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FeSe is the focus of intense research interest because of its unusual non-magnetic

nematic state and because it forms the basis for achieving the highest critical

temperatures of any iron-based superconductor. However, its Cooper pairing

mechanism has not been determined because an accurate knowledge of the

momentum-space structure of superconducting energy gaps ∆i(~k) on the differ-

ent electron-bands Ei(~k) does not exist. Here we use Bogoliubov quasiparticle

interference (BQPI) imaging to determine the coherent Fermi surface geome-

try of the α- and ε-bands surrounding the Γ = (0, 0) and X = (π/aFe, 0) points

of FeSe, and to measure their superconducting energy gaps ∆α(~k) and ∆ε(~k).

We show directly that both gaps are extremely anisotropic but nodeless, and

are aligned along orthogonal crystal axes. Moreover, by implementing a novel

technique we demonstrate the sign change between ∆α(~k) and ∆ε(~k). This com-

plex configuration of ∆α(~k) and ∆ε(~k), which was unanticipated within pairing

theories for FeSe, reveals a unique form of superconductivity based on orbital

selective Cooper pairing of electrons from the dyz orbitals of iron atoms. This

new paradigm of orbital selectivity may be pivotal to understanding the micro-

scopic interplay of quantum paramagnetism, nematicity and high temperature

superconductivity.
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CHAPTER 1

INTRODUCTION

The macroscopic quantum mechanical state of superconductivity manages to

fascinate even more than 100 years since its initial discovery by H. K. Onnes

in mercury [1, 2]. The ability to conduct current without resistance has led to

important applications for example in medical technology and fundamental re-

search where very high magnetic fields are required. Currently, the main tech-

nological reason that holds back superconductivity are the relatively low criti-

cal temperatures of so-called conventional, element and alloy superconductors.

The goal remains to find a superconductor which would enable room tempera-

ture applications.

The discovery of high-temperature superconductivity in the cuprates in 1986

was thus greeted with much excitement in the scientific community [3]. It

also came as a big surprise as the parent state of the cuprates is an antiferro-

magnet, and magnetism was long thought to be detrimental to superconduc-

tivity. Superconductivity in the cuprates is usually referred to as unconven-

tional, and there are other unconventional superconductors: organic salts and

heavy-fermion materials [4], but their critical temperatures are very low. Un-

fortunately, the highest TC in the cuprates remains at ∼ 164 K [4], and there is

no consensus among researchers what exactly creates superconductivity in the

cuprates.

Interest in unconventional superconductivity got renewed in 2008 when the

group of H. Hosono discovered superconductivity in La[O1−xFx]FeAs(x = 0.05−

0.12) [5]. This ’iron age’ of superconductivity as called by some [6] has brought

forth two new families of unconventional superconductors: the pnictides and

the chalcogenides. As in the cuprates a transition metal, iron, and parent states
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with magnetic order are present. With this in mind the fundamental question

emerges if a universal mechanism for unconventional superconductivity exists,

and if the iron-based superconductors can help solve the riddle of cuprate su-

perconductivity, and finally create a path to room temperature superconductiv-

ity. Incidentally, a record-breaking TC of 203 K under very high pressure (∼ 90

GPa) in the superconductor H2S was discovered roughly 2 years ago [7, 8]. Yet,

it remains unclear if any real-world applications can materialize out of such ex-

treme conditions.

In the beginning research focused on the pnictides, as TC was initially higher

than in the chalcogenides and high-quality single crystals were easier synthe-

sized in the case of the pnictides. More, recently focus has shifted towards the

chalcogenides, and FeSe specifically. This is in part due to the record high TC

achieved for iron-based superconductors by growing a monolayer of FeSe on a

S rT iO3 substrate [9–12], but there are additional reasons as we will discuss in

more detail later in the introduction.

The introduction is separated into two parts: First we briefly review important

general concepts and questions related to iron-based superconductivity. Sec-

ondly, we present the most important points about FeSe, and where it differs

from other iron-based superconductors.

1.1 Iron-based superconductivity

Iron-based superconductors derive their name from a common motif in their

crystal structure similar to the copper oxygen plaquette in cuprate supercon-

ductors. This motif is a tetrahedron formed out of iron and chalcogen or pnic-

togen atoms, see Fig. 1.1. The elements most commonly encountered when
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iron-based superconductors are discussed are sulfur, selenium, and tellurium

on the chalcogen side, and phosphorus and arsenic for the pnictogens. The two

subgroups of iron-based superconductors derive their names accordingly: the

pnictides and the chalcogenides.

Research of iron-based superconductivity is a rapidly evolving field due to a

great and concerted effort both by theorists and experimentalists over the last

ten years. There exist many excellent review articles which address the main

questions, theoretical models, and experimental results [6, 12–22]. In the fol-

lowing we provide an overview of the most relevant results for iron-based su-

perconductors, and point the interested reader towards the aforementioned re-

views for details.

1.1.1 Crystal and atomic structure

The crystal structure of four common types of iron-based superconductors is

presented in Fig. 1.1. Central to the crystal structure is the tetrahedron which

consists of a square lattice of Fe-atoms, and a chalcogen / pnictogen atom above

or below. The size of the chalcogen / pnictogen atom affects hereby the tetra-

hedral angle and the distance between Fe-atoms in the square-lattice plane, and

has the potential to drastically change the properties as a result [15, 23].

FeSe is the structurally simplest material, as it consists of only the aforemen-

tioned trilayers of Fe- and Se-atoms being stacked on top of each other. More

complicated families are generated by adding spacer layers between the trilay-

ers. These spacer layers have different levels of complexity as can be seen in Fig.

1.1. There are more families than the ones depicted in Fig. 1.1, but they all have

the tetrahedron as elemental building block in common, see for example [15,20].
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Figure 1.1: Crystal structure of the 11, 111, 122, and 1111 family of iron-based
superconductors. The nomenclature 11, 122, etc. is based on the chemical com-
position of the crystal unit cell; for example 122 corresponds to 1 Ba-atom per
2 Fe- and 2 As-atoms. The common denominator is the tetrahedron formed by
iron and chalcogen / pnictogen atoms. In order to emphasize this point the
same color has been used for both Se- and As-atoms above. FeSe has the sim-
plest crystal structure of all chalcogenides and pnictides.

On the atomic level the relevant building blocks are the Fe 3d orbitals and the

4p orbitals of the chalcogen / pnictogen atoms. While the overall DOS is domi-

nated by the Fe 3d orbitals, see for example Ref. [26], the chalcogen / pnictogen

atoms influence the physics in two important ways. Firstly, the overlap of 4p

orbitals and 3d orbitals is important for the hopping of the electrons [14, 26].

Secondly, the chalcogen / pnictogen atom creates a crystal field which leads to

a splitting of the energy levels of the individual 3d orbitals.

Figure 1.2 depicts the 3d orbitals. In iron-based superconductors these are the
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Figure 1.2: 3d orbitals. Shown are the five 3d orbitals. Here negative charges
are placed at the corners of an octahedron. Under an octahedral configuration
the five 3d orbitals can be divided into two subgroups based on their symmetry:
eg and t2g. The charges create an electrical field which generates different energy
splittings for the eg and t2g orbitals. In a crystal this electrical field is called the
crystal field, and an octahedral crystal field exists in the case of the cuprates [24].
For iron-based superconductors the relevant splittings according to the crystal
structure are discussed in more detail in Fig. 1.3. Figure reproduced from ref.
[25].

3d orbitals of the Fe-atoms, and in the cuprates they belong to the Cu-atoms. In

an isolated atom the energy levels of the 3d orbitals are degenerate, but inside

a crystal the electrical field generated by the surrounding atoms destroys this

degeneracy. In Fig. 1.2 charges are placed at the corners of an octahedron which

corresponds to the situation in the cuprates [24]. In iron-based superconductors

the alternating placement of chalcogen / pnictogen atoms above and below the

Fe-plane creates a crystal field environment that is between a tetragonal and

tetrahedral structure [14, 22] shown in Fig. 1.3.

Another difference between the cuprates and the iron-based superconductors

comes from the different number of electrons in the 3d orbitals. While the Cu-

atoms are in a Cu2+ state which corresponds to a 3d9 configuration the Fe-atoms

are in a Fe2+ state which results in a 3d6 configuration [14,22,24]. In combination

with the different crystal structures that results in vastly different distributions

of electrons inside the 3d orbitals. Essentially, in the case of iron-based super-

5



Figure 1.3: Fe 3d orbitals in iron-based superconductors - crystal field split-
ting. In iron-based superconductors the alternating position of the pnicto-
gen/chalcogen above and below the Fe-lattice (A) creates a situation in between
a tetragonal (B) and a tetrahedral (C) crystal field environment. As a conse-
quence all five 3d orbitals need to be considered in models of the electronic
structure [14, 22]. Figures reproduced from ref. [22].

conductors in general all five 3d orbitals need to be considered in order to best

describe the electronic structure whereas in the case of the cuprates only the

dx2−y2 orbital needs to be taken into consideration.

1.1.2 Electronic structure in ~k-space

In general, experiments find highly complex band structures and Fermi sur-

faces that can be quite different from a detailed point of view for the various

families. Nevertheless, there are some common features that we discuss in the

following. A generic five orbital / band tight-binding model for the Fe-lattice

finds the situation shown in Fig. 1.4A: There are one to three, roughly circu-

lar hole-like bands around the Γ-point in the center of the Brillouin zone, and

one elliptical, electron-like band around the X- and Y-point each (here we only

show one hole-like band around the Γ-point to simplify the graphic). ARPES

measurements show that for some materials only the electron-like pockets exist

at the Fermi surface, and one prominent example is the FeSe monolayer grown
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on S rT iO3 substrates [12].

Figure 1.4: 1 Fe unit cell versus 2 Fe unit cell in~k-space. A, Fermi surface for the
1 Fe unit cell. The dashed line marks the 1 Fe unit cell Brillouin zone boundary.
B, Fermi surface for the 2 Fe unit cell which is created through folding of the 1
Fe unit cell Fermi surface. The solid diamond marks the 2 Fe unit cell Brillouin
zone boundary. See for example Fig. 1.6 for depiction of corresponding 1 Fe and
2 Fe unit cell in real space.

So far we have only considered the Fe-square lattice with one Fe-atom per unit

cell, but in reality the alternating chalcogen / pnictogen atoms above and below

the Fe-atom plane create a bigger unit cell which contains 2 Fe-atoms instead of

1. The two unit cells are called 1 Fe unit cell and 2 Fe unit cell, respectively,

and they are shown in Fig. 1.4 in ~k-space. A 10-orbital tight-binding model can

be created for the 2 Fe unit cell, and a schematic Fermi surface is shown in Fig.

1.4B. Due to symmetry, there is a direct correspondence between the 5 orbital

and the 10 orbital model [26, 27].

In band structure sensitive experiments one should observe the picture corre-

sponding to the 2 Fe unit cell as it is the physical unit cell. This is particularly

important for the interpretation of quantum oscillation experiments which mea-

sure the extremal areas of the Fermi surface, as the two electron pockets at the

X- and Y-point can hybridize due to spin-orbit coupling. Such hybridization
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can have a sizable effect on the extremal areas.

1.1.3 Phases of matter in pnictides and chalcogenides

Figure 1.5 shows a schematic phase diagram which contains the most impor-

tant electronic phases observed in pnictides and chalcogenides. Upon cooling

the material undergoes a structural transition from tetragonal to orthorhombic

symmetry. This structural phase transition is accompanied, or possibly pre-

ceded [28], by an enigmatic electronic nematic phase which leads to a huge

resistivity anisotropy [29]. Antiferromagnetic order subsequently develops at

slightly lower temperatures. At even lower temperatures, superconductivity ex-

ists, and becomes most stable where coexisting antiferromagnetic and nematic

ordered states are suppressed by doping or pressure [15–18, 22].

As for the cuprate and heavy-fermion compounds superconductivity develops

in proximity to a antiferromagnetic phase upon doping with electrons or holes

or application of pressure [4], but there are differences between these material

systems, as well, and one is the nature of the parent state. The parent state of

the cuprates is a Mott insulator, the parent state of the heavy fermions is a heavy

fermion metal as the name implies, and the parent state of the iron-based super-

conductors is a metal. It is necessary to point out that this metallic state is not a

simple metal as can be found in for example the alkaline metals. Electronic cor-

relations are of crucial significance in the description of the metallic state found

in the iron-based superconductors [13, 20], and we will revisit this question in

more detail in the context of FeSe.

The specific phase diagram of FeSe will be presented in part 2 of the introduc-

tion, and for the remainder of this subsection we discuss the electronic nematic
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Figure 1.5: Schematic phase diagram for iron-based superconductors. The
structural transition TS from tetragonal to orthorhombic is accompanied by a
transition to nematic electronic order, and subsequently followed by antiferro-
magnetic spin density wave order at TN . At even lower temperatures TC, su-
perconducting order develops for a certain amount of electron or hole doping.
Note that the antiferromagnetic phase has not been detected for FeSe. Repro-
duced from reference [18].

phase in some additional detail. The unexpected magnitude of the transport

anisotropy in the nematic phase has born the idea that the structural transition

is actually driven by electronic degrees of freedom instead of the lattice. Spin-

fluctuations have emerged as the most likely candidate for driving the nematic

phase [21, 30], but orbital order has been proposed as an alternative [31]. In

general, strong coupling between spin, orbital, and lattice degrees of freedom

make it hard to readily distinguish the ultimate driving force behind the ne-

matic phase in experiments.
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1.1.4 Magnetism

Figure 1.6 shows the most commonly encountered magnetic order in pnictide

superconductors, which is called either collinear or stripe order. In the stripe

phase the spins order ferromagnetically along the orthorhombic b-axis, and an-

tiferromagnetically along the a-axis. Here, the orthorhombic a-axis is longer

than the b-axis. The stripe phase is associated with (π, 0) AFM spin-fluctuations

which are strongly considered to be the pairing glue for Cooper pairing.

Figure 1.6: Collinear antiferromagnetic order found in pnictide superconduc-
tors. Spins couple ferromagnetically along the orthorhombic b-axis and anti-
ferromagnetically along the a-axis. It is often referred to as stripe order and is
associated with (π, 0) AFM spin-fluctuations.

Figure 1.7 illustrates the Néel type order found in the cuprates. In the Néel

phase spins couple antiferromagnetically with all nearest neighbors, and the

Néel phase in iron-based superconductors is associated with (π, π) AFM spin-

fluctuations. Néel order AFM spin-fluctuations are of importance to the case of

FeSe.

Besides the stripe order, other more exotic forms of magnetism exist for example

in FeTe and K2Fe4S e5 [20,32]. We discuss the bi-collinear or double-stripe order
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which is found in FeTe in the context of the FeSe phase diagram in the second

part of the introduction.

Figure 1.7: Néel antiferromagnetic order. Spins couple antiferromagnetically
with all nearest neighbors. This AFM order is found in cuprate superconductors
and is associated with (π, π) AFM spin-fluctuations in the case of iron-based
superconductors. Competition between (π, 0) and (π, π) fluctuations has recently
been observed for FeSe by inelastic neutron scattering experiments [33].

The origin of the commensurate magnetic phases observed in various com-

pounds is directly related to the question of metallicity in iron-based super-

conductors. This is important as it has strong implications for which theoretical

framework is appropriate to best describe electrons in iron-based materials. The

two diametrically opposite starting points are itinerant electrons and localized

electrons. In the itinerant picture the magnetism is due to instabilities towards

spin density wave order created by (quasi-)nesting of the Fermi surface [13], as

is for example the case in the metal chromium [34]. Correlations only play a

minor role in this picture.

The completely localized picture instead describes AFM insulators where mag-

netism emerges from direct and super exchange, and correlations are extremely

important. Transition metal oxides are an example of localized electron physics
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[34]. It is important to point out that both models can reproduce some of the

major findings of experiments [13]. Thus early on it has been proposed that

the truth lies in the middle: Itinerant electrons in combination with important

contributions by correlations [13].

1.1.5 Superconductivity

Superconductors are divided into conventional and unconventional supercon-

ductors. Conventional means that superconductivity agrees well with the

model based on phonon mediated pairing proposed by BCS theory, while for

unconventional superconductors the pairing most likely is established by elec-

tronic interactions [20]. Every time a new superconductor is discovered one of

the first questions is if it is conventional or unconventional? Both in the case

of the cuprates and the chalcogenides / pnictides the answer is most certainly

unconventional [4].

