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Modern software systems today have increasingly complex security requirements –

such as supporting privacy-preserving computations, or resistance against quantum

attackers – that are fulfilled by advanced forms of cryptography. At the same time,

these advanced forms of cryptography often have subtle security proofs that require

careful auditing. To ensure security, it is thus crucial to formally verify the security

of the underlying cryptography, and to do so in a manner that is approachable to

cryptographers.

This thesis explores the use of equational reasoning to conduct machine-checked

security proofs. Equational reasoning is pervasive in cryptography, as it underlies

the concepts of game-hopping hybrids and the simulation paradigm; thus, optimiz-

ing formal tools for equational reasoning delivers machine-checked proofs closer to

their on-paper counterparts.

We first present AutoLWE, a prover for cryptographic primitives that sup-

ports reasoning about lattices. AutoLWE is built around deducibility, which

(semi-) automatically applies hardness assumptions by partitioning the security

game into an application of the hardness assumption with a context. Using

AutoLWE, we deliver very short proofs of several representative constructions,

including Public-Key Encryption, Identity-Based Encryption, and Inner Product

Encryption.

We then present IPDL, a simple calculus and equational logic for distributed,



interactive cryptographic protocols in the computational model. The purpose of

IPDL is to prove simulation results between real and idealized protocols in the

style of Universal Composability (UC) [Can01]. IPDL does so by restricting its

attention to straight-line protocols, a particularly simple but expressive subset of

protocols. Using IPDL, we deliver short proofs of multiple case studies, including a

semi-honest multiparty computation protocol over general circuits [GMW87], and

an n-party coin toss protocol [Blu83].
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CHAPTER 1

INTRODUCTION

Some of the most promising innovations in computing come from modern cryp-

tography. Far from theoretical curiosity, there now exist real-world implementa-

tions of zero-knowledge proofs (ZKP) [GO94] for outsourced verifiable computa-

tion, multi-party computation (MPC) [EKR17] for privacy-preserving distributed

computations, and lattice-based cryptosystems [Pei15] for quantum-resistance and

homomorphic computations.

Cryptographic protocols are only useful when we can place trust in their se-

curity. This is made possible through the provable security paradigm: to show

that a protocol is secure, the cryptographer proves on paper that subverting the

protocol’s security is at least as difficult as breaking a hardness assumption (e.g.,

computing a discrete logarithm). Since there are only a handful of hardness as-

sumptions, it is possible for the academic community to systematically rule out all

proposed attacks on them.

Unfortunately, the increasing complexity of cryptographic protocols makes

peer-review an imperfect process. Cryptographic proofs often consist of multiple

long, involved intermediate reductions which are frequently stated without proof,

since proving them would involve an unreasonable amount of hard-to-read tedium.

Indeed, the tradition of informal proofs in cryptography led to the famous decla-

ration of a “crisis of rigor” by Bellare and Rogaway in 2008 [BR04], since informal

proofs are “essentially unverifiable”.

Incorrect proofs can and do evade human peer-review. A notable example is

found in ZCash [zcaa], a blockchain for privacy-preserving cryptocurrency. Each
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transaction in ZCash is supported by a zero-knowledge proof of well-formedness,

based on a protocol which passed peer-review [BSCTV13]. Two years after its

launch, an employee for ZCash found an error in the underlying protocol [zcab],

allowing an attacker to counterfeit coins at will. Had a hacker discovered the

attack, the protocol – along with the $1.3 billion dollars in the blockchain – would

have been rendered valueless.

The solution is to move towards verified security, wherein on-paper proofs are

replaced by fully formal artifacts which are checked by a mechanized theorem

prover such as EasyCrypt [BGHZ11, BDG+13] or Coq. Verified proofs of security

offer a number of advantages, including: raised trust in the proof’s correctness;

possibilities for automating technical tedium; executable prototypes that can be

debugged and tested; and possibilities for formal security proofs for low-level ma-

chine code. Achieving verified security has been the subject of a long line of

research [BBB+21], but is far from a settled matter.

Unfortunately, the strength of verified security is also its barrier to entry.

Machine-checked proofs often require a great amount of detail and low-level rea-

soning which has no counterpart in an ordinary paper in cryptography. Because of

this, cryptographers who wish to verify their security proofs must gain significant,

additional training in formal methods in order to use the formal tools efficiently.

While the community of cryptographers proficient in formal methods is growing,

the academic community is still far away from machine-checked proofs being ubiq-

uitous.

To decrease this barrier to entry, we must raise the level of abstraction for

machine-checked proofs. The closer machine-checked proofs are to their on-paper

counterparts, the more adoption of verified security we will see from the community.
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In an ideal world, cryptographers would vew formal methods not as a hindrance

towards easy proofs, but instead as a useful cognitive aid for guiding their proofs

and modularizing their thought processes.

The goal of this thesis is to explore equational reasoning as a technique for

bringing verified security closer to on-paper arguments. Equational reasoning

is ubiquitous in cryptography: computational indistinguishibility is an observa-

tional equivalence between probability distributions; cryptographic reductions can

be seen as equivalences between security games; and cryptographic protocols are

proven secure by proving them equivalent to an idealization. Since equational

reasoning is implicitly found in most cryptographic proofs, formal tools that opti-

mize for equational reasoning are likely to be more approachable for cryptographic

proofs.

1.1 Outline of Thesis

In this thesis, we construct new tools for using equational reasoning to mechani-

cally prove cryptography secure. We focus on two domains: non-interactive lattice-

based cryptosystems; and interactive protocols in the style of Universal Compos-

ability [Can01].

Symbolic Proofs for Lattice-based Cryptography Lattice-based cryptog-

raphy [Pei15] is a relatively new paradigm for public-key cryptosystems based on

problems involving noisy samples of integer lattices. Lattice-based hardness as-

sumptions such as LWE [Pei15] are widely believed to be resistant to quantum

attacks, unlike number-theoretic schemes based on RSA or Diffie-Hellman which

are subverted by Shor’s algorithm [Sho94].
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In Chapter 2, we present AutoLWE, a prover for cryptographic primitives which

can reason about lattices. The key technical novelty of this work is to extend

deducibility, an algebraic technique to capture adversary knowledge, to the non-

commutative setting of matrices. Deducibility allows the verifier to automatically

(or semi-automatically) partition a security game into a hardness assumption and

a reduction, relieving the cryptographer of most low-level reasoning steps about

intermediate hybrids. Using the tool, we deliver very short proofs of several repre-

sentative constructions, including CPA-PKE (Gentry et al., STOC 2008), (Hierar-

chical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product

Encryption (Agrawal et al. Asiacrypt 2011), and CCA-PKE (Micciancio et al.,

Eurocrypt 2012).

A Simple Framework for Formally Verifying Cryptographic Protocols

Most provers for cryptography, such as AutoLWE or EasyCrypt [BGHZ11,

BDG+13], primarily support reasoning about security in the imperative, game-

based paradigm. While highly successful for analyzing noninteractive primitives,

they are less applicable for simulation-based proofs of general interactive protocols

– and particularly, protocols involving more than two parties.

In Chapter 3, we present IPDL, a simple calculus and equational logic for rea-

soning about interactive cryptographic protocols. The main insight of IPDL is to

focus our attention on straight-line protocols, which are protocols featuring con-

trol flow only on data, but not communication. By restricting our attention to

straight-line protocols, we achieve a novel, equational proof system for reasoning

about distributed cryptography. We demonstrate IPDL on a number of case stud-

ies, including the semi-honest GMW protocol over general circuits [GMW87], and

an n-party coin toss protocol [Blu83].
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CHAPTER 2

SYMBOLIC PROOFS FOR LATTICE-BASED PRIMITIVES

One of the major goals in computer-aided cryptography [BBB+21] is to use

verification techniques to certify proofs of security for cryptographic protocols.

Proof certificates for verified cryptosystems can be independently and automati-

cally checked for correctness, dramatically raising trust in the cryptosystem’s se-

curity.

A popular framework for verification of cryptographic protocols historically

has been the Dolev-Yao model [DY83b], which idealizes the capabilities of the

adversary through an algebraic abstraction of the protocol. By abstracting

away from the probabilistic nature of cryptographic constructions, the Dolev-Yao

model has served as a suitable and practical foundation for highly or fully au-

tomated tools [ABB+05, Bla01, SMCB12]. These tools have subsequently been

used for analyzing numerous cryptographic protocols, including recently TLS

1.3. [CHH+17, KBB17].

Unfortunately, due to the algebraic abstraction, the Dolev-Yao model is fo-

cused on cryptographic protocols and cannot be used for reasoning about crypto-

graphic primitives. Instead, tools such as CertiCrypt [BGB09], CryptHOL [Loc16]

CryptoVerif [Bla06a], EasyCrypt [BGHZ11, BDG+13], and FCF [PM15a] develop

probabilistic program logics to operate directly in the computational model. How-

ever, these tools require significant user interaction and expertise – doubly so when

when used for reasoning about cryptographic primitives.

We follow an alternative approach, and combine logics for computational cryp-

tography proofs with symbolic tools from the Dolev-Yao model. Prior work has

6



demonstrated that this approach works well for padding-based (combining one-way

trapdoor permutations and random oracles) [BCG+13] and pairing-based cryptog-

raphy [BGS15]. We combine the two techniques by designing a computational

logic for game-playing security proofs which makes use of side conditions that are

validated by symbolic tools. In particular, a key idea of this approach is to use

deducibility – derivability of information from public data – to control applications

of cryptographic hardness assumptions and for performing optimistic sampling, a

particularly common and useful transformation in game-playing proofs.

Our approach, however, is limited to domain areas in which deducibility has

efficient decision procedures. The problem of deciding deducibility has been studied

extensively in the context of symbolic verification in the Dolev-Yao model, where

deducibility formalizes the adversary knowledge [Low96, MS01, Pau00, KMM94,

Sch96, RKTC03, CLS03, RT03]. This line of work has culminated in the design

and implementations of decision procedures for classes of theories that either have

some kind of normal form or satisfy a finite variant property. However, existing

decidability results are primarily targeted towards algebraic theories that arise

in the study of cryptographic protocols. In contrast, deducibility problems for

cryptographic constructions require to reason about mathematical theories that

may not have a natural notion of normal form or satisfy the finite variant property.

Thus, a main challenge for computational logics based on deducibility problems

is to provide precise and automated methods for checking the latter. Prior work,

such as AutoG&P, employ heuristics in order to check deducibility. While this

approach may work reasonably well in practice, it is unsatisfactory: the heuristics

may be incomplete or behave unpredictably for larger scale proofs. Instead, we

use existing methods from computational mathematics to derive principled (semi-

7



)decision procedures for deducibility. By doing so, we obtain more complete and

predictable algorithms. The idea using methods from computational mathemat-

ics to reason about deducibility is natural. However, we are not aware of prior

work that exploits this connection in relation with the use of deducibility in a

computational logic.

2.1 Outline of Chapter

This work develops symbolic methods for proving security of lattice-based cryp-

tographic constructions. These constructions constitute a prime target for formal

verification, due to their potential applications in post-quantum cryptography and

their importance in the ongoing NIST effort to standardize post-quantum con-

structions; see e.g. [Pei16] for a recent survey of the field. We implement our logic

in a tool called AutoLWE (https://github.com/autolwe/autolwe), and use the

tool for proving (indistinguishability-based) security for several cryptographic con-

structions based on the Learning with Errors (LWE) assumption [Reg05a].

We first demonstrate our logic in Section 2.2, by showing how an example

lattice-based cryptosystem is encoded and proven secure. We then detail our logic

in Section 2.3. The logic follows the idea of combining computational proof rules

with symbolic side-conditions, as in [BCG+13, BGS15]. One important feature

of our logic is that the proof rule for assumptions supports information-theoretic

and computational assumptions that are stated using adversaries with oracle ac-

cesses. This extension is critical to capture (advanced cases of) the Leftover Hash

Lemma [ILL89].

In Section 2.4, we show how we (partially) automate our logic with new algo-

rithms for deducibility. Specifically, we present algorithms for deducibility in the

8
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theory of Diffie-Hellman exponentiation – in its standard, bilinear, and multilinear

versions – and in the theory of fields, non-commutative rings, and matrices. The

central idea behind our algorithms for Diffie-Hellman exponentiation is to trans-

form our deducibility problem into a standard problem from commutative algebra,

which can be resolved using Gröbner bases. Our algorithms for non-commutative

rings and matrices behave similarly, but are resolved through semi-decision proce-

dures based on non-commutative variants of Gröbner bases known as Subalgebra

Analog of Gröbner Basis on Ideals (SAGBI) [Nor98]. Additional details and proofs

are given in Section 2.8 and Section 2.9.

In Section 2.5, we show how our logic behaves in practice on a number of case

studies: in addition to our example from Section 2.2, we evaluate our tool on

encryption schemes for chosen-ciphertext security, identity-based security, and an

inner-product revealing scheme. We discuss related work in Section 2.6.

2.2 Example: Dual Regev Encryption

In this section, we describe an example public-key encryption scheme and show

how it will be encoded in our formal system. We provide some mathematical

background in Section 2.5.2. Recall that public-key encryption (PKE) is given

by three probabilistic algorithms (Setup,Enc,Dec) for generating keys, encryption,

and decryption, such that with overwhelming probability, decryption is the inverse

of encryption for valid key pairs.

We consider the Dual Regev Encryption scheme [GPV08], an optimization of

Regev’s original encryption [Reg05b]. We focus on a simple version that encrypts

single bits; however, standard techniques can be used to encrypt longer messages.
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Definition 1 (Dual Regev Encryption). Below, let λ = n be the security param-

eter, m = O(n log q), q = O(m) and χ (or χn) be discrete Gaussian distribution

over Z (or Zn).

• The key generation algorithm, KeyGen(1λ), chooses a uniformly sampled random

matrix A ∈ Zn×mq and a vector r ∈ {−1, 1}m sampled uniformly, interpreted as

a vector in Zmq . The public key is pk = (A,u), where u = Ar, and the secret

key is sk = r.

• To encrypt a message b ∈ {0, 1}, the encryption algorithm Enc(pk, b) chooses a

random vector s ∈ Znq , a vector x0 sampled from χn and an integer x1 sampled

from χ. The ciphertext consists of the vector c0 = sTA + xT
0 and the integer

c1 = sTu + x1 + bdq/2e, where T denotes the transpose operation on matrices.

• The decryption algorithm checks whether the value c1 − 〈r, c0〉 is closer to 0 or

bdq/2e modulo p, and returns 0 in the first case, and 1 in the second.

Decryption is correct with overwhelming probability, since we compute that

c1 − 〈r, c0〉 = x1 + bdq/2e − 〈r,x0〉, so the norm of the term x1 − 〈r,x0〉 will be

much smaller than bdq/2e.

Gentry, Peikert and Vaikuntanathan [GPV08] show that Dual Regev Encryp-

tion achieves chosen-plaintext indistinguishability under the decisional LWE as-

sumption, defined below. Traditionally, chosen-plaintext indistinguishability is

modeled by a probabilistic experiment, where an adversary proposes two messages

m0 and m1, and is challenged with a ciphertext c? corresponding to an encryption

of message mb, where b is sampled uniformly at random. The adversary is then

requested to return a bit b′. The winning condition for the experiment is b = b′,

which models that the adversary guesses the bit b correctly. Formally, one defines
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the advantage of an adversary A against chosen-plaintext security (or IND-CPA

security) as:

Advcpa
A =

∣∣∣∣Pr G[ b = b′ ]− 1

2

∣∣∣∣
where G is the probabilistic experiment that models chosen-plaintext security and

1
2
represents the probability that a trivial adversary which flips a coin b′ at random

guesses the bit b correctly. We note that in our case, since the message space is

{0, 1}, we can wlog set m0 = 0 and m1 = 1; thus, the adversary only needs to be

queried once in this experiment.

The formal definition of G, instantiated to Dual Regev Encryption, is shown

in Figure 2.1. We inline the key generation and encryption subroutines. In line

1, the public key (A,u) and its associated secret key r are randomly sampled. In

lines 2 and 3, the message bit b is sampled uniformly, and the ciphertext (c0, c1) of

this message is generated. Finally, in line 4, the adversary outputs a bit b′, given

as input the public key and the ciphertext.

Now, we outline the hardness assumptions and lemmas used in the proof of

Dual Regev Encryption.

Learning with Errors

The Learning With Errors (LWE) assumption [Reg05b] is a computational as-

sumption about the hardness of learning a linear function from noisy samples. We

make use of the decisional variant, in which one distinguishes a polynomial number

of “noisy” inner products with a secret vector from uniform.

Definition 2 (LWE). Let n, m, q, and χ be as in Definition 1. Given s ∈ Znq , let

LWEs,χ (dubbed the LWE distribution) be the probability distribution on Zn×mq ×Zmq
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obtained by sampling A ∈ Zn×mq at uniform, sampling e from χn, and returning

the pair (A, sTA + e). The decision-LWEq,n,m,χ problem is to distinguish LWEs,χ

from uniform, where s is uniformly sampled.

We say the decision-LWEq,n,m,χ problem is infeasible if for all polynomial-time

algorithms A, the advantage Advlwe
A (1λ) is negligibly close to 1/2 as a function of

λ:

Advlwe
A (1λ) = |Pr[A solves LWE]− 1/2|

The works of [Reg05b, Pei09, BLP+13] show that the LWE assumption is as

hard as (quantum or classical) solving GapSVP and SIVP under various settings

of n, q,m and χ.

Leftover Hash Lemma

Let A ∈ Zn×mq be a collection of m samples of uniform vectors from Znq . The

Leftover Hash Lemma (LHL) states that, given enough samples, the result of

multiplying A with a random {−1, 1}-valued matrix R is statistically close to

uniform. Additionally, this result holds in the presence of an arbitrary linear

leakage of the elements of R. Specifically, the following leftover hash lemma is

proved in [ABB10] (Lemma 13).

Lemma 1 (Leftover Hash Lemma). Let q, n,m be as in Definition 1. Let k be

a polynomial of n. Then, the distributions {(A,AR,RTw)} {(A,B,RTw)} are

negligibly close in n, where A
$←− Zn×mq in both distributions, R

$←− {0, 1}m×k,

B
$←− Zn×kq , and w ∈ Zmq is any arbitrary vector.

Given the above, security of Dual Regev Encryption is stated as follows:
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Game Gpke
org :

A
$← Zn×mq , r

$← {−1, 1}m;
let u = Ar;

b
$← {0, 1}, s $← Znq ,x0

$← DZm , x1
$← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 2.1: IND-CPA security of dual-Regev PKE.

Proposition 1 ([GPV08]). For any adversary A against chosen-plaintext security

of Dual Regev Encryption, there exists an adversary B against LWE, such that:

• Advcpa
A ≤ Advlwe

B + εLHL;

• tA ≈ tB;

where Advlwe
B denotes the advantage of B against decisional LWE problem, εLHL

is a function of the scheme parameters determined by the Leftover Hash Lemma,

and tA and tB respectively denote the execution time of A and B.

Security proof We now outline the proof of Proposition 1.

The proof proceeds with a series of game transformations, beginning with the

game in Figure 2.1. The goal is to transform the game into one in which the

adversary’s advantage is obviously zero. Each transformation is justified semanti-

cally either by semantic identities or by probabilistic assertions, such as the LWE

assumption; in the latter case, the transformation incurs some error probability

which must be recorded.

The first transformation performs an information-theoretic step based on the

Leftover Hash Lemma. The Leftover Hash Lemma allows us to transform the joint
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distribution (A,Ar) (where A and r are independently randomly sampled) into

the distribution (A,u) (where u is a fresh, uniformly sampled variable). (This

invocation does not use the linear leakage w from Lemma 1). In order to apply

this lemma, we factor the security game from Figure 2.1 into one which makes use

of A and u, but not r. That is, if G0 is the original security game, then we have

factored G into

G0 = G′{A←$ Zn×mq ; r ←$ {−1, 1}m; let u=Ar}p,

where G′{·}p is a game context with a hole at position p, such that G′ does not

make reference to r except in the definition of u. By the Leftover Hash Lemma,

we may now move to the game:

G1 = G′{A←$ Zn×mq ; u←$ Znq }p.

This transformation effectively removes r from the security game, thus remov-

ing any contribution of the secret key r to the information gained by the adversary

A. This transformation incurs the error probability εLHL. The resultant game is

shown in Figure 2.2.

Game G2 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, s $← Znq ,x0

$← DZm , x1
$← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 2.2: Dual-Regev PKE: Game 2

The second transformation performs a reduction step based on the LWE as-

sumption. Indeed, note that after the first transformation, the ciphertexts (c0, c1)

contain an LWE distribution of dimension n× (m+1), with the message bit added
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to c1. By applying LWE, we then may safely transform c0 to be uniformly random,

and c1 to be uniformly random added to to the message bit. The resulting security

game is shown in Figure 2.3.

Game G3 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, r0

$← Zmq , r1
$← Zq;

let c0 = r0, c1 = r1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 2.3: Dual-Regev PKE: Game 3

The next transformation applies a semantics-preserving transformation known

as optimistic sampling. To remove the message bit from the adversary input, note

that the term c1 is equal to the sum of r1 and bdq/2e, where r1 is uniformly sampled

and does not appear anywhere else in the game. Because of this, we know that c1

itself is uniformly random. Thus, we can safely rewrite the body of c1 to be equal

to a fresh uniformly sampled r1. The resulting game is shown in Figure 2.4.

Game G4 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, r0

$← Zmq , r1
$← Zq;

let c0 = r0, c1 = r1;

b′ ← A(A,u, c0, c1);

Figure 2.4: Dual-Regev PKE: Game 4

In this final game, there is no dependence between the challenge given to the

adversary and the challenge b, so the probability that the adversary guesses b is

upper bounded by 1
2
.

The most important point about the above proof is that while the cryptographic

15



theory underlying the Leftover Hash Lemma and Learning with Errors assumption

is in nature analytic, the proof of security which uses them is only algebraic. That

is, no complicated analytic arguments must be made in order to carry out the above

proof; instead, each transformation is a straightforward syntactic transformation

of the security game.

Our logic is designed to handle game transformations such as the ones in the

above proof. Our implemented security proof for Dual Regev Encryption is shown

in Figure 2.5. In lines 1-3, we apply the Leftover Hash Lemma. The move tactic

is used to reorder samplings in the security game, as long as the two reorderings

are semantically equivalent. The assumption_decisional tactic is used to apply

hardness assumptions and information-theoretic lemmas. Note that all required

factorings of games in this proof are performed automatically, handled by our

use of the SAGBI method in Section 2.4.3. This is reflected by the “!” at the

end of the tactic, which asks the proof system to automatically factor the game.

(More complicated applications of assumption_decisional do require the user

to provide some hints to the proof system about how to factor the game. These

hints are minimal, however.) The arrow -> after the tactic specifies that we wish

to apply the transformation in the forward direction. (It is possible to apply the

LHL and the LWE assumption in reverse, as well. This is used in later proofs.)

