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ABSTRACT 

Microfiltration (MF) is a membrane separation process but its main limitation is 

membrane fouling. In case of apple cider MF, suspended solids (plant cell wall materials, 

proteins, and polyphenols) are the main contributors to fouling.  In this study, the effect of 

turbidity, an indicator suspended solids quantity, and the membrane pore size on the flux in MF 

of apple cider was investigated.  Raw apple cider experiments ran in a pilot-plant scale MF unit 

equipped with ceramic membranes of 1.4μm, 0.8μm, and 0.45μm pore sizes, varying turbidity 

levels, at 6C, 5m/s crossflow velocity and 159 kPa transmembrane pressure.  The permeate flux 

measured MF efficiency; physical-chemical properties of the cider and microfiltered juice 

evaluated product quality.  Significant changes in pH, Brix and viscosity were observed only for 

cider microfiltered with 0.45μm. At high turbidity, the 1.4μm and 0.8μm membranes resulted in 

similar permeate final flux (65L/m2h), relative flux decline of 72%; while 0.45μm had the lowest 

final flux (37L/m2h), relative flux decline of 55%.  At low turbidity, 1.4μm, 0.8μm, and 0.45μm 

resulted in comparable final fluxes (49, 52, 53L/m2h, respectively) and relative flux decline of 

61%, 64%, 55%, respectively.  The smallest pore size resulted in the highest rejection of 

particles and lowest flux, but the lowest flux decline; while the largest pore size had a higher 

flux, but more pronounced flux decay. This suggests that the fouling layer differs at different 

pore sizes.  Thus, membrane pore size and pre-filtration are critical for MF efficiency and can 

optimize this process for commercial applications. 

 
KEYWORDS: Microfiltration; apple cider; apple juice; membrane fouling; turbidity 
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INTRODUCTION 
 

Currently, New York State juice HACCP regulations require raw apple cider to be 

pasteurized with a 5-log reduction of relevant pathogens to ensure food safety.  In apple cider, 

the pathogens of concern are E. coli O157:H7 and the parasite Cryptosporidium parvum (US 

FDA/CFSAN, 2004).  Although pasteurization is the most common method to ensure juice 

safety, some effects of thermal treatment, including the degradation of flavor, color, and 

nutritional components, affect consumer acceptability (Choi and Nielsen, 2005).  Ultraviolet 

(UV) treatment is an alternative method for pasteurization in NY State.  However, the 

effectiveness of this light-based treatment is limited by the turbidity of the juice / cider, due to 

light scattering and microbial shading effects.  To increase the effectiveness of UV, membrane 

microfiltration (MF) can be used prior to the UV treatment to remove suspended particles. 

Additionally, MF will also reduce the microbial load of the cider and eliminate some of the UV 

resistant spoilage microorganisms.  

MF is a membrane separation process able to remove particles from a fluid feed by using 

membranes with a nominal pore size in the range 0.05 to 2.0 μm.  Current uses for MF include 

concentration of whey proteins, improvement in milk quality by removing microorganisms from 

raw milk, and clarification of vegetable and fruit juices, or of beverages such as beer and wine. 

Due to its energy efficiency and gentle processing on nutrition, MF has increasing applications 

for fruit juices in general and apple juice and cider in particular (Girard  and Fukumoto 2000).  

Typically, the size of microorganisms in apple juice / cider range from 0.2 to 6 μm, while soluble 

solids, such as sugars, proteins and enzymes, are in the range of 0.005 to 0.1 μm (Girard and 

Fukumoto, 2010).  Therefore, microorganisms (both vegetative cells and spores) from apple 

cider, along with some apple cider solids, are unable to pass through a MF membrane, while the 
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filtered juice (permeate) will retain most of its original solids, and thus, the flavor and nutritional 

value.  Performing MF at low temperatures (cold MF) offers the opportunity to completely avoid 

the heating of juice and thus prevent any degradation of nutrients or flavor compounds due to 

heat.   

