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FeSe is the focus of intense research interest because of its unusual non-magnetic
nematic state and because it forms the basis for achieving the highest critical
temperatures of any iron-based superconductor. However, its Cooper pairing
mechanism has not been determined because an accurate knowledge of the
momentum-space structure of superconducting energy gaps A«(k) on the differ-
ent electron-bands E;(k) does not exist. Here we use Bogoliubov quasiparticle
interference (BQPI) imaging to determine the coherent Fermi surface geome-
try of the @- and e-bands surrounding the I' = (0,0) and X = (n/af,, 0) points
of FeSe, and to measure their superconducting energy gaps Aa(l?) and Ag(E).
We show directly that both gaps are extremely anisotropic but nodeless, and
are aligned along orthogonal crystal axes. Moreover, by implementing a novel
technique we demonstrate the sign change between Aa(lg) and Ag(E). This com-
plex configuration of Aa(lz) and As(lz), which was unanticipated within pairing
theories for FeSe, reveals a unique form of superconductivity based on orbital
selective Cooper pairing of electrons from the d,, orbitals of iron atoms. This
new paradigm of orbital selectivity may be pivotal to understanding the micro-
scopic interplay of quantum paramagnetism, nematicity and high temperature

superconductivity.
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CHAPTER 1
INTRODUCTION

The macroscopic quantum mechanical state of superconductivity manages to
fascinate even more than 100 years since its initial discovery by H. K. Onnes
in mercury [1,2]. The ability to conduct current without resistance has led to
important applications for example in medical technology and fundamental re-
search where very high magnetic fields are required. Currently, the main tech-
nological reason that holds back superconductivity are the relatively low criti-
cal temperatures of so-called conventional, element and alloy superconductors.
The goal remains to find a superconductor which would enable room tempera-
ture applications.

The discovery of high-temperature superconductivity in the cuprates in 1986
was thus greeted with much excitement in the scientific community [3]. It
also came as a big surprise as the parent state of the cuprates is an antiferro-
magnet, and magnetism was long thought to be detrimental to superconduc-
tivity. Superconductivity in the cuprates is usually referred to as unconven-
tional, and there are other unconventional superconductors: organic salts and
heavy-fermion materials [4], but their critical temperatures are very low. Un-
fortunately, the highest T¢ in the cuprates remains at ~ 164 K [4], and there is
no consensus among researchers what exactly creates superconductivity in the
cuprates.

Interest in unconventional superconductivity got renewed in 2008 when the
group of H. Hosono discovered superconductivity in La[O,_.F,]FeAs(x = 0.05 —
0.12) [5]. This “iron age” of superconductivity as called by some [6] has brought
forth two new families of unconventional superconductors: the pnictides and

the chalcogenides. As in the cuprates a transition metal, iron, and parent states



with magnetic order are present. With this in mind the fundamental question
emerges if a universal mechanism for unconventional superconductivity exists,
and if the iron-based superconductors can help solve the riddle of cuprate su-
perconductivity, and finally create a path to room temperature superconductiv-
ity. Incidentally, a record-breaking T of 203 K under very high pressure (~ 90
GPa) in the superconductor H,S was discovered roughly 2 years ago [7,8]. Yet,
it remains unclear if any real-world applications can materialize out of such ex-
treme conditions.

In the beginning research focused on the pnictides, as T¢ was initially higher
than in the chalcogenides and high-quality single crystals were easier synthe-
sized in the case of the pnictides. More, recently focus has shifted towards the
chalcogenides, and FeSe specifically. This is in part due to the record high T
achieved for iron-based superconductors by growing a monolayer of FeSe on a
SrTiOs substrate [9-12], but there are additional reasons as we will discuss in
more detail later in the introduction.

The introduction is separated into two parts: First we briefly review important
general concepts and questions related to iron-based superconductivity. Sec-
ondly, we present the most important points about FeSe, and where it differs

from other iron-based superconductors.

1.1 Iron-based superconductivity

Iron-based superconductors derive their name from a common motif in their
crystal structure similar to the copper oxygen plaquette in cuprate supercon-
ductors. This motif is a tetrahedron formed out of iron and chalcogen or pnic-

togen atoms, see The elements most commonly encountered when



iron-based superconductors are discussed are sulfur, selenium, and tellurium
on the chalcogen side, and phosphorus and arsenic for the pnictogens. The two
subgroups of iron-based superconductors derive their names accordingly: the
pnictides and the chalcogenides.

Research of iron-based superconductivity is a rapidly evolving field due to a
great and concerted effort both by theorists and experimentalists over the last
ten years. There exist many excellent review articles which address the main
questions, theoretical models, and experimental results [6,(12-22]. In the fol-
lowing we provide an overview of the most relevant results for iron-based su-
perconductors, and point the interested reader towards the aforementioned re-

views for details.

