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The concept of photonic crystals as ‘semiconductors for light’ has given rise to strate-

gies for the design and fabrication of periodic dielectric materials with dramatic effects

on photon dispersion relations. Photonic crystal theory has revealed numerous reduced

symmetry and/or complex basis champion structures that enhance light-matter interac-

tions and promote photonic band gap properties. Realizations of such structures at vis-

ible and near infrared wavelengths are often challenging and may be achieved a decade

or more after they are envisioned. Colloidal self-assembly routes, in particular, have been

desired for visible light control, low cost, ability to span from two- to three- dimensions

and potentially large area, parallel processing. Thermodynamic simulation literature in

the context of supramolecular chemistry studies indicates non-spherical building blocks

hold promise for incorporating a rich diversity of packing arrangements inaccessible with

commonly available spherical bases. Investigations in the synthesis and processing sci-

ence foundations for obtaining order (i.e., mesophases and crystals) along with the op-

tical characterization consistent with the thin film forms are essential to understanding

structure-property correlations for photonic solids from colloids.

This dissertation demonstrates the application of physical confinement to direct self-

assembly. In addition, the photonic band gap characterization of two-dimensional (2D)

and quasi-2D structures from mushroom cap and asymmetric dimer shaped colloids was

performed using photonic crystal ‘slab’ configurations. Aqueous suspensions of micron-

sized mushroom cap-shaped particles were self-organized by gravitational sedimentation



in a wedge-shaped confinement cell. The sequence of phases with increased cell height

was studied with precise spatial and temporal resolution via fast confocal microscopy. In

addition to the phase symmetry transitions found for spheres, rotator (i.e., plastic crys-

tal) and orientation-dependent states were determined. The photonic band gap forming

properties of the buckled phase observed in the mushroom-cap particle system under

confinement were theoretically modeled. The 2D finite height photonic crystals with di-

electric shaping in three dimensions imparted variation to the cross-sectional profile of

the slab. The configuration is atypical for lithographic realizations of photonic slabs and

also for 2D photonic crystal models assumed to extend infinitely with fixed cross-section

along the z-axis. The experimentally tunable variables of shape and degree of buckling

were captured using structural parameters. Complete band gaps in the guided modes

were determined as a function of shape parameters, lattice distortion, filling fraction, re-

fractive index contrast between low and high dielectric regions, etc. Slab structures were

also modeled based on dimers (i.e., two adjacent or overlapping spheres) in centered-

rectangular lattices previously realized through convective (i.e., evaporation-assisted) or

confinement self-assembly. The degree of lobe fusion and the degree of lobe symmetry

shape parameters accessible experimentally were mapped in addition to the structural

and materials parameters. Large band gaps for each light polarization as well as polar-

ization independent band gaps were found in a wide range of structures. Additionally,

dimer cylinder bases on centered rectangular lattices were modeled to compare proper-

ties of realizations consistent with microfabrication using lithography and with colloidal

processing for self-assembly of photonic templates. The study suggests that the ideation

for structural design in slabs can be enriched by the combination of thermodynamically-

inspired structures with the ease of optimizing slab height (i.e., through lithographic fab-

rication).
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CHAPTER 1

INTRODUCTION

1.1 Photonic Crystals

A photonic crystal is a material possessing a periodic spatial variation of dielectric con-

stant. An analogy to electron propagation in semiconductor atomic crystals can be drawn.

Many stunning biological examples with regular dielectric variation in one-, two- and

three dimensions have been studied (Figure 1.1). Bright coloration in animals, such

as the wings of the Parides sesostris (the Emerald-patched Cattleheart butterfly) and the

scales covering the exoskeleton of the Lamprocyphus augustus (a Brazilian weevil), arises

from submicron scale structure. Additional examples exist in inorganic systems. The

characteristic colors of gem opals similarly arises from the crystalline structure formed

by silica spheres.[66, 68] From an engineering perspective, appropriate choices of di-

electric material and dielectric thickness results in constructive interference and elimi-

nation of a forward-propagating wave.[58] Similar to atomic crystals, photonic crystals

can have energy band gaps at which frequencies inside the gap can not propagate in the

crystal.[73, 27, 26]

The interest in photonic band gap materials springs from the ability to modify sponta-

neous emission and confine radiation. Photonic crystals also offer the possibility of such

exotic effects as superprism phenomena, self-collimation and negative refraction[49, 11,

60, 7, 31, 32] and slow light with low group velocity at frequencies near the band gap.[3]

Numerous applications have been designed utilizing these properties— integrated opti-

cal chips; filters; waveguides and resonators; sub-diffraction limit planar lenses; biologi-

cal sensors; improved efficiency photovoltaic cells; etc.[26, 48, 47, 64, 16, 4, 1]

1



Figure 1.1: Biological examples of photonic crystals with dielectric periodicity in one-,
two- and three dimensions.[68]
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Figure 1.2a shows an alternating dielectric stack in 1D. A band diagram of a homoge-

nous material with an artificial periodicity overlaid on it is presented in Figure 1.2b. The

band diagram expresses the relationship between the frequency of light in the material

to the wavevectors supported (i.e., the dispersion relationship). Along the alternating

dielectric axis of the stack, the structure has discrete translational symmetry instead of

continuous symmetry. The Fourier transform of the direct structure yields the reciprocal

space lattice vectors. The unique reciprocal space wavevectors are collectively known as

the first Brillouin zone.

From Bloch’s theorem the wave solutions in a periodic potential must be self-

replicating with the same periodicity as the structure.[30] Maxwell’s equations govern

classical electromagnetic interactions with matter. Assuming a material is free of sources

(i.e., charges and currents), linear (the dielectric polarization is proportional to the elec-

tric field), isotropic (the material permittivity and permeability are scalar), time-harmonic

(electric and magnetic fields vary periodically with time), without explicit frequency de-

pendence and the permeability is unity, combining Maxwell’s equations with Bloch’s the-

orem yields an eigenvalue problem:[26]

∇ ×

(
1
ε
(
~r
)∇ × ~H

(
~r
))

=

(
ω

c

)2
~H
(
~r
)

The field is concentrated in the high dielectric material for the cosine solution and in the

low dielectric material for the sine solution. The electromagnetic energy depends on the

refractive index and the electric field squared. A mode with the electric field concentrated

in the high dielectric has a lower frequency than a mode with the electric field concen-

trated in the low dielectric, resulting in a gap.[26] Increasing the dielectric contrast, the

ratio of the high dielectric constant to the low dielectric constant, increases the frequency

range of the gap. In the band diagrams the ordinate is normalized by the spatial period

since Maxwell’s laws are scale invariant. Band gaps found for a given structure may be

tuned to the desired frequency by scaling accordingly.
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a 

b 
b c d 

Figure 1.2: 1D photonic crystal with alternating dielectric constant values of a) 13 and 13,
b) 13 and 12, c) 13 and 1. [26]
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In two-dimensional (2D) lattices, the Brillouin zone is the area in reciprocal space that

is closest to the origin and is constructed by finding the envelope of the perpendicular bi-

sectors of the lines drawn between the reciprocal lattice origin and its nearest neighbors.

Considering the example of a rectangular lattice, there is a two fold rotation as well as

two orthogonal mirror planes. The Brillouin zone may be reduced to a region that, by

application of these point group symmetries (2mm), reproduces the Brillouin zone. This

quadrant is called the irreducible Brillouin zone and its corners, reciprocal space points

of high symmetry, are labeled according to convention. Band diagrams present the ab-

scissa as a series of panels based on points of high symmetry in the lattice. Each direction

in a crystal (2D or three-dimensional, 3D) can be regarded as a 1D system with its own

periodicity. In the 1D system, gaps are found only at the Brillouin zone boundary. There-

fore, only the boundaries between the high symmetry points in reciprocal space need be

calculated in higher dimension structures.

Photonic crystal applications were conceptualized requiring 3D dielectric periodicity

to control light in three dimensions. A few face centered cubic-based structures have been

identified.[21, 72, 22, 65, 61] The champion diamond structure has proven elusive due to

the lower free energy close-packed face centered cubic structure in spheres, although an

experimental diamond lattice was built via nanorobotic placement of individual spheres

to confirm the photonic band gap.[17] 3D light confinement can be more readily attained

in experiment using planar waveguide techniques.

In photonic crystal slabs, structures with two-dimensional periodicity and finite

height, the electromagnetic fields are controlled in-plane through the photonic crystal pat-

terning and out-of-plane via index guiding.[28] The light cone is the lower boundary of

the frequencies supported by the bulk background material. This boundary is defined as

the wavevector magnitude divided by the refractive index of the cladding or as the lowest

5



band for a periodically structured cladding. Below the light cone the perpendicular com-

ponent of the wave vector is imaginary and the light is guided by the slab. Outside of the

slab the guided field decays evanescently. Complete band gaps in slabs are determined

in the sense that no guided modes exist for the frequency range.

1.2 Self-assembly

Theoretical studies suggest more complex structures such as Archimedean tilings (i.e.,

32 · 4 · 3 · 4 and 4 · 82, Schläfli symbols for ‘lady bug’ and ‘bathroom tile’), five-fold and

eight-fold symmetric quasicrystals, amorphous diamond and honeycomb lattices of bi-

nary sized circular-pores promote gap formation.[69, 15, 71, 62, 43, 18, 9] More compli-

cated structures increases the fabrication challenges. Holographic lithography requires

more involved optical set up to generate the interference pattern. Alternative fabrication

techniques such as photolithography may be limited by the wavelength resolution; stitch-

ing errors and imprecise vertical alignment in large area (150 µm×150 µm) fabrication us-

ing electron beam lithography can occur and heterogeneous materials showed structural

damage and deviations from the desired pattern when micromachining using focused ion

beam etching. Additionally, all of these methods require more expensive equipment than

colloidal self-assembly which lends itself to large-scale arrangements.[39, 16]

For photonic crystals, colloidal self-assembly offers a bottom-up approach where the

feature size and basis morphology is inherent in the building block. In the hard potential

limit where the particles are not allowed to overlap but otherwise do not interact with

each other, ordered phases arise from maximizing the entropy (particle orientation and

free volume) of the system. For example, in the spherocylinder system the disordered

isotropic fluid undergoes a phase transition to the oriented nematic and smectic phases
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at higher concentrations. The more dense states reduces the orientational order of the

system, however, the free volume entropy is increased by the reduced excluded volume

of the ordered phase.[52]

Spherical particle systems can access a limited range of structures, i.e., the face cen-

tered cubic (FCC) crystal has the highest packing density in bulk. Direct FCC crystals

have only a partial band gap over a limited range of wave vectors. The inverted struc-

ture has a gap between the 8th and 9th bands.[61, 21] However, the gap is sensitive to

defects (i.e., closes for particle dispersity greater than 2 % and reduces to gap sizes under

2.5 % with less than 86 % backfilling).[14, 61, 38] When spheres are assembled under phys-

ical confinement a hexagonal monolayer assembles at the most restricted height. As the

confinement height increases, a corrugated out-of-plane rectangular buckled phase tran-

sitions between the hexagonal monolayer and square bilayer. Additional rhombic, prism

and hexagonal-close-packed-like phases appear between increased numbers of alternat-

ing hexagonal and square particle layers.[56, 54, 46, 41, 57, 40] Monolayer and bilayer

crystals feature 2D periodicity and finite height characteristics of slab photonic crystals.

