivariate analysis. J. Am. Stat. Assoc. 62:607-525.

Rao, C. R. [1971]. Estimation of variance and covariance components - MINQUE theory. J. Multivariate Anal. 1:257-275.

Roti, W. E. [1934]. On direct product matrices. Bull. Amer. Math. Soc. 40:461-468.
Tracy, D. S. and Doyer, P. S. [1969]. Nultivariate maxima and minima with matrix derivatives. J. Am. Stat. Assoc. 64:1576-1594.