A telltale sign of unconventional superconductivity are exotic gap structures

∆(~k) beyond the isotropic gap ∆0 predicted by BCS theory for phonon mediated

pairing, as well as pairing in the triplet instead of the singlet channel of the spin

part of the Cooper pair wavefunction. NMR experiments studying the Knight

shift in iron-based superconductors have found no sign of triplet Cooper pair-

ing so that the Cooper pairs are thought to be in the spin singlet channel [13].

One hallmark of unconventional superconductivity in the cuprates is the d-

wave gap structure with nodal lines along the (π, π) directions of the crystal.

This can naturally be explained with the repulsive nature of the pairing inter-

action caused by AFM spin-fluctuations. Cooper pairing becomes more sta-

ble by avoiding the regions of strong Coulomb repulsion [13]. As AFM spin-
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fluctuations are expected to be responsible for pairing in the pnictides and

chalcogenides, as well, one might ask if similar effects can be seen in iron-based

superconductors.

Figure 1.8: Schematic Fermi surface (FS) and gap structure for Fe-based su-
perconductors. A, In a generic three band model the Fermi surface consists of
one hole-like pocket in the center of the Brillouin zone and electron-like pockets
at the X and Y point, respectively. B,C, Superconducting gap structure for the
s++ (sign-preserving) and s+− (sign-changing) scenario: Red and blue symbolize
opposite sign of the gap in the latter case. The dashed lines mark the 1 Fe unit
cell Brillouin zone in all three panels.

Figure 1.8 presents the two most widely considered gap structures, s++ and s+−,

for a schematic Fermi surface. In the case of s++ there is no sign change between

gaps on the hole-like and electron-like pockets whereas for s+− the gap does

change sign. s++ is also referred to as (conventional) s-wave, and s+− as extended

s-wave. Extended s-wave is found for models using AFM spin-fluctuations for

the pairing interaction while conventional s-wave pairing symmetry is caused

by phonons or by orbital fluctuations assisted by phonons. d-wave pairing sym-

metries are found, as well [12, 17]. As there is strong magneto-elastic coupling

between the electronic degrees of freedom and the lattice, phonons can mod-

ify the gap structure even for the case of AFM spin-fluctuation mediated pair-

ing [13].

On the experimental side, phase-sensitive Josephson junction tunneling ex-
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periments played a major role in confirming the d-wave gap structure of the

cuprates, but they are less straightforward in distinguishing s-wave from ex-

tended s-wave. So far Josephson junction experiments have mostly served to

exclude a dominant d-wave pairing in the iron-based superconductors [6, 13].

A second type of experiment sensitive to sign changes of the gap are neutron

scattering experiments in the superconducting state. The sensitivity originates

from the coherence factor [1 −
∆~k∆~k+~q

E~kE~k+~q
] for scattering ~q between the gaps on differ-

ent pockets. As a consequence a resonance found in the spin-fluctuation spec-

trum inside the superconducting phase is indicative of an extended s-wave gap,

but there are possible alternative explanations for this resonance [6, 12]. New,

alternative experiments sensitive to the phase of the superconducting gap are

therefore highly searched for in order to confirm the favored extended s-wave

gap structure.

1.2 FeSe

We now direct our attention to the peculiar case of FeSe. FeSe appears dis-

tinctive compared to other iron-based superconductors for many reasons: (i)

FeSe while strongly nematic, does not form an ordered magnetic state and is in-

stead hypothesized to be a quantum paramagnet due to quantum fluctuations

of frustrated spin configurations [33,35, 36]; (ii) strong orbital selectivity [23, 37]

of band structure characteristics is reported in FeSe [38–41]; (iii) a monolayer of

FeSe grown upon a S rT iO3 substrate produces the highest TC of all iron-based

superconductors [9–12].
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1.2.1 Phase diagram of FeSe

Figure 1.9. shows the phase diagram of FeSe both as a function of Te-doping,

and as a function of applied pressure. It is believed that pure FeSe only exhibits

magnetic order when pressure is applied [42], but there exists the possibility

that AFM order develops at extremely low temperatures based on a specific

heat experiment published two months ago [43]. In any case, this is very dif-

ferent from pnictide superconductors where the nematic phase and stripe order

go hand in hand, and develop at very similar temperatures [20]. This deviation

initially cast doubt on the scenario of spin-fluctuation driven nematicity, but re-

cent experiments show that it is still the most likely candidate [44].

Figure 1.9: Phase diagrams for FeSe. A, Phase diagram as a function of tel-
lurium concentration. SG stands for spin glass. The orthorhombic / nematic
phase is not shown. Reproduced from reference [45]. B, Phase diagram as a
function of pressure. OR stands for the orthorhombic phase, and M stands for
magnetism. The insets present x-ray diffraction data of the Bragg peak which
splits in the orthorhombic phase. Reproduced from reference [42].

Furthermore, inelastic neutron scattering experiments discovered strong com-

petition between stripe and Néel type fluctuations in FeSe [33, 46]. Overall, the

unique case that presents itself in FeSe emphasizes the importance of frustration
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for the magnetic interactions [33, 35, 36, 47]. Frustrated magnetism potentially

plays an important role for the bi-collinear order found in pure FeTe [48], as

well. This so-called double stripe order is illustrated in Fig. 1.10.

Figure 1.10: Bi-collinear antiferromagnetic order found in FeTe. This unique
magnetic order which is associated with (π/2, π/2) AFM spin-fluctuations has
been directly visualized using spin-polarized STM [49].

As FeTe has an overall very similar band structure to the pnictides, and the

ordering wavevector for the bicollinear order is (π/2, π/2) which is unrelated

to any possible nesting at the Fermi surface, proponents of the localized elec-

tron magnetism see FeTe as proof of the failure of the itinerant magnetism sce-

nario [6, 20].

1.2.2 Crystal structure: Labeling in the orthorhombic phase

As we will make extensive use of the x- and y-axis direction both in real and

momentum space we shortly present the labeling notations used in this work

inside the orthorhombic phase of FeSe. The high temperature structure of FeSe

belongs to the tetragonal P4/nmm space group with the corresponding lattice
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parameters a = 3.77Å and c = 5.52Å [50–52]. Note that here a is the distance

between nearest neighbor selenium atoms lying in the same plane. The Fe-Fe

nearest neighbor distance is then a/
√

2. On cooling, FeSe undergoes a transition

to Cmma orthorhombic structure with the lattice parameters a = 5.31Å, b = 5.33Å

and c = 5.48Å [50,52]. Here a and b correspond to the two next nearest neighbor

distances between selenium atoms lying in the same plane (Fig. 1.11).

Figure 1.11: FeSe crystal structure in the orthorhombic phase. The lattice pa-
rameters a = 5.31Å < b = 5.33Å < c = 5.48Å define the orthorhombic unit cell
below the structural transition using conventional labeling. In accordance with
earlier work [53, 54] we introduce the non-standard parameters aFe > bFe for
labeling throughout this thesis: The x-axis, ~kx-axis and ~qx-axis are all parallel to
the aFe-axis, so that labels of orbitals like dxy or dyz or~k-space locations and states,
are equally valid in both nematic domains.

In the orthorhombic phase, the two inequivalent Fe-Fe distances are related to

the lattice parameters via aFe = b/2 and bFe = a/2. These distances are the most

convenient parameters for the discussion of the electronic structure of FeSe, and

hence we adopt them throughout this work. We choose aFe > bFe to match

earlier spectroscopic work [53, 54] and for clarity of communication of our key

results, even though for the orthorhombic Cmma lattice parameters a < b < c are

usually enforced by convention [50, 52].
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1.2.3 Electronic structure of FeSe

The orthorhombic crystal structure of FeSe creates an immediate problem for

the study of its electronic structure. Without the application of external strain

an orthorhombic crystal will always possess orthorhobic domains of orthogonal

orientation. Most bulk probes, as for example neutron scattering or x-ray scat-

tering, or probes that excite a relatively large part of the crystal during measure-

ments, as for example ARPES, average over two orthorhombic domains (Figs.

1.12A, B). The excellent real space resolution of STM provides here a clear ad-

vantage.

Figure 1.12: ARPES and inelastic neutron scattering on FeSe. A, Spectral
function at the chemical potential measured on a twinned crystal for kz = π.
Reproduced from reference [55]. B, Spectral function at the chemical poten-
tial measured on a detwinned crystal through application of strain for kz = 0.
Reproduced from reference [54]. C, Dispersion of spin-fluctuations measured
for twinned FeSe crystals using INS shows the transfer of spectral weight from
(π, π), marked by green arrows, to (π, 0) fluctuations below the orthorhombic
transition. Reproduced from reference [33].
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Multiple ARPES, quantum oscillations, and neutron scattering measurements

have been executed over the last several years. Here we shortly summarize the

most important findings. In the orthorhombic phase, an ellipsoidal hole-like

band exists at the center of the Brillouin zone that shows a clear kz-dependence

in ARPES experiments [55, 56]. At the X-point of the 1 Fe unit cell ARPES ex-

periments find a ’bow tie’ shaped, highly elongated electron-like pocket. Based

on quantum oscillations measurements another electron-like pocket should ex-

ist at the Y-point, but its exact shape remains uncertain as spectroscopic probes

struggle to detect it without ambiguity. The relevant 3d orbitals are dxz, dyz, and

dxy in the vicinity of the Fermi surface. We discuss the electronic structure in

additional detail when we introduce our tight-binding model for FeSe.

As mentioned above, inelastic neutron scattering (INS) experiments detect com-

petition of stripe and Néel type spin-fluctuations in FeSe (Fig. 1.12C) [33,46]. In

the context of a possible frustrated quantumparamagnetic ground state in FeSe,

detwinned INS experiments would be of particular interest as for example re-

cently pointed out by She et al. [57].

1.2.4 Strong orbital selective correlations in chalcogenides

The topology of the electronic structure in ~k-space, while key to understanding

the coherent quasiparticle states, deemphasizes correlations. However, as we

pointed out in part one of the introduction a fundamental issue in iron-based

superconductors is whether conduction electrons are weakly or strongly corre-

lated, and the consequences thereof for enhancing magnetism and or supercon-

ductivity. The situation is complex because multiple Fe orbitals (e.g. dxz, dyz, dxy)

are involved.
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Most germane to FeSe and the other chalcogenides is the Hunds metal view-

point [23] where strong Hunds coupling within a metallic state, while aligning

the Fe spins, also enhances inter-atomic Coulomb repulsion and thus correlation

strength. One fascinating possibility is then that orbital selectivity may occur in

the effects of the correlations [23,37], so that~k-space states corresponding to spe-

cific d-orbitals could become distinct in terms of quasiparticle spectral weight,

interactions and ordering. In the most extreme case, an orbital selective Mott

phase could develop where electrons in one 3d orbital effectively enter an insu-

lating phase [37, 58, 59].

Figure 1.13: Orbital selective correlations in chalcogenides. Slave-spin mean-
field phase diagram calculated for the five-orbital Hubbard model. Zxy is the
quasiparticle weight of the dxy electrons. OSMP stands for orbital selective Mott
phase and MI is the Mott insulating phase. The purple dashed line and purple
point has been extracted from experiment for various chalcogenide compounds.
It marks the temperature at which the spectral weight of the dxy electrons van-
ishes. Figure reproduced from reference [40].

A combined ARPES and theory study indeed found evidence for strong orbital
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selective correlations across several chalcogenides [40], see Fig. 1.13. The signif-

icance of correlations is not restricted to the chalcogenides per se, and theoret-

ical studies predict similar effects for the pnictides, as well [23]. However, the

strength of correlations is not the same, and it has been found that the chalco-

genides are more strongly correlated than the pnictides [23, 58]. This puts the

chalcogenides in the interesting region between the more itinerant pnictides

with the weakest correlations, and the even stronger correlated cuprates. Study

of chalcogenide superconductors like FeSe is thus highly promising as it could

shed light on the importance of correlations for unconventional superconduc-

tivity from a different angle.

1.2.5 Prediction of orbital selective superconductivity

In the context of superconductivity, orbital selective correlations pave the way

for an even more intriguing possibility: that the pairing itself might become or-

bital selective [60, 61] so that the electrons of a specific orbital character bind to

form the Cooper pairs of the superconductor. If this occurs, the superconduct-

ing energy gaps should become highly anisotropic [60, 61], being large only for

those FS regions where a specific orbital character dominates. In Fig. 1.14 this

situation is shown for a strong coupling t − J1 − J2-model introduced by Yu et

al. [61].

The orbitally resolved Fermi surface for their five orbital tight-binding model is

depicted in Fig. 1.14A using the 1Fe unit cell. Here the three hole-like pockets

at (0, 0) and (±1,±1) are of pure dxz, dyz, and dxy content while the electron-like

pockets at (±1, 0) [and (0,±1)] modulate between dxz [dyz] and dxy. The orbital

content of the Fermi surface becomes significant when the orbitally resolved
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Figure 1.14: Orbital selective superconductivity in strong coupling t − J1 − J2-
model. A, Orbitally resolved Fermi surface for the five orbital tight-binding
model used in calculations. Note the modulation of orbital content for the elec-
tron like pockets at (1,0) and (0,1). B, Orbitally resolved pairing amplitudes
as function of J1/J2. C, Excitation gap in ~k-space for the hole pockets for two
different values of J1/J2. D, Excitation gap in ~k-space for the electron pockets
for two different values of J1/J2. Anisotropy of the gap is reduced for higher
J1/J2-values. Figures reproduced from reference [61].

pairing amplitudes are considered which are shown in Fig. 1.14B. For a big

anisotropy between J1 and J2, pairing in the dxy-orbital is far bigger than pairing

in the dxz/dyz-orbitals. This changes when the anisotropy between J1 and J2 is

reduced. Now pairing in a d-symmetry channel additionally becomes sizable

for the dxz/dyz-orbitals, and the sum of s- and d-symmetry becomes comparable

to the s-symmetry pairing of the dxy-orbital.

The resulting theoretical superconducting excitation gaps in momentum space

are shown in Figs. 1.14C, D for the hole-like and electron-like pockets, respec-

tively. As the hole-like pockets lack any form of orbital content variation, the

gaps are quite isotropic. The gap of the electron-like pocket instead is very
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anisotropic for a big J1/J2 anisotropy, being large where the orbital content be-

longs to the dxy-orbital. The expected reduction of this anisotropy based on the

J1/J2-dependence in Fig. 1.14B is observed for J1/J2 = 0.8.

1.2.6 C2-symmetric superconductivity

Keeping the discussion of orbital selective correlations and superconductivity

in mind we next review experimental findings of superconductivity in FeSe. As

the first generation of single crystals struggled with pollution by iron impuri-

ties, some of the first studies of the superconducting state in FeSe were executed

using high-quality MBE grown thin films [53]. Thin films are hereby not to be

confused with the monolayer FeSe. Figure 1.15 presents a STM study of thin

films that found extremely elongated, C2-symmetric vortex cores. The long axis

of the vortex core aligns with the long axis (x ⇔ aFe in our notation) of the or-

thorhombic lattice.

Figure 1.15: Anisotropic vortex core in FeSe. A, Temperature evolution of
differential tunneling conductance as measured on MBE-grown thin films. B,
Schematic FS defining the two inequivalent Fe-Fe-directions a and b used in C.
C, Elongated vortex core visualized by STM on MBE-grown thin films. A-C
reproduced from reference [53].
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The seemingly V-shaped gap discovered by tunneling spectroscopy (Fig. 1.15A)

was interpreted as indicative of a nodal gap structure [53]. The existence of

nodes in the gap structure of FeSe has since then come under scrutiny, and

contradictory studies for [62, 63] and against nodes [64–68] have since then be

published. Figure 1.16 presents microwave and thermal conductivity measure-

ments that both find results consistent with nodeless superconductivity [65,66].

Figure 1.16: Nodeless superconductivity in FeSe deduced from microwave
conductivity and thermal conductivity measurements. A, Real part of the mi-
crowave conductivity measured between 0.1 and 10 K. Note the region of zero
conductivity between roughly 0.1 and 0.3 K in the inset. Reproduced from ref-
erence [65]. B,C, Magnetic field dependence of the residual linear term of the
thermal conductivity is conistent with no nodes in the superconducting gap. Bc2

is the upper critical field, and Bc1 is the lower critical field. B∗ marks an inflection
point in the curvature. G and H reproduced from reference [66].