However, limited studies have examined the photonic properties, specifically the band

gap properties, of structures other than the bulk FCC crystal. Of these works, the focus

remained on the hexagonal monolayer of spheres.[67, 50]

The photonic band gap limitations of the FCC crystals prepared from spherical parti-

cles prompted the modeling of dimer-based 3D photonic crystals. Theoretical predictions

of band gaps between the 2nd and 3rd bands[36, 37] and higher indexed bands[24, 23]

inspired the synthesis of non-spherical colloids for photonics. The expanding range

of monodisperse colloidal building block shapes that can be used includes ellipsoids;

boomerang; square cross; flying saucer; blood cell; w-motif; cubes; cylinders; hex nuts;

hexagonal-, square-, triangular-, trapezoidal- and pentagonal prisms; spherocylinders;

7



dumbbells; asymmetric dimers; and sphere clusters with tetrahedral, octahedral, and

square-bipyramidal, etc. geometry.[19, 53, 74, 12, 6, 77, 45, 76, 63, 51, 44, 20, 29]

A rich variety of assembly techniques developed for spherical systems are available

for anisotropic colloids.[75, 10, 35, 42, 13, 33] Of particular interest, confinement assem-

bly in a wedge cell enables multiple phases to be studied simultaneously through the

continuous evolution of colloidal structure at varying heights. Additionally, incommen-

surate cell height leads to different packing strategies. A range of self-organization has

been demonstrated in thermodynamic simulations of asymmetric dimer and cut sphere

particles. Translationally regular center-of-mass structures with uniform or random ori-

entation (i.e., plastic crystal phases) as well as aperiodic crystals (i.e, degenerate crystals)

are stable in Monte Carlo simulations.[8, 70, 2] Monolayer plastic crystal, oblique and

degenerate crystal phases have been experimentally realized by self-assembly of ‘mush-

room caps’ and dimers under physical confinement.[34, 25, 23, 59, 55] With many particle

morphologies synthesized at mesoscale dimensions (approximately 100 nm to 2 µm),[5]

finite height mono- and bilayer colloidal crystals offer a diverse range of structures with

relatively unexplored photonic band gap properties.

This dissertation investigates 2D and quasi-2D structures self-assembled from

anisotropic colloids through physical confinement. Additionally, photonic band gap

characterization of ordered mushroom cap and asymmetric dimer shaped colloid ar-

rangements at moderate to high dielectric contrast was performed using photonic crystal

‘slab’ configurations. In chapter two, the mushroom cap-shaped colloidal system and

the confinement assembly technique are introduced. Aqueous suspensions of the parti-

cles were gravitationally sedimented between the glass walls of a wedge profile confine-

ment cell and were studied with precise spatial and temporal resolution via fast confo-

cal microscopy. Chapter three examines the photonic band gap properties of a buckled

8



phase found in the mushroom-cap system between the first and second particulate lay-

ers of confined colloidal suspensions. Dielectric shaping in three dimensions, consistent

with the experimental system, imparted variation to the cross-sectional profile of the slab

atypical for lithographic realizations. In chapter four, a centered rectangular lattice with

dimer (i.e., interpentrating sphere) bases, observed in evaporation-assisted (convective

assembly) and confinement assembly, was computationally modeled. Photonic band gap

characterization was conducted over physically realizable particle morphologies span-

ning from spheres to lobe-tangent dimers. Chapter five is an extension from the previous

chapter and investigates a centered rectangular lattice with dimer cylinder bases. Slab

thickness was tuned to overlap even and odd mode gap frequency ranges generating a

sizable polarization independent gap.

9



REFERENCES

[1] Kevin A. Arpin, Agustin Mihi, Harley T. Johnson, Alfred J. Baca, John A. Rogers,
Jennifer A. Lewis, and Paul V. Braun. Multidimensional architectures for functional
optical devices. Adv. Mater., 22(10):1084–1101, February 2010.

[2] Carlos Avendaño, Chekesha M. Liddell Watson, and Fernando A. Escobedo. Di-
rected self-assembly of spherical caps via confinement. Soft Matter, 9(38):9153, 2013.

[3] T. Baba. Slow light in photonic crystals. Nature Photonics, 2(8):465–473, 2008.

[4] Shrestha Basu Mallick, Nicholas P. Sergeant, Mukul Agrawal, Jung-Yong Lee, and
Peter Peumans. Coherent light trapping in thin-film photovoltaics. MRS Bull.,
36(06):453–460, June 2011.

[5] Mila Boncheva and George M. Whitesides. Making things by self-assembly. MRS
Bulletin-Materials Research Society, 30(10):736, 2005.

[6] Julie A. Champion, Yogesh K. Katare, and Samir Mitragotri. Particle shape: A new
design parameter for micro- and nanoscale drug delivery carriers. J. Controlled Re-
lease, 121(1-2):3–9, August 2007.

[7] Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, and
Costas M. Soukoulis. Electromagnetic waves: Negative refraction by photonic crys-
tals. Nature, 423(6940):604–605, June 2003.

[8] Matthew Dennison, Kristina Milinkovi’c, and Marjolein Dijkstra. Phase diagram of
hard snowman-shaped particles. J. Chem. Phys., 137(4):044507, 2012.

[9] Keiichi Edagawa, Satoshi Kanoko, and Masaya Notomi. Photonic amorphous dia-
mond structure with a 3D photonic band gap. Phys. Rev. Lett., 100(1):013901, January
2008.

[10] Akira Emoto, Emi Uchida, and Takashi Fukuda. Fabrication and optical proper-
ties of binary colloidal crystal monolayers consisting of micro- and nano-polystyrene
spheres. Colloids Surf., A, 396:189–194, February 2012.

[11] S. Foteinopoulou and C. Soukoulis. Electromagnetic wave propagation in two-
dimensional photonic crystals: A study of anomalous refractive effects. Phys. Rev.
B, 72(16), October 2005.

10



[12] E. Y. K. Fung, K. Muangnapoh, and C. M. L. Watson. Anisotropic photonic crystal
building blocks: colloids tuned from mushroom-caps to dimers. J. Mater. Chem.,
22:10507–10513, 2012.

[13] Eric M. Furst. Directed self-assembly. Soft Matter, 9(38):9039, 2013.

[14] D. Gaillot, T. Yamashita, and C. Summers. Photonic band gaps in highly conformal
inverse-opal based photonic crystals. Phys. Rev. B, 72(20), November 2005.
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CHAPTER 2

CONFINEMENT-CONTROLLED SELF ASSEMBLY OF COLLOIDS WITH

SIMULTANEOUS ISOTROPIC & ANISOTROPIC CROSS-SECTION*

2.1 Abstract

The phase behavior of building blocks with mushroom cap-shaped particle morphology

is explored under 2D and quasi-2D confinement conditions. Fast confocal microscopy

imaging of the particles sedimented in a wedge cell reveals a range of mono- and bilayer

structures partially directed by the isotropic and anisotropic profiles of the particle geom-

etry. The sequence of phases tracked with increasing confinement height includes those

reported in spheres, in addition to the more complex rotator and orientation-dependent

phases observed for a class of short rod-like colloids. In the later case, the major par-

ticle axis reorients with respect to the substrate. Closest packing considerations pro-

vide rationale for the observed 14 (hexagonal)-1Buckled-1S ides (rotator)-2� (square)-24

(hexagonal)-2S ides (rotator) structural transitions with height.

*Originally published as: Erin K. Riley and Chekesha M. Liddell, “Confinement-controlled self as-
sembly of colloids with simultaneous isotropic and anisotropic cross-section,” Langmuir, 26, 11648 (2010).
Reprinted by permission of the American Chemical Society, http://pubs.acs.org/doi/abs/10.1021/la100361y.
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2.2 Introduction

The promise of transformative technological effects that include negative refraction,[48,

9, 44, 64, 37, 11] superprism,[31, 50] self-collimation,[32] ultralow-loss waveguiding,[2]

sensing with minuscule detection limits (via dramatic electromagnetic field enhancement),[63]

and inhibited spontaneous emission have fueled the search for structures with large, sta-

ble photonic band gaps (PBGs) and tailored dispersion properties. A methodology with

great appeal is to specify an ideal optical property (i.e., a large PBG) and then extract the

necessary structure.[4, 16] However, the inverse problem is often more difficult than solv-

ing the forward case, for which current algorithms and computational power yield ex-

act and efficient solutions.[62] Empirical “guess and check” techniques guided by princi-

ples such as symmetry reduction, connectivity of dielectric, and atomic structure analogy

uncovered structures possessing PBGs, including the sphere-based diamond,[61, 23, 6]

woodpile,[24] square spiral,[58] A7 geometries[7] and the more easily fabricated 2D tri-

angular or square pillar structures. Alternatively, rational material design produced the

level-set mathematical approach[38] and genetic algorithms[56, 51, 53] for investigating

PBG forming potential. Desired structures must also be physically realized using cur-

rent processes such as conventional and holographic lithography or self-assembly,[38, 60]

further limiting the viable structures.

Recently, unconventional nonspherical colloidal particles (boomerangs, square

crosses, hexagonal prisms, UFO shapes, red blood corpuscle shapes, w-motifs, ellipsoids,

cylinders, spherocylinders, asymmetric dimers, etc.)[65, 57, 46, 5, 41, 40, 20, 21, 30] have

been manufactured with low size dispersity in large quantity. In particular, dimer and

tetrahedral colloidal particles are thought to be likely candidates for producing diamond-

analogue structures.[43] Simulations of bulk face-centered cubic tangent dimers showed

full band gaps between the 2 − 3 (second and third) and 8 − 9 (eighth and ninth) bands
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for both direct and inverted structures as a function of the degree of lobe asymmetry

and lobe fusion. A 5 − 6 band gap was also determined for the direct case with suitable

structural parameters.[25] In addition, one-dimensional aperiodic arrangements based

on simple mathematical progressions,[17] fractal structures,[28, 10, 22] as well as 2D and

3D quasicrystals[8, 66] have been shown to possess photonic band gaps. A richer under-

standing of how structure relates to optical characteristics such as dispersion relationships

and band gaps is necessary to realize materials with the desired optical properties.

The pursuit to determine the possible structures formed by anisotropic particles is

foundational for colloidal solutions correlating structure and properties for photonics.

Several self-assembly techniques are in use— convective and electrophoretic assembly,

sedimentation, spin coating, confinement, to name a few. Among them the controlled

height of confinement in a wedge enables the systematic study of diverse phases with

ease. The progressive confinement height of spherical particle suspensions results in

hexagonal (14) and buckled monolayers (1B); square (2�), rhombic (2R), hexagonal (24),

prism (2P) bilayers; and at sufficient gap sizes, hcp-like and n�, nP, n4multilayers (where

n is an integer).[49, 47, 54, 42, 52] The 1B phase provides a stable transition mechanism

from 14to 2�, in which the hexagonal layer is a precursor to two sublayers with particles’

centers of mass separated by a fraction of the confinement height.[49, 42]

While extensive work has focused on spherical building blocks under confinement

and in bulk, experimental studies that have examined assembly of nonspherical submi-

crometer particles are relatively few. Simulations of the crystallization of bowl-shaped

particles [D/σ (bowl depth/diameter)] revealed a stable columnar structure with columns

of alternating particle orientation as well as herringbone-type columnar arrangements

(D/σ ≤ 1/2). At higher aspect ratio, an FCC structure of spheres composed of two hard

bowls with opposite orientation was determined (D/σ ∼ 1/2).[15] Also in theory reports,
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spherocylinders (spherical end-caps on a cylindrical body) have been predicted to tran-

sition from an isotropic phase through a plastic or rotator phase to the crystalline ABC-

stacked solid, as density increases in the case of low aspect ratio [L/D (length/diameter)

< 0.35] shapes. Higher aspect ratio (L/D > 3.5) spherocylinders exhibit liquid crys-

tal smectic-A and nematic phases prior to crystallizing to the ABC-stacked solid. Rod-

like spherocylinders (L/D > 7) form a hexagonal AAA-stacked crystal before the transi-

tion to the more dense ABC-stacked solid.[1] Scattering studies on homonuclear dimers

(L/D = 0.26) demonstrated a plastic phase in highly concentrated suspension.[40] Re-

lated studies using convective assembly of asymmetric dimers with low- and high de-

gree of lobe fusion have shown several distinct 2D phases including oblique, rotator, and

hexagonal (major particle axis oriented out-of-plane), for which particle reorientation was

attributed to confinement by the sloping meniscus.[26] The suggestion was further sup-

ported by the observation of the same sequence for asymmetric dimer structures in a rigid

confinement wedge where height increased systematically.[33]

Here, we assemble mushroom cap-shaped particles in a wedge cell by gravitational

sedimentation. We find the mushroom caps to adopt a series of high density configura-

tions commensurate with the confinement height in the following sequence: [1] hexago-

nal monolayer (triangular lattice, 14); [2] buckled (1B) monolayer in which adjacent par-

ticles are promoted or demoted along the z-height, distorting the hexagonal packing to a

rectangular one; [3] rotator crystal on an oblique lattice, where the axis of spherical sym-

metry reorients parallel rather than perpendicular to the plane of the substrate (1sides);

[4] bilayer square (2�) with the lower layer particles centered in the interstitials of the

top layer; [5] bilayer hexagonal (24); [6] bilayer rotator crystal (2sides). Order param-

eters and correlation functions were determined as quantitative measures of the phase

quality. The ideal density of each phase at the minimum geometrically allowed height

was also calculated and used to rationalize the stability range of each structure observed.
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The mushroom cap particle geometry has associated projection profiles of anisotropic and

isotropic systems. Thus, features of both are apparent in the phase behavior of the mush-

room caps and they provide an expanded range of ordered phases over hard spheres or

rod-like particles, including dimers.