Throughout, we use the // tactic to normalize the game. This tactic unfolds let

bindings, and applies a syntactic normal form algorithm to all expressions in the

game. The mat_fold and mat_unfold tactics are used to reason about uniformity

of matrices of the form Zn×(m+k)
q : the mat_unfold tactic will separate a uniform

sampling of type Zn×(m+k)
q into two uniform samplings of types Zn×mq and Zn×kq

respectively; the mat_fold does the corresponding inverse operation.
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The rnd tactic is used to reason about transformations of uniform samplings:

given two functions f, f−1 which must be mutual inverses, the rnd tactic allows one

to “pull” a uniform sampling through f−1. This is used in two ways in the proof:

on lines 13 and 15, we use rnd to show that instead of sampling a matrix, we may

instead sample its transpose. Whenever the original matrix is used, we now take the

transpose of the new sampled matrix. Similarly, on line 19 we use rnd to perform

an optimistic sampling operation, in which B is transformed in order to remove the

additive factor b?Mu(()):0_{1,1}. Here, Mu is an uninterpreted function from the

unit type to 1 by 1 matrices, modelling the message content dq/2e, and 0_{1,1} is

the constant zero matrix of dimension 1 by 1. The notation _?_:_ is the standard

ternary if-then-else construct; thus, we can model the expression bdq/2e present in

the Dual Regev scheme as the expression b?Mu(()):0_{1,1}.

Finally, the indep! tactic is used to reason about games such as the game in

Figure 2.4, in which the adversary trivially has no advantage. Detail about the

proof rules present in our logic is given in Section 2.3.4.

2.3 Logic

Our logic reasons about probabilistic expressions P , built from atomic expressions

of the form Pr G[ φ ], where G is a game, and φ is an event. Games are probabilistic

programs with oracle and adversary calls, and φ is the winning condition of the

game. The proof rules of the logic formalize common patterns of reasoning from

the game-playing approach to security proofs. In their simpler form, proof steps

will transform a proof goal Pr G[ φ ] ≤ p into a proof goal Pr G′ [ φ
′ ] ≤ p′, with

p = p′+c, and G′ a game derived from G; alternatively, they will directly discharge
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1 (* apply LHL *)

move A 1.

3 assumption_decisional! LHL -> u; //.

5 (* fold A, u into single matrix Au *)

mat_fold 1 2 Au; //.

7
(* apply LWE assumption *)

9 move s 2.

assumption_decisional! LWE -> w; //.

11
(* unfold LWE distribution *)

13 rnd w (λ w. tr w) (λ w. tr w); //.

mat_unfold 2 wa wb; //.

15 rnd wb (λ B. tr B) (λ B. tr B); //.

17 (* perform optimistic sampling *)

move wb 4.

19 rnd wb (λ B. B - (b?Mu (()):0_{1 ,1}))

(λ B. B + (b?Mu (()):0_{1 ,1})); //.

21 indep !.

23 qed.

Figure 2.5: AutoLWE proof for Dual Regev Encryption.

the proof goal Pr G[ φ ] ≤ p (and give a concrete value for p) when the proof goal

is of a simple and specific form, e.g. bounding the probability that an adversary

guesses a uniformly distributed and secret value.

In order to be able to accommodate lattice-based constructions, the following

novelties are necessary: the expression language includes vectors and matrices; new

rules for probabilistic samplings and for oracle-relative assumptions (both in the

information-theoretic and computational forms). These extensions do not pose any

foundational challenge, but must be handled carefully to obtain the best trade-off

between generality and automation.
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Dimensions

d ::= n dimension variable
| d1 + d2 addition
| 1 constant dimension 1

Types

t ::= B boolean value
| Zq prime field of order q
| Zd1×d2q integer matrix
| listd t list
| t× . . .× t tuple

Expressions

M ::= 0 null matrix
| I identity matrix
| [M ] constant list
| M +M addition
| M ×M multiplication
| −M inverse
| M ‖M concatenation
| sl M left projection
| sr M right projection
| M> transpose

Figure 2.6: Syntax of expressions (selected)

2.3.1 Games

Games consist of a security experiment in which an adversary with oracle access

interacts with a challenger and of an assertion that determines the winning event.

Expressions The expression language operates over booleans, lists, matrices,

and integers modulo q, and includes the usual algebraic operations for integer

modulo q and standard operators for manipulating lists and matrices. The op-

erations for matrices include addition, multiplication and transposition, together

with structural operations that capture the functionalities of block matrices, and

can be used for (de)composing matrices from smaller matrices. concatenation, split
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Assertions (event expressions)
φ ::= e expression

| ∃ b1, . . . , bk. e existential queries
| ∀ b1, . . . , bk. e universal queries

where
b ::= x ∈ Qo x ranges over queries

for all queries

Game commands
gc ::= let x= e assignment

| x←$ µ sampling from distr.
| assert(φ) assertion
| y ← A(x) with

−→
O adversary call

Oracle commands
oc ::= let x= e assignment

| x←$ µ sampling from distr.
| guard(b) guard

Oracle definitions
O ::= o(x) = {−→oc; return e}

Game definitions
G ::= {−→gc; return e};

−→
O

where A and O range over adversary and oracle names respectively.

Figure 2.7: Syntax of games

left, and split right. The type of lists, listd, denotes a list of length d. Lists are

manipulated symbolically, so do not support arbitrary destructuring. Lists may

be constructed through the constant list operation [·], which takes a type τ to the

type listd τ , for any d. All of the matrix operations are lifted pointwise to lists.

The syntax of expressions (restricted to expressions for matrices) is given in

Figure 2.6. Selected typing rules for expressions are given in the Appendix, in

Figure 2.13. Expressions are deterministic, and are interpreted as values over their

intended types. Specifically, we first interpret dimensions as (positive) natural
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numbers. This fixes the interpretation of types. Expressions are then interpreted in

the intended way; for instance, transposition is interpreted as matrix transposition,

etc.

Games Games are defined by a sequence of commands (random samplings, as-

signments, adversary calls) and by an assertion. The command defines the com-

putational behavior of the experiment whereas the assertion defines the winning

event. Each adversary call contains a list of oracles that are available to the ad-

versary; oracles are also defined by a sequence of commands (random samplings,

assignments, assert statements) and by a return expression. The grammars for

oracle definitions and game definitions are given in Figure 2.7.

The operational behavior of oracles is defined compositionally from the opera-

tional behavior of commands:

• random sampling x ←$ µ: we sample a value from µ and store the result in the

variable x;

• assignments: let x= e: we evaluate the expression e and store the result in the

variable x;

• assertion guard(b): we evaluate b and return ⊥ if the result is false. Guards are

typically used in decryption oracles to reject invalid queries.

In addition, we assume that every oracle O comes with a value δO that fixes the

maximal number of times that it can be called by an adversary. To enforce this

upper bound, the execution is instrumented with a counter cO that is initially set to

0. Then, whenever the oracle is called, one checks cO ≥ δo; if so, then ⊥ is returned.

Otherwise, the counter cO is increased, and the oracle body is executed. In order
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to interpret events, we further instrument the semantics of the game to record

the sequence of interactions between the adversary and the oracle. Specifically,

the semantics of oracles is instrumented with a query set variable QO that is

initially set to ∅. Then, for every call the query parameters are stored in QO.

(Following [BDKL10] it would be more precise to hold a single list of queries,

rather than a list of queries per oracle, but the latter suffices for our purposes.)

Informally, adversaries are probabilistic computations that must execute within

a specific amount of resources and are otherwise arbitrary. One simple way to give

a semantics to adversaries is through syntax, i.e. by mapping adversary names

to commands, and then interpret these commands using the afore described se-

mantics. However, our language of games is too restrictive; therefore, we map

adversary names to commands in a more expressive language, and then resort to

the semantics of this richer language. For convenience of meta-theoretic proofs, e.g.

soundness, it is preferable to choose a language that admits a set-theoretical se-

mantics. For instance, one can use the probabilistic programming language pWhile

to model the behavior of the adversaries.

The semantics of games is defined compositionally from the operational behav-

ior of commands, oracles, and adversaries:

• assertion assert(φ): we evaluate φ and abort if the result is false.

• adversary call y ← A(e) with
−→
O : we evaluate e, call the adversary A with the

result as input, and bind the output of the adversary to y. The adversary is

provided with access to the oracles
−→
O .

Finally, the interpretation of Pr G[ φ ] is to be the probability of φ in the sub-

distribution obtained by executing G.
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Throughout the paper, we assume that the games satisfy the following well-

formedness conditions and (without loss of generality) hygiene conditions: (WF1)

all variables must be used in scope; (WF2) commands must be well-typed; (Hyg1)

adversary and oracle names are distinct; (Hyg2) bound variables are distinct.

2.3.2 Reasoning about expressions

Our indistinguishability logic makes use of two main relations between expressions:

equality and deducibility. Equality is specified through a set of axioms E , from

which further equalities can be derived using standard rules of equational reason-

ing: reflexivity, symmetry, transitivity of equality, functionality of operators, and

finally instantiation of axioms. We write Γ `E e = e′ if e and e′ are provably equal

from the axioms E and the set of equalities Γ. Throughout the paper, we implicitly

assume that the set of axioms includes standard identities on matrices.

Deducibility is defined using the notion of contexts. A context C is an expres-

sion that only contains a distinguished variable •. We write e `CE e′, where e, e′

are expressions and C is a context, if `E C[e] = e′. We write e `E e′ if there exists

a context C such that e `CE e′. Similarly, we write Γ |= e `CE e′ if Γ `E C[e] = e′

and Γ |= e `E e′ if there exists a context C such that Γ |= e `E e′. More generally,

a (general) context C is an expression that only contains distinguished variables

•1, . . . , •n. We write e1, . . . , en `CE e′, where e1, . . . , en, e
′ are expressions and C

is a context, if `E C[e1, . . . , en] = e′. We write e1, . . . , en `E e′ if there exists a

context C such that e1, . . . , en `CE e′. Similarly, we write Γ |= e1, . . . , en `CE e′ if

Γ |= C[e1, . . . , en] =E e
′ and Γ |= e1, . . . , en `E e′ if there exists a context C such

that Γ |= e1, . . . , en `E e′. Intuitively, a context is a recipe that shows how some

expression may be computed given other expressions. If we consider matrices, we
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may have M +N,O,N `M ×O with the context C(•1, •2, •3) := (•1 − •3)× •2.

2.3.3 Strongest postcondition

A desirable property of any logic is that one can replace equals by equals. In

particular, it should always be possible to replace an expression e by an expression

e′ that is provably equivalent to e. However, it is often desirable to use a stronger

substitution property which allows to replace e by an expression e′ that is provably

equivalent to e relative to the context in which the replacement is to be performed.

To achieve this goal, our proof system uses a strongest postcondition to gather all

facts known at a position p in the main command. The computation of spp(G) is

done as usual, starting from the initial position of the program with the assertion

true and adding at each step the assertion φc corresponding to the current command

c, where:

φlet x= e = x = e

φguard(b) = b

φassert(e) = e

φ∀/∃ b1,...,bk. e = true

2.3.4 Judgment and proof rules

Our computational logic manipulates judgments of the form P � P ′ where P and

P ′ are probability expressions drawn from the following grammar:

P, P ′ ::= ε | c | P + P ′ | P − P ′ | c× P | |P | | Pr G[ φ ],

where ε ranges over variables, c ranges over constants, |P | denotes absolute value,

and Pr G[ φ ] denotes the success probability of event φ in game G. Constants
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[False]
Pr G[ false ] � 0

[Case]
Pr G[ φ ∧ c ] � ε1 Pr G[ φ ∧ ¬c ] � ε2

Pr G[ φ ] � ε1 + ε2

[Refl]
Pr G[ φ ] � Pr G[ φ ]

[Add]
P � ε1 P ′ � ε2

P + P ′ � ε1 + ε2

[Eq]
P � ε ` P ′ ≤ P

P ′ � ε

[Swap]
Pr G{c′; c}p [ φ ] � ε

Pr G{c; c′}p [ φ ] � ε
[Insert]

Pr G{c; c′}p [ φ ] � ε

Pr G{c′}p [ φ ] � ε

c sampling, let,
or guard(true)

[Subst]
Pr G{e}p [ φ ] � ε

Pr G{e′}p [ φ ] � ε
spp(SE) |= e =E e

′

[Abstract]

∣∣Pr G′1 [ φ1 ]− Pr G′2 [ φ2 ]
∣∣ � ε

|Pr G1 [ φ1 ]− Pr G2 [ φ2 ]| � ε

G1 ≡ G′1[B]
G2 ≡ G′2[B]

[Rand]
Pr G{s←$ t′; let r=C[s]}p [ φ ] � ε

Pr G{r←$ t}p [ φ ] � ε
spp(G) |= C ′[C] =E •

[RFold]
Pr

G{x←$ Z
d1×(d2+d

′
2)

q ; let x1 = sl x; let x2 = sr x}p
[ φ ] � ε

Pr
G{x1←$ Zd1×d2q ;x2←$ Z

d1×d′2
q }p

[ φ ] � ε

[RUnfold]
Pr

G{x1←$ Zd1×d2q ;x2←$ Z
d1×d′2
q ; let x=x1‖x2}p

[ φ ] � ε

Pr
G{x←$ Z

d1×(d2+d
′
2)

q }p
[ φ ] � ε

[Upto]
Pr G{guard(c)}p [ φ ] � ε1 Pr G{guard(c)}p [ ∃x ∈ Qo. c(x) 6= c′(x) ] � ε2

Pr G{guard(c′)}p [ φ ] � ε1 + ε2
p first position in o

[Guess]
Pr G;x←A()[ φ ] � ε

Pr G[ ∃x ∈ Qo. φ ] � ε

[Find]
Pr G;x←A(e)[ φ1 ∧ φ2 ] � ε

Pr G[ (∃x ∈ Qo. φ1) ∧ φ2 ] � ε
C efficient and
sp|G|(G) |= C[(e, x)] =E φ1

Figure 2.8: Selected proof rules
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include concrete values, e.g. 0 and 1
2
, as well as values whose interpretation will

depend on the parameters of the scheme and the computational power of the

adversary, e.g. its execution time or maximal number of oracle calls.

Proof rules are of the form

P1 � ε1 . . . Pk � εk

P � ε

where Pis and P are probability expressions, εis are variables and finally ε is a

probability expression built from variables and constants.

Figure 2.8 present selected rules of the logic. In many cases, rules consider

judgments of the form Pr G[ φ ] � ε; similar rules exist for judgments of the form

|Pr G[ φ ]− Pr G′ [ φ
′ ]| � ε.

Rules [False] and [Case] formalize elementary axioms of probability theory.

Rules [Refl] and [Add] formalize elementary facts about real numbers. Rule [Eq]

can be used to replace a probability expression by another probability expression

that is provably smaller within the theory of reals. For instance, derivations com-

monly use the identity ε1 ≤ |ε1 − ε2|+ ε2.

Rules [Swap], [Insert], [Subst] are used for rewriting games in a semantics-

preserving way. Concretely, rule [Swap] swaps successive commands (at position

p) that can be reordered (are dataflow independent in the programming language

terminology). By chaining applications of the rule, one can achieve more general

forms of code motion. Rule [Insert] inserts at position p command that does

not carry any operational behaviour. Rule [Subst] substitutes at position p an

expression e by another expression e′ that is contextually equivalent at p, i.e.

spp(G) |= e =E e
′ holds.
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The rule [Rand] performs a different transformation known as optimistic sam-

pling. It replaces a uniform sampling from t by s←$ t′; return C[s]. To ensure that

this transformation is correct, the rule checks that C is provably bijective at the

program point where the transformation arises, using a candidate inverse context

C ′ provided by the user. Rules [RFold] and [RUnfold] are dual and are used

to manipulate random samplings of matrices. The rule [RFold] is used to turn

two uniform samplings of matrices into one uniform sampling of the concatenation;

conversely, the rule [RUnfold] may be used to turn one uniform sampling of a

concatenation into uniform samplings of its component parts. (We also have sim-

ilar rules [LFold] and [LUnfold] in order to manipulate the vertical component

of the dimension.) These rules are primarily used to apply axioms which are stated

about matrices of compound dimension.

The rule [Abstract] is used for applying computational assumptions. The

rule can be used to instantiate a valid judgment with a concrete adversary. The

side-conditions ensure that the experiments G1 and G2 are syntactically equivalent

to the experiment G′1[B := B] and G′2[B := B], where the notation G′[B := B]

represents the game obtained by inlining the code of B in G′. Because of the

requirement on syntactic equivalence, it is sometimes necessary to apply multiple

program transformations before applying an assumption.

The rule [Upto] rule is used for replacing guard(c′) at position p in an oracle

with guard(c). According to the usual principle for reasoning up to failure events,

the rule yields two proof obligations: bound the probability of the original event

and the probability that the adversary performs a query where the results of c and

c′ differ.

The rules [Guess] and [Find] rules are used to deal with winning events in-
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volving existential quantification.

The logic also contains a rule for hybrid arguments. The rule is similar

to [BGS15].

2.3.5 Soundness

All proof rules of the logic are sound. To state soundness, we lift the interpretation

of games to an interpretation of judgments and derivations. This is done by first

defining a fixed interpretation of dimensions that is used for all the games of the

derivation. Then, we define the interpretation of P inductively. We say that

judgment P � P ′ is valid iff the inequality holds for every valid interpretation of

P and P ′. Finally, one can prove that P � P ′ is valid whenever P � P ′ is derivable

in the logic.

2.3.6 Axioms Used

Here, we describe the axioms used to prove the schemes in Sections 2.2 and 2.5

secure. Each axiom is decisional, in that it is a claim about the closeness of two

games. This is modeled by having both games end with a bit output b, so that

each axiom is a claim of the form |Pr G0 [ b ]− Pr G1 [ b ]| � ε. This allows us to

apply the [Abstract] rule from Figure 2.8.
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Game GLWE
0 :

A
$← Zn×mq ; s

$← Znq ;

ce
$← {0, 1}cChi ; let e = Chi(ce);

b← A(A, sTA + e);

Game GLWE
1 :

A
$← Zn×mq ; u

$← Zmq ;
b← A(A,u);

Figure 2.9: The LWE assumption, encoded in AutoLWE.

Learning with Errors

Recall from Section 2.2 that the LWE assumption states that the distribution

(A, sTA + e) is indistinguishable from uniform, where A and s are uniformly

sampled elements of Zn×mq and Znq respectively, and e is sampled from some given

error distribution.

Our concrete encoding is given in Figure 2.9. Since our logic only deals with

uniform samplings, in order to encode more complicated sampling algorithms such

as the error distribution for LWE, we separate the sampling algorithm into a coin

sampling stage and a deterministic stage. In the coin sampling stage, an element

of {0, 1}c is sampled, where c is the number of coins the sampling algorithm will

use. (Since the sampling algorithm is polynomial time, c will be a polynomial

of the security parameter.) In the deterministic stage, we call an uninterpreted

function (here, Chi) which uses the sampled coins to produce the output of the

distribution.

In various applications of the LWE assumption, the parameter settings of Fig-

ure 2.9 will alter slightly – for instance, in the Dual Regev scheme from Section

2.2, we do not use m on the nose, but rather m+ 1. This difference is immaterial

to the validity of the assumption.
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Leftover Hash Lemma

The most subtle part of our proofs is often not applying the LWE assumption,

but rather applying the Leftover Hash Lemma. This is because the LHL is an

information-theoretic judgment rather than a computational one; information-

theoretic judgments enjoy stronger composition properties than computational

judgments.

Recall that the (basic) LHL states that the distribution (A,AR,wR) is sta-

tistically close to the distribution (A,B,wR), where A is a uniformly random

element of Zn×mq , R is a uniformly random element of {−1, 1}m×k (interpreted as

a matrix), and w is a fixed arbitrary vector in Zmq . For the LHL to hold, however,

we can actually relax the requirements on A: instead of A being sampled uni-

formly, we only require that A is sampled from a distribution which is statistically

close to uniform.

In the literature, it is often the case that the lemma being applied is not the

LHL on the nose, but rather this weakened (but still valid) form in which A only

need to be close to uniform. In many of our proofs, this occurs because A is

not uniformly sampled, but rather sampled using an algorithm, TrapGen, which

produces a vector A statistically close to uniform along with a trapdoor TA, which

is kepts secret from the adversary.

By combining the LHL with the TrapGen construction, we obtain the security

games in Figure 2.10. Both games are displayed at once: the expressions which vary

between the two games are annotated with which game they belong in. In order

to model how R is sampled, we sample the component bits of R from {0, 1}dLHL ,

and apply a symbolic function, bitinj, which converts these component bits into a
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matrix. Note in this security game that w comes from a symbolic adversary, A1.

This models the universal quantification of w in the LHL. Additionally, note that

A2 actually receives the trapdoor TA. This is counterintuitive, because adversaries

in the cryptosystems do not have access to the trapdoor. However, remember

that here we are constructing the adversary for the LHL; giving A2 the trapdoor

reflects the assertion that the distribution (A,AR,wR, TA) is statistically close

to the distribution (A,B,wR, TA), which follows from the information theoretic

nature of the LHL.

While we use the assumption from Figure 2.10 in our proofs, we also use sev-

eral small variations which are also valid. One such variation is in the proof of

Dual Regev, where we do not use the TrapGen algorithm, but rather sample A

uniformly (and do not give the adversary TA); additionally, we do not include this

linear leakage w. Another such variation is used in our CCA proof from Section

2.5. In this instance, we do not transform AR to B, but rather to AR + B

(thus generalizing our [Rand] rule.) Additionally, we must state the LHL in the

CCA proof to be relative to the decryption oracle, which makes use of R. This

relativized lemma is still valid, however, since the decryption oracle does not leak

any information about R. It will be interesting future work in order to unify these

small variations of the LHL.

Distribution Equivalences

In addition to the two main axioms above, we also rely on several opaque proba-

bilistic judgments about distributions from which the adversary may sample, but

are written in terms of private variables which the adversary may not access. For

instance, in an Identity-Based Encryption scheme, the adversary could have access
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Game GLHL
β :

c
$← {0, 1}dTG ; let (A, TA) = TrapGen(c);

r
$← {0, 1}dLHL ; let R = bitinj(r);
if β=1

B
$← Zn×mq ; w← A1();

b← A2(A,
if β=0

AR
if β=1

B ,wR, TA,w);

Figure 2.10: The LHL assumption combined with TrapGen, encoded in AutoLWE.

to a KeyGen oracle, which must use the master secret key in order to operate. This

is the case in Section 2.5.2. In the concrete proof, there is a step in which we

change the implementation of the KeyGen oracle from one uninterpreted function

to another. Transformations of this sort are encoded using oracle-relative assump-

tions, which are generalizations of axioms in AutoG&P which allow adversaries to

query oracles.

For example, in Figure 2.11, we state closeness of the distributions D0(s0, ·)

and D1(s1, ·), where both s0 and s1 are unknown to the adversary. (As before,

each distribution is separated into a coin sampling stage and a deterministic stage.)

Note that s0 and s1 need not be of the same type, since the adversary does not

see them. Jumping ahead in (H)IBE part in the case study, D0, D1 correspond to

the real/simulated key generation algorithms, where s0 is the master secret key,

and s1 is the secret trapdoor information the simulator knows in order to answer

secret key queries.
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Game G0 :

s0
$← Zmq ;

b← A()
with O(x) = {
c0

$← {0, 1}d0 ;
ret D0(c0, s0, x);
}

Game G1 :

s1
$← Zkq ;

b← A()
with O(x) = {
c1

$← {0, 1}d1 ;
ret D1(c1, s1, x);
}

Figure 2.11: Example axiom capturing computational closeness of distributions.