As seen in previous studies, the main limitation of MF is membrane fouling, which 

results from adsorption and deposition of juice components, such as plant cell wall materials, 

proteins, and polyphenols, on the membrane surface and clogging of the membrane pores.  

Fouling can significantly reduce permeate flux with time, affecting processing efficiency. 

Among other factors, the turbidity of apple cider, which is an indicator of the concentration of 

suspended solids in apple cider, may relate to the propensity of the cider or juice to foul the 

membrane.  To explain further, the suspended particles in the apple cider can adsorb onto or 

block the membrane pores, leading to a significant decrease of permeate flux during MF 

(Padilla-Zakour and McLellan, 1993). 

Theoretically, the smaller the membrane pore sizes, the lower the permeate flux and the 

clearer the filtered apple juice.  As observed by Mondor and others (1999) in the ultrafiltration of 

apple juice, the steady-state flux of different membrane pore sizes was governed by the fouling 

layer at the membrane surface, rather than the solution rejection ability of the membrane itself.  

The authors used mathematical models to describe flux dynamics, and defined a model 

parameter, A¸ as a measure of rates of flux decline with respect to the volume concentration 

factor.  Thus, a small A value would signify a small flux decline (Mondor and others, 1999).  In 

their experiments, Mondor and others determined that A increased with decreasing membrane 

pore size, meaning that membranes with smaller pore sizes showed a poor performance.  Yet, 

preliminary experiments performed in our group showed that different membrane pore sizes 
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produced filtered juice with similar clarity.  This suggests that different pore sizes of the MF 

membranes may lead to different membrane fouling mechanisms, but this hypothesis needs to be 

further explored. 

In this study, the effect of turbidity on the permeate flux in apple cider MF was 

investigated in a pilot-scale cold cross-flow MF process. Additionally, the effect of membrane 

pore size on flux was investigated, since the membrane pore size relative to the size of suspended 

solids is also believed to play a role in formation of the fouling layer. 

 

OBJECTIVE OF THIS WORK 
 

The main objective of this thesis was to better understand the effect of turbidity and 

membrane pore size on the filterability of apple cider and chemical composition of the filtered 

juice.  Data obtained in this work can lead to a better understanding of the mechanisms of fouling 

in the microfiltration of apple cider, as well as practical solutions to mitigate this problem.   

 
 
MATERIALS AND METHODS 
 
Materials 

Cold, raw apple cider from Cornell Orchards (Ithaca, NY) and cold, raw apple cider from 

Red Jacket (Geneva, NY) were used in this work. The cider batches were stored at 4°C for a 

maximum of two weeks before use.   

 
Microfiltration experiments 
 

The pilot-scale experimental MF unit consisted of a 50 gallon feed tank connected to a 

variable-speed centrifugal pump, a tubular heat exchanger and a tubular ceramic membrane of 

Tami design (GEA Filtration, WI) placed inside a stainless steel housing (Figure 1).  
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A data acquisition port was used for collecting of the temperature and pressure data. The 

permeate flux data was obtained gravimetrically using an electronic scale that was also 

connected to the data acquisition system. 

The MF permeate flux (J) was calculated using the formula: 

         (2) 

 

where: J: permeate flux (L/m2h); M: amount of permeate (L) collected in the time interval 

t (hours); A: surface area of the membrane (m2); : density of the permeate at the filtration 

temperature (kg/m3). 

To evaluate the rate of flux decay during MF processing, a relative flux decline was 

calculated by dividing the value of the permeate flux at the end of the MF experiment by the 

initial flux.  The value of the relative flux decline relates to fouling, since lower values will 

indicate a more pronounced fouling of the membrane. This parameter allows direct comparisons 

among MF experiments that have different permeate flux values. The flux decline was calculated 

according to the following formula: 

               (3) 

  

where: J: permeate flux at the end of the MF experiment (after 1 hour) (L/m2h); Jo: initial 

flux (L/m2h). 