2.3 Experimental Section

2.3.1 Particle Synthesis

Mushroom cap polystyrene (PS) core particles were purchased from Interfacial Dynamics

Corporation (batch 1926, 1). The particles were coated with fluorescently labeled silica,

encased in plain silica, and stabilized with poly(vinylpyrrolidone) (PVP, 40 000 MW). To

make silica compatible to the PS surface, 204 mg of core particles were tumbled overnight

with 9.5 mL absolute ethanol (Pharmco Inc.) and 500 µL 3-aminopropyl- triethoxysilane

(APS, Aldrich), before collection by centrifugation for the remaining steps. The colloids

were coated using a dynalene bath at 30 ◦C under constant sonication at 11 − 14 W ap-

plied with an immersion probe (Sonics & Materials Inc., Model VCX-500). For the typ-

ical procedure, PS mushroom caps were added to 94 mL of isopropyl alcohol (Aldrich)

and 4 mL of ammonia solution (27 %v/v, Mallinckrodt), with aliquots of a sol-gel pre-

cursor injected each hour for a total of three additions. The additions consisted of 15 µL

rhodamineisothiocyanate dye solution (900 µL APS, 250 mg dye, 10 mg absolute ethanol)

and 30 µL tetraethylorthosilicate (TEOS) each time. The mixture was sonicated overnight

and washed via centrifugation and redispersion cycles. For the final coat of nonfluores-

cently labeled plain silica, a single dose of 75 µL TEOS was introduced at the start of the

3 h sonication period in 84 mL of isopropyl alcohol (Aldrich), 12 mL of ammonia solution
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(27 %v/v, Mallinckrodt), and 4 mL of deionized water (DI, 18.2 MΩ, Millipore). This was

repeated twice. The particles were washed and treated with PVP by tumbling overnight,

prior to the final transfer into DI water.

�
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Figure 2.1: (a-c) SEM image perspective views of mushroom cap particles, scale bar is 300
nm. (a) Side, (b) dimple facing up, and (c) dimple facing down orientations are shown.
(d) Schematic of confinement cell as positioned during sedimentation.

2.3.2 Particle Assembly

The confinement wedge was constructed using three glass surfaces, 22 mm × 50 mm cov-

erslips (no. 11/2, VWR) and a 1 in × 3 in microscope slide (VWR). The coverslips were

washed in a NaOH, ethanol and DI water solution of pH 14 and thoroughly rinsed in DI

water before use. A coverslip was bonded to the support microscope slide using Norland

UV adhesive. A spacer array was formed by curing small drops of the UV adhesive and a
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second coverslip was placed on top. Pressure was applied to the top coverslip by hand to

achieve zero height separation at the tip of the wedge. The cell was sealed along three of

four sides with adhesive, leaving one edge propped open for particle injection. Before in-

troducing the sample suspension, the confinement cell was filled with a PVP and DI water

solution by pipette to coat the interior surfaces of the coverslips and placed in a low pres-

sure chamber to boil off the excess. The particles were resuspended in 2.4 × 10−7M PVP

solution. Approximately 50 µL of the particle suspension was inserted with a pipette and

the confinement cell was completely sealed. To sediment the particles into the regions for

2D and quasi 2D observations, the cells were tilted at ∼ 10◦ for at least 3 days. Confocal

data was collected using a Zeiss LSM 5 LIVE confocal microscope.

2.4 Results and Discussion

Mushroom cap particles can be synthesized by the dynamic swelling method in which the

polymer core-shell particles collapse during seeded polymerization.[46] The depressed

surface results from the unbalanced hydrostatic pressure when the evaporation rate of

unpolymerized divenylbenzene and toluene in the core exceeds the water penetration

rate through the hydrophobic shell.[45] The mushroom cap-shaped particles used in this

study were 1.2 µm in diameter (coefficient of variation, CV = 4.2 %). The silica shell

thickness of 42 nm (5 nm and dimple planar dimensions of ∼ 240 nm (major axis) by

∼ 130 nm (minor axis) were determined using transmission and scanning electron mi-

croscopy (TEM and SEM). This model shape is of interest in several contexts; for exam-

ple, as synthetic red blood cells which may concentrate in rouleaux columnar stacks along

the flow axes of capillaries,[3, 59] as motifs in microlens arrays,[35] and as bowl-shaped

partial fullerene morphs (buckybowls).[39] Most notably for the current work, the shape

combines isotropic and anisotropic cross sections in a single particle species.
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Figure 2.2: (a) Profile of the wedge confinement cell. Side (left) and top (right) views of
the idealized mushroom cap phases: (b, c) hexagonal monolayer (14), hmin = 1.5r, (d, e)
buckled monolayer (1B), hmin = 1.5r − 2.4r, (f, g) sides monolayer (1S ides), hmin = 2r, (h, i)
square bilayer (2�), hmin = 2.4r, (j, k) hexagonal bilayer (24), hmin = 2.6r, and (l, m) sides
bilayer (2S ides), hmin = 4r.
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Figure 2.3: (a) Confocal micrograph of 14 region. Scale bar is 6 µm. Inset is an enlarged
display of random dimple-up/dimple-down particle orientations. (b) FFT of a character-
istic region in part a indicating 6-fold symmetry. (c) Hexagonal bond-orientation correla-
tion function for 14 phase. The radial distribution function is provided in the inset. (d)
Voronoi construction from image in part a. Number of nearest neighbors indicated by
color: 4, orange; 5, blue; 6, white; 7, red; 8, green.
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Figure 2.2 shows the schematic profile of the wedge with the side and top views of the

idealized phases illustrated. Six main regions are denoted that contain well-defined par-

ticle configurations. Region I was comprised of randomly mixed dimple-up and dimple-

down oriented particles in a monolayer with hexagonal symmetry (14), as seen in Figure

2.2b,c. A fast Fourier transform (FFT) of a representative area from the crystal shows

6-fold symmetry in the well-defined spot pattern (Figure 2.3b). The hexagonal bond-

orientational correlation function g6 (r) is given by
〈
ψ∗6 (0)ψ6 (r)

〉
, where

ψ6 (ri) =
1

Nb

Nb∑
j=0

exp
(
i6θ

(
ri j

))
and was computed applying particle tracking algorithms (with manual verification) to

the gray-scaled but otherwise unmodified image in Figure 2.3a.[13, 18] The g6 (r) main-

tains a value of 1.0 in the case of perfect 6-fold symmetry. The bond-orientational order

parameter ψ6 = 0.82 in Figure 2.3c compares favorably with that of a 2D hexagonal mono-

layer of spheres (ψ6 = 0.95).[14] The bond- orientational order parameter was calculated

over N total particles by the following expression

ψ6 (ri) =

∣∣∣∣∣∣∣ 1
N

∑
N

 1
Nb

Nb∑
j=0

exp (i6θk)


∣∣∣∣∣∣∣

where Nb is the number of nearest neighbors, and θk is the angle formed by an arbitrary

reference vector and the nearest neighbor bond vector. Theg6 (r) shows only minor decay

over a long spatial range, which suggests the presence of defects and grain boundaries in a

roughly 2900 µm2 region, both of which are visible in the Voronoi tessellation (Figure 2.3d)

generated from the confocal image. Long-range positional order is further identified by

the large coherence length (> 15 peaks) of the pair correlation function, g (r), shown in the

inset of Figure 2.3c. A hexagonal monolayer phase assembled convectively in prior work

was also found to contain particles arbitrarily oriented dimple-up and dimple-down.[27]

The 1B buckled phase occurred in region II (Figure 2.4). The phase exhibits rectangu-

lar symmetry with a two-particle unit cell basis as indicated in the inset of Figure 2.4a.
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Figure 2.4: a) Confocal micrograph of 1B region with ‘straight’ and ‘zigzag’ buckling.
Inset is an enlarged view of the rectangular lattice. (b, c) Confocal micrographs with
focal planes in (b) the upper sublayer displaying dimple-up particle orientation and (c)
between the sublayers where dimple-up particles show a bright ring and dimple-down
particles have a bright center. Scale bars are 6 µm.
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Figure 2.4b shows a confocal image captured at the z-height of an upper sublayer. In

Figure 2.4c, the same crystal region is presented at a focal plane located between the two

sublayers. The particles, which in part (b) are clearly seen with the central dimple facing

up, are ringed with a bright edge in part (c). As well, the particles which face dimple-

down are visible as having a bright center in part (c). The mush- room caps in each

sublayer were thus determined to have an orientation preference toward the confining

walls in the 1B phase. This is a distinguishing feature as compared to the symmetrical

1B phase in spheres. The ordered bifurcation in orientation allows a higher packing den-

sity for a specified height h. Interestingly the buckled phase of spherical particles has

been studied as a parallel to magnetic moments on a lattice where each spin is in one

of two states and interacts only with its nearest neighbors according to an antiferromag-

netic Ising model. Three main types of buckling were seen in the particle system: [1]

raised particles randomly situated among lattice sites (disordered buckling); [2] parallel

alternating lines of raised adjacent particles (straight stripes), as shown in the idealized

1B phase Figure 2.2d,e; [3] bent, buckled rows (zigzag stripes).[19, 54] Such variations of

frustration-induced structure are apparent in Figure 2.4.

The 1S ides phase was observed in region III and is presented in Figure 2.5a,b. A rota-

tor structure on a centered rectangular or oblique lattice was deduced from the autocor-

relation of a representative area in Figure 2.5a inset paired with the apparent rotational

freedom of each particle. The region is limited to grains of ∼ 200 particles. Only ten

major peaks arise in the pair correlation function (Figure 2.5d) due to the incorporation

of irregular- sized or shaped particle defects. As the system density increased over time,

the character of the particle rotation converted from fully three-dimensional to in-plane

and was restricted by the contoured interstices of neighboring particles (see Supporting

Information). For a spherical particle system, the 1B phase persisted over the expanse of

intermediate heights between 14 and 2�.[47, 54] However, the confinement height per-
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Figure 2.5: (a) Confocal micrograph of 1S ides region. Scale bar is 6 µm. Inset, autocor-
relation function indicating an oblique lattice. (b) Magnified confocal view showing the
rotator 1S ides phase. (c) Voronoi construction calculated from part a and (d) radial distri-
bution function, g (r).
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mitted the particles to rotate out- of-plane onto their sides and interrupted the transition

from 1B to 2� for the mushroom caps.

Figure 2.6 shows the focal plane progression through the square- packed top layer (a)

to the discernible square-packed underlying layer (c) for the 2� structure in Region IV.

