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Uruguay is the top rice exporter in Latin America, and among the top eight high-quality 

rice exporters in the world. As Uruguayan farmers are reaching the yield potential of 

current varieties, new varieties with higher yield potential and milling quality must be 

developed. With the recent developments in genomics, rapid gains can be achieved 

through the integration of conventional breeding methods with genomic selection (GS). 

However, the best strategy for the efficient implementation of these techniques in 

specific breeding programs must be carefully analyzed. This work addresses some 

aspects of the implementation of GS in the Uruguayan breeding program and provides a 

model for other breeding programs of similar size and complexity. First, the impact on 

prediction accuracies of modeling genotype by environment interactions (G×E) was 

tested, and we found that modeling covariance structures that accommodate correlations 

between environments was beneficial for predicting yield and milling quality in both 

indica and tropical japonica rice. Different approaches for including weather 

information to assist genomic predictions were compared, and the impact of certain 

weather components on yield and milling quality were assessed. Modeling 

environmental effects by using weather variables provided an advantage in terms of 

prediction accuracy when predicting untested environments. Results from both genomic 

prediction and QTL×E analyses provided clues about the main weather variables 

affecting milling yield in rice grown in subtropical regions. We also tested the use of 



genomic prediction for selection of parents in a tropical japonica rice breeding 

program. Starting from a population of 19 families, we evaluated several strategies for 

parental selection based on cross and progeny simulations to improve grain yield and 

milling quality traits. We also performed a field evaluation of the progeny from some of 

these crosses to compare genomic predictions to empirical data. Finally, a genome-wide 

association study was performed in order to find genomic regions associated with anther 

culture response in tropical japonica germplasm. The analysis identified 21 significant 

regions of the rice genome involved in callus induction and plant regeneration. Some of 

the same regions were reported in previous studies for anther culture response in rice. 

Future validations of the strategies outlined in this research will provide the foundation 

for future decision-making about the role that GS may play in the Uruguayan rice 

breeding program. 
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CHAPTER 1:  

INTRODUCTION 

 

 

1.1 The importance of rice and its genetic diversity 

Rice (Oryza sativa L.) is the primary source of nourishment for more than 1.6 

billion people in the world. It is the staple food for most of Asia and many parts of 

Africa, providing between 20%-80% of dietary calories (Dawe et al., 2011), and is 

becoming increasingly important in Latin America. During the last half of the 20th 

century, applications of green revolution technology, along with the introduction of 

hybrid rice, rapidly improved rice productivity. However, over the last 50 years, rice 

yields have remained relatively constant while the demand for rice has increased, 

mostly in Asia and Africa, where consumers are also demanding higher quality grain 

(Zader et al., 2011; Yu et al., 2013).  

Rice was domesticated independently in Asia and Africa, giving rise to O. sativa 

and O. glaberrima, respectively. Within O. sativa, two genetically distinct groups, 

Indica and Japonica, have been recognized since ancient times (Oka, 1988). Evidence 

suggests that these two varietal groups were domesticated from an ancestral species, 

Oryza rufipogon, a semi-perennial aquatic species of wild rice (Sun et al., 2002; Kovach 

and McCouch, 2008). During the domestication process, gene flow occurred between 

these domesticated populations despite geographic and biological barriers, with 

phenotypic consequences for both groups (Kovach et al. 2007; McCouch et al. 2012).  

In addition to the Indica and Japonica varietal groups, five major sub-populations can 

be distinguished (aus and indica within the Indica group; tropical japonica and 

temperate japonica within the Japonica group; and aromatic, an admixed 
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subpopulation that falls between Indica and Japonica) (Garris et al., 2005; Huang et al., 

2012; Civan et al. 2015). O. glaberrima was domesticated from O. barthii in West 

Africa and forms an independent gene pool that does not cross readily with O. sativa. 

Together, these two species form the basis of modern breeding efforts in Asia, Africa 

and the Americas.   

 

 

1.2 Rice production in Uruguay 

 Uruguay is located in South America (34.5° S, 56° W) and grows about 180,000 

ha of irrigated long-grain rice in rotation with soybean and grazing pastures, which are 

mainly for beef cattle. Rice is grown mainly in the north, northeast, and eastern part of 

the country, with most of the production concentrated in the eastern region (Figure 1.1). 

Production requires high investments in a variety of inputs, including certified seed, 

labor, machinery, and infrastructure such as irrigation systems, silos, storage rooms, and 

roads. 

    

 
 Figure 1.1: Rice harvested area distribution in Uruguay. 

Source: MGAP, Census 2011.  
(Taken from: www.yieldgap.org/uruguay). 
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The climate in Uruguay is subtropical, humid, and without large fluctuations in 

temperature and rainfall during the year. The maximum temperatures vary from 28 °C 

to 33 °C and the minimum temperatures from 2 °C to 9°C, which constrains the 

production of rice to one cycle per year. In the Eastern region, the growing season is 

short, running from October to April, with maximum temperatures of 13.9 and 26.2° C, 

respectively.  

Rice is a major crop in Uruguay, and the adoption of optimized agronomic 

practices and production technologies over the last 40 years has fueled sustained 

increases in planted area, production and yield. Today, rice yields in Uruguay are 

among the highest in the world, consistently reaching 12000 tons/ha of top quality 

grain, and the country exports more than any other country in Latin America and is 

among the top eight rice exporters in the world (Battello, 2009). 

The rice production system is based on a short and highly interactive value 

chain. Farmers are linked directly with the rice millers, who act as exporters. The two 

groups also share close connections with Uruguay’s National Agricultural Research 

Institute (INIA). Furthermore, the rules regarding quality standards for rice are well-

defined. Agronomists associated with the rice millers and representatives from INIA 

visit farmers’ fields frequently. They share advice and the latest advances, but also 

gather information from farmers regarding research needs or inputs. The Rice Growers 

Association (ACA) and Rice Millers Association (GMA) negotiate rice prices each year 

under a frame agreement based on export prices, without government intervention. This 

means that the competitiveness of the rice sector relies on technology adoption, high 

grain yield and quality, and variety identity for all exported rice (Blanco et al., 2010). 
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1.3 Rice breeding program 

 Most of the rice research in Uruguay is conducted by the rice breeding program 

at INIA, which does studies on breeding, weeds, pest and disease management, 

irrigation, physiology, nutrition, soil management, and sustainability of rice cropping 

systems.  Public rice breeding started in Uruguay in 1971. Early work in rice breeding 

started with tropical japonica varieties that were introduced from the Southern United 

States. Indica varieties were later introduced from the International Rice Research 

Institute (IRRI) and the International Center for Tropical Agriculture (CIAT), but since 

1997 the Latin American Foundation for Irrigated Rice (FLAR) has been the main 

source of indica germplasm (Blanco et al. 2003; Blanco et al. 2010).	 Since the 

beginning of the program, the main breeding objectives have been focused on 

developing long- and medium-grain tropical japonica and indica varieties.  

Subsequently, other breeding objectives were introduced, such as developing 

Clearfield® varieties, short-grained temperate japonica cultivars, aromatic germplasm 

and hybrids. Three varieties released by INIA represent 85% of the total cultivated area 

today:  El Paso 144 (43%, indica variety), INIA Olimar (26%, indica variety) and INIA 

Tacuarí (15%, tropical japonica). INIA licenses varieties to a consortium that represents 

seed production departments of the rice industry (GMA) and farmers (ACA). This 

arrangement ensures ample distribution of high quality seed for available varieties. 

 

1.4 Selection methodology 

 

Crossing: Each year an average of 100 crosses are carried out by the breeding 

program at Paso de la Laguna Experimental Station (UEPL), INIA-Treinta y Tres, 
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Uruguay (33°15ʹS, 54°25ʹW). Rice panicles are manually emasculated and pollinated in 

the lab.  

Simplified individual selection: Crossing is followed by 5-6 cycles (i.e. years) 

of selection whereby lines are planted in 10m rows and undergo a process of visual 

selection. Lines that do not comply with the minimum agronomic and quality 

requirements (i.e. disease resistance, general morphology, grain type, photoperiod, etc.) 

will be discarded. 

Preliminary, intermediate and advanced trials: About 500 F6 lines are 

planted in 6-row plots (3.5m long, spacing: 0.20m) in a randomized complete block 

design with 2-3 replications, and evaluated for yield, milling and cooking quality, and 

stem and sheath diseases. This process takes a year for each trial (3 years total), and 

50% of the lines are discarded every year. Preliminary and intermediate trials are 

carried out in one location (Paso de la Laguna-Treinta y Tres, East), and advanced trials 

are carried out in two locations (Paso Farías-Artigas, North). 

After advanced trials, the most prominent lines (usually ~4-5 per year) will be 

sent to the national network of evaluation of rice cultivars for further evaluation in 

additional locations for two years. The best lines (~1-2) will be sent to the national seed 

institute (INASE) for further evaluation and seed purification and multiplication. After 

this process, the chosen lines will then be released as new varieties.    

 

1.5 Milling quality of Uruguayan rice 

Most of the rice produced in Uruguay (~95%) is exported, with the main 

markets being Brazil, Peru, Iran, and Iraq. Milling quality represents a major breeding 

objective since it dictates the price in the market. The Uruguayan rice sector targets a 

high-value export market. Strict production and milling standards are applied to ensure 
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consistent quality. Breeding efforts to improve milling quality started in the early 1990s 

by introducing premium quality temperate japonica short grain varieties, mainly from 

Japan. These varieties were crossed with local tropical japonica material and new high 

quality and high yielding long and medium grain varieties have been released. 

Rice is usually harvested at moisture contents between 13% to 22%. Harvested 

rice is also called “rough rice”, since the hull is still attached. Rice above 14.4% 

moisture is not safe for long-term storage and must be dried to <14.4%.  In the mill, 

dried rough rice is first cleaned to remove foreign material, and dehulled to produce 

“brown rice.”  Immediately after hulling, brown rice is milled to remove the bran layer 

and the germ by friction and/or abrasive action, which results in “polished” or “white” 

rice.  The resulting white rice represents the “milled rice yield” (MY), and is expressed 

as a percentage of the original dried rough rice mass. White rice is comprised of head 

rice (defined as those kernels retaining three-fourths or more of their original length) 

and broken kernels. After the broken kernels are removed, only “head rice” remains.  

“Head rice yield” (HR) is the mass of head rice expressed as a percentage of the original 

rough rice mass. Broken kernels produced during milling are generally the result of 

immature, chalky, or fissured kernels; all of which are weak and break due to the forces 

applied to kernels when removing the bran. Chalky grains not only increase kernel 

breakage, but also affect consumer acceptance.  

The rules regarding quality standards for rice are well defined. Farmers and 

millers sign a production contract every year, which includes a private agreement on the 

price the farmer will receive per weight of rough rice. Law 321/988 among other 

conditions, establishes the following parameters for penalizations and bonuses for 

milling quality: 

Baseline values for milling quality: 



	 7	

• Milling yield: 70% 

• Head rice: 58% 

• Chalkiness: 6% 

1. For milling yield (%): A bonus (or penalty) of 0.5% over the total price per each 

1% above (or below) the baseline value. 

2. For head rice:  A bonus (or penalty) of 0.5% over the total price per each 1% 

above (or below) the baseline value. 

3. For chalkiness: A penalty of 0.5% over the total price per each 1% above the 

baseline value. 

 

1.6 The evolution of grain yield 

Between 1930 and 1970 grain yields in Uruguay were relatively low and stable 

averaging 3.25 t ha-1. The adoption of improved varieties and agronomic practices 

resulted in a rate of increase of rice yield of 90 kg ha-1 per year between 1970 and 2010 

(Figure 1.2), with a rate of increase of 142 kg ha-1 per year for the 1990-2010 period. 

Today, the average yield is 9000 Kg ha-1. The 36% yield increase between 1970 and 

1990 was driven by the adoption of the variety Bluebelle from the United States, and 

improved agronomic practices. Subsequent replacement of Bluebelle by the high 

yielding Uruguayan cultivars El Paso 144, INIA Tacuarí and INIA Olimar led to a 67% 

yield increase between 1990 and 2010 (Blanco et al., 2010). Further increases in rice 

productivity will be hard to achieve because average yield obtained by farmers is about 

70% of the estimated environmental yield potential (10.9 t/ha) (Pérez de Vida 2010, 

2011). 
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The adoption of improved cultural practices throughout the country has 

narrowed the gap between yield in farmers’ fields, and achievable yield potential. The 

percentage of farmers with yields higher than 9 t ha-1 increased from 4% in the 1990s to 

18% in the 2000s (Blanco et al. 2010). This scenario represents a major challenge to 

rice breeders to accelerate cultivar development and further improve yield potential.  

 

1.7 Accelerating genetic gain in the Uruguayan breeding program 

One of the primary objectives of the current study is to evaluate ways to increase 

the rate of genetic gain in the Uruguayan rice breeding program. With only one rice 

cycle per year, the release of a new variety typically takes ~10 years. Considering the 

fundamentals  of selection theory, we consult the formula for genetic gain (ΔG), also 

known as the “breeder’s equation”: 

ΔG = ih2σ p( ) L  

Figure 1.2: Evolution of grain yield in Uruguay from 
1970 to 2010. Taken from Blanco et al., 2010. 
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where i is the selection intensity, h2 is the trait heritability, σp is the square root of the 

phenotypic variance, and L is the length of the breeding cycle or generation interval 

(Ceccarelli, 2015). According to this equation, one of the simplest ways to increase 

genetic gain is to reduce the time of the breeding cycle.  

There are several widely accepted breeding methods to develop new varieties of 

self-pollinated crops: pedigree, bulk, single seed descent (SSD), and doubled haploid 

(DH) (Mackill et al., 1996; Poelhman & Sleper, 1995). The pedigree method has been 

the most popular method used in rice breeding, followed by the bulk breeding method 

(Khush & Virk, 2005; Collard et al., 2013; Collard et al., 2017). The SSD method is 

used to fix lines during early generations, making them homozygous; the method 

generally refers to the repeated use of a single seed per line (i.e. one seed from a single 

plant) from a segregating population to advance the line one generation at a time by 

self-pollination until ‘fixed lines’ are generated (~F6 generation). Typically, plants are 

grown in a greenhouse facility and several generations or cycles are completed each 

year, advancing the material from the F2 to the F6 generation within a shorter time 

period that would be possibly under normal field conditions. For this reason, this 

method has also been referred to as ‘rapid generation advance’ (RGA). The other 

method used to rapidly fix segregating material is the DH method, which requires a 

tissue culture-based stage but can fix lines (i.e. make them genetically homozygous) in a 

single step. Both DH and RGA technologies can, in theory, boost the rate of genetic 

gain by reducing either the interval between generations, or the number of cycles 

needed to obtain fixed genotypes, upon which selection can be imposed.  

Recent advances in genotyping technology have permitted cost-effective scoring 

of genome-wide marker polymorphisms (Davey et al., 2011; He et al., 2014), and offer 

new opportunities for novel breeding technologies that take advantage of detailed 
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genomic information. Among these new technologies, genomic selection (GS) has 

emerged as a promising method for plant breeding (Crossa et al. 2017). GS represents a 

strategy for selecting favorable individuals from a population using dense, genome-wide 

marker coverage to predict genomic estimated breeding values (GEBVs; Meuwissen et 

al., 2001). This method is based on the utilization of a model that has been previously 

“trained” on a subset of the study population (“training population”) using both 

phenotypic and genome-wide genotypic data. The model differentially weights all SNPs 

in the dataset, reflecting the presence of both large and small-effect QTL in the training 

population, and enables calculation of GEBVs for the entire study population using only 

genotypic data. The GEBVs are then used to select the most desirable individuals from 

the study population for advancing in the breeding program. Because GS does not 

require phenotypic data on the study population in order to select candidates, it can 

shorten breeding cycle length and thereby increase gains per unit time (Heffner et al., 

2010). In this study, we aimed to investigate the potential of GS to accelerate the rate of 

genetic gain and augment the success of the Uruguayan rice breeding program. 

 The widespread adoption of improved, high-quality varieties and sound 

agronomic practices have successfully positioned Uruguay among the top, high-quality 

rice exporters in the world. As farmers are beginning to realize the yield potential of 

current varieties, new varieties with higher yield potential and milling quality must be 

developed. Taking advantage of recent developments in genomics and bioinformatics, 

rapid genetic gains can theoretically be achieved via the integration of GS with 

conventional breeding methods, including the use of RGA and DH technologies. 

However, the best strategy for efficiently implementing these approaches in the existing 

Uruguayan breeding program must be carefully analyzed. 
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1.8 Thesis structure 

This thesis deals with some critical aspects of the implementation of genomic 

selection in the Uruguayan breeding program. Chapter 2 evaluates the use of genomic 

selection when accommodating data from multiple environments.  Prediction accuracies 

for yield and milling quality traits when modeling G×E using covariance structures that 

differ in their ability to borrow information among environments are compared, and 

results are discussed in the context of the application of these models in other small 

plant breeding programs. This chapter was published as an original research article in 

Crop Science: Monteverde E, JE Rosas, P Blanco, F Pérez de Vida, V Bonnecarrère, G 

Quero, L Gutiérrez, S McCouch. 2018. Multienvironment models increase prediction 

accuracy of complex traits in advanced breeding lines of rice. Crop Sci 58: 1519-1530. 

Chapter 3 moves further into multi-environment modeling by exploring ways to 

fit weather information into genomic selection models, and to identify which weather 

components most significantly affect yield and milling quality traits in rice grown in 

subtropical environments. This chapter was submitted to G3, and has been accepted 

with minor revisions: Monteverde E, L Gutiérrez, P Blanco, F Pérez de Vida, JE Rosas, 

V Bonnecarrère, G Quero, S McCouch (2019). Integrating molecular markers and 

environmental covariates to interpret genotype by environment interaction in rice (O. 

sativa L.) grown in temperate areas. G3 (accepted pending revision). 

In chapter 4, we evaluate the use of genomic prediction to select parents in a 

tropical japonica breeding program. Starting from a population of 19 F4 families, we 

discuss several strategies for parental selection based on cross and progeny simulations 

to improve grain yield and milling quality traits. We also performed a field evaluation 

of the DH progeny from some of these crosses to compare GS predictions to empirical 
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data from the field. The implications of using DH lines in the Uruguayan breeding 

program are also discussed.  

Given the high variability found for anther culture response in our breeding 

lines, Chapter 5 applies a GWAS analysis to identify QTL associated with the 

variability of anther culture response in the Uruguayan tropical japonica germplasm.   
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CHAPTER 2: 

MULTI-ENVIRONMENT MODELS INCREASE PREDICTION ACCURACY OF 

COMPLEX TRAITS IN ADVANCED BREEDING LINES OF RICE (O. sativa) 

This chapter appeared as a publication in Crop Science:  Monteverde E, JE 
Rosas, P Blanco, F Pérez de Vida, V Bonnecarrère, G Quero, L Gutiérrez, S McCouch. 
2018. Multi-environment models increase prediction accuracy of complex traits in 
advanced breeding lines of rice. Crop Sci 58: 1519-1530.   

My contributions to this paper: I generated all the genotypic data, performed all 
of the analyses, and wrote the paper. 

Contributions by others: The two breeding populations were originally 
developed in Uruguay under the direction of L. Gutiérrez and V. Bonnecarrère for a 
GWAS project on grain traits as reported in Quero et al. (2018). The phenotypic data 
was generated by P. Blanco and F. Pérez de Vida.  

   
 

2.1 ABSTRACT 

Genotype by environment interaction (G×E) is the differential response of genotypes in 

different environments and represents a major challenge for breeders. Genotype-by-

year-interaction (G×Y) is a relevant component of G×E and accounting for it is an 

important strategy for identifying lines with stable and superior performance across 

years.  In this study, we compared the prediction accuracy of modeling G×Y using 

covariance structures that differ in their ability to accommodate correlation among 

environments. We present the use of these approaches in two different rice (Oryza 

sativa L.) breeding populations (indica and tropical japonica), for predicting grain yield 

(GY), plant height (PH) and three milling quality traits: milling yield (MY), percent 

head rice (PHR), and grain chalkiness (GC), under different cross-validation scenarios. 

We also compared model performance in the context of global predictions (i.e. 

predictions across years). Most of the benefits of multienvironment models come from 

modeling genetic correlations between environments when predicting performance of 

lines that have been tested in some environments but not others (CV2). For predicting 
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the performance of newly developed lines (CV1) modeling between environment 

correlations has no effect compared to considering environments independently. 

Response to selection of multienvironment models when modeling covariance 

structures that accommodate covariances between environments was always beneficial 

when predicting the performance of lines across years. Also, we show that for some 

traits high prediction accuracies can be obtained in untested years, which is important 

for resource allocation in small breeding programs. 

 

2.2 INTRODUCTION 

Improving selection efficiency and rate of genetic gain in plant breeding is essential to 

meet the growing global demand for food, feed, fiber and fuel. Rice is a staple food that 

supplies essential calories for approximately a quarter of the world’s population. In 

some of the major rice-consuming countries there has been a shift from quantity to 

quality in terms of consumer demand for rice (Yu et al., 2013; Hsiaoping, 2005; Zader, 

2011). Thus, grain quality must be a major breeding objective not only for high quality 

rice exporting countries, but also for most major rice-consuming countries. An increase 

in rice production has to be concomitant with an increase in grain quality.  

Common to many traits of interest to breeders, yield and grain quality traits are 

controlled by many genes. The most promising way to improve yield and quality traits 

is through the application of new genomic tools and statistical approaches such as 

Genomic Selection (GS) (Meuwissen et al., 2001) that is designed to enhance the rate of 

genetic gain for complex traits (Heffner et al., 2009; Jannink et al., 2010). Initially, GS 

methods were focused on single-trait, single-environment analyses, but one major 

challenge for breeders is the differential response of genotypes in different 

environments, known as genotype by environment interaction (G×E). G×E can affect 
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trait heritability and line ranking over environments, frequently affecting decision-

making. For this reason, GS approaches capable of modeling G×E have increasingly 

gained popularity.  

Several models accounting for G×E have been proposed to characterize the mean 

response of genotypes across environments, with the objective of developing locally 

adapted genotypes. Regression analysis (Yates and Cochran, 1938; Finlay and 

Wilkinson, 1963) measures the relative genotypic performance and stability across 

multiple locations. Multiplicative models combine univariate and multivariate 

approaches for reducing the dimensions of data and facilitating interpretation and 

selection decisions (Gauch, 1988; Smith et al., 2005). The most commonly used 

multiplicative model is the additive main effect and multiplicative interaction model 

(AMMI; Gauch, 1992) that combines ANOVA for estimating genotype and 

environment main effects and singular value decomposition (SVD) to partition the G×E 

component. The use of mixed model approaches was later introduced to improve 

flexibility and to allow different correlation structures among environments (Piepho, 

1998; Piepho and Möring, 2005; Burgueño et al., 2008; Burgueño et al, 2012). 

Modeling covariance matrices to account for G×E allows borrowing information among 

correlated environments. Curnow (1998) showed that using correlated information 

about treatment effects was beneficial for selecting the best treatment effects. Atlin 

(2000) took up this idea to study the response to selection in a subdivided target region. 

Piepho and Möring (2005) applied this approach on a BLUP framework and showed 

that when there are different target regions in a breeding program, models that fit a 

genetic correlation across sub-regions showed better performance than only using data 

from the particular target region or using a global average value for genotypic 

performance. 
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Mixed models that allow the incorporation of a genetic covariance matrix calculated 

either from pedigree or molecular marker data, rather than assuming independence 

among genotypes, also improve the estimation of genetic effects (VanRaden, 2008). 

The advantage of using genetic covariance matrices in G×E mixed models is that the 

model relates genotypes across locations even if lines are not present in all locations. 

Burgueño et al. (2012) were the first to combine genetic and environmental covariance 

matrices using different covariance structures to model the environmental component. 

They showed that modeling both genetic and environmental covariances improved 

predictions in the target environment for genotypes that have already been evaluated in 

correlated environments.  

If we consider G×E in the context of genotype-by-year interactions (G×Y), identifying 

lines with stable and superior performance across years is an important challenge for 

breeders. In this context, breeders are not only interested in predicting performance in 

future seasons (local predictions), pointing to the importance of repeatable G×Y 

interactions, but also in predicting rankings across years, taking G×Y as part of the 

noise (global predictions). The ability of models to predict G×Y in this context is 

crucial for crop improvement in current and future climate change scenarios. This is 

likely to be especially beneficial for rice breeding programs that are focused on high 

yield and quality, given that both components are highly affected by environmental 

conditions (Cameron and Wang, 2005; Chen et al., 2012; Lyman et al. 2013).  