Based on the microwave conductivity measurements, the quasiparticles in FeSe

are extremely long-lived which makes it unlikely that different amount of point

defect impurities could alter the superconductivity correspondingly. A possible

explanation for the discrepancies between the various studies could be the ex-
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istence of different amounts of twin boundaries [63, 65], and measurements of

detwinned samples could shed further light on the existence of nodes in the gap

structure of FeSe in the absence of orthorhombic domains [65].

Figure 1.17: Highly anisotropic energy gap on hole-like pocket in S-doped
FeSe. A-C, ARPES on twinned Fe(S e1−x, S x), x = 0.07, crystals reveals a highly
anisotropic superconducting gap [polar plot in panel C] for the hole-like α-
pocket at Γ. A-C reproduced from reference [69].

The issue of nodes aside, all studies agree that their findings imply a very

anisotropic gap structure for FeSe [63,65,66]. The first direct evidence of such an

anisotropic gap was found in an ARPES experiment on S-doped FeSe [69]. The

ARPES study used twinned crystals as can be seen in Fig. 1.17, and revealed a

nodeless gap on the hole-like pocket at the Γ-point that has its maximum gap

along kx, and its minimum gap along ky. No gap was detected for the electron-

like pockets, and the authors concluded that no current pairing theory can ac-

count for such a highly anisotropic, C2-symmetric gap structure [69].

The existence of strong orbital selective correlations [39–41] and the detection

of such a highly anisotropic gap [69] engineers a unique opportunity to explore

the influence of orbital selective correlations on superconductivity and possibly

orbital selective superconductivity itself. Such phenomena, although important

to understanding and achieving higher temperature superconductivity in cor-
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related multi-orbital superconductors [23, 37–41], have remained largely unex-

plored because orbital selective Cooper pairing has never been detected in any

material. For these reasons, it is essential to understand the electronic structure

and superconductivity of FeSe at a microscopic level.
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CHAPTER 2

FOURIER TRANSFORM SCANNING TUNNELING MICROSCOPY

The invention of the Scanning Tunneling Microscope (STM) by Binnig and

Rohrer revolutionized the study of surfaces as it allowed to characterize sur-

faces with unprecedented precision in real space [70, 71]. One example is the

direct imaging of the 7x7 surface reconstruction of the Si(111) surface shortly af-

ter [72]. Since then it has become clear that STM can be used for more than sim-

ple surface characterization, and Scanning Tunneling Spectroscopy (STS) has

been used to probe the electronic structure of many diverse exotic phases such

as unconventional superconductors, charge and spin density wave systems, and

topological insulators [73–76].

Here, we will focus on the study of superconductivity via STM and STS. His-

torically, tunneling spectroscopy utilizing planar tunnel junctions played a key

role in the successful verification of BCS theory in conventional phonon-driven

superconductivity [77–79]. It is thus not surprising that next-generation tun-

neling spectroscopy experiments are being used extensively in the study of un-

conventional superconductors as the cuprates, heavy fermions, and iron-based

superconductors [80–82]. In the following, we shortly review the basic princi-

ples of STM and STS, and after that show how Fourier transform techniques can

be used to study the electronic structure of superconductors in quite unexpected

ways for an inherently real space probe.
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2.1 Spectroscopic Imaging - Scanning Tunneling Microscopy

Spectroscopic Imaging - Scanning Tunneling Microscopy (SI-STM) refers to

a class of STM which is optimized for taking spectroscopic maps on a two-

dimensional grid in real space that is registered to the crystal lattice. This is a

very powerful technique to visualize variations in the electronic structure down

to the atomic scale. Additionally, Fourier transforms of such maps contain im-

portant information about the electronic structure in momentum space [80–83].

2.1.1 Operation principles of Scanning Tunneling Microscopy

The STM operates based on the quantum mechanical tunneling effect between

a sharp metallic tip and a conducting surface (Figs. 2.1A, B). If the tip gets close

enough to the surface a measurable tunneling current will exist when the wave-

functions of the electrons in the tip and the sample develop a sizable overlap.

This tunneling current is exponentially dependent on the distance d between

the tip and sample so that the control of d becomes critical for the operation of

a STM [73]. Using piezo electronics both d and x- and y-position of the tip can

be adjusted with pm precision, and there exist several different designs how to

implement piezo electronics to control the tip in a STM, see Ref. [73] (and ref-

erences therein). Figure 2.1C shows a photograph of the homebuilt STM [84]

used for the work within this thesis. Here the tip is facing up, and the fine x,

y, and z motion is controlled via a piezo scanning tube that holds the tip. The

coarse z motion which is used for the initial approach towards the down-facing

sample is based on a ’friction motor’ design [84]. A 3He-refrigerator [84] enables

measurements below 300 mK, and a magnetic field of up to 9 T can be applied
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perpendicular to the sample surface.

Figure 2.1: Scanning Tunneling Microscopy. A, Sketch of the quantum
mechanical tunneling process between tip and sample utilized in STM. B,
Schematic picture of the STM scanning an atomic surface. A, B reproduced
from reference [73]. C, Photograph of the homebuilt STM [84] used for the work
presented in this thesis.

The tunneling current between tip and sample is calculated after Tersoff and

Hamann according to [85]:

I =
2πe
~

∑
µ,ν

f (Eµ)[1 − f (Eν + eV)]|Mµν|
2δ(Eµ − Eν), (2.1)

where f is the Fermi-Dirac distribution function, and µ and ν denote tip and

sample, respectively. V is the applied bias between sample and tip, and Mµν the

tunneling matrix element which is calculated as follows:

Mµν =
~2

2m

∫
d~S (Ψ∗µ∇Ψν − Ψν∇Ψ∗µ). (2.2)

Here S is any surface between the sample and tip, and Ψ is the electron wave-

function of the sample and tip, respectively (Fig. 2.1A). In general, it is a good

approximation that the matrix element is a constant, but that does not have to

be the case [73].

In order to characterize the profile of a surface two scan modes exist (Fig. 2.2).
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Figure 2.2: STM scan modes for surface characterization. A, In the constant
current mode the surface profile is generated through the variation of the height
z of the tunneling tip. B, In the constant height mode the surface profile is gen-
erated through the variation of the tunneling current as a function of position.
A, B reproduced from reference [73].

The first is the constant current mode where a feedback loop maintains a con-

stant current while the tip scans across the surface continuously adjusting the

tip sample separation. The second is the constant height mode. Here the tip

is held at a constant height and the tunneling current varies with changes in

the tip sample distance. The preferred mode of operation is constant current

mode in most scenarios, as constant height mode carries greater risk of colli-

sions between the tip and sample [73]. In both cases, if the sample is completely

homogeneous the variation in the current will be due to the differences in the

tip sample separation as a function of position. Thus, these modes of operation

are often referred to as topography.

Besides topography, Scanning Tunneling Spectroscopy (STS) is a commonly

used mode of operation of the STM. One can show that the tunneling conduc-

tance g(V) ≡ dI/dV(V) is to a good approximation proportional to the local den-

sity of states (LDOS) under a certain set of conditions [73]:

g(V) ≡ dI/dV(V) ∝ LDOS (V) (2.3)
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Figure 2.3: Scanning Tunneling Spectroscopy. Differential tunneling conduc-
tance is measured via a lock-in amplifier technique. Tunneling spectroscopy is a
powerful tool as the conductance is proportional to the local density of states. In
the example above superconducting vortices are visualized by taking advantage
of the fact that superconductivity is suppressed inside the core of a vortex. Here
SIN stands for a Superconductor Insulator (vacuum) Normal (metal) tunneling
junction, and NIN for Normal Insulator Normal, accordingly. Reproduced from
reference [73].

In order to acquire the differential tunneling conductance one can either numer-

ically differentiate the tunneling current I(V) or preferably use a lock-in tech-

nique [73]. Figure 2.3 shows an example of how STS and SI-STM can be used to

visualize vortices in a superconductor.

2.1.2 Quasiparticle interference

It is a well-known fact of condensed matter physics that a defect placed inside

a conductor causes oscillations of the charge around the defect. These oscilla-

tions are called Friedel oscillations. STM allows us to directly visualize Friedel

oscillations in real space, see Figs. 2.4A, D, E.
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Figure 2.4: Spectroscopic Imaging - Scanning Tunneling Microscopy. A, To-
pography of a single defect in FeSe. Note the strong Friedel oscillations. B, Am-
plitude of the FT of topography shown in A. Red circle marks regions in q-space
corresponding to scattering within hole-like and electron-like pockets. The blue
circle shows a region in q-space that is connected via scattering between pock-
ets, see also C. The white circle marks one of the Se-Bragg peaks whose q-vector
is determined by the atomic corrugation visible in A. C, Schematic constant-
energy-contour in ~k-space presenting possible intra- and inter-pocket scattering
vectors. D, Topography of many defects in FeSe. A 3-by-3 pixel averaging filter
has been applied to the topograph to suppress short wavelength modulations.
E, dI/dV in the same field of view as D. F, Amplitude of the FT of the dI/dV
shown in E visualizing details of intra-pocket scattering in FeSe. The q-space
region has been cropped to be similar in size to the area surrounded by the red
circle in B.
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One famous example are the quantum corrals created by manipulating Fe-

atoms on top of a copper surface [86], another the standing waves caused by

step edges in copper [87]. There is an intimate relationship between the os-

cillations in real space and the electronic structure in ~k-space, see for example

Ref. [83].

In the following we discuss this relationship in the context of iron-based super-

conductivity and FeSe. Figure 2.4A presents a constant current topograph of a

single defect in FeSe, Figure 2.4B shows the amplitude of the Fourier transform

of the constant current topograph. In real space strong Friedel oscillations em-

anate from the defect, and the atomic lattice is clearly distinguishable. Addition-

ally, a peculiar pattern modifies the atomic contrast in the immediate vicinity of

the defect which due to its shape and likely origin has been given the name ’ge-

ometric dumbbell’ [53, 88, 89]. The amplitude of the Fourier transform consists

of all these effects: static structure of the defect (’geometric dumbbell’), Friedel

oscillations, atomic corrugation of the lattice. We point out that FeSe cleaves be-

tween Se-layers, and the atomic lattice visible is in all likelihood the Se-lattice.

Next, we focus on the contribution of the Friedel oscillations to the Fourier

transform, and the two regions called qintra and qinter in scattering space to ex-

plain quasiparticle interference (QPI). In order to interpret scattering space we

recall the schematic electronic structure of the iron-based superconductors in

~k-space (Fig. 2.4C). For a scattering event both energy and momentum of the

quasiparticles need to be conserved. The only accessible states to the quasipar-

ticles in ~k-space are restricted by the constant-energy-contours (CECs). In the

pedagogical model in Fig. 2.4C the CECs are the circle and ellipses. For elastic

scattering two scenarios exist: Either the quasiparticles scatter within a pocket

(intra) or they scatter between pockets (inter). The difference for small pock-
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ets is that inter-pocket scattering usually takes place for high ~q-vectors whereas

intra-pocket scattering is restricted to low ~q-vectors.

For multiband systems with complex CECs the situation can become quite com-

plicated and careful comparison and analysis of ~k- and ~q-space is necessary. An

example of this situation for FeSe is shown in Figs. 2.4D-F. Panel D shows a

constant current topograph of many defects, and E shows the differential con-

ductance in the same field of view at -2.6 meV. Using g(~r,V), we obtain energy

resolved information of scattering space, and hence the electronic structure in ~k-

space. The amplitude of the Fourier transform of the conductance presented in

F displays the non-trivial pattern of intensity in ~q-space created by intra-pocket

scattering and static defect structures.

ARPES measurements of the electronic structure in ~k-space provide a useful

starting point for the interpretation of QPI. Furthermore, polarized light sources

can be utilized to deduce the symmetry of electronic states in ~k-space. On

the other hand STM has the advantage of excellent real space resolution, be-

ing able to measure with an applied magnetic field, and its energy resolution

δE < 100µeV is far superior for now. The combination of ARPES and SI-STM

studies is thus the ideal approach in correlated electron systems in our opinion.

2.1.3 Bogoliubov quasiparticle interference

Inside a superconductor Bogoliubov quasiparticles scatter and interfere in a

similar fashion, and Bogoliubov quasiparticle scattering interference (BQPI)

imaging has become a very powerful technique to study Cooper pairing and

measure ∆i(~k) [80–82, 90–92]. As BQPI imaging can be implemented at temper-

atures T ≤ 300mK , the ∆i(~k) on multiple bands can be measured with energy
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resolution δE ≈ 75µeV [81, 82], a precision unachievable by any other approach.

Before we give a more detailed example relevant to FeSe, we provide a straight-

forward and intuitive approach for BQPI studies in general: When a ~k-space en-

ergy gap ∆i(~k) is anisotropic, the Bogoliubov quasiparticle dispersion εi(~k) will

exhibit closed constant-energy-contours which are roughly banana-shaped and

surround Fermi surface points where ∆i(~k) is minimum [80–82]. Then, at a given

energy E, the location of these banana tips can be determined because the max-

imum intensity BQPI modulations occur at wavevectors ~q j(E) connecting them,

due to their high joint density of states (JDOS) for scattering interference (Fig.

2.5B). Both the superconductors Cooper-pairing energy gap ∆i(~k) and Fermi sur-

face on each band are then determined directly [80–82] by geometrically invert-

ing the measured BQPI wavevector set ~q j(E) in the energy range ∆min
i < E < ∆max

i .

Consider a standard Bogoliubov spectrum of a superconductor with an

anisotropic gap ∆k similar to the one observed for S-doped FeSe for an ellip-

soidal hole pocket with band structure Ek [69].

εk = ±

√
E2

k + ∆2
k (2.4)

Without loss of generality, we can then define a constant-energy-contour (CEC)

in ~k-space at a specified energy ε′ > 0 (because of the particle-hole symmetry, all

observations also apply to −ε′ < 0) by the following equation:

ε′ = ±

√
E2

k + ∆2
k (2.5)

Lets further impose that the contour is within the superconducting gap meaning

ε′ < ∆max. As long we are in the region of ~k-space where ε′ > ∆k, we expect two

types of~k-space solutions, one with Ek < 0 and one with Ek > 0. These two types

of solutions will connect at specific ~k-points where ε′ = ∆k, and hence Ek = 0,
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Figure 2.5: Scattering hot spots. A, Schematic showing a superconducting
constant-energy-contour at a particular energy ε′ > 0 (above the chemical poten-
tial) for an ellipsoidal hole pocket (grey dashed line) with two-fold symmetric
anisotropic gap that is maximum along kx directions and minimum along the
ky directions. B, Spectral function A(k, ω = ε′) corresponding to A. The spec-
tral weight is greatest at the locations of ’banana tips’. The upper right ’banana
tip’ is marked with a black circle. Scattering is dominant between the tips as a
consequence of the enhanced spectral weight. The wavevector triplet ~q1, ~q2, ~q3

connects these scattering hot spots.

to create closed contours reminiscent of bananas (Fig. 2.5A). Since Ek = 0, these

points (banana tips) lie on the normal state FS of the corresponding band by

definition.

Within the JDOS picture, the modulations in the density of states (and hence

dI/dV) due to impurity scattering will be dominated by the ~q-vectors connect-

ing ~k-space regions with high spectral weight. For a superconductor with an

anisotropic gap, such regions are exactly the tips of the CECs discussed above

(Fig. 2.5B). For that reason, tracking the evolution of the ~q-vectors associated

with the tips of the CEC allows one to extract both the Fermi surface and the

~k-space structure of the gap.
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2.2 Phase Resolved Fourier Transform Scanning Tunneling Mi-

croscopy

So far our discussion of Fourier transform STM techniques was restricted to

the amplitude of the Fourier transform. A collection of additional techniques

becomes available when we consider the real and imaginary part of the Fourier

transform individually. Research in the field of phase resolved FT-STM was

pioneered by Slezak, Lawler, Fujita, Mesaros, Davis, and Kim in 2008-2011 [93–

95].

2.2.1 Shift theorem of Fourier transforms

We start with the discussion of a basic theorem in the context of Fourier trans-

forms, the shift theorem:

FT { f (~r − ~r0)} = e−i~q~r0 FT { f (~r)} (2.6)

A shift of a function away from the origin leads to multiplication with an oscil-

latory exponential term in Fourier space. Remembering that the Fourier trans-

form of a Gaussian is just another Gaussian we can visualize the shift theorem

with a simple example (Fig. 2.6).