An intermediate focal plane is shown in part b, revealing the bright mushroom “dimple”

of the underlying layer centered beneath the interstitial site (white asterisk, Figure 2.6d)

formed by four particles in the top layer. The enlarged image of the particles (d inset)

exposes the orientation preference of the top layer as dimple-up. The FFT of a repre-

sentative region (d) shows 4-fold symmetry and equal lattice constants, consistent with

square packing. For both the upper and lower layers, the pair correlation functions (f)

demonstrate long-range order. The confocal image of the underlying layer is not sharply

focused due to increased optical scattering from the polymer cores which are not index

matched to the suspension medium. The Voronoi construction in Figure 2.6e emphasizes

the distortion caused by large malformed particles. Although the polygons remain pre-

dominantly square, higher order polygons indicated by light blue, green, yellow and red

color arise due to the slight motion of the particles around the lattice sites. ‘Twisted bond’

(non-90◦ angle between Wigner-Seitz cells of two adjacent particles) and ‘twisted triangu-

lar’ (Wigner-Seitz cells of three adjacent particles intersect at one corner) defects are also

visible.[55] The underlying layers of some 2� crystals suggest another positioning of the

base layer particles, at the site indicated by the black asterisk in the inset of Figure 2.6d.

Region V of the wedge cell contained two layers with hexagonally packed particles,

the 24 phase, as shown in Figure 2.7a,b. The FFT of a representative area shows an oblique

structure with reciprocal space lattice parameters in the ratio of 1 : 1.03 with an interpla-

nar angle of 123◦. The enlarged inset indicates random dimple-up and dimple-down par-

ticle orientations similar to the 14 phase. The pair correlation function for the first layer
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Figure 2.6: (a-c) Confocal micrograph of 2� region. Scale bars, 6 µm. Focal plane at (a) the
upper layer showing the dimple-up particle orientation; (b) between the layers, revealing
the bright dimple centered below the upper interstitial site; and (c) at the lower layer. (d)
FFT pattern of a representative region of part a showing 4-fold symmetry. Inset, magni-
fied view of the upper layer. (e) Voronoi construction. (f) Radial distribution functions of
parts a and c, upper and lower, respectively.
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Figure 2.7: (a,b) Confocal micrographs of 24 region. Scale bars, 6 µm. (a) Focal plane at
the upper layer. Inset, enlarged view. (b) Focal plane at the lower layer. (c) FFT pattern
of part a. (d) Hexagonal bond-orientational correlation function, g6 (r), for the 24 phase.
The radial distribution function is inset.
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(Figure 2.7d inset) had a coherence length of twelve nearest neighbor distances. The inset

hexagonal bond-orientational order parameter indicates some disruption of the ideal 6-

fold symmetry, due in part to the ‘mutant’ particles. The value of ψ6 is lowered to 0.4305

compared to that of the 14 case. While a stable rhombic phase is seen in the spherical

particle system on transition to the 24 phase, this was not observed over a meaningful

range in the mushroom cap system.[54]

The 2S ides phase, a bilayer of mushroom caps having major axes out-of-plane, ap-

peared in Region VI. Two structural forms were found, a more open rotator solid (Figure

2.8a, σ = 0.49 particles/µm2) and a smectic-type structure of particulate ‘chains’ (Figure

2.8c, σ = 0.56 particles/µm2). The layered arrangement is reflected in the periodicity of

the gx distribution function provided in Supporting Information, Figure 2.9a. The rotator

solid exhibits near 6-fold symmetry that is apparent in the FFT in the Figure 2.8b inset.

The hexagonal bond-orientational correlation function in Figure 2.8e shows minor decay

at large distances, however, and the ψ6 value of 0.6412 indicates a significant deviation

from the values that characterize a high quality hexagonal crystal. The crystal retains

long-range order as evidenced by the many peaks of the pair correlation function in the

inset of Figure 2.8e. The chaining effect is composed of more closely packed particles in

columns. The mushroom caps still have rotational freedom. The smeared linear features

of the autocorrelation for this phase (Figure 2.8d) emphasize chaining in contrast to the

spot pattern discernible from the autocorrelation for the 2S ides rotator structure (Figure

2.8b). The 2S ides phases are more robust than the 1S ides structure in that they accom-

modate the large misshapen particles without significant deterioration of the ordering

(Figures 2.5c and 2.8f).

The structures formed in regions I-VI as h increased may be rationalized by consider-

ing the competition between the densities of the allowed phases at each separation height
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Figure 2.8: (a) Confocal micrograph of 2S ides oblique rotator region. (b) Autocorrelation
function of part a. Inset, FFT pattern of 2Sides region in part a. (c) Confocal micrograph
of 2S ides “chaining” region. (d) Autocorrelation function of part c. Inset, FFT pattern
of 2S ides region, showing 2-fold symmetry. (e) Hexagonal bond-orientational correlation
function, g6 (r), of part a with radial distribution function of (a) inset. (f) Voronoi con-
struction of part a. Scale bars, 6 µm. The calculated g6 (r) and g (r) for the chained 2S ides
structure in part c are provided in Figure 2.9b.
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Figure 2.9: a) Distribution function for smectic-like 2S ides phase. b) Calculated hexagonal
bond-orientation correlation function for Figure 2.8c. The radial distribution function is
provided in the inset. The ψ6 value was found to be 0.6581.
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(Figure 2.10). The realized phase possesses the highest density at the given h, satisfy-

ing the driving force to maximize the free volume and thus minimize the free energy

of the system.[19, 29] We consider a mushroom cap model particle shape formed by a

hemisphere of radius r and a half torus, giving a volume of π (2/3 + π/8) r3 per parti-

cle. The minimum height (hmin) geometrically required for each structure and the ideal

packing fraction for each phase at hmin are detailed in Table 2.1. The ideal density was

calculated from the total volume of particles that occupy area A of the unit cell (u.c.)

divided by A × hmin for each phase. For example, the density of the 14 arrangement

was determined from a primitive rhombic cell (a = b = 2r, R = 120◦ and β = 60◦) as

Voccupied/Vu.c. =
[
π (2/3 + π/8) r3

]
/
[(

2
√

3r2
)

(1.5r)
]

= 0.64.
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The 1B phase was modeled with a two-particle basis on a rectangular lattice (Figure

2.2d,e), and with the particles in opposite orientations to minimize h. The assumption was

made that particles in each sublayer row remained tangent, based on confocal images.

This requirement establishes that h be related to the spacing between rows (2x) in the

same sublayer, where x =
√

3r2 − (h − r)2. The packing density for the buckled phase,

therefore, is constant over a range of heights and its density at the minimum height is

the same as that of the 2� structure (Figure 2.10). An idealized rotator (Figure 2.2f,g)

was chosen as a lower bound to approximate the ideal 1S ides phase packing fraction.

The mushroom caps were modeled to be centered on the same positions as spheres of

radius r in a hexagonal lattice with hmin = 2r. Full rotation of the particles in the plane is

allowed and results in a significantly lower density (0.33) than for the other monolayer

phases. Additional ideal oblique phases were modeled in which the mushroom caps

have hindered rotation; a primitive oblique lattice (a = 2r, b =
√

3r, R = 125◦, and β = 55◦)

with all particles in a common orientation, and an oblique lattice with a two particle

basis (a = 2r, b = 3r, R = 120◦, and β = 60◦) of oppositely oriented mushroom caps.

Phase density values of 0.59 and 0.64, respectively, were obtained. The 2� assembly was

represented (Figure 2.2h,i) by a two-particle basis on a square lattice [a = 2r; particle

locations at (0, 0, 0) and(r, r, (1 +
√

2)r)] with mushroom caps oriented dimple-up in the

upper layer. A lower layer oriented dimple-down yields the minimum height structure

and was assumed for the model. The parameters for the 24 model were a = b = 2r,

R = 120◦, β = 60◦ and hmin =
[
2
√

2/3 + 1
]

r, (half the height of a hexagonal bilayer of spheres

plus two half-toroid segments). At heights larger than hmin, mixed dimple-up and dimple-

down configurations are allowed (Figure 2.2j,k). Characteristic structural parameters for

the idealized phases are summarized in Table 2.1.

Generally, each model structure is stable over the range where its plotted density pro-

file is the highest compared with the other phases allowed by the confinement height

37



Figure 2.10: Effective density of idealized phases for mushroom cap particles as a function
of confinement cell height. The cell height is given in terms of mushroom cap radius
value, r.

Table 2.1: Confinement height and density constraints on monolayer and bilayer struc-
tures of mushroom caps

phases height minimum density @ hmin symmetry lattice
14 1.5r 0.64 p6mm hexagonal
1B 1.5r − 2.424r 0.52 p2mm rectangular

1S ides 2r 0.59 − 0.64 p2 oblique
2� 2.414r 0.52 p4mm square
24 2.63r 0.59 p6mm, AB stacking hexagonal

2S ides 4r 0.55 p2, AB stacking oblique
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(Figure 2.10). The hexagonal monolayer is the first phase geometrically allowed by the

confinement conditions at the lowest height. Beyond hmin, the phase density decreases

because more empty volume is available than is necessary to accommodate the close-

packed arrangement. The 1B phase becomes possible based on geometric arguments at

h > 1.5r. However, the free energy of the system in the 1B arrangement is only minimized

once the effective density of the 14 phase drops below that of the 1B phase. The higher

density of 1S ides at its hmin truncates the stability region of 1B to h < 2r. A version of

the 1S ides phase (Supporting Information Figure 2.11b) is plotted to have greater density

values than the 2� phase at all heights. The suggested stability of 1S ides over 2� from

theory is not supported by the experimentally observed phase behavior.

Frequent misorientation in the close-packed 1S ides structure may decrease the density.

The more open rotator 1S ides phase must also be considered when settling rates are low

enough for the orientationally disordered arrangements to be isolated as the structures

evolve over time. The 1S ides transition to 2� may occur where hmin = 2.414r and takes

place when the decreasing effective density of 1S ides renders the free energy of the 2�

phase preferable. The transitions to 24 and 2S ides may be explained following similar

framework.

2.5 Conclusion

This work explores structural transformations for nonspherical mushroom cap-shaped

colloids as directed by the gradient of confinement height in a wedge cell. Certain mono-

layer and bilayer phases of the system have commonality with those identified in spheri-

cal systems. However, the preferential orientation of particles in the 1B and 2� phases, as

well as the existence of new 1− and 2S ides structures, is uniquely attributed to the mush-
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Figure 2.11: Idealized oblique structures for approximating the 1S ides phase density.
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room cap anisotropy. The quasi 2D regions, in which solidification occurs at intermediate

confinement heights between integral numbers of particle layers, contained colloids that

reorient and pack on oblique lattices either with rotational freedom or in dense smectic-

like chaining formation at higher density. The sequence of phases determined as a func-

tion of height is 14−1B−1S ides−2�−24−2S ides. The more complex orientation-dependent

phases are reminiscent of the behavior in nonspherical spherocylinders and asymmetric

dimers under confinement. Such processing methods that provide self-assembly of any

arbitrary shape into ordered structures are central to the realization of low cost complex

structures, in contrast to approaches that have relied on simple sphere deformation (i.e.,

stretching and pressing).[36, 12, 34] Exploring the mushroom cap films in dry form with

appropriate dielectric backfilling is the subject of our further work toward photonic ap-

plications.
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CHAPTER 3

BUCKLED COLLOIDAL CRYSTALS WITH NONSPHERICAL BASES FOR

TWO-DIMENSIONAL SLAB PHOTONIC BAND GAPS*

3.1 Abstract

Theoretical modeling of the photonic band gap forming properties is reported for the

buckled phase of anisotropic particles. These exist between the first and second partic-

ulate layers of confined colloidal suspensions. Inspired by the range of non-spherical

mushroom-cap building blocks for self-assembly that have been synthesized using

seeded emulsion-polymerization, we explore in particular the band structures as a func-

tion of toroid shape parameter. The parameter is adjusted to incrementally transform

hemispheres to spheres. Additionally, corrugation heights that systematically modulate

the slab photonic crystal unit cell from rectangular monolayer to square bilayer are in-

vestigated. Polarization independent gaps in the guided modes are determined for direct

and inverted structures that exhibit bifurcation in the particle orientation perpendicular

to the slab plane. Gaps in the guided modes are observed between the fourth and fifth,

twelfth and thirteenth, as well as higher band locales as the particle morphology and

lattice aspect ratio vary.