The objective of our study was to compare the effect on prediction accuracy of different 

types of prediction models for G×Y interaction. The models compared in this study 

differ in whether they allow borrowing of information across years or not, for both local 

and global prediction scenarios. We also compared the effect of using two different 

kernel regression approaches to construct the genetic covariance matrix: a linear kernel 



	 20	

(GBLUP) which assumes that allelic effects are additive, and a non-linear Reproducing 

Kernel Hilbert Spaces (RKHS) approach, which takes into account non-additive as well 

as additive effects between genes. We present the use of these approaches in two 

different rice-breeding populations (indica and tropical japonica), which have been 

evaluated for five different traits across three years in a single location.   

 

 

2.3 MATERIALS AND METHODS 

2.3.1 Phenotypic data 

Experimental design 

The data used in this study belongs to the National Institute of Agricultural 

Research (INIA-Uruguay) and consists of three years of phenotypic data from field 

trials (2010, 2011, 2012) collected from 309 tropical japonica and 327 indica elite rice 

lines in one location, Paso de la Laguna Experimental Station (UEPL), Treinta y Tres, 

Uruguay (33°15ʹS, 54°25ʹW). These two breeding populations were originally 

developed for a GWAS project for grain me traits, and results from that study have been 

reported by Quero et al. (2018). 

Each year, the tropical japonica and indica populations were planted 

independently in replicated trials in six-row plots using an augmented randomized 

complete block design with two or three replications, and included two Uruguayan 

cultivars as checks for each population (El Paso 144 and INIA Olimar for the indica 

dataset, and EEA-404 and INIA Tacuari for the tropical japonica dataset, 

http://www.inase.org.uy/Sitio/RegistroNacionalCultivares/Default.aspx). Trials were 

conducted under irrigated conditions using appropriate pest and weed control. 

The agronomic traits analyzed each year were grain yield (GY of paddy rice in 
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kilograms per hectare) and plant height (PH measured in cm from the soil surface to the 

tip of the flag leaf). The grain quality traits measured were yield after milling (MY 

measured in grams, as the weight of grain recovered after milling divided by the weight 

of rough rice before milling, using a 100g sample of rough rice), percentage of head rice 

recovery (PHR measured in grams, as the weight of whole milled kernels, divided by 

the weight of rough rice, using a 100g sample of rough rice), and the percentage of 

grain chalkiness (GC measured as % of chalky kernels in a subsample of 50 g of total 

milled rice, where the area of chalk -core, white back or white belly- was larger than 

half the kernel area based on visual inspection) (Supplemental Table S1). The grain 

quality traits were measured as described in Quero et al. (2018) and in Siebenmorgen et 

al. (2012). 

 Genotype data for both datasets were obtained using genotyping-by-sequencing 

(GBS). SNP calling was performed using the TASSEL 3.0 GBS pipeline (Bradbury et 

al. 2017), and SNPs were aligned to the Nipponbare reference genome MSU version 7.0 

using Bowtie 2 (Langmead and Salzberg, 2012). Imputation of missing data was 

performed with the FILLIN algorithm implemented in TASSEL 5.0 (Swarts et al. 2008) 

for both datasets separately. The GBS datasets were filtered to retain markers with 

<50% missing data after imputation, and a minor allele frequency MAF< 0.05, as 

reported by Quero et al. (2018). The final indica dataset contained 92,430 markers and 

the tropical japonica dataset had 44,598 markers. The final datasets was transformed to 

numeric coding (-1, 0, 1 for class I homozygotes, heterozygotes, and class II 

homozygotes respectively) to facilitate statistical analysis. 

 

2.3.2 Statistical models 



	 22	

The Best Linear Unbiased Estimators (BLUEs) were calculated on a per line 

basis for each year/trait separately. The model used to calculate BLUEs for each year is: 

yijkl = µ + bi + gj + rk (i) + cl (i) +εijkl  

where yijkl is the trait score, µ is the overall mean, bi  is the random block effect 

with bi ~ N 0,σ b
2( )  , gj is the genotypic effect, rk (i)  and cl (i)  are the random row and 

column effects nested within blocks with rk (i) ~ N 0,σ r
2( )  and cl (i) = N 0,σ c

2( ) , andεijkl

are the model residuals with εijkl ~ N(0,σε
2 )  where σε

2  is the error variance. 

Broad–sense heritability for each environment was calculated on a per line basis 

as H 2 =σ g
2 / σ g

2 +
σ e
2

r
⎛

⎝
⎜

⎞

⎠
⎟ , where σ g

2  is the variance among rice lines, and r  is the 

number of replicates. 

 

Prediction models 

The general model for the G×E interaction is given by the following equation 

that fits the data for n  lines i =1,…,n( )  in m  environments j =1,…,m( )  in the 

following way: 

y = µ +u+ε  

where y = y1 ',…, y j ',…, ym '( ) '  is the vector of the response variable of the BLUE 

values for the jth environment; µ = 1n1 'µ1,…,1nj 'µ j,…,1nm 'µm( ) ' , where µ  represents 

the vector of intercepts for each environment and 1nj is a vector of ones of order nj ; 

u = u1 ',…,u j ',…,um '( ) '  is the random vector of genetic values with u j ~ N 0,Σ( ) , where 

Σ  is a genotypic covariance matrix between environments; and ε = ε1,…,ε j,…,εm( ) ' is 

the vector of random residuals with ε ~ N 0,R⊗ In( ) . In this study, R  takes a diagonal 
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form, where each environment has its own residual variance. In  is an identity matrix of 

order n , and⊗  is the Kronecker product.  

This general mixed model can be used to predict genotypes that have not been 

evaluated in either a particular environment or in any environment, via the Σ  

covariance matrix, that allows borrowing information from evaluated lines and/or 

environments. In this study, we discuss two different models for the structure of Σ  

(diagonal and unstructured) and their implications for predicting genotype performance 

under different scenarios. 

 

Models for Σ  

The genetic covariance matrix Σ  can be decomposed into a genomic related 

matrix K and an environment related matrix UE . When the number of individuals is the 

same in each environment nj = nj ' = n( )  , as is the case of this study, Σ =UE ⊗K  , 

where ⊗  is the Kronecker product.  

There are several structures for modeling matrix UE  in mixed models (Burgueño 

et al. 2012; Malosetti, et al. 2016). In this study, we will use two contrasting structures 

for the UE  matrix that differ as to whether the information between environments can 

be borrowed or not. The diagonal (UDIAG) structure fits a separate variance component 

per environment assuming no genetic correlations between environments. The diagonal 

values of the diagonal matrix are thus variance components for each environment, with 

off-diagonal elements equal to zero.  

The most general way to model covariances between environments is the 

unstructured m×m  covariance matrix (UUN):  
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UUN =

σ u1
2 ! σ u1um

! " !
σ umu1

! σ um
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 where the jth diagonal element of the variance-covariance matrix is the additive 

genetic variance σ um
2  within the jth environment, and the off-diagonal element σ ujuj '

  is 

the genetic covariance between environments j and j’.  

 

Genomic kernels 

The matrix K is a genetic relationship matrix that can be derived either from 

pedigree information or from molecular marker data. In this study, we compared the 

effect of two different kernels K  on genotype predictions. Model (1) uses the linear 

kernel, also known as GBLUP where K =G = (XX '/ p) , where X represents the matrix 

of p  centered and standardized molecular markers in the jth environment. 

Model (2) uses the Gaussian Kernel (GK) as covariance structure. The GK used 

in this work was K xi, xi '( ) = exp −hdii '
2( )where dii '

2 is the Euclidean distance between 

individuals i  and ʹi  based on molecular markers, and h  is the bandwidth parameter that 

controls the rate of decay of the values of K . Following Crossa et al. (2010), we 

consider h = 2 / dm
2 , where dm

2 is the sample median dii '
2 .  

 

Model implementation 

All the models tested in this work were fitted using R (R Core Team, 2016). The 

ME models were fitted using the Multi Trait Model (MTM) software developed by de 

los Campos and Grüneberg (2016) that also uses a Bayesian approach and assumes that 

K  is the same in all environments. This package assumes that the prior distribution for 
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u  is multivariate normal with mean zero and a variance-covariance matrix UE ⊗K , 

that is, p(u |UE,K) = N(u | 0,UE ⊗ K) . The intercepts µ j  are assigned a flat prior, and 

the prior distribution for UE  is an inverse Wishart p(UE | S0,df0 ) =W
−1(S0,df0 ) , where 

the parameters are a scale matrix S0  equal to an identity matrix of order m (number of 

environments), and degrees of freedom df0 =m . The error variances for each 

environment σε j

2( ) are the diagonal elements of R  and are assigned a scaled inverse χ 2

distribution with degrees of freedom and scaled factor equal to 1. 

The MTM package uses Markov chain Monte Carlo (MCMC) and the Gibbs 

sampler to fit the models. In this work we used 55,000 iterations with a burn-in of 5,000 

and a thinning of 5 for the Gibbs sampler. For the ME models, the posterior variance-

covariance matrices between environments were also calculated for each model using 

the full datasets.  

 

Assessing prediction accuracy 

Prediction accuracies for each trait for both the UDIAG and UUN models were 

assessed using 50 training-validation (TRN-VAL) random partitions. We used two 

different cross-validation (CV) designs (Burgueño et al., 2012). The CV1 mimics the 

situation when newly developed genotypes have not been tested in any environments; in 

this scenario, 30% of the lines were missing in all the three environments and were 

treated as unknown. In this case, predictions for the missing lines are based in the 

phenotypic records of the other lines that were tested. The CV2 design mimics the 

situation where some lines were evaluated in some environments, but are missing in 

others. For the two CV scenarios we assigned individuals to the TRN and VAL sets by 

using the same procedure as Lopez-Cruz et al. (2015).  
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In each random partition, the Pearson’s correlations (r) between the predicted 

and the observed values were computed. As in Malosetti et al. 2016, and to comply with 

the normality assumption, the Fisher’s z  transformation was used, where  

z = 1
2
ln 1+ r
1− r
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ . Mean prediction accuracies were presented using the original scale 

after back transformation r =
exp 2z( )−1
exp(2z)+1

.  

Another prediction problem studied here was that of predicting future seasons 

and was denoted as the “leave-one-year-out”. This prediction was performed by using 

two years in the training population to predict a third year where no phenotypic data 

was collected.  

 

Response to selection under global prediction scenario 

When dealing with G×Y, it is interesting to explore the line performance across 

years (global prediction). For the global prediction scenario we consider the response to 

selection as a way of comparing the predictive ability of the two covariance matrices 

(UDIAG and UUN) and the two genetic kernels (GBLUP and GK), as reported by Piepho 

and Möring (2005). 

In the global scenario, the genotypic value of the ith genotype accounting for all 

the evaluated years is: 

gi = v1gi1 + v2gi2 +…+ vmgim = v'g i  

where vr r =1,!,m( ) , with v = v1,v2,…,vm( )ʹ  is some environment weighting 

parameter such as the relative growing areas in the m subregions as discussed in Piepho 

and Möring (2005), or the inverse of the heritability, as evaluated in the present study. 
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As in Piepho and Möhring (2005), we regard the estimator !Li = ʹw (yi -µ )  to be 

an indirect trait, in the special case that ʹw = v'W , where Li = v'gi and assuming !gi is the 

BLUP of genetic effects with !gi = W y -µ( )  andW =UE (UE +Σe )
−1 . We formulate the 

selection response as a correlated response to selection as: 

R = iρgh var Li  

where ρg is the genetic correlation between Li and !Li and can be calculated as: 

ρg =
v 'UEw

v'UEv( ) w'UEw( )
, 

i  is the selection intensity and h is the square-root of the heritability (Falconer and 

Mackay, 2001), that can be calculated as: 

h = w'UEw
w'(UE + Σe )w

 (Piepho and Möring, 2005). 

 To evaluate different methods we consider the ratio of R values, since both the 

selection intensity i  and the var(Li )  terms cancel out. By this way, the ratio 

RUN/RDIAG is calculated as: 

RUN / RDIAG =
ρUNhUN
ρDIAGhDIAG

 

 where ρUN and ρDIAG , and hUN and hDIAG , are theρg  and h values calculated by 

substituting UE with UUN and UDIAG, respectively. 

  



	 28	

 

2.4 RESULTS 

2.4.1 Descriptive statistics 

Box-plots of the five traits (GY, MY, PHR, GC and PH) in each of the years 

(2010-2012) for the indica and the tropical japonica datasets are shown in Figure 1. For 

the indica dataset, the trait distributions for each year are similar, though we see a slight 

increase for GY and decrease for PH in 2012 (Figure 2.1A). For the tropical japonica 

dataset, 2011 was a bad year for GY, showing the lowest value for this trait. On the 

other hand, 2012 was the worst year in terms of grain quality and PH, showing the 

lowest values for MY, PHR and PH, and the highest for GC (Figure 2.1B). ANOVA 

analyses performed on each trait and each population on both datasets confirmed 

significant G×Y interaction (Supplementary Tables 2.2 and 2.3). 

 

 

 

 

 



	 29	

 

●

●
●

●

●
●

●

●

●

●8000

10000

12000

14000

2010 2011 2012

G
Y

A

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●
●

●

●●●

●

65.0

67.5

70.0

72.5

2010 2011 2012

M
Y

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

50

60

2010 2011 2012

PH
R

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

2010 2011 2012

G
C

●●
●
●

●

●

●

●

●

●

60

70

80

2010 2011 2012

PH

●

●

●

●

●

●
●

●

●5000

7500

10000

12500

2010 2011 2012

G
Y

B

●

●

●
●

●

●

●

●

●●● ●

●

●

●●●
●●●

●

●●
●

●
60

65

70

2010 2011 2012

M
Y

●●●

●

●

●
●

●

●
●

●

●

●

●

●
●

50

55

60

65

70

2010 2011 2012

PH
R

●

●●

●

●

●
●

●

●

●

●

●

●●●
●●

●

●
●
●

●

●

●

●

●●

●

●

●●
●

●

0

10

20

30

40

50

2010 2011 2012

G
C

●

●

●

●

●

●
●
●

●

●

●

●
●●●

●

60

80

100

120

2010 2011 2012

PH

Figure 2.1: Box-plot of Grain Yield (GY) (Kg ha-1), Milling yield (MY), Head Rice 
Percentage (PHR), Grain Chalkiness percentage (GC) and Plant Height (PH) (cm) for 
A) indica and B) tropical japonica rice (Oryza sativa L.) breeding populations, 
measured in three different environments: years 2010, 2011, 2012. 
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 Trait heritabilities by year were intermediate to high for both datasets. For the 

indica dataset the lowest values were MY in 2012 (0.42) and GY in 2010 (0.46), while 

for tropical japonica the lowest values were GY in 2010 (0.43) and GC in 2011 (0.41) 

(Table 2.1).  

 

Table 2.1: Trait heritabilities by year for Grain Yield (GY), Milling Yield (MY), Head 
Rice Percentage (PHR), Grain Chalkiness (GC), and Plant Height (PH), for indica and 
tropical japonica Uruguayan breeding populations. 
 
indica       
 Year GY MY PHR GC PH 
 2010 0.46 0.78 0.86 0.73 0.49 
 2011 0.60 0.69 0.78 0.59 0.66 
 2012 0.68 0.42 0.71 0.69 0.58 
tropical japonica       
 Year GY MY PHR GC PH 
 2010 0.43 0.69 0.71 0.59 0.62 
 2011 0.57 0.77 0.85 0.41 0.62 
 2012 0.70 0.71 0.79 0.75 0.79 
 

 

 

2.4.2 Prediction accuracies for UDIAG and UUN models under different CV 

scenarios 

 For the indica dataset, among all the prediction models tested with the CV1 and 

CV2 methods, the relative advantage of using the UUN covariance matrix over the UDIAG 

was evident for most traits only when the CV2 method was used, though GY was an 

exception (Figure 2.2). There were no significant differences between CV1 and CV2 

cross-validations when the UDIAG was used. As expected, mean prediction accuracies for 

CV1 were lower compared to those obtained with CV2 for UUN, since this scenario 

benefits from borrowing information across environments  (Figure 2.2).  
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Figure 2.2: Mean prediction accuracies (50 Training-Validation populations) for 
Grain Yield (GY), Milling Yield (MY), Head Rice Percentage (PHR), Grain 
Chalkiness percentage (GC) and Plant Height (PH) for Multienvironment models 
using GBLUP and GK kernels under cross-validation CV1 and CV2 with diagonal 
covariance matrices (DIAG) (CV1-GBLUP_DIAG, CV1-GK_DIAG, CV2-
GBLUP_DIAG, CV2-GBLUP_DIAG) and unstructured covariance matrices (UN) 
(CV1-GBLUP_UN, CV1-GK_UN, CV2-GBLUP_UN, CV2-GK_UN) for the indica 
rice breeding population.  
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Regarding the two different kernel methods, there were no big differences 

between the GBLUP and GK kernels in general. 

 Phenotypic correlations among environments for both datasets were all moderate 

to high and positive (Supplementary Table 2.4). In general, PH showed the highest 

correlation for both indica and tropical japonica, while GY for indica showed the 

lowest correlations. Estimated genetic variance within environments (diagonal) and 

covariances and correlations between environments (off diagonals) were higher for GK 

than for GBLUP for all traits, except GC (Supplementary Table 2.5). 

 Among all traits, GY showed the lowest gains from modeling the UUN 

covariance structure under CV2, compared to UDIAG (Figure 2.2). GY also showed 

generally low variance-covariance values and correlations when compared to other 

traits (Supplemental Tables 2.4 and 2.5). On the other hand, PH was the trait that 

showed the highest gain from UUN vs. UDIAG for CV2 (Figure 2.2) and the highest 

genetic variance-covariance values and correlations among all traits (Supplemental 

Tables 2.4 and 2.5). 

 For the tropical japonica dataset, CV2-GK method when using UUN matrix was 

either better or not different than the other methods (Figure 2.3). For this dataset, PH 

was again the trait that showed the highest gains from prediction when modeling 

covariance between environments under CV2.  
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Figure 2.3: Mean prediction accuracies (50 Training-Validation populations) for 
Grain Yield (GY), Milling Yield (MY), Head Rice Percentage (PHR), Grain 
Chalkiness percentage (GC) and Plant Height (PH) for Multienvironment models 
using GBLUP and GK kernels under cross-validation CV1 and CV2 with diagonal 
covariance matrices (DIAG) (CV1-GBLUP_DIAG, CV1-GK_DIAG, CV2-
GBLUP_DIAG, CV2-GBLUP_DIAG) and unstructured covariance matrices (UN) 
(CV1-GBLUP_UN, CV1-GK_UN, CV2-GBLUP_UN, CV2-GK_UN) for the 
tropical japonica rice breeding population.  
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There were no big differences when predicting with the GBLUP vs. the GK 

kernel (Figure 2.3).  Supplementary Table 2.6 shows that the elements of UE for the GK 

are larger than those for the GBLUP method, and the opposite occurred with the 

diagonal elements of the R matrices. The results of the performance of the models in 

untested environments (leave-one-year-out) are shown in Table 1.2. The advantage of 

modeling UUN over UDIAG is more evident for those traits that show a higher correlation 

between environments, such as MY, PHR and PH in indica, and PHR and PH in 

tropical japonica. In all cases prediction accuracies for UUN were either equal or higher 

than those obtained with UDIAG. 
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Table 2.2: Correlation between the observed and predicted values of the leave-one-year-
out prediction problem, for Grain Yield (GY), Milling Yield (MY), Head Rice 
Percentage (PHR), Grain Chalkiness (GC), and Plant Height (PH), for indica and 
tropical japonica Uruguayan breeding populations. 
 
 
 

UDIAG             
indica  GBLUP     GK      
 Predicted 

year 
GY MY PHR GC PH Predicted 

year 
GY MY PHR GC PH 

 2010 0.41 0.50 0.43 0.30 0.79 2010 0.34 0.49 0.42 0.28 0.79 
 2011 0.52 0.60 0.46 0.38 0.54  2011 0.40 0.61 0.46 0.45 0.56 
 2012 0.52 0.39 0.50 0.37 0.63 2012 0.35 0.38 0.49 0.50 0.64 
tropical japonica GBLUP     GK      
 Predicted 

year 
GY MY PHR GC PH Predicted 

year 
GY MY PHR GC PH 

 2010 0.52 0.49 0.52 0.44 0.72 2010 0.52 0.47 0.52 0.38 0.71 
 2011 0.40 0.51 0.57 0.60 0.64 2011 0.40 0.48 0.60 0.42 0.64 
 2012 0.47 0.30 0.43 0.40 0.74 2012 0.48 0.31 0.47 0.38 0.73 
UUN             

indica 
 GBLUP     GK      

 Predicted 
year 

GY MY PHR GC PH Predicted 
year 

GY MY PHR GC PH 

 2010 0.43 0.56 0.50 0.33 0.88 2010 0.35 0.58 0.51 0.35 0.91 
 2011 0.55 0.67 0.51 0.40 0.63 2011 0.43 0.67 0.52 0.43 0.64 
 2012 0.57 0.47 0.58 0.40 0.73 2012 0.38 0.47 0.51 0.38 0.74 
tropical japonica GBLUP     GK      
 Predicted 

year 
GY MY PHR GC PH Predicted 

year 
GY MY PHR GC PH 

 2010 0.60 0.54 0.60 0.47 0.79 2010 0.57 0.54 0.59 0.35 0.80 
 2011 0.45 0.55 0.65 0.61 0.73 2011 0.45 0.56 0.66 0.43 0.73 
 2012 0.51 0.34 0.50 0.42 0.83 2012 0.52 0.36 0.53 0.38 0.80 
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2.4.3 Estimation for Global Adaptation in the indica and tropical japonica 

datasets 

To study the gain from borrowing information between environments in the 

global adaptation scenario, we calculated the ratio of the correlated response to selection 

obtained from modeling UUN and UDIAG. We assumed two different weighting 

scenarios: 1- by growing area, with subregions of equal size where v = (v1,v2,v3)  with 

vr =1/ 3 and 2- by using the inverse of the heritability, where v = (v1,v2,v3)  with 

vr =1/Hr
2 . In both cases w = v'W , where W is either UUN or UDIAG and RUN and RDIAG 

are the responses calculated with both matrices respectively. Ratios RUN/RDIAG are 

shown in Table 1.3.  

 

Table 2.3: Response to selection for global adaptation scenario for Grain Yield (GY), 
Milling Yield (MY), Head Rice Percentage (PHR), Grain Chalkiness (GC), and Plant 
Height (PH), for indica and tropical japonica Uruguayan breeding populations. 
Response measured as ratio RUN/RDIAG where RUN is the response to selection when 
information between environments is borrowed (Unstructured matrix) and RDIAG is the 
response to selection when information between environments is not borrowed 
(Diagonal matrix). 
	

indica 
GBLUP     GK     

v GY MY PHR GC PH GY MY PHR GC PH 
Growth 
area 

1.652 1.502 1.114 1.281 1.500 1.202 1.187 1.136 1.060 1.500 

1/H2 1.710 1.594 1.110 1.286 1.510 1.200 1.195 1.130 1.058 1.510 
tropical 
japonica 

GBLUP     GK     

v GY MY PHR GC PH GY MY PHR GC PH 
Growth 
area 

1.485 1.372 1.628 1.255 1.153 1.085 1.080 1.085 1.078 1.078 

1/H2 1.481 1.371 1.609 1.237 1.157 1.080 1.088 1.088 1.082 1.078 
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The results show that for both weighting scenarios modeling a covariance 

structure that allows for borrowing information across environments is always 

beneficial, in both datasets (Table 2.3). The traits that showed highest RUN/RDIAG ratios 

in the indica dataset were GY, MY and PH, with gains above 50%, while in tropical 

japonica the traits with highest RUN/RDIAG ratios were GY, MY and PHR.  

For both datasets the relative gains from borrowing information across years are 

higher for the GBLUP kernel than when the GK kernel is used (Table 2.3). 

 

2.5 DISCUSSION 

 One of the major challenges in plant breeding is the differential response of 

genotypes in different environments, known as G×E interaction. Finding lines with 

predictable G×E across seasons (genotype x year interactions, G×Y) is becoming an 

increasingly pressing issue due to the highly variable and unpredictable weather 

conditions in current and future climate change scenarios. Several approaches for 

modeling G×E have been proposed in the literature (Burgueño et al., 2012; Jarquin et 

al., 2014; Heslot et al. 2014; Lopez-Cruz et al., 2015), and all confirm the relative 

benefits of using multi-environment models in comparison to single-environment 

analyses.  

In this work, we used a multi-environment modeling approach for GS where the 

genetic effects of rice lines were calculated using the Kronecker product of genetic 

variance-covariance matrices between environments (UE) and marker-genomic 

relationship matrices calculated with two different kernel methods, GBLUP and GK. 