2.4 Deciding deducibility

Several rules involve deducibility problems as side-conditions. For instance, in the

[Abstract] rule from Fig 2.8, we may transform a bound involving G1 and G2

into a bound involving G′1 and G′2, if there exists a common subgame B which

can be used to factor the former pair into the latter. Finding this subgame B

will induce deducibility subproblems. In order to automate the application of the

rules, it is thus necessary to provide algorithms for checking whether deducibility

problems are valid. As previously argued, it is desirable whenever possible that

these algorithms are based on decision procedures rather than heuristics.

In this section, we provide decision procedures for the theory of Diffie-Hellman

exponentiation, both in its basic form and in its extension to bilinear groups, and

for the theory of fields. The decision procedures for Diffie-Hellman exponentiation

are based on techniques from Gröbner bases. In addition to being an important

independent contribution on its own, the algorithms for Diffie-Hellman exponenti-

ation also serve as a natural intermediate objective towards addressing the theory

of matrices (although the problems are formally independent). For the latter, we

require significantly more advanced algebraic tools. For the clarity of exposition,
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we proceed incrementally. Concretely, we start by considering the case of fields

and non-commutative rings. We respectively provide a decision procedure and a

semi-decision procedure. Subsequently, we give a reduction from deducibility for

matrices to deducibility for non-commutative rings. The reduction yields a semi-

decision procedure for matrices. The algorithms for non-commutative rings and

matrices are based on so-called SAGBI [RS90] (Subalgebra Analog to Gröbner Ba-

sis for Ideals) techniques, which as justified below provide a counterpart of Gröbner

basis computations for subalgebras.

2.4.1 Diffie-Hellman exponentiation

Diffie-Hellman exponentiation is a standard theory that is used for analyzing key-

exchange protocols based on group assumptions. It is also used, in its bilinear and

multilinear version, in AutoG&P for proving security of pairing-based cryptography.

In this setting, the adversary (also often called attacker in the symbolic setting)

can multiply groups elements between them, i.e perform addition in the field, and

can elevate a group element to some power he can deduce in the field. Previous

work only provides partial solutions: for instance, Chevalier et al [CKRT03] only

consider products in the exponents, whereas Dougherty and Guttman [DG14] only

consider polynomials with maximum degree of 1 (linear expressions).

The standard form of deducibility problems that arises in this context is defined

as follows: let Y be a set of names sampled in Zq, g some group generator, E

the equational theory capturing field and groups operations, some set X ⊂ Y ,

f1, ...fk, h ∈ K[Y ] be a set of polynomials over the names, and Γ be a coherent set
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of axioms. The deducibility problem is then:

Γ |= X, gf1 , ..., gfk `E gh

Proposition 2. Deducibility for Diffie-Hellman exponentiation is decidable.

The algorithm that supports the proof of the proposition proceeds by reducing

an input deducibility problem to an equivalent membership problem of the satura-

tion of some Zq[X]-module in Zq[Y ], and by using an extension for modules [Eis13]

of Buchberger’s algorithm [Buc76] to solve the membership problem.

The reduction to the membership problem proceeds as follows: first, we reduce

deducibility to solving a system of polynomial equations. We then use the notion of

saturation for submodules and prove that solving the system of polynomial equa-

tions corresponding to the deducibility problem is equivalent to checking whether

the polynomial h is a member of the saturation of some submodule M . The latter

problem can be checked using Gröbner basis computations.

2.4.2 Fields and non-commutative rings

Another problem of interest is when we consider deducibility inside the field rather

than the group. The deducibility problem can then be defined as follows: let Y be

a set of names sampled in Zq, E the equational theory capturing field operations,

f1, ...fk, h ∈ K[Y ] be a set of polynomials over the names, and Γ be a coherent set

of axioms. The deducibility problem is then:

f1, ..., fk `E h

We emphasize that this problem is in fact not an instance of the problem for Diffie-

Hellman exponentiation. In the previous problem, if we look at field elements, the
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adversary could compute any polynomial in K[X] but he may now compute any

polynomial in K[f1, ..., fk], the subalgebra generated by the known polynomials.

Decidability is obtained thanks to [SS88], where they solve the subalgebra mem-

bership problem using methods based on classical Gröbner basis.

Proposition 3. Deducibility for fields is decidable.

If we wish to characterize the full adversary knowledge as done for Diffie-

Hellman exponentiation using Gröbner basis, we would have to resort to so-called

SAGBI [RS90] (Subalgebra Analog to Gröbner Basis for Ideals) techniques, which

form the counterpart of Gröbner basis computations. However, some finitely gen-

erated subalgebras are known to have infinite SAGBI bases [RS90], thus it can

only provide semi-decision for the membership problem.

For the case of non-commutative rings, we are not aware of any counterpart

to [SS88], we resort to the non-commutative SAGBI [Nor98] theory.

Proposition 4. Deducibility for non-commutative rings is semi-decidable.

It is an open problem whether one can give a decision procedure for non-

commutative rings. We note that the problem of module membership over a non-

commutative algebra is undecidable [Mor94], as there is a reduction from the word

problem over a finitely presented group. On the other hand, the problem is known

to be decidable for some classes of subalgebras, notably in the the homogeneous

case where all monomials are of the same degree.
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2.4.3 Matrices

The case of matrices introduces a final difficulty: expressions may involve structural

operations. To address the issue, we show that every deducibility problem in

the theory of matrices is provably equivalent to a deducibility problem that does

not involve structural operations, nor transposition—said otherwise, a deducibility

problem in the theory of non-commutative rings.

Proposition 5. Deducibility for matrices is semi-decidable.

The algorithm that supports the proof of semi-decidability for matrices operates

in two steps:

1. it reduces the deducibility problem for matrices to an equivalent deducibility

problem for non-commutative rings;

2. it applies the semi-decision procedure for non-commutative rings.

The reduction to non-commutative rings is based on a generalization of the tech-

niques introduced in [BDK+10] for the theory of bitstrings—note that the tech-

niques were used for a slightly different purpose, i.e. deciding equivalence between

probabilistic expressions, rather than for proving deducibility constraints.

The general idea for eliminating concatenation and splitting comes from two

basic facts:

• M `M ‖ N ⇔M `M ∧M ` N

• M∪ {M ‖ N} ` T ⇔M∪ {M,N} ` T
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For transposition, we observe that it commutes with the other operations, so in

a proof of deducibility, we can push the transposition applications to the leaves.

Everything that can be deduced from a set of matrices M and the transpose

operation can also be deduced if instead of the transpose operation we simply

provide the transposition of the matrices inM.

2.5 Implementations and Case Studies

The implementation of our logic, called AutoLWE, is available at:

https://github.com/autolwe/autolwe

AutoLWE is implemented as a branch of AutoG&P and thus makes considerable

use of its infrastructure.

Moreover, we have used AutoLWE to carry several case studies (see Figure 2.12):

an Identity-Based Encryption scheme and an Hierarchical Identity-Based Encryp-

tion scheme by Agrawal, Boneh and Boyen [ABB10], a Chosen-Ciphertext Encryp-

tion scheme from Micciancio and Peikert [MP12], and an Inner Product Encryption

scheme and proof from Agrawal, Freeman, and Vaikuntanathan [AFV11]. These

examples are treated in Sections 2.5.2, 2.5.4, 2.5.3 and 2.5.5 respectively.

Globally, our tool performs well, on the following accounts: formal proofs re-

mains close to the pen and paper proofs; verification time is fast (less than 3 sec-

onds), and in particular the complexity of the (semi-)decision procedures is not an

issue; formalization time is moderate (requiring at most several hours of program-

mer effort per proof). One of the main hurdles is the Leftover Hash Lemma, which
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Case study Proof

Reference Scheme Property LoC

Gentry et al. ’08 [GPV08] dual-Regev PKE IND-CPA 11
Micciancio et al. ’12 [MP12] MP-PKE IND-CCA 98
Agrawal et al. ’10 [ABB10] ABB-IBE IND-sID-CPA 56
Agrawal et al. ’10 [ABB10] ABB-HIBE IND-sID-CPA 77
Agrawal et al. ’11 [AFV11] AFV-IPE IND-wAH-CPA 106

Figure 2.12: Overview of case studies. All proofs took less than three seconds to
complete.

must be applied in varying levels of sophistication. The Leftover Hash Lemma (and

more generally all oracle-relative assumptions) increase the difficulty of guessing

(chained) applications of assumptions, and consequently limits automation.

2.5.1 Implementation

Security games are written in a syntax closely resembling that shown in Figure 2.1.

See Figure 2.5 for an example concrete proof in our system. Each line of the proof

corresponds to a proof rule in our logic, as seen in Figure 2.8. All tactic applications

are fully automated, except for the application of oracle-relative assumptions. The

user must provide some hints to AutoLWE about how the security game needs to be

factored in order to apply an oracle-relative assumption. The system in [BGS15]

additionally supports a proof search tactic which automatically finds a series of

tactics to apply to finish the goal; we do not have a version of that in our setting.

Oracle-relative Assumptions

AutoG&P allows one to add user defined axioms, both to express decisional asser-

tions (two distributions are computationally close) and computational assertions
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(a certain event has small chance of happening). In AutoG&P, these user-defined

axioms are stated in terms of symbolic adversaries, which are related to the main

security game by rules such as [Abstract] in Section 2.3.4. However, the symbolic

adversaries present in axioms may not have oracles attached to them. While these

restricted adversaries can be used to define the LWE assumption, they are not ex-

pressive enough to state the oracle-relative axioms we use throughout our proofs.

In AutoLWE, we remove this restriction. An example axiom we now support which

we did not before is that in Figure 2.11.

Recall that in order to apply a user defined axiom using [Abstract], we must

factor the security game into one which is in terms of the axiom’s game. This is

done essentially by separating the security game into sections, where each section

either reflects the setup code for the axiom, or an instantiation of one of the

adversaries in the axiom. We still do this factoring in the case of oracle-relative

axioms, but we must also factor oracles in the security game in terms of oracles in

the axiom. Once this second step of factoring is done, oracles in the axiom can be

compared syntactically to factored oracles in the security game.

Theory of Lists and Matrices

Note that in our case studies, we manipulate both matrices and lists of matrices

(often simultaneously). Thus, both our normal form algorithm and our deducibility

reduction from Section 2.4.3 must be lifted to apply to lists of matrices as well.

This is what allows our system to reason about the more complicated HIBE scheme

in a manner similar to the IBE scheme, which does not use lists.

In order to do this, we do not implement our main algorithms on expressions

of matrices directly, but instead over a general signature of matrices, encoded as

40



a certain type of an ML module. We then instantiate this signature both with

matrices and lists of matrices. By doing so, we receive an implementation for our

new algorithms which operate uniformly across these two types of expressions.

Deduction algorithms

Many implementations of Gröbner basis computations can be found online, but

all of them are only usable for polynomial ideals. In order to handle module

and non-commutative subalgebra, we thus implemented generic versions of the

Buchberger algorithm for K[X]-module and the SAGBI algorithm and plugged

them into AutoLWE. The algorithms performed well: we could prove all the LWE

examples, and the pairing-based examples very quickly, using the SAGBI methods.

The efficiency of the computations contrasts with the complexity of the algorithms,

which is high because the saturation squares up the number of inputs terms and

the Gröbner Basis can be at worst a double exponential. However, we are dealing

with relatively small instances of our problem that are extracted from concrete

primitives.

2.5.2 Identity-Based Encryption

Mathematical background. Let Λ be a discrete subset of Zm. For any vector

c ∈ Rm, and any positive parameter σ ∈ R, let ρσ,c(x) = exp(−π||x − c||2/σ2)

be the Gaussian function on Rm with center c and parameter σ. Next, we let

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let χΛ,σ,c(y) :=

ρσ,c(y)

ρσ,c(Λ)
. Let Sm denote the set of vectors in Rm whose length is 1. The norm of a

matrix R ∈ Rm×m is defined to be supx∈Sm||Rx||. We say a square matrix is full
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rank if all rows and columns are linearly independent.

Identity-based encryption is a generalization of public key encryption. In IBE,

the secret key and ciphertext are associated with different identity strings, and

decryption succeeds if and only if the two identity strings are equivalent. The

security model, IND-sID-CPA, requires adversary to declare challenge identity up-

front before seeing the public parameters, and allows adversary to ask for secret

key for any identity except for the challenge identity, and CPA security holds for

ciphertext associated with the challenge identity.

The IBE scheme our system supports is constructed by Agrawal et al. [ABB10].

The scheme operates as follows:

• MatrixA is generated by algorithm TrapGen, which outputs a randomA ∈ Zn×mq

and a small norm matrix T ∈ Zm×m
q such that A · TA = 0. Matrices A1,B

are sampled randomly from Zn×mq , and u is sampled randomly from Znq . Set

pp = (A,A1,B,u) and msk = TA.

• To encrypt a message µ ∈ {0, 1} with identity id ∈ Znq , one generates a uniform

s ∈ Znq , error vector e0 ← χm and error integer e1 ← χ from discrete Gaussian,

a random R ∈ {0, 1}m×m, and computes ciphertext

ct = sT [A||A1 +M(id)B||u] + (eT||eTR||e′) + (0||0||dq/2eµ).

• The secret key for identity id ∈ Znq is generated by procedure r ←

SampleLeft(A,A1 + M(id)B,TA,u), where we have r is statistically close to

χ2m, and [A||A1 +M(id)B] r = u.

The idea of the proof is first to rewrite A1 as AR−M(id∗)B, where id∗ is the

adversary’s committed identity. If we do so, we then obtain that the challenge

ciphertext is of the form
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sT [A||AR||u] + (eT||eTR||e′) + (0||0||dq/2eµ)

where A comes from TrapGen. We then apply a computational lemma about Sam-

pleLeft, in order to rewrite the KeyGen oracle to be in terms of another probabilis-

tic algorithm, SampleRight. This is a statement about equivalence of distributions

from which the adversary may sample, so must be handled using an oracle-relative

assumption. This is done as described in Section 2.3.6. The computational lemma

states that, for appropriately sampled matrices,

SampleLeft(A,AR + B, TA,u) ≈ SampleRight(A,B,R, TB,u),

where A is sampled from TrapGen in the first and uniform in the second, and B

is sampled uniformly in the first and from TrapGen in the second. By applying

this transformation to our KeyGen oracle, we transform our matrix A from one

sampled from TrapGen to uniform. Now that A is uniform, we finish the proof by

noticing that our challenge ciphertext is equal to b||bR||b + dq/2eµ, where (b, b)

forms an LWE distribution of dimension n×m+ 1. Thus we may randomize b to

uniform, and apply the rnd tactic to erase µ from the ciphertext.

The main point of interest in this proof is the initial rewrite A1 → AR −

M(id∗)B. Given that A1 is uniform, we may first apply optimistic sampling to

rewrite A1 to A2 − M(id∗)B, where A2 is uniformly sampled. Thus, we now

only need to perform the rewrite A2 → AR. This rewrite is not at all trivial,

because A at this point in the proof comes from TrapGen. However, as noted in

Section 2.3.6, it is sound to apply the LHL in this case, because TrapGen generates

matrices which are close to uniform in distribution. Thus, we can use the LHL as

encoded in Figure 2.10.
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2.5.3 CCA1-PKE

The CCA1-PKE scheme we study is proposed by Micciancio and Peikert [MP12].

In comparison with the CPA-PKE scheme [GPV08] described in Section 2.2, the

security model of CCA1-PKE is stronger: the adversary can query a decryption

oracle for any ciphertext he desires before receiving the challenge ciphertext. The

scheme operates as follows:

• Matrix A ∈ Zn×mq is sampled randomly and R ← {−1, 1}m×m. Set pk =

(A,AR) and sk = R.

• Let M : Znq → Zn×mq be an embedding from Znq to matrices, such that for

distinct u and v, M(u) −M(v) is full rank. To encrypt a message µ ∈ {0, 1},

one generates a uniform s ∈ Znq , a uniform u ∈ Znq , a uniform matrix R′ ∈

{−1, 1}m×m and an error vector e ∈ Zmq sampled from a discrete Gaussian, and

computes the ciphertext

c0 = u, c1 = sTAu + (eT||eT ∗R′) + (0||Encode(µ)),

where Au := [A|| −AR +M(u)G], G is a publicly known gadget matrix, and

Encode : {0, 1} → Zmq sends µ to µdq/2e(1, . . . , 1).

• To decrypt a ciphertext (u := c0, c1) with sk = R and u 6= 0, one computes

Au and calls a procedure Invert(Au,R, c1), which will output s and e such

that c1 = sTAu + e, where e has small norm. By doing a particular rounding

procedure using c1, s, e, and R, the message bit µ can be derived.

The main subtlety of the proof is that the secret key R is used in the decryption

oracle. Because of this, we must apply the Leftover Hash Lemma relative to this

oracle, by using oracle-relative axioms. As we will see, not all uses of the LHL are
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valid in this new setting; care must be taken to ensure that the axioms derived

from the LHL are still cryptographically sound.

The high-level outline of the proof is as follows: first, we note that instead

of using a fresh R′ to encrypt, we can actually use the secret key R. This is

justified by the following corollary of the Leftover Hash Lemma: the distribu-

tion (A,AR, e, eR′) is statistically close to the distribution (A,AR, e, eR) where

A,R,R′, and e are sampled as in the scheme. This corollary additionally holds

true relative to the decryption oracle, which makes use of R.

Once we use R to encrypt instead of R′, we again use the Leftover Hash Lemma

to transform AR into −AR + M(u)G, where u is generated from the challenge

encryption. Again, this invocation of the Leftover Hash Lemma is stated relative to

the decryption oracle. Crucially, note here that we do not transform AR directly

into uniform, as we did before: the reason being is that this transformation would

actually be unsound, because it would decouple the public key fromR as it appears

in the decryption oracle. Thus, we must do the transformation AR → −AR +

M(u)G in one step, which is cryptographically sound relative to the decryption

oracle. (Currently, we must write this specialized transformation as a unique

variant of the Leftover Hash Lemma, as discussed in Section 2.3.6; future work

will involve unifying these separate variants.)

At this point, we may apply the LWE assumption along with a more routine

invocation of the LHL in order to erase the message content from the challenge

ciphertext, which finishes the proof.
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2.5.4 Hierarchical Identity-Based Encryption

Hierarchical IBE is an extension of IBE. In HIBE, the secret key for ID string id

can delegate secret keys for ID strings id′, where id is a prefix for id. Moreover,

decryption succeeds if the ID string for the secret key is a prefix of (or equal to)

the ID string for the ciphertext. The security model can be adapted according to

the delegation functionality.

The HIBE construction our system supports is described in [ABB10]. The ID

space for HIBE is idi ∈ (Znq )d. The secret key for ID string id = (id1, . . . , id`),

where idi ∈ Znq , is a small-norm matrix T, such that FidT = 0, and Fid =

[A0||A1 +M(id1)B|| · · · ||A` +M(id`)B]. We note that T can be computed as

long as we know the secret key for id′, where id′ is a prefix of id. Ciphertext for ID

string id can be generated similarly with respect to matrix Fid.

The security proof of HIBE is similar to the counterpart of IBE. The challenge

ID string id∗ = (id∗1, . . . , id
∗
`) is embedded in pp as

∀i ∈ [`],Ai = ARi −M(id∗i )B, ∀` < j ≤ d,Aj = ARj

For admissible query id = (id1, . . . , idk), where id is not a prefix of id∗, we have

Bk = [(M(id1)−M(id∗1))B|| · · · ||(M(idk)−M(id∗k))B] 6= 0

Then we can generate secret key for id using information Bk and Rk =

(R1|| · · · ||Rk). In previous cases, we manipulate and apply rewriting rules to

matrices. However, in order to reason about the security in a similar manner to

pen-and-paper proof, we introduce the list notation, and adapt our implementation

to operate uniformly across these two types of expressions.
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2.5.5 Inner Product Encryption

The IPE scheme our scheme supports is described in [AFV11]. We briefly recall

their construction as

• Matrix A is generated by algorithm TrapGen. Matrices {matBi}i∈[d] are sampled

randomly from Zn×mq , and random vector u is from Znq . The public parameters

pp = (A, {Bi}i∈[d],u), and msk = TA.

• Secret key skv = r for vector v ∈ Zdq is computed by algorithm r ←

SampleLeft(A,
∑

i∈[d] BiG
−1(viG),TA,u), where for operationG−1(·) : Zn×mq →

Zm×mq , for any A ∈ Zn×mq , it holds that G ·G−1(A) = A and G−1(A) has small

norm.

• To encrypt a message µ ∈ {0, 1} for attributew, one generates a uniform s ∈ Znq ,

error vector e0 ← χm and error integer e1 ← χ from discrete Gaussian, random

matrices {Ri}i∈[d] ∈ {0, 1}m×m, and computes ciphertext (c0, {ci}i∈[d], c) as

c0 = sTA + eT
0 , ci = sT(Bi + wiG) + eT

0R, c = sTu + e+ dq/2eµ

The main challenge in the proof is to answer secret key queries for any vector v

as long as 〈v,w0〉, 〈v,w1〉 are both not 0, where (w0,w1) is declared by adversary

upfront. The attribute wb (b is a random bit) is first embedded in pp, i.e. Bi =

ARi − wbiG, ∀i ∈ [d], where Ri is a small matrix. By unfolding the matrix for

query v, we haveA||∑
i∈[d]

BiG
−1(viG)

 =

A||A∑
i∈[d]

RiG
−1(viG) + 〈wb,v〉G


If 〈wb,v〉 6= 0, the algorithm SampleRight can be used to generate secret key for v.
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The sequence of hybrids generated in symbolic proof is a bit different from the

pen-and-paper proof. In particular, instead of transforming from embedding of

challenge attribute w0 directly to embedding of w1, we use the original scheme as

a middle game, i.e. from embedding of w0 to original scheme, then to embedding

of w1. The reason for using the original scheme again in the proof is that when

using LHL to argue the indistinguishability between (A, {Bi = ARi−w0iG}i) and

(A, {Bi = ARi−w1iG}i), the real public parameters (A, {Bi}i) actually serves as a

middleman. Therefore, to ensure the consistency with respect to public parameters

and secret key queries, the real scheme is used to make the transformation valid.

2.6 Related work

For space reasons, we primarily focus on related works whose main purpose is to

automate security proofs in the computational model.

Corin and den Hartog [CdH06] show chosen plaintext security of ElGamal using

a variant of a general purpose probabilistic Hoare logic. In a related spirit, Courant,

Daubignard, Ene, Lafourcade and Lakhnech [CDE+08b] propose a variant of Hoare

logic that is specialized for proving chosen plaintext security of padding-based en-

cryption, i.e. public-key encryption schemes based on one-way trapdoor permu-

tations (such as RSA) and random oracles. Later, Gagné, Lafourcade, Lakhnech

and Safavi-Naini [GLLS09, GLL13] adapt these methods to symmetric encryption

modes and message authentication codes.