*Originally published as: Erin K. Riley, Esther Y. Fung, and Chekesha M. Liddell Wat-
son. “Buckled colloidal crystals with nonspherical bases for two-dimensional slab photonic band
gaps”, J Appl Phys, 111, 093504 (2012). Reprinted by permission of the American Institute of Physics,
http://dx.doi.org/10.1063/1.4706556.
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3.2 Introduction

Advances in synthesis and processing science undergird the growth of low cost, large

area manufacturing at the mesoscale, so that utilizing features of diverse unconventional

structures in light control is becoming a reality. For instance, three or four beam interfer-

ence in holography techniques has been used to define the period, symmetry, and shape

of photonic crystal lattice elements in photosensitive polymers. The wavelength, relative

phases, polarization, and incidence directions of continuous-wave visible lasers provide

the controls.[26, 27, 43] Inverse design is possible where given a desired optical profile,

the proper beam pattern can be devised, in contrast to the common empirical ‘guess and

check’ approach to the search for band gaps. However, the complexity of the optical set

up presents limitations on the ability to fabricate any arbitrary structure as a photonic

crystal template.

Elastic deformation and solvent-induced swelling instability have produced deriva-

tives from a PDMS (polydimethylsiloxane) membrane with a variety of arrangements

that were calculated to sustain 2D optical band gaps. These were established predomi-

nantly for the transverse magnetic polarization (TM, magnetic field component in-plane)

when patterns were transferred to high refractive index silicon posts. The applied uniax-

ial strain transformed square lattice structures of ellipses in ‘herringbone’ orientations to

(1) centered-rectangular compound structures (i.e., a basis of elliptical lines with differ-

ent aspect ratios or of circles and ellipse features) and (2) primitive rectangular lattices of

elliptical scatterers aligned along the stretching direction.[45]

Colloidal self-assembly under confinement in wedge geometry as well allows a range

of atypical structures to be systematically accessed with ease. The cell height relative to

the particle size determines changes in state. Particularly, the availability of nonspherical
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Figure 3.1: SEM images of morphologies obtained using 2 % DVB seed PS particles and
DVB content in the second stage swelling of (a) 10 % DVB, minor non-spherical deforma-
tion, slightly flattened side; (b) 15 % DVB, toroid shape parameter 54 %r; (c) 20 % DVB,
toroid shape parameter 42 %r; and (d) 30 % DVB, toroid shape parameter 34 %r. Col-
lapsed shape becomes obvious for particles deposited with axis of circular symmetry near
parallel to the substrate plane. Scale bars indicate 1 µm.
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particle morphologies with narrow size/shape distribution— boomerang, square cross,

hexagonal prism, flying saucer, blood cell, w-motif, ellipsoid, peanut, cylinder, sphero-

cylinder, heteronuclear dimer, etc.— expands the approach.[44, 39, 33, 3, 31, 30, 12, 13, 20]

Recently, buckled phases (1B) of anisotropic particles were captured at transition heights

between the first and second particulate layers.[36] The mushroom cap-shaped build-

ing blocks in the idealized 1B phase self-organize on a rectangular lattice into vertically

shifted sublayers, each having a particle orientation preference towards opposite confin-

ing walls to achieve the highest packing density (Figures 3.2 and 3.3).
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Figure 3.2: Model buckled structure.(a) Rectangular unit cell at z = −h/2; (b) Brillouin
zone of the rectangular lattice (irreducible Brillouin zone highlighted) with high symme-
try points indicated; (c) cross-section of buckled hemisphere structure along

〈
1̄1

〉
direc-

tion.

The quasi-two dimensional structure is related to the class of reduced symmetry con-

figurations (compared to the sphere-based triangular lattice), which have been explored

for lifting degeneracy in photonic bands. These arrangements open full 2D band gaps

through lattice parameter distortion, nonspherical motif rotation, and/or introduction of
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Figure 3.3: Schematics for the direct buckled structures with height of rin+1.40r and toroid
shape parameter rin as a fraction of the hemisphere radius, r: (a) 0 % (hemisphere); (b)
30 %; (c) 40 %; (d) 50 % (‘horn mushroom cap’); (e) 60 %; (f) 80 %; and (g) 100 % (sphere).
Schematics of the inverted buckled hemisphere structures with w/l = 1.09 and h = 1.35r
as the filling fraction f is varied by changing the hemisphere radius: (h) r = 0.40 and
f = 63 %; (i) r = 0.46 and f = 44 %; and (j) r = 0.50 (tangent) and f = 29 %.
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superlattice features (e.g., periodic extra or missing elements). Practical realizations are

often thin dielectric slabs with planar photonic crystal patterning ‘sandwiched’ between

claddings of air or low index background material. Light is confined by index guiding

in the third dimension. Compared to the ideal infinite versions that are extended verti-

cally, photonic enhancements can be much more modest in slab structures and are sig-

nificantly improved using the strategies for symmetry reduction.[42] For photonic crystal

slabs (PCSs) of air holes in silicon with thickness of 458 nm and 422 nm, respectively, a

full band gap (midgap frequency ∼ 1.55 µm) in the guided modes opens to 10.2 % relative

width (gap-midgap ratio, 4ω/ω) for a hexagon motif rotated 9◦ with respect to the lattice

vectors of a triangular lattice and to 8.9 % relative width for a square motif rotated 30◦ on

a square lattice.[2] Pores shaped as trimers of ellipses (three overlapping elliptical holes

with major axes inclined 120◦ to each other) on a triangular lattice silicon slab of 320 nm

thickness were calculated to yield a maximum width of 11 %. The gap was optimized

by modifying the degree of fusion for the ellipses and the aspect ratio of their major and

minor pore axes. The honeycomb structure with a basis of two dissimilar-sized circular

holes per cell also promotes a full gap. The relative width value is tunable up to 10 %

through modifying the radius ratio.[42] Optical mode splitting at the high symmetry K-

point of the band structure is induced by the elimination of a mirror operation in the

reciprocal lattice in comparison to the case for a single circular pore size. In the later case,

the corresponding gap between the first and second bands is closed for one polarization.

Motivated by the observed 1B phase that can be self-assembled from partially col-

lapsed colloidal building blocks (Figure 3.1) in confinement experiments,[36] the present

work investigates photonic properties of quasi-2D buckled films composed of nonspher-

ical 3D motifs. Specifically, we explore the formation of photonic band gaps as a function

of toroid shape parameter. Hemispheres joined with hemi-torus features are incremen-

tally transformed to spheres (Figure 3.2). Mushroom cap-shaped particles similar to those
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in Refs. [36] and [14] lie along the continuum. The influence of corrugation height on the

optical properties is also studied. This degree of buckling in the photonic crystal is di-

rectly related to the rectangular aspect ratio of the top plan projection for the slab unit

cell. Dielectric or ‘air’ particle tangency is enforced in direct and inverted realizations of

the films. This is consistent with basic self-assembly and backfilling (i.e., inverted struc-

tures). The restriction is removed when the effects of solid volume filling fraction are

examined through varying particle size. Buckling and pore shaping in 3D impart atyp-

ical vertical variation in the slab structures. The mid-slab mirror symmetry, present for

numerous slab configurations in the literature due to a uniform cross-sectional profile

throughout the thickness, is substituted with a diagonal glide element here. Polarization

independent gaps in the guided modes were determined for the first time in structures

with bifurcation in the particle orientation (e.g., dimple up or dimple down) perpendic-

ular to the slab plane. Notably, the necessity to engineer overlap frequencies of odd and

even mode [TM-like and TE-like (electric field component in-plane)] gaps is eliminated

by the change in symmetry. The lowest lying full gaps in the guided modes were found

between the fourth and fifth photonic bands (4−5 gap) for the inverse buckled particulate

monolayers with shape parameters clustered near those of hemispheres.

3.3 Model and Calculation

Anisotropic particle shapes in the family modeled in this work can arise from evacuation

of swelling solvent and unreacted monomer through the mildly crosslinked skin layer as

a colloid undergoes contraction. Deformation is driven by the pressure gradient across

the shell during transport through the porous surface. The isotropic shrinkage transitions

to regimes where the inhomogeneous membrane shell flattens, curvature reversal occurs

forming a depression, an invagination ensues, and its tip deepens until tearing connects
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to a hollow or solid central core region.[34] Figure 3.1 highlights the shape transforma-

tion of 500 nm polystyrene (PS) colloids prepared by seeded emulsion polymerization.

The 2 % divinylbenzene (DVB) seed particles (monomer composition of 5.880 mL styrene

and 120 µL DVB) were swelled with monomer, crosslinker, and anhydrous toluene in the

presence of polyvinylalcohol stabilizer and hydroquinone inhibitor. Polymerization at an

elevated temperature of 70 ◦C yielded increasingly collapsed morphology over the range

of 5 % to 30 % DVB addition in the second stage.

To incrementally capture the morphology development, a geometric model was de-

fined through joining at the origin a hemisphere, z = −
√

r2 − x2 − y2, to a hemi-torus,

z = +

√
r2

in −
[
(r − rin) −

√
x2 + y2

]2
, where rin and r − rin are the inner and outer hemi-toroid

radii at the z = 0 plane. The transformation from hemisphere through ‘mushroom cap’

shaped particles to spheres is illustrated in Figure 3.2 as the shape parameter rin increases

from 0 to 1r. The so called ‘horn torus’ capping feature corresponds to toroid shape pa-

rameter of rin = 0.5r.

A few buckled arrangements have been identified to satisfy geometric frustration

when such particles are confined by actuated parallel plates or a wedge cell. The phase

transformations for both systems of spheres and mushroom caps have been shown to take

place from a hexagonal close-packed monolayer to the square bilayer structure through

transitional buckling structures—(1) straight-striped (parallel alternating lines of raised

adjacent particles); (2) zigzag (striped rows with directional deviations); and (3) disor-

dered (raised particles randomly situated among lattice sites). As a first approximation

for the class, the more closely packed straight-striped phase was modeled (Figure 3.3).

This 1B phase is represented on a rectangular lattice with a two-particle basis and p2mm

plane group symmetry of the top projection. The row tangency requirement constrains

the primitive planar lattice vectors to ~a1 = [100] (width w =
∣∣∣~a1

∣∣∣ = 2
√

3r2 − (h − 2rin)2)
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and ~a2 = [010] (length l =
∣∣∣~a2

∣∣∣ = 2r) and applies to the confinement heights (h) in the

range, 1r < h <
√

2r + 2rin. The anisotropic particles constituting the basis have the hemi-

object union at coordinates given by
(
0, 0, rin −

h
2

)
and

(
1
2 ,

1
2 ,

h
2 − rin

)
with the isotropic cross-

sections oriented in the
[
001̄

]
and [001] directions, respectively. As the confinement height

expands, the motifs at 1/2~a1, 1/2~a2 shift further out-of-plane, and the interrow distance of

oppositely oriented particles decreases.

The photonic band structures of the buckled films were calculated according to the

vectorial plane wave method implemented using the MIT Photonic Bands (MPB) soft-

ware package.[19] Periodic boundary conditions were imposed with large intervals be-

tween the slabs in the stack, spaced by eight times the lattice constant ~a1. The dispersion

curves of light frequency versus wavevector (reciprocal lattice vector) were computed

along the path between high symmetry points of the irreducible Brillouin zone for the

rectangular lattice in reciprocal space (Figure 3.3(b)). Eigenfrequencies were determined

for the first twenty bands within 0.001 % convergence tolerance for the computational cell

of mesh size 5 and resolutions of 16 or 32. The values correspond to a typical minimum

of 4096 or 32768 plane waves. A continuous opaque region (light cone) representing all

bulk background radiant frequencies is overlaid (Figure 3.4, grey) having a lower limit

calculated as the wavevector divided by the refractive index of the air (n = 1) cladding.