1.1.1 Crystal and atomic structure

The crystal structure of four common types of iron-based superconductors is
presented in Central to the crystal structure is the tetrahedron which
consists of a square lattice of Fe-atoms, and a chalcogen / pnictogen atom above
or below. The size of the chalcogen / pnictogen atom affects hereby the tetra-
hedral angle and the distance between Fe-atoms in the square-lattice plane, and
has the potential to drastically change the properties as a result [1523].

FeSe is the structurally simplest material, as it consists of only the aforemen-
tioned trilayers of Fe- and Se-atoms being stacked on top of each other. More
complicated families are generated by adding spacer layers between the trilay-
ers. These spacer layers have different levels of complexity as can be seen inFig |
There are more families than the ones depicted in but they all have

the tetrahedron as elemental building block in common, see for example [15,20].
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Figure 1.1: Crystal structure of the 11, 111, 122, and 1111 family of iron-based
superconductors. The nomenclature 11, 122, etc. is based on the chemical com-
position of the crystal unit cell; for example 122 corresponds to 1 Ba-atom per
2 Fe- and 2 As-atoms. The common denominator is the tetrahedron formed by
iron and chalcogen / pnictogen atoms. In order to emphasize this point the
same color has been used for both Se- and As-atoms above. FeSe has the sim-
plest crystal structure of all chalcogenides and pnictides.

On the atomic level the relevant building blocks are the Fe 3d orbitals and the
4p orbitals of the chalcogen / pnictogen atoms. While the overall DOS is domi-
nated by the Fe 3d orbitals, see for example Ref. [26], the chalcogen / pnictogen
atoms influence the physics in two important ways. Firstly, the overlap of 4p
orbitals and 3d orbitals is important for the hopping of the electrons [14}26].
Secondly, the chalcogen / pnictogen atom creates a crystal field which leads to
a splitting of the energy levels of the individual 3d orbitals.

Figure 1.2/ depicts the 3d orbitals. In iron-based superconductors these are the



Figure 1.2: 3d orbitals. Shown are the five 3d orbitals. Here negative charges
are placed at the corners of an octahedron. Under an octahedral configuration
the five 3d orbitals can be divided into two subgroups based on their symmetry:
e, and t,,. The charges create an electrical field which generates different energy
splittings for the e, and 1,, orbitals. In a crystal this electrical field is called the
crystal field, and an octahedral crystal field exists in the case of the cuprates [24].
For iron-based superconductors the relevant splittings according to the crystal
structure are discussed in more detail in Figure reproduced from ref.

25].

3d orbitals of the Fe-atoms, and in the cuprates they belong to the Cu-atoms. In
an isolated atom the energy levels of the 3d orbitals are degenerate, but inside
a crystal the electrical field generated by the surrounding atoms destroys this
degeneracy. In[Fig. 1.2|charges are placed at the corners of an octahedron which
corresponds to the situation in the cuprates [24]. In iron-based superconductors
the alternating placement of chalcogen / pnictogen atoms above and below the
Fe-plane creates a crystal field environment that is between a tetragonal and
tetrahedral structure shown in

Another difference between the cuprates and the iron-based superconductors
comes from the different number of electrons in the 3d orbitals. While the Cu-
atoms are in a Cu** state which corresponds to a 3d° configuration the Fe-atoms
are in a Fe’* state which results in a 3d° configuration [[14,2224]. In combination
with the different crystal structures that results in vastly different distributions

of electrons inside the 3d orbitals. Essentially, in the case of iron-based super-
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Figure 1.3: Fe 3d orbitals in iron-based superconductors - crystal field split-
ting. In iron-based superconductors the alternating position of the pnicto-
gen/chalcogen above and below the Fe-lattice (A) creates a situation in between
a tetragonal (B) and a tetrahedral (C) crystal field environment. As a conse-
quence all five 3d orbitals need to be considered in models of the electronic
structure [14,22]. Figures reproduced from ref. [22].

conductors in general all five 3d orbitals need to be considered in order to best
describe the electronic structure whereas in the case of the cuprates only the

d._,» orbital needs to be taken into consideration.

1.1.2 Electronic structure in l?-space

In general, experiments find highly complex band structures and Fermi sur-
faces that can be quite different from a detailed point of view for the various
families. Nevertheless, there are some common features that we discuss in the
following. A generic five orbital / band tight-binding model for the Fe-lattice
finds the situation shown in There are one to three, roughly circu-
lar hole-like bands around the I'-point in the center of the Brillouin zone, and
one elliptical, electron-like band around the X- and Y-point each (here we only
show one hole-like band around the I'-point to simplify the graphic). ARPES
measurements show that for some materials only the electron-like pockets exist

at the Fermi surface, and one prominent example is the FeSe monolayer grown



on SrTi0O; substrates [12].