Chemical cleaning of the membrane  

After each MF experiment, a chemical cleaning cycle was carried out. The cleaning 

procedure consisted of a rinse with RO water for 10 min, followed by alkaline cleaning with 

Ultrasil-25 at a concentration of 20 g/L at 80°C for 30 minutes, a second RO water rinse for 10 
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minutes or until neutrality, acid cleaning with 5 mL/L HNO3 at 50°C for 20 minutes, and a third 

RO water rinse for 10 minutes or until neutrality.  The effectiveness of cleaning and change in 

the membrane performance with time were monitored by determining the water flux of the 

membrane. 

MF of apple ciders with different turbidity  

The turbidity of the apple cider was monitored before and after the MF process using a 

2020wi turbidimeter (LaMotte Company, USA) in Formazin Nephelometric Units (FNU).  MF 

experiments were performed on apple ciders with turbidity ranging from low to high turbidity, 

600 to 800 FNU. Two MF experiments were performed in the low and high turbidity range, 

respectively.  Due to the natural variability occurring in raw apple cider, apple cider was pre-

filtered to reach the low turbidity range.  To reach the desired turbidity range, raw Cornell 

University apple cider was blended in a 95:5 ratio with the more turbid raw Red Jacket apple 

cider when needed.   

Chemical and Physical Analysis 

pH, Brix, viscosity and particle size were measured for raw apple cider and the MF 

filtered juice.  pH was measured at 20°C using a Fisher Scientific accumet Excel XL20 pH 

meter, (Fisher Scientific, Pittsburgh, PA).  Brix was measured with a MISCO® digital probe 

refractometer (MISCO® Products Division, Cleveland, OH). Viscosity was measured at 6°C 

using a Brookfield DV-II+ Pro viscometer.   

Particle size was measured by dynamic light scattering using a 90Plus particle analyzer 

(Brookhaven Instruments Corporation). Samples from each run were stored frozen and then were 

thawed and analyzed within three days of the experiment. Data collection and analysis was 

performed using the BIC software (Brookhaven Instruments Corp., Holtsville, NY), which 
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converted the experimental data into size distributions. Two replicate measurements were 

performed for each experimental condition. Each measurement consisted of 7 subsequent 

individual runs of 30 s duration. For each measurement, the relative particle size distribution, the 

intensity weighted effective diameter (     ) and the polydispersity index (p) were determined. 

 

RESULTS AND DISCUSSION 
 
Effect of MF on the physical-chemical characteristics of the apple cider  

The pH, Brix, and viscosity of the apple juice before and after microfiltration, are shown 

in Table 1.  The most striking difference between the feed and the MF juice is the much lower 

turbidity of the of MF product. This is due to the retention of suspended particles from cider as a 

result of MF. Thus, the MF process will yield a clarified juice. Significant changes in pH, Brix 

and viscosity were observed only for the apple cider microfiltered with the smallest pore size 

membrane, 0.45 μm.     

Table 1. Average pH, °Brix, turbidity and viscosity before and after MF 

MF conditions 
Property 

High Turbidity Cider  Low Turbidity Cider 

0.45 µm  0.80 µm  1.4 µm  0.45 µm  0.8 µm  1.4 µm 

pH                   

 Before MF (Feed)  3.37  3.49  3.61  3.37  3.64  3.70 

After MF (Permeate)  3.49  3.47  3.67  3.57  3.63  3.71 

Brix                   

 Before MF (Feed)  12.50  12.75  12.63  12.63  13.00  12.88 

 After MF (Permeate)  12.75  12.88  12.88  13.00  13.38  13.25 

Turbidity (FNU)                   

Before MF (Feed)  791.00  804.25  780.75  682.75  750.00  705.50 

After MF (Permeate)  1.57  36.93  39.63  2.40  80.10  44.05 

Viscosity                   

Before MF (Feed)  2.94  2.87  2.61  2.34  2.69  2.54 

After MF (Permeate)  2.38  2.70  2.62  2.25  2.69  2.50 

 



10 
 

This could be due to size exclusion of the proteins, polyphenols or polysaccharides in the 

apple cider as a result of microfiltration. This resulted in a significant increase in the pH and 

decrease in the Brix and viscosity for both the high and low turbidity ciders. 