Figure 2.6 is easy to understand when we rewrite the exponential in terms of

a cosine and sine: e−i~q~r0 = cos(~q~r0) − isin(~q~r0). Without a shift away from the

origin, the Fourier transform is a purely real Gaussian. Once the Gaussian gets

shifted the situation changes, and both a real and an imaginary part exist. If one

looks closely the multiplication of the Gaussian with a cosine for the real part

and sine for the imaginary part will become obvious. The bigger the shift away
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Figure 2.6: Shift theorem of Fourier transforms: Gaussian example. A, B, C,
show how the real and imaginary part of the FT is affected by a shift r’ or r” of
the center of a Gaussian G(r) away from the origin of the FT. The dashed white
lines serve as a guide to the eye, and meet at the origin in real space.

from the origin the higher the frequency of the sine and cosine wave in Fourier

space. Note that for practical, computational purposes the origin is arbitrarily

determined by the computer software used to calculate the Fourier transform.
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Figure 2.7: Shift theorem of Fourier transforms: FeSe example. A, B, Constant
current topography of a single defect in FeSe. The size of the field of view is
the same for A and B, but in B the topograph has additionally been processed
so that the defect is at the origin. The dashed lines serve as a guide to the eye,
and meet at the origin in real space. C, D, Real part of the FT of the topographic
images in A and B. E, F, Imaginary part of the FT of the topographic images in A
and B. Note the strong suppression of the imaginary part in the case of the shift
corrected topograph. The red circle marks the region of intra-pocket scattering,
and the black circle is positioned around one of the Se-Bragg peaks.
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Next we revisit the single defect in FeSe. Here rotated by 45 degrees and in a

slightly bigger field of view (Fig. 2.7). In the case of the Gaussian example, we

determined the shift away from the origin by hand. In an experiment, a defect

usually will not align with the origin because of drift of the piezo scanner tube

for example. However, this is the beauty of the shift theorem. As we know what

the origin should be, we can invert the shift, and through this process place the

defect at the origin. This is the difference between panel A and B in Fig. 2.7.

Panels C to F present the real and imaginary part of the Fourier transform before

and after correcting the shift of the defect. The correction has two effects: (i) the

phase of the real and imaginary part becomes well defined instead of oscillating

rapidly between positive and negative values (checkerboard pattern visible in C

and E); (ii) most of the signal of the Fourier transform is real. This is expected as

the Fourier transform of a real function which is even under inversion symmetry

is even and real. The Fourier transform of a real function which is odd under

inversion is odd and imaginary. Before we discuss the significance of even and

odd functions in more detail, we direct our attention to high ~q.

2.2.2 Spatial phase, real and imaginary part

The reader with a keen eye for detail will have noticed that in Fig. 2.7D the

~q-vectors corresponding to the Se-Bragg peaks have opposite sign for the x and

y direction of the Se-lattice. This difference is rooted in the origin of the defect

within the crystal structure of FeSe. The defect is most likely a vacancy in the

Fe-lattice [88, 96] which means that we choose an Fe-site as the origin when we

take the Fourier transform. Figure 2.8 illustrates the difference between a Se and

an Fe origin.
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Figure 2.8: Phase resolved Fourier transform analysis. A, B, C, D, present
line-cuts along the two perpendicular Se-Se-directions. In A and B the line-cut
is centered on an Fe-atom, while in C and D the line-cut is centered on a Se-
atom. In the first case the line-cut resembles two cosine waves that are half a
wavelength out of phase. For the Se-origin the cuts are effectively in phase. E,
Magnified view of the defect center of the topograph in Fig. 2.7B. F, Real part of
the FT using the Se origin instead of the Fe origin as depicted in E. All Se-Bragg
peaks are positive unlike in Fig. 2.7D.
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Panels A to D depict line-cuts through the Se-lattice along its x and y direction

both for the case of an Fe origin and a Se origin. The line-cuts resemble cosine

waves in both cases with the difference that for an Fe origin the two waves are

approximately π out of phase while a Se origin produces waves that are effec-

tively in phase. A phase shift by π multiplies a cosine wave by -1, and this factor

-1 explains the opposite sign for the two Se-Bragg peaks in Fig. 2.7D. Panel F

shows the real part of the Fourier transform for the case where the Se-atom to

the left of the Fe vacancy has been used as origin (Panel E). As expected all Se-

Bragg peaks are positive.

Figure 2.9: Decomposition of the even and odd part of the Friedel oscillations.
A, Shift corrected constant current topography of single defect in FeSe. B, In-
verse FT (IFT) of the real part multiplied with a Gaussian function to suppress
short wavelength components. C, IFT of the imaginary part multiplied with a
Gaussian function to suppress short wavelength components.

The case of a phase shift by π which is equivalent to a shift by half a wavelength

is related to the question of even and odd function under inversion symme-

try. If for example the phase shift was π/2 instead the cosine would become

a sine. A sine is odd under inversion, and its Fourier transform is completely

imaginary. Breaking of inversion symmetry is non-trivial, and can produce in-

teresting physics as is the case for topological crystalline insulators [76]. The

ability to distinguish real and imaginary part is therefore highly interesting. Us-
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ing a Gaussian mask to suppress high ~q (→ suppresses short wavelengths in real

space) and calculating the inverse Fourier transform of the real and imaginary

part (Fig. 2.7D, F) we can visualize the even and odd part of the Friedel oscil-

lations around the defect (Fig. 2.9). Such inverse Fourier transform techniques

applied to high ~q scattering could be a powerful tool in the search for domains

inside a topological crystalline insulator [76] which is of interest for the novel

physics that might exist at domain boundaries.

For the last part of this section we mention possible reasons for observing the

breaking of inversion symmetry in experimental data where it is not expected.

Firstly, there is the technical limitation of a finite amount of pixels when we cor-

rect the shift of a defect or atom with respect to the origin. In general, the higher

the pixel count during data acquisition the better. Secondly, the tip itself is an

unknown factor. It is highly unlikely that the tip is a perfectly spherically sym-

metric object so that the tunneling data is expected to possess some amount of

inversion symmetry breaking. Thirdly, energy dependent studies additionally

face the challenge that in a multi-orbital system tunneling could be dominated

by different Wannier orbitals at different energies. This is especially problem-

atic for studies across larges ranges of energy. For all these reasons, the study of

inversion symmetry breaking requires extreme care in order to detect physically

significant results.

2.2.3 Measuring sign changes of a superconducting gap

As we have mentioned in our introduction new techniques that could deter-

mine if a sign change between the different Fermi surface pockets exists are

highly sought after. STM scattering experiments on Fe(Se, Te) [97] that rely
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on differences between measurements with and without magnetic field applied

have been criticized for a variety of reasons [98, 99]. Phase resolved FT-STM

offers the opportunity for implementing a new BQPI technique for determining

sign changes in the pairing symmetry without using magnetic fields [100]. It is

based on conventional (non-magnetic) impurity scattering along with the real-

ization that the particle-hole symmetry of interband scattering interference pat-

terns depends on the relative sign of the energy-gaps on those bands [100]. As

a result, the energy-symmetrized ρ+(~q, E) and energy-antisymmetrized ρ−(~q, E)

phase-resolved Bogoliubov scattering interference amplitudes

ρ±(~q, E) = Re{g(~q,+E)} ± Re{g(~q,−E)} (2.7)

have, at the ~q for interband scattering, distinct properties depending on the rel-

ative sign of the two gaps. Importantly, this new HAEM (Hirschfeld, Altenfeld,

Eremin and Mazin) approach to measuring sign changes of superconducting

gap structures, while not requiring variable temperature studies, does require

phase-resolved imaging of BQPI in order to reliably discriminate Re{g(~q, E)}

from Im{g(~q, E)}. A point scatterer at an Fe-lattice site does not break inversion

symmetry, and thus the whole BQPI signal is contained within the real part of

the Fourier transform. For the reasons mentioned at the end of the last section,

an experiment contains signal in the imaginary channel, as well, which needs to

be reduced as much as possible, both during data acquisition and data process-

ing.

We conclude this section with the predictions of the HAEM scheme for a two

band toy model with flat DOS around the chemical potential. The goal is to

distinguish between a sign-preserving and a sign-changing gap structure, as for

example the ones shown in Figs. 2.10A, B.

In Fig. 2.10C we present the predicted ρ−(E) for sign-changing and sign-
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Figure 2.10: Determination of the sign of the superconducting gap using
BQPI. A,B, Gap structure for the s++ (sign-preserving) and s+− (sign-changing)
scenario: Red and blue symbolize opposite sign of the gap in the latter. The
dashed lines mark the 1 Fe unit cell Brillouin zone in both panels. Inter-pocket
scattering connects gaps of same / different sign in the s++ / s+− scenario. C,
Anti-symmetrized LDOS for inter-pocket scattering calculated using a weak
potential scatterer for a two-band model with flat DOS around the chemical
potential. The important difference is the zero crossing for the case of s++ which
is absent in the s+− case. Gaps on the two bands were set to 3/TC and 1.5/TC in
this example.

preserving superconductivity. The first difference between s++ and s+− is that

the scattering intensity is a lot stronger for the case of s+− [100]. As comparison

of relative intensities is always difficult for an experiment, the second difference

is the crucial one: s++ crosses zero between the two gaps while s+− does not [100].

This zero crossing is caused by the coherence factor for scattering between the

two pockets.

In the case of the toy model presented in Fig. 2.10C the solution for inter-pocket

scattering in the superconducting state is given as [100]:

δρ−inter(ω) = −2π2t3ρhρeIm
ω2 − ∆h∆e√

ω2 − ∆2
h

√
ω2 − ∆2

e

(2.8)

Here ∆h is the gap on the hole-like pocket in the center of the Brillouin zone, and

∆e refers to the gap on the electron-like pocket at the X- or Y-point. ρh and ρe

represent the DOS of the hole-like and electron-like pocket, respectively, and t3
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marks the strength of the potential scatterer. Im stands for taking the imaginary

part of the fraction as ω possesses a small imaginary component. The product

of the gaps ∆h and ∆e on the two pockets is evidently distinct for the case of

sign-changing and sign-preserving gaps which creates the energy dependence

of δρ−inter(ω) presented in Fig. 2.10C.

While this particular toy model can be solved analytically for the whole Bril-

louin zone [100], in general the (anti)symmetrized functions ρ±(~q, E) must be

integrated over a particular ~q-space region. Specifically, we focus on

ρ−(E) =
∑
δ~q

ρ−( ~p1 + δ~q, E) (2.9)

with radius δq confining ~q-space to interband scattering processes between two

distinct energy gaps. We will discuss the specifics of this numerical procedure

in chapter 6.
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CHAPTER 3

TIGHT-BINDING MODEL FOR FeSe

Both for the discussion of our FT-STM measurements and any theoretical sim-

ulations we require an accurate model of the electronic structure of FeSe in the

vicinity of the chemical potential. For this purpose we introduce a tight-binding

model (Fig. 3.1) that as we show in chapter 5 exhibits maximal simultane-

ous consistency with angle resolved photoemission [54, 55], quantum oscilla-

tions [56, 101], and the BQPI studies herein.

We remind the reader at this point that we parameterize the lattice by the two

inequivalent Fe-Fe distances aFe = 2.665Å and bFe = 2.655Å in the orthorhom-

bic/nematic phase (Fig. 3.1A). Furthermore, we define the x-axis (y-axis) to

always be parallel to the orthorhombic aFe-axis (bFe-axis), so that our x/y coor-

dinate system rotates when a twin boundary is crossed.

The Fermi surface (FS) is postulated to consist of three bands α, ε and δ (as

shown schematically for kz = 0 in Fig. 3.1B), and may be parameterized accu-

rately using a tight-binding model [27, 102] that is fit simultaneously to several

types of experimental observations. Surrounding the Γ = (0, 0) point is an el-

lipsoidal hole-like α-band, whose FS ~kα(E = 0) has its major axis aligned to the

orthorhombic bFe-axis; surrounding the X = (π/aFe, 0) point is the electron-like

ε-band whose bowtie FS ~kε(E = 0) has its major axis aligned to the orthorhom-

bic aFe-axis. At the Y = (0, π/bFe) point, a δ-band FS should also exist but has

remained stubbornly imperceptible to spectroscopic techniques.

Equally important to the topology of the band structure in a multiorbital system

is the distribution of the orbital content in ~k-space. Polarized LASER-ARPES on

detwinned crystals provides valuable information about the orbital composi-

tion in ~k-space [54, 103], and was used for the construction of the tight-binding
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Figure 3.1: Tight-binding model for FeSe. A, Top view of FeSe crystal struc-
ture. Dashed lines represent the 1 Fe unit cell, and the 2 Fe unit cell is shown
using solid lines. B Fermi surface at kz = 0 consists of the hole-like α-band
around Γ = (0, 0) and an electron-like ε-band around X = (π/aFe, 0). An antic-
ipated third band, the δ-band around X = (0, π/bFe) has not yet been observed
by spectroscopic techniques in the nematic phase.C, Band structure used as a
basis for theoretical calculations. Line thickness represents the magnitude of
the dominant orbital content. Thus, if the line gets thinner orbital content will
be more mixed. Red = dxz, green = dyz, blue = dxy, and black = dx2−y2 or dz2 . D,
3D Fermi surface including orbital character of our band structure model at low
temperatures.

parameter set. In our resulting tight-binding model, the dyz orbital content of the

α-band Fermi surface has its maximum value along the x-axis (green Fig. 3.1B)

while its dxz orbital content peaks along the y-axis (red Fig. 3.1B) . Conversely,

the dyz orbital content of the ε-band FS is maximum along the y-axis (green Fig.

3.1B), and its dxy orbital content reaches its highest point along the x-axis (blue
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Fig. 3.1B); (Refs. [27, 54, 102, 103]). In this picture, the δ-pocket consists predom-

inantly of dxy mixed with dxz orbital content.

3.1 Band structure parameters

Next we provide a detailed description of the individual parts of our band

structure model. We use a band structure model, introduced in [26, 27], that

includes a parameterization of site-centered (∆s) and bond-centered (∆b) orbital

order as well as spin-orbit coupling [104]. Effects of interactions and correla-

tions of the quasiparticles (in the normal state, but including the nematic order)

are modeled by allowing the hoppings to be modified to match the spectral

positions of the quasiparticle peaks observed in ARPES [54–56] and BQPI (this

work). Note that this approach takes into account the real part of the self-energy

corrections by fitting to the experimentally observed spectral positions Ei(k).

Specifically, the band structure is determined by the normal state Hamiltonian

HN = H0 + HOO + HS OC, where H0 (in real space notation) is given by

H0 =
∑

r,r’,a,b

tab
r−r’c

†
a,rcb,r’ (3.1)

where a, b are orbital labels, r, r’ are lattice sites, and t the hopping integral. For

the orbital order term, we use the momentum space representation,

HOO = ∆b(T )
∑

k

(cos(kx) − cos(ky))(nxz(k) + nyz(k)) + ∆s(T )
∑

k

(nxz(k) − nyz(k)) (3.2)

Finally, the spin-orbit coupling is given by

HS OC = λL · S (3.3)

Keeping in mind the correspondence between a 5-band and a 10-band model

[27] which is exact for kz = 0 and kz = π in the absence of spin-orbit coupling
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(SOC), we use a 5-band model to represent the band structure away from the

band crossings that have splittings induced by SOC. However, the splitting at Γ

needs to be taken into account [105,106]. The resulting band structure is shown

in Fig. 3.1.

Figure 3.2: 10-band spectral function of the tight-binding model above and
below the structural transition. A, Above the structural transition the orbital
order terms are zero. As a consequence of this, both the hole-like pockets around
Γ and the electron-like pockets around the X-point are C4-symmetric. B, Below
the structural transition, the orbital order terms break the C4-symmetry of both
the hole-like pocket around Γ and the electron-like pockets around X.
The solid white line marks the boundary of the 2 Fe unit cell Brillouin zone, and
the dashed white lines represent symmetry axes about which the Fermi surface
is mirror symmetric.

The values of the orbital order terms, as determined from experimental mea-

surements of normal state QPI to be discussed elsewhere (A. Kostin et al., in

preparation [107]), are ∆s = 9.6meV , ∆b = −8.9meV , and the SOC constant is

fixed to λ = 20meV . These values also agree with the observed splitting above

the nematic ordering temperature [106] assuming that the SOC is unaffected by

temperature. In order to visualize the influence of the orbital order terms on the

Fermi surface topology, we display the 10-band spectral functions at ω = 0 both
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above and below the structural transition TS which correspond to ∆s = 0meV ,

∆b = 0meV and ∆s = 9.6meV , ∆b = −8.9meV , respectively (Fig. 3.2).