Guided modes associated with the direct and inverted photonic crystal patterning eval-

uated for dielectric contrasts from 6 to 16 appear below the light line. Ten wavevectors

were initially interpolated between each critical symmetry point. When full band gaps

were found in the sense that there were no guided modes for the frequency range of the

band gap, the structures were further analyzed by 100 wavevector interpolation as was

required to obtain a sufficient level of band structure detail. The simulation was per-

formed without polarization constraints because of the absence of a mirror plane parallel

to the slab.
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Figure 3.4: Band diagrams of inverted buckled mushroom cap (w/l = 1.02 and εc = 14.0)
as a function of toroid shape parameter: (a) rin = 0 % and f = 26.7 %; (b) rin = 40 % and
f = 32.2 %; (c) rin = 50 % and f = 32.0 %; (d) rin = 60 % and f = 33.1 %; and (e) rin = 100 %
and f = 39.6 %. Air voids assumed tangent.
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3.4 Results and Discussion

Full band gaps in the guided modes were determined in both direct and inverse structures

at high degrees of buckling. The representative band diagram series provided in Figure

3.4 details the evolution of the inverted buckled mushroom cap system as a function of

particle shape, with the particles remaining tangent. The rectangular aspect ratio (w/l)

and the dielectric contrast ratio (εc) are constant at 1.02 and 14.0, respectively. The lowest

lying 4−5 gap (Figure 3.4(a)) opened at minimum dielectric filling for the inverted buckled

hemisphere structure, but closed near the M symmetry point (M-point) in the mushroom

cap systems due to the relative increase in filling fraction. As the toroid shape parameter

increased, the filling fraction of the inverted structure passed through a local minimum

(supplemental Figure 3.5(b)) generating the 12 − 13 band gap (Figures 3.4(b)-3.4(d)). This

gap closed at higher shape parameters and filling fractions, since the bands were pulled

down to lower frequencies (Figure 3.4(e)).

The gap width (gap-to-midgap ratio) as a function of dielectric contrast (w/l = 1.02) is

provided in Figure 3.6 for the 4 − 5 gap in the inverted hemisphere and the 12 − 13 gap

in the inverted mushroom cap structures. The 4 − 5 gap size remained smaller than the

simulation error (1 %) at the aspect ratio 1.02. The 12 − 13 gap opened in the mushroom

cap systems (rin from 40 %r to 60 %r) when a degeneracy at the X′ symmetry point (X′-

point) lifted. The 12 − 13 gap in the three systems opened at lower εc as the toroid shape

parameter increased (Figure 3.6(b)), and the maximum gap was determined for the con-

figuration with a filling fraction that corresponded to the local minimum ( f = 32.0 %). The

difference in filling fractions for the 40 %r and 50 %r mushroom cap systems was small

(0.2 %). However, the 60 %r mushroom cap system promoted gap formation at a reduced

dielectric contrast is consistent with the principle that to minimize mode energy, more

field will concentrate in the dielectric material when the dielectric constant is lower.[19]
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The condition is easily satisfied for higher filling fraction structures.

The generation and closure of the photonic band gaps can be rationalized from the dis-

placement field distribution (i.e., dielectric constant electric field) in the dielectric material

as shown in Figure 3.7. Field maps associated with the 4th and 5th bands of the inverted

buckled hemisphere system at the M-point indicated the modes were arranged dissimi-

larly. The electromagnetic field energy of the 4th band concentrated in the high dielectric

material as connected paths, while the field energy of the 5th band was tightly localized.

The intense field regions for the 4th and 5th bands at the M-point in the inverted mush-

room cap (rin = 50 %r) system were instead distributed in equivalent patterns, resulting in

a band degeneracy. No gap was found in the assembly of inverted spheres modeled, since

the high percentage of the displacement (magnetic) field in the dielectric for the 4th band

[94 % (40 %)] and 5th band [93 % (71 %)] at the M-point, compressed the band structure to

lower frequencies. Gaps between high indexed bands in a 2D, large εc (> 20) system[6]

have been reported between so called ‘dielectric’ bands representing the electromagnetic

field concentrated in the high dielectric regions of the material. The gaps were formed due

to the change in the mode distribution within the dielectric (rather than concentration in

dielectric versus air) and were related strongly to the Mie resonance of the scatterers.[6]

The localized photonic states were readily explained though a tight-binding model for

the linear combination of Mie resonances. Such gaps have been found to be resilient to

changes in periodicity, but are sensitive to variation in the scattering cross-section, i.e.,

shape.[25] Mie resonance dominated gaps have also been associated with amorphous

diamond-, 2D hyperuniform disordered-, and quasiperiodic structures (e.g., eight-, ten-,

and twelvefold-symmetric quasicrystals), where gaps survive in the presence of various

types of disorder.[8, 9, 16]

To investigate the impact of the rectangular lattice symmetry on the 4 − 5 and 12 − 13
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Figure 3.6: (a) 4 − 5 band gap in inverted buckled hemisphere (rin = 0 %) structures with
w/l = 1.07 (cross), 1.06 (open triangle), 1.05 (solid triangle), 1.03 (open circle), 1.02 (solid
circle), and 1.00 (solid square). (b) 12 − 13 band gap in inverted buckled mushroom cap
structures at rectangular aspect ratio 1.02 and toroid parameter rin of 40 %r (solid triangle),
50 %r (open triangle), and 60 %r (cross). (c) 12−13 gap in inverted buckled mushroom cap
(rin = 50 %r) structure as a function of aspect ratio: w/l = 1.00 (solid square), 1.02 (solid
circle), and 1.03 (open circle). Direct particle shapes and the corresponding toroid shape
parameters are shown in insets.
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Figure 3.7: Displacement field (given by dielectric constant electric field) at the M sym-
metry point for inverted buckled structures at εc = 14.6: hemisphere (a) 4th band, (b) 5th
band; 50 %r mushroom cap (c) 4th band, (d) 5th band; and sphere (e) 4th band, (f) 5th
band.

62



gaps, the degree of buckling was altered to span w/l values from
√

3r2 − (r − rin)2/r (i.e.,

monolayer values 1.41 − 1.73) to 1.0 (square bilayer). The gap widths for the 4 − 5 gap

in the inverted hemisphere system are shown in Figure 3.6(a) as a function of w/l. The

error threshold was exceeded for w/l values from 1.03 to 1.07, with the maximum gap

size achieved at an intermediate w/l value of 1.05. Of the arrangements investigated, this

range reflects structures approaching higher lattice symmetry. The gap closed at larger

rectangular aspect ratios beyond 1.07 due to the shift of band 5 to lower frequencies at

the X′−point. For w/l less than 1.03, the width of the gap falls below significance due

to a degeneracy between the Γ− and M−points. The gap opened at lower dielectric con-

trast values as the degree of buckling increased (w/l decreased). The 12 − 13 gap in the

inverted mushroom cap structure (rin = 50 %r) occurred at an even smaller rectangular

aspect ratio (w/l < 1.03), as compared to the hemisphere case. Again, the tolerance for

lattice anisotropy was limited due to a degeneracy near the X′−point. The minimum re-

fractive index contrast to open the 12 − 13 gap increased with lattice distortion (Figure

3.6(c)). The gap widened as the rectangular aspect ratio decreased to unity. The results

suggest that the basis shape collapse from mushroom cap to the even less isotropic hemi-

sphere is better accommodated on a reduced symmetry lattice (i.e., band gaps exist over

a wider range of w/l values).
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The reduction of the rectangular aspect ratio to 1.0 (the square bilayer) affects both

the lattice symmetry and the coordination number in the structures. In the square bi-

layer, the lattice symmetry increases to a four-fold rotational symmetry (p4mm) and the

coordination number increases from 6 to 8. The dielectric filling fraction (Figure 3.5(b))

is also minimized for all shapes. As indicated in Figure 3.6(a), the 4 − 5 gap has value

less than 1 % in the inverted square bilayer of hemispheres. That the lowest gap de-

pends on the coordination number or connectivity to open agrees with findings for amor-

phous diamond and the A7 family of structures.[8, 4] Rectangular lattice symmetry that

favors the gap opening contrasts with the opposing trend found for several circular cross-

section pore structures.[35, 41] In rectangular systems of nonspherical motifs, gap forma-

tion has been promoted by scatterer shapes aligned in-plane along the direction of lattice

extension.[35, 41, 32] Here, the particle anisotropy in the vertical direction makes the basis

shape compatible with the lower lattice symmetry and encourages gap formation.

The square bilayer supported several additional band gaps. The evolution of the

12 − 13, 14 − 15, and 16 − 17 gaps found in the inverted square bilayer as a function of

the toroid shape parameter and dielectric contrast is shown in Figures 3.8 and 3.9. The

12 − 13 gap persisted over the widest range of dielectric contrasts for the filling fraction

local minimum at shape parameter 50 %r (Figure 3.5(b)). Examination of lower dielectric

contrast values for this structure revealed that the gap opened between dielectric con-

trasts of 5.5 and 6.0. The 12 − 13 gap at a dielectric contrast of 10 is limited between Γ

and M near the light cone edge for 0 %r, the hemisphere case. A degeneracy between Γ

and M developed for 10 %r − 30 %r and lifted for 40 %r − 70 %r, where the gap size was

often controlled by the lower band edge near X′ and by the upper band near the Γ − M

light cone edge. The particle shape contributed to modulation of the bands such that the

gap opened for low filling fractions (Figure 3.5(b)). As the shape parameter increased

past 70 %r ( f = 33.7 %) approaching a spherical basis shape, the gap closed. The structure
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based on the inverted horn mushroom caps (50 %r) exhibited the largest 14 − 15 gap at

5.72 % (Figure 3.9(a)). The guided modes are restricted at higher frequency by the light

cone to wavevectors not spanning the full Brillouin zone (X′ − Γ − X region excluded).

These gaps are marked with an asterisk in Table 3.5, which details the largest gaps in the

structures having particle tangency enforced.

Additionally, gap competition characteristics, where gaps of certain indices are max-

imized at the expense of gaps having other indices, were apparent in the square bilayer

structures. This is illustrated in the hemisphere (0 %r) case considering the 6 − 7, 8 − 9,

and 14 − 15 gaps in Figure 3.10(a). Whether the gaps could be formed between higher

lying bands depended on lattice symmetry. However, the basis shape strongly influenced

the index of the principle gaps.[28] For example, in Figure 3.10, the band indices of the

principal high lying gap, 16 − 17 (Figure 3.10(b)), shifted to 14 − 15 (Figure 3.10(d)), and

further to 12 − 13 (Figure 3.10(e)) as the basis shape became more isotropic. Notably, the

dielectric filling in many of the structures possessing gaps was less than 34 %. Only the

square bilayer arrangements yielded gaps associated with filling fractions up to 37 % (for

basis shapes 80 %r and 90 %r).

The inverted structures discussed to this point have inherent differences in filling frac-

tion due to basis shape variations. The dielectric filling was also manipulated indepen-

dently of underlying particle morphology by sampling particle radii not consistent with

tangency in the set configurations. An inverted buckled hemisphere structure (w/l = 1.02)

was modeled at a dielectric contrast of 13.7 with ‘air’ particle radius ranging from r = 0.50

(tangent) to r = 0.40 (isolated pore shapes in the matrix). The 4 − 5 gaps present in the

tangent case were not found at reduced r values. For the inverted mushroom cap sys-

tems, 8 − 9 gaps arose at an intermediate radius of 0.46 for the 50 %r and 60 %r shape

parameters ( f = 45.2 % and 45.9 %). The structure based on the 40 %r toroid shape pa-
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Figure 3.10: Band gaps for inverted square bilayer structures with toroid shape param-
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18 − 19 gap (asterisk).
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rameter exhibited a 12 − 13 gap at r = 0.46 ( f = 45.6 %), but favorably required a lower

dielectric contrast than in the tangent case to achieve the same gap width. The 12 − 13

gap achieved the threshold value as the ‘air’ particle radius was increased from 0.44 to

0.46. Reducing the size of the air voids thickens the matrix dielectric and raises filling

fractions beyond those allowed in the gap-supporting structures having tangent voids.