Malozemoff, Katz and Green [MKG14] and Hoang, Katz and Maloze-

moff [HKM15] pursue an alternative approach for proving security of modes of

operations and authenticated encryption schemes. Their approach relies on a sim-
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ple but effective type system that tracks whether values are uniform and fresh, or

adversarially controlled. By harnessing their type system into a synthesis frame-

work, they are able to generate thousands of constructions with their security

proofs, including constructions whose efficiency compete with state-of-the-art al-

gorithms that were discovered using conventional methods. Using SMT-based

methods, Tiwari, Gascón and Dutertre [TGD15] introduce an alternative approach

to synthesize bitvector programs, padding-based encryption schemes and modes of

operation.

Our work is most closely related to CIL [BDKL10], ZooCrypt [BCG+13] and

AutoG&P [BGS15]. Computational Indistinguishability Logic (CIL) [BDKL10] is

a formal logic for reasoning about security experiments with oracle and adver-

sary calls. CIL is general, in that it does not prescribe a syntax for games, and

side-conditions are mathematical statements. CIL does not make any provision

for mechanization, although, as any mathematical development, CIL can be for-

malized in a proof assistant, see [CDL11]. ZooCrypt [BCG+13] is a platform for

synthesizing padding-based encryption schemes; it has been used successfully to

analyze more than a million schemes, leading to the discovery of new and interest-

ing schemes. ZooCrypt harnesses two specialized computational logics for proving

chosen-plaintext and chosen-ciphertext security, and effective procedures for find-

ing attacks. The computational logics use deducibility to trigger proof steps that

apply reduction to one-wayness assumptions, and to compute the probability of

bad events using a notion of symbolic entropy. However, ZooCrypt is highly spe-

cialized.

AutoG&P [BGS15] introduce a computational logic and provide an implemen-

tation of their logic, called AutoG&P, for proving security of pairing-based crypto-
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graphic constructions. Their logic uses deducibility for ensuring that proof rules

are correctly enforced. Their implementation achieves a high level of automation,

thanks to a heuristics for checking deducibility, and a proof search procedure, which

decides which proof rule to apply and automatically selects applications of com-

putational assumptions. We build heavily on this work; in particular, AutoLWE is

implemented as an independent branch of AutoG&P. The main differences are:

• AutoLWE supports oracle-relative assumptions and general forms of the Left-

over Hash Lemma, and (semi-)decision procedures for deducibility problems,

for the theories of Diffie-Hellman exponentiation, fields, non-commutative rings

and matrices. In contrast, AutoG&P only support more limited assumptions and

implements heuristics for the theory of Diffie-Hellman exponentiation;

• AutoG&P supports automated generation of EasyCrypt proofs, which is not sup-

ported by AutoLWE. Rather than supporting generation of proofs a posteriori,

a more flexible alternative would be to integrate the features of AutoG&P and

AutoLWE in EasyCrypt.

Theodorakis and Mitchell [TM18] develop a category-theoretical framework for

game-based security proofs, and leverage their framework for transferring such

proofs from the group-based or pairing-based to the lattice-based setting. Their

results give an elegant proof-theoretical perspective on the relationship between

cryptographic proofs. However, they are not supported by an implementation. In

contrast, we implement our computational logic. Furthermore, proofs in AutoLWE

have a first-class status, in the form of proof scripts. An interesting direction

for future work is to implement automated compilers that transform proofs from

the group- and pairing-based settings to the lattice-based settings. Such proof

compilers would offer a practical realization of [TM18] and could also implement
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patches when they fail on a specific step.

2.7 Conclusion

We have introduced a symbolic framework for proving the security of crypto-

graphic constructions based on the (decisional) Learning with Errors assumption.

A natural step for future work is to broaden the scope of our methods to deal

with other hardness assumptions used in lattice-based cryptography, including

the Ring Learning with Errors assumption, the Short Integer Solution assump-

tion. A further natural step would then be to analyze lattice-based key exchange

protocols [Pei14, BCD+16]. To this end, it would be interesting to embed the

techniques developed in this paper (and in [BGS15]) into the EasyCrypt proof as-

sistant [BGHZ11, BDG+13], and to further improve automation of EasyCrypt for

typical transformations used for proving security of protocols.

2.8 Proofs of section 2.4.1

In group theory, a multilinear map is a function which goes from a set of groups

into a target group, and is linear with respect to all its arguments. They have

been used in the past years to develop new schemes, such as Boneh-Boyen Identity

Based Encryption [BB04] or Waters’ Dual System Encryption [Wat09].

Given a multilinear map ê, g1, .., gn, gt a set of groups generators, let X be a

set of public names sampled in Zq , Y be a set of private names sampled in Zq,

f1, ...fk, h ∈ K[X, Y ] be a set of polynomials over both public and secret names

and Γ be a coherent set of axioms.
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Our deducibility problem is to decide if Γ |= X, gf1i1 , ..., g
fk
ik
`E ght Without loss

of generality, we consider here the case of a bilinear map, to simplify the writing,

but the proofs scale up to multilinear maps.

2.8.1 Saturation into the target group

First, we reduce our problem to the case of a single group. This result comes from

the Proposition 1 of [KMT12]. Their constructive proof can trivially be used to

obtain the following proposition:

Proposition 6. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X, Y ] and

groups elements gf1i1 , ..., g
fn
in
, we denote

(geit ) = {ê(gij , gik)|1 ≤ j ≤ k ≤ n, gij ∈ G1, gik ∈ G2}

∪{ê(gij , 1)|1 ≤ j ≤ n, gij ∈ G1, }

∪{ê(1, gij)|1 ≤ j ≤ n, gij ∈ G2, }

Then Γ |= X, gf1i1 , ..., g
fn
in
`E ght ⇔ Γ |= X, ge1t , ..., g

eN
t `E−ê ght .

We obtain a problem where we only have elements in the target group, we can

therefore reduce the general problem to the single group case.

2.8.2 Reduction to polynomials

Lemma 2. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X, Y ] we have

Γ |= X, gw1
t , ..., gwNt `E ght if and only if:

∃(ei, gi) ∈ K[X], (∀i,Γ |= gi 6= 0) ∧
∑
i

ei ×
fi
gi

= h
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Proof. If Γ = ∅, the adversary can construct elements of the form (gwit )ei , where

ei ∈ K[X], i.e ei is a polynomial constructed over variables fully known by the

adversary, and then multiply this kind of term, yielding a sum in the exponent. If

Γ 6= ∅, he may also divide by some ggit , with gi ∈ K[X]. We capture here the three

capabilities of the adversary, which when looking in the exponent immediately

translate into the formula on the right side.

To handle this new problem, we notice that we can actually compute the set

{g|Γ |= g 6= 0}. Indeed, for each axiom f 6= 0, we can extract a finite set of

non zero irreducible polynomials by factorizing them (for example using Lenstra

algorithm [Len85]). Any non annulling polynomial will be a product of all these

irreducible polynomials. We can then obtain a finite set Gs = (gi) such that

G = {g|Γ |= g 6= 0} = {
∏

g∈Gs g
kg |∀g, kg ∈ N}. With these notations, we can

simplify proposition 1, because we know the form of the gi. Moreover, as we do

not want to deal with fractions, we multiply by the common denominator of all

the wi
gi
.

Lemma 3. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X, Y ] we have

Γ |= X, gw1
t , ..., gwNt `E ght if and only if:

∃(ei) ∈ K[X], (kg) ∈ N,
∑
i

ei × wi = h
∏
g∈Gs

gkg

We do not prove this lemma, we will rather reformulate it using more refined

mathematical structures and then prove it. Let us callM = {
∑

i ei×wi|ei ∈ K[X]}

the free K[X]-module generated by the (wi). We recall that a S-module is a

set stable by multiplication by S and addition, and that 〈(wi)〉S is the S-module

generated by (wi). We also recall the definition of the saturation :
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Definition 3. Given a S-module T, f ∈ S and S ⊂ S ′, the saturation of T by f in

S’ is T :S′ (f)∞ = {g ∈ S ′|∃n ∈ N, fng ∈ T}.

The previous lemma can be reformulated using saturation; if M is the module

generated by w1, ..., wN :

Lemma 4. Γ |= X, gw1
t , ..., gwNt `E ght ⇔ h ∈M :K[X,Y ] (g1...gn)∞

Proof. We recall that:

M :K[X,Y ] (g1...gn)∞ = {x ∈ K[X, Y ]|∃k ∈ N, (g1...gn)k × x ∈M}

⇒We have
∑

i ei×wi = h
∏

g∈Gs g
kg . With K = max(kg), we multiply both sides

by
∏

g g
K−kg to get h

∏
g∈Gs g

K =
∑

i

∏
g g

K−kgei × wi ∈ M . Which proves that

h ∈M :K[X,Y ] (g1...gn)∞.

⇐ If h ∈ M :K[X,Y ] (g1...gn)∞, we instantly have (ei) ∈ K[X], k ∈ N such that

h
∏

g∈Gs g
kg =

∑
i eifi.

We then simplify the saturation, by transforming it into the membership of the

intersection of modules.

Lemma 5. For any sets X and Y , f1, ...fn, h ∈ K[X, Y ], g ∈ K[X],let M =

{
∑

i ei×fi|ei ∈ K[X]} . Then, with t a fresh variable M :K[X,Y ] g
∞ = 〈(fi)∪ ((gt−

1)Y j)j∈{degY (fi)}〉K[X,t] ∩K[X, Y ].

Proof. ⊂. Let there be v ∈M :K[X,Y ] g
∞. Then, we have k such that gk × v ∈M .

The following equalities shows that v is in the right side set v = gktkv − (1 +

gt + ... + gk−1tk−1)(gt− 1)v. Indeed, gktkv ∈ MK[X, t], so we have (ei) ∈ K[X, t]

such that gktkv =
∑

i eifi. Moreover, gk × v ∈ M and g ∈ K[X] implies that
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degY (v) ⊂ {degY (fi)}. So we do have (e′i) ∈ K[X, t] and (ji) ⊂ {degY (fi)} such

that

(1 + gt+ ...+ gk−1tk−1)(gt− 1)v =
∑

e′i(gt− 1)Y ji

Finally, v ∈ 〈(fi) ∪ ((gt− 1)Y j)j∈{degY (fi)}〉K[X,t] ∩K[X, Y ].

⊃. Let there be v ∈ 〈(fi) ∪ ((gt − 1)Y j)j∈{degY (fi)}〉K[X,t] ∩ K[X, Y ]. Then we

have (ei), (e
′
i) ∈ K[X, t] and (ji) ⊂ {degY (fi)} such that :

v =
∑
i

eifi +
∑
i

e′i(gt− 1)Y ji

We have that v ∈ K[X, Y ], so v is invariant by t. So, if we subsitute t with 1
g
,

we have that v =
∑

i ei(X,
1
g
)fi. Let us consider gk the common denominator of all

those fractions and call e′′i = gkei ∈ K[X]. We finally have gk × v =
∑

i e
′′
i fi ∈M ,

which means that v ∈M :K[X,Y ] g
∞.

The Buchberger algorithm allows us to compute a Gröbner basis of any free

K[X]-module [Eis13] and then decide the membership problem for a module. We

thus solve our membership problem using this method.

Theorem 1. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X, Y ], group

elements gi1 , ..., gin and a set of axioms Γ we can decide if Γ |= X, gf1i1 , ..., g
fn
in
`E ght

Proof. To decide if h is deducible, we first reduce to a membership problem with

lemma 4 that can be solved using lemma 5 by computing the Gröbner basis of

〈(fi)∪ ((gt− 1)Y j)j∈{degY (fi)}〉K[X,t], keeping only the elements of the base that are

independent of t and then checking if the reduced form of h is 0.

As a side note, being able to decide the deducibility in this setting allows us to

decide another classical formal method problem, the static equivalence. Indeed the
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computation of the Gröbner basis allows us to find generators of the correspond-

ing syzygies (Theorem 15.10 of [Eis13]), which actually captures all the possible

distinguishers of a frame.

2.9 Proofs for section 2.4.3

[0]
Γ ` 0 : Zqn,m

[id]
Γ ` I : Zqn,n

[Tr]
Γ `M : Zqm,n

Γ `M> : Zqn,m

[sL]
Γ `M : Zqn,m+m′

Γ ` sl M : Zqn,m
[sR]

Γ `M : Zqn,m+m′

Γ ` sr M : Zqn,m
′ [-]

Γ `M : Zqn,m

Γ ` −M : Zqn,m

[∈]
M ∈M
M `M

[×]
Γ `M : Zqn,` Γ `M ′ : Zq`,n

Γ `M ×M ′ : Zqn,m

[+]
Γ `M : Zqn,m Γ `M ′ : Zqn,m

Γ `M +M ′ : Zqn,m
[||]

Γ `M : Zqn,m Γ `M ′ : Zqn,m
′

Γ `M ||M ′ : Zqn,m+m′

Figure 2.13: Typing rules for matrix operators.

We provide a more detailed proof of Proposition 5. To reason about matrices de-

ducibility, writtenM `M for a set of matricesM and a matrixM , we use the nat-

ural formal proof system K which matches the operations on expressions (see Fig-

ure 2.13), that we extend with the equality rule
[Eq]

M `M1 M `M1 = M2

M `M2 .

For ease of writing, we denote (A
B

) := (A>||B>)>.

Splits elimination

Proposition 7. Given a set of matricesM and a matrix M , we can obtain S(M)

a set of matrices without any concats, such thatM `M ⇔ S(M) ` H.
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Proof. We notice that the concat operations commute with all the other operators:

(A||B)+(C||D) = (A+C||B+D), (A||B)−(C||D) = (A−C||B−D), A×(B||C) =

(AB||AC) , (A||B) × C
D

= AC + BD, (A||B)> = (A
>

B>
). Given a set of matrices

M, we rewrite the matrices so that the concatenations operators are at the top.

We can see the matrices as block matrices with submatrices without any concat,

and then, we can create a set S(M) containing all the submatrices. This preserves

deducibility thanks to the Eq rule for the rewriting, and to the split rules for the

submatrices.

Definition 4. We call N the proof system based on K without splits, and write

the deducibility withM `N M .

Lemma 6. If M ` (R||S) with a proof π (resp. M ` (R
S

) ) then M ` R and

M ` S with smaller proofs (resp. M ` R,M ` S ) .

Proof. We prove it by induction on the size of the proof, and by disjunction on the

last rule applied.

Base case: |π| = 2, then the proof is a concat on axioms and we can then obtain

the sub matrix directly, with a proof of size one.

Induction case:

• The last rule is
[Tr]

(
R

S
)

(R|S) .

Then, we directly obtain by induction on (R
S

) smaller proofs for R and S.

• The last rule is
[×]

M (N l||N r)

(MsN l|MN r) . Then, by induction on the proof of N, we

obtain proofs of size smaller than |π| − 1 of N l and N r, and we just have to add

a [×] to those proofs, yielding smaller proofs of MN l and MN r.
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• If the last rule is [+], [-], [||], the proof can be done similarly to the two previous

cases.

• The last rule is
[sL]

((M |N)|L)

(M |N) Then, we have a proof of ((M |N)|L) of size

|π| − 1, so by induction we have a proof of (M |N) smaller than |π| − 1, and by

adding a sL, we for instance obtain M with a proof smaller than |π|.

• [sR] is similar.

Lemma 7. If M is a set of matrix without concatenations, and if M ` M , then

M `N M .

Proof. We prove it by induction on the size of the proof, and by disjunction on the

last rule applied.

Base case: |π| = 1, then the only problem might be if the rule used was a split,

but as we have matrices without concatenations, this is not possible.

Induction case:

• If the last rule is [Tr], [+], [-], [||], we conclude by applying the induction

hypothesis to the premise of the rule.

• The last rule is
[sL]

(M |N)

M . Then, we have a proof of (M |N) of size π−1, and

with lemma 6 we have a smaller proof of M , on which we can then apply our

induction hypothesis to obtain a proof of M without split.

• splitR is similar.
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Concatenations elimination

Definition 5. We call T the proof system based on N without concatenations, and

write the deducibilityM `T M .

Lemma 8. IfM, M,N do not contain any concat, then:

M `N (M |N)⇔M `T M ∧M `T N

Proof. The left implication is trivial. For the right one, we once more do a proof

by induction on the size of the proof.

Base case: |π| = 1, the last rule is a [||], and we do have a proof of M and N .

Induction case:

• The last rule is
[×]

M (N l||N r)

(MN l|MN r)

Then, by induction on the proof of N, we obtain proofs of size smaller than

|π| − 1 of N l and N r without concats, and we just have to add a [×] to those

proofs, yielding proofs of MN l and MN r without concats.

• If the last rule is [Tr], [+], [-], [sL], [sR], we proceed as in the previous case

• The last rule is [||]. Then the induction rule instantly yields the expected proofs.

Then, we have a proof of (M |N) of size π−1, and with lemma 6 we have a smaller

proof of M , on which we can then apply our induction hypothesis to obtain a

proof of M without split.
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Lemma 9. M `N M ⇔ ∀G v M,M `T G Where G v H denotes the fact that

G is a sub matrix of M without any concatenation.

Proof. The left implication is trivial, we prove the right one. As was done in

Lemma 7, we can see M has a bloc matrix, i.e with all the concat at the top.

We are given a proof of M `N M , which must contain all its concatenations

at the bottom of the proof tree. If we look at all the highest concat rule in the

proof such that no concat is made before, we have some proof ofM `N (Mi|Mj),

and thanks to lemma 8, we haveM `T Mi ∧ (Ai) `T Mj. Applying this to all the

highest concat rules in the proof yields the result.

Removal of the transposition

Definition 6. We call V the proof system based on N without concat, and write

the deducibilityM `V M .

The transposition commutes with the other operations, given a matrix M we

define the normal form N(M) where the transposition is pushed to the variables.

We extend the notation for normal form to sets of matrices.

Lemma 10. M `T M ⇔M∪ (N(Mt))) `V N(M)

Proof. ⇐ This is trivial, as the normal form can be deduced using the rule [Eq].

⇒ Given the proof of M , we can commute the trans rule with all the others, and

obtain a proof tree where all the transposition are just after a [∈] rule. Then,

any [∈] followed by [trans] can be replaced by a [∈] and a [eq] when given

the input M∪ (N(Mt))) instead of M. We can thus construct a valid proof of

M∪ (N(Mt))) `V N(M)
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Conclusion The proof of proposition 5 is a direct consequence of Lemmas 7, 7,

9 and 10.
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CHAPTER 3

VERIFYING DISTRIBUTED PROTOCOLS USING IPDL

In Chapter 2, we presented AutoLWE, a tool for formally verifying noninterac-

tive primitives, whose security is defined in terms of security games (i.e., imperative

probabilistic programs). While expressive, tools such as AutoLWE or EasyCrypt are

mostly relegated to proofs in the noninteractive and two-party settings, and not

easily usable for general distributed cryptographic tasks, such as MPC.

In the cryptographic literature, the de facto framework for reasoning about

distributed cryptography is Universal Composability (UC) [Can01]. UC adopts

a so-called simulation-paradigm, where we want to prove the protocol in question

satisfies approximate observational equivalence (i.e., computational indistiniguisha-

bility) to a particular idealization which relies on trusted functionalities rather

than cryptographic mechanisms. Any cryptographic protocol proven secure in UC

is known to be concurrently and modularly composable.

To enable scalable formal verification for complex cryptography, our goal is

to provide an easy-to-use system for encoding and mechanically checking proofs

for multi-party protocols. For the system to be usable by cryptographers, it is

important that proofs in the system approximately match how cryptographers write

proofs on paper.

State of affairs. While a line of work focused on formal verification of cryp-

tography, most earlier works fall short of verifying general, multi-party crypto-

graphic protocols. Earlier works either focused on verification of non-interactive

primitives and do not provide a native protocol-calculus for encoding interac-

tive multi-party protocols (e.g., Easycrypt [BGHZ11] and FCF [PM15b]), or fo-
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cused on restricted classes of protocols using specific cryptographic primitives

such as encryption and message authentication, symbolically modeling encryp-

tion and authentication as certain ideal abstractions to facilitate formal verifica-

tion [BSCS18, MSCB13, DY83a, Cre08]. For the latter line of works (often referred

to as the symbolic approach), it is imperative that the “symbolic” ideal abstrac-

tions of cryptography exactly match what actual cryptography can provide, and

this turns out to be subtle and non-trivial. It was observed that in some works, the

symbolic abstractions are a mismatch of what actual cryptography can provide,

and consequently, even a formally verified protocol can be broken when instantiated

with actual cryptography [AR00, Mic19]. CryptoVerif is a related symbolic-style

prover that reasons directly in the computational model [Bla06b], but is focused

on automation over expressivity.

Formally verifying distributed cryptographic protocols is an exciting nascent

area that has recently attracted increasing attention from the cryptography as well

as the formal methods communities. A couple recent systems, EasyUC [CSV19]

and CryptHOL [LSBM19] made initial attempts at this goal. These systems adopt

bisimulation (i.e., relational invariant) to reason about observational equivalence

between protocols (i.e., the observable traces induced by protocols are identi-

cally distributed). Bisimulation-style proofs mix reasoning about low-level dis-

tributional equivalence with higher-level cryptographic reasoning, making it some-

what cumbersome and unnatural for cryptographers to use these systems — im-

proving the usability of such systems was phrased as a major open question in

earlier works [CSV19]. A few recent works [EP19, HKO+18, SV17, ABB+17]

made one-off efforts to mechanize the proofs of a single, specific MPC proto-

col in Easycrypt; however, these works do not aim to provide a general logic

for encoding cryptographic protocols in general, and their approach does not na-
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tively reason about concurrent composition of protocols. Finally, an elegant line

of work [BCL12, BCL14, BCEO19] beginning with Bana and Comon [BCL12]

combines both symbolic-style and equational reasoning with unconditional com-

putational soundness. While their framework natively supports automation, it has

not been mechanized and it remains unclear how easy it is to encode larger-scale

developments such as secure function evaluation or multi-party protocols. We give

a more detailed comparison with Bana-Comon in Section 3.7.

Our Contributions In this paper, we propose IPDL (short for Interactive Prob-

abilistic Dependency Logic), a language and proof system for reasoning about

multi-party cryptographic protocols. IPDL is designed with the following desider-

ata in mind:

• Ease of use. As mentioned, we would like the experience of using IPDL to

resemble how cryptographers write proofs on paper. One novelty of IPDL is

that its logic directly captures approximate observational equivalence reason-

ing, which is at the core of common simulation-style proofs for cryptographic

protocols Unlike previous works [CSV19, LSBM19] which reason about entire

actors (i.e. parties or functionalities), IPDL adopts a channel-centric logic,

which decomposes the behavior of the protocol into the behaviors along each

communication channel. This is the insight that enables us to have a simple

equational logic.

• Support for a broad class of protocols. IPDL’s logic supports straightline pro-

tocols with statically bounded loops (i.e., loops with a-priori known bounds)

— we stress, however, that adversaries are treated as arbitrary probabilis-

tic polynomial-time machines in IPDL. The statically bounded loops can be

used to parametrize the number of parties, the size of the circuit (e.g., in a
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secure function evaluation example), the number of invocations in a reactive

functionality, and so on. This allows us to capture a broad class of protocols,

including most protocols studied in the cryptography literature (see our case

studies for examples).

• Computational soundness. Since IPDL’s logic is straightline supporting stat-

ically bounded loops, it allows the logic to symbolically track the runtime

and error of the reduction. In this way, the core logic can reason about the

security loss in IPDL proofs.