Above the structural transition, without orbital order, the Fermi surface is C4-

symmetric as reported by ARPES [55]. Overall, our band structure parametriza-

tion not only agrees in its spectral positions Ei(k) with those of experimental

observations, but is also consistent with deductions of the orbital content of the

Fermi surface [54]. Moreover, at low energies it does not show any unexpected

behavior as compared to investigations that include correlations [108]. Its gen-

eral correspondence with experiment is discussed in chapter 5.

3.2 Nematic phase, twinned and detwinned measurements

The origin of the nematic phase in iron-based superconductors, and FeSe in par-

ticular, has been hotly debated ever since it was discovered [21, 30, 31, 109, 110].

Experiments find contradictory evidence for a nematic phase driven by orbital

degrees of freedom [111] or by spin-fluctuations [44]. The strong coupling be-

tween the various degrees of freedom further complicates a clear distinction be-

tween different scenarios on the theoretical side, but the spin-fluctuation driven

scenario is favored [20, 21, 30]. Related to the origin of the nematic phase is the

question of orbital order in FeSe. A variety of types of orbital order has been

suggested based on ARPES measurements [54–56, 103, 112].

For a realistic parametrization of the band structure, in addition to orbital or-

der we need to consider a sizable spin-orbit coupling [106] and the evidence for

strong orbital selective correlations which can modify the quasiparticle weights

of the electrons [40]. The dxy electrons are the most strongly correlated, and

could become decoherent due to reduced quasiparticle weight [40]. In combi-
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nation with our own (B)QPI and twinned as well as detwinned ARPES mea-

surements shown in Figs. 3.3A, B the combination of mean-field orbital order

terms was chosen eq. 3.2.

Figures 3.3C-F illustrate how our model of the electronic structure of FeSe is

consistent with both twinned and detwinned ARPES measurements. Given our

10-orbital model for FeSe within one twin domain, the folding to the 2 Fe unit

cell would give the ε-pocket aligned horizontally and the δ-pocket oriented ver-

tically, as shown in panel C. If one now averages this ~k-space structure (panel

D) over the two orthorhombic domains, one ends up with a signal from a hor-

izontally and vertically aligned ε-pocket, and in addition with a signal from a

vertically and horizontally aligned δ-pocket which is demonstrated in panel D.

This argument is true both without or with decoherence effects, as illustrated in

panel D and F. This averaging over all twins yields the appearance of C4 sym-

metry in excellent agreement with the observed spectral function by the most

precise multi-domain ARPES studies on twinned crystals [55].

In a single domain, our model predicts a Fermi surface structure which breaks

C4 symmetry everywhere. And this situation is what is detected by single-

domain (detwinned) ARPES studies of FeSe as shown in panel A above [54].

Our independent BQPI studies comprehensively detect phenomena that are

completely consistent with this situation (panel E) as we will show in the re-

mainder of this thesis.
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Figure 3.3: Twinned and detwinned measurements. A, Spectral function for
ω = 0 and kz = 0 as measured using ARPES on detwinned FeSe crystals. Repro-
duced from reference [54]. B, Spectral function for ω = 0 and kz = π as measured
using ARPES on twinned FeSe crystals. Reproduced from reference [55]. C,
Fermi surface for the ten-orbital version of our band structure model in a sin-
gle orthorhombic domain. D, Fermi surface for the ten-orbital version of our
band structure model when summed over two orthogonal orthorhombic do-
mains. E, Fermi surface for the ten-orbital version of our band structure in a
single domain without the delta pocket; this is to simulate decoherence of the
dxy states. F, Fermi surface for our ten-orbital band structure for the sum of two
orthorhombic domains without the delta pocket.
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CHAPTER 4

BOGOLIUBOV QUASIPARTICLE INTERFERENCE MEASUREMENTS IN

FeSe

The FeSe single crystals measured via FT-STM were synthesized using

KCl/AlCl3 chemical-vapour transport [113] and were thoroughly characterized

using resistivity, magnetization and x-ray diffraction measurements [42,44,113,

114]. They show a structural transition at TS = 87 − 89K and a superconducting

transition at TC = 8.7 − 8.8K.

For study of the samples in the STM, each single crystal is glued flat onto the

end of a cylindrical brass sample holder using silver epoxy H20E from Epotek.

This provides excellent heat and electrical conductivity at low temperatures

and yields a clean flat unstressed cleave of the crystal with high reliability. All

samples are inserted slowly from a room temperature load-lock into the cryo-

genic environment and then cleaved in situ in cryogenic ultra-high vacuum at

T < 20K.

Differential tunneling conductance dI/dV(~r, eV) ≡ g(~r, eV) is measured at T = 280

mK, and as a function of both location ~r and electron energy E = eV where V is

the tip-sample bias voltage. We use fields of view in the range of 60 nm x 60 nm

to 90 nm x 90 nm square and raster between 128x128 to 400x400 pixel square

to get high signal-to-noise ratio and sufficient ~q-space resolution, and a typical

bias modulation of δV = 100µeV . The same measurements were carried out on

both nematic domains of multiple crystals and all the results presented herein

are supported by this data set.
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4.1 Pedagogical Bogoliubov quasiparticle interference model

For guidance on what to expect in FeSe, we first consider a pedagogical QPI

model, while emphasizing that Fermi surfaces and energy-gap structures de-

rived using BQPI imaging do not depend on any such model [80–82]. ARPES

measurements on the related material Fe(Se, S) provide an excellent starting

point for the α-pocket, see also chapter 2. Given the α-band Fermi surface

(fine dashed grey contour Fig. 4.1A) supporting an anisotropic ∆α(~k) that has

C2 symmetry [53, 69], the constant-energy-contours would be as shown by the

fine colored curves, with quasiparticle energy increasing as indicated by the

color code. The tips of each Bogoliubov CEC banana are then indicated by col-

ored dots similarly representing increasing energy. The predominant quasipar-

ticle scattering should then occur between the four regions of maximum spec-

tral weight as indicated here by each set of similarly colored dots (Fig. 4.1A),

and discussed in chapter 2. Thus, for the α-band of FeSe we expect that a

triplet of inequivalent BQPI wavevectors ~qi
α(E) i = 1 − 3 should exist (black

arrows Fig. 4.1A). Scattering interference patterns with these wavevectors can

be imaged using atomically-resolved differential tunneling conductance map-

ping dI/dV(~r, E) ≡ g(~r, E). Maxima in the Fourier transform g(~q, E) reveal the

characteristic wavevectors ~qi
α(E) of dispersive BQPI modulations. The antici-

pated energy dependence of the ~qi
α(E) is then shown schematically in Fig. 4.1C

using the same color code as for ’banana tips’ in Fig. 4.1A.
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Figure 4.1: Pedagogical BQPI model for FeSe. A, Constant-energy-contours
(CEC) of Bogoliubov quasiparticles for the gapped α-band around Γ = (0, 0).
The CEC are color-coded to indicate increasing energy. A schematic, ellipsoidal
normal state Fermi surface is shown using a grey dashed contour. Predom-
inant scattering interference occurring between the ’tips’ of the CEC should
produce a triplet of characteristic BQPI wavevectors ~qα1 , ~qα2 , ~qα3 as indicated by
black arrows. B, Constant-energy-contours (CEC) of Bogoliubov quasiparticles
for the gapped ε-band around X = (π/aFe, 0). These are color-coded to indicate
increasing energy. Normal state Fermi surface is shown using a grey dashed
contour. Predominant scattering interference occurring between the ’tips’ of the
CEC should produce a triplet of characteristic BQPI wavevectors ~qε1, ~qε2, ~qε3 as
indicated by black arrows. C, The expected energy dependence of the α-band
wavevector triplet ~qα1 , ~qα2 , ~qα3 in 1C; these are color-coded to indicate increasing
energy. The black diamond symbolizes the starting point of ~qα3 where ∆α = max.
D, The expected energy dependence for the ε-band wavevector triplet ~qε1, ~qε2, ~qε3
color-coded by energy. The black diamond symbolizes the end point of ~qε2 where
∆ε = min.
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For each energy ∆min
i < E < ∆max

i the positions of the four CEC ’banana tips’

(±kx(E),±ky(E))α can be determined by inverting

~q1
α

= (0, 2ky) (4.1)

~q3
α

= (2kx, 0) (4.2)

~q2
α

= (2kx, 2ky) (4.3)

If a C2-symmetric energy gap ∆δ(~k) existed on the δ-band surrounding Y =

(0, π/bFe) it might be expected to behave very comparably. Similarly, if a C2-

symmetric energy gap ∆ε(~k) existed on the bowtie ε-band Fermi surface sur-

rounding X = (π/aFe) (grey contour Fig. 4.1B) it would exhibit Bogoliubov CEC

as in Fig. 4.1B; another BQPI triplet ~qi
ε(E) i = 1 − 3 (black arrows Fig. 4.1B)

should then exist whose energy dependence is shown schematically in Fig. 4.1D

using the equivalent color code. Here again the locus of four CEC ’banana tips’

(±kx(E),±ky(E))ε is determined from the equivalent of eqs. 4.1 - 4.3. Thus, detec-

tion of BQPI phenomena of the type shown schematically in Figs. 4.1A-D, and

their use to measure the FeSe Fermi surfaces ~kα(E = 0);~kε(E = 0), along with the

structure and sign of their superconducting energy gaps ∆α(~k) and ∆ε(~k), are the

objectives for our study.

4.2 Crystal symmetry

Figure 4.2 presents SI-STM measurements across an orthorhombic twin bound-

ary. We discuss the superconducting tunneling spectrum in A in detail later, and

concentrate for now on the constant current topography and dI/dV images in

B-D. Both in the topography and in the dI/dV images the highly anisotropic C2-

symmetric Friedel oscillations rotate when the twin boundary is crossed. This
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Figure 4.2: Rotation of BQPI across orthorhombic twin boundary. A, High-
resolution spectrum of the superconducting gap in FeSe. B, Topography across
a twin boundary. Note the rotation of the Friedel oscillations between the two
orthorhombic domains. C, dI/dV map inside the superconducting gap below
the chemical potential in the same field of view as B. D, dI/dV map inside the
superconducting gap above the chemical potential in the same field of view as
B.
Both in C and D short wavelength components were filtered in order to enhance
the visibility of the BQPI Friedel response around the defects.

is important, as it confirms that the anisotropy of experimental quantities is not

a property of the tip, but instead inherent to the electronic structure of FeSe in

the orthorhombic / nematic phase. Furthermore, the BQPI oscillations in the

dI/dV (panels C and D) are particle-hole symmetric with respect to the chemi-
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cal potential as expected for Bogoliubov quasiparticles.

The symmetry of the crystal structure can be used to increase the signal-to-noise

ratio of (B)QPI measurements. In Fig. 4.3 we present the sequence of steps

used to optimize the signal-to-noise ratio of the BQPI data. The three steps are

symmetrization, averaging, and Gaussian core subtraction in Fourier space. We

would like to emphasize that no unfolding of BQPI data with respect to the 1

Fe and 2 Fe unit cell picture takes place within these steps, and that the sym-

metrization does not enforce C2 symmetry on the data.

For the symmetrization we take advantage of the mirror symmetry axes present

in the underlying~k-space structure, see also Fig. 3.2. As BQPI consists of scatter-

ing between parts of constant-energy-contours in ~k-space these mirror symme-

try axes carry over into ~q-space. The raw amplitude Fourier transform |g(~q, E)|

is symmetrized via reflection about the mirror symmetry axes displayed in Fig.

4.3A.

In order to further increase the signal-to-noise ratio we use a three-by-three pixel

averaging filter on the symmetrized amplitude Fourier transform |g(~q, E)| in Fig.

4.3B. The result is shown in panel C. The last step is a Gaussian core subtraction

in Fourier space which corresponds to a long wavelength filter in real space. As

can be seen in D this subtracts intensity for very small ~q-vectors. The labeling

and assignment of ~q-vectors in A-D can be understood based on the pedagogical

QPI model presented in Fig. 4.1.

4.3 Different tunneling tips

Three types of tips were repeatably observed during our studies. Figure 4.4

presents conductance maps g(~r, E) at -1.1 meV measured with the three different
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Figure 4.3: BQPI data processing steps. A, Raw amplitude Fourier transform
|g(~q, E)| as obtained from measured differential conductance. The dashed white
lines represent mirror symmetry axes of the Brillouin zone, see also Fig. 3.2. B,
Symmetrized amplitude Fourier transform |g(~q, E)| created by reflection about
the mirror symmetry axes displayed in A. C, Symmetrized and averaged am-
plitude Fourier transform |g(~q, E)|; after symmetrization a three-by-three pixel
averaging filter is utilized in order to further increase signal-to-noise. D, Sym-
metrized, averaged, and core subtracted amplitude Fourier transform |g(~q, E)|;
in the last step a Gaussian core is subtracted in Fourier space which corresponds
to a long wavelength filter in real space.
In all panels cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.

tip types (for clarity shown in smaller fields of view in ~q-space than the origi-

nal data) along with the amplitude of their corresponding Fourier transforms

|g(~q, E)|. The tips differ in their atomic sharpness, with the sharper tips being
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created when the atomic configuration at the end of the tip changed while scan-

ning across the surface at low tunneling junction resistance. Panels A and B

represent the expected case where the STM tip is sensitive to the BQPI signal

from both the α- and ε-pocket simultaneously. It is possible in principle to ex-

tract the FS and energy gaps ∆α(~k) and ∆ε(~k) from these data alone. However,

we found that it is also possible to simplify the situation and to measure the

properties of the two bands individually. Panels C and D contain the results

for a tip that is sensitive primarily to the α-pocket. This is achieved by using a

lower spatial resolution tip which is far more sensitive to the long wavelength

BQPI modulations that occur in intra-band scattering in the center of the Bril-

louin zone. Alternatively, panels E and F show the results form a tip that is

predominantly sensitive to the scattering interference from the ε-pocket. Mo-

mentum dependence of tunneling tips is discussed in more detail in Ref. [73].

In the following we will call these tips tip αε, tip α, and tip ε. All panels in Fig.

4.4 and Fig. 4.5 have been labeled depending on which tip was used during the

measurement. As can be seen from the atomic contrast in Fig. 4.4A, E the tips

sensitive to the ε-pocket BQPI possess excellent real-space resolution.
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Figure 4.4: Different tunneling tips. A,C,E, Differential tunneling conductance
images g(~r, E) for three different tips at -1.1 meV. B,D,F, Symmetrized, averaged,
and core subtracted amplitude Fourier transform |g(~q, E)| of the conductance
maps in A, C, E. The tip in A and B is simultaneously sensitive to both α- and
ε-band BQPI. The tip in C and D is sensitive predominantly to the α-pocket
because its spatial resolution is low and so can only detect long wavelength
BQPI. The tip in E and F instead mostly displays sensitivity to the ε-pocket.
Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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In order to compare real-space resolution and ~q-space sensitivity to the tip that

is primarily sensitive to the α-pocket BQPI we show in Figs. 4.5A, B constant

current topographs recorded for the same setup current and setup bias but with

two different tips: tip α and tip αε. The topographs and the corresponding am-

Figure 4.5: Relationship between r- and q-space sensitivity of different tun-
neling tips. A,B, Constant current topography in the same orthorhombic do-
main in FeSe with two of the tips discussed in additional detail in the text and
Fig. 4.4. The inset shows the topographic region marked by the black box. The
ability to resolve atoms differs strongly between the two tips. C,D, Amplitude of
the Fourier transform of the topographs in A and B. The tip with superior spa-
tial resolution detects scattering at high q-values, not observed in the Fourier
transform of the lower spatial resolution tip.
The white circle marks (+ π

aFe
,+ π

bFe
). Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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plitudes of their Fourier transforms in Figs. 4.4C, D exhibit the same behavior

as seen in Fig. 4.4. Superior real space resolution goes hand in hand with sen-

sitivity to high-~q phenomena as expected. The sharper tip is sensitive to even

the signal from Umklapp-scattering processes around the Se-Bragg peak which

has been marked with a white circle. Additionally, the sharper tip is sensitive

to interband scattering between the hole pocket at Γ = (0, 0) and the electron

pocket at X = (π/aFe, 0) which is absent for the lower resolution α-tip, see Fig.