We compared the effect of using two different covariance structures for the UE matrix: 

(i) a covariance structure that fits a separate variance component per environment  

and does not allow borrowing information across environments (UDIAG) and (ii) a 
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covariance structure that has a variance component for each environment and a separate 

covariance parameter for each pair of environments (UUN). 

These prediction models were implemented as reported in previous studies 

(Burgueño et al., 2012; Malosetti et al., 2016; Cuevas et al., 2017). Prediction 

accuracies from both multi-environment models were calculated for five traits with 

different genetic architectures and medium to high heritabilities: grain yield, three 

different grain quality traits and plant height, all measured in three different years 

(2010, 2011 and 2012). The two datasets used in this study were an indica and a 

tropical japonica rice breeding population belonging to the Uruguayan National Rice 

Breeding Program. Population structure and GWAS analyses on these same two 

populations and the three grain quality traits analyzed in this study were previously 

reported (Quero et al., 2017). In our dataset, the environments represent three years of 

evaluation (2010, 2011 and 2012), so G×E is considered as G×Y. In this context we 

performed both local predictions, by predicting the traits for each of the tested years, 

and global predictions, by predicting line performance across years, taking G×Y as part 

of the noise. For local prediction we considered three different cross-validation 

scenarios: (i) CV1, where we predicted the performance of untested lines on tested 

environments, (ii) CV2, where we predicted the performance of tested lines in tested 

environments, and (iii) leave-one-year-out, where we predicted tested lines in untested 

environments. For global prediction we compared the correlated response to selection 

calculated from models using both covariance structures (UUN and UDIAG), based on the 

method reported by Piepho and Möring (2005). 

GS models capable of accounting for multi-environment data have been 

demonstrated to increase prediction accuracies relative to single-environment analyses 

(Lopez-Cruz et al., 2015; Malosetti et al. 2016; Lado et al., 2016; Saint Pierre et al., 
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2016; Bandeira e Sousa et al., 2017; Cuevas et al. 2017). In our study, we found that 

multi-environment models that allow borrowing information across environments were 

superior to or not different from those that do not exploit genetic covariance between 

environments. We also found that the gains in prediction accuracy from models that 

exploit the genetic covariance between environments depend on the cross-validation 

method employed. This was expected, as when using phenotypic information from 

tested genotypes in already tested environments (CV2) we are better exploiting the 

correlation between environments. On the other hand, under CV1 the information 

between environments flows in a more indirect fashion through the kinship relatedness 

matrix only. These results were in accordance with previous studies that used similar 

cross-validation designs (Burgueño et al., 2012; Jarquin et al., 2014; Zhang et al., 2014; 

Crossa et al., 2016; Malosetti et al., 2016; Saint Pierre et al., 2016; Bandeira e Sousa et 

al., 2017). For this reason, it is always beneficial to use as much data as possible to train 

our models, and to partition our resources by phenotyping as many different genotypes 

as possible, and spreading them across the tested environments, rather than fully 

phenotyping only a part of the population, as also suggested by Malosetti et al. (2016). 

This could be helpful for resource allocation in a small breeding program like the 

Uruguayan breeding program. 

Previous studies in wheat, maize and rice have demonstrated that ME GS 

models can give improved prediction accuracies by borrowing information across 

highly correlated environments (Crossa et al., 2014; Lado, et al., 2016; Saint Pierre et 

al. 2016; Spindel et al., 2016). For these ME models, the genetic correlations between 

environments depend in part on the off-diagonal values of matrix UUN. When these 

values are close to zero, the UUN matrix tends to UDIAG, producing prediction accuracies 

similar to those obtained by using UDIAG models. When the off-diagonal values of UUN 
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are moderate to high (either positive or negative), the correlations between 

environments will be far from zero, allowing the borrowing of information across 

environments. In this case, the UUN models for those environments will perform better 

than the UDIAG models under CV2.  

In our study, the phenotypic and genotypic correlations between environments 

were all positive, and moderate to high. This led to higher prediction accuracies in all 

environments using the UUN models in comparison to UDIAG models when using cross-

validation method CV2. PH was the trait that showed the highest genetic and 

phenotypic correlations between environments for the two datasets. On the other hand, 

traits with lower genetic covariance between environments (off-diagonal values of UUN) 

showed similar prediction accuracies between UDIAG and UUN models. This was the case 

for GY in indica, where genetic covariances were the lowest, leading to comparable 

prediction accuracies between UDIAG and UUN models. The accurate estimation of the 

genetic covariance structure between correlated environments is critical to increase 

prediction accuracy with ME models. Unstructured covariance matrices have 

 unique parameters, where  is the number of environments. When is 

large, estimation of an unstructured covariance matrix may be unfeasible due to 

convergence problems. Also, the estimation of multiple covariance parameters poses the 

need for sufficiently large datasets to support accurate estimation of the numerous 

parameters involved (Denis et al., 1997; Meyer and Kirkpatrick, 2008; Meyer, 2009; 

Elias et al., 2016). For our two balanced datasets with only 3 environments, fitting an 

unstructured covariance matrix did not pose any convergence issues and worked better 

than a diagonal matrix model. However, as the number of environments increases, 

fitting a more parsimonious covariance structure (such as Factor Analytic) should be 

considered (Piepho, 1998; Smith et al., 2001).  

m(m+1) / 2 m m
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Prediction of untested environments is a highly relevant topic for breeders 

because it allows predicting which lines will be the best performers in future testing. 

Another good reason to use cross validation designs such as leave-one-year-out, is to 

avoid the overlap between training and validating populations. Predicting for already 

tested environments such as in CV1 and CV2 scenarios, assures the overlap between the 

testing and validation populations along the environmental and genotype dimensions. 

This could lead to overfitting, and thus, inflation of the prediction accuracies. Here, we 

evaluated the predictions for different traits in untested years (leave-one-year-out), 

where the training set included the same genotypes as the testing set, but no phenotypic 

information for the year tested, and thus, avoiding the overlap of information along the 

environment dimension. Our analysis revealed that years where no genotypes have been 

evaluated could be predicted with good accuracy (over 40% in most cases) when using 

the UUN matrix. Previous studies have remarked that predicting environments that have 

not yet been tested could be a difficult task, pointing to the need to establish a link 

between the tested and untested environments. A good way to establish this link could 

be using environmental covariates (Malosetti et al, 2016; Saint Pierre et al. 2016), 

however, positive correlation between environments is still an important factor for 

achieving good prediction accuracies in unobserved environments, as shown in this 

study. Jarquin et al. (2016) optimized training sets for genomic prediction of soybean 

accessions using designs similar to our leave-one-site-out with no environmental 

covariates, as in this study, and also showed high prediction accuracy for % protein and 

grain yield. High correlation among sites could be also the result of stable climate 

conditions, which tend to be more common in temperate areas compared to the tropics, 

which experience greater seasonal variation as well as more disruptive weather events 

(typhoons, for example). Spindel & McCouch (2016) stressed the importance of highly 
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correlated phenotypic and environmental data in order to achieve higher prediction 

accuracies and improve breeding outcomes. As long as our environments remain highly 

correlated, with relatively stable weather conditions, and as long as the breeders do not 

introduce any novel genetic diversity into their populations, prediction accuracies will 

remain high, as shown in this study. Another factor that contributed to the prediction 

accuracies observed in this study were the moderate to high heritabilities found for our 

traits across years in both datasets. Good agronomy practices and experimental design 

as long as the irrigated rice paddy system that homogenizes field conditions, improve 

heritability in rice compared to other crops such as wheat or maize, where water 

availability is an important variable affecting trait expression.  

Besides prediction for specific years/environments (local prediction), another 

relevant scenario is to predict genotype rankings across years (global prediction). This is 

particularly relevant given the unpredictable weather patterns related to years. In this 

work we evaluated the response to selection of ME models when information is borrowed 

across environments using the RUN/RDIAG ratio. To calculate the responses we used a 

method previously reported by Piepho and Möring (2005), which involves a weighting 

scheme based on BLUP. Our conceptual framework for this global scenario assumes an 

extensive target region (i.e., the Uruguayan rice breeding program) that is subdivided into 

subregions (years), and the objective is to predict the best performing genotypes across 

years considering G×Y as part of the noise. We concluded that modeling covariance 

structures that accommodate covariances between environments is always beneficial (or at 

least has no penalty) when predicting the performance of lines across years, and for this 

reason it is always useful to consider all data. We acknowledge that our dataset is small, 

as it includes data from one location and only three years of testing, and that this may 

limit the conclusions we can draw. However, the increase in prediction accuracy observed 
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under CV2, and the increased response to selection when using unstructured covariance 

matrices strongly suggests that the addition of more information should improve the 

prediction ability of our UUN models. A more comprehensive analysis with more years of 

testing and the incorporation of environmental covariates is the subject of current 

research.   

Various studies have documented the benefits of using Gaussian kernels in 

genomic prediction in both single- and multi-environment settings in crops such as 

maize, wheat and rice (Gianola et al., 2014; Iwata et al. 2015; Onogi et al. 2015; Pérez-

Elizalde et al., 2015; Spindel et al. 2015; Cuevas et al. 2016; Bandeira e Souza et al., 

2017; Cuevas et al. 2017). However in our study, prediction accuracies obtained with 

the GK kernel were in general not significantly different than those obtained with a 

linear kernel (GBLUP), with a few exceptions detailed in the results section.  

GS can shorten breeding cycle length and increase gains per unit time by 

replacing time-intensive phenotypic evaluation of complex traits with GEBVs. In 

temperate crops, GS can be exploited to accelerate gain from selection through the use 

of off-season nurseries, where phenotyping is difficult and costly. This could be 

beneficial for temperate rice growing countries, like Uruguay, where only one rice cycle 

per year is possible. There are several points where GS could be implemented in a 

standard pedigree selection-based rice breeding program to either avoid a cycle of 

phenotyping or to help to decide which lines should be advanced (or discarded) for the 

next generation. In general, a genomic selection step before conducting multi-

environment trails is suggested, and some studies propose the incorporation of 

phenotypic data from preliminary yield trials into the genomic selection framework 

(Endelman et al., 2014; Michel et al., 2017).  
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Our results show that for the germplasm and environmental conditions used in 

this work, most of the benefits of multienvironment models come from modeling 

genetic correlations between environments under CV2. For predicting the performance 

of newly developed lines (CV1) modeling between environment correlations has no 

effect compared to considering environments independently. However, our study 

showed that for some traits high prediction accuracies can be obtained in untested years, 

which is important for resource allocation in small breeding programs. Additional 

research incorporating the use of environmental covariates to model future seasons, and 

bringing historical data to model climate response patterns, are promising steps to 

improve the prediction accuracies as a part of our effort to accelerate the rate of genetic 

gain for both yield and grain quality in rice breeding programs in temperate areas. 
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2.7 SUPPLEMENTARY DATA 

Supplementary Table 2.1: List of the traits evaluated in GS.  
Trait 
category 

Trait name Acronym TO† 
 

PO‡ 
 

Trait 
description 

Yield 
related 

Yield Y TO:0000396 PO:0009001 Kg of paddy rice 
per hectare 

 Plant Height PH TO:0000207 PO:0025029 Length (in cm) 
from the ground 
to the tip of the 
flag leaf 

Grain 
quality 

Milling 
yield 

MY TO:0000144 PO:0009010 Mass of total 
milled rice as a 
percentage of the 
original dried 
rough rice 

 Head Rice 
Percentage 

PHR TO:0000222 PO:0009010 Mass of head rice 
after removing 
broken kernels as 
a percentage of 
the original dried 
rough rice 

 Grain 
chalkiness 

GC TO:0000266 PO:0009089 Percentage of 
chalky grains in a 
sample of 50g of 
milled rice, 
where the area of 
chalk -core, 
white back or 
white belly- is 
larger than half 
the kernel area 
based on visual 
inspection 

 
† - TO: Trait Ontology 
‡ - Phenotype Ontology  
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Supplementary Table 2.2: Analysis of Variance for Grain Yield (GY), Milling Yield 
(MY), Head Rice Percentage (PHR), Grain Chalkiness (GC), and Plant Height (PH), for 
indica Uruguayan breeding population. 
 
GY      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 361 2748794618 7614390 6.9477 < 2.2e-16 *** 
Year 2 1161627496 580813748 529.958 < 2.2e-16 *** 
Row 35 178988365 5113953 4.6662 < 2.2e-16 *** 
Column 127 502558703 3957155 3.6107 < 2.2e-16 *** 

Block 88 625713798 7110384 6.4878 < 2.2e-16 *** 
Genotype x 
Year 

665 940721210 
 

1414618 1.2908 
 

1.320e-5 ** 
 

Residual 1812 1985882768 1095962   
MY      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 361 1665.8 

4.614 2.4497 < 2.2e-16 *** 
Year 2 106.2 53.102 28.1904 8.788e-13 *** 
Row 35 282.3 8.064 4.2811 2.200e-15 *** 
Column 127 293.9 2.314 1.2285  0.04744 *   
Block 88 

453.3 5.151 2.7345 8.280e-15 *** 
Genotype x 
Year 

665 1631.2 
 2.453 1.302 1.320e-5 ** 

Residual 1810 
3409.5 1.884 

  

PHR      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 361 22023.1 61.01 9.27 < 2.2e-16 *** 
Year 2 1957.6 978.81 148.7149 < 2.2e-16 *** 
Row 35 2397.3 68.5 10.4068 < 2.2e-16 *** 
Column 127 3413.8 26.88 4.084 < 2.2e-16 *** 
Block 88 5994.8 68.12 10.3503 < 2.2e-16 *** 
Genotype x 
Year 

665 
8391 12.62 1.9171 < 2.2e-16 *** 

Residual 1810 11913 6.58   
GC      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 361 11132.3 30.837 5.6711 < 2.2e-16 *** 
Year 2 624.9 312.447 57.4605 < 2.2e-16 *** 
Row 35 1190.2 34.007 6.254 < 2.2e-16 *** 
Column 127 1855.7 14.611 2.6871 < 2.2e-16 *** 
Block 88 4711.1 53.535 9.8454 < 2.2e-16 *** 
Genotype x 
Year 

665 
5769.7 8.676 1.5956  2.393e-14 *** 

Residual 1811 9847.5 5.438   
PH      
Source Df Sum of Sq Mean Sq F value Pr>F 
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Genotype 361 90045 249.4 1.5692 7.631e-09 *** 
Year 2 45342 22671 1809.3 < 2.2e-16 *** 
Row 35 5716 163.3 1.0274 0.425092 
Column 127 10464 82.39 6.57 < 2.2e-16 *** 
Block 88 14552 165.3 13.19 < 2.2e-16 *** 
Genotype x 
Year 

665 
59392 89.31 7.12 < 2.2e-16 *** 

Residual 1812 22699 12.53   
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Supplementary Table 2.3: Analysis of Variance for Grain Yield (GY), Milling Yield 
(MY), Head Rice Percentage (PHR), Grain Chalkiness (GC), and Plant Height (PH), for 
tropical japonica Uruguayan breeding population. 
 
GY      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 312 1169419410 3748139 4.5461  < 2.2e-16 *** 
Year 2 2805319316 1402659658 1701.292 < 2.2e-16 *** 
Row 47 369490731 7861505 9.5353  < 2.2e-16 *** 
Column 

63 210624556 3343247 4.055 < 2.2e-16 *** 
Block 44 788727622 17925628 21.7421  < 2.2e-16 *** 
Genotype x 
Year 621 705496683 1136066 1.3779  9.454e-07 *** 
Residual 1346 1109733005 824467   
MY      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 312 62725 201 61.232 < 2.2e-16 *** 
Year 2 30129 15064.3 4588.206 < 2.2e-16 *** 
Row 47 29401 653.4 198.996 < 2.2e-16 *** 
Column 63 66331 1442 439.19 < 2.2e-16 *** 
Block 46 2228 35.4 10.771 < 2.2e-16 *** 
Genotype x 
Year 621 24931 40.1 12.228 < 2.2e-16 *** 
Residual 1340 4400 3.3   
PHR      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 312 68078 218.2 35.1727 < 2.2e-16 *** 
Year 2 33615 16807.3 2709.2547 < 2.2e-16 *** 
Row 45 31230 694 111.8682 < 2.2e-16 *** 
Column 63 73293 1593.3 256.8372 < 2.2e-16 *** 
Block 46 2904 46.1 7.4316 < 2.2e-16 *** 
Genotype x 
Year 621 28946 46.6 7.5135 < 2.2e-16 *** 
Residual 1337 8294 6.2   
GC      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 312 264852 849 39.4618 < 2.2e-16 *** 
Year 2 119129 59564 2768.954 < 2.2e-16 *** 
Row 45 106585 2369 110.1059 < 2.2e-16 *** 
Column 63 12833 204 9.4693 < 2.2e-16 *** 
Block 46 106585 2369 110.1059 < 2.2e-16 *** 
Genotype x 
Year 621 114081 184 8.5398 < 2.2e-16 *** 
Residual 1337 28890 22   
PH      
Source Df Sum of Sq Mean Sq F value Pr>F 
Genotype 312 67143 215.2 12.8427 < 2.2e-16 *** 
Year 2 44612 22306.1 1331.1843 < 2.2e-16 *** 



	 57	

Row 45 8361 181.8 10.8477 < 2.2e-16 *** 
Column 63 9350 148.4 8.8568 < 2.2e-16 *** 
Block 46 9407 209 12.475 < 2.2e-16 *** 
Genotype x 
Year 621 27553 44.4 2.6478 < 2.2e-16 *** 
Residual      
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  
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Supplementary Table 2.4: Phenotypic correlations (off-diagonals) for Grain Yield (GY), 
Milling Yield (MY), Head Rice Percentage (PHR), Grain Chalkiness (GC), and Plant 
Height (PH), for indica (upper diagonal) and tropical japonica (lower diagonal) 
Uruguayan breeding populations. 
GY     MY     
 indica      indica   
 Year 2010 2011 2012  Year 2010 2011 2012 
tropical 
japonica 

2010 - 0.23 0.26 tropical 
japonica 

2010 - 0.57 0.37 

2011 
0.36 - 0.50 

2011 
0.54 - 0.41 

2012 
0.45 0.38 - 

2012 
0.32 0.47 - 

PHR     GC     
 indica      indica   
 Year 2010 2011 2012  Year 2010 2011 2012 
tropical 
japonica 

2010 - 0.39 0.47 tropical 
japonica 

2010 - 0.40 0.49 

2011 
0.58 - 0.48 

2011 
0.49 - 0.50 

2012 
0.42 0.52 - 

2012 
0.39 0.47 - 

PH          
 indica         
 Year 2010 2011 2012      
tropical 
japonica 

2010 - 0.79 0.91      

2011 
0.66 - 0.46      

2012 
0.78 0.71 -      
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Supplementary Table 2.5: Estimates of genetic variance-covariance matrices (UUN) 

(lower diagonal), genetic correlations (upper diagonal), and error matrices (R) with 

GBLUP and GK kernels, for yield (Y), milling yield (MY), head rice percentage (PHR), 

grain chalkiness (GC) and plant height (PH) in the indica rice breeding population. 

Correlation matrix (upper 
diagonal) UUN matrix (lower 

diagonal) 

 R matrix  Correlation matrix 
(upper diagonal) UUN 

matrix (lower diagonal) 

 R matrix 

GBLUP  GK 
 2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012 
GY 
2010 0.38 0.35 0.28  0.80 - -  0.62 0.30 0.35  0.61 - - 
2011 0.14 0.46 0.33  - 0.53 -  0.27 0.63 0.35  - 0.41 - 
2012 0.11 0.19 0.37  - - 0.51  0.27 0.30 0.50  - - 0.42 
MY 
2010 0.82 0.87 0.79  0.46 - -  1.25 0.91 0.84  0.44 - - 
2011 0.58 0.77 0.88  - 0.39 -  0.90 1.19 0.89  - 0.36 - 
2012 0.40 0.42 0.37  - - 0.65  0.65 0.70 0.90  - - 0.63 
PHR 
2010 1.36 0.76 0.84  0.23 - -  2.01 0.54 0.63  0.18 - - 
2011 0.92 1.61 0.73  - 0.31 -  1.14 2.15 0.70  - 0.26 - 
2012 1.00 1.11 1.42  - - 0.29  1.27 1.37 2.05  - - 0.24 
GC 
2010 0.84 0.61 0.52  0.54 - -  0.86 0.56 0.45  0.36 - - 
2011 0.49 0.88 0.69  - 0.56 -  0.36 0.94 0.57  - 0.31 - 
2012 0.43 0.58 1.03  - - 0.42  0.31 0.42 0.96  - - 0.28 
PH 
2010 1.08 0.79 0.91  0.08 - -  0.82 0.86 0.95  0.05 - - 
2011 0.85 1.21 0.75  - 0.16 -  0.66 0.62 0.64  - 0.17 - 
2012 1.31 0.49 2.12  - - 0.20  0.97 0.69 1.25  - - 0.19 
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Supplementary Table 2.6: Estimates of genetic variance-covariance matrices (UE) 

(lower diagonal), genetic correlations (upper diagonal), and error matrices (R) with 

GBLUP and GK kernels, for yield (Y), milling yield (MY), head rice percentage (PHR), 

grain chalkiness (GC) and plant height (PH) in the tropical japonica rice breeding 

population. 

 
Correlation matrix (upper 

diagonal) UUN matrix (lower 
diagonal) 

 R matrix  Correlation matrix 
(upper diagonal) UUN 

matrix (lower diagonal) 

 R matrix 

GBLUP  GK 
 2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012 
GY 
2010 0.65 0.71 0.72  0.39 - -  0.91 0.76 0.79  0.34 - - 
2011 0.29 0.52 0.63  - 0.59 -  0.37 0.87 0.73  - 0.50 - 
2012 0.40 0.33 0.72  - - 0.46  0.58 0.51 1.15  - - 0.38 
MY 
2010 0.73 0.89 0.52  0.46 - -  0.92 0.88 0.52  0.38 - - 
2011 0.55 0.82 0.50  - 0.35 -  0.62 0.96 0.49  - 0.27 - 
2012 0.40 0.45 1.02  - - 0.33  0.44 0.45 1.14  - - 0.27 
PHR 
2010 0.82 0.89 0.75  0.45 - -  0.70 0.81 0.65  0.27 - - 
2011 0.77 1.22 0.75  - 0.26 -  0.42 0.73 0.71  - 0.19 - 
2012 0.68 0.90 1.30  - - 0.36  0.33 0.43 0.82  - - 0.25 
GC 
2010 0.84 0.70 0.43  0.25 - -  2.66 0.71 0.43  0.23 - - 
2011 0.43 0.85 0.68  - 0.30 -  1.40 2.44 0.69  - 0.29 - 
2012 0.30 0.61 1.19  - - 0.28  0.94 1.79 3.41  - - 0.27 
PH 
2010 1.46 0.89 0.94  0.19 - -  2.30 0.91 0.95  0.18 - - 
2011 1.13 1.20 0.94  - 0.32 -  1.76 1.88 0.95  - 0.30 - 
2012 1.30 1.15 1.44  - - 0.19  2.04 1.80 2.23  - - 0.19 
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Supplementary Table 2.7: Estimates of genetic variance-covariance matrices (UDIAG), 

and error matrices (R) with GBLUP and GK kernels, for yield (Y), milling yield (MY), 

head rice percentage (PHR), grain chalkiness (GC) and plant height (PH) in the indica 

rice breeding population. 

Correlation matrix UDIAG   R matrix  Correlation matrix 
UDIAG  

 R matrix 

GBLUP  GK 
 2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012 
GY 
2010 0.12 - -  0.81 - -  0.55 - -  0.65 - - 
2011 - 0.18 -  - 0.56 -  - 0.54 -  - 0.45 - 
2012 - - 0.13  - - 0.51  - - 0.40  - - 0.47 
MY 
2010 0.19 - -  0.33 - -  0.69 - -  0.64 - - 
2011 - 0.18 -  - 0.24 -  - 0.66 -  - 0.45 - 
2012 - - 0.17  - - 0.57  - - 0.66  - - 0.47 
PHR 
2010 0.72 - -  0.21 - -  1.10 - -  0.16 - - 
2011 - 0.81 -  - 0.31 -  - 1.04 -  - 0.20 - 
2012 - - 0.76  - - 0.25  - - 1.12  - - 0.17 
GC 
2010 0.72 - -  0.22 - -  0.89 - -  0.22 - - 
2011 - 0.81 -  - 0.31 -  - 1.00 -  - 0.31 - 
2012 - - 0.76  - - 0.25  - - 1.05  - - 0.25 
PH 
2010 0.82 - -  0.10 - -  0.96 - -  0.08 - - 
2011 - 0.97 -  - 0.18 -  - 1.04 -  - 0.19 - 
2012 - - 1.02  - - 0.21  - - 1.87  - - 0.22 
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Supplementary Table 2.8: Estimates of genetic variance-covariance matrices (UDIAG), 

and error matrices (R) with GBLUP and GK kernels, for yield (Y), milling yield (MY), 

head rice percentage (PHR), grain chalkiness (GC) and plant height (PH) in the tropical 

japonica rice breeding population. 