• Compositional guarantees. IPDL’s approximate observational equivalence

notion (also referred to as approximate equivalence for simplicity) follows

the elegant Universal Composability (UC) paradigm [Can01]. In a typical

simulation-style proof, we want to reason that some real-world protocol’s

security is as strong as some ideal-world specification. To do this, we can

encode a simulator in IPDL that interacts with the real-world adversary

and the ideal specification, and we prove in IPDL that the real-world and

ideal-world executions are approximately equivalent in terms of the view

from an external environment. In this way, IPDL supports the reasoning of

concurrent composition of cryptographic protocols (either with itself or with

other protocols) [Can01].

While IPDL follows the UC paradigm to provide concurrent composition, it is

not our goal to capture the full extent of the expressiveness of UC. For example,

currently we assume a static corruption model where the set of corrupt parties

are determined a-prori. As mentioned, we also impose certain restrictions on the

protocols (i.e., straightline with statically bounded loops) to allow explicit tracking

of the runtime of the programs, and ensure computational soundness. This seems

to be the right sweet-spot between ease-of-use and comprehensiveness: we chose
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the simplifications carefully such that IPDL can nonetheless capture a broad class

of protocols studied in the cryptography literature; and these simplifications allow

us to encode proofs in IPDL that are concise and resemble on-paper proofs.

Mechanization using Coq. We have implemented IPDL in Coq, and open

sourced it at https://github.com/ipdl/ipdl. The main strength of our im-

plementation is that we support parameterized protocols, or families of protocols

definable by a function in Coq. By doing so, we are able to support protocols

indexed over arbitrary Coq types – this includes protocols defined for q adversary

queries, n parties, or inductive protocols such as MPC for general circuits.

Rich case studies. We have implemented several case studies which demon-

strate how IPDL can help scale up formal verification to more complex protocols

than before. The case studies and proofs are included in our open source too.

Currently, we provide the following case studies:

1. a multi-use, secure communication network out of an authenticated one using

a CPA-secure encryption scheme;

2. a maliciously secure n-party coin toss with abort protocol assuming idealized

commitments;

3. several semi-honest oblivious transfer (OT) constructions, including OT from

trapdoor permutations [GMW87], 1-out-of-4 OT from 1-out-of-2 [14o, NP99],

and a preprocessing protocol for OT [pre, Bea95]; and

4. a semi-honest 2-party GMW protocol [GMW87], defined over a general family

of circuits.
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Proof effort. The secure network example can be encoded in 195 lines of code,

including description and proofs. In comparison, the recent EasyUC work [CSV19]

required 12203 lines of code to realize a single-use secure network 1. Among

these above case studies, the most sophisticated is GMW, which uses the OT as

a building block. Encoding the description and proof of GMW+OT in IPDL is

accomplished with less than 3201 lines of code. As a rough point of comparison, the

related work by [ABB+17] took 11069 lines of code to encode the garbled circuit

+ OT [Yao82] protocol (and moreover, their work is a one-off effort focused on

mechanizing a single protocol rather than providing a general logic and framework).

For some other one-off efforts at mechanizing MPC proofs [EP19, SV17, ABB+17],

we were not able to find open source code online, so we cannot provide a direct

comparison in terms of lines of code.

3.1 Outline of Chapter

In Section 3.2, we first demonstrate IPDL by way of a simple example – proving

that an authenticated network can realize a secure network by using an encryp-

tion scheme. While the example is simple, the security guarantee is strong – any

other protocol which assumes a secure network can use this proof to safely use an

authenticated one instead (given a trusted key setup). This equational logic is

proved sound using a novel semantics developed in Section 3.9.
1Among the 12203 lines for EasyUC’s secure network example, roughly speaking, 260 lines

describe the real-world protocol, 182 lines describe the ideal functionality, 190 lines describe the
simulator, and the remaining lines are the proof. We did not count their key exchange since our
implementation assumed a trusted key setup. As the EasyUC paper [CSV19] itself acknowledges,
part of the complexity arises from the fact that EasyCrypt is procedure-based and does not
natively support a protocol calculus; consequently, there was a significant amount of tedious
work in writing “boilerplate” code that route messages in between parties and functionalities.
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We then detail the formal account of IPDL in Section 3.3. IPDL is unique in

that it exposes an equational logic which allows one to reason directly over the code

of protocols. This is in contrast to related tools such as EasyUC [CSV19], which

makes use of Easycrypt’s relational Hoare logic, requiring the use of heavyweight

invariants to reason equationally.

In Section 3.4, we discuss derived rules and soundness for reasoning about

parameterized protocols in IPDL. While cryptographic protocols generally have

parameters (e.g., the number of adversary queries, the size of a circuit, the number

of parties), the core logic of IPDL is purely about concrete programs. We bridge

this gap by verified, derived rules for reasoning about parameterized protocols.

In Section 3.5, we discuss the encoding of IPDL into Coq. In Section 3.6 and

Section 3.10, we detail our case studies (described in the previous section). Finally,

we discuss additional related work and future directions in Sections 3.7 and 3.8.

3.2 IPDL by Example: Multi-use Secure Network

In this section, we introduce IPDL and its equational style of reasoning through an

example protocol for constructing a simple secure communication network out of

an authenticated one using a CPA-secure encryption scheme. Before we introduce

the protocol, we will first introduce the basic syntax and semantics of IPDL, along

with some background information protocol security.
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3.2.1 Terminology and Background

We define some basic terminology and review some background on UC [Can01]. A

protocol is any (distributed) message-passing system, which may give outputs and

react to inputs. For protocols to have a meaningful security definition, they may

exhibit probabilistic behavior but not (possibilistic) nondeterminism. Protocols

communicate over channels, which for us are unidirectional (i.e., either input or

output). The channels of a given protocol can be split into interfaces, which are

subsets of the channels of a given protocol.

We express the security properties of a protocol through two interfaces: the

external interface, which is used for the high-level I/O behavior of the protocol;

and the attacker interface, which is used to define the threat model. Given two

protocols P and Q with the same external interface but (possibly) differing attacker

interfaces, we say that P realizes Q when there exists a simulator S which converts

the attacker interface of Q to that of P , such that P is observationally equivalent

to Q composed with S. This type of simulator is also called a converter in earlier

work, such as Constructive Cryptography [Mau11].

We often call the attacker for P the adversary, and call the attacker for Q the

simulator. Intuitively, when P realizes Q, any adversary’s capability of influencing

the external interface in P is upper bounded by the simulator, since any attack on

P can be turned into an equivalent attack on Q.

We typically think of P as the implementation (or the real protocol) and Q

as the specification (or the ideal protocol). While P is comprised of parties who

interact with each other using cryptographic mechanisms and may be arbitrarily

corrupted by the adversary, Q is comprised of idealized parties who instead interact
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with a trusted third party (the functionality) which performs the protocol’s logic

in a centralized and trustworthy way. The simulator’s capabilities in the ideal

protocol are constrained by the functionality and ideal parties to be simple and

easy to understand.

Relation to UC. Here, we compare our terminology to UC [Can01]. In UC, a

real world protocol is defined to be the composition of all honest party’s code and

any hybrid functionalities, while an ideal protocol is usually taken to specifically

mean the ideal functionality and all ideal parties. Our notion of protocol is more

generic, and refers to any message-passing system definable in IPDL. In particular,

any individual party’s code in IPDL is considered a protocol, as is any arbitrary

composition of protocols.

3.2.2 IPDL in a Nutshell

IPDL is a calculus and equational theory for reasoning about probabilistic proto-

cols. The main judgement of IPDL is that P δ
= Q, where P and Q are interactive

protocols, and δ is a computational error, which upper-bounds the advantage of

a computational attacker from distinguishing P from Q. IPDL supports UC-style

reasoning: given protocols P and Q, one can ask whether there exists an appro-

priately typed simulator S such that P δ
= Q||S, for a reasonable choice of δ.

In contrast to the semantics of UC [Can01] which utilizes systems of Interactive

Turing Machines that must be activated sequentially, IPDL allows for messages to

happen in any order consistent with the protocol. This is possible since all messages

in IPDL are assumed to be scheduled by the attacker.
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The key insight of IPDL is to adopt a channel-centric rather than agent-centric

viewpoint. All channels in IPDL are write-once, and have a unique behavior as-

sociated to them by a reaction, which is a program that may sample probabilistic

values and read the value of other channels (once those channels have fired). To

enable a simple equational theory, all dependencies between channels are required

to be statically determined. Thus, control flow may only happen at the level of

data, but not on the level of the protocol. We stress, however, that the equational

logic of IPDL is proven sound relative to a general cryptographic adversary who

may use more complex control flows.

3.2.3 Multi-Use Secure Communication in IPDL

As a first example, we show how to construct a secure network from an authen-

ticated network2. This is accomplished through message encryption, such that an

eavesdropper cannot learn any information about the messages sent between Alice,

the sender, and Bob, the recipient. Our secure network abstraction is multi-use,

i.e., it is parametrized by a parameter q that denotes the number of messages

exchanged between Alice and Bob. In this example, we assume that both Alice

and Bob are honest and the adversary is a passive eavesdropper (although later

on, in our case studies, we will have cases where the parties can be semi-honest or

maliciously corrupt).

We conduct the example using syntax from our Coq mechanization which en-

codes our IPDL core logic. In our Coq implementation, the counterpart of our

main judgement in IPDL, P δ
= Q, is written as P ~= Q. Our current Coq mecha-

2The cryptographic literature uses the terms “secure channel” and “authenticated chan-
nel” [Can01], but we avoid overloading the term “channel” so “channel” always means the low-level,
write-once IPDL channels.
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nization has not yet implemented the tracking of error bounds which is part of the

IPDL core logic described in Section 3.3; nonetheless we prove on paper that our

logic is computationally sound (see Section 3.3).

More details for our Coq embedding is given in Section 3.5.

Definitions of authenticated and secure network. Figure 3.1 shows the

IPDL encoding of the definitions of an authenticated network and a secure network,

respectively. A network Net is parametrized with 1) q, which denotes the maximum

number of messages exchanged, 2) m, which denotes the length of each message,

and 3) leakage, which denotes a leakage function, and a parameter l which denotes

the length of the leakage. In the definition of Net, I denotes a vector of q input

channels between Alice and the ideal functionality Net, O denotes a vector q output

channels between Bob and the ideal functionality Net; and leak and ok each

denotes a vector of q channels between the ideal functionality and the adversary.

In Lines 8-9, for each j < q, Net reads from the jth channel in I to obtain a

message x, applies the leakage function to x, and returns the result to the adver-

sary through the jth channel in leak. To do so, we first we perform a parallel

composition in IPDL over all j < q (written \||_(j < q)). We then assign the

jth channel of leak (written leak ## j) to the reaction through the syntax ::=.

Similarly, in Lines 10-12, for each j < q, Net reads from the jth channel in

ok, the jth channel in I to obtain a message, and assigns the message to the jth

channel in O. Note here that we do not use the value along the jth ok channel,

but only its timing : thus, the jth channel of O only fires once the jth channel

of ok does. In other words, the receiver Bob receives the message only when the

adversary okays it.
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1 Definition Net (q m : nat) {l : nat} (leakage : m -> l)

2 (* External channels *)

3 (I O : q.-tuple (chan m))

4 (* Attacker channels *)

5 (leak : q.-tuple (chan l)) (ok : q.-tuple (chan TUnit))

6 :=

7 [||

8 \||_(j < q) (leak ## j) ::= (x <-- Read (I ## j);;

9 Ret (leakage x));

10 \||_(j < q) (O ## j) ::= (_ <-- Read (ok ## j);;

11 x <-- Read (I ## j);;

12 Ret x)

13 ].

14

15 Definition Auth q m := Net q m id.

16 Definition Sec q m := Net q m (fun _ => [tuple]).

Figure 3.1: Definitions of authenticated and secure networks in IPDL. Both net-
works are parameterized by the number of queries in question, q, and the length
of messages, m.

Given our definition of Net, we can now define both the authenticated and

secure networks. On Line 15, we define an authenticated network Auth q m to be

equal to Net instantiated with the leakage function id (i.e., the identity function).

This means that the adversary can read the contents of all messages in an authen-

ticated network. Similarly, on Line 16 we define a secure network Sec q m to to be

equal to Net with the constant leakage function fun _ => [tuple], which returns

the empty bitstring. Thus in Sec, the adversary receives no information about

message contents. However, the adversary still learns the timing information of

each message; and moreover, since the messages length m is a public parameter,

the adversary is assumed to know m, too.

Protocol realizing a secure network. Figure 3.2 shows the IPDL encoding

of a protocol that realizes a secure network from an authenticated one, through

the use of encryption. The construction takes the same parameters as Sec, i.e.,

q and m, for the number of messages and length of each message, respectively.
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Additionally, it takes the following parameters for c and k, for the ciphertext

length and key length, and genK, enc, and dec, for generating keys, encryption,

and decryption.

We first define the key generation functionality (in Line 12), which samples a

key from the distribution genK, and assigns it to the channel K (which is taken

as a parameter of the functionality). Then, we define the code for Alice in Line

14, who is parameterized by a vector of channels I for message inputs, a channel

K for the encryption key, and a vector of channels send for communicating with

the authenticated network. For each j < q, Alice: reads a message from the jth

channel of I; a key from the channel K; generates a ciphertext by encrypting the

message under the key; and assigns the ciphertext to the jth send channel. We

define Bob similarly on Line 21: for each j < q, we read the jth ciphertext, read

the key, and output the corresponding decryption to the jth channel of O.

We have the real protocol in total on Line 27. It is parameterized similarly to

the Sec functionality, except it has leakage channels of length c instead of zero.

We compose protocols together in IPDL through first generating local communica-

tion channels, and composing the subprotocols together using these local channels.

On Line 30, we generate the channel K for key generation (using the Coq syntax

k <- new k). Then, on Lines 31 and 32, we generate two fresh vectors of channels,

send and recv for the underlying authenticated network. This is done with similar

syntax send <- newvec q @ c: here, q is the length of the vector, and c is the

length of messages on each channel. Finally, on Lines 34-37, we compose together

the key generation functionality, Alice, Bob, and the underlying authenticated net-

work. Thus, the authenticated network will deliver ciphertexts from send to recv,

but only after leaking the ciphertexts along leak and receiving the ok message.
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1 Section AuthToSec.

2 (* Same as in Net *)

3 Context (m q : nat).

4 (* Ciphertext and Key length *)

5 Context (c k : nat).

6

7 (* Algorithms for encryption *)

8 Context (genK : Dist k).

9 Context (enc : m -> k -> Dist c).

10 Context (dec : c -> k -> m).

11

12 Definition FKey (K : chan k) := (K ::= Samp genK).

13

14 Definition alice (I : q.-tuple (chan m)) (K : chan k)

15 (send : q.-tuple (chan c)) :=

16 \||_(j < q) (send ## j) ::=

17 (msg <-- Read (I ## j) ;;

18 key <-- Read K ;;

19 ctxt <-- Samp (enc msg key) ;;

20 Ret ctxt)).

21

22 Definition bob (recv : q.-tuple (chan c)) (K : chan k)

23 (O : q.-tuple (chan m)) :=

24 \||_(j < q) (O ## j) ::=

25 (ctxt <-- Read (recv ## j) ;;

26 key <-- Read K ;;

27 Ret (dec ctxt key)).

28

29 Definition Real (I O : q.-tuple (chan m))

30 (leak : q.-tuple (chan c))

31 (ok : q.-tuple (chan TUnit)) :=

32 K <- new k ;;

33 send <- newvec q @ c ;;

34 recv <- newvec q @ c ;;

35 [||

36 FKey K;

37 alice I k send;

38 bob recv K O;

39 Auth q c send recv leak ok

40 ].

Figure 3.2: Authenticated-to-secure network protocol in IPDL.
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1 Definition Sim

2 (leakI : q.-tuple (chan 0)) (okI : q.-tuple (chan TUnit))

3 (leakR : q.-tuple (chan c)) (okR : q.-tuple (chan TUnit))

4 :=

5 K <- new key ;;

6 [||

7 K ::= (Samp genK) ;

8 \||_(j < q) (leakR ## j) ::=

9 (_ <-- Read (tnth leakI j);;

10 key <-- Read K;;

11 e <-- Samp (enc [tuple of nseq _ false] key);;

12 Ret e);

13 \||_(j < q) (okI ## j) ::= (x <-- Read (okR ## j) ;;

14 Ret x)

15 ]

Figure 3.3: Simulator for the authenticated-to-secure network example in IPDL.

Real World ≡ Simplified RW (by decryption correctness)
≈ Simplified RW + Message-Free Ciphertext (by CPA-security)
≡ Simplified Ideal World
≡ Ideal World

Figure 3.4: Outline of proof for authenticated-to-secure network example.

3.2.4 Simulator and Proof

To show that our real protocol is secure, we must show that the attacker’s capabil-

ities in the real world are upper bounded by those in the ideal world, wherein Alice

and Bob rely on the functionality Sec to communicate. Recall that in the real

world, the attacker learns any ciphertexts Alice sends through the leak channels,

but in the ideal world, the attacker learns only the timing of each message. In

both the real and ideal worlds, the attacker may use the ok channels to schedule

the delivery of each message.
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Definition of the simulator. The simulator is shown in Figure 3.3. We de-

scribe the simulator informally. It is parameterized by four vectors of channels:

two, leakI and okI, communicate with the ideal world; and two, leakR and okR

communicate with the real world. The simulator must do two things: it must

receive timing information for the jth message through leakI, and produce a real-

looking ciphertext along leakR; and it must receive scheduling information along

okR, and produce scheduling information along okI.

To produce the real-looking ciphertexts for leakR, the simulator first generates

a key channel K, similar to the real world, and samples K using genK (Line 6).

Then, when it receives timing information for the jth message through leakI (Line

8), encrypts the all-zeroes message using K (Line 10), and outputs the ciphertext

along the jth channel of leakR. (The all-zeroes message is encoded in Coq by

[tuple of nseq _ false].) This simulation is successful, since ciphertexts reveal

no information about the message if the encryption scheme is CPA secure. Finally,

the simulator may simply forward all scheduling decisions for from okR to okI (Line

12).

Proof of security. Once the simulator is constructed, we compose the ideal

world with the simulator using locally generated channels and ask whether the

result is approximately equivalent to the real world. This equivalence judgement

proves that the adversary’s view (leakR and okR), as well as Alice and Bob’s view

(I and O) cannot be distinguished between the two protocols. In the following

theorem, ~= is the Coq notation for the approximate equivalence judgement in

IPDL (written on paper as δ
=).
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1 Theorem AutSec_Security I O leakR okR :

2 real I O leakR okR ~=

3 (leakI <- newvec q @ 0 ;;

4 okI <- newvec q @ TUnit ;;

5 [||

6 ideal I O leakI okI;

7 Sim leakI okI leakR okR

8 ].

We now outline the IPDL proof required to prove the above theorem. The

proof is outlined in Figure 3.4, and contains a number of steps:

1. Simplifying the ideal world with simulator: We first apply a number of equa-

tional rewrites to the ideal world. In effect, these equational rewrites will

inline the behavior of the simulator into the ideal functionality. Recall from

Figure 3.1 in Line 10 that the jth channel of O reads from the jth channel

of ok, which for our ideal functionality is named okI. However, the simu-

lator from Figure 3.3 in Line 13 forwards the value along the jth channel

of okR into okI. In this instance, we can fold the definition of okI into O,

which rewrites O so that it reads from okR directly. Since the internal channel

okI is now now longer used, we may eliminate it from the protocol. IPDL

is specifically designed to perform these kinds of rewrites, and do so in a

succinct manner.

After doing the same inlining step for the internal channel leakI, we receive

the following protocol:
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1 K <- new k ;;

2 [||

3 K ::= Samp genK;

4 \||_(j < q) (leakR ## j) ::=

5 (key <-- Read K ;;

6 _ <-- Read (I ## j) ;;

7 c <-- enc [tuple of nseq _ key] key ;;

8 Ret c);

9 \||_(j < q) (O ## j) ::=

10 (_ <-- Read (okR ## j) ;;

11 msg <-- Read (I ## j) ;;

12 Ret msg)

13 ]

2. Simplifying the real world: After simplifying the ideal world, we perform

similar inlinings in the real world. Specifically, we inline the definition of

send (coming from Alice) into the authenticated network, and inline the

definition of recv (coming from the authenticated network) into Bob. Once

we do so, we get that the value of Bob’s output is equal to the decryption

of Alice’s generated ciphertext. To simplify Bob’s output we apply an axiom

which models the correctness of decryption for the encryption scheme. The

axiom allows us to perform an equational rewrite to each of Bob’s output

channels in O, and transform it to the reaction that simply reads the message

from I.

3. Applying CPA security in the real world: When we apply the rewrites in Step

2, we receive the following protocol:
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1 K <- new k ;;

2 [||

3 K ::= Samp genK;

4 \||_(j < q) (leakR ## j) ::=

5 (key <-- Read K ;;

6 msg <-- Read (I ## j) ;;

7 c <-- enc msg key ;;

8 Ret c);

9 \||_(j < q) (O ## j) ::=

10 (_ <-- Read (okR ## j) ;;

11 msg <-- Read (I ## j) ;;

12 Ret msg)

13 ]

Note that this protocol is almost the same as the simplified ideal world from

Step 1: The behavior along the O channels are exactly the same, but the

behavior of the leakR channels here encrypts the real message, while the

protocol in Step 1 encrypts the filler message.

To prove these two protocols equivalent, we first apply a congruence rule,

which allows us to factor out the common behaviors for O, and focus only

on the equivalence of the leakR channels between the real and ideal worlds.

At this point, we can directly apply our equational axiom for CPA security,

which states that no adversary can tell the difference between encryptions

of arbitrarily chosen messages from encryptions of filler messages (given that

they key is secret). This axiom applies directly to our two worlds, which

finishes the proof.
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Variables x
Channels c
Channel Sets I, O, C ::= {c1, . . . , cn}
Data Types τ ::= unit | B | τ1 × τ2

| bits(n) (with n ∈ N)
| . . .

Variable Contexts Γ ::= x1 : τ1, . . . , xn : τn
Channel Contexts ∆ ::= c1 : τ1, . . . , cn : τn
Expressions e ::= x | tt | true | false

| if e then e1 else e2

| (e1, e2) | fst(e) | snd(e)
| f(e1, . . . , en)

Distributions D ::= 1e | x : τ ← D1; D2

| Unif(τ) | D(e1, . . . , en)
Reactions R ::= Ret e

| Samp D
| Read c
| x : τ ← R1; R2

Protocols P,Q ::= c := R | P1 || P2

| νc : τ. P | 0

Figure 3.5: Syntax of IPDL Protocols.

3.3 Core Logic

In this section, we describe the core calculus of IPDL in detail, along with its

semantics. Sections 3.3.1, 3.3.2, and 3.3.3 describe the syntax, typing rules, and

equational logic of IPDL. In Sections 3.9 and 3.9.1 we describe the semantics of

IPDL protocols and their interaction with adversaries.

3.3.1 Syntax

The syntax of IPDL is shown in Figure 3.5. All data types τ in IPDL are assumed

to have a bitstring length |τ |, along with an interpretation JτK : {0, 1}|τ |. For our

examples, we assume a unit type, booleans, products, and bitstrings of a given
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length n ∈ N, along with their standard bitstring interpretations.