4.5C. We find identical high-~q properties for the atomically sharp tip which pre-

dominantly detects the ε-pocket for low ~q-values, tip ε. We assign the BQPI

triplet of wavevectors ~qα,εi (E) to the α- and ε-pocket based on the energy evolu-

tion of their intensity-maxima, which can be compared to JDOS (Joint Density

of States) simulations (chapter 5) of the expected BQPI using our tight-binding

model introduced in chapter 3.

4.4 Measured Bogoliubov quasiparticle interference

In the following we present BQPI measurement for all three types of tips.

We reiterate the measurement conditions: Differential tunneling conductance

dI/dV(~r, E) ≡ g(~r, E) is imaged at T = 280mK both as a function of location

~r and electron energy E. As the Fermi surface pockets are so miniscule in

area, the expected range of dispersive intraband BQPI wavevectors is very lim-

ited 0 < |~qi
α,ε(E)| < 0.25( 2π

aFe
), while the interband BQPI necessitates resolving

wavevectors ≥ π
aFe

. To achieve the ~q-space resolution |δqα,εi | ≤ 0.01( 2π
aFe

) required

to discriminate the energy evolution of BQPI on both α-band and ε-band ne-

cessitates high-precision g(~r, E) imaging in very large fields of view, typically

between 60X60 nm2 and 90X90 nm2. BQPI measurements for the α- and ε-tip are
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depicted in Fig. 4.6.

Local maxima of |g(~q, E)|, the amplitude Fourier transform of g(~r, E), are then

used to determine the characteristic wavevectors ~qi
α(E) and ~qi

ε(E) of dispersive

modulations of BQPI. Two triplets ~qi
α(E) and ~qi

ε(E) can be identified based on

the energy evolution of the BQPI pattern. The triplets become a set of eight

through symmetry operations, and are marked by black crosses in Fig. 4.6.

Similarly, we measure the energy evolution of BQPI for an αε-tip Fig. 4.7. The

triplets of BQPI wavevectors are marked using the same symbols as in Fig. 4.6.

We find very good agreement between the energy evolution of BQPI measured

for the ’isolated’ α- and ε- tips and the ’combined’ αε-tip. However, it is clear

that the ’isolated’ tips reduce the complexity of the BQPI patterns significantly.

Additional structure in ~q-space comes for example from the geometric, static

structures of the defects. Finally, we point out that the BQPI is particle-hole

symmetric as expected for Bogoliubov quasiparticles in a superconductor.
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Figure 4.6: BQPI for an α- and ε-tip configuration. A-D, Symmetrized, aver-
aged, and core subtracted amplitude Fourier transform |g(~q, E)| at four energies
inside the superconducting gap ∆α. Black crosses mark the extracted q-vectors
expected from the ’banana tips’ model. E-H, Symmetrized, averaged, and core
subtracted amplitude Fourier transform |g(~q, E)| at four energies inside the su-
perconducting gap ∆ε. Black crosses mark the extracted q-vectors expected from
the ’banana tips’ model.
Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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Figure 4.7: Particle-hole symmetry of BQPI. A-H, Symmetrized, averaged, and
core subtracted amplitude Fourier transform |g(~q, E)| in same field of view at ±E
pairs. The tip here is simultaneously sensitive to ∆α and ∆ε. By tracking the
black + and x indicators of the maximum |g(~q, E)| for q2 = 2kF one sees directly
that the BQPI wavevectors q2 for both ∆α and ∆ε diverge away from q = 0 as
E → 0.
Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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CHAPTER 5

INTERPRETATION OF BOGOLIUBOV QUASIPARTICLE

INTERFERENCE IN FeSe

In this chapter we present a comparison of Joint density of states (JDOS) sim-

ulations and measured BQPI data, before we summarize the energy evolution

of extracted ~q-vectors, and finally determine the Fermi surface and gap struc-

ture for the α- and ε-pocket from it. The last part of this chapter comprises of a

comparison between BQPI measurements and various other techniques.

5.1 Joint density of states

In order to compare the observed BQPI to the proposed tight-binding (chapter

3) and pairing model (chapter 7), we simulate the BQPI using the joint density

of states approach:

JDOS (~q, ω) =

∫
A(~k + ~q, ω)A(~k, ω)d~k, (5.1)

with the spectral function A(~k, ω) given by A(~k, ω) = − 1
π
Im{
∑

a Gaa(~k, ω)}, where

the sum runs over the orbitals a. Here Gaa(~k, ω) = ZaG0
aa(~k, ω) is the dressed

Greens function, and the Z-factors for the orbitals are the same as used for

the calculation of the pairing interaction (see chapter 7 for more details), and

given as Za ∈ {0.27152, 0.97172, 0.40482, 0.92362, 0.59162}. Varying quasiparti-

cle weights for the individual d-orbitals are motivated by evidence for strong

orbital selective correlations in chalcogenides both in experiment [39–41] and

experiment [23, 37, 38, 58].

Furthermore, we separate the JDOS into partial JDOS simulations by restricting
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the integration area to 1/4 of the Brillouin zone containing the corresponding

pocket. Here to mimic the sensitivity of our tunneling tips to BQPI from differ-

ent bands, we compute the partial JDOS for the α-pocket, for the ε-pocket, and

the sum of both. This is a valid approach as the two pockets are well-separated

in~k-space. The results in Fig. 5.1 are in excellent agreement with the banana tips

model, as it clearly visualizes the three (independent) dominant scattering vec-

tors {~q1, ~q2, ~q3} for each pocket, which are transformed into a set of eight through

symmetry operations.

Figure 5.1: Partial Joint Density of States (JDOS) using the tight-binding
model and orbital selective pairing for the α-pocket, the ε-pocket and the sum
of both the α- and ε-pocket. Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.

Overall we find very good agreement between experiment and JDOS simula-

tion, and deviations between the two can for example be ascribed to the static

structure of the scatterers themselves which the JDOS simulation cannot take

into account. We present typical measured BQPI data at four energies, and

comparison to partial JDOS, for both the α- and ε-pocket in Fig. 5.2 and Fig.

5.3.
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Figure 5.2: Comparison of |g(~q, E)| and partial JDOS for an α-tip configuration.
A-D, Symmetrized, averaged, and core subtracted amplitude Fourier transform
|g(~q, E)| at four energies inside the superconducting gap ∆α. Black crosses mark
the extracted q-vectors expected from the ’banana tips’ model. E-H, Partial
JDOS for α-pocket at corresponding energies.
Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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Figure 5.3: Comparison of |g(~q, E)| and partial JDOS for an ε-tip configuration.
A-D, Symmetrized, averaged, and core subtracted amplitude Fourier transform
|g(~q, E)| at four energies inside the superconducting gap ∆ε. Black crosses mark
the extracted q-vectors expected from the ’banana tips’ model. E-H, Partial
JDOS for ε-pocket at corresponding energies.
Cyan crosses mark (± 2π

8aFe
,± 2π

8bFe
) positions.
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5.2 Fermi surface and gap structure from BQPI

The measured evolution of the BQPI wavevector triplet ~qi
α(E) for 2.3meV >

|E| > 0.8meV (T=280mK) is plotted in Fig. 5.4A, while the measured wavevector

triplet ~qi
ε(E) for 1.3meV > |E| > 0.3meV (T=280mK) is shown in Fig. 5.4B. The re-

semblance to the expected energy evolution from the pedagogical model in Fig.

4.1 is immediately apparent. Figures 5.4C, D display the measured evolution of

| ~qαi (E)| and |~qεi (E)|. Dashed lines symbolize the expected energy dependence of

| ~qαi (E)| and |~qεi (E)| in a ’banana tips’ model for the empirically determined Fermi

surfaces and ∆α(~k) as well as ∆ε(~k). This serves as a consistency check for the ex-

tracted ~q-values based on the geometric restrictions imposed on the wavevector

triplets by eqs. 4.1 - 4.3 [115].

The associated density of states N(E) ≡ dI/dV(E) spectrum measured at 280 mK

is shown in Fig. 5.4E, and for comparison a model N(E) in Fig. 5.4F. Black

and red arrows mark coherence peaks that we associate with the maximum gap

on the α- and ε-pocket, respectively. There is a small flat bottom part around

the chemical potential which is consistent with nodeless superconductivity. A

last prominent feature in the spectrum are the shoulders between ± 3 - 4 mV.

They could be explained by coupling of a bosonic mode to the electronic spec-

trum [116, 117].

Finally, we note that, since both ~q2
α(E) and ~q2

ε(E) evolve to finite wavevectors

2 ~kF
α
and 2 ~kF

ε
respectively as E → 0 (Figs. 5.4A-D), FeSe superconductivity is

in the BCS limit and not approaching Bose- Einstein condensation where BQPI

wavevectors must evolve to 0 as E → 0.

72



Figure 5.4: Summary of Bogoliubov quasiparticle interference results. A,
Measured evolution of ~qα1 , ~qα2 , ~qα3 . The black diamond is the first ~qα3 = −2.3meV
data point. B, Measured evolution of ~qε1, ~qε2, ~qε3. The black diamond corre-
sponds to the last ~qε2 = −0.3meV data point. C, Measured evolution of | ~qαi (E)| for
2.3meV > |E| > 0.8meV at 280 mK. Dashed lines symbolize the expected energy
dependence of | ~qαi (E)| in a ’banana tips’ model for empirically determined Fermi
surface and ∆α(~k). D, Measured evolution of |~qεi (E)| for 1.3meV > |E| > 0.3meV
at 280 mK. Dashed lines symbolize the expected energy dependence of |~qεi (E)|
in a ’banana tips’ model for empirically determined Fermi surface and ∆ε(~k).
E, Measured dI/dV(E); black arrows indicate the maximum energy gap on any
band, which we determine from BQPI to be on the α-band. Red arrows indicate
a smaller energy gap on a second band which from BQPI is assigned to the ε-
band. F, Calculated N(E) using the band-structure and a gap structure model
which will be discussed in chapter 7.
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Next we use the measured BQPI wavevector sets ~qi
α,ε(E) shown in Figs. 5.4A,

B, to determine the two Fermi surfaces by using eqs. 4.1 - 4.3 to find the

(kx, ky)α,εlocations of all the banana tips for both the α- and ε-bands. These Fermi

surfaces are shown in Figs. 5.5A, B. We use the same wavevector sets ~qi
α,ε(E)

in conjunction with the two Fermi surfaces, to plot the energy E = ∆ associated

with the observation of BQPI for each Fermi surface wavevector (kx, ky)α,ε. The

resulting functions are ∆α(~k) and ∆ε(~k) (see chapter 2).

The area of the Fermi surfaces extracted by BQPI is consistent with that at kz = 0

(see last section of this chapter). Next, the N(E) ≡ dI/dV(E) density of states

spectrum (T=280mK) shown in Fig. 5.4E is used to identify some additional

key phenomena. First, the maximum gap on any band is ∆max
α = 2.3meV (black

arrows) while another coherence peak occurs at the gap maximum of a sec-

ond band at ∆max
ε = 1.5meV (red arrows). Maximum gaps were assigned to

bands based on the energy evolution of BQPI (Figs. 5.4A-D). And no conduc-

tance whatsoever is detected in the energy region E . 150µeV meaning that

∆min & 150µeV for all bands. Finally, we plot schematically the measured magni-

tude of the energy gap |∆α(~k)| on the α-band in Fig. 5.5C, and the measured mag-

nitude |∆ε(~k)| on the ε-band in Fig. 5.5D, where in both cases we use the width

of the shaded region to indicate |∆(~k)| and include values of extrema of any en-

ergy gap from N(E) in Fig. 5.4E. From these measurements, we conclude that,

although exhibiting extraordinarily anisotropic (∆max
α /∆min

α & 15) C2-symmetric

energy-gap structures, FeSe remains a fully gapped or nodeless superconductor

with gap minima ∆min & 150µeV . Indeed, evidence for a nodeless gap structure

for FeSe has been detected by a wide variety of different techniques [64–68]. As

a last remark, we note that since our samples are not detwinned and our field of

view limited to ∼ 200 x 200 nm2 we cannot exclude that the existence of nodes in
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the gap structure is affected by long-range effects of twin boundaries [63, 65].

Figure 5.5: BQPI Determination of Fermi surfaces and energy gaps. A, Fermi
surface of α-band measured using the BQPI triplet ~q1

α, ~q2
α, ~q3

α. B, Fermi sur-
face of ε-band measured using the BQPI triplet ~q1

ε, ~q2
ε, ~q3

ε. C, Energy-gap
magnitude for the α-band measured using the energy dependence of the BQPI
triplet ~q1

α, ~q2
α, ~q3

α plus the values of maximum and minimum energy gap from
dI/dV(E) in Fig. 5.4E. D, Energy-gap magnitude for the ε-band measured us-
ing the energy dependence of the BQPI triplet ~q1

ε, ~q2
ε, ~q3

ε plus the values of
maximum and minimum energy gap from dI/dV(E) in Fig. 5.4E.
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5.3 Comparison of SI-STM results to other experiments

Figure 5.6 shows directly the agreement of our model band structure to the po-

sition of the Fermi surface that we measure using BQPI (red dots). The black

line is the calculated tight-binding model Fermi surface at kz = 0 from our band-

structure, and agrees well with the measured positions within the experimen-

tal error bars. At the same time, the dispersion of our band-structure along kz

is significant and agrees well with the findings from a recent ARPES investi-

gation [56]. In Fig. 5.6, we also reproduce the spectral function measured by

ARPES [55] at kz = π, and it compares very well to the model Fermi surface

at kz = π (blue line). The superposition of copies of the basic Fermi surface

spectral-function features but rotated by π/2, is due to the existence of both or-

thorhombic domains in the ARPES study; obviously our band structure model

does not reproduce these effects as discussed in detail in chapter 3.

Figure 5.6: Overlay of BQPI results and ARPES spectral function. Compari-
son between the Fermi surface of our model at kz = 0 (black lines) and kz = π
(blue lines) and experimentally deduced points of the Fermi surface from BQPI
(red dots) and a map of the spectral function at ω = 0 and kz = π as measured by
ARPES (gray map) [55]. The features in the ARPES spectral function that gener-
ate an apparent C4-symmetry about both the Γ-point and about the X-point, are
due to summation over the two types of orthorhombic domains that are orthog-
onal to each other, and are irrelevant for band structure parameterization.

Note that the same experimental work also revealed the Fermi surface at kz = 0
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which gives very similar spectral positions as the ones obtained from BQPI.

Therefore, we concentrate on the use of the model system for kz = 0 whenever

carrying out simulations for comparison with the data as for example the JDOS

simulations at the beginning of this chapter.

For the calculation of the extremal Fermi surface areas we use the 10-band ana-

log of our band structure [27] that additionally introduces small hybridizations

on the electron pockets yielding an orbit of the inner electron pocket and the

outer electron pocket. The extremal areas obtained within this method would

give rise to quantum oscillation frequencies of: 66T (inner electron pocket), 199

T (hole pocket at kz = 0), 579T (outer electron pocket), and 651 T (hole pocket at

kz = π); results were rounded to last digit. The measured extremal frequencies

for magnetic field angle θ = 0 are reported as values in the range of 60 T - 114

T, 200 T - 207 T, 530 T - 580 T, and 660 T - 680 T, see table I in Ref. [56], and

references therein. Thus, there is good comprehensive agreement within the ex-

perimental uncertainties between the band structure described by our model of

the electronic structure and the quantum oscillation data.

Concerning the superconducting gap structure we determined using BQPI

imaging. A recent specific heat experiment finds excellent agreement using our

reported gap structure [43]. This is important as specific heat probes the bulk

properties while STM and ARPES are surface sensitive probes, and the less two-

dimensional nature of the iron-based superconductors compared to the cuprates

necessitates more detailed comparisons of bulk and surface sensitive probes.
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CHAPTER 6

DETERMINING THE RELATIVE SIGN OF THE SUPERCONDUCTING

GAPS IN FeSe

The relative sign of ∆α(~k) and ∆ε(~k) then remains to be determined. This is critical

because one of the key characteristics of iron-based superconductors is whether

the energy gaps on different bands have opposite signs, see introduction and

Refs. [16, 17], for example. For FeSe this situation should be designated +− be-

cause the more conventional designation s+− [16, 17] is rendered inappropriate

by orthorhombic crystal/band-structure symmetry. One inventive technique

for measuring +− pairing symmetry is to detect the enhancement in amplitude

of g(~q, E) at specific BQPI wavevectors when a magnetic field is applied; this was

proposed to occur because field-induced magnetism results in amplified scatter-

ing interference between regions of ~k-space with same-sign energy gaps [118].