 
Correlation matrix UDIAG   R matrix  Correlation matrix 

UDIAG  
 R matrix 

GBLUP  GK 
 2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012 
GY 
2010 0.28 - -  0.46 - -  0.93 - -  0.33 - - 
2011 - 0.18 -  - 0.65 -  - 0.82 -  - 0.52 - 
2012 - - 0.31  - - 0.54  - - 1.11  - - 0.39 
MY 
2010 0.24 - -  0.55 - -  0.93 - -  0.44 - - 
2011 - 0.30 -  - 0.43 -  - 0.99 -  - 0.33 - 
2012 - - 0.46  - - 0.42  - - 1.2  - - 0.31 
PHR 
2010 0.20 - -  0.56 - -  0.85 - -  0.45 - - 
2011 - 0.31 -  - 0.43 -  - 1.04 -  - 0.32 - 
2012 - - 0.26  - - 0.62  - - 1.26  - - 0.37 
GC 
2010 0.55 - -  0.30 - -  1.2 - -  0.23 - - 
2011 - 0.38 -  - 0.31 -  - 1.04 -  - 0.28 - 
2012 - - 0.40  - - 0.55  - - 1.26  - - 0.29 
PH 
2010 0.86 - -  0.23 - -  1.5 - -  0.27 - - 
2011 - 0.45 -  - 0.45 -  - 1.22 -  - 0.36 - 
2012 - - 0.75  - - 0.26  - - 1.38  - - 0.27 
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CHAPTER 3: 

INTEGRATING MOLECULAR MARKERS AND ENVIRONMENTAL 

COVARIATES TO INTERPRET GENOTYPE BY ENVIRONMENT INTERACTION 

IN RICE (Oryza sativa L.) GROWN IN SUBTROPICAL AREAS 

 

This chapter was submitted as a publication in G3: Genes, Genomes, Genetics:  
Monteverde E, L Gutiérrez, P Blanco, F Pérez de Vida, JE Rosas, V Bonnecarrère, G 
Quero, S McCouch. 2018.  Integrating molecular markers and environmental covariates 
to interpret genotype by environment interaction in rice (Oryza sativa L.) grown in 
temperate areas. 

My contributions to this paper: I generated all the genotypic data, performed all 
of the analyses, and wrote the paper. 

Contributions by others: The two breeding populations were originally 
developed in Uruguay under the direction of L. Gutiérrez and V. Bonnecarrère for a 
GWAS project on grain traits as reported in Quero et al. (2018). The phenotypic data 
was generated by P. Blanco and F. Pérez de Vida.  
 

3.1 ABSTRACT 

Understanding the genetic and environmental basis of genotype × environment 

interaction (G×E) is of fundamental importance in plant breeding. If we consider G×E 

in the context of genotype × year interactions (G×Y), predicting which lines will have 

stable and superior performance across years is an important challenge for breeders. A 

better understanding of the factors that contribute to the overall grain yield and quality 

of rice (Oryza sativa L.) will lay the foundation for developing new breeding and 

selection strategies for combining high quality, with high yield. In this study, we used 

molecular marker data and environmental covariates (EC) simultaneously to predict rice 

yield, milling quality traits and plant height in untested environments (years), using both 

reaction norm models and partial least squares (PLS), in two rice breeding populations 

(indica and tropical japonica). We also sought to explain G×E by differential 

quantitative trait loci (QTL) expression in relation to EC. Our results showed that PLS 
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models trained with both molecular markers and EC gave better prediction accuracies 

than reaction norm models when predicting future years. We also detected several 

milling quality QTL that showed a differential expression conditional on humidity and 

solar radiation, providing insight for the main environmental factors affecting milling 

quality in subtropical rice growing areas. 

 

  

3.2 INTRODUCTION 

 

Genetic by environment interaction (G×E) could be expressed as a difference in 

the relative response of genotypes across diverse environments. When we consider a set 

of genotypes exposed to different environments, their performance will differ depending 

on the interaction of genetic properties with the different environmental conditions, 

leading to differences in variances and rank changes among genotypes (Cooper and 

DeLacy 1994). These rank changes represent a very important challenge for breeders 

due to the difficulties of selecting genotypes with stable performance over diverse 

environments.  

Environments can be different both in time and space. For this reason, the 

concept of G×E embraces both interactions that take place between genotypes and a 

particular location (genotype by location interaction), and between genotypes and 

particular years (genotype by year interaction). Genotype by location interactions are 

usually determined by soil and climate conditions, while genotype by year interactions 

are characterized by plot-to-plot variability and weather conditions (Malosetti et al., 

2016).  
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Several statistical approaches have been proposed to describe G×E in the context 

of classical plant breeding. The classic parametric approaches used to evaluate G×E are 

based on linear regression and ANOVA techniques. Linear regression analysis (Yates 

and Cochran 1938; Finlay and Wilkinson 1963) measures individual genotype 

performance over environmental means. Multiplicative models combine univariate and 

multivariate approaches for reducing data dimensionality and facilitate the interpretation 

of results (Gauch 1998; Smith et al. 2005). The most commonly used multiplicative 

model is the additive main effect and multiplicative interaction model (AMMI; Gauch 

1992). AMMI combines univariate (ANOVA) and multivariate (singular value 

decomposition; SVD) techniques for estimating genotype and environment main 

effects, and G×E effects, respectively. Factorial regression models are another type of 

models that allow the modeling of genotype sensitivity to specific environmental 

covariates (EC) (van Eeuwijk et al. 1996; Vargas et al. 1998; Malosetti et al. 2004; 

Malvar et al. 2005). Linear mixed-models became very popular for the analysis of G×E 

since they allow different correlation structures among environments among other 

features (Piepho 1998; Smith et al. 2001; Burgueño et al. 2007). These covariance 

structures may range from a compound symmetry form, where homogeneous variance 

and homogeneous covariance between environments are assumed, to an unstructured 

form where a covariance parameter is assumed between each pair of environments and 

environments are assumed to have heterogeneous variances.		

 Recent developments in sequencing technologies and statistical modeling have 

made it possible to use dense genotypic information to predict phenotypic responses 

through genomic prediction (GP). This idea was introduced by Meuwissen et al. (2001), 

and provides an alternative approach to indirect selection in crop breeding. GP models 

were originally developed for traits evaluated in single environments, but more recently 
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standard GP models have been extended to account for G×E. Burgueño et al. (2012) 

were the first to extend genomic best linear unbiased prediction (GBLUP) to a multi-

environment context, by combining genetic and environmental covariance matrices and 

using different covariance structures to model the environmental component. Lopez 

Cruz et al. (2015) proposed a marker by environment approach where marker effects 

and genotypic values are partitioned into main effects across environments (stability) 

effects that are specific to each environment (interactions).  

Standard GP models can be modified to accommodate climate information in the 

form of EC. However, including EC in the analysis can pose some similar constraints 

encountered when predicting breeding values with multiple markers. As climatic and 

agronomic systems develop, a very high number of covariates can potentially be 

obtained increasing the dimensionality of the data, increasing also the possibility of 

being correlated with each other. Several studies have proposed different ways to deal 

with highly dimensional data, showing that the incorporation of explicit environmental 

and genetic information can improve prediction accuracies and predict performance in 

untested environments (Heslot et al. 2014; Jarquín et al. 2014; Malosetti et al. 2016). 

Jarquín et al. (2014) proposed a Bayesian reaction norm model where the main genetic 

and environmental effects were modeled using covariate structures as functions of 

molecular markers and EC respectively, and the interaction effects between markers and 

EC were modeled using a multiplicative operator. Heslot et al. (2014) proposed a 

factorial regression model, where instead of using all the available EC and molecular 

markers, they chose the EC that most significantly influenced the growth and 

development of the crop by using crop growth models (CGM). These variables were 

introduced in the factorial regression model along with those markers that showed the 
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most variable effects across environments and reducing thus, dimensionality of both 

markers and EC.  

 The partial least square regression (PLS) (Wold et al. 2001) is a generalization 

of multiple linear regression (MLR). PLS is a dimension reduction approach that can 

accommodate a large number of correlated genetic and environmental variables 

simultaneously, by finding one or few factors named latent variables (LV) that explain 

both the variance of the   matrix (containing predictor variables) and the covariance 

between matrices   and   (containing response variables). PLS can be used for variable 

selection, in order to improve estimation/prediction performance, but also to improve 

model interpretation and understanding of the system studied. Another advantage of 

PLS is that it can be more robust against multicollinearity (Aastveit and Martens 1986). 

PLS models have previously been use for GP both in plant and animal breeding 

(Solberg et al. 2009; Long et al. 2011; Colombani et al. 2012; Iwata et al. 2015), to 

detect highly influential environmental and marker covariates that explain a significant 

proportion of the total G×E  (Vargas et al. 1998; Crossa et al. 1999; Vargas et al. 1999).  

Understanding the genetic basis of G×E is also necessary to gain predictive 

capability, and one way to do this is detecting QTLs with varying effects across 

different environmental conditions, or QTL by environment interaction (QTL×E). 

Methods usually employed to detect QTL×E have been very useful to detect QTL with 

differential expression across environments, but provide no explanation of the 

underlying environmental factors involved. When weather data are available, factorial 

regression models can be used to determine the extent of influence of these factors on 

QTL×E (Crossa et al. 1999; Campbell et all. 2004; Malosetti et al. 2004). 

Rice is one of the world’s most important staple food crops, constituting over 

21% of the caloric intake of the world’s population and up to 76% of the caloric needs 
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in many Asian countries (Fitzgerald et al. 2008). World markets dictate the value of rice 

mainly based on milling quality traits, so breeding for both high yield and quality is a 

major breeding objective for rice exporting countries like Uruguay.  

In a previous study we showed that accounting for heterogeneous covariance 

parameters between pairs of environments can be beneficial for predicting yield and 

milling quality performance in Uruguayan rice for untested environments (Monteverde 

et al. 2018). In another study, Quero et al. (2018) found a set of QTL for milling yield 

traits in the same Uruguayan indica and tropical japonica populations. However, none 

of these studies tested the use of EC to both predict yield and milling quality traits in 

untested environments, and investigate QTL responses in specific environments.	The 

main objectives of this study were to: 1) use molecular marker data and environmental 

covariates simultaneously to predict rice yield and milling quality traits in untested 

environments (years), and 2) Detect marker by environment covariate interactions that 

provide explanations of variable QTL effects across environments. Two rice breeding 

populations (indica and tropical japonica) were used in this study and were evaluated 

for grain yield, plant height and grain quality traits (head rice percentage and chalky 

grain percentage) across 3-5 years in Eastern Uruguay. Results from these two analyses 

provided clues about the main environmental variables that could be driving G×E in 

temperate rice-growing regions such as Uruguay. 

 
3.3 MATERIALS AND METHODS 

3.3.1 Germplasm 

The germplasm consists of two rice-breeding populations, an indica and a 

tropical japonica population belonging to the National Institute of Agricultural 

Research (INIA-Uruguay). Both populations were evaluated in a single location, Paso 
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de la Laguna Experimental Station (UEPL), Treinta y Tres, Uruguay (33°15’S, 

54°25’W) between 2009-2013.  

The indica population consisted of 327 elite breeding lines evaluated over three 

years (2010-2012), and the field design consisted in a randomized complete block 

design with two or three replications. Trait correlations, heritabilities, and genomic 

prediction accuracies for this dataset were computed in previous studies (Rosas et al. 

2017, Monteverde et al. 2018, Quero et al. 2018). The tropical japonica population 

consisted of 320 elite breeding lines evaluated over five years (2009-2013). The number 

of accessions observed each year ranged from 93 to 319, as detailed in Table 3.1. This 

dataset was unbalanced with non-random missing data, since ~50% genotypes were 

dropped from testing every year based on performance, and new genotypes were added 

over time. Each year, the genotypes were planted independently in replicated trials in 

six-row plots using an augmented randomized complete block design with two or three 

replications. Both indica and tropical japonica trials were conducted under irrigated 

conditions using appropriate pest and weed control. 

Table 3.1: Description of the rice breeding lines evaluated each year and broad-sense 
heritabilities for each trait calculated in a line-basis. GY: grain yield, PHR: percentage 
of head rice, GC: percentage of chalky grains, PH: plant height. 

indica       
   H2    
Year Lines evaluated  GY PHR GC PH 
2010 327  0.46a 0.86a 0.73a 0.49a 
2011 327  0.60a 0.78a 0.59a 0.66a 
2012 327  0.68a 0.71a 0.69a 0.58a 
Tropical japonica      
2009 93  0.44 0.67 0.59 0.77 
2010 292  0.68 0.71 0.59 0.62 
2011 319  0.43a 0.85a 0.41a 0.62a 
2012 319  0.57a 0.79a 0.75a 0.79a 
2013 134  0.70 0.75 0.80 0.78 

a Previously reported by Monteverde et al. (2018) and Rosas et al. (2017) 
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 The agronomic traits of interest used in this study were Grain Yield (GY of 

paddy rice in kilograms per hectare) and Plant Height (PH measured in cm from the soil 

surface to the tip of the flag leaf). The grain quality traits measured were Percentage of 

Head Rice Recovery (PHR measured in grams, as the weight of whole milled kernels, 

using a 100g sample of rough rice), and the percentage of Chalky Grain (GC measured 

as % of chalky kernels in a subsample of 50 g of total milled rice, where the area of 

chalk -core, white back or white belly- was larger than half the kernel area based on 

visual inspection). More details about how grain quality traits were measured can be 

found in Quero et al. (2017) and Monteverde et al. (2018). 

 

3.3.2 Phenotypic analysis 

 Phenotypic data for each trait were analyzed separately each year. The model 

used to calculate the best linear unbiased estimators (BLUEs) for each year was:  

yijkl = µ + bi + gj + rk (i) + cl (i) +εijkl  

where yijkl is the trait score, µ is the overall mean, bi is the random effect of the ith block 

with bi ~ N(0,σ b
2 ) , where σ b

2 is the block variance, gj is the genotypic effect of the jth 

genotype, rk (i)  and cl (i) are the random kth row and lth column effects nested within the ith 

block with rk (i) ~ N(0,σ r
2 )  and cl (i) ~ N(0,σ c

2 ) , where σ r
2  and σ c

2 are the row and 

column variances respectively, and εijkl is the model residual vector with εijkl ~ N(0,σε
2 )

where σε
2 is the error variance. 

 Trait heritabilities in tropical japonica for years 2009 and 2013 (data not yet 

published) was calculated on a per line basis as H 2 =σ g
2 σ g

2 +σε
2 r( ) , where σ g

2  is the 

variance among genotypes, σε
2  is the error variance, and r is the number of replicates. 
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3.3.3 Genotypic characterization 

 The lines were genotyped using genotyping-by-sequencing (GBS). SNP calling 

was performed using the TASSEL 3.0 GBS pipeline (Bradbury et al. 2017), and SNPs 

were aligned to the Nipponbare reference genome MSU version 7.0 

(http://rice.plantbiology.msu.edu/) using Bowtie 2 (Langmead and Salzberg, 2012). 

Imputation of missing data was performed with the FILLIN algorithm implemented in 

TASSEL 5.0 (Swarts et al. 2008) for both datasets separately. The GBS datasets were 

filtered to retain markers with <50% missing data after imputation, and a minor allele 

frequency MAF>0.05, as reported by Quero et al. (2018), and Monteverde et al. (2018). 

The final indica and tropical japonica marker dataset consisted of 92,430 and 44,598 

SNP markers respectively. 

 

3.3.4 Derivation of EC from weather data 

 Daily weather data were obtained from GRAS unit from INIA 

(http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico). The database contains 

weather data from 1965 to the last calendar month completed, for all 5 INIA 

experimental stations in Uruguay. The variables available were related to temperature, 

precipitation, solar radiation, humidity, wind, and evaporation.  

To compute the EC from daily weather data for each rice genotype, the plant 

development stage has to be determined in order to account for the differential effect 

that weather variables may have in different stages of crop development. This 

information is usually hard to obtain directly or, as in our case, not available. For this 

reason, the phenology of the crop was defined according to flowering time (days to 50% 

flowering, FT), which was measured for each line every year. With this measure, and 

sowing and harvest date, three main phenology stages were determined for each year, 
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according to Yoshida (1981): vegetative stage (of variable length, starting on sowing 

date), reproductive stage (starting 35 days before FT), and maturation stage (ending 30 

days after FT).  

Once these phenological stages are defined for each year, EC can be computed 

from daily weather data. Covariates with zero variance were removed from the analysis. 

For prediction, both markers and EC were centered by subtracting the mean, and 

standardized to unit variance by dividing the centered values by the standard deviation 

of the marker or EC. A total of 54 EC were used in both populations (18 for each 

developmental stage: vegetative, reproductive, and maturation), and are summarized in	

Table 3.2. 	

 

Table 3.2: Environmental covariates used in this study.  

EC abbreviation  Explanation 
ThermAmp Thermal Amplitude (°C): Average of daily thermal amplitude 

calculated as (max temperature (°C) – min temperature (°C). 
RelSun Relative sunshine duration (%): Quotient between the real duration 

of the brightness of the sun and the possible geographical or 
topographic duration. 

SolRad Solar radiation (cal/cm2/day): Solar radiation calculated with the 
Armstrong’s formula.  

EfPpit Effective Precipitation (mm): Average of daily precipitation in mm 
that is actually added and stored in the soil.  

DegDay Degrees Day in rice (°C): Mean of Daily average temperature minus 
10 °. 

RelH Relative humidity (hs): Sum of daily amount of hours (0hs-24hs) 
where the relative humidity was equal to 100%. 

PpitDay Precipitation day: Sum of days where it rained. 
MeanTemp Mean Temperature in 24 hs (°C): Average of temperature over 24 

hs (0-24 hs). 
AvTemp Average Temperature in 24 hs (°C): Average Temperature 

calculated as daily (Max+Min)/2. 
MaxTemp Maximum Temperature (°C): Average of maximum daily 

temperature. 
MinTemp Minimum Temperature (°C): Average of minimum daily 

temperature. 
TankEv Tank water evaporation (mm): Amount of evaporated water under 

influence of sun and wind. 
Wind Wind speed (2m/km/24hs): Distance covered by wind (in km) over 
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2m height in one day. 
PicheEv Piche Evaporation (mm): Amount of evaporated water without the 

influence of the sun. 
MinRelH Minimum relative humidity (%): Lowest value of relative humidity 

for the day. 
AccumPpit Accumulated precipitation (mm): Daily accumulated precipitation. 
Sunhs Sunshine duration: Sum of total hours of sunshine per day 
MinT15 Minimum temperature below 15°: Sum of the days where the 

minimum temperature was below 15°. 
	 	
 

3.3.5 PLS regression 

PLS regression was first introduced by Wold (1966), and was originally 

developed for econometrics and chemometrics. It is a multivariate statistical technique 

that was designed to deal with the p >> n  problem; i.e., when the number of 

explanatory variables ( p ) is much larger (and more highly correlated) than the number 

of observations ( n ). A brief explanation of PLS relating one response variable y( ) to a 

set of explanatory variables X( ) is given below, but it can be extended to more than one 

response variable (Boulesteix and Strimmer 2006; Wold 2001). 

In PLS, the data for p explanatory variables are given by the matrix 

X = x1,…, x p( ) , and data for the dependent variables are given by the response vector 

y . Each 𝐱𝟏,… , 𝐱𝒑 and y vectors have 𝑛×1 dimensions corresponding to the number of 

observations. In this work, the y  vector contains all the observations for a given trait in 

different environments (years), and the columns of theX matrix are the variables 

corresponding to either markers only, or markers and EC. All variables in PLS must be 

centered and scaled. 

PLS is based on the latent variable (LV) decomposition: 

X = TPT +E ,      (1) 

y = TqT + f ,      (2) 
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where T  is a n× c  matrix giving the LV (also called scores) for the n

observations, and P  p× c( )   is a matrix of p -dimensional orthogonal vectors called X -

loadings, q  1× c( )  is a vector of scalars and , also named Y -loadings, E  n× p( )  and f     

n×1( )  are a residual matrix and vector respectively. 

 The LV matrix T that relates the Xmatrix to the vector y is calculated as: 

T =XW ,       (3) 

where W is a p× c( )  matrix of weights. For a given matrix W , the LV obtained 

by forming corresponding linear transformations of the variables in X , X1,…,Xp    are 

denoted as T1,…,Tc : 

T1 = w11X1 +…+wp1Xp

!
Tc = w1cX1 +…+wpcXp

 

 

 These LV are then used for prediction in place of the original variables. After 

computing the T  matrix, qT  is obtained as the least squares solution of Eq. (2): 

 qT = TTT( )
-1
TTy . 

The vector b of regression coefficients for the model y = Xb+ f  , to predict new 

responses, is calculated as: 

b =WqT =W TTT( )
-1
TTy  . 

Since regression and dimension reduction are performed simultaneously, all b , 

T , W ,P  and q are part of the output. Both X  and y are taken into account when 

calculating the LV in T . Moreover, they are defined so that the covariance between the 

LV and the response is maximized.  
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In PLS, the optimal number of LV ( c ) must be determined. In this work, we 

used the root means squared error of prediction (RMSEP),  

RMSEP = 1
10

ŷk − yk( )
k=1

10

∑  

which was minimized with 10-fold cross-validation in the training data set and 

for each value of LV (Mevik and Cederkvist, 2004). In this study, two PLS models were 

fitted: the PLS-G model used marker covariates as predictors, and the PLS-GW model, 

which used both marker covariates and EC as predictors. PLS models calculations were 

performed with the R package “mixOmics” (Lê Cao et al. 2016).  

 

3.3.6 Genomic Best Linear Prediction (GBLUP) and reaction norm models 

 Mixed linear models were used as a baseline comparison of prediction 

accuracies with PLS models. The models used considered the random main effects of 

markers (G model), the random main effects of markers and EC (G+W model), and the 

random main effects of markers, EC, and the interactions between them (G+W+GW 

model). 

 The G model constituted of a standard GBLUP model for the mean performance 

of genotypes within each set of environments, using the following model: 

yi = µ + gi +εi ,   (4) 

where µ is the overall mean, gi is the genotypic random effect of the ith line expressed 

as a regression on marker covariates of the form: 𝑔! = 𝑥!"𝑏!
!
!!!  , where xim is the 

genotype of the ith line at the mth marker, and bm is the effect of the mth marker. Marker 

effects are considered as IID draws from normal distributions of the form 

bm ~
IID
N 0,σ b

2( ) , (𝑚 =,… ,𝑝). 
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 The vector g = Xb  contains the genomic values of all the lines, and follows a 

multivariate normal density with null mean and covariance matrix Cov(g) =Gσ g
2 , 

where G is a genomic relationship matrix whose entries are given by G =XXT p .  

 As previously reported by Jarquín et al. (2014), it is possible to model the 

environmental effects with a random regression on the EC that describes the 

environmental conditions faced by each genotype, that is: 𝑤!" = 𝑊!"#𝛾!
!
!!! , where 

Wijq is the value of the qth EC evaluated in the ijth environment × genotype combination, 

γq is the main effect of the corresponding EC, and Q  is the total number of EC. Again, 

we consider the effects of the EC as IID draws from normal densities, γq ~
IID
N 0,σγ

2( ) . 

The vector w =Wγ  follows a multivariate normal density with null mean and a 

covariance matrix proportional to Ωwhose entries are computed the same way as those 

of the Gmatrix but using EC instead of markers. This covariance structure describes 

the similarity among environmental conditions. Then, the model becomes: 

yij = µ +wij
+ gj +εij    (5) 

 

This model also includes a marker × EC interaction term, where the covariance 

of the interaction is modeled by the Hadamard product of ZgGZg
T  and Ω , denoted as 

ZgGZg
T⎡⎣ ⎤⎦!Ω , where Zg  is an incidence matrix for the vector of additive genetic effects. 

This model extends Eq. (4) as follows: 

yij = µ +wij + gj + gwij +εij ,   (6) 

with w ~ N 0,Ωσ w
2( ) , g ~ N 0,Gσ g

2( ) , gw ~ N 0, ZgGZg
T⎡⎣ ⎤⎦!Ωσ gw

2( ) , ε ~
IID
N 0,σε

2( ) . 
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3.3.7 Assessing prediction accuracy for new environments 

The prediction problem studied here was that of predicting future seasons, also 

denoted as “leave one environment out” prediction scenario.  This prediction was 

performed by including phenotypic records and parameter information of either two 

(indica dataset) or four (tropical japonica dataset) years in the training population to 

predict a third (indica dataset) or fifth (tropical japonica dataset) year, where no 

phenotypic data were collected. Prediction accuracies obtained from both PLS and 

Reaction norm models were assessed by calculating the Pearson correlation between the 

predicted values from each model for a particular testing year, and the observed 

phenotypic values for that same year. 