Protocols in IPDL are composed of expressions, distributions, reactions, and

protocols. Expressions are built out of collection of function symbols f(e1, . . . , en),

with an assumed typing rule and interpretation mapping bitstrings to bitstrings

(of the appropriate lengths, depending on the type of f). For clarity, we show the

standard connectives for unit, bool, products, and bitstrings (not shown).

Distributions represent probabilistically determined messages. Along with dis-

tribution symbols D(e1, . . . , en) which, similarly to function symbols, have a type

and an interpretation, we assume the unit distribution 1e, monadic bind, and the

uniform distribution Unif(τ) for any IPDL type τ . Distributions are assumed to

always have unit mass.

Reactions can be seen as effectful programs which may sample from probability

distributions and read from channels. Reactions themselves also carry a monadic

structure. reaction with no variables is called closed ; a reaction with no reads is

necessarily equal to a sampling. Note that reactions may not contain any control

flows themselves; thus, all effects which a reaction may perform are statically

determined. Reactions intuitively have a semantics mapping valuations on channels

to either distribution on return values or an error (if the required input channels

do not have values set yet.)

Finally, a protocol is an interacting network of reactions. A protocol can either

be defined by assigning a closed reaction to a channel, a parallel composition, the

spawning of a new, fresh channel, or the zero protocol 0.
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Γ ` e : τ

∆; Γ ` Ret e : ∅ → τ
ret

Γ ` D : τ

∆; Γ ` Samp D : ∅ → τ
Samp

∆ ` c : τ

∆; Γ ` Read c : {c} → τ
Read

∆; Γ ` R1 : I1 → τ1 ∆; Γ, x : τ1 ` R2 : I2 → τ2

∆; Γ ` x : τ1 ← R1; R2 : I1 ∪ I2 → τ2

Bind

Figure 3.6: Typing for Reactions.

3.3.2 Typing

Typing Γ ` e : τ for expressions and Γ ` D : τ for distributions is standard. The

typing ∆; Γ ` R : I → τ for reactions is shown in Figure 3.6; it says that R

is a reaction reading from channels in I and returning a distribution of type τ ,

if successful. The channel context ∆ declares the channels available for sending

and receiving messages (we note that ∆ stays unchanged throughout the typing

judgement), and the variable context Γ is used for constructing messages.

Typing for programs has the form ∆ ` P : I → O, where I and O are finite

sets of channel names denoting inputs and outputs, respectively. The typing rules

for IPDL are given in Figure 3.8. Rule rct states that the inputs and outputs to

a reaction c := R are given by set I of the channels R reads from except c, and

the single channel c, respectively. The most subtle rule is par, which states that

P || Q is well-typed if P and Q have disjoint outputs; and if so, then the inputs

of P || Q are inputs of either P or Q (or both) that do not appear as outputs in

the other program, and the outputs of P || Q are the outputs of P or Q. This

rule bears a close resemblance to typed approaches to module linking; e.g., as in

[GM99]. We note that ∆ ` I → O implies I ∩O = ∅.
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∆ ` P = P
[Refl]

∆ ` P1
δ
= P2

∆ ` P2
δ
= P1

[Sym]
∆ ` P1

δ1= P2 ∆ ` P2
δ2= P3 δ3 = δ1 + δ2

∆ ` P1
δ3= P3

[Trans]

∆1, x : τ1, y : τ2,∆2 ` P1
δ
= P2

∆1, y : τ2, x : τ1,∆2 ` P1
δ
= P2

[Exchange]
∆ ` P1

δ
= P2 x /∈ ∆

∆, x : τ ` P1
δ
= P2

[Weakening]

∆; · ` R1 = R2

∆ ` (c := R1) = (c := R2)
[ReactCong]

∆ ` P δ
= Q : I → O axiom

∆ ` P δ
= Q

[Axiom]

∆ ` P1
δ
= P2 Q b-bounded δ′(k) = δ(ccomp ∗ |∆| ∗max(k, b))

∆ ` P1 || Q
δ′
= P2 || Q

[CompCong]

∆, c : τ ` P δ
= Q

∆ ` νc : τ. P
δ
= νc : τ. Q

[NewCong]
∆ ` P1 || P2 = P2 || P1

[CompSym]

∆ ` (P1 || P2) || P3 = P1 || (P2 || P3)
[CompAssoc]

∆ ` P : C → ∅ C ⊆ I ∪O
∆ ` P || Q = Q

[AbsorbComp]

c /∈ P
∆ ` P || νc : τ. Q = νc : τ. P || Q

[CompNew]

∆ ` νc1 : τ1. νc2 : τ2. P = νc2 : τ1. νc1 : τ2. P
[NewExchange]

x /∈ R2

∆ `
(
c1 :=

(
x : τ0 ← Read c0; ; R1

)
||
(
c2 :=

(
y : τ2 ← Read c1; ; R2

)))
=
(
c1 :=

(
x : τ1 ← Read c0; ;R1

)
||
(
c2 :=

(
x : τ0 ← Read c0; ; y : τ1 ← Read c1; ; R2

)))
[ResourceTrans]

c1 /∈ ∆ c1 /∈ R1 c1 /∈ R2

∆ `
(
νc1 : τ1. c1 := R1 || c2 :=

(
x : τ1 ← Read c1; ; R2

))
=
(
c2 :=

(
x : τ1 ← R1; ; R2

)) [UnFold]

∆ `
(
x : τ1 ← R1; ; y : τ1 ← R1; ; Ret(x, y)

)
=
(
x : τ1 ← R1; ; Ret(x, x)

)
∆ `

(
c1 := R1 || c2 :=

(
x : τ1 ← Read c1; ; R2

))
=
(
c1 := R1 || c2 :=

(
x : τ1 ← R1; ; R2

)) [Substitution]

x /∈ R2

∆ `
(
c1 := R1 || c2 :=

(
x : τ1 ← Read c1; ; R2

))
=
(
c1 := R1 || c2 :=

(
x : τ1 ← R1; ; R2

)) [UnusedResource]

Figure 3.7: The IPDL proof system for protocol equivalence.
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∆ ` 0 : ∅ → ∅
zero

∆; · ` R : I → τ ∆ ` c : τ

∆ ` (c := R) : I \ {c} → {c}
rct

∆, c : τ ` P : I → O ∪ {c} c /∈ I c /∈ O
∆ ` νc : τ. P : I → O

hide

∆ ` P : I1 → O1 ∆ ` Q : I2 → O2

O1 ∩O2 = ∅ I = (I1 ∪ I2) \ (O1 ∪O2) O = O1 ∪O2

∆ ` P || Q : I → O
par

Figure 3.8: Typing Rules for Protocols.

Typing Γ ` e : τ for expressions and Γ ` D : τ for distributions is standard.

The typing ∆; Γ ` R : I → τ for reactions is shown in Figure 3.6; it says that

R is a reaction reading from channels in I and returning a distribution of type τ ,

if successful. The channel context ∆ declares the channels available for sending

and receiving messages (we note that ∆ stays unchanged throughout the typing

judgement), and the variable context Γ is used for constructing messages.

Typing for protocols has the form ∆ ` P : I → O, where I and O are finite

sets of channel names denoting inputs and outputs, respectively. The typing rules

for IPDL are given in Figure 3.8. Rule rct states that the inputs and outputs to

a reaction c := R are given by set I of the channels R reads from except c, and

the single channel c, respectively. The most subtle rule is par, which states that

P || Q is well-typed if P and Q have disjoint outputs; and if so, then the inputs

of P || Q are inputs of either P or Q (or both) that do not appear as outputs in

the other program, and the outputs of P || Q are the outputs of P or Q. This

rule bears a close resemblance to typed approaches to module linking; e.g., as in

[GM99].
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3.3.3 Equational Logic

The main feature of IPDL is that we are enabled to reason equationally about

protocols using rewrite rules. To obtain computational soundness, our equational

logic tracks the adversary’s run time and computational error incurred during the

proof.

At the level of expressions, we assume a user-defined equational theory sup-

porting judgements of the form Γ ` e1 = e2 : τ for well-typed e1 and e2. We

assume a similar judgement Γ ` D1 = D2 : τ for distributions. We assume that

equality (both for expressions and distributions) is well-behaved with respect to

substitution. For distributions, we additionally assume the equational theory for

commutative monads as well as the weakening rule:

Γ ` D1 : τ x /∈ D2

Γ ` x : τ ← D1; D2 = D2

We now describe the equational theory for reactions, similarly written Γ ` R1 =

R2. Most rules are standard, and encode the equational theory of commutative

monads. We highlight the most interesting rules here, and leave the rest for the

appendix in Figure 3.10. We first have two rules for relating the monadic structure

of reactions and distributions:

∆; Γ ` Samp
(
x : τ1 ← D1; D2

)
=
(
x : τ1 ← Samp D1; Samp D2

)
[SampBind]

∆; Γ ` Samp 1e = Ret e

[SampRet]

Next, we have the contraction rule, stating that reading from the same channel
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twice is equivalent to reading it once:

∆; Γ `
(
x : τ1 ← Read c; y : τ1 ← Read c; R

)
=
(
x : τ1 ← Read c; R[y/x]

)
[Contr]

For protocols, we have the judgement ∆ ` P δ
= Q, which states (informally)

that any computational adversary (called the “environment” in UC [Can01]) with

running time at most k cannot distinguish interaction with P from Q with ad-

vantage greater than δ(k). Here, δ : N → R is an error, which maps adversary

running times to an upper bound on distinguishing advantage. Since greater com-

putation power allows the adversary to gain distinguishing advantage, we assume

throughout that δ is an increasing function. We allow user defined axioms for

(approximate) program equivalences, which are used to define assumptions on the

security of a cryptosystem or hardness assumption. The equational theory of pro-

grams is given in Figure 3.7. Our judgement is directly inspired from the work

on Task-PIOA [CCK+07]. We will write ∆ ` P = Q for the special case of exact

equality when δ is the constant zero function.

We now discuss a selection of the rules from Figure 3.7. The most important

rule is [CompCong], which states that if P1 is approximately equivalent to P2,

then for any Q (of the appropriate type), P1||Q is approximately equivalent to

P2||Q. This is the rule that enables modular reasoning in IPDL. To reason about

the error incurred by using this rule, we define the notion of b-boundedness : an

IPDL program Q is b-bounded if, intuitively, its behavior can be simulated with a

probabilistic algorithm with at most b time steps (defined formally in 3.9). Given

this notion, the rule [CompCong] changes the attacker’s running time to O(|∆| ∗

max(k, b)); this is because the attacker for P1 (and P2) must simulate the behavior

of Q, which increases its running time.
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Similarly, [HideCong] states that δ
= forms a congruence under the spawning of

a new channel. Rule [HideComp] states that our hiding operator commutes with

parallel composition, under the assumption that no extra channels are affected.

We note that this rule is closely related to the concept of scope extrusion in the

π-calculus (i.e., as in [MPW92]).

Rule [Resource Trans] states that if c0 is an input to the reaction defining

c1, and c1 is an input to the reaction defining c2, then we may freely add c0 to the

inputs of c2.

The last three rules specify under what conditions we may replace a read from

a channel c by the reaction R defining it. The first scenario in which this is sound

is when the reaction R is non-probabilistic – this is rule [Subst]. The second case

when we may replace a read from c by the reaction R is when the value read from

c is in fact never used – this is rule [UnusedResource]. Lastly, we may perform

this replacement if the channel c is read from in precisely one place – this is rule

[UnFold]. Reading from right to left, this rule also serves to relate the monadic

bind at the level of reactions to the parallel composition of programs.

3.3.4 Semantics

We now informally describe our semantic model for IPDL, as well as our proof of

soundness. Technical details can be found in Section 3.9. We interpret each IPDL

program P as an I/O automaton, which is a probabilistic transition system that

can deliver outputs and react to inputs.

IPDL equivalence judgements are proven sound relative to a semantic adver-
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sary, who is formulated as a dual automaton (along with some extra data). The

adversary is responsible for interacting with the protocol, choosing the order in

which outputs occur, and eventually outputting a decision bit after some k num-

ber of rounds. We define k-bounded adversaries to be those which run for k rounds,

and each round may only take k time steps in its internal transition functions. 3

Given a k-bounded adversary A and IPDL program P , we write A(P ) to mean

the distribution on booleans defined by letting A and P interact for k rounds, and

observing the decision bit of A. We stress that our automata model, and thus our

adversarial model, is not limited to the syntax of IPDL, but instead can describe

arbitrary behaviors, including conditional branching and other forms of control

flow.

Soundness. Our soundness theorem states that whenever ∆ ` P δ
= Q, any k-

bounded adversary has an advantage at most δ(k) in distinguishing P from Q.

Note here that δ is derived from a proof in our logic, and will consist of the sum

of a number of errors incurred by applying IPDL axioms.

Theorem 2. Suppose ∆ ` P : I → O and ∆ ` Q : I → O are two IPDL

programs such that ∆ ` P δ
= Q. Then for all k-bounded adversaries A, |Pr[A(P ) =

1]− Pr[A(Q) = 1]| ≤ δ(k).

The proof of Theorem 2 is given in Section 3.9. We now give some detail about

the proof. For the rules with error zero, we employ bisimulation arguments, to

directly show the two protocols have the same behaviors. For the [CompCong]

rule, we must transform an arbitrary adversary A for the composition P1||Q to

an adversary A||Q for the protocol P1. The bound ccomp ∗ |∆| ∗ max(k, b) comes
3Without loss of generality we take k be the upper bound on the adversary’s running time

per round and the number of rounds.
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directly from the proof.

3.4 Parameterized Programs and Computational Soundness

In this section, we consider parameterized protocols : families of IPDL protocols

{Pj}, ranging over some index set j. Parametrization in IPDL can be used to en-

code the number of parties (e.g., our n-party coin flip with abort example), number

of reactive sessions (e.g., our secure network example), as well as for ranging over

more complicated index sets (e.g., for expressing arbitrary circuits in our GMW

example). In Section 3.4.1, we describe how Theorem 2 applies to PPT adversaries

and computational indistinguishability. In Section 3.4.2, we describe some derived

equational rules for reasoning about parameterized programs.

3.4.1 Soundness for PPT Adversaries

While our core logic in Section 3.3 does not reason about parameterization, we

show here that we can use the logic to reason about protocols which depend on

a security parameter. In this section, we consider parameterized IPDL protocols

of the form {P λ}, parameterized by a security parameter λ ∈ N. Similarly, we

consider families of channel contexts {∆λ}, and families of errors {δλ}.

We lift computational indistinguishibility to parameterized IPDL protocols in

a straightforward manner. First, note that the family of errors {δλ} can be seen

as a two-place function: the first argument is the security parameter, while the

second is the adversary’s running time. Correspondingly, we say that the family

{δλ} is negligible if for all polynomials p, δλ(p(λ)) is a negligible function of λ. We
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define PPT adversaries to be families of adversaries {Aλ} such that there exists

a polynomial p where Aλ is p(λ)-bounded. Then, we have the following corollary

immediate from Theorem 2:

Corollary 1. Suppose that ∆λ ` P λ δλ
= Qλ, and the family {δλ} is negligible.

Then, for any PPT adversary {Aλ}, the quantity

|Pr[Aλ(P λ) = 1]− Pr[Aλ(Qλ) = 1]|

is a negligible function of λ.

The (parameterized) error parameter {δλ} may grow in IPDL for two reasons:

either by applying an axiom, or by applying the [CompCong] rule, which grows

the adversary’s runtime by the runtime of the common context. As long as the

proof has polynomially many rewrites, the error family for each axiom is negligible,

and the runtime of each context for the [CompCong] rule is polynomial, we are

guaranteed that {δλ} is a negligible family of errors.

3.4.2 Derived IPDL Constructs and Equations

We now turn to reasoning principles in IPDL for parameterized programs. To

build parameterized programs systematically, we introduce two pieces of syntactic

sugar on top of the core IPDL syntax. Let n ∈ N be a variable in the ambient

meta-logic. First, vectorized channel generation, ν −→v n : τ. P , generates a fresh

vector of channels {vi}i∈{1...n} for use in protocol P . Second is the notation ||j∈J Pj

for composing a family of protocols Pj together, for all j in some finite index set J .

Both pieces of syntactic sugar are reflected in our Coq formalization, as seen e.g.

in Section 3.2. While each Pj must be an IPDL program, we emphasize that the
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mapping j 7→ Pj and the index set J are all defined in the ambient logic and may

make use of arbitrary set theoretic reasoning. This reflects our Coq formalization,

which uses the bigop and fintype libraries from ssreflect [GMT16] to manage

parameterized composition and index sets of bounded natural numbers.

Derived IPDL rules. We additionally introduce a number of derived rules for

IPDL for reasoning about parameterized programs. We describe the most impor-

tant rules here, and leave the rest for Figure 3.11 in the Appendix.

One of our most widely used rules is [EqBig], which states that parameterized

composition is a congruence, which states that in order to prove that ||j∈J Pj is

equivalent to ||j∈J Qj, it suffices to show that Pi is equivalent to Qi for each i ∈ J .

Next, we have a number of rules involving manipulating the index sets for

parameterized composition, directly inspired from the bigop library. Most impor-

tantly, we have that we can arbitrarily split up compositions: any composition

||j∈J Pj can be split into the composition of ||j∈J∩K Pj and ||j∈J∩K̃ Pj, where K̃ is

the complement of K. We additionally have that composition is compatible with

parameterized composition: that is, ||j∈J Pj composed with ||j∈J Qj is equivalent

to ||j∈J(Pj || Qj).

Finally, we describe our most powerful rule, [Hybrid]:

∀k < n,Γ ` ( ||
j<k

Pj)||R = ( ||
j<k

Qj)||R

⇒ Γ ` ( ||
j<k

Pj)||Pk||R = ( ||
j<k

Pj)||Qk||R

Γ ` ( ||
j<n

Pj)||R = ( ||
j<n

Qj)||R
[Hybrid]

This rule states that to transform one composition of a protocol family {Pj}
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into another one {Qj} (say, for the index set {0 . . . n}) in the presence of a common

context R, we may instead prove that for any k < n, if we have the composition

of {Pj}j≤k along with R, we may rewrite the last Pk to Qk.

3.5 Encoding in Coq

In this section, we describe our encoding of IPDL in Coq.

Basic syntax. First, we describe how we embed types, expressions, and dis-

tributions. Our encoding is shallow, meaning that expressions and functions in

IPDL are represented using their native Coq analogues. IPDL types are given by

an inductive Coq type type := TBool | TUnit | TBits (n : nat) | TPair

(t1 t2 : type). As is standard, IPDL types in Coq come equipped with a

function interpType : type -> Type, which maps each IPDL type into its in-

terpretation as a Coq type. This mapping is standard; we use the tuple library

of ssreflect [GMT16] to model bitstrings. We model distributions syntactically, as

finite boolean decision trees.

We now turn to channels, reactions, and IPDL protocols:

1 Axiom chan : type -> Type.

2

3 Definition Chan := {t : type & chan t}.

4

5 Inductive rxn : type -> Type :=

6 | Samp {t : type} : Dist t -> rxn t

7 | Ret {t : type} : t -> rxn t

8 | Read {t : type} (c : chan t) : rxn t
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9 | Bind {t1 t2 : type} : rxn t1

10 -> (t1 -> rxn t2)

11 -> rxn t2.

12

13 Inductive WfRxn : list Chan -> rxn t -> Prop := ...

14

15 Inductive ipdl : Type :=

16 | prot0 : ipdl

17 | Out {t} (c : chan t) : rxn t -> ipdl

18 | Par : ipdl -> ipdl -> ipdl

19 | New t : (chan t -> ipdl) -> ipdl.

To model channel binding in Coq, we opt for the weak HOAS approach [CS13],

which models channels through a type-indexed abstract Coq type, given by an

axiom. Since channels have type tags, we use a dependent sum to speak about

the collection of all channels, Chan. Reactions are encoded monadically, as in

Section 3.3. For ease of use, we adopt the usual monadic syntax x <-- r ;; k to

represent monadic binds. For convenience, we do not enforce that reactions are

well-typed through the Coq type system, but instead embed the typing judgement

in the proposition WfRxn: if WfRxn G r holds, then r performs exactly the reads

as specified through the sequence of channels G. This encoding is faithful to the

syntax in Section 3.3, which does not allow pattern matching or branching at the

level of reactions: since WfRxn enforces that all Read effects must be identical in

all branches, the reaction is equivalent to one without reaction-level branching.

Finally, in Line 17, we encode IPDL programs through the datatype ipdl. In

the datatype we use syntax Out and Par, but these are also captured by the Coq no-

tations ::= and || respectively. Since we use weak HOAS, we are enabled to encode

channel binding in New through an ordinary Coq function. We allow use of the more
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natural syntax x <- new t ;; P. As is standard [CS13], this encoding requires us

to additionally encode the predicate chansOf : ipdl -> Chan -> Prop to model

the free variables of IPDL programs, since we cannot soundly assume decidable

equality of channels. We provide tactics for (mostly) automatically discharging

goals involving chansOf and related constructions.

Typing judgements. We similarly encode the typing judgement of IPDL pro-

grams through an inductive datatype. It follows the same rules as in Section

3.3, except for the ν operator for local channel generation. Since we cannot di-

rectly assume a specific channel is globally fresh in Coq (e.g., as in nominal calculi

[AGM+04]), we parameterize the typing judgement by a finite collection of chan-

nels X and assume that the new channel c is only fresh against the channels in

X.

Equational theory. We encode equivalences of reactions and IPDL programs

through the inductive datatypes EqRxn and EqProt, respectively. Our libraries

for IPDL make heavy use of Coq’s support for setoid rewriting to enable easy

proofs. Their definitions closely follow the rules in Section 3.3, except for the

following differences: 1) we do not reason about a separate monadic bind operator

for distributions and reactions, but only the one for reactions; 2) we give ourselves

the liberty to include a few derived rules for managing channel dependencies and

reasoning about probability distributions; 3) our Coq implementation currently

does not reason about computational error (i.e., the δ parameter). We plan on

introducing reasoning about computational error and protocol run time to a future

iteration of our implementation.
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Encoding of parameterized protocols. One of the major strenghts of our Coq

encoding is that we are able to write arbitrary Coq programs to generate IPDL

protocols, effectively using Coq as a meta-programming environment for IPDL. Fol-

lowing Section 3.4, we use the bigop library from ssreflect [GMT16]: we model pa-

rameterized composition ||j∈J Pj using the syntax \||_(j < n | p j) f j where

f is a function of type 'I_n -> ipdl, and 'I_n is the type of natural numbers

less than n. While we do have support for more general index sets – as in the

bigop library, we support using sequences for index sets, as well as general fi-

nite types – we only use bounded natural numbers for our proof developments.

We model parameterized channel generation ν −→v n : τ. P through the notation

x <- newvec n @ t ;; P, which is defined by induction on n. Here, the type of

x is n.-tuple (chan t), or the type of lists of length exactly n. This type is

borrowed from the tuple library of ssreflect. All the derived rules in Section

3.4 are implemented as lemmas in Coq, proven from the basic equational rules of

IPDL.

3.6 Case Studies

In this section, we briefly describe all case studies we have mechanized in IPDL.