For the other two membranes, the changes in pH, Brix and viscosity after MF were just 

minor. This suggests that the MF in these cases did not retain a significant amount of the soluble 

components from apple cider, which means that the nutritional and probably sensory 

characteristics of the final product will not be significantly altered. 

The retention of suspended particles from apple cider by the membranes with different 

pore sizes was evaluated by conducting particle size analyses on the microfiltered product 

(permeate). Figure 2 shows an example of particle size distribution (PSD) data.  

The results of PSD measurements can be displayed either as a multimodal size 

distribution (Figure 2a) or as a lognormal distribution (Figure 2b). The multimodal size 

distribution offers information regarding the presence of groups of particles or molecules of 

different sizes, but the accuracy of such representations depends greatly on the algorithms used 

by the specific software (Beliciu and Moraru, 2009). The lognormal distribution offers a 

Figure 2. Graphical representation of particle size distribution in apple cider  

a) Multimodal particle size distribution b) Log normal particle size distribution 
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in permeates with the largest particles (diameter of 679.30nm), while the permeate from the 

0.45μm membrane resulted in the smallest diameter, at both high and low turbidity (average 

particle diameter of 289.1 and 265nm, respectively).  This apparently anomalous result could be 

due to different fouling mechanisms that occur in case of the low and high turbidity apple ciders, 

processed using the different membrane pore size membranes.  In case of low turbidity apple 

ciders processed with 0.8μm pore size membranes, particles suspended in the cider may be larger 

than the size of the pores, allowing for complete retention of these particles, without significant 

fouling of the membrane.  Meanwhile, it is possible that when processing low turbidity ciders 

with the 1.4μm membrane some of the submicrometric particles from the cider adsorbed onto the 

internal surface of the membrane pores, thus reducing the effective pore size and allowing only 

smaller particles to flow through.  These results are consistent with the data shown in Table 1, 

and indicate that the membrane with a pore size of 0.45μm results in the highest reduction of 

apple cider particles. 

 

Effect of the turbidity of the apple cider on the MF flux  

The change in permeate flux with time during microfiltration of apple ciders of different 

turbidity is shown in Figures 4 and 5. Figure 4 is a compilation of the permeate flux data from 

high turbidity runs at 0.45, 0.8 and 1.4 μm, while Figure 5 depicts the permeate flux data from 

low turbidity runs at the aforementioned membrane pore sizes.   

The steep decline of flux in the first moments of MF is indication of membrane fouling, 

which is caused by the accumulation of cider components on the membrane surface and possibly 

internal fouling of the pores.  According to Beveridge and Wrolstad (2009) protein, polyphenols, 

pectin, cellulose and hemicelluloses are the components that contribute to the haze in apple cider 
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will need to be performed in the future. It is clear however that the fluxes obtained when 

microfiltering ciders with low turbidity were higher than for those with high turbidity, 

microfiltered under the same conditions. An explanation is that at low turbidity, the fouling layer 

may not have been packed as tightly as in the high turbidity, so the shear caused by the high 

velocity of the feed could have disrupted it, reopening up the pores and allowing the larger 

particles to pass through.   

 

CONCLUSIONS 

The composition of apples is subject to variability due to season and environmental 

factors.  This, in turn, introduces variability in the composition and turbidity of apple cider and 

consequently in the outcome of the microfiltration process.  The results of this work indicate that 

turbidity has an effect on the permeate flux, although more data is necessary to build a clear 

relationship between turbidity and flux in MF of apple cider. By understanding how turbidity 

relative to membrane pore size affects the permeate flux in MF, it will be possible to select the 

appropriate membrane pore size in order to maximize the flux permeate and thus increase 

processing yield.   

 

SUGGESTIONS FOR FUTURE WORK 

Although this study revealed some interesting trends, more data is needed in order to 

further develop and solidify the relationship between membrane pore sizes, turbidity, and 

fouling.  Additional runs need to be performed to complete triplets for each membrane pore size.  

An extended turbidity range would also provide more insight on how more or less apple cider 

solids affect the permeate flux.  Work is currently being done on this ongoing project.   
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