 

3.3.8 QTL by EC interactions 

 For the detection of QTL by environment interaction we used a two-step strategy 

as described in Gutiérrez et al. (2015). In the first step, we scanned the genome of both 

indica and tropical japonica subspecies to detect QTL in individual environments 

(single environment QTL mapping). In the second step, QTL expression across 

environments was regressed on environmental covariates in order to explain QTL 

effects in terms of sensitivities to environmental covariates (Malosetti et al. 2004; Boer 

et al. 2007; Malosetti et al. 2013).   

 For the first step, we fitted a mixed model for single environment QTL 

detection. The model used was the kinship model with: 

y = Xβ+Zu+ e , 

where y is the vector of phenotypic means for that environment, X  is the molecular 

marker score matrix, β is the vector of marker effects, Z is an incidence matrix, u  is 

the vector of random background polygenic effects with variance σ u
2 =KσG

2  (where K
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is the kinship matrix, and σG
2  is the genetic variance), and e is the vector of residuals. A 

GWAS analysis for each dataset, trait and environment was performed using the R 

statistical software (R Core Team, 2017) with the package GWASpoly (Rosyara et al. 

2016) fitting the additive model. For QTL determination in each environment, we used 

the Benjamini-Hochberg FDR (α=0.05) to control the type I error (Benjamini and 

Hochberg 1995).  

 In the second step, all marker-trait associations detected in the first step were 

fitted in a second mixed model testing for interaction with all available EC. This model 

assumes a linear relationship between the effect of the QTL and a given environmental 

covariate, using the model presented in Malosetti et al. (2013) given by:  

yij = µ +Ej + xi (αq +βqz j + a jq )+Gi +GEij  

where yij is the phenotype of individual i at environment j , µ is the general mean, Ej

effect of the jth environment, xi is the value of the ith marker predictor, αq  is the effect 

of the qth QTL in the average environment, βq corresponds to the change of the QTL 

effect per unit of change of the covariable’s value, and  aiq  is the random effect 

corresponding to the residual (unexplained) QTL effect, with  aiq ~ N(0,σ aq
2 ) , Gi  is the 

random remaining (not due to the QTL) genotype effect with Gi ~ N(0,KσG
2 ) , and 

GEij is the remaining  (random) G×E effect, with GEij ~ N(0,Σ) . All EC were tested 

for interaction with Three different models for the variance-covariance matrix Σ  were 

compared: compound symmetry (CS) where the genetic variances are homogeneous 

across environments (σG
2 +σGE

2 ) and the genetic covariances between environments are 

modeled by ; heterogeneous compound symmetry (HCS), which allows for 

heterogeneous genetic variances across environments (σGj

2 ) and a common genetic 

σG
2
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covariance parameter σG
2 ; and the unstructured (UN) model with a specific genetic 

variance parameter per environment and a specific genetic covariance between 

environment. The different models were compared using the Bayesian information 

criterion (BIC) to select the optimal model (Broman and Speed 2002). We tested for the 

significance of the fixed terms in mixed models using Wald test at a p value of 0.05, 

following Malosetti et al. (2004).	 For QTLxEC interaction testing we used the 

Benjamini-Hochberg FDR (α=0.05) to control the type I error (Benjamini and Hochberg 

1995). Mixed models for QTL×EC interaction were computed with the R package 

sommer (Covarrubias 2016). 

 

3.4  RESULTS 

3.4.1 Phenotypic data analysis 

 The indica dataset was balanced with a total of 327 lines per environment, while 

the tropical japonica dataset was unbalanced, with a total of 23 lines common to all 

environments (Table 3.1). Estimations of broad-sense heritability estimated on a line-

mean basis per trait by year for both datasets were medium to high, with PHR having 

the highest values of heritability in both datasets. 

 Table 3.3 shows the partitioning of the observed phenotypic variance into 

different sources of variation for both rice datasets. In the indica population, PHR and 

GC showed the highest proportion of variance explained by G×Y, at 20.04% and 

13.22%, respectively. On the other hand, the year component was the highest variance 

component for GY and PH (Table 3.3). In the tropical japonica population, the year 

component was the highest; it was above all components for the four traits, and much 

higher than for the indica population. In contrast, the G×Y component was lower in 

tropical japonica compared to indica (Table 3.3). 



	 80	

	
Table 3.3: Trait variance component estimation and proportion of the total variance 

explained for the four traits evaluated in Uruguayan indica and tropical japonica 
populations. GY: grain yield, PHR: percentage of head rice, GC: percentage of 
chalky grains, PH: plant height.  

 
indica       
GY    PHR   
Group Variance %  Group Variance % 
Year 496540 18.9  Year 0.0001 10.02 
Genotype 379554 14.5  Genotype 0.0002 20.04 
GxY 143374 5.5  GxY 0.0002 20.04 
Column 55361 2.1  Column 0.000007 0.70 
Row 31357 1.2  Row 0.000006 0.60 
Block 516792 19.7  Block 0.0002 20.04 
Residual 1000130 38.1  Residual 0.000285 28.56 
GC    PH   
Group Variance %  Group Variance % 
Year 0.0003 13.22  Year 12.51 9.26 
Genotype 0.0004 17.62  Genotype 8.91 6.60 
GxY 0.0003 13.22  GxY 5.56 4.12 
Column 0.0003 13.22  Column 0.84 0.62 
Row 0.00007 3.08  Row 0.92 0.68 
Block 0.0005 22.03  Block 8.31 6.15 
Residual 0.0004 17.62  Residual 98.02 72.57 
tropical japonica      
GY    PHR   
Group Variance %  Group Variance % 
Year 1988252 43.2  Year 0.001 41.36 
Genotype 197961 13.2  Genotype 0.0003 12.41 
GxY 99052 5.1  GxY 0.0001 4.14 
Column 24932 0.3  Column 0.000008 0.33 
Row 19062 0.5  Row 0.00001 0.41 
Block 115775 22.7  Block 0.0006 24.81 
Residual 682613 15.1  Residual 0.0004 16.54 
GC    PH   
Group Variance %  Group Variance % 
Year 0.005 66.32  Year 37.5 43.7 
Genotype 0.0007 9.29  Genotype 18.4 21.4 
GxY 0.0006 7.96  GxY 1.6 1.8 
Column 0.000009 0.12  Column 0.1 0.1 
Row 0.00003 0.40  Row 0.1 0.2 
Block 0.0004 5.31  Block 13.3 15.5 
Residual 0.0008 10.61  Residual 14.8 17.2 
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3.4.2 Genomic prediction of untested years 

 Bar plots showing prediction accuracy for the four traits in the indica population 

are shown in Figure 3.1. PLS-based methods showed higher prediction accuracies than 

reaction norm-based models for all traits except GC, where prediction accuracies for the 

PLS method using both markers and EC (PLS-GW) were the same as the reaction norm 

models. For PLS models, the use of EC in addition to molecular markers resulted in 

higher prediction accuracies in all cases, though PHR in 2011 and GC in 2012 had 

identical prediction accuracies for both methods. For reaction norm models, fitting the 

main effect of genotypes, environments and interaction (G+W+GW model) resulted in 

either lower or equal prediction accuracies than fitting the simpler model without the 

interaction term (G+W model) (Figure 3.1). 

In the tropical japonica population, the use of PLS-based models was always 

better than reaction norm models, with the single exception of GY in 2010 (Figure 3.2). 

In all cases, including both markers and EC (PLS-GW) was better than using markers 

only (PLS-G). Within the reaction norm models, the G+W method was the best, with 

the exception of GC in 2013. Fitting a G×E component in these models resulted in 

lower prediction accuracies than fitting the G+W model (Figure 3.2). 
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Figure 3.1: Correlations between predicted vs. observed values for Grain Yield (GY), 
Head Rice Percentage (PHR), Grain Chalkiness percentage (GC) and Plant Height (PH) 
for predicting untested years with the G, G+W, G+W+GW, PLS-G and PLS-GW for the 
indica rice breeding population. G = genotypic main effect modeled with marker 
covariates, W = Environmental main effect modeled with EC, GW = interaction 
between genotypic and environmental effects, PLS-G = Partial least squares using 
marker covariates as predictors, PLS-GW = Partial least squares using marker 
covariates and EC as predictors.  
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Figure 3.2: Correlations between predicted vs. observed values for Grain Yield (GY), 
Head Rice Percentage (PHR), Grain Chalkiness percentage (GC) and Plant Height (PH) 
for predicting untested years with the G, G+W, G+W+GW, PLS-G and PLS-GW for the 
tropical japonica rice breeding population. G = genotypic main effect modeled with 
marker covariates, W = Environmental main effect modeled with EC, GW = interaction 
between genotypic and environmental effects, PLS-G = Partial least squares using 
marker covariates as predictors, PLS-GW = Partial least squares using marker 
covariates and EC as predictors.  
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Many of the EC used in this study were correlated. This may result in lower 

prediction accuracies in the reaction norm model, since it would weight the 

environmental covariances toward the highly correlated variables. Reaction norm 

models with a subset of less correlated variables were tried, resulting in very similar or 

even lower prediction accuracies than when using the entire set of EC (data not shown). 

When running PLS with all the environments within each dataset, we can detect 

which variables best explain each trait by looking at the coefficients. Table 3.4 shows 

the ranking of coefficients for the EC variables for each trait in both datasets. For GY, 

variables related to temperature and humidity during flowering stage were among the 

most important. For PHR and GC, the 5 variables with the highest coefficients were 

related to temperature, humidity and solar radiation during maturation. In the tropical 

japonica dataset, variables related to humidity, solar radiation and rainfall during 

maturation showed the highest coefficients for PHR and GC. For GY, two variables at 

flowering time showed higher coefficient values than the rest: maximum temperature 

and wind speed (Table 3.4). 

	

3.4.3 Detecting QTL in single environments 

We searched for significant trait-marker associations in single years to find QTL 

to test for interactions with EC in the next step. In this first analysis, we could not find 

any QTL that passed the FDR threshold for GY in any environment in any population. 

In the case of PH, we did not find any QTL for the indica population, but we found one 

major effect QTL on chromosome 1 (position: 37,755,448 - 38,755,448 bp) that was 

significant in all environments in the japonica dataset; it corresponds to the sd-1 gene 

(position: 38,363,881 bp). 
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We detected QTL for grain quality traits in both datasets (Table 3.5). In the 

indica population, a total of 13 QTL (chromosomes 1, 2, 3, 4, 6, 7, 10 and 11) were 

found for PHR, and a total of 4 QTL (chromosomes 1, 3 and 4) for GC. QTL were 

found only in years 2010 and 2012 for PHR, and in years 2011 and 2012 for GC. Three 

of the QTL were reported in a previous GWAS analysis using this same dataset (Quero 

et al. 2018). These QTL were: qPHR.i.2.2 (S2_24210614), qPHR.i.3.1 (S3_10247958), 

qGC.i.1.1 (S1_1066894). Two additional QTL were in LD with two previously reported 

QTL in the same study. These were qPHR.i.3.2 and qPHR.i.6.1, which were in LD with 

S3_15365726 and S6_829223 in our study, respectively. In the tropical japonica 

population, a total of 5 QTL were found for PHR (chromosomes 1, 2, 3, 6, and 8), and 

one for GC (chromosome 6) (Table 3.5). Two of these QTL were in LD with previously 

reported QTL: qPHR.j.3.1 with S3_1395165, and qGC.j.6.2 with S6_27402260 (Quero 

et al. 2018). No significant QTL were found for GY or PH for any year in either of the 

populations. 

 

 

 

 

 

 

 

 

 

 



	 86	

Table 3.4: Top 5 PLS-GW coefficients for the environmental covariates for Grain 
Yield (GY), Head Rice Percentage (PHR), Grain Chalkiness percentage (GC) and 
Plant Height (PH) for the indica and tropical japonica rice breeding populations. 

 
indica      
  Coefficient    
Type Variable GY PHR GC PH 

Temperature 

ThermAmp_V - 0.0001251 -0.000403 - 
MinTemp_R 0.005277 - - -0.00751 
MeanTemp_R 0.005265 - - -0.00773 
ThermAmp_M - 0.0001273 -0.000402 - 

Precipitation EfPpit_R 0.005159 - - -0.00723 

Evaporation TankEv_V 0.005185 - - -0.00772 
TankEv_M 0.0001272 - -0.000407 - 

Humidity MinRelH_M - -0.0001270 0.000406 - 
Radiation SolRad_M - 0.0001267 -0.000402 - 
Wind Wind_V -0.005108 - - 0.00766 
tropical japonica     
 Coefficient     
Type Variable GY PHR GC PH  

Temperature 

MinTemp_V - - - -0.014 
MaxTemp_V 0.0102 - - -0.015 
MeanTemp_V - - - -0.016 
DegDayRice_V - - - -0.016 
MaxTemp_R -0.0125 - - - 
AvTemp_M -0.0101 - - -  

Precipitation 
PpitDay_R - - - 0.014 
EfPpit_M - 0.013 0.018 - 
AccumPpit_M - -0.013 - - 

Evaporation PicheEv_V - 0.013 - - 
Humidity MinRelH_M - -0.015 0.019 - 

Radiation 
Helhs_M - 0.013 -0.018 - 
SolRad_M - - -0.017 - 
RelHel_M - - -0.017 - 

Wind Wind_V -0.0103 - - - 
 Wind_R -0.0126 - - - 
	

 

 

 

 

 

 



	 87	

Table 3.5: Marker-trait associations for percentage of head rice (PHR) and percentage 
of chalky grain (GC) traits in indica and tropical japonica rice breeding populations. 
Chromosome position (bp), year, effect of the alternative allele, and score (-log10(p-
value)) are shown in the table.  
 
indica      
Marker Chr Position Year Alt allele effect 

(%) 
Score 

PHR      
S1_1015065 1 1015065 2010 -1.62 4.98 
S2_24210614 2 24210614 2012 2.95 7.20 
S3_8880979 3 8880979 2010 1.32 4.60 
S3_10247958 3 10247958 2010 -2.12 9.97 
S3_15365726 3 15365726 2010 -1.85 7.19 
S4_29728982 4 29728982 2010 1.30 4.68 
   2012 2.37 5.66 
S6_829223 6 829223 2010 1.76 5.04 
S6_11022101 6 11022101 2012 -2.10 5.30 
S6_13215923 6 13215923 2010 -1.24 5.47 
S6_21327503 6 21327503 2012 2.63 5.54 
S7_14798606 7 14798606 2010 1.25 5.05 
S10_6737554 10 6737554 2010 2.40 5.64 
S11_24425810 11 24425810 2010 1.92 4.70 
GC      
S1_1066894 1 1066894 2011 1.33 4.06 
S1_22492066 1 22492066 2012 1.45 5.74 
S3_16037360 3 16037360 2011 0.72 4.07 
S4_22480721 4 22480721 2011 1.24 4.14 
Tropical japonica     
PHR      
S1_38686312 1 38686312 2013 2.0 3.20 
S2_27660046 2 27660046 2013 -1.0 4.41 
S3_1395165 3 1395165 2011 1.0 6.18 
S6_27834772 6 27834772 2011 -2.0 4.89 
   2013 -1.0 3.44 
S8_23380395 8 23380395 2013 -2.0 4.11 
GC      
S6_27402260 6 27402260 2011 2.00 4.62 
   2013 2.00 3.94 
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3.4.4 QTL ×  environmental covariate interactions 

A decomposition of the QTL with significant QTL × environment interaction 

was obtained by introducing environmental covariates as explanatory variables. We first 

tested different covariance structures for the modeling of the G×E component and 

compared them using BIC (see Methods).	For all QTL and traits, BIC values decreased 

when using the HCS matrix compared to the CS matrix. However, the HCS model 

already behaves quite similar to the maximally complex UN model, so the HCS was the 

model of choice (data not shown)..  The QTL responses for the indica dataset are shown 

in Table 3.6. One QTL showed significant interaction with environmental covariates 

related to precipitation and humidity during the maturation stage. Marker S2_24210614 

showed a negative relationship with PpitDay_M and RelH_M. The high correlation 

between these two variables (r = 0.99) explains why they show the same coefficients for 

the main QTL effect (α), and the interaction (β). No significant main effect was 

detected for this QTL (Table 3.6). 

Results for regression of marker covariates on environmental covariates for the 

tropical japonica dataset are shown in Table 3.7. For GC, marker S6_27402260, located 

in chromosome 6, showed a significant positive response to weather covariates related 

to precipitation and minimum temperature, and a negative response to sunshine duration 

and solar radiation. This marker also showed a significant main effect (Table 3.7). 
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Table 3.6: QTL responses to EC for percentage of head rice (PHR) in the indica rice 
population. Suffixes R and M mean Reproductive stage, and Maturation stage 
respectively. 
 
Trait	 Marker	 Chromosome	 Position	 EC	 α	 β	
PHR	 S2_24210614	 2	 24210614	 PpitDay_M	 0.09	 -0.03*	
	 	 	 	 RelH_M	 0.08	 -0.04*	
	 	 	 	 MinTemp_R	 0.10	 -0.04*	
 
α : QTL main effect 
β: Slope parameter for the QTL×EC parameter 
* significance level at α = 0.05 
 
 
 
 
 
Table 3.7: QTL responses to EC for head rice percentage (PHR) and percentage of 
chalky grain (GC) in the tropical japonica rice population. Suffixes R and M mean 
Reproductive stage, and Maturation stage respectively. 
 
Trait Marker Chromosome Position EC α β 
GC S6_27402260 6 27402260 TempMin15_M 0.2** -0.08** 
    MinTemp_M 0.3*** 0.3** 
    SolRad_M 0.3* -0.2* 
    PpitDay_M 0.4*** 0.07** 
    RelSun_M 0.4** -0.08** 
    Sunhs_M 0.4** -0.7** 
 
α : QTL main effect 
β: Slope parameter for the QTL×EC parameter 
* significance at α = 0.05 
** significance at α = 0.01 
*** significance at α = 0.001 
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3.5 DISCUSSION 

In this work we proposed to characterize and interpret G×E interaction for four 

traits (GY, PHR, GC and PH) in two different breeding populations of rice (indica and 

tropical japonica) grown in a subtropical/temperate climate. In the first part of our 

paper, we compare the performance of different genomic prediction models that account 

for genotype, environment and G×E components, to predict untested years, and we 

identify the most influential weather covariates for our two datasets. In the second part, 

we map environment-specific QTL and study the environmental variables that affect 

their expression, in order to interpret the QTL×E effects that account for the total G×E. 

 

3.5.1 Prediction accuracies for untested environments 

Usually genomic prediction models are tested and compared using cross-

validation strategies. In a multiple environment context, most studies include two basic 

random cross-validation schemes (Burgueño et al. 2012): CV1, which tests the 

performance of lines that have not been evaluated in any of the observed environments, 

and CV2, which tests the performance of lines that have been evaluated in some 

environments but not in others. These two scenarios have the disadvantage of training 

and validating the models with the same data, which could lead to an overestimation of 

the prediction accuracy the model would attain if it had been applied in an independent 

test dataset. Predicting new environments is a more difficult task but could represent a 

good validation strategy because the performance of prediction models is assessed in an 

independent dataset. In this work we used a cross-validation scheme for prediction in 

untested environments, represented by years, a component of G×E that is not easy to 

reproduce. This is a very relevant type of prediction for a small plant breeding program, 

where data from multiple locations is either limited or absent, and the need is to predict 
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which lines are more likely to perform better in future environments. The use of EC to 

model the environment component explicitly has been previously shown to increase 

prediction accuracies for untested environments (Malosetti et al. 2016, Jarquín et al. 

2017), and this situation also applies to our work.  

For prediction, we compared two modeling approaches that differ in the way 

that multiple and correlated variables are handled: 1) a variance components approach 

that allows modeling the main and interaction effects of markers and EC using 

covariance structures, and 2) a PLS approach that models genotype and environment 

effects by identifying a linear combination of all the explanatory variables, providing 

latent vectors that optimally predict the response variable. We found that the PLS-GW 

model was in all cases superior to or not different from PLS-G and reaction norm 

models in both datasets. Although the variance explained by the G×E component in the 

indica population was comparable in some cases to the variance explained by the 

genotype and/or the year main components, the proportion of variance explained jointly 

by the genotype, environment and G×E components, was never superior to 50% of the 

total variance. This could explain the lower prediction accuracies obtained in this 

population compared to the japonica population. It is possible that the EC used in this 

study explained only a limited proportion of the across environment interaction in the 

indica dataset, and for this reason reaction norm models, when fitting covariance 

matrices for the environment and marker by environment interaction, did not improve 

prediction accuracies in comparison to the simpler GBLUP model. In the japonica 

population, the proportion of the total variance explained by G×E was very low 

compared to the main genotype and environment components, which also explains why 

modeling a specific interaction covariance matrix did not give better results than 

modeling the main genotype and environment covariance matrices alone. In this 
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population, the main environment effect was better represented by the EC, and thus, 

prediction accuracies, when including an EC covariance matrix (W) or the EC in the 

PLS model, were higher than when using a G matrix or molecular markers alone. 

 Besides the ability of handling numerous and correlated predictors, an additional 

advantage of using PLS models is that we can detect which covariates are the most 

explanatory in our model by looking at the model coefficients (Wold et al. 2001; 

Mehmood et al. 2012). Previous studies have shown the benefits of PLS for identifying 

the set of EC that best explain G×E (Vargas et al. 1998; Vargas et al. 1999; Crossa et al. 

1999). In these studies, the G×E component of the trait was used as a response and 

regressed to EC only. In our case, we decided to report the results of the regression of 

the trait means to both EC and markers, since regressing the G×E component to EC 

resulted in increased MSEP with an increasing number of components, and thus a poor 

model fit. For GY, minimum and average temperature, and effective precipitation 

during flowering time showed the highest positive coefficients for indica rice. In 

regions with a temperate climate, low temperatures during flowering can affect grain 

yield by inducing spikelet sterility (Yoshida 1981, Alvarado 2002). The probability of 

occurrence of temperatures under 15°C during January (when rice usually enters the 

flowering stage) in Eastern Uruguay is about 20%, and would be most detrimental for 

indica varieties, which are best adapted to tropical climates. In the tropical japonica 

population, the two EC that showed the highest (absolute value) coefficients for GY 

were wind speed during flowering, and maximum temperature during grain filling. Both 

wind speed and high temperatures during reproduction have been proven to negatively 

affect GY due to pollen dehydration and consequent spikelet sterility (Marchezan and 

da Silva 1993; Raju et al. 2013).  
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For the grain quality traits, EC related to humidity, solar radiation and sunshine 

duration during grain ripening were among the most important in both datasets. The 

positive coefficients for solar radiation, and the negative coefficients for humidity 

reflect the relative effects of these variables on milling quality, as previously reported 

(Siebenmorgen et al. 2012; Edwards et al. 2017). Many studies have reported negative 

effects of high temperatures on grain chalk and percent head rice (Tashiro and 

Wardlaw, 1991, Lyman et al. 2013). For example, for japonica cultivars, temperatures 

higher than 26°C can cause chalky grain appearance (Chen et al. 2016), but maximum 

daytime temperatures higher than 33°C cause dramatic changes in the distribution of 

head and broken rice, and increase the proportion of chalky grain (Ambardekar et al. 

2011; Lyman et al. 2013). In Eastern Uruguay, maximum temperatures during 

February-March, the period in which rice kernels usually develop, rarely reach 32°C. In 

our own dataset, the average maximum temperatures were never higher than 30°C, so it 

is probable that in the absence of high stress-inducing temperatures in sub-tropical rice 

growing areas, other variables such as humidity and solar radiation are more important, 

as is reflected in our results. 

 

3.5.2 QTL detection and interaction with environmental covariates  

For this part of the analysis we used mixed-models to analyze QTL by EC 

interactions because of their flexibility, and the possibility of modeling genetic 

correlations between environments. We first performed an association mapping analysis 

for each of the four traits in each environment in both populations. In the case of PH, 

Rosas et al. (2017) performed a GWAS analysis on these same populations using the 

mean across environments and found a major effect QTL corresponding to the sd-1 

gene which was segregating in the japonica population, but fixed in the semi-dwarf 
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indica population (Rosas et al. 2017).  When we performed a single environment scan 

we could not find any other QTL in either population, other than a major-effect QTL 

corresponding to the sd-1 gene in japonica. 