Figure 1.4: 1Fe unit cell versus 2 Fe unit cell in k-space. A, Fermi surface for the
1 Fe unit cell. The dashed line marks the 1 Fe unit cell Brillouin zone boundary.
B, Fermi surface for the 2 Fe unit cell which is created through folding of the 1
Fe unit cell Fermi surface. The solid diamond marks the 2 Fe unit cell Brillouin
zone boundary. See for exampleFig. 1.6/for depiction of corresponding 1 Fe and
2 Fe unit cell in real space.

So far we have only considered the Fe-square lattice with one Fe-atom per unit
cell, but in reality the alternating chalcogen / pnictogen atoms above and below
the Fe-atom plane create a bigger unit cell which contains 2 Fe-atoms instead of
1. The two unit cells are called 1 Fe unit cell and 2 Fe unit cell, respectively,
and they are shown in in k-space. A 10-orbital tight-binding model can
be created for the 2 Fe unit cell, and a schematic Fermi surface is shown in
Due to symmetry, there is a direct correspondence between the 5 orbital
and the 10 orbital model [26,27].

In band structure sensitive experiments one should observe the picture corre-
sponding to the 2 Fe unit cell as it is the physical unit cell. This is particularly
important for the interpretation of quantum oscillation experiments which mea-
sure the extremal areas of the Fermi surface, as the two electron pockets at the

X- and Y-point can hybridize due to spin-orbit coupling. Such hybridization



can have a sizable effect on the extremal areas.

1.1.3 Phases of matter in pnictides and chalcogenides

shows a schematic phase diagram which contains the most impor-
tant electronic phases observed in pnictides and chalcogenides. Upon cooling
the material undergoes a structural transition from tetragonal to orthorhombic
symmetry. This structural phase transition is accompanied, or possibly pre-
ceded [28], by an enigmatic electronic nematic phase which leads to a huge
resistivity anisotropy [29]. Antiferromagnetic order subsequently develops at
slightly lower temperatures. At evenlower temperatures, superconductivity ex-
ists, and becomes most stable where coexisting antiferromagnetic and nematic
ordered states are suppressed by doping or pressure [15-18,22].

As for the cuprate and heavy-fermion compounds superconductivity develops
in proximity to a antiferromagnetic phase upon doping with electrons or holes
or application of pressure [4], but there are differences between these material
systems, as well, and one is the nature of the parent state. The parent state of
the cuprates is a Mott insulator, the parent state of the heavy fermions is a heavy
fermion metal as the name implies, and the parent state of the iron-based super-
conductors is a metal. It is necessary to point out that this metallic state is not a
simple metal as can be found in for example the alkaline metals. Electronic cor-
relations are of crucial significance in the description of the metallic state found
in the iron-based superconductors [13,20], and we will revisit this question in
more detail in the context of FeSe.

The specific phase diagram of FeSe will be presented in part 2 of the introduc-

tion, and for the remainder of this subsection we discuss the electronic nematic
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Figure 1.5: Schematic phase diagram for iron-based superconductors. The
structural transition T's from tetragonal to orthorhombic is accompanied by a
transition to nematic electronic order, and subsequently followed by antiferro-
magnetic spin density wave order at Ty. At even lower temperatures T, su-
perconducting order develops for a certain amount of electron or hole doping.

Note that the antiferromagnetic phase has not been detected for FeSe. Repro-
duced from reference [[18].
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phase in some additional detail. The unexpected magnitude of the transport
anisotropy in the nematic phase has born the idea that the structural transition
is actually driven by electronic degrees of freedom instead of the lattice. Spin-
fluctuations have emerged as the most likely candidate for driving the nematic
phase [21},30], but orbital order has been proposed as an alternative [31]. In
general, strong coupling between spin, orbital, and lattice degrees of freedom
make it hard to readily distinguish the ultimate driving force behind the ne-

matic phase in experiments.



1.1.4 Magnetism

shows the most commonly encountered magnetic order in pnictide
superconductors, which is called either collinear or stripe order. In the stripe
phase the spins order ferromagnetically along the orthorhombic b-axis, and an-
tiferromagnetically along the a-axis. Here, the orthorhombic a-axis is longer
than the b-axis. The stripe phase is associated with (r,0) AFM spin-fluctuations

which are strongly considered to be the pairing glue for Cooper pairing.
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Figure 1.6: Collinear antiferromagnetic order found in pnictide superconduc-
tors. Spins couple ferromagnetically along the orthorhombic b-axis and anti-
ferromagnetically a