Although never used for FeSe studies, in Fe(Se,Te) this approach has yielded

field-induced reduction for wavevectors linking the electron and hole pockets,

indicative of +− pairing symmetry [97]. Yet, there are reservations about this

interpretation [98–100] because: (i) a subset of wavevectors where the Fe(Se,Te)

field-induced alternations are reported occur at Bragg points of the reciprocal

lattice and, (ii) a microscopic explanation for the field-induced reductions is ab-

sent.

Instead we implement the phase-sensitive BQPI scattering technique [100] in

FeSe which relies on the coherence factor for scattering between superconduct-

ing gaps as introduced in chapter 2. This is to our knowledge the very first time

this technique has been applied to any superconducting material.
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6.1 Sign-changing or sign-preserving superconductivity?

For FeSe, the relevant interband scattering wavevector ~p1 is shown in Figs. 6.1A-

C both for the ++ and +− scenario. Given our quantitative knowledge of the

Fermi surface and energy gaps of FeSe (Fig. 5.5), ρ−(~q, E) can numerically be

predicted specifically for this material.

Figure 6.1: Interband scattering in FeSe. A, Schematic visualization of FeSe
interband scattering wavevector ~p1 between α- and ε-bands in ~k-space for sign-
preserving order parameter. B, Schematic visualization of FeSe interband scat-
tering wavevector ~p1 between α- and ε-bands in~k-space for sign-changing order
parameter. C, FeSe ~q-space of scattering wavevectors. D, Predicted ρ−(E) for ±
pairing symmetry using the band/gap structure of FeSe, shown as solid black
curve. Predicted ρ−(E) for no gap sign change in FeSe shown as solid red curve.
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Following Ref. [100], we perform a calculation of the BQPI response within the

T-matrix approach. For this purpose, the Nambu Hamiltonian H =

HN ∆

∆T −HT
N


as a matrix in orbital space is set up where the Hamiltonian is given in chapter

3. The superconducting gap is taken from a self-consistent calculation, [119,120]

using the same band structure and pairing model as outlined in chapters 3 and

7.

Next, a weak (attractive) nonmagnetic impurity is modeled as a potential scat-

terer on a single Fe position, motivated by the Fe centered defects seen in the

present STM experiment and also by other groups [63, 88]. These defects are

also observed in the monolayer FeSe [121]. Setting Himp = V0δab as a constant on-

site scatterer at position r∗ in orbital space, we use the additional impurity term

in the Hamiltonian Himp = V0
∑

a c†a,r∗ca,r∗ which describes the scattering from an

impurity centered at a Fe lattice position in the approximation of a short-range

potential.

Then we solve the T-matrix using the local Greens function G0(ω) =
∑

k G0
k where

G0
k = (ω + i0+ − Hk)−1. Noting that the impurity potential is constant in mo-

mentum space, we obtain the Greens function in the presence of scatterer as

Gk,k’(ω) = G0
k−k’(ω) + G0

k(ω)T (ω)G0
k’(ω). The T-matrix is obtained from the equa-

tion T (ω) = [1 − VimpG0(ω)]−1Vimp such that the change in the local density of

states is given by δN(q, ω) = 1
π
Tr{Im

∑
k G0

k(ω)T (ω)G0
k+q(ω)}.

Theoretically, the quasiparticle scattering between states with sign-changing or-

der parameter yields a characteristic resonant energy dependence in ρ−(ω), the

anti-symmetrized QPI response, integrated over a finite momentum space cor-

responding to relevant inter-band scattering processes as discussed in Ref. [100].

To pick out only the inter-band scattering contributions in FeSe which are sign-

changing in the ∆+− scenario, we integrate over an area in momentum space
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centered at (π, 0) to obtain ρ(ω) =
∑′

q δN(q, ω) and construct ρ−(ω) = ρ(ω)−ρ(−ω).

These calculations are done for two different gap structures that yield the same

density of states because they differ only by a relative sign between the order

parameters on the electron band and the hole band (Figs. 6.1A, B).

The results for the calculations are presented in Fig. 6.1D. The quantity

ρ−(ω) crosses zero at an energy within the superconducting gap for the sign-

preserving order parameter ∆++ (solid red curve in panel D). For the sign-

changing order parameter ∆+−, there is however no zero crossing in ρ−(ω) up

to roughly the maximum superconducting gap (solid black curve in panel D).

6.2 Point defects in FeSe

Before we demonstrate how the experimental equivalent of Fig. 6.1D is created,

we discuss the prominent type of defect found in FeSe [63, 88, 121]. Initially, it

was thought that the defect is either created through substitution of an Fe-atom

by a Se-atom or that it is a vacancy in the Fe-lattice [88]. A recent, detailed anal-

ysis of the same type of defect in the monolayer FeSe shows that the vacancy

produces the best agreement between measured and simulated LDOS [121].

Due to its apparent shape in STM measurements it is called a dumbbell de-

fect [88, 89, 121].

Below we show spectroscopic measurements for the dumbbell defect by Kasa-

hara et al. [62] and us (Fig. 6.2). The key feature is a very strong resonance at

∼ 10 mV which is observed in both experiments. A broader peak around ∼ -20

mV exists simultaneously, as indicated by the slow rise in the spectra between

-20 and -15 mV. Finally, we remark that differences in the visual appearance of

the dumbbell defect between different topographic measurements are merely
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due to the different bias voltages used to form topographic images (compare

for example positive bias used in Fig. 6.2 to negative bias used in Fig. 2.4).

Figure 6.2: Dumbbell impurity in FeSe. A,C, Comparison of topographic im-
ages of the impurity in Kasahara et al. and in our studies. B,D, show the
comparison of dI/dV spectra at the center and away from this impurity site.
Different junction conditions (normalizations) were used for the curves in the
two panels, but their overall characteristics, comparing off-impurity (red) curve
shapes and on-impurity (blue) curve shapes to each other, are alike.
A, B were reproduced from reference [62].
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Spectroscopic measurements of the dumbbell defect that focus on the supercon-

ducting energy gap find in-gap states at the position of the defect. We analyze

the single defect by taking dI/dV line-cuts through it along the Fe-lattice x- and

y-direction. Figure 6.3 presents dI/dV line-cuts through the single defect. The

differential conductance inside the superconducting gap exhibits an increase at

the defect location. The effect is small, but clearly visible.

Figure 6.3: In-gap states induced by impurity. dI/dV line-cuts through the
single impurity site along the x- and y-direction where x is parallel to aFe and y
is parallel to bFe. While small, an increase of the dI/dV is clearly visible inside
the superconducting gap at the location of the impurity (corresponding to 0 nm
in the dI/dV panels) that is indicative of a weak in-gap impurity state.

Lastly, we compare the dumbbell defect to what based on its appearance in to-

pography is either a vacancy in the Se-lattice or a substitution of a Se-atom by

an impurity atom, see Fig. 6.4. The most notable difference between a defect in
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Figure 6.4: Dumbbell defect compared to Se-lattice defect. Constant current
topography showing several dumbbell defects in two orthorhombic domains,
and a Se-lattice defect. While the Friedel oscillations are very strong around the
dumbbell defects there is virtually no response around the Se-lattice defect.

the Fe-lattice and a defect in the Se-lattice is the extreme disparity in terms of

the observed Friedel oscillations or their lack thereof in the case of the Se-lattice

defect (magnified regions in Fig. 6.4). As we require BQPI scattering for phase

sensitive measurements of the gap sign [100], we focus on the dumbbell defects

in the following.

6.3 Phase resolved FT-STM of single defects in FeSe

Experimentally, the challenge is then to achieve phase-resolved imaging of BQPI

surrounding a single impurity atom in FeSe. We extract ρ−(ω) from the experi-
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ment by taking advantage of the fact that the differential tunneling conductance

g(~r, ω) is proportional to the local density of states of the sample ρ(~r, ω). Next we

construct in Fourier space the real part of the anti-symmetrized differential tun-

neling conductance ρ−(~q, ω) = Re{g(~q,+ω)}−Re{g(~q,−ω)} and integrate in a circu-

lar region around (π, 0)-scattering which connects the electron and hole pocket

at X and Γ, respectively: ρ−(ω) =
∑

(qx−p1,x)2+(qy−p1,y)2≤δq2 ρ−(~q, ω). Here ~p1 = (p1,x, p1,y)

corresponds to the position of (π/aFe, 0)-scattering in ~q-space, and the radius

used for integration δq is chosen so that we capture only intensity related to

scattering between the electron and hole pocket at X and Γ. δq is thus deter-

mined by the size of the two pockets.

However, before one computes ρ−(ω), any shift of the scatterer away from the

origin of the Fourier transform (FT) needs to be corrected as exactly as possi-

ble. The correction is necessary as any shift of the scatterer, i.e. the impurity,

in real space away from the origin of the FT creates an additional phase term

in ~q-space according to the shift theorem of FTs: FT { f (~r − ~r0)} = e−i~q~r0 FT { f (~r)}.

Fortunately, the shift theorem allows one to correct the data. The experimental

challenge lies therefore in determining the spatial position of the scatterer with

high precision.

As mentioned above, the dominant type of defect in FeSe is centered on an

Fe-atom. We know the relative position of Se- and Fe-atoms from the crystal

structure. FeSe cleaves between two layers of selenium so that it is a reasonable

assumption that STM images the Se-atoms. Before we determine the spatial

shift of the impurity we correct the data for distortions due to non-orthogonality

in the x/y axes of the piezoelectric scanner tube using the Lawler-Fujita algo-

rithm [94]. After that we shift the data to the pixel corresponding to the origin

of the FT.
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Figure 6.5: Experimentally extracted ρ−(ω). A, Constant current topography of
a single defect in FeSe. B, Constant current topography of the same defect as
in A, but the data has both been LF-corrected and shifted so that the center of
the defect is at the origin of the FT. C, Re{ρ−(~q, ω = 1.05meV)} of the raw data.
D, Re{ρ−(~q, ω = 1.05meV)} of the LF- and shift-corrected data. E Comparison of
ρ−(ω) for both the raw and LF- and shift-corrected data. F, Comparison of ρ−(ω)
for three differently sized integration areas in ~q-space.

86



The measured ρ−(ω) is shown in Fig. 6.5. To increase the signal-to-noise ratio we

average over adjacent energy values of ρ−(ω). Note that the small Fermi surface

pockets clearly separate scattering between states from and to different pock-

ets, e.g. there are no intraband scattering events at the relative energy scale that

are picked up by the integral. Resolving the structure of the tiny Fermi surface

pockets is an experimental challenge because large FOV are required in STM,

but at the same time it allows one to clearly separate intraband contributions.

In order to test how robust the result is under change of the integration area,

we used three circular areas as depicted in Fig. 6.5D. The radius for the small-

est, blue circle was three quarter the size of the medium black circle, and the

radius of the biggest, magenta circle was five quarters the size of the medium

black circle. As can be seen in panel F, the results are very consistent, and the

biggest change occurs for energies outside the superconducting gap. For clarity

and easier comparability ρ−(ω) has been normalized to its maximum value for

all three cases.

In order to confirm that the ρ−(~q, ω)-signal originates from scattering inside the

superconducting state, and is not for example due to effects of the band struc-

ture or the defect itself we analyze a defect at T = 4.2K < TC and T = 10.0K > TC.

Setup voltage (Vs = −50mV), tunneling current (I = 500pA), and modulation

voltage for the lock-in measurement (VM = 1mV) were identical in both mea-

surements. As shown in Figs. 6.6A-D the signal related to scattering between

the α- and ε-pocket vanishes above TC. At the same time no sign of the super-

conducting gap remains visible in spectroscopy above TC, see Fig. 6.6E. From

that we conclude that the majority of the ρ−(~q, ω)-signal stems from the proper-

ties of the superconducting ordered state in FeSe.
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Figure 6.6: Disappearance of ρ−(~q, ω)-signal above TC. A,B, Differential con-
ductance image at 25 meV of the same impurity at 4.2 K and 10.0 K. C,D,
Re{ρ−(~q, ω = 1meV)} for the defect shown in A and B. The signal correspond-
ing to scattering between the α- and ε-pocket vanishes above TC. E, Average
spectrum for the field of view shown in A, B recorded for the same setup volt-
age and current. Above TC no sign of the superconducting gap remains.
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6.4 Sign-changing superconductivity in FeSe

We present a comparison of this measured ρ−(E) to its predicted form for the

FeSe gaps ∆α(~k), ∆ε(~k) with ∆+− and ∆++ symmetry in Fig. 6.7. Panel A depicts

the LF- and shift corrected constant current topograph, and panel B contains the

differential tunneling conductance at 1.05 meV in the same field of view. The

conductance has been LF- and shift corrected using identical parameters as for

the topograph. Distinguishing the high frequency oscillations corresponding to

interband scattering in real space is complicated due to the coexisting atomic

contrast. Fourier transform vastly simplifies the situation in this scenario. In

both A and B red x-markers for Se and yellow +-markers for the Fe have been

added in the lower right corner.

In Fig. 6.7C we repeat the expected ∆+− pairing scenario for FeSe, and panel

D shows the experimentally extracted and theoretically predicted ρ−(E)-curves.

Agreement is far better for the ∆+− case. We reemphasize that the relevant dif-

ference between ∆+− and ∆++ is the existence of a zero crossing for the latter.

Thus, within the framework of Ref. [100], these data provide strong, clear con-

firmation that the sign of ∆α(~k) is opposite to that of ∆ε(~k).

6.4.1 Robustness of result

In addition to tests of the temperature dependence (Fig. 6.6) and robustness

against changes in the integration area (Fig. 6.5) another important test is repe-

tition of the experiment for different impurities. In order to test the generality of

the result for ρ−(ω), we repeat the analysis for two more impurities. The second

impurity was in the same sample studied with the same tip, and its relative po-
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Figure 6.7: Measurement of relative sign of energy gaps in FeSe. A, Measured
topograph T (~r) centered on a typical individual impurity site; ∼ 6.5x6.5 nm2 field
of view. The surface (upper) Se sites are shown using red x symbol, and the Fe
sites using yellow +. B, Measured BQPI g(~r, E) in same field of view as A. C,
Schematic visualization of FeSe interband scattering wavevector ~p1 between α-
and ε-bands in ~k-space for sign-changing order parameter. D, Predicted ρ−(E)
for ± pairing symmetry using the band/gap structure of FeSe, shown as solid
black curve. The measured ρ−(E) for FeSe is calculated by integrating around
interpocket scattering vector ~p1, and is shown here as black dots. Predicted
ρ−(E) for no gap sign change in FeSe shown as solid red curve.

sition to the first impurity can be seen in Figs. 6.8A-C. The third impurity was in

a second sample, and was examined with a physically different tip. Its position

is marked in the topograph in Fig. 6.8D.
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Figure 6.8: ρ−(ω) for three different impurities. A, Constant current topogra-
phy of a single domain in FeSe. The black and blue square mark the position of
the topograph presented in B and C, respectively. B, Constant current topogra-
phy of a single defect, referred to as impurity 1 in E and F. C, Constant current
topography of several defects. The blue circle marks impurity 2. D, Constant
current topography of several defects near a twin boundary in a second sam-
ple of FeSe studied by SI-STM. The red circle marks impurity 3. E, Comparison
of ρ−(ω) for impurities 1 and 2 of the same sample with theoretically predicted
ρ−(ω). F, Comparison of ρ−(ω) for impurities 1 and 3 of two different FeSe sam-
ples with theoretically predicted ρ−(ω).
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For both additional impurities the results agree best with a sign-changing su-

perconducting order parameter, see Figs. 6.8E, F. In order to make the visual

comparison of experiment and theory easier, ρ−(ω) has been normalized to its

maximum value for all three impurities and the theoretically predicted case of

∆+−. Theoretically predicted ρ−(ω) for the case of ∆++ has been normalized so

that the relative magnitude to the theoretically predicted case of ∆+− is con-

served. There is no signature of a sign change in ρ−(ω) within ω ≤ ∆ which

is a clear indication for the ∆+− scenario and rules out the sign-preserving order

parameter within our modeling.

Importantly, the g(~r, ω) and ρ−(ω) at the impurity studied in a second sample

with a physically different tip, agrees remarkably well with the first, isolated

impurity. From that we conclude that the result supporting sign-changing su-

perconducting order is both very robust and intrinsic to the material studied.

We conclude this section with a look at the average tunneling spectrum in a ∼

6.5x6.5 nm2 field of view around the three impurities shown in Fig. 6.9. The

two major differences are that the maximum gap coherence peak shifts slightly

between the three impurities, and that the impurity close to the twin boundary

(IMP-3) exhibits a prominent peak around ∼ ±1.5 meV compared to the other

two. The latter observation could be related to the proximity to the twin bound-

ary [63].