Of the 23 QTL we found for PHR and GC in both populations, 8 were 

coincident with QTL reported by Quero et al. (2018) in the same populations using the 

mean across environments. For PHR in indica, we found evidence of one genomic 

region, located on chromosome 2 that is affected by humidity, one of the main 

environmental factors that affect milling quality in rice (Cooper et al. 2008, Zhao and 

Fitzgerald 2013). 

Two putative QTL in tropical japonica were co-located on chromosome 6: 

S6_27834772 for PHR and S6_27402260 for GC. These two QTL are in LD with 

qPHR.j.6.1 and qGC.j.6.2 previously found by Quero et al. (2018), and contain genes 

related to starch metabolism, such as OsBEI (LOC_Os06g51084). It is known that the 

expression of starch branching enzymes, like OsBEI, can be affected by temperature 

(Yamakawa et al. 2007; Sreenivasulu et al. 2014). According to our results, QTL 

S6_27402260 showed interaction with low temperature, precipitation and sunshine 

duration and solar radiation for GC. Other researchers have shown that periods of 

intense solar radiation and high humidity during the ripening stage can increase the 

incidence of chalky grains  (Wakamatsu and Tanaka 2009, Zhao et al. 2016). But these 

reports do not constitute enough proof that there is a causal relationship between the 

expression of these QTL and the EC, because many EC are correlated in a complex way 

and not all EC were observed. In temperate climates, where day and night temperatures 

are never as high as in the tropics, other environmental factors such as humidity and 

solar radiation can affect milling quality in a negative way. These findings should be 
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confirmed by analyzing more lines in more environments to properly quantify QTL 

main and environment-specific effects.  

The approach of mapping QTL by environment interaction used in this study 

requires a QTL to have a strong effect in a specific environment. This poses the 

limitation that QTL with smaller effects in individual environments but capable to 

explain larger proportions of the observed phenotypic G×E may be overlooked. In our 

datasets, the proportion of phenotypic variance explained by the G×Y component is low 

in the tropical japonica dataset (1.8%-7.96%, Table 3), but higher in the indica dataset 

(4.12%-20%). However, approaches for testing for genotype by year interaction at each 

SNP were performed and no significant QTL were found. 

In this work we used PLS, multiplicative reaction norm and mixed models to 

analyze our data, predict genotypic performance for yield, height and milling quality 

traits, and detect QTL by EC interactions. In all these analyses we assumed that the 

relationships between molecular markers and EC were linear, which constitutes a major 

limitation since interactions between genes and environmental conditions may take 

many different forms. A next step would be to fit statistical models with more 

biological realism, using models that could accommodate non-linear and more complex 

responses over a more extensive number of environments. Crop growth models also 

hold promise as a way to integrate more complex biological knowledge into the 

prediction process of G×E (Bustos-Korts et al. 2015, Malosetti et al. 2016). Although 

rather small, our two datasets allowed us to extract some broad conclusions about the 

nature of G×E in the Uruguayan mega-environment. Additional research, including 

more environments and modeling non-linear relationships between genes and EC, will 

be of particular value to better understand and predict the nature of G×E for 

commercially relevant traits of rice grown in temperate regions. Results from PLS and 
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QTL by EC interactions suggest that in temperate and subtropical regions, humidity and 

solar radiation may have a stronger influence on milling quality traits than temperature, 

due to the fact that temperatures in these regions are never as high as in the tropics.  
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CHAPTER 4: 

STRATEGIES FOR CROSS SELECTION USING GENOMIC SELECTION FOR 

IMPROVING YIELD AND MILLING QUALITY TRAITS IN tropical japonica RICE 

 

 

4.1 INTRODUCTION 

 Genomic prediction uses genome-wide molecular markers to predict the 

genotypic value of an individual for a trait of interest (Meuwissen et al. 2001). Marker 

effects are initially estimated from a training population that was previously genotyped 

and phenotyped, and these effects are then used to predict the performance of 

individuals in a test population that has been genotyped for the same markers. When 

these predictions are used as a selection strategy, it is called genomic selection (GS). GS 

has been extensively studied plant breeding, and several experimental studies have 

strongly indicated that it could be very useful in plant breeding (Asoro et al., 2013; 

Combs and Bernardo, 2013; Massman et al., 2013). 

Selecting the best combinations between genotypes is key to accomplishing 

genetic gain in plant breeding. One of the main challenges for breeders focused on the 

development of inbred varieties, such as in rice, is to optimize the selection of parental 

lines for crossing in order to increase the selection response in subsequent cycles. The 

number of possible crosses is usually far greater than the number of lines the breeder 

can evaluate in the field. 

Even when breeders try to use all the information available for selecting 

potential parents, many crosses are discarded in subsequent cycles, as they do not result 

in superior progeny (Heslot et al. 2015). Usually breeders focus on crosses among the 

highest performing breeding lines, trying to ensure both a high progeny mean, and a 
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large genetic variance (VG) in the progeny population. Insufficient VG in the progeny 

can be very detrimental to the progress of a breeding program, as can be seen from the 

breeder’s equation (Falconer and Mackay, 1996). Response to selection (R) is 

dependent on selection intensity (i), trait heritability (h2), and the phenotypic standard 

deviation of the population of selection candidates ( VP ).  

The usefulness of a cross (Utz et al., 2001) is defined as U = µ + iσGh , where µ

and σG are the mean and the standard deviation of the genetic values of the lines 

derived from the cross, i  is the selection intensity, and h is the square root of the 

heritability. The progeny mean of a cross is easily predictable from the mid-parent value 

(Bernardo, 2014). However, predicting the genetic variance of a progeny population is 

more difficult. Different methods have been proposed to predict genetic variance of a 

cross using either phenotype, pedigree or genetic distances (Souza and Sorrells, 1991; 

Utz et al. 2001; Melchinger et al. 1998), but none of these predictors provided good 

estimates of VG (Mohammadi et al., 2015). Zhong and Jannink (2007) suggested 

estimating VG from QTL effects estimates, assuming linked loci, and omitting h from 

the equation of usefulness, and they defined the superior progeny value as s = µ + iσG . 

Their approach uses genetic additive effects estimated either from QTL mapping or 

genome-wide prediction. This approach was later validated by Mohammadi et al. 

(2015), Tiede et al. (2015), and Lado et al., (2017) by simulating progeny from all 

possible crosses in a set of parents, and calculating the mean and the VG of each 

progeny.  

Although grain yield is the primary focus for rice breeders, milling quality is 

also of great importance since both grain yield and milling quality jointly determine the 

economic value of rice from the field to the mill and in the market (Lyman et al., 2013). 

In many occasions, milling quality traits tend to be negatively correlated to paddy yield, 
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showing also a great influence of genotype-by-environment interaction (Lyman et al., 

2013; Xu et al., 2015; Bao, 2018). For this reason, predicting and identifying crosses 

with the potential to deliver both high yield and high grain quality, and selecting the 

best progeny from these crosses, is of great importance for rice breeders.  

The main objectives of this study were to 1) explore the use of genomic 

prediction to select the best combinations of parents for crossing, and 2) compare the 

predicted performance of the progeny of these crosses (calculated through genomic 

selection methods) with the empirical performance of these lines in the field.  

For objective 1) we started from a training population (genotyped and 

phenotyped for yield and milling quality) from which 19 crosses were selected based on 

performance and genetic diversity preservation criteria (see Materials and Methods). 

From the simulated progeny of all possible cross combinations among these 19 F4 

families, we assessed the impact of cross selection based only on mid-parent value or a 

combination of mid-parent value and progeny variance, and we also evaluated different 

parental selection criteria to deliver the parents best able to improve yield and 

particularly milling quality simultaneously. For objective 2), we used a total of 43 

doubled-haploid (DH) families derived from random crosses among the 19 families, 

that were evaluated in the field in Uruguay for grain yield and milling quality.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Training population 

A tropical japonica population consisting of 309 elite breeding lines and two 

varieties (INIA Tacuari and EEA 404) belonging to the Uruguayan National Institute of 

Agricultural research (INIA), was used as training population in this study. Lines were 

evaluated during the growing seasons (October-March) in 2010-2011, 2011-2012, and 
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2012-2013 in replicated experiments. Adjusted means for each line were obtained using 

the following model: 

yijk = µ +λi +β j (i) +Gk +εijk      [1] 

where yijk is the response variable, µ  is the overall mean, λi  is a random variable 

associated with the ith trial with λi ~ N(0,σλ
2 ) , β j (i)  is a random variable associated 

with the jth block nested within the ith trial with β j (i) ~ N(0,σβ
2 ) , Gk is the effect of the 

kth genotype, and εijk is the residual error with εijk ~ N(0,σε
2 ) . 

This population was evaluated for grain yield (GY), milling yield (MY), head 

rice percentage (PHR), and chalky grain percentage (GC). The phenotyping for these 

same traits of this training population was previously described in Chapters 2 and 3. 

Best linear unbiased predictions (BLUPs) were obtained for each trait, using 

model [1] except that the genotypic effect was defined as random, assuming 

Gk ~ N(0,σ g
2 ) . Pearson correlations among traits were calculated using BLUPs of 

phenotypic traits.  

 

4.2.2 Crossing scheme for the training population 

The main objectives of the crosses performed on the training population were to 

1- Maintain genetic diversity, and 2- Improve milling quality and grain yield 

simultaneously by selecting those lines that showed good quality, and medium to high 

values for yield. Our strategy was to select genetically divergent lines for crosses using 

the information of the population genetic structure obtained from genetic diversity 

analyses. In addition, we tried to cross individuals with high BLUP values for one trait 

with individuals with high BLUPs for a different trait. Crosses were performed on field 

grown plants in February, 2014 at INIA Treinta y Tres  Experimental Station, Treinta y 
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Tres, Uruguay (33°15’S, 54°25’W). At the time when crosses were scheduled, weather 

conditions in Treinta y Tres were not favorable for flowering and crossing, given that 

strong rain and thunder storms were registered during almost the entire period. This 

situation complicated all fieldwork, and the lack of sunshine during these days delayed 

plant flowering of many of the lines selected for crossing. This strongly affected the 

choice of crosses. Female and male plants were taken from the field to the lab, where 

females were manually emasculated and pollinated with pollen donors. Of the 26 

crosses performed, 19 gave F1 seed and were sent to Cornell University in July 2014.  

 

4.2.3 Crossing scheme for the F4 population 

Twenty individuals from each of the 19 F1 families were planted in the 

greenhouse at Cornell University and advanced by single-seed descent until the F4 

generation. All F4 lines were also genotyped by GBS at Cornell University. A total of 

185 crosses were performed at random between the F4 families in the greenhouse, in 

order to obtain progeny from most of all possible cross combinations between families. 

A sample of F1 seed from all these crosses was then sent to the AgCenter-Rice 

Research Station at Louisiana State University (LSU) for Doubled Haploid (DH) line 

development. 

 

4.2.4 Genotyping  

Lines from both the training population and the F4 generation were genotyped 

using GBS in the Biotechnology Resource Center at Cornell University in 2014 and 

2016 respectively. Single Nucleotide Polymorphism (SNP) calling was performed with 

the TASSEL version 3.0 GBS pipeline (Bradbury, 2017), and SNPs were aligned to the 

MSU Nipponbare reference genome version 7.0 using Bowtie version 2 (Langmead and 
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Salzberg, 2012). Both genotypic datasets were imputed using the FILLIN algorithm 

(Swarts et al., 2014). SNPs with a minor allele frequency <5% and >50% of missing 

data were filtered out. The final genotypic matrices contained 44,598 markers for the 

training population and 22,795 markers for the F4 population. 

 

4.2.5 Population structure and principal component analysis for the training 

population 

The Principal Component Analysis (PCA) was performed over the imputed 

numeric genotype marker matrix with alleles coded as -1, 0, and 1 (homozygous for the 

minor allele, heterozygous, and homozygous for the major allele, respectively). 

Population structure in the training population was analyzed with the software 

ADMIXTURE version 1.23 (Alexander et al., 2009). The number of populations (k) 

was selected according to two main criteria: first, the lowest cross-validation error 

across a range of k values (i.e., k=1-10); second, an ad hoc correspondence with 

pedigree information.  

 

4.2.6 Cross simulation experiments 

Cross simulation experiments were performed on both the training population 

and the 19 F4 families. The performance of each parent pairwise combination was 

calculated as follows: First, two different genomic prediction models (RR-BLUP and 

Bayesian LASSO) were evaluated for each trait in the parental populations (training 

population and F4) to obtain the marker effects. Parameters for the Bayes LASSO 

model were set according to Perez and de los Campos (2014), the iteration number was 

set at 12,000 and the first 300 iterations were discarded as burn-in. Random cross-

validation was conducted by using 60% of the lines to train the models and predict the 
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remaining 40% of the lines. Each model was iterated 100 times and then the model with 

the highest prediction ability was used for subsequent analysis. All the parents in each 

of the two populations were used to estimate the marker effects and the parent’s 

performance for each of the four traits: GY, MY, PHR, and GC. However, as there were 

no differences between the prediction accuracies in both models for any trait in either of 

the two populations, the RR-BLUP model was used to estimate the marker effects for 

all traits in both populations for the remaining analyses. Second, progeny of all possible 

pairwise cross combinations were simulated both in the training population and in the 

19 F4 families, for GY, MY, PHR and GC, using the R package PopVar (Mohammadi 

et al., 2015). PopVar simulates recombinant-inbred lines (RILs) through the Rqtl 

package (Broman et al., 2003) by simulating recombination points along the 

chromosome by using independent crossovers. For each cross, 1000 RILs were 

simulated, and the genetic estimated breeding values (GEBVs) of the 1000 RILs were 

calculated from the estimated marker effects and the simulated RIL genotypes. Finally, 

the GEBVs of the 1000 RILs was used to estimate the progeny mean performance of 

each cross, while the variance of the predicted performance of the 1000 RILs was used 

to estimate the progeny variance performance of each cross. The mean of the top 10% 

of the progeny was estimated for each cross. 

 

4.2.7 Parental selection schemes in the simulated progeny of the F4 population 

Four schemes were considered to select parents most suitable to improve milling 

quality and grain yield simultaneously: 1- Select the top 10% of parent combinations 

that deliver the highest GY, from this group, select the top 50% of crosses that show the 

highest PHR, and then the top 50% for GC (S1), 2- Select the top 10% of crosses with 

the highest PHR, then the top 50% with highest GC, and from this group the 50% that 
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showed the highest values for GY (S2), 3- Select the top 10% of parent combinations 

for GC, then from these the top 50% for PHR, and finally select the 50% with the 

highest GY (S3), and 4- Use a multiplicative selection index (Elston, 1963), calculated 

for each cross i as:  

Ii = (Xi,GY − kGY )(Xi,MY − kMY )(Xi,PHR − kPHR )( ʹXi,GC + kGC )  

where kGY, kMY, kPHR, and kGC are the minimum (and maximum, for GC) 

predicted values for each trait in the predicted progeny i, Xi is the mean of the trait for 

progeny i , and ʹXi,GC = −Xi,GC  (S4). For each scheme the top 25 crosses were selected, 

and the mean and genetic variance of the selected progenies were calculated 

accordingly. The response to selection of each trait for each scheme was obtained by 

subtracting the mean in the training population from the mean of the selected progeny. 

 

4.2.8 Evaluation of DH lines in the field  

Seed from the successful DH lines developed in LSU, were planted in the field 

at INIA Treinta y Tres in December 2017. Up to 5 lines from each family were planted 

in a randomized complete block trial with three replications. Adjusted means per line 

for all four traits (GY, MY, PHR and GC) were calculated as:  

yijkl = µ +Gi + bj + rk ( j ) + cl ( j ) +εijkl  

where yijkl is the response variable; µ is the intercept; Gi is the genotypic effect; 

bj is the random block effect with bj ~ N(0,σ b
2 ) ; rk ( j ) and cl ( j ) are row and column 

effects nested within blocks, with rk ( j ) ~ N(0,σ r
2 ) and cl ( j ) ~ N(0,σ c

2 )  respectively; and 

εijkl is the residual. 
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4.3 RESULTS 

4.3.1 Phenotypic analysis, trait correlations and population structure in the 

training population 

Means and variances for all traits in the training population are summarized in 

Table 4.1. Among the milling quality traits, MY shows the lowest variance (3.07). 

Heritabilities and variance components for these traits in the same population were 

previously reported in Chapters 2 and 3.  

 

 

 

 

Trait Mean Variance 

GY  9,361 453,469.5 

MY 68.55 3.07 

PHR 61.86 5.37 

GC 11.26 10.87 

 

 

Phenotypic and BLUP correlations among traits are shown in Table 4.2. 

Correlations values for milling quality traits were positive between PHR and MY, while 

GC was negatively correlated with both PHR and MY. GY was negatively correlated 

with MY and PHR, while positively correlated with GC.   

 

 

 

Table 4.1: Mean and variances for four traits (Grain 
Yield, Milling Yield, Head Rice Percentage, and 
Chalky Grain) for a training population consisting of 
311 tropical japonica rice breeding lines from the 
Uruguayan breeding program. 
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Trait GY MY PHR GC 

GY - -0.194*** -0.253*** 0.328*** 

MY -0.396*** - 0.599*** -0.423*** 

PHR -0.407*** 0.662*** - -0.391*** 

GC 0.463*** -0.386*** -0.359*** - 

 

 

The clustering algorithm identified five groups in this population (Figure 4.1A), 

and reflected the family structure identified by standard pedigrees. This population can 

be defined as a multiparent cross where the lines were derived from 12 parents, and 

each of the five groups were comprised of half-sib families. The PCA analysis did not 

show evidence of strong population structure, being the proportion of variance 

explained by the first two eigenvectors equal to 11.2% (Figure 3.1B). 

 

 

 

 

 

 

Table 4.2: Pearson coefficients of correlation between grain yield and milling quality 
traits in the training population. Phenotypic correlations are shown in the upper 
diagonal, and correlations between BLUP values in the lower diagonal.   
 

***, significant at the 0.001 probability level 
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4.3.2 Genomic selection models on the training population 

 Prediction accuracies between predicted and observed breeding obtained with 

RR-BLUP and Bayesian LASSO models were very similar (Supplemental Table 4.1). 

For this reason, and because RR-BLUP models are more convenient in terms of 

computation time than Bayesian models, all further analyses were conducted using RR-

BLUP model. 

Individual #
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Figure 4.1: Genetic structure of the tropical japonica training population. (A) 
Population clustering diagram showing the five groups within the training 
population. (B) PCA analysis showing the two first principal components and 
the five groups found in the clustering analysis.  
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High correlations among predicted and observed breeding values were found for 

GY ( r( ŷ,y ) = 0.54), MY ( r( ŷ,y )= 0.62), PHR ( r( ŷ,y ) = 0.65), and GC ( r( ŷ,y )= 0.51) with the 

RR-BLUP model (Supplementary Figure 4.1). Marker effects for progeny prediction 

were calculated using this model.  

 

4.3.3 Experimental crosses and progeny prediction in the training population 

In order to maintain the genetic diversity of our breeding population we crossed 

genetically divergent individuals using the information of the population genetic 

structure in Figure 4.1 and the BLUPs for each line calculated in the phenotypic 

analysis. BLUP values and genetic subgroup membership for selected crosses are 

shown in Supplementary Figure 4.1, while Table 4.3 shows the phenotypic means of all 

the parents used in each cross, and whether that mean was one standard deviation above 

the overall mean in the training population (in green), below (in red), or within one 

standard deviation of the mean. 

The predicted mean of the simulated progeny was perfectly correlated with the 

mid-parent value in all traits (r > 0.999 in all four traits). We found a triangular 

relationship between the mean and the variance of the predicted progeny in all traits 

(Figure 4.2). This is caused by the combination of two factors: 1- crosses between lines 

with similar trait means (i.e., high × high or low × low) yielding progeny with extreme 

mean values and low variance, and 2- crosses between lines with opposite extreme 

values resulting in progeny with intermediate means and high variance.  
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Cross 
name P1 GY MY PHR GC P2 GY MY PHR GC 

JAP_1 L9063 10123 68.8 62.5 8.7 L9553 9548.0 68.6 63.6 7.9 

JAP_2 L9430 9867.3 69.0 63.1 10.8 L9639 9455.0 69.0 65.6 7.6 
JAP_3 L9312 9764.4 68.5 63.4 9.8 L9579 9756.2 68.1 63.3 7.0 

JAP_4 L9054 10196 69.0 59.4 7.5 L9262 10065 68.5 65.3 9.9 

JAP_5 L8770 9754.6 69.2 62.6 10.4 L9311 9673.0 69.2 61.9 10.3 

JAP_6 L9563 10428 68.4 64.4 10.2 L9639 9455.0 69.0 65.6 7.6 
JAP_7 L9430 9867.3 69.0 63.1 10.8 L9553 9548.0 68.6 63.6 7.9 

JAP_8 L8968 9266.6 68.1 59.9 6.3 L9535 9851.6 68.2 64.7 9.6 

JAP_9 L9430 9867.3 69.0 63.1 10.8 L9535 9851.6 68.2 64.7 9.6 
JAP_10 L9363 10002 69.4 59.9 7.4 L9574 10585 67.0 63.0 11.4 

JAP_11 L9363 10002 69.4 59.9 7.4 L9430 9867.3 69.0 63.1 10.8 

JAP_12 L8817 10206 70.4 63.8 10.6 L9460 9753.0 68.3 61.6 7.7 
JAP_13 L8770 9754.6 69.2 62.6 10.4 L8817 10206 70.4 63.8 10.6 

JAP_14 L9262 10065 68.5 65.3 9.9 L9431 9818.7 68.2 61.0 10.1 

JAP_15 L8802 9911.4 69.7 62.1 11.7 L9460 9753.0 68.3 61.6 7.7 

JAP_16 L9553 9548.0 68.6 63.6 7.9 L9748 10429 67.4 63.4 11.1 
JAP_17 L9363 10002 69.4 59.9 7.4 L9748 10429 67.4 63.4 11.1 

JAP_18 L9261 9725.4 68.7 63.3 8.8 L9764 10058 67.9 62.4 12.4 

JAP_19 L9617 10993 67.7 63.2 12.5 L9695 9144.0 68.7 64.3 7.8 
 

 

 

 

 

 

Table 4.3: Crosses performed in 2014 among lines from the training population of Uruguayan 
tropical japonica breeding lines. Phenotypic mean of each trait (GY, MY, PHR and GC) is 
shown for each parent (P1 and P2). Values highlighted in green are those that are higher than 
the total population mean plus one standard deviation, in red are those phenotypic means that 
are lower than the total mean minus one standard deviation, and in yellow the values that lie 
within plus or minus one standard deviation of the mean.   
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When selecting crosses based on either mid-parent value or based on the mean 

of the top 10% of the progeny, we can observe that many of the selected crosses were 

the same for both selection methods (Figure 4.2, in purple). Among all traits, GY was 

the one that showed the highest number of crosses in common (858) between the overall 

mean and the mean of the top 10% value, followed by PHR (790), MY (692), and 

finally GC (594).  

Among the crosses performed in 2014, three crosses (JAP_4, JAP_10, and 

JAP_17) were among the top 1000 crosses selected by both overall mean and the mean 

GY	 MY	

PHR	 GC	

Figure 4.2: Expected mid-parent performance vs. predicted progeny 
variance from all pairwise biparental cross combinations in the training 
population for grain yield (GY), milling yield (MY), head rice percentage 
(PHR) and percentage of chalky grain (GC).  Highlighted, the top 1000 
crosses selected by mid-parent value (red), mean of the top 10% of the 
progeny (blue), the crosses in common between the two groups (purple), 
and the crosses conducted in 2014 (black). 
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of the top 10% value, and one (JAP_19) among the best crosses selected by the mean of 

the top 10% value for GY (Figure 4.2). For MY, none of the 2014 crosses were among 

the top 1000 crosses, while for PHR, one cross (JAP_6) was among the selected by both 

overall mean and the mean of the top 10% value, and for GC, two crosses (JAP_4 and 

JAP_8) were among the top 1000 crosses selected by the mean of the top 10% value 

(Figure 4.2). 

 Breeders often breed for multiple traits simultaneously. For the presented 

scenario, high values are desired for GY, MY and PHR, and low values are desired for 

GC. The correlations between BLUPs of GY and milling quality traits presented in 

Table 4.2, suggest that selecting for the best lines for GY will lead to lower values for 

MY and PHR, and higher values of GC, and likewise, selecting for best lines in terms of 

milling quality, will lead to selection of poorer performing lines for GY. Trait 

correlations changed from parental to progeny populations. For example, the average 

correlation between GC and GY in the simulated progeny is 0.39, but it ranges from -

0.71 to 0.95 (Supplemental Figure 4.1), so even though a trait can show a strong 

unfavorable correlation with GY in the training population, it was still possible to see a 

favorable correlation in the progeny population derived from two parents selected from 

the training population. In Figure 4.3 we show the effect of correlated response on 

selection for each trait when selecting for the progeny mean of each milling quality trait. 