We defer more detailed description to Appendix 3.10, including Coq sources for

selected protocols.
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3.6.1 Case Studies

Multi-use secure network. Our first case study is a multi-use secure network,

and we refer the reader to the earlier Section 3.2 for more details. 4

Semi-honest OT constructions. In (1-out-of-2) OT, there is a sender who

has a pair of messages m0 and m1, and a receiver who has an index bit i. The

ideal functionality for OT receives these three protocol inputs, and returns to

the receiver mi. The sender receives no protocol output. All OT protocols we

consider are in the semi-honest setting, in which the adversary observes corrupted

parties’ private data, but cannot harm integrity. We encode semi-honest security

in IPDL by annotating each corrupted party with explicit leakage channels for the

adversary, and extending their protocol code appropriately.

We verify three OT protocols: OT from trapdoor permutations, the OT con-

struction by Goldreich et al. [GMW87], a simple preprocessing scheme for OT [pre,

Bea95], and construction of 1-out-of-4 OT from 1-out-of-2 OT [14o, NP99]. All

OT constructions are roughly of the same complexity, and emphasize different

parts of the system; in particular, the proofs for OT often require complex reran-

domization steps, in which we transform uniform randomness to eliminate channel

dependencies. More details about all OT protocols is given in Section 3.10.1.

Semi-honest, two-party GMW protocol. Our second major case study for

IPDL is the GMW protocol [GMW87], a semi-honest secure multiparty computa-

tion protocol over bits based on secret sharing. First, we model boolean circuits
4While our example reasons only about a fixed size of message, it is straightforward to adapt

our example to the variable length case by considering a type of messages up to a given length.
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in Coq as follows:

1 Inductive Op (A B k : nat) :=

2 | InA : 'I_A -> Op A B k

3 | InB : 'I_B -> Op A B k

4 | And : 'I_k -> 'I_k -> Op A B k

5 | Xor : 'I_k -> 'I_k -> Op A B k

6 | Not : 'I_k -> Op A B k.

7

8 Definition Circ A B n := forall (k : 'I_n), Op A B k.

9

10 Definition CircOutputs n o := o.-tuple ('I_n).

Above, we first introduce the type Op A B k of operations which may make use of

all of Alice’s inputs (numbered 0 . . . A − 1), Bob’s inputs (numbered 0 . . . B − 1),

and all wire IDs from 0 to k−1. We then define a circuit to be a mapping from all

wire IDs j < n to an operation which may make use of all wires up to j − 1. This

definition of boolean circuits is equivalent to a more ordinary, inductively defined

variant, but is nicer to work with in proofs. Our circuits support multiple outputs,

which are modeled through a finite mapping from wire IDs to output IDs, which

we define using a o.-tuple, or fixed-size list of length o. (We assume the same

outputs for each party.)

We describe how we encode the ideal/real protocol of GMW in Appendix 3.10.3.

Coin flip with abort. This protocol allows n mutually distrusting parties to

collaboratively generate fair randomness [Blu83]. To do so, each party locally gen-

erates a bitstring uniformly from {0, 1}k and sends a cryptographic commitment of

the bitstring to all other parties. We assume a broadcast channel for the commit-
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ments to prevent equivocation. Once all other commitments have been collected,

each party opens their respective bit, and all parties output the collective XOR

of all opened bitstrings. We model the commitment and broadcast channels using

a standard UC commitment functionality, which prevents equivocation by con-

struction. Our proof is secure in the malicious model. Modeling details about the

protocol are given in depth in Section 3.10.4.

3.6.2 Proof Effort

In Figure 3.9, we outline the lines of code needed for each case studies consid-

ered. Our simplest example is our secure network example from Section 3.2, which

consists of a number of simple rewriting steps along with the application of two

IPDL axioms. Our OT examples, while simple to define, take a modest effort to

prove, with the largest proof being the 1-4 OT at 749 lines of code. While the

number of lines is moderate, the complexity of the proof script is low: most of

the lines consist of repetitive tactic invocations as well as intermediate rewriting

steps being explicitly defined as hybrids. It is likely that proofs like these can be

further automated with additional engineering effort. Our most complex examples

are the GMW protocol and the n-Coin Flip, both of which have proofs of less than

2000 lines of code. Out of the 1995 lines of code for the n-Coin Flip, 345 of them

were definitions of intermediate hybrids while the rest were either proof scripts or

auxiliary lemmas.

We compare our proof effort with related mechanization efforts in Section ??.
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Case study LoC (Definitions) LoC (Proof)
Secure Network 73 122
Trapdoor OT 75 568
Preprocessing OT 40 249
1-4 OT 88 749
n-Coin Flip 100 1995
GMW 324 1397

Figure 3.9: Case studies considered and lines of code.

3.7 Additional Related Work

More detailed comparison with Bana-Comon. A promising direction

([BCL12], [BCL14], [BCEO19]) for protocol verification is initiated by Bana and

Comon, where the attacker is not limited by interacting with idealized cryptog-

raphy, but instead constrained by a number of logical axioms which state what

the attacker is not able to do. While this framework has made advances com-

pared to symbolic systems, there is to date no publicly available mechanization

of their framework. While some IPDL proofs can likely be automated using these

techniques, we anticipate that our more complicated parameterized proofs (e.g.,

inducting over circuits, handling n parties) would require significant engineering

effort similar to ours to mechanize using their framework. Indeed, the strength of

our parameterized approach is derived from the usage of a general-purpose theo-

rem prover for defining parameterized protocols; this has no counterpart yet in the

Bana-Comon framework.

Frameworks for cryptographic protocols. In the cryptography literature,

Universal Composability [Can01] and Constructive Cryptography [Mau11] are

the two dominant definitional frameworks for simulation-based security. Several

automata-based frameworks also exist, such as [BPW07] and [CCK+18], which,
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while similar in spirit, aim for a more formal treatment. Additionally, some

works use process calculi to model computational cryptographic protocols, such

as [MRST01]. A recent effort to formalize the semantics of UC is ILC [LHM19].

While a useful step towards giving formal reasoning support for UC, it does not

yet provide support for verification. Additionally, a number of works formalize

standalone (non-UC) proofs of interactive protocol security using special-purpose

embeddings of protocols into Easycrypt. For example, [HKO+18] gives an on-

paper reduction of the security of Maurer’s MPC protocol [Mau06] to a certain

trace property which is directly verified in Easycrypt

An interesting alternative framework is given in Micciancio and Tessaro [MT13]

(hereafter M&T), where they use complete partial orders to represent crypto-

graphic protocols as the least fixed point of a recursive set of equations. There is

some amount of conceptual overlap between M&T and IPDL: their monotonicity

requirement (that further inputs can only create more outputs) is similar to our

encoding of protocols, which cannot make use of non-determinism through observ-

ing scheduling decisions. However, the framework is not mechanized, and cannot

reason about computational error.

3.8 Future Work

The first direction of future work for IPDL is to increase its expressivity while

still retaining the equational flavor of its logic. For example, support for adaptive

corruption and more flexible control flows would be interesting.

An exciting future direction is to integrate IPDL with an underlying battle-

hardened cryptographic proof system (such as EasyCrypt [BGHZ11]) which may
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enable more expressiveness, thus achieving ease-of-use and generality simultane-

ously. Other exciting future directions include to provide a greater degree of proof

automation, compiling IPDL programs to executable code (e.g., in C) and proving

the correctness of the compilation. We anticipate that IPDL could also be seen

as an equational interface for more expressive tools such as EasyUC [CSV19] or

CryptHOL [LSBM19]. Additionally, it would be interesting to combine IPDL with

ILC [LHM19], n programming language for UC semantics.

3.9 Semantics

In this section, we give semantics to well-typed IPDL programs. Every type can

be straightforwardly interpreted as the set of bitstrings of a certain length; if c is a

channel declared in a typing context ∆, we will write |c| for the length of bitstrings

assigned to c and by abuse of notation we will use natural numbers n to stand for

the set of bitstrings of length n. Analogously to types, we interpret variable typing

contexts Γ as natural numbers, again corresponding to a set of bitstrings of the

specified length. We interpret channel typing contexts ∆ as mappings of channel

names c to natural numbers |c|, specifying that a given channel will carry bitstrings

of the given length.

We first describe our semantic model of I/O automata. Let ∆ be a channel

context, as above. Then, an I/O automaton consists of the following data, for I

and O disjoint sets of channels which form ∆:

• a finite set St of states

• a start state s? : St
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• a valuation function St× (o : O)→ 1 + |o|

• an input transition function St× (Σi:I |i|)→ D(St)

• an output transition function St× (o : O)→ D(St)

The valuation function tells us the value of the output o, if any, in a given state.

The input transition function takes a state s and an assignment i := v, where v

is a value of the correct type, and returns a distribution on states. The output

transition function takes a state s and an output o, and returns a distribution on

states.

We write s|o for the value of the output o in state s. Given a state s, we write

〈i := v〉 s and 〈o〉 s for the distribution resulting from performing the specified

input or output. Using the monadic bind, we can generalize this to distributions

σ as 〈i := v〉σ and 〈o〉σ.

There are several canonical ways to produce new protocols from old ones. For

our purposes, the following three are important:

• Given a protocol P in the typing context ∆, c 7→ |c| with an output c, we

can restrict P in the obvious way to obtain a new protocol νc : |c|. P in the

reduced typing context ∆. The new protocol has the same states as P but

its valuation and output transition functions are now restricted to channels

from ∆.

• Given a protocol P with an output o, we define a new protocol P |o as follows:

we have the same states as in P but both before and after performing any

input assignment or output computation, we perform o.
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• Given two protocols P and Q in the same typing context with inputs I1

and I2 and outputs O1 and O2 such that O1 ∩ O2 = ∅, we can define a new

protocol P || Q as follows:

– the states are pairs (s, t), where s and t are states of P and Q, respec-

tively

– the start state is (s?, t?), where s? and t? are the start states of P and

Q, respectively

– the valuation is defined as

∗ (s, t)|o := s|o if o ∈ O1

∗ (s, t)|o := t|o if o ∈ O2

– to perform an input assignment i := v in (s, t), we perform i := v in s

and/or t as applicable:

∗ If i ∈ I1 and i /∈ I2, the resulting distribution is 〈i := v〉 s× 1t.

∗ If i /∈ I1 and i ∈ I2, the resulting distribution is 1s × 〈i := v〉 t.

∗ If i ∈ I1 and i ∈ I2, the resulting distribution is 〈i := v〉 s×〈i := v〉 t.

– to compute an output o in (s, t), we compute o in s or t, accordingly

as to whether o is an output of P or Q. If applicable, we forward the

result to the other protocol:

∗ If o ∈ O1 and o /∈ I2, the resulting distribution is 〈o〉 s× 1t.

∗ If o ∈ O2 and o /∈ I1, the resulting distribution is 1s × 〈o〉 t.

∗ If o ∈ O1 and o ∈ I2, we draw a new state r from 〈o〉 s. If r|o = u for

some u ∈ |o|, the resulting distribution is 1r × 〈o := u〉 t, otherwise

1r × 1t.

∗ If o ∈ O2 and o ∈ I1, we draw a new state r from 〈o〉 t. If r|o = u for
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some u ∈ |o|, the resulting distribution is 〈o := u〉 s× 1r, otherwise

1s × 1r.

For our soundness result, we also need to introduce the concept of a channel

embedding. Given two contexts ∆ and ∆′, a channel embedding θ : ∆→ ∆′ is an

injective function from the indices in ∆ to ∆′ which preverse channel typing.

We are now ready to describe the interpretation of an IPDL program ∆ `

P : I → O. We will proceed in two steps: in the first step we define a one-step

interpretation [[−]]1 using the above constructs, and in the second step we define

the final interpretation [[−]] in terms of the one-step interpretation. When asked to

perform an output o, the one-step interpretation attempts to first compute all the

hidden channels that o may directly or indirectly depend on; however, it does not

yet attempt to compute any output channels, even those that o directly depends

on. This is the job for the final interpretation.

Formally, we define [[P ]]1 by induction on the structure of P as follows:

• [[0]]1 has a unique state and no output actions

• [[o := R : τ ]]1 has mappings of channel names c to bitstrings of length 1 + |c|

as states, where c is either an input to the reaction R or the output o. The

start state maps every channel name to ⊥. Performing an input assignment

i := v in a state s amounts to setting the value of i in s to v, if not already

defined. To compute an output o in a state s, we check if c is already defined

in s; if so, we do nothing. Otherwise we execute the reaction R in s (yielding

⊥ if any of the required input channels are not defined in s).

• [[P || Q]]1 := [[P ]]1 || [[Q]]1

• [[νc : τ. P ]]1 := νc : [[τ ]]. [[P ]]1|c
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It is now possible to prove that for any output o, we have [[P ]]1|o|o = [[P ]]1|o and

for any two outputs o1, o2 we have [[P ]]1|o1|o2 = [[P ]]1|o2|o1 . If {o0, . . . , on} are the

outputs of P , we define the final interpretation of P to be [[P ]] := [[P ]]1|o0 . . . |on .

Thus, if an output o2 depends on an output o1, in the final interpretation the

computation of o2 will take into account the result of the computation of o2, if any.

Another important property of our semantics of IPDL is that the |o operator

is compatible with composition, in the following sense:

Lemma 11. For any IPDL programs P and Q with disjoint outputs, and any

output o of P , ([[P ]]1||[[Q]]1)|o = ([[P ]]1|o||[[Q]]1)|o.

The above lemma can be verified manually by enumerating the cases in which

o may fire in each state of the composition, and whether o is an input of Q. A

similar result holds for the symmetric case where we add |o to Q, instead of P .

By applying the above lemma many times, we have that [[P ||Q]] =

([[P ]]||[[Q]])|o1,...,ok , where o1, . . . , ok is an arbitrary enumeration of the outputs

of P and Q.

Boundedness for IPDL programs In order to reason in a computationally

sound manner, we need to estimate the running times of IPDL protocols. We say

that an IPDL protocol Q is b-bounded when the size of the state of [[Q]] (in bits)

is bounded by b, and for each transition function of the final interpretation [[Q]],

there exists a probabilistic Turing machine that runs for at most b time steps which

computes this function.
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3.9.1 Adversaries

An environment or adversary for a protocol P with inputs I and outputs O is

specified by:

• a dual adversary protocol A with states St, inputs I ′ ⊆ O, and outputs

I ⊆ O′

• a stepping function St→ D(St)

• a decision function St→ B

• an accept function (O ∪O′)→ St→ B

• a schedule {0, . . . , k − 1} → (O ∪O′)

In particular, the adversary does not have access to the states of the protocol. At

each step, the schedule decides on performing one of the outputs (of either the

protocol or the adversary). In each case, the adversary probabilistically steps to

a new state as given by the stepping function. The adversary has the ability to

refuse the execution of any scheduled channel.

We now describe how the adversary interacts with a semantic protocol P . Given

a state s of the adversary, a state t of the protocol, and an output o : O ∪ O′ to

be performed, we probabilistically determine a new adversary state and a new

protocol state as follows:

• We call the stepping function in state s and draw a new adversary state r

from the resulting distribution.

• If the accept function for o at s is false, the resulting distribution is 1r × 1t.
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• Otherwise we ask the composed protocol A || P to perform o in the state

(r, t), to obtain the resulting distribution 〈o〉 (r, t).

We can lift this single execution step to act on distributions of pairs (s, t) of

adversary and protocol states. We inductively perform this lifted execution step

on each scheduled channel to obtain a final distribution on pairs of adversary and

protocol states. At this point we call the decision function to turn the resulting

distribution on adversary states to a distribution on booleans. This distribution,

denoted A(P ), will be the result of the interaction between the adversary and the

protocol.

We call an adversary k-bounded if:

• the states have length at most k

• the schedule has length at most k

• for each i, the corresponding input transition function is k-bounded

• for each o, the corresponding output transition function is k-bounded

• for each i or o, the corresponding accept function is k-bounded

• the stepping function is k-bounded

• the decision function is k-bounded

We define a bisimulation between two comparable protocols P and Q as a

binary relation ∼ on distributions on the states of P and Q respectively, satisfying

the following conditions:

• Initial: the unit distributions on the respective initial states of P and Q are

related by ∼
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∆; Γ ` R = R
[Refl]

∆; Γ ` R1 = R2

∆; Γ ` R2 = R1

[Sym]

∆; Γ ` R1 = R2 ∆; Γ ` R2 = R3

∆; Γ ` R1 = R3

[Trans]

Γ ` e1 = e2

∆; Γ ` Rete1 = Rete2

[RetCong]

Γ ` D1 = D2

∆; Γ ` sample D1 = sample D2

[SampleCong]

∆; Γ ` R1 = R3 ∆; Γ, x : τ1 ` R2 = R4

∆; Γ `
(
x : τ1 ← R1; ;R2

)
=
(
x : τ1 ← R3; ; R4

) [BindCong]

∆; Γ ` sample 1e = Rete
[SampleRet]

∆; Γ ` sample
(
x : τ1 ← D1; D2

)
=
(
x : τ1 ← sample D1; ; sample D2

) [SampleBind]

∆; Γ `
(
y : τ2 ← (x : τ1 ← R1; ; R2); ; R3

)
=
(
x : τ1 ← R1; ; y : τ2 ← R2; ; R3

) [BindBind]

∆; Γ `
(
x : τ1 ← Rete; ; R

)
= [e/x]R

[RetBind]

∆; Γ `
(
x : τ ← R; ; Retx

)
= R

[BindRet]

x /∈ R2 y /∈ R1

∆; Γ `
(
x : τ1 ← R1; ; y : τ2 ← R2; ; R3

)
=
(
y : τ2 ← R2; ; x : τ1 ← R1; ; R3

) [Exchange]

∆; Γ `
(
x : τ1 ← read c; ; y : τ1 ← read c; ; R

)
=
(
x : τ1 ← read c; ; [y/x]R

) [Contr]

Figure 3.10: Equivalence of Reactions in IPDL.
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• Inputs: if µ ∼ η, then for any input assignment i := v there exist (convex)

coefficients c1, . . . , cn and distributions µ1, . . . , µn, η1, . . . , ηn such that µk ∼

ηk for each k = 1, . . . , n and

〈i := v〉µ = Σk:=1...nckµk = Σk:=1...nckηk = 〈i := v〉η

• Outputs: if µ ∼ η, then for any output o there exist (convex) coefficients

c1, . . . , cn and distributions µ1, . . . , µn, η1, . . . , ηn such that µk ∼ ηk for each

k = 1, . . . , n and

〈o〉µ = Σk:=1...nckµk = Σk:=1...nckηk = 〈o〉η

Any bisimulation between P and Q is also a bisimulation between P |o and Q|o,

and likewise between νc : τ. P and νc : τ. Q. Of special interest are bisimulations

where µ ∼ η implies µ = 1x and η = 1y for some states x and y (denoted x ∼ y)

such that x|o = y|o for any output o. It is easy to see that the existence of such a

bisimulation between protocols P and Q implies indistinguishablility of P and Q

by any adversary of any bound.

Validity and Proof of Soundness We say the judgement ∆ ` P δ
= Q : I → O

is valid if for any channel embedding θ : ∆′ → ∆ between channel contexts, and

any k-bounded adversary,

|Pr[A(θ [[P ]]) = 1]− Pr[A(θ [[Q]])]| ≤ δ(k).

Note here that the bound we prove is invariant up to channel embedding. This

immediately implies Theorem 2, by applying the identity embedding.

We now sketch the proof of soundness for the equational rules in our logic:
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• The [Refl], [Sym], and [Trans] rules are clear.

• The [Exchange] and [Weakening] rules follow at once from the invariance

under protocol embeddings.

• The [ReactCong] rule is also clear and [axiom] holds by assumption.

• To prove [CompSym] and [CompAssoc], we define bisimulations by (s, t) ∼

(t, s) and ((s, t), u) ∼ (s, (t, u)) respectively.

• To prove [AbsorbComp], we define a bisimulation by (_, t) ∼ t.

• The rules [CompNew] and [NewExchange] are clear since both sides are

interpreted as identical protocols.

• The rules [ResourceTrans], [Subst], and [UnusedResource] follow

from the fact that we can choose our final interpretation of both sides to

be [[·]]1|c1|c2 , i.e., prior to any query we attempt to fire c1 before c2.

• In the rule [UnFold], we can similarly choose our final interpretation of the

body inside the program-level bind on the left-hand side to be [[·]]1|c1|c2 . This

again attempts to fire c1 before c2, and this amounts precisely to performing

the reaction R1 inside the reaction-level bind on the right-hand side.

• The rule [NewCong] follows from the fact that any adversary for the pro-

tocols on the bottom is also an adversary for the protocols on top.

It remains to prove the rule [CompCong]. We first give the following two

constructions on adversaries:

Composition Given an adversary A for a semantic composition of protocols P

and Q (not necessarily coming from IPDL), we can compose A with Q to form an
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adversary for P whose interaction with P yields precisely the same final distribu-

tion on booleans as the interaction of the original adversary A with P || Q. Let

A : I ′ → O′ and Q : I2 → O2. Let d, a, s be the decision, accept, and stepping

functions of the adversary. The protocol for the new adversary is A || Q; the

schedule is the same as the one for A; the decision function maps a state (s,_) to

d(s); the accept function for a channel c ∈ O2 ∪ O′ maps a state (s,_) to ac(s);

the accept function for a channel c ∈ (I2 ∪ O2) (I ′ ∪ O′) maps any state to true;

the step function maps a state (s, t) to sc(s)× 1t.

Restriction Given an adversary A for a protocol P |o (not necessarily coming

from IPDL), we can turn A into an adversary for P whose interaction with P

yields precisely the same final distribution on booleans as the interaction of the

original adversary A with P |o. Let S be the set of states of A. The new schedule

is obtained by scheduling o before and after every channel in the schedule for A.

The set of states for the new adversary is S+ S+ S. We now define the rest of the

structure:

• The states in the left branch encode the original states of A. All inputs and

outputs leave a left-branch state unchanged (and will never be called on a

left-branch state). Their decision function is the original decision function

for A. They accept all channels for scheduling, even though the structure of

the new schedule guarantees that only o is ever scheduled in a left-branch

state. The step function for any channel turns a left-branch state into the

corresponding middle-branch state.

• The states in the middle branch encode the states of A after performing o

on the left. All inputs and outputs leave a middle-branch state unchanged

(and will never be called on a middle-branch state). Their decision function
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maps every state to false (and will never be called on a middle-branch state).

Their accept function is the original accept function for A. The step function

for any channel is the original step function for A with the proviso that it

furthermore turns a middle-branch state into a right-branch state.

• The states in the right branch encode the states of A before performing o

on the right. The input and output transition functions are the original

ones for A. Their decision function maps every state to false (and will never

be called on a right-branch state). They accept all channels for scheduling,

even though only o will ever be scheduled in a right-branch state. The step

function for any channel turns a right-branch state into the corresponding

left-branch state.