Comparing the shift of the maximum gap coherence peak and ρ−(ω) for the three

impurities it seems to be true that a shift to a bigger (smaller) gap shifts the

entry point from normal state scattering to superconducting state scattering to

bigger (smaller) energies which intuitively seems reasonable. On the theoret-

ical side the general robustness of the phase sensitive BQPI scattering scheme

was recently investigated for more realistic models, and found to be generally
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Figure 6.9: Tunneling conductance in vicinity of three different impurities.
Average conductance in a ∼ 6.5x6.5 nm2 field of view around the three impurities
shown in Fig. 6.8. The dashed lines serve as a guide to the eye, and identify the
position of the maximum gap coherence peak.

robust [122].
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CHAPTER 7

ORBITAL SELECTIVE COOPER PAIRING IN FESE

The authors of Ref. [69] concluded that the highly anisotropic, C2-symmetric gap

detected for the α-pocket in Fe(Se, S) cannot be explained within the framework

of standard spin-fluctuation pairing models. We find an even more compli-

cated situation in our BQPI studies of FeSe with a second highly anisotropic, C2-

symmetric gap on the ε-pocket. Calculations that use standard spin-fluctuation

pairing model approaches indeed fail to reproduce such an exotic gap struc-

ture [27,102]. This prompts the question if there is a missing ingredient, and we

argue in the following that the answer is yes, and that the ingredient is orbital

selectivity.

7.1 Gap magnitude and orbital content of the Fermi surface

First we remind the reader that orbital selective superconductivity predicts

anisotropic gaps with gaps being large for parts of the Fermi surface where a

specific orbital content dominates [60, 61]. Therefore, we compare in Fig. 7.1

the experimentally determined Fermi surface and gap structure magnitude and

the kz = 0 Fermi surface of our band structure and the contributions of the dxz,

dyz, and dxy orbitals on the Fermi surface. Greater line thickness corresponds

to larger orbital contribution throughout. The correspondence between gap

anisotropy and dyz-orbital content is evident, and thus we postulate that Cooper

pairing in FeSe is orbital selective with predominant pairing due to the electrons

of the dyz-orbitals.
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Figure 7.1: Comparison of gap anisotropy and orbital content of the individ-
ual Fermi surface pockets. A, Energy-gap magnitude for the α-band measured
using BQPI. B, Energy-gap magnitude for the ε-band measured using BQPI. C-
F, Upper left panel shows the Fermi surface at kz = 0 for our band structure
model (color code for orbital content as before). In the remaining three panels,
the individual contributions of the main 3d-orbitals are shown explicitly on the
Fermi surface (greater line thickness corresponding to bigger contribution).
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7.2 Calculating the gap-symmetry function with and without

orbital selectivity

Within a theoretical model for quasiparticles in a correlated material, one can

parameterize the full Greens function using a quasiparticle weight Zk and a

modified dispersion Ẽk as G(k, ω) = Zk/(ω + i0+ − Ẽk). Considering our ap-

proach to determine the quasiparticle energies by a fit to experimental results

from ARPES, QO and SI-STM data for the present material, the corrections to

Ẽk are already taken into account by the shifts and additional terms as outlined

in chapter 3.

A calculation of the gap structure within a model that only takes into account

the modified quasiparticle energies fails: From standard spin-fluctuation the-

ory one obtains a rather small gap on the α-pocket (even slightly smaller than

in earlier 3D calculations [102]) with limited anisotropy and a large gap on the

ε-pocket, but with opposite anisotropy as shown in Fig. 7.2A. Furthermore,

the spin-fluctuation spectrum is dominated by (π, π) fluctuations rather than

(π, 0) fluctuations as observed in INS experiments [33, 123]. Neither imposing

strong (π, 0) fluctuations ’by hand’, nor using the slightly modified band struc-

ture of Ref. [102], which actually accounts well for the measured neutron mea-

surements, resolves the discrepancy. We therefore turn to our postulate that the

missing ingredient is strong orbital selectivity in the quasiparticle weights.

From many-body methods [108, 125] and recent experiments [40], it is known

that the dxy orbital is strongly renormalized, i.e. the quasiparticle weight Zk is

suppressed. In the nematic state one additionally expects that the quasipar-

ticle weight of the dxz orbital is different from that of the dyz orbital. Using

this information, one can dress the Greens function as derived from our tight-
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Figure 7.2: Results from calculations of the gap-symmetry function [104, 124].
A, Traditional spin-fluctuation theory of the present model, yielding a very
small gap on the α-pocket and a large anisotropic gap on the ε-band (and δ-
pocket not shown). Comparison to the experimental result in panel D shows
a strong qualitative and quantitative discrepancy. B, Spin-fluctuation pairing
using a susceptbility calculated with modified quasiparticle weights Zα, eq. 7.1,
yields a gap function that has some similarities to the measured order param-
eter from BQPI, whereas a nodal feature on the ε-band together with the sign
change disagrees with experimental findings. C, Additionally imposing orbital
selectivity in the pairing itself, e.g. suppressing pairing in the dxy channel and
in the dxz channel according to their respective decoherence as described by the
Z-factors when projecting the pairing interaction to momentum space, yields
almost perfect agreement due to the dominant dyz pairing. D, Superconduct-
ing gap deduced experimentally from BQPI. The gap symmetry functions in all
models (A-C) were scaled to have the same maximum gap value that would
agree with the main coherence peak observed in dI/dV spectra.

binding model with a simple multiplication of an orbital-dependent quasiparti-

cle weight:

Gab(k, ω) = ZabG0
ab(k, ω) (7.1)

where Zab =
√

Za
√

Zb is given by the geometric mean of the quasiparticle weights

of the connected orbitals in the spirit of renormalizing the electron operators

ca →
√

Zaca.

This approach modifies the pairing interaction in orbital space and thus also in-
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fluences the superconducting gap found when solving the linearized gap equa-

tion [104,124] or the Bogoliubov de Gennes equation self-consistently [119,120].

In a simple picture, it suppresses pair scattering from and to dxy orbitals and dxz

orbitals, as they are less coherent. Within this approach, the resulting gap gets

much more anisotropic because the only left over orbital channel (with signifi-

cant orbital contribution close to the Fermi level) is dyz.

To illustrate the drastic changes upon orbital selectivity, we strongly suppress

the weight of the dxy orbital and moderately suppress the dxz orbital to calcu-

late the spin susceptibility using eq. 7.1 instead of the bare Green function

G0
ab(k, ω). Calculating the pairing interaction and solving the linearized gap

equation [104, 124] we obtain a gap function as shown in Fig. 7.2B. Obviously,

the trends in the anisotropy and the relative magnitudes of the gaps are dras-

tically changed. At the same time, the susceptibility becomes more (π, 0) dom-

inated, consistent with Refs. [33, 123]. Finally, we note that the electronic states

themselves may show properties of decoherence according to the quasiparticle

weights in band space.

To demonstrate the implementation of this effect, we perform a pairing calcu-

lation where additionally pairing in the dxy (dxz) states is relatively suppressed

according to the decoherence of these states described by the Z-factors. In this

calculation, the decoherence enters via the susceptibility and as additional pref-

actors through the matrix elements when projecting the pairing interaction from

orbital to band space, such that an almost perfect agreement between theoretical

result and experiment is obtained, see Figs. 7.2C, D.
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7.3 Summary of results

In summary: by introducing Bogoliubov quasiparticle interference (BQPI)

imaging to FeSe studies, we measure the coherent Fermi surface geometries

and superconducting energy gaps ∆α(~k) and ∆ε(~k) for its α-band and ε-band

(chapter 5). We show directly that both gaps are exceptionally anisotropic yet

nodeless [64–68], are aligned along orthogonal axes, and are of opposite sign

(chapter 6). This complex configuration of energy gaps, which was unforeseen

by theoretical studies of FeSe, reveals a unique new form of superconductivity

based on orbital selective Cooper pairing of electrons predominantly from the

dyz orbitals of Fe atoms.

Figures 7.3A, B visualize the key results of our study: the measured values of

∆α(~k) , ∆ε(~k) are both extremely anisotropic but nodeless, each having C2- sym-

metry with deep minima that are aligned along orthogonal crystal axes. Re-

calling that our x-axis is defined to always be the orthorhombic aFe-axis, these

results are found equally true in both nematic domains. Not only is such a

gap structure unanticipated, it is actually highly divergent from standard spin-

fluctuation pairing theory [27] which yield a weak almost isotropic gap on the

α-band and a strong gap on the ε-band but with the opposite anisotropy.

Remarkably, however, orbital selective pairing concentrated in the dyz channel

can provide an explanation for the observed ∆α(~k) and ∆ε(~k). Figure 7.3B shows

our measured angular dependence of ∆α(~k) about Γ = (0, 0) and the equiva-

lent for ∆ε(~k) about X = (π/aFe, 0). For a dyz orbital selective pairing interaction

peaked at wavevector ~q = (π/aFe, 0), the predicted angular dependence of ∆α(~k)

and ∆ε(~k) is shown in Fig. 7.3C. The detailed quantitative agreement between

the structure of measured ∆α(~k), ∆ε(~k) in panel B and the predictions for ∆α(~k),
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∆ε(~k) in panel C, denotes the existence of orbital selective Cooper pairing in

FeSe.

Figure 7.3: Orbital selective Cooper pairing in FeSe. A, Measured ~k-space
structure of anisotropic energy gaps of FeSe. The red and blue colors indicate
the different signs of the two gap functions. Neither band nor gap were de-
tected for the δ-pocket by SI-STM. B, Measured angular dependence of FeSe
superconducting energy-gaps ∆α(~k) about Γ = (0, 0) and the equivalent for ∆ε(~k)
about X = (π/aFe, 0). C, Predicted angular dependence of ∆α(~k) and ∆ε(~k) for
an interband pairing interaction that is peaked at ~q = (π/aFe, 0) and for which
pairing occurs predominantly for electrons with dyz orbital character. The cor-
respondence with B is persuasive. The dashed grey curves show the dyz orbital
character of states at the α-band and ε-band Fermi surfaces.
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Such orbital selective Cooper pairing may arise from differences in correlation-

strength for electrons with different orbital character. For example, correla-

tions sufficient to generate incoherence for states with predominantly dxy orbital

character [40, 41] would suppress their pairing completely within an itinerant

picture. Moreover, superconducting FeSe must exhibit distinct quasiparticle

weights at the Fermi surface for states with dxz and dyz orbital character, due

to the nematic state [11, 12].

Obviously such a model could provide a rationale for why the δ-band, predom-

inantly associated with the dxy orbital, has weak visibility by ARPES [40, 41]

and BQPI, and could also account similarly for a low energy spin-susceptibility

that is dominant at ~q = (π/aFe, 0) consistent with INS data [123]. By project-

ing this form of orbital selective pairing interaction onto the Fermi surfaces of

FeSe, the gap functions can be predicted by solving the linearized gap equa-

tion (Ref. [27]). The resulting predicted ∆α(~k) and ∆ε(~k) (solid curves Fig. 7.3C)

are quantitatively consistent with the extremely anisotropic structure and sign

reversal of the measured gap functions (Figs. 7.3A, B). Moreover, as the mag-

nitudes of ∆α(~k) and ∆ε(~k) (solid curves Figs. 7.3B, C) track the strength of dyz

orbital character on both bands (dashed curves Fig. 7.3C; Refs. [27, 54, 102]), the

effects of orbital selectivity on the pairing are directly discernible.
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CHAPTER 8

OUTLOOK

Discovery of orbital selective superconductivity in the multi-orbital, chalco-

genide superconductor FeSe both opens the way for general studies of orbital

selective interactions and ordering, and also emphasizes the role of strong corre-

lations in iron-based high temperature superconductivity. This is an intriguing

result, since it potentially paves the way to unify the copper- and iron-based

superconductors [37].

L. de’ Medici and coworkers argue that selective Mott physics is the key to un-

derstanding iron-based superconductors, and that the electronic states derived

from the individual 3d orbitals can be viewed as separate doped Mott insula-

tor states. They speculate that a phase diagram based on the average 3d orbital

doping could bring together copper- and iron-based superconductivity under a

unified framework [37].

If the scenario above was true the main question for future experiments in pnic-

tides and chalcogenides would then be if additional cases of orbital selective

Mottness and orbital selective superconductivity can be found. In the follow-

ing, I will focus on possible STM experiments, and refer the interested reader to

the literature for other experimental techniques [37, 39–41].

For the decision which materials should be primarily targeted, calculations by

Z. P. Yin et al. [23] could provide guidance which materials should be priori-

tized in the search for orbital selective physics. FeTe is predicted to be the most

strongly correlated chalcogenide [23], and thus seems to be a logical choice.

However, the existence of the bi-collinear AFM order at low temperatures, see

for example [49], could complicate its study, and as it is not superconducting,

studies would need to concentrate on the normal state properties.
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On the pnictide side, strong correlations are predicted to occur both in LiFeAs

and NaFeAs [23]. Since in LiFeAs neither a nematic nor a magnetically ordered

phase coexist with the superconductivity, LiFeAs could provide the possibility

to study orbital selective correlations in a metal without the complications of

coexisting ordered electronic phases. NaFeAs on the other hand is both nematic

and antiferromagnetically ordered. Finally, the 122 family of iron-based super-

conductors has the advantage that it is both readily hole and electron doped as

discussed by de’ Medici et al. [37].

In order to identify further orbital selective superconductors one needs to search

for anisotropic gap structures, and obtain orbitally resolved band structures for

the model calculations. As it turns out two possible candidates for orbital selec-

tive superconductivity besides bulk FeSe might already exist based on available

data: The above mentioned LiFeAs and monolayer FeSe. In spirit of the theory

presented in chapter 7, orbital selective pairing was applied to the FeSe mono-

layer and LiFeAs system, and successfully reduces discrepancies between ex-

perimentally observed anisotropic gap structures and standard spin-fluctuation

pairing models [126].

Beyond FeSe and LiFeAs, BQPI imaging experiments have the potential to

play an important role in the search and exploration of new materials with

anisotropic gap structures due to their unrivaled precision [80–82]. In this con-

text it is also of interest to apply the introduced phase sensitive BQPI scattering

technique to other iron-based superconductors, as the (non-)existence of sign

changes in the gap structure is important to distinguish possible pairing sce-

narios [13]. Chalcogenide superconductors where the Fermi surface misses the

hole pockets are prime candidates, and the scientific question would be if there

is a sign change between the electron pockets at the X- and Y-point [122].

103



In the normal state electronic structure, quasiparticle interference imaging could

be used to detect orbital selective Mottness. The large modification of quasipar-

ticle weights Z implies that quasiparticle scattering in the normal state should

be strongly affected: QPI should be strongest for the parts of the band structure

comprised of coherent electrons which in the specific case of FeSe would be pre-

dominantly the dyz-electrons. In this context, it is an important open question

if the effects of orbital selective Mottness on QPI can be distinguished or sep-

arated from the effects of antiferromagnetic order in materials as for example

NaFeAs [127].

On the theory side, the weakness of the current orbital selective pairing calcu-

lation lies in its phenomenological nature which is based on fitting the quasi-

particle weights, instead of calculating them from microscopic models. Normal

state QPI experiments are therefore an important independent test of the pro-

posed quasiparticle weights Z from orbital selective pairing calculations. The

ideal case would be if the quasiparticle weights Z could be directly determined

from QPI [128] or ARPES [129] experiments.

Therefore, it is important to explore if the quasiparticle weights Z deduced from

fits to experiments can be calculated from microscopic models. This should be

accompanied by efforts to explain the orbital selective nature of pairing within

microscopic models. In this light, the recent proposal for the mechanism of ne-

matic superconductivity in FeSe by She et al. holds great promise [57].

Finally, it should be explored if orbital selective physics is important in strongly

correlated materials beyond the iron-based superconductors. Materials that

contain transition metals with not completely filled electronic configurations

for d orbitals are of primary interest, and so far the ruthenates are proving to be

very promising candidates based on existing studies [58, 130].
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In conclusion, the interplay and interaction of multiple orbitals has the potential

to produce extremely rich physics in strongly correlated materials [58] which

in turn creates opportunities to discover novel and diverse phenomena in the

future: A future that ultimately could hold the key to the mystery of unconven-

tional copper- and iron-based superconductivity [37].
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