Despite the fact that the resulting correlation (r) between GY and either MY or PHR 

was negative in the progeny, while the average correlation between GY and GC was 

positive, there exists variability in GY values among crosses with similar means for 

MY, PHR, and GC (Figure 4.3). Also, correlations among traits for the crosses 

conducted tend to locate in those regions where the trait correlations are more favorable 

(Figure 4.3, in black). 
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4.3.4 Progeny prediction for crosses among the 19 F4 families 

 Figure 4.4 shows the expected mid-parent value and the predicted variance for 

each simulated cross for all pairwise combinations among the 19 F4 families. In this 

situation we also observed that many of the selected crosses and parents were the same 

when selecting on either mid-parent value or mean of the top 10% of the progeny 

(Figure 3.4A). Of the 100 best crosses based on these two selection methods, 69 were in 

common for GY, 54 for MY, 64 for PHR, and 50 for GC (Figure 4.4A, in purple).  

r	=	-0.43	

r	=	-0.36	 r	=	0.59	

r	=	0.53	

r	=	-0.59	 r	=	-0.61	

Figure 4.3: Relationship between the values of MY, PHR, and GC and average 
genotypic estimated breeding values of GY, MY and PHR for the corresponding 
lines for all pairwise crosses between 311 elite rice-breeding lines belonging to the 
training population. Values corresponding to the crosses performed in 2014 are 
shown in black. 
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GY	 GY	

MY	 MY	

PHR	 PHR	

GC	 GC	

A B

Figure 4.4: Expected mid-parent performance vs. predicted progeny variance 
from all pairwise biparental cross combinations among 19 F4 families for grain 
yield (GY), milling yield (MY), head rice percentage (PHR) and percentage of 
chalky grain (GC). A) Highlighted, the top 1000 crosses selected by mid-
parent value (red), mean of the top 10% of the progeny (blue), the crosses in 
common between the two groups (purple). B) The random crosses conducted 
in the greenhouse are highlighted in black, and those that yielded DH lines are 
shown in red. 



	 122	

Figure 4.4B shows the predicted mean for all 185 cross combinations that were 

conducted at random in the greenhouse among the 19 families (in black), and of those, 

the ones for which we were able to regenerate plants after anther culture at LSU (in 

red). For all traits, the 185 crosses cover the whole range of means and variances. 

 Predicted correlated response to selection when selecting for milling quality 

traits is shown in Figure 4.5. There still exists an unfavorable relationship between GY 

and milling quality traits, but again, trait correlations changed between parental and 

progeny populations, providing new opportunities for selection. For instance, average 

correlations between GY and PHR across the 1000 simulated RILs, over all pairwise 

crosses is -0.17 and ranged between -0.78 to 0.95; and the average correlation between 

GY and GC was 0.30, ranging from -0.61 to 0.82 (Supplementary Figure 4.2).  

 

 
 

r	=	0.38	

r	=	0.43	

r	=	-0.44	

r	=	-0.40	

r	=	-0.48	

r	=	-0.17	

Figure 4.5: Relationship between midparent value of MY, PHR, and GC and 
average genotypic estimated breeding values of GY, MY and PHR for the 
corresponding lines for all pairwise crosses between 19 F4 families. Random 
crosses between families are shown in black, and DH families are shown in red.   
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 Random crosses conducted between the F4 families, and those DH families that 

were further evaluated in the field are also shown in Figure 4.5; all crosses cover the 

whole range of means and correlated responses. 

 
4.3.5 Selection schemes in the F4 population 
 
 In the four different selection schemes tried on the F4 population (S1-S4), GY, 

PHR and GC were assumed to be the target traits (Table 4.4). Scheme 1 generated the 

largest response for GY (493.05 Kgha-1), but the responses for MY, PHR and GC were 

small (-0.03%, 0.19% and -0.12%, respectively). For scheme S2, the response for yield 

was the second largest (275.74 Kgha-1), while the responses for MY and PHR were 

positive and the largest among all schemes (0.35% and 0.16%). Also, the response for 

GC in scheme 2 was the second largest among all selection schemes (-2.02%). In 

scheme 3, GC showed the largest negative favorable response (-2.18), but the response 

for GY was the smallest. For selection scheme S4, the response for PHR and GC were 

the second most favorable after S2. Among all traits, MY showed the smallest response 

to selection in all selection schemes, which could be related to the low variance for this 

trait shown in the training population.  

  

Trait Selection response 
 S1 S2 S3 S4 TP 

GY 493.05 275.74 4.846 234.3 9361.0 
MY -0.03 0.35 0.16 0.30 68.55 
PHR 0.19 2.11 0.55 1.74 61.86 
GC -0.12 -2.02 -2.18 -1.47 11.26 

 

 

Table 4.4: Selection response of the selected progenies from four parental selection 
schemes (S1 to S4). For comparison, the mean of the training population (TP) is also 
presented.  
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Overall, scheme 2 was the one that gave the most favorable responses for all traits 

simultaneously, followed by S4.  

 

4.3.6 Field evaluation of DH families 

 Out of the 185 families originated from random crosses among the 19 families, 

only 43 resulted in fully viable plants after the anther culture procedure. Up to five 

plants from each family were evaluated in a replicated trial in the field in Uruguay. 

Table 4.5 shows the means for each trait in the population. 

 

 

 

Trait Mean SD 
GY 4510.07 1480 
MY 70.25 0.85 
PHR 62.64 2.85 
GC 3.62 3.31 

 

 Means for GY and GC in the DH population are lower than the mean in the 

training population, while the means for MY and PHR were higher (Table 4.5). Also, 

correlations between the BLUPs of GY and all three milling traits in this population 

were not significantly different than zero (Table 4.6), while the correlation between the 

BLUPs of PHR and MY was positive (0.3), and between PHR and GC was negative (-

0.5). These two last correlations were both significant at a p-value of 0.001 (Table 4.6).  

 

 

 

 

Table 4.5: Means and standard deviations 
for four traits in the doubled-haploid 
population evaluated in the field. 
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Trait GY MY PHR GC 

GY - ns ns ns 

MY 0.178 - *** ns 

PHR 0.07 0.3 - *** 

GC 0.123 -0.11 -0.5 - 

 

 

 

We also sought to test how well predictions obtained from genomic selection 

methods (using RR-BLUP models) for each trait individually, corresponded to 

empirical data based on field trials in Uruguay. Table 4.7 shows the ranking for GY of 

the top 10 DH families according to the predictions (left-side of the table) and how 

these 10 families ranked according to field data, and the ranking of the top 10 DH 

families according to the field data, and their position in the predictions ranking. For 

GY, only one DH family (DH_168) among the predicted top 10, was in the list of the 

top 10 families in the field (Table 4.7). Among the parents of the DH families of the 

predicted ranking, JAP_16 was the one that appeared most frequently in the top 10 

crosses (4 times), however, it only appeared in one cross among the top 10 tested 

families. 

For MY, four families (DH_110, DH_159, DH_183, and DH_65) among the top 

10 predicted were also among the top 10 evaluated families in the field (Table 4.8). 

Only two of these four families had one parent in common (JAP_15). Among the field 

Table 4.6: Correlations between 
BLUPs of GY, MY, PHR and GC in 
the DH population evaluated in 
Uruguay.  

***, significant at the 0.001 probability level 
ns, non-significant  
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tested lines, the parental line that appeared most frequently was JAP_6 (3 crosses) 

which appeared twice among the predicted crosses ranking (Table 4.8). 

 

 
 Predicted  Field evaluated 

Cross P1 P2 MP 
pred 

Mean 
Field 

Rank in 
field 

Cross P1 P2 MP 
pred 

Mean 
Field 

Rank in 
pred 

DH_168 JAP_16 JAP_4 9816.9 5430.2 10 DH_159 JAP_7 JAP_13 9417.1 8498.9 24 
DH_12 JAP_19 JAP_3 9777.6 1833.7 21 DH_108 JAP_17 JAP_15 9356.8 7307.5 29 
DH_59 JAP_18 JAP_16 9757.9 5043.7 17 DH_143 JAP_10 JAP_13 9421.0 6980.7 23 
DH_185 JAP_11 JAP_16 9683.3 1963.3 42 DH_178 JAP_2 JAP_4 9518.4 6399.1 14 
DH_83 JAP_18 JAP_17 9682.6 4514.6 24 DH_16 JAP_9 JAP_6 9334.7 6382.7 31 
DH_70 JAP_17 JAP_13 9674.9 5357.5 11 DH_42 JAP_14 JAP_10 9319.6 5799.5 36 
DH_60 JAP_19 JAP_10 9613.3 5413.6 12 DH_8 JAP_8 JAP_14 9265.3 5552.1 40 
DH_61 JAP_3 JAP_10 9590.2 4632.6 20 DH_43 JAP_14 JAP_7 9272.2 5515.6 38 
DH_128 JAP_3 JAP_1 9576.4 3985.4 31 DH_161 JAP_11 JAP_19 9414.9 5449.8 25 
DH_62 JAP_12 JAP_16 9570.4 4339.2 25 DH_168 JAP_16 JAP_4 9816.9 5430.2 1 

 

 

 Predicted  Field evaluated 
Cross P1 P2 MP 

pred 
Mean 
Field 

Rank in 
field 

Cross P1 P2 MP 
pred 

Mean 
Field 

Rank in 
pred 

DH_110 JAP_5 JAP_15 69.03 71.368 5 DH_159 JAP_7 JAP_13 68.92 72.08 3 
DH_68 JAP_12 JAP_15 68.92 69.85 31 DH_40 JAP_11 JAP_6 68.70 71.53 12 
DH_159 JAP_11 JAP_19 68.92 72.077 1 DH_183 JAP_4 JAP_15 68.87 71.43 4 
DH_183 JAP_4 JAP_15 68.87 71.43 3 DH_28 JAP_18 JAP_6 68.68 71.37 17 
DH_16 JAP_9 JAP_6 68.87 70.224 19 DH_110 JAP_5 JAP_15 69.02 71.36 1 
DH_65 JAP_7 JAP_6 68.82 71.26 7 DH_128 JAP_12 JAP_16 68.61 71.35 21 
DH_77 JAP_12 JAP_13 68.79 70.026 26 DH_65 JAP_7 JAP_6 68.82 71.27 6 
DH_167 JAP_15 JAP_1 68.74 69.532 37 DH_15 JAP_9 JAP_3 68.69 71.24 15 
DH_143 JAP_10 JAP_13 68.72 70.896 11 DH_60 JAP_19 JAP_10 68.57 71.11 26 
DH_8 JAP_8 JAP_14 68.71 69.981 29 DH_90 JAP_12 JAP_17 68.36 71.00 40 

 

For PHR, four families among the top 10 predicted lines (DH_29, DH_42, 

DH_60, and DH_110) were among the top 10 evaluated lines (Table 4.9). Among these 

four families, only two (DH_42 and DH_60) shared one parent in common (JAP_10). 

Table 4.7: Ranking of top 10 families for grain yield (GY) based on predictions (left 
side) and based on field evaluations (right side). P1 and P2 are the F4 parents of 
each family, MP is the mid-parent value based on the predicted values of the 
parents, the mean of the family according to field evaluation, and its corresponding 
position in the ranking of field evaluation for the prediction ranking, or its position 
in the ranking of predictions for the field evaluation.  

Table 4.8: Ranking of top 10 families for milling yield (MY) based on predictions 
(left side) and based on field evaluations (right side). P1 and P2 are the F4 parents of 
each family, MP is the mid-parent value based on the predicted values of the 
parents, the mean of the family according to field evaluation, and its corresponding 
position in the ranking of field evaluation for the prediction ranking, or its position 
in the ranking of predictions for the field evaluation.  
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Finally, for GC, six families among the top 10 predicted (DH_8, DH_15, DH_19, 

DH_70, DH_156, and DH_161) were also among the top 10 performing families in the 

field (Table 4.10). Among these six families, JAP_3 was the only parental line that 

appeared in more than one cross.   

 

Predicted Field evaluated 
Cross P1 P2 MP 

pred 
Mean 
Field 

Rank in 
field 

Cross P1 P2 MP 
pred 

Mean 
Field 

Rank in 
pred 

DH_16 JAP_9 JAP_6 62.93 62.91 25 DH_60 JAP_19 JAP_10 62.27 67.99 9 
DH_15 JAP _9 JAP_3 62.77 63.71 15 DH_29 JAP _18 JAP_7 62.31 67.44 8 
DH_161 JAP _11 JAP_19 62.76 63.50 17 DH_143 JAP_10 JAP_13 61.90 66.34 23 
DH_8 JAP _8 JAP_14 62.67 63.44 19 DH_156 JAP_5 JAP_1 61.61 66.22 30 
DH_42 JAP_14 JAP_10 62.62 65.50 7 DH_110 JAP_5 JAP_15 62.38 66.05 7 
DH_65 JAP _7 JAP_6 62.53 64.39 12 DH_70 JAP_17 JAP_13 61.52 65.68 34 
DH_110 JAP _5 JAP_15 62.38 66.05 5 DH_42 JAP_14 JAP_10 62.02 65.50 5 
DH_29 JAP _18 JAP_7 62.31 67.44 2 DH_62 JAP_3 JAP_1 61.18 65.39 38 
DH_60 JAP _19 JAP_10 62.27 67.99 1 DH_97 JAP_18 JAP_13 61.66 65.20 29 
DH_159 JAP_7 JAP_13 62.26 62.05 28 DH_90 JAP_12 JAP_17 61.66 65.10 28 
 

 

Predicted Field evaluated 
Cross P1 P2 MP 

pred 
Mean 
Field 

Rank in 
field 

Cross P1 P2 MP 
pred 

Mean 
Field 

Rank in 
pred 

DH_8 JAP _8 JAP_14 10.00 1.81 10 DH_29 JAP _18 JAP_7 11.33 0.28 4 
DH_161 JAP _11 JAP_19 10.24 1.49 7 DH_156 JAP_5 JAP_1 10.64 0.74 8 
DH_16 JAP_9 JAP_6 10.28 2.67 19 DH_15 JAP_9 JAP_3 10.67 1.09 10 
DH_29 JAP _18 JAP_7 10.31 3.73 1 DH_128 JAP_12 JAP_16 11.08 1.14 27 
DH_70 JAP_17 JAP_13 10.37 1.22 6 DH_49 JAP_5 JAP_10 10.87 1.19 19 
DH_59 JAP_18 JAP_16 10.42 5.44 36 DH_70 JAP_17 JAP_13 10.37 1.22 5 
DH_143 JAP_5 JAP_1 10.44 2.83 22 DH_161 JAP _11 JAP_19 10.24 1.49 2 
DH_156 JAP_5 JAP_1 10.64 0.74 2 DH_68 JAP_12 JAP_15 11.37 1.51 32 
DH_35 JAP_7 JAP_1 10.67 5.52 37 DH_61 JAP_3 JAP_10 10.77 1.58 12 
DH_15 JAP_9 JAP_3 10.67 1.09 3 DH_8 JAP _8 JAP_14 10.00 1.81 1 

 

 

Table 4.9: Ranking of top 10 families for percentage of head rice (PHR) based on 
predictions (left side) and based on field evaluations (right side). P1 and P2 are the F4 
parents of each family, MP is the mid-parent value based on the predicted values of 
the parents, the mean of the family according to field evaluation, and its corresponding 
position in the ranking of field evaluation for the prediction ranking, or its position in 
the ranking of predictions for the field evaluation.  
	

Table 4.10: Ranking of top 10 families for percentage chalky grain (GC) based on 
predictions (left side) and based on field evaluations (right side). P1 and P2 are the F4 
parents of each family, MP is the mid-parent value based on the predicted values of 
the parents, the mean of the family according to field evaluation, and its corresponding 
position in the ranking of field evaluation for the prediction ranking, or its position in 
the ranking of predictions for the field evaluation.  
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4.4 DISCUSSION 

4.4.1 Cross prediction 

 The mid-parent value is a commonly used predictor for cross prediction and 

parental selection. In our case, the predicted mean performance of the simulated 

progeny was perfectly correlated with the mid-parent value for all traits. This result is 

expected since in an additive model the expected value of the mean of the progeny 

calculated as the mid-parent value is the same as the mean of the RIL’s performance.  

This observation was also found in maize for silking date and protein (Bernardo, 2014), 

barley for yield and deoxynivalenol (Mohammadi et al., 2015), and in wheat for grain 

yield, protein content, loaf volume and mixing time (Lado et al. 2017). 

 When both mid-parent GEBV and the mean of the top 10% of the population 

were used for cross prediction in the training and F4 populations, a large number of 

common crosses were found, mostly for GY. This result is consistent with previous 

studies (Zhong and Jannink, 2007; Mohammadi et al., 2015; and Lado et al., 2017), and 

indicates that the predicted mean progeny performance is the strongest driver for 

selecting superior crosses for GY. Zhong and Jannink (2007) previously showed that 

the utility of including estimates of genetic variance in cross prediction is greater when 

the variance of the progeny means is lower than the variance of the progenies standard 

deviation. However, for milling quality traits the percentage of selected crosses in 

common between the mid-parent value and the man of the top 10% of the predicted 

progeny was smaller. These results indicate that for milling quality traits, the influence 

of the variance could be a more relevant factor for cross selection. This is in accordance 

with results found by Lado et al. (2017) in wheat, where the percentage of crosses in 

common between mid-parent value and top 10% of the population was lower for grain 

quality compared to grain yield.   
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 When looking at Figure 4.2, few of the 19 crosses between elite lines in the 

training population were among the top 1000 based on either the overall progeny mean 

or for the mean of the top 10% of the progeny. For MY, none of the 19 crosses were 

included in any of these categories. Given the trait correlations in this population, 

choosing the best crosses for a given trait, for example GY, may not be the best option 

since we could be selecting against milling quality. For this reason, the crosses selected 

originally were not among the top performing lines for any particular trait, but were 

good performing lines for all traits. Unfortunately, weather conditions in Uruguay 

during flowering season in 2014 delayed plant flowering and affected the choice of 

crosses. Nonetheless, some of the crosses performed showed a favorable trade-off 

among traits, as can be seen in the correlated response plots in Figure 4.3.  

 

4.4.2 Parental selection for improving multiple traits 

Simultaneous improvement of GY and milling quality in rice is a challenging 

due to the fact that these traits are often unfavorably correlated, as demonstrated in this 

study. However, individual genotypes may carry different favorable alleles, so genetic 

correlations among traits in the progeny can differ from correlations observed in the 

parental populations.  Even when GY and MY and PHR were negatively correlated in 

the training population (or positively in the case of GY and GC), positive correlations 

(or negative) could be observed in some of the progeny populations (Supplemental 

Figures 4.1 and 4.2).  

 When multiple traits are targeted simultaneously in breeding, different selection 

strategies can be applied. In this work we compared three different types of independent 

culling selection (S1-S3), differing in the intensity of selection for each trait, and we 

also used a multiplicative index constructed from GY and three milling quality traits 
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(S4). The overall success for all traits in S1-S3 depended mainly on the intensity of 

selection applied to each trait. In S1, where the highest intensity was applied to GY, the 

response to selection obtained for milling quality was low for all three quality traits, 

particularly for GC. The opposite was true for S3, where GC was selected at higher 

intensity, resulting in the lowest response for GY. As a result, S2 appears to be the best 

strategy for multiple trait selection because it applies high selection intensity on PHR, 

which showed a weaker negative correlation with GY, and a stronger negative 

correlation with GC, which is more desirable. Using a multiplicative index as a 

selection strategy also proved to be a good strategy, although the response obtained for 

all target traits was lower than when S2 was used. Selection indices can be very useful 

when dealing with negatively correlated traits since they allow to retain individuals that 

can be outstanding for one trait and average for other.  

 

4.4.3 Comparisons between predictions and field data 

  Random crosses were performed among the 19 F4 families with the objective of 

testing in the field in order to determine whether GS can accurately predict the best 

performing lines for four traits independently. In an attempt to speed-up the process of 

obtaining homozygous lines for field evaluation, we generated DH lines (via anther 

culture) from the F1’s of all random crosses. Although it is generally assumed that 

tropical japonica genotypes are more responsive to callus induction and plant 

regeneration than indica genotypes, we could only recover viable plants from 43 crosses 

out of 185 (23%).  Also, the number of plants recovered for each family was low, 

ranging from 1 to 8 individuals.  

 When looking at the field performance of these lines, we can see that GY was 

low compared to the predicted GY in the parents and the predictions obtained by GS.  
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This can be explained by late planting. Due to delayed arrival of the seed to Uruguay, 

they were planted in mid December, two months later than regular rice planting season 

in Uruguay. For this reason, plants typically lagged in development, going into the fall 

where low temperatures were registered during flowering and grain filling stages, and 

resulting in low yields. This helps explain why the ranking of the top 10 predicted lines 

according to GS had no lines in common with the ranking of top 10 lines according to 

field evaluations.  

 In contrast to GY, phenotypic values for MY and PHR were in the expected 

range. On the other hand, GC showed very low values across families, which was 

unexpected. PHR, MY and GC are measured on a sample of 100g of rice, so these traits 

were not affected by the low yield that resulted from late planting. However, late 

planting may induce grain breakage since grains tend to dry at a faster pace in the field, 

leading grains to fissure, crack and be chalky. Also, low minimum temperatures and 

low solar radiation can occur during late April-beginning of May (when this population 

was harvested), which would be expected to have a negative effect on chalk. 

Nonetheless, prediction accuracies for milling quality traits were about 40%-60% 

(Tables 4.8, 4.9 and 4.10), and GC showed the highest accuracy, with 6 families 

correctly predicted out of 10. These results suggest that GS could be a good strategy for 

improvement of milling quality in Uruguayan rice. Further confirmation based on more 

accurate phenotypic evaluations, with a higher number of families, and under the 

regular planting schedule should be performed in order to better understand the possible 

benefits of implementing GS in the Uruguayan breeding program. 

 The low number of plants regenerated after anther culture indicates that the use 

of DH lines may not be the best strategy for saving time in obtaining fixed lines with 

this germplasm. Even though tropical japonica rice tends to have a better response to 
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anther culture than indica rice, this response is highly genotype-dependent (He et al., 

2006). Other approaches such as rapid-generation advance (RGA) in greenhouse 

facilities would be more appropriate as a strategy for shortening generation time; 

however, the economic investment required to support such facilities is often out of 

reach for small national breeding programs.   

 A second year of field evaluation of these lines is currently underway. DH 

families were planted in the field at the appropriate seeding time (beginning of October 

2018), and the data will be ready for analysis at the end of the harvesting season (mid-

March 2019). The progeny from all 185 crosses were advanced (in parallel with the DH 

lines) via single-seed descent in the greenhouse at Cornell University, and F4-derived 

lines will be sent to Uruguay for seed multiplication and further field evaluation. 

Results from these analyses may allow us to obtain more accurate estimations on the 

potential advantages of applying GS for yield and milling quality improvement. 