Now, we may prove the rule sound. Given a k-bounded adversary A for the

protocols [[P1||Q]] and [[P2||Q]], we will turn it into an appropriate adversary for

[[P1]] and [[P2]]. First, by Lemma 11, we see that [[P1||Q]] = ([[P1]] || [[Q]])|o1,...,o`

(and similarly for P2), where ` is the number of outputs of P1 and Q. We then

apply the second construction for restriction above ` times to receive an equivalent

adversary for [[P1]] || [[Q]]. Finally, we apply the first construction for composition

to receive an adversary A′ for [[P1]]. By construction, the behavior of A′ interacting

with [[P1]] produces the same final output distribution on booleans as the behavior

of A interacting with [[P1||Q]], and similarly for P2.

It now remains to estimate the bound for A′, as a function of k, the bound

for A. Suppose Q is b-bounded. Then, the first construction has a bound of

O(|∆| ∗ max(k, b)), by estimating the runtime of each transition in the protocol

A || [[Q]]. The second construction has a bound of O(k), since the schedule for

the adversary grows by a constant amount, and each transition of the semantic
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protocol has a runtime of at most O(k). Since we run the second construction at

most |∆| times (bounding the number of outputs), we have that the adversary A′

is bounded by O(|∆| ∗max(k, b)).

3.10 More Details on Case Studies

3.10.1 OT from Trapdoor Permutations

The ideal functionality for (1-2) OT is given in Figure 3.12. It is given by a single

reaction which simply selects a boolean from the receiver, a pair of messages from

the sender, and outputs the appropriate component of the pair. Our definition of

ideal OT is parameterized by the type of messages, L. (Recall that all IPDL types

are in bijection with bitstrings of an appropriate length.) For this simple definition,

we eschew the use of ideal parties; instead, if the receiver is corrupted, we simply

spawn another copy of the OT functionality with the same inputs, but an output

for the adversary. The adversary learns nothing if the sender is corrupted.

The trapdoor OT protocol depends on the security of a hardcore predicate,

which consists of a family of trapdoor permutations f along with a predicate B

such that it is difficult to distinguish the value B(x) from uniform, given only f

and f(x) for a uniformly chosen x in the domain of f . While the type system

of IPDL does not include general functions (since they take exponential space to

describe), we can still model trapdoor permutations by representing f with the

following data: an evaluation key, a trapdoor key, an distribution for generating

trapdoor keys, a derivation function from trapdoor keys to evaluation keys, and

evaluation functions, both forwards using the evaluation key, and backwards using
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the trapdoor key. Only the evaluation and trapdoor keys need to represented

as IPDL values: the generation algorithm, derivation function, and evaluation

functions can instead be represented as distributions and function symbols in IPDL,

respectively. Given this data, we can easily model the hard-core predicate’s security

as an approximate equivalence between IPDL programs.

In the trapdoor OT protocol, the sender (Alice) sends a randomly chosen trap-

door permutation f to the receiver (Bob), but keeps the inverse of f secret. In

return, Bob sends a pair of values, appropriately constructed using uniform ran-

domness and f . Finally, Alice sends her pair of messages back to Bob, appropri-

ately blinded by Bob’s message. Assuming Bob constructed his message correctly,

and that B is a hard-core predicate for f , this is a secure construction.

In this protocol, and as is common to all of our OT constructions, the adversary

learns nothing in the case when Alice is corrupted; thus, we only focus on the case

when Bob is corrupted. In this case, the simulator is able to read Bob’s index

bit and the output of the OT, and must reconstruct Bob’s view of the protocol

for the adversary. The most subtle part of the proof is that for Bob’s view to

be simulatable, we cannot reason only about the uniformity of a single bit B(x),

but instead of a pair of bits B(x) and B(y) (given only f , f(x), and f(y)). We

thus prove as a lemma that this generalized notion of security for the hard-core

predicate follows from the usual one.

3.10.2 1-4 OT from 1-2 OT

While the above two OT protocols only operate over pairs of messages, the GMW

protocol in Section 3.6.1 instead requires an OT protocol which operates over
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four messages, instead of two. This case study mechanizes a construction for 1-

4 OT from three instances of 1-2 OTs. In the protocol, the sender blinds their

four messages by a combination of six random strings, and sends these blinded

messages to the receiver. These random strings are additionally given as input

to the underlying OTs as messages. The receiver uses their two index bits as

index bits for the underlying OTs. The randomness is carefully chosen so that the

appropriate randomness only cancels out for the intended message, and all other

messages appear uniformly random.

The IPDL proof of the above construction requires a subtle analysis which uses

rerandomization, or mapping uniform randomness through a bijection. Specifically,

we show the following two protocols are (exactly) equivalent in IPDL: the first

takes as input a boolean on a channel i, and returns uniformly random values

an channels c and d; instead, the second uniformly samples two values x and y,

and sets c to be the value if i then x else y, and similarly sets d to be the value

if i then y else x. Once the above lemma is established, the proof follows from a

number of straightforward channel inlinings.

3.10.3 Two-Party GMW Protocol

Given the definitions in Section 3.6.1, the ideal protocol for GMW is straightfor-

ward. The ideal parties for Alice and Bob forward their inputs to the functionality,

and eventually receive outputs from the functionality. We focus on the case when

Alice is corrupt, so she also forwards her inputs and outputs to the simulator.

We additionally assume that the simulator learns the timing of Bob’s inputs (but

not their content); this is important for a technical reason, which we will explain

below. Given inputs from Alice and Bob along channel vectors −→u A and −→v B,
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the functionality generates a fresh set of vectors −→w n for the circuit wires, runs

evalCirc(c,−→u ,−→v ,−→w ), and delivers the circuit outputs to the ideal parties accord-

ingly.

Notably, this definition of the functionality – and thus, also our GMW for-

malization – encodes reactive MPC, in which Alice and Bob can give inputs to

the protocol depending on prior outputs. This is possible since our encoding has

the feature that the only causal relationships between wires are those imposed by

dataflow; thus, if an output wire wk does not depend on Alice’s jth output, Alice

is enabled to give the jth input to the protocol after she receives the value for wk.

The implementation of the GMW protocol is also straightforward, and follows

the standard construction: Alice and Bob secret share their inputs, collaboratively

compute the circuit over their secret shares, and open their shares for the output

wires. To compute the nonlinear AND operation, Alice must use a 1-4 OT protocol

to obliviously send Bob a single bit which encodes the XOR of the cross-terms of

the two secret shared variables. As described in 3.10.1, we model semi-honest cor-

ruption by instrumenting the corrupted party (here, Alice) to leak to the adversary

any inputs she receives from Bob, and any randomness she generates during the

protocol. Thus, the adversary receives five types of messages from Alice: Alice’s

randomness generated during the OTs, Alice’s protocol input, Alice’s secret share

for Bob of her input, Alice’s share of Bob’s input, and Bob’s opening of the output

wires.

The simulator follows a standard construction in which it evaluates a “blinded”

copy of the real protocol in its head, having access to only Alice’s private data,

but not Bob’s. The central step in the proof of security is the construction of an

invariant between the real world and ideal world with simulator, such that Bob’s
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share of wire w in the real world is equal to the XOR of the true value of wire

w in the ideal world with Alice’s simulated share, coming from the simulator. By

constructing this invariant, we use the [Hybrid] rule to easily reason about the

GMW protocol without needing to perform an explicit induction on the circuit.

3.10.4 Coin Flip

Security for the coin flip protocol is defined as an ideal functionality that: generates

a uniform bitstring; leaks it to the simulator; and once the simulator returns with

an ok message, broadcasts the bitstring to all ideal parties. All non-corrupted ideal

parties then output the same randomness from the functionality.

This functionality is intended to model three main properties: fairness (if one

honest party receives output, they all do); agreement (all honest parties receive

the same output); and uniformity of the agreed-upon output. However, we do not

prove privacy of the output bit, or guaranteed delivery.

Unlike the other case studies, we prove this example secure in the malicious

setting, where the adversary is able to take over the behavior of all corrupted

parties. In order to do so in a structured way, we do not allow the adversary to di-

rectly control internal protocol channels, but instead give it access to distinguished

adversarial channels as proxies. We then, for each corrupted party, write a shim

which simply forwards messages between the internal protocol channels and those

for the adversary (and vice versa).

Our protocol is defined over an arbitrary number of parties and an arbitrary

corruption scenario, modeled as a function honest : 'I_n -> bool. However, for

simplicity our proof assumes that there are at least two parties such that the first
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one is corrupted and the last is honest. This is without loss of generality, since the

protocol is clearly symmetric, and the security goal is degenerate if all parties are

corrupt and immediate if no parties are corrupt.

Since IPDL is channel-centric rather than process-centric, modeling and rea-

soning about a protocol with n parties and a fixed number of messages is no harder

than reasoning about a protocol with a fixed number of parties, and n messages

(such as the GMW protocol). Indeed, one of the first simplification steps we take

in the proof is to isolate the behaviors among all channels. For a simple example,

suppose that we have a protocol where n parties each first send a message x, and

then a second message y. Instead of reasoning about the protocol ||j Pj, where Pj

is the code of the jth party, we instead use the [BigPar-Par] rule from Section

3.4 to rewrite the protocol as (||j x.j ::= rj) || (||j y.j ::= r′.j). While a simple ob-

servation, this form of rewrite enables a much smoother verification than without.

Encoding of the Ideal Protocol in IPDL The functionality and correspond-

ing ideal protocol is given in IPDL in Figure 3.13. The functionality is parame-

terized over three channels: leak and ok, which are thought of as meant for the

simulator, and send, which will be used to broadcast a value to all ideal parties.

First, on Line 6, it generates a fresh channel b carrying a boolean for internal use.

It then spawns off three subcomputations: first, on Line 8 we set b to be a uni-

formly random boolean; second, on Line 9, we leak b to the simulator, by copying

its value to the leak channel; finally, on Line 10, we wait for the ok message from

the simulator, then copy the value of b to the send channel.

On Lines 14 – 19, we have the ith ideal party, CoinIParty. The
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ideal party is parameterized by the total number of parties n, a predicate

honest : 'I_n -> bool where 'I_n is the type of natural numbers less than

n (from ssreflect [GMT16]), the index of the current party, i : 'I_n, and two

channels, send and out. If the ith party is honest, then we simply copy the value

from send to out (Line 17); otherwise, we do nothing (Line 19), given by the

empty protocol prot0.

Finally, on Lines 21-29, we define the ideal protocol, which is composed of the

functionality and all n ideal parties. In addition to the ok and leak channels for

the simulator, the protocol is also parameterized by a n-length vector of output

channels out : n.-tuple (chan K). The protocol generates the internal send

channel, and first invokes the functionality on Line 27. It then on Line 28 spawns,

for each i < n, a copy of the ith ideal party, taking input along the send channel,

and producing output on the ith output channel (written here as out ## i.) We

make heavy use of the bigop library from ssreflect to handle n-ary compositions

over an index set, as in Line 28. Also, note that while the send channel is defined

once inside of the functionality, it is able to be read by all n parties; thus, all

channels in IPDL naturally support broadcast.

Encoding of the Real Protocol In the real protocol, each party broadcasts a

commitment of their randomly chosen bit, receives everyone else’s commitments,

and then broadcasts an opening of their commitment. We model the commit-

ment by operating in a hybrid setting, wherein each party has access to an ideal

functionality for performing commitments. This functionality is given below:

1 Definition FComm (K : nat)

2 (* inputs from party *)

3 (commit : chan K) (open : chan TUnit)
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4 (* outputs to broadcast *)

5 (committed : chan TUnit) (opened : chan K) :=

6 [||

7 committed ::= (_ <-- Read commit ;; Ret tt);

8 opened ::= (x <-- Read commit ;;

9 _ <-- Read open ;; Ret x)

10 ].

The commitment functionality is parameterized by input channels commit and

open, which are to be used by the party the functionality is meant for, and output

channels committed and opened, which will be broadcast to all. On Line 7, the

channel committed is set to wait for commit before firing. On Line 8, the channel

opened is set to the value of commit, but only after the channel opened has fired.

We now turn to the actual protocol, which is given in Figure 3.14. Similar to

the ideal protocol, we model malicious corruption by splitting the party’s code into

two parts: one for if the party is honest, and one if the party is corrupted.

We first describe the honest party, given on Lines 25-36. We note that the

party is parameterized by all channels appearing at the top of the Section, on

Lines 15-21. These include the inputs from all broadcast commitments and open-

ings, and the outputs from the party itself, both for its own commitment as well as

its protocol output. First on Lines 25-26 we generate two fresh vectors of channels,

committed_sum and opened_sum, which will be used for aggregation of multiple

values. The first parameter to newvec, n, is the length of the channel vector, while

the second parameter is the type of the channels. The party first commits to a uni-

formly chosen input, as given on Line 28. On Lines 29-32, the party then computes

a fold over the signals coming from the channels in committed: since each channel

in this vector carries a unit value, we are merely accumulating timing dependen-
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cies into the channels in committed_sum. On Line 33, the party then opens their

commitment, based on the timing of the last channel in committed_sum. In effect,

this causes the party to wait for all commitments to happen before the party opens

theirs. Line 34 similarly folds the channels in opened together into opened_sum,

so that the last channel in opened_sum carries the collective XOR of all opened

commitments. The party outputs this value on Line 35.

To encode the corrupted party on Lines 39-46, for convenience we define a shim

for the corrupted party, which acts to separate the adversary’s channels from the

internal protocol channels. The adversary’s channels, defined on Lines 4-9, are

divided into inputs and outputs. The inputs from the adversary are advCommit

and advOpen, which allow the adversary to control the ith party’s commit and

open messages (if the ith party is corrupt.) This is reflected in Lines 40 and 41

in the corrupted party, which copy the ith channel of advCommit to the corrupted

party’s commit channel, and similarly for open. The outputs to the adversary are

advCommitted and advOpened, which are both tuples of tuples of channels. On

Line 42, the ith component of advCommitted is set equal (pointwise) to the ith

party’s view of the committed tuple of input message. Similarly, on Line 44 the

ith component of advOpened is set to the ith party’s view of opened. Finally, to

define the party we again case split on whether party i is honest, and choose the

corresponding implementation.

Finally, we now define the real protocol in total in Lines 55-68. We first generate

all internal channel vectors for the commitment functionalities, and then spawn all

n commitment functionalities and n parties.
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Simulator and Proof Sketch To show that CoinReal realizes CoinIdeal, we

must show the existence of a simulator CoinSim which transforms the adversarial

channels of CoinReal into those of CoinIdeal.

Since the security condition is degenerate in the case when all parties are cor-

rupted or all are honest, we focus without loss of generality on the case where the

first party is corrupted, and the last party is honest. Intuitively, the simulator

runs a copy of the real world protocol “in its head”, but modified in the following

way: the last party, instead of generating a commitment uniformly, generates its

commitment by reading the commitments of all other parties (honest or not), and

XORing all other commitments together, along with the value along the channel

leak from the ideal world. This ensures that the bit that all the parties inside the

simulated real world all agree to the same value as is chosen by the functionality.

In turn, when all simulated parties open their commitments, the simulator then

outputs ok to the functionality. Since all commitments by honest players appear

uniform, and the simulator only submits ok after all corrupted players open their

commitments, it follows that the adversary’s view in the real and ideal worlds are

identical, and all honest party’s behavior is identical as well.
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Γ ` ν −→v n+1 : τ. P = ν −→u n : τ. νx : τ. P [−→u x/−→v ]
[NuVec-R]

Γ ` ν −→v n+1 : τ. P = νx : τ. ν −→u n : τ. P [x −→u /−→v ]
[NuVec-L]

Γ ` ν −→v 0 : τ. P = P
[NuVec-0]

Γ ` ν −→v n : τ. ν −→wm : σ. P = Γ ` ν −→wm : τ. ν −→v n : σ. P
[NuVec-Comm]

Γ,−→v n : τ ` P = Q

Γ ` ν −→v n : τ. P = −→v n : τ. Q
[Eq-NuVec]

∀j ∈ J,Γ ` Pj = Qj

Γ ` ||
j∈J

Pj = ||
j∈J

Qj

[EqBig]

Γ ` ||
j∈J

Pj = ||
j∈J∩K

Pj || ||
j∈J∩K̃

Pj
[BigPar-Decomp]

Γ ` ||
j∈{k}

Pj = Pk
[BigPar-1]

Γ ` ||
j∈∅

Pj = 0
[BigPar-0]

Γ ` ( ||
j∈J

Pj) || ( ||
j∈J

Qj) = ||
j∈J

(Pj || Qj)
[BigPar-Par]

∀ij, i 6= j ⇒ v.i /∈ Pj
Γ ` ν −→v n : τ. ||

j<n

Pj = ||
j<n

(ν v : τ. Pj[v/v.j])
[BigPar-Nu]

∀k < n,Γ ` ( ||
j<k

Pj)||R = ( ||
j<k

Qj)||R⇒ Γ ` ( ||
j<k

Pj)||Pk||R = ( ||
j<k

Pj)||Qk||R

Γ ` ( ||
j<n

Pj)||R = ( ||
j<n

Qj)||R
[Hybrid]

Figure 3.11: Derived rules for parameterized IPDL protocols.
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1 Definition OTIdeal (L : type) (i : chan TBool)

2 (m : chan (L ** L)) (o : chan L) :=

3 o ::= (

4 x_i <-- Read i ;;

5 x_m <-- Read m ;;

6 Ret (if x_i then x_m.`2 else x_m.`1)).

Figure 3.12: Specification of OT functionality in IPDL.

1 Definition CoinFunc (K : nat)

2 (* Channels for simulator *)

3 (leak : chan K) (ok : chan TUnit)

4 (* Broadcast channel for ideal party *)

5 (send : chan K) :=

6 b <- new K ;;

7 [||

8 b ::= (Unif K);

9 leak ::= (x <-- Read b ;; Ret x);

10 send ::= (_ <-- Read ok ;;

11 x <-- Read b ;; Ret x)

12 ].

13

14 Definition CoinIParty (K : nat) {n : nat}

15 (honest : 'I_n -> bool)

16 (i : 'I_n)
17 (send out : chan K) :=

18 if honest i then

19 (out ::= (x <-- Read send ;; Ret x))

20 else

21 prot0.

22

23 Definition CoinIdeal (K : nat) {n : nat}

24 (honest : 'I_n -> bool)

25 (out : n.-tuple (chan K))

26 (ok : chan TUnit)

27 (leak : chan K) :=

28 send <- new K ;;

29 [||

30 CoinFunc leak ok send;

31 \||_(i < n) CoinIParty honest i send (out ## i)

32 ].

Figure 3.13: Specification of ideal protocol for n-party coin flip in IPDL.
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1 Context

2 (K : nat) {n} (honest : 'I_n -> bool)

3 (* inputs from adversary *)

4 (advCommit : n.-tuple (chan K))

5 (advOpen : n.-tuple (chan TUnit))

6 (* outputs to adversary *)

7 (advCommitted : n.-tuple (n.-tuple (chan K)))

8 (advOpened : n.-tuple (n.-tuple (chan K)))

9 (* output channels of protocol *)

10 (out : n.-tuple (chan K)).

11

12 Section CoinRealParty.

13 Context {n} (i : 'I_n)
14 (* inputs to party *)

15 (committed : n.-tuple (chan TUnit))

16 (opened : n.-tuple (chan K))

17 (* outputs from party *)

18 (commit : chan K)

19 (open : chan TUnit)

20 (partyOut : chan K).

21

22 Definition CoinRealParty_honest

23 :=

24 committed_sum <- newvec n @ TUnit ;;

25 opened_sum <- newvec n @ K ;;

26 [||

27 commit ::= (Unif K);

28 cfold committed

29 (fun _ _ => tt)

30 (fun _ => tt)

31 committed_sum;

32 open ::=

33 (_ <-- Read (committed_sum ## ord_max);;

34 Ret tt);

35 cfold opened xort id opened_sum;

36 partyOut ::= (Read (opened_sum ## ord_max))

37 ].

38

39 Definition CoinRealParty_corr

40 [||

41 commit ::= (Read (advCommit ## i));

42 open ::= ((advOpen ## i));

43 \||_(j < n) (advCommitted ## i ## j) ::=

44 (Read (committed ## j))

45 \||_(j < n) (advOpened ## i ## j) ::=

46 (Read (opened ## j))

47 ].

48

49 Definition CoinParty

50 if honest i then CoinRealParty_honest

51 else CoinRealParty_corr.

52 End CoinRealParty.

53

54 Definition CoinReal :=

55 commit <- newvec n @ K ;;

56 committed <- newvec n @ TUnit ;;

57 open <- newvec n @ TUnit ;;

58 opened <- newvec n @ K ;;

59 [||

60 \||_(i < n)

61 FComm (commit ## i)

62 (committed ## i)

63 (open ## i)

64 (opened ## i);

65 \||_(i < n) CoinParty

66 i committed opened

67 (commit ## i) (open ## i) (out ## i)

68 ].

Figure 3.14: Real protocol for n-party coin flip in IPDL.
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CHAPTER 4

FUTURE WORK

In this thesis, we presented two systems for equationally reasoning about cryp-

tography: AutoLWE, which makes use of deducibility to (semi-)automatically

transform security games for lattice-based cryptosystems; and IPDL, an equational

calculus for distributed cryptographic protocols. While both systems are steps in

the right direction, further research is needed to achieve our vision of ubiquitous

verified proofs for cryptography. Below, we outline future directions for our line of

work.

Automatic Program Partitioning Proof steps involving hardness assump-

tions in both AutoLWE and IPDL operate by essentially partitioning the security

experiment into two parts: the hardness assumption and its external environment.

Partitioning is handled through deducibility in AutoLWE, while it is currently

manual in IPDL. It would be very profitible to extend IPDL to support automatic

proof partitioning, as this would deliver much higher-level proofs.

An interesting direction would be to use automatic paritioning not only for

automating proofs, but for guiding new proofs. The cryptographer could design

a protocol without a proof of security, and the formal tool could automatically

search through its library of hardness assumptions to find one that applies to the

protocol through a partitioning. Indeed, formal tools become more widely adopted,

the practice of proving security in tandem with a formal tool will likely become

more common.

Automatic Equivalence Checking More generally, it may be possible for a

formal tool to automatically and generically decide whether two security exper-
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iments are (exactly) equivalent. Automatic verification of program equivalences

would drastically reduce the proof burden for the user, as only a description of the

hybrid steps would be required for a proof. Model checking techniques as seen in

symbolic cryptographic tools such as Tamarin [MSCB13] or more general symbolic

execution engines such as Klee [CDE+08a] are likely applicable.

GUIs and Semi-Formal Tools While verified proofs guarantee the highest de-

gree of formality, a useful and complementary approach is to develop lightweight

techniques which allow cryptographers to write on-paper arguments, but still ben-

efit from some mechanized support for structuring proofs. These lightweight tools

would be analogous to static analyzers for systems code (e.g., Staticcheck [sta]),

which aim to eliminate most common bugs but not perform full verification.

A recent work in this direction is state-separating proofs (SSP) [BDLF+18].

The SSP paradigm is an on-paper method for structuring cryptographic proofs as

a collection of packages, similar to a module in Easycrypt [BGHZ11]. The SSP

approach aids formal reasoning, as it provides an expressive on-paper framework

that makes it easy to modularize proof efforts.

Interestingly, a proof-viewer has been developed for SSP [Pun21], which allows

for interactive folding/unfolding of on-paper proof steps and package code in a

graphical user interface to aid proof development and comprehension. A similar

structured editor for IPDL would be very useful for supporting on-paper, partially

verified proof developments.
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