When the radius of the negative particle was extended beyond the tangent condition (up

to r = 0.58), significantly overlapping enlarged air voids, no gaps were produced for the

40 %r–60 %r mushroom cap systems.

The direct buckled structures at the rectangular aspect ratio 1.02 yielded a single gap

index in the dielectric contrast range from 6.0 to 16.0 for the tangent condition. Gaps

between the 14th and 15th bands were found in the hemisphere based structures for εc

from 13 to 15 (Figure 3.11(a)). There were no band gaps in the mushroom cap (filling

fraction range 65.4 % to 73.3 %) or spherical ( f = 62.0 %) systems. Figures 3.11(b) and

3.11(c) shows band diagrams of the mushroom cap and sphere based structures. The

higher bands are compressed to lower frequency extinguishing any gaps.

Tables 3.1 and 3.2 along with the contour map in Figure 3.12 summarize the largest

gaps for the buckled and bilayer structures examined. Often, the size of band gaps in

slab photonic crystals is maximized by adjusting the slab height.[18] The lattice distortion

dependence on the slab height mandates a structural change in the context of the present

study. The variables are not decoupled and thus no separate height optimization was

performed. The full band gaps however could potentially be enlarged utilizing cladding

layers surrounding the slab to modify the light cone that in several cases is the limiting

feature on gap size in the band structure diagram.[18] Slab applications where full gaps

rather than partial gaps would be desirable include the design of resonant cavities to

suppress resonance at harmonic frequencies in the case of multiple full gaps,[29] as well
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Figure 3.11: Band diagrams of direct buckled structures with w/l = 1.02 and εc = 14.0.
(a) hemisphere ( f = 73.7 %); (b) mushroom cap, rin = 50 %r ( f = 68.0 %); and (c) sphere
( f = 62.0 %).
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Table 3.1: Largest gaps in tangent structures. Asterisks mark gaps restricted in wavevec-
tor range; e.g., X′ − Γ − X band structure region excluded by light cone.

Structure Gap index r w/l rin (%r) εc ∆ω/ω (%) f (%)
Inverted 4 − 5 0.50 1.07 0 16.0 1.65 28.2

4 − 5 0.50 1.06 0 15.0 1.30 27.9
4 − 5 0.50 1.05 0 15.0 2.80 27.5
4 − 5 0.50 1.03 0 14.0 2.03 27.1

12 − 13 0.50 1.02 40 16.0 2.28 32.2
12 − 13 0.50 1.02 50 13.7 3.20 32.0
12 − 13 0.50 1.02 60 12.0 1.69 33.1

6 − 7 0.50 1.00 0 9.0 5.24∗ 26.0
8 − 9 0.50 1.00 0 6.0 7.93∗ 26.0

12 − 13 0.50 1.00 50 13.5 3.99 31.1
14 − 15 0.50 1.00 50 6.0 5.72∗ 31.1
16 − 17 0.50 1.00 10 6.5 5.16∗ 32.4
18 − 19 0.50 1.00 10 8.0 2.19∗ 32.4

Direct 14 − 15 0.50 1.02 0 13.7 2.07 73.3

Table 3.2: Largest gaps in non-tangent structures when particle radius was reduced from
0.50 (tangent) to 0.40.

Structure Gap index r w/l rin (%r) εc ∆ω/ω (%) f (%)
Inverted 8 − 9 0.46 1.02 50 13.7 1.41 45.2

8 − 9 0.46 1.05 50 13.7 2.07 46.2
8 − 9 0.46 1.02 60 13.7 1.57 45.9

12 − 13 0.46 1.07 40 13.7 1.63 47.3
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as multilayer solar cell designs for energy harvesting and nonlinear optics application,[1,

17] where light intensity would be significantly diminished when limited to applying

polarized light. Also, use in light extraction from slabs with internal sources that emit in

both polarizations would be advantageous for out-coupling.[42]

Materials structured as modeled in this work could be realized via a number

of routes—confinement self-assembly using suspensions of PS colloids in hydrolyzed

metalalkoxide precursor that deposit ceramic material from gel upon drying,[11]

adding semiconductor nanoparticles to PS particle suspensions for co-assembly under

confinement,[21] or more traditionally backfilling preformed buckled films by chemical

(physical) vapor deposition and atomic layer deposition.[22, 37] Considering other re-

lated systems for perspective, we note a full band gap in the wavelength range from

1280 nm to 1325 nm was identified for a Si PC slab with thickness of 320 nm, prepared

by electron-beam lithography and reactive reactive ion etching of triangular cross-section

air holes on a triangular lattice.[38] Calculations indicated adjusting lattice aspect ratio

from the triangular lattice setting (1.732) to 2.3 and the pore ellipticity (major-to-minor

axis radius ratio) to 1.78 in a 320 nm thick Si slab embodiment for elliptical cross-section

holes produced an optimum gap of 5.2 % as compared to 3.1 % for elliptical motifs on

the triangular lattice.[32] Moreover, slab structures where scatter shape was modified in

directions out-of-plane with respect to the substrate, yielded only even mode gaps for

rutile TiO2 colloidal spheres (r = 165 nm and εc = 8.41) in a honeycomb lattice and also

for dumbbell pores on a triangular lattice made by photo-electochemical etch.[40, 15]
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Figure 3.12: Contour map of the largest gaps for inverted structures with toroid shape
parameter varied from hemisphere (rin = 0 %r) to sphere (rin = 100 %r) and aspect ratio
adjusted from rectangular (w/l = 1.07) to square (w/l = 1.00).
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3.5 Conclusions

There has been a recent concentration on the fabrication of diverse self-assembled struc-

tures beyond closepacked spheres and much mention of application in photonics.[7, 5,

10, 24, 23] The present study addresses the relative void in actual prediction of proper-

ties in particle-based slab photonic systems. The guided modes of a photonic slab with

structural variation out-of-plane were studied in light of experimental observations of

buckled photonic crystals and envisioning their use as PC slab templates. The particle

toroid shape parameter and the degree of buckling were independently varied to pro-

mote gaps between the 4th and 5th bands and the 12th and 13th bands in the inverted

system. The influence of dielectric filling fraction generated gaps between the 8th and

9th bands for inverted structures relaxed from tangency. Gaps that arose for the direct

structures formed between the 14th and 15th bands. The most symmetric lattice, square

bilayer arrangement, promoted gaps in even higher lying bands. Particles of nontrivial

shape were preferred in buckled structures where lattice distortion could be compensated

with increasing particle anisotropy (shape distortion). The band indices of the principle

photonic band gaps strong correlation to specific particle morphologies.
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3.7 Appendix: Synthesis Procedures

PS spheres were synthesized via emulsion polymerization. 100 mL of absolute ethanol

and 40 mL of deionized water were combined in a 250 mL glass media bottle. 146.6 mg

of electrophoresis grade sodium dodecyl sulfate (SDS) and 133.4 mg 99.99 % potassium

persulfate (KPS) were added and the solution was stirred via magnetic stir bar until dis-

solution was complete. The bottle was placed in a glycerol bath at 70 ◦C with continuous

stirring and 6 mL of monomer [≥ 99 % styrene and 55 % DVB (Aldrich)] were injected.

The mixture was left to stir at temperature for 24 h after which the product was cooled

under running water and refrigerated. A 2 % DVB batch was prepared with monomer

composition of 5.880 mL styrene and 120 µL DVB. SDS was purchased from Fisher and all

other reagents were purchased from Sigma-Aldrich.

To obtain the non-spherical morphology of the final particles, seed particles were

swelled with monomer and polymerized at elevated temperatures in a shaker bath.

0.5 mg of seed particle suspension was pipetted into a 50 mL centrifuge tube and the solid

polymer seeds were removed from suspension via centrifugation. The seeds were resus-

pended via sonication in 2 mL of poly(vinylalcohol) (PVA, 87 %−89 % hydrolyzed, Sigma-

Aldrich) solution [1 g PVA (MW = 85000–124000)/9 mL deionized water] along with

5 mg of hydroquinone (99 %, Acros). A second solution was made by dissolving 75 mg

V65B initiator [2,2’-Azobis(2.4-dimethyl valeronitrile), Wako] in 2.5 mL of monomer and

adding 1 mL 99.8 % toluene anhydrous (Sigma-Aldrich) along with 4 mL PVA solution

before homogenization for 1 min. The monomer composition of styrene and DVB ranged

from 0.125 mL DVB with 2.375 mL styrene for 5 % DVB particles to 0.75 mL DVB with

1.75 mL styrene for 30 % DVB particles. The second solution was rinsed into the cen-

trifuge tube containing the seeds using 5 mL of PVA solution. The tube was subsequently

set on a tumbling rack for 24 h. The mixture was transferred to a 25 mL reaction vial and
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purged for 1 min with nitrogen gas and sealed with a cap and teflon tape. The reaction

vial was clipped into the shaker bath and polymerization occurred at 70 ◦C and 120 rpm

for 24 h. The vessel was cooled under running water.
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CHAPTER 4

SLAB PHOTONIC CRYSTALS WITH DIMER COLLOID BASES*

4.1 Abstract

The photonic band gap properties for centered rectangular monolayers of asymmetric

dimers is reported. Colloids in suspension have been organized into the phase under

confinement. The theoretical model is inspired by the range of asymmetric dimers synthe-

sized via seeded emulsion polymerization and explores, in particular, the band structures

as a function of degree of lobe symmetry and degree of lobe fusion. These parameters

are varied incrementally from spheres to lobe-tangent dimers over morphologies yield-

ing physically realizable particles. The work addresses the relative scarcity of theoretical

studies on photonic crystal slabs with vertical variation that is consistent with colloidal

self-assembly. Odd, even and polarization independent gaps in the guided modes are

determined for direct slab structures. A wide range of lobe symmetry and degree of lobe

fusion combinations having Brillouin zones with moderate to high isotropy support gaps

between odd mode band indices 2-3 and even mode band indices 1-2 and 2-3.

*To be published as: Erin K. Riley and Chekesha M. Liddell Watson. “Slab Photonic Crystals with
Dimer Colloid Bases”, J Appl Phys, recommended for publication (2014).
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4.2 Introduction

Photonic crystals provide an approach to design structures with unusual dispersion

properties such as band gaps, slow light and negative refraction.[18, 32] The properties

have been applied in integrated optical chips; filters; waveguides and resonators; sub-

diffraction limit planar lenses; and biological sensors. Applications were conceptualized

requiring dielectric periodicity in three dimensions (3D). However, 3D light confinement

can be more readily attained in experiment using planar waveguide techniques such as

microlithography. In these structures the electromagnetic fields are controlled in-plane

through the photonic crystal patterning and out-of-plane via index guiding.[18] Charac-

terizing the photonic properties is well understood from an analytical perspective, but

the inverse problem of designing a material from a property template remains.

Both an appropriate periodic structure and a fabrication method consistent with

the scale and feature complexity must be available to construct a slab photonic crys-

tal. Empirical rules and geometric considerations have established circular cross-section

pores on triangular and square lattices as structures promoting photonic band gaps.[20]

Recent theoretical work suggests that more complex photonic designs encourage gap

creation.[48, 5, 30] For example, a tri-ellipse motif (i.e., 3-overlapping elliptical cross-

section holes, mutually at 120◦) on a triangular lattice lifted degeneracy at the K-symmetry

point and led to a polarization independent gap size of 11 % (gap-to-midgap ratio, ∆ω/ω).