 In this study we estimated progeny means using genomic predicted mid-parent 

values, and found they were identical to the means of the simulated progeny. In this 

study, modeling the genetic variance to predict the best crosses had a small impact on 

prediction accuracies for complex traits like grain yield, but may have a higher 

influence in milling quality traits such as head rice percentage, milling yield and grain 

chalkiness. Use of a simulation approach for selecting suitable parents for crossing can 

help disrupt unfavorable correlations between traits, and make informed selection 

strategies using either independent culling or selection indices. Further validation of the 

strategies outlined in this chapter will provide a better foundation for future decision-

making about the role that GS may play in the Uruguayan rice breeding program. 
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4.6 SUPPLEMENTARY MATERIAL 

 

 

 

 

 

Cross 
name P1 

Structure 
group GY MY PHR GC P2 

Structure 
group GY MY PHR GC 

JAP_1 L9063 
 

322.77 0.30 -1.76 -1.55 L9553 
 

291.38 0.26 0.07 -3.07 
JAP_2 L9430 

 
733.94 1.22 0.37 0.17 L9639 

 

341.80 1.12 2.32 -2.95 
JAP_3 L9312 

 
232.72 0.38 2.36 -0.86 L9579 

 

462.84 -0.25 3.09 -1.45 

JAP_4 L9054 
 

703.51 1.71 -3.21 -1.90 L9262 
 

285.61 0.15 2.93 -1.50 
JAP_5 L8770 

 

324.94 2.51 1.10 -1.03 L9311 
 

98.40 1.51 0.29 -0.22 

JAP_6 L9563 

 

712.85 0.88 2.65 0.39 L9639 

 

341.80 1.12 2.32 -2.95 

JAP_7 L9430  733.94 1.22 0.37 0.17 L9553 
 

291.38 0.26 0.07 -3.07 

JAP_8 L8968 
 

156.20 0.14 2.66 -3.41 L9535 

 

253.17 0.08 1.81 -1.41 

JAP_9 L9430 
 

733.94 1.22 0.37 0.17 L9535 
 

253.17 0.08 1.81 -1.41 

JAP_10 L9363 
 

30.78 2.25 0.32 -2.79 L9574 
 

956.31 0.95 1.16 -1.36 

JAP_11 L9363 
 

30.78 2.25 0.32 -2.79 L9430 
 

733.94 1.22 0.37 0.17 

JAP_12 L8817 

 

420.87 1.22 3.00 -0.05 L9460 
 

240.66 -0.10 0.92 -2.30 
JAP_13 L8770 

 

324.94 2.51 1.10 -1.03 L8817 
 

420.87 1.22 3.00 -0.05 

JAP_14 L9262 

 

285.61 0.15 2.93 -1.50 L9431 

 

392.52 0.10 0.69 -1.40 

JAP_15 L8802 
 

159.67 1.68 0.11 0.80 L9460 
 

240.66 -0.10 0.92 -2.30 

JAP_16 L9553 
 

291.38 0.26 0.07 -3.07 L9748 
 

1052.70 -0.12 -0.55 0.19 

JAP_17 L9363 
 

30.78 2.25 0.32 -2.79 L9748 
 

1052.70 -0.12 -0.55 0.19 

JAP_18 L9261 

 

289.27 0.37 1.64 0.00 L9764 

 

1002.94 -0.04 0.40 0.11 
JAP_19 L9617   948.77 0.19 1.32 0.44 L9695   87.94 0.01 2.73 -1.10 

  

 rrBLUP BayesLASSO 
 mean sd mean sd 
GY 0.54 0.03 0.53 0.02 
MY 0.62 0.01 0.61 0.01 
PHR 0.65 0.02 0.66 0.01 
GC 0.51 0.02 0.51 0.02 

Supplementary Table 4.1: Prediction accuracies obtained for grain yield (GY), 
milling yield (MY), percentage of head tice (PHR), and percentage of chalky grain 
(GC) in the training population, with the rrBLUP and the BayesLASSO methods. 

	 	
	 	

	 	

	 	
	 	

	 	

	 	

	

	 	

	 	

		
		

		
		

		

	 	
	 	
	

	
	

	 	

	 		

Supplementary Table 4.2: Crosses performed in 2014 among lines from the training 
population of Uruguayan tropical japonica breeding lines. BLUP values of each trait 
(GY, MY, PHR and GC) and structure group membership are shown for each parent (P1 
and P2). 
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Supplementary Figure 4.1: Frequency distribution of correlations 
between grain yield (GY), milling yield (MY), percentage of head 
rice (PHR), and percentage of chalky grain (GC), in all pairwise cross 
combinations in the training population. 

Supplementary Figure 4.2: Frequency distribution of correlations 
between grain yield (GY), milling yield (MY), percentage of head 
rice (PHR), and percentage of chalky grain (GC), in all pairwise cross 
combinations in the F4 population. 
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CHAPTER 5: 

EXPLORING THE GENETIC BASIS OF ANTHER CULTURE RESPONSE IN 

DOUBLED HAPLOID tropical japonica RICE  

 

5.1 INTRODUCTION 

 Creation of genetic variability is essential in any crop improvement program. 

Conventional recombinational breeding usually begins with hybridization between 

diverse parents followed by 6-9 cycles of selfing and 3-5 years of field evaluation 

before a pure breeding line is released as a new variety. Anther culture (AC) improves 

efficiency by generating homozygous lines directly from the F1; fertile DH lines can be 

phenotyped directly and provide an opportunity to evaluate genotypes with fixed gene 

combinations that would otherwise disappear after several generations of recombination 

using conventional breeding methods.  

 Anther culture consists of first, the initial development of calli and second, 

regeneration of green plants from embryogenic calli. Briefly, rice panicles are collected 

during the booting period. At this stage, the microspores are at the mid- to late-

uninucleate stage. Spikelets are sterilized and anthers are dusted over the surface of 

callus-inducing medium and incubated in the dark. Then, the calli are transferred to 

petri dishes containing plant regeneration medium and incubated under artificial light 

for callus regeneration. Green plantlets are transferred to rooting medium to induce root 

formation, and plants with well-formed roots are then transferred to pots in a 

greenhouse (Mishra et al., 2013).   

 Although anther culture is widely used for practical breeding, its application is 

still limited by many factors, including  low frequency of callus induction and plant 

regeneration, genotypic dependency of regeneration ability, and high frequency of 
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haploid plants (Medhabati et al. 2014, Tripathy, 2018). Indica rice varieties show the 

most limited response to current anther culture techniques in rice; they are given to 

early anther necrosis, poor callus proliferation and regeneration of albino plantlets 

(Chen et al., 1991). On the other hand, japonica varieties are generally easier to 

regenerate from anther culture than indica varieties, though their responsiveness varies 

widely even among japonica genotypes (He et al., 2006). Several genetic studies have 

been performed to improve regeneration ability from seed-derived calli in rice 

(Taguchi-Shiobara et al., 1996; Kwon et al., 2001). However plant regeneration ability 

is quantitatively inherited and greatly affected by the environment (Kwon et al., 2001; 

Schiantarelli et al. 2001; Taguchi-Shiobara et al. 2006; Li et al. 2013), which makes it 

difficult to reliably select responsive genotypes in efforts to improve regeneration 

ability.  

 In past decades various studies have tried to identify the genes or QTL 

associated with callus induction and plant regeneration in rice. Most of these studies 

have been performed on mapping populations from bi-parental crosses between indica 

and japonica varieties (Taguchi-Shiobara et al. 1997, Taguchi-Shiobara et al. 2006, Li 

et al. 2013). However, none of these studies have focused on exploring the genetic 

mechanisms underlying anther culture response within japonica germplasm. 

 The aim of this study was to identify QTLs for callus induction ability and plant 

regeneration within tropical japonica DH lines of interest to Uruguayan rice breeders 

using Genome Wide Association Studies (GWAS). We performed this analysis based 

on the evaluation of three traits: number of calli, number of plants regenerated, and 

number of panicles per regenerated plant.  

 
5.2 MATERIALS AND METHODS 

5.2.1 Plant materials 
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 A total of 191 tropical japonica genotypes belonging to 54 DH families from the 

Uruguayan National Rice Breeding Program were used as the GWAS population. All 

the individuals from this population come from random crosses between 19 original 

parents (Supplementary Table 5.1).  

 

5.2.2 Anther culture and phenotyping 

 Anther culture procedures were conducted at the LSU AgCenter’s Rice Research 

Station in Crowley, Louisiana. F1 seeds from the crosses shown in Supplementary 

Table 5.1 were grown in the field until the booting stage. The boots where then 

sterilized with 70% alcohol and cold pre-treated at 10 °C for 8 d. The spikelets were 

surface sterilized with 20% bleach and rinsed with de-ionized water. Anthers were 

inoculated into petri dishes with callus-induction medium and incubated in the dark at 

25 °C for 3-4 weeks after inoculation. Then, calli were transferred onto regeneration 

medium and incubated under artificial light at 25 °C to promote callus regeneration. 

Green plantlets were transferred to rooting medium for root formation. Plants with well-

formed roots were then transferred to pots in the greenhouse. 

 The phenotypic traits analyzed in this study were: number of calli plated per dish 

(CD), which was used as a measure of callus induction ability, number of plants 

regenerated per callus (PPC) as a measure of plant regeneration ability, and number of 

panicles per regenerated plant (PPP), as a measure of vigor of regenerated plants. 

 To comply with normality requisites, all correlations and GWAS analyses were 

performed on log10 transformed traits.  

 

5.2.3 Genotyping 
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 DNA was extracted using the CTAB method. DNA libraries were prepared 

using the Nextera Library and sequenced at the Biotechnology Resource Center at 

Cornell University. Single nucleotide polymorphisms (SNPs) were called and aligned to 

the MSU Nipponbare reference version 7.0 using BWA (Li and Durbin, 2009). 

Imputation of missing data was performed using BEAGLE 5.0 (Browning et al. 2018). 

Monomorphic SNPs, and SNPs with minor allele frequency < 5% were removed from 

the analysis. The final dataset contained 68,599 markers.  

 

5.2.4 Association mapping study 

 Genome-wide association studies were performed with mixed models to correct 

for genetic relationships. We used the kinship model with: 

y =Xβ +Zu+ e  

where y is the vector of phenotypic values, X is the molecular marker score matrix, β

is the vector of marker allelic effects, Z is an incidence matrix, u is the vector of 

polygenic background effects where u ~ N(0,KσG
2 ) (with K being the kinship matrix 

and σG
2 is the genetic variance), and e is vector of residual errors. A GWAS analysis for 

each trait was performed with the R package sommer (Covarrubias, 2016). For QTL 

determination, the marker with the highest association was chosen as an anchor and a 

sliding window of 1Mb was used to identify all significant markers within that window. 

Given the big size of LD blocks expected for a DH population, it is unlikely to find an 

isolated significant SNP, but more likely to find groups of linked SNP showing the 

exact same p-value, as shown in Figure 5.2B. QTL were identified based on the 

occurrence of three or more significant SNPs (see Figure 5.2B) within a 1 Mb window. 

The threshold for declaring a significant marker-trait association was the false-

discovery rate (FDR) (Benjamini and Hochberg, 1995) with an α level < 0.05. Allelic 
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effects for each QTL were calculated as the difference between the average trait value 

for all lines that were homozygous for the major allele (AA) and the average trait value 

for all lines homozygous for the minor allele (BB) for a given SNP. The proportion of 

the total variance explained by a QTL was estimated by fitting a multi-QTL model with 

all significant SNPs from all genomic regions involved for a trait with the lme4 package 

(Bates et al., 2015) implemented in R statistical software (R Core Team, 2017). 

 

5.3 RESULTS 

5.3.1 Phenotypic variation for callus induction and plant regeneration traits 

 Phenotypic means and standard deviations for all traits are shown in Table 5.1 

and distributions and correlations of transformed traits are shown in Figure 5.1. 	

	

 

	

	

	

 

There is a negative correlation between the number of calli plated and the 

number of plants regenerated (r = -0.5), and also a negative correlation between the 

number of plants regenerated and the number of panicles collected per plant (r = -0.4) 

(Figure 5.1). 

 

Trait  Mean SD 
CD 6.86 4.04 
PPC 8.54 10.64 
PPP 0.89 0.30 

Table 5.1: Means and standard 
deviations for the three traits 
analyzed in this study. 

CD: Calli per dish, PPC: Plants per 
callus, PPP: Panicles per plant 
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5.3.2 Quantitative trait loci identified by GWAS 

 We found a total of 21 putative QTL for the three traits (Figure 5.2, Table 5.2). 

Four QTL were identified for CD (located in chromosomes 2, 7, 11 and 12), 12 for PCC 

(chromosomes 2, 3, 5, 6, 7, 8, and 9), and five for PPP (chromosomes 2, 4 8 and 9).  

 

Figure 5.1: Trait distributions and correlations. CD: 
Calli per dish, PPC: Plants per callus, PPP: Panicles 
per plant 
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CD 

PPC 

PPP PPP 

~	1.5	Mb 

Figure 5.2: A- Manhattan plots for Calli per Dish (CD), Plants per callus (PPC), and 
Panicles per regenerated plant (PPP). Dashed lines show the 0.05 FDR thresholds for 
each trait. Arrows indicate QTL positions. B- Close-up view of chromosome 2 as an 
example, showing the extent of LD in this population.  
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Trait Score QTL Chr Marker Position Effect PVE 
CD 5.29 qCD-2 2 S2_215969 215969 -1.2 10.4 
 8.3 qCD-7 7 S7_17424219 17424219 -7.94 26.5 
 7.39 qCD-11 11 S11_7082543 7082543 -7.83 21.7 
 4.73 qCD-12 12 S12_23791056 23791056 -5.34 9.3 
PPC 7.15 qPPC-2.1 2 S2_716679 716679 6.38 24.3 
 3.6 qPPC-2.2 2 S2_9555434 9555434 3.28 6.91 
 3.83 qPPC-2.3 2 S2_18463053 18463053 -5.67 7.36 
 4.01 qPPC-2.4 2 S2_35109189 35109189 5.68 7.7 
 4.03 qPPC-3 3 S3_31761386 31761386 7.48 7.7 
 5.9 qPPC-5 5 S5_25114691 25114691 -8.31 11.67 
 4.36 qPPC-6 6 S6_10551939 10551939 4.60 9.48 
 4.61 qPPC-7 7 S7_24114844 24114844 -12.3 9.0 
 3.80 qPPC-8.1 8 S8_2679759 2679759 1.46 7.3 
 3.56 qPPC-8.2 8 S8_26314338 26314338 -3.92 6.7 
 4.9 qPPC-9.1 9 S9_11169765 11169765 -10.4 7.3 
 3.8 qPPC-9.2 9 S9_14980347 14980347 -3.45 6.0 
PPP 6.11 qPPP-2 2 S2_9555434 9555434 -0.21 18.68 
 3.89 qPPP-4.1 4 S4_28836460 28836460 0.41 6.99 
 3.60 qPPP-4.2 4 S4_31921216 31921216 -0.30 6.38 
 3.48 qPPP-8 8 S8_28153686 28153686 0.135 6.10 
 5.57 qPPP-9 9 S9_14980347 14980347 0.263 15.57 
 
 
 
  

The genetic effects of the majority of QTL identified were relatively small 

(<20% of the phenotypic variance explained, PVE). CD was the only trait that showed 

QTLs with negative allelic effect, while the other two traits showed both negative and 

positive allele effects.   

Three QTL, qCD-7, qCD-11, and qPPC-2.1 showed the largest effects (PVE = 

26.5%, 21.7%, and 24.3%, respectively). Both qCD-7 and qCD-11 had the effect of 

decreasing the number of calli per dish by an average of ~ 8. On the other hand, qPPC-

2.1 had the effect of increasing the number of regenerated plants by ~6 (Table 5.2). 

QTLs qPPC-2.2 and qPPP-2 were co-located on chromosome 2, and they shared 

marker S2_9555434 as the most significant marker. For PPP this QTL had PVE ~19%, 

while for PPC PVE ~7%. Two other putative QTLs, qPPC-9.2 and qPPP-9 were co-

located on chromosome 9, with PVE = 6% and 15.57%, respectively (Table 5.2).   

Table 5.2: Putative QTL, score (-log10p), chromosome (Chr), most significant 
marker, position (bp) and allele effects for the significant associations found in a 
population of tropical japonica DH families.  
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5.3.3 Comparison of the putative QTL and reported QTLs related to rice anther 

culture response 

 A total of eight loci were located in same regions as previously reported QTLs 

related to callus induction and plant regeneration (Table 5.3). Three previously reported 

QTLs located on chromosomes 5, 7 and 9 corresponded to CD and PPC in our study; 

these QTLs were previously reported by Tian et al. (2013) to be related to callus 

induction frequency, and frequency of brown callus. Two loci associated with CD and 

PPC and located on chromosomes 2 and 12, were previously reported by Li et al. (2013) 

to be related to plant regeneration and callus proliferation and browning tendency. One 

locus associated with PPP in our study and located in chromosome 4, was previously 

reported by Zhao et al. (2008) to be related to frequency of regenerated plants. Finally, 

one putative QTL associated with PPC and located in chromosome 8, was previously 

reported by a GWAS study to be associated with callus induction-related traits based on 

evaluation of a set of 529 cultivated rice lines belonging to indica, Aus, and tropical and 

temperate japonica varieties. Interestingly, the specific QTL reported in Table 5.3 was 

found only among the japonica genotypes in that study (Zhang et al. 2018).  
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Position (bp) Chr 
Trait in 
present 
study 

Trait in 
reported 

study 

QTL reported 
name 

Mapping population 
and reference 

35109189 2 PPC CPA, CBT, 
RR 

qCPA-2b, qCBT-
2a, qRR-2 

RIL indica × japonica 
cross (Li et al. 2013) 

23791056 12 CD NRS, RR qNRS-12, qRR-
12  

31921216 4 PPP PRF PRF CSSL indica × japonica 
cross (Zhao et al. 2008) 

25114691 5 PPC CWI qCWI5 RIL indica × indica 
cross (Tian et al. 2013) 

17424219 7 CD CIF qCIF7.1  
24114844 7 PPC CIF qCIF7.2  
14980347 9 PPC, PPP BCF qBCF9  

26314338 8 PPC T0 T0 
529 rice cultivated 

accessions (Zhang et al. 
2018) 

 

 
5.4 DISCUSSION 
  

Anther culture response may be influenced by many factors, including the 

genotype of the donor line, the medium composition, the culture procedure, and the 

interactions between them (Henry et al. 1994; Lee et al. 2002; Bolibok and Rakoczy-

Trojanowska 2006; Ge et al. 2006). Genotypic variations in callus induction and 

subsequent plant regeneration potential among different rice genotypes have been 

extensively studied by many researchers (He et al, 2006; Bagheri and Jelodar, 2008; 

Dash et al., 2014). In a study involving a wide range of cultivated Oryza genotypes, 

Dash et al. (2014) found that O. glaberrima responds more to callus induction and 

plantlet regeneration than O. sativa genotypes. Within O. sativa, indica genotypes were 

PCC:	Plants	regenerated	per	callus,	PPP:	Panicles	per	regenerated	plant,	CD:	callus	per	dish	plated,	CIF:	Callus	
induction	 frequency,	 BCF:	 Frequency	 of	 Brown	 callus,	 CWI:	 Increase	 of	 callus	 weight,	 NRS:	 number	 of	
regenerated	 roots	 per	 callus,	 RR:	 Regeneration	Rate,	 CPA:	 Callus	 Proliferation	 ability,	 CBT:	 Callus	 Browning	
Tendency,	PRF:	frequency	of	regenerated	plants,	T0:	Time	of	the	first	callus	appearance.		

Table 5.3: Summary callus induction and plant regeneration associated QTL 
reported in the same genomic regions where callus induction and plant regeneration 
associated QTL were detected in this study.  
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recalcitrant to plant regeneration, while they found a broad variability of response to 

callus induction and plant regeneration among japonica genotypes (Dash et al. 2014).  

Many studies have focused on finding QTL associated with callus induction and 

plant regeneration in rice (Kwon et al. 2000; Taguchi-Shiobara et al. 2006; Zhao et al. 

2008; Li et al. 2013; Tian et al. 2013). However none of these studies focused on 

finding QTL within the japonica germplasm. In this study, we evaluated variation in 

callus induction ability, plant regeneration and viability of regenerated plants by 

assessing three traits (CD, PCC, PPP) in a population of 191 DH lines, and we found a 

total of 21 putative QTL related to the three traits analyzed. Most of the previous QTL 

mapping studies concerning anther culture response in rice were performed using sparse 

markers, such as RFLPs and SSRs (Taguchi-Shiobara et al. 1997; Kwon et al. 2000; 

Taguchi-Shiobara et al. 2006; Tian et al. 2013). The high resolution map based on SNP 

polymorphisms used in this study boosted the accuracy of QTL identification as it 

revealed more precise recombination breakpoints than was possible using sparsely 

populated molecular linkage maps. 

 Two pairs of QTL identified in this study, one on chromosome 2 (qPPC-2.2, 

qPPP-2.1) and one on chromosome 9 (qPPC-9.2, qPPC-9) were co-located in the same 

genomic region. For both groups the two pairs of traits involved were PPC and PPP, 

and in both cases, the traits were negatively correlated. Each DH line carried one 

favorable and one unfavorable allele at the loci, respectively, with no recombinants 

identified among the 192 lines. This could be suggesting either the existence of a single 

gene with pleiotropic effects or two tightly linked genes that control these traits.  

A literature search identified previously reported QTL for callus induction, 

callus browning, and plant regeneration (Li et al., 2013; Tian et al., 2013) that 

overlapped with eight of the QTL identified in this study.  
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We also performed a literature search to identify candidate genes located within 

the QTL reported in this analysis. Genes encoding certain enzymes are essential for 

metabolism of differentiating cells, tissues and organs. Calli with higher levels of the 

peroxidase enzyme have been reported to display a greater regeneration potential than 

those with lower levels of the enzyme (Subhadra et al., 1998). Zhang et al. (2018) 

reported an auxin responsive gene, OsIAA10 (LOC_Os02g57250), along with stress 

response genes such as oxidoreductase and thioredoxin genes as candidate genes for 

response to callus induction. We discovered a high representation of peroxidase genes 

and other oxidative stress response genes in our QTL regions that matched those 

reported by Zhang et al. (2018) (data not shown).   

DHs produced through anther culture of a cross involving diverse parents are 

genetically stable lines and each carries a different combination of alleles.  This paves 

the way for increased selection response and allows identification of desirable 

genotypes. However, the success of the technique is limited due to low recovery of 

genotypes during the process and the low recombination frequency in these F1-derived 

lines. Until now, many studies have been performed to elucidate the genetic basis of the 

anther culture response, but the findings remain inconclusive. Phenotypic variation for 

three traits associated with anther culture response were evaluated in this study and 

combined with a high quality sequence-based genetic map, a total of 21QTLs were 

identified in a population of DH lines belonging to the tropical japonica subpopulation. 

Many of the QTL related to plant regeneration and number of panicles harvested per 

regenerated plant, were also found in previous studies focused on anther culture in rice. 

The results obtained from this study provide the foundation for fine mapping and 

eventual cloning of genes underlying major QTLs for anther culture in future 

experiments. The knowledge about the genes and pathways underlying plant 
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regeneration and the anther culture response would be helpful to better understand the 

molecular basis of anther culture response, and potentially to improve the ability of 

breeding lines to be fixed using the DH procedure. 
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5.6 SUPPLEMENTARY MATERIAL 

 
Family ID P1 P2 Number of lines 
DH_8 JAP_8 JAP_14 5 
DH_12 JAP_19 JAP_3 4 
DH_15 JAP_9 JAP_3 5 
DH_16 JAP_9 JAP_6 2 
DH_19 JAP_9 JAP_17 5 
DH_28 JAP_18 JAP_6 5 
DH_29 JAP_18 JAP_7 2 
DH_35 JAP_7 JAP_2 3 
DH_38 JAP_9 JAP_18 2 
DH_40 JAP_11 JAP_6 5 
DH_42 JAP_14 JAP_10 4 
DH_43 JAP_14 JAP_7 5 
DH_44 JAP_18 JAP_9 5 
DH_49 JAP_5 JAP_10 3 
DH_52 JAP_7 JAP_6 1 
DH_55 JAP_11 JAP_18 3 
DH_59 JAP_18 JAP_16 5 
DH_60 JAP_19 JAP_10 5 
DH_61 JAP_3 JAP_10 5 
DH_62 JAP_5 JAP_13 5 
DH_65 JAP_3 JAP_1 3 
DH_67 JAP_12 JAP_14 5 
DH_68 JAP_12 JAP_15 5 
DH_70 JAP_17 JAP_13 5 
DH_75 JAP_11 JAP_10 5 
DH_77 JAP_12 JAP_13 4 
DH_79 JAP_16 JAP_10 2 
DH_80 JAP_16 JAP_14 1 
DH_83 JAP_18 JAP_17 3 
DH_89 JAP_11 JAP_13 4 
DH_90 JAP_12 JAP_17 4 
DH_96 JAP_12 JAP_18 3 
DH_97 JAP_18 JAP_13 5 
DH_102 JAP_4 JAP_14 5 
DH_108 JAP_17 JAP_15 5 
DH_110 JAP_5 JAP_15 2 
DH_111 JAP_5 JAP_18 1 
DH_120 JAP_17 JAP_19 1 
DH_128 JAP_12 JAP_16 5 
DH_137 JAP_5 JAP_2 1 
DH_141 JAP_9 JAP_15 2 
DH_143 JAP_10 JAP_13 3 
DH_154 JAP_4 JAP_11 5 
DH_156 JAP_5 JAP_1 5 
DH_156 JAP_5 JAP_1 4 
DH_159 JAP_7 JAP_13 2 
DH_161 JAP_11 JAP_19 2 
DH_167 JAP_15 JAP_1 3 
DH_168 JAP_16 JAP_4 3 
DH_177 JAP_16 JAP_11 1 
DH_178 JAP_2 JAP_4 5 
DH_183 JAP_4 JAP_15 5 
DH_184 JAP_4 JAP_1 5 
DH_185 JAP_11 JAP_16 5 

   

Supplementary Table 5.1: Family ID, parents involved in each cross (P1 and P2) 
and number of lines per family used in a GWAS study for anther culture 
response in tropical japonica rice.    
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Supplementary Figure 5.1: QQ-plots for all 3 traits including number of calli per dish 
(CD), number of plants regenerated per callus (PPC), and number of panicles 
harvested per regenerated plant (PPP).  

 