[46]

Lowering the photonic crystal symmetry can increase the design challenge for fabrica-

tion approaches. As the feature complexity increases, holographic lithography requires a

more involved optical set up of the interference pattern. Methods for reduced feature size

also require costly instrumentation and time consuming serial writing of elements using
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electron beam lithography, direct laser writing, or micromachining by focused ion beams.

Stitching errors and imprecise vertical alignment in large area (150 µm × 150 µm) fabrica-

tion using electron beam lithography can occur. Tapered sidewall asymmetry breaks the

out-of-plane dielectric uniformity enabling coupling between even and odd modes and

propagation losses up to 0.5 dB mm−1.[41] Large area and parallel processed features can

be formed through elastic deformation and wrinkling of solvent swollen polydimethyl-

siloxane membranes. Square, centered rectangular and rectangular lattices with an el-

liptical basis or combined circle and ellipse lattice features have been produced.[53] The

structures required a delicate balance of external and internal stress and volume expan-

sion to tailor the arrangement.

Colloidal self-assembly offers a large scale, low cost approach where the particles

dimensions are determined by synthesis and the basis complexity can be controlled

using particle morphology. High yield, monodisperse particle suspensions of many

anisotropic shapes have become available (i.e., cubes; blood cell shapes; cylinders; hex

nuts; hexagonal-, square-, triangular- and pentagonal prisms; spherocylinders; dumb-

bells; and asymmetric dimers.)[12, 34, 50, 7] Methods have produced large area, crack

free monolayer and bulk colloidal crystals.[11, 2] Structural diversity and more open lat-

tices have been achieved through physical templating,[51] binary co-assembly (size and

charge),[6, 25] field-directed assembly[29, 8] and confinement assembly[23, 39, 24, 15].

Furthermore, thermodynamic simulations of asymmetric dimer and cut sphere particles

demonstrate a range of self-organization. Translationally regular center-of-mass struc-

tures with uniform or random orientation (i.e., plastic crystal phases) as well as aperi-

odic crystals (i.e, degenerate crystals, DC) are stable in Monte Carlo simulations.[4, 47, 1]

Such photonic solid phase structures including monolayer oblique, plastic crystal and

DC phases have been experimentally realized by self-assembly of dimers and ‘mushroom

caps’ under constrained height.[24, 16, 13, 39, 35] While synthesis and self-organization
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techniques are maturing, the exploration of photonic properties for a rich variety of struc-

tures is still being pioneered.

Optical property characterization of reduced symmetry colloidal crystals has revealed

complete 3D and slab band gaps, although studies have been limited.[13, 38] Few re-

ports have addressed the effect of feature structuring in the third dimension for finite

height slabs. For instance, calculations for rutile TiO2 colloidal spheres (dielectric con-

trast, εc = 8.41) in a honeycomb pattern (i.e., 63 Schläfli symbol) predicted a 12.4 % even

mode gap.[43] Hour glass-shaped pores on a triangular lattice made by photoelectochem-

ical etch promoted a 10 % even mode gap.[17] Moreover, a polarization independent gap

of 7.9 % was achieved for a mushroom cap-shaped basis on a rectangular lattice with out-

of-plane buckling.[38]

The present work explores the photonic properties of an arrangement inspired by col-

loidal dimer self-assembly. Symmetry reduction through lattice distortion (i.e., centered

rectangular) and basis shape led to large even and odd mode band gaps up to 14.7 % and

19.3 %, respectively. Multiple gaps (i.e., gaps exist at multiple sets of band indices) are

promoted by the variation in lobe symmetry and degree of lobe fusion, dielectric contrast

and fill fraction. A polarization independent gap size of 6.2 % was found.

4.3 Computational Method

Asymmetric dimer particles have been synthesized by several groups using seeded emul-

sion polymerization of crosslinked polystyrene.[50, 31] Hydrophilic surface modification

of the seeds encourages second stage monomer to dewet. The daughter lobes phase

separate from the seed at elevated temperature.[24] Figure 4.1a illustrates several of the

morphologies. The degree of lobe fusion and lobe symmetry are controlled through the
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Figure 4.1: a) Scanning electron microscopy (SEM) images of asymmetric dimers. Scale
bars are 1 µm. b) Brillouin zone of the centered rectangular lattice with high symmetry
points of irreducible Brillouin zone indicated. c) Schematic of modeled centered rectan-
gular lattice with tangent asymmetric dimer basis (dark grey) and reduced filling fraction
basis (light grey).
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density of surface coverage, monomer-to-polymer swelling ratio and seed crosslinking

density.

The asymmetric dimer shape was modeled as two overlapping spheres. Characteristic

dimer shape parameters are quantified by the lobe symmetry parameter (S = rs/rl) and

the normalized bond length (L∗ = L/2rl, where L is the length between the lobe center,

rl is the large lobe radius, and rs is the small lobe radius). The boundaries of the shape

parameter space explored were limited to model shapes that have physical relevance.[15]

The following L∗ and S combinations were excluded— dimers with the small lobe com-

pletely inside the large lobe for S ≤ 1 − 2L∗, lobes disconnected for S > 2L∗ − 1, smaller

lobe fitting inside interstitial spaces for S ≤ 2
(
1 −
√

3L∗ + L∗2
)1/2
− 1.

We focus on the in-plane oblique crystal (c1m1) modeled as high dielectric asymmet-

ric dimers oriented along 〈010〉 on a centered rectangular lattice (c2mm) in air (Figure

4.1c). The centered rectangular structure of dimer particles [S = 0.86 and L∗ = 0.33

(pear-shaped); S = 1.00, L∗ = 0.28 (spherocylinder)] by convective assembly has been

reported.[15] Furthermore, the control of refractive index by physical vapor deposition

to obtain an inverted Ge centered rectangular dimer structure from the polystyrene tem-

plates was demonstrated.[14] The centered rectangular structure was also determined

as the lowest height monolayer phase in the sequence in-plane crystal, rotator, out-of-

plane hexagonal crystal under wedge cell confinement for dimers with shape parameters

S = 0.89 and L∗ = 0.49.[24] The corresponding Brillouin zone with high symmetry points

indicated is provided in Figure 4.1b. The primitive lattice vectors of the centered rect-

angular crystal structure are ~a1 =

[
1 0 0

]
, [|~a1| =

√
r2

l + (L + x)2] and ~a2 =

[
0 1 0

]
,

[|~a2| = 2(L + x)] where x =
√

r2
s − 2rsrl. The dimer particle model positions a lobe of radius

rl at
[
0 0 0

]
and a lobe of radius rs at

[
0 L 0

]
.

Photonic band structures were calculated with the fully vectorial plane wave method
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using the MIT Photonic Bands software package.[21] Periodic boundaries were imposed

at a vertical spacing of eight times the diameter of the large lobe. Dispersion curves of

light frequency versus wavevector were generated by numerically solving the eigenfre-

quencies for the first ten bands (i.e., resolution 16, mesh size 5, and convergence tolerance

0.001 %). One hundred wavevector points were interpolated between the high symme-

try points in the irreducible Brillouin zone. Radiation outside the plane of the slab is

represented by an opaque grey region overlaying the band diagram. The lower limit or

light cone is the wavevector magnitude divided by the refractive index of the air cladding

(ε = 1). The dielectric contrast ratio, εc, between high (i.e., particle) and low (i.e., matrix)

dielectric regions was varied from 6 (ZnS) to 16 (Ge). Complete band gaps were deter-

mined in the sense that no guided modes existed for the frequency range. The dielectric

volume filling fraction ( f ) was varied by reducing the large asymmetric dimer lobe ra-

dius from the tangent value of 0.5 (Figure 4.1c, dark grey) to 0.25 (Figure 4.1c, light grey).

The smaller lobe was adjusted accordingly to maintain the lobe symmetry and degree of

fusion.

4.4 Results and Discussion

The band diagrams in Figure 4.2a-f detail the evolution of odd mode band gaps as a

function of filling fraction in a moderately lobe-fused, highly asymmetric dimer structure

(L∗ = 0.5, S = 0.24) at a dielectric contrast of 11 (InP). The particles are tangent at a filling

fraction of 60.9 % (Figure 4.2f) and are widely spaced at a filling fraction of 7.6 % (Figure

4.2a). A gap between the 3rd and 4th bands (3 − 4 gap) dominates at moderate filling

fractions (rl = 0.35, f = 20.9 %) and opens to 19.3 %. A smaller gap of 4.9 % between the

6th and 7th bands (6 − 7 gap) opens at higher filling fractions (rl = 0.45, f = 44.4 %) in

Figure 4.2e. In the tangent particle case, the bands are compressed to lower frequency
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Figure 4.2: Band diagrams for direct asymmetric dimer structure (L∗ = 0.5, S = 0.239,
εc = 11) odd modes as a function of filling fraction a) f = 7.6 %, rl = 0.25; b) f = 13.2 %,
rl = 0.30; c) f = 20.9 %, rl = 0.35; d) f = 31.2 %, rl = 0.40; e) f = 44.4 %, rl = 0.45; f)
f = 60.9 %, rl = 0.50 (tangent). Band diagrams for direct asymmetric dimer structure
(L∗ = 0.2, S = 0.666, εc = 16) even modes as a function of filling fraction g) f = 7.6 %,
rl = 0.25; h) f = 13.1 %, rl = 0.30; i) f = 20.8 %, rl = 0.35; j) f = 31.1 %, rl = 0.40; k)
f = 44.3 %, rl = 0.45; l) f = 60.8 %, rl = 0.50 (tangent).
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and only a 3 − 4 gap of 11.9 % remains.

The even mode band gaps as a function of filling fraction for a highly lobe-fused,

moderately asymmetric dimer structure (L∗ = 0.2, S = 0.67) at a dielectric contrast of 16

are presented in Figure 4.2g-l. The 1 − 2 gap is maximized to 14.3 % for separated dimers

at a filling fraction of f = 31.1 % (Figure 4.2j). Bands with higher indices shift to higher

frequency and 2 − 3, 3 − 4 and 5 − 6 gaps open at lower filling fractions (Figure 4.2g-i).

The closest-packed, tangent arrangement closed the 1− 2 gap due to degeneracy at the M

high symmetry point.
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Figure 4.3: Left) Contour plots of largest odd mode 2 − 3 gap (left), 3 − 4 gap (center left),
4−5 gap (center right), 6−7 gap (right) in direct asymmetric dimer structures (6 ≤ εc ≤ 16).
Right) contour plots of dielectric filling fraction as a function of L∗ and S shape parameters
at rl values of a) 0.30, b) 0.35, c) 0.40, d) 0.45, e) 0.50 (tangent).
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Figure 4.4: Contour plots of largest even mode 1-2 gap (left), 2-3 gap (center left), 3-4 gap
(center right), 5-6 gap (right) in direct asymmetric dimer structures (6 ≤ εc ≤ 16) as a
function of L∗ and S shape parameters at rl values of a) 0.30, b) 0.35, c) 0.40, d) 0.45, e) 0.50
(tangent).
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Figure 4.5: Schematics of representative asymmetric dimer structures at rl value of 0.40.
Ordinate values are S and abscissa values are L∗ shape parameters. Placement tiles pa-
rameter space corresponding to contour plots in Figures 4.3, 4.4 and 4.6.
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Contour plots of odd (Figure 4.3) and even (Figure 4.4) mode band gap size are shown

as a function of shape parameters and filling fraction. Figure 4.5 highlights the common

morphology features of structures at rl = 0.40 supporting similar band gap widths for the

largest gaps. In shape parameter region I (blue), dimers have minor distortions from

spherical shapes— i.e., highly asymmetric secondary lobe protrusion or highly fused

spherocylinder. The degree of lobe fusion is high to moderate for the entire range of

lobe symmetry. The exact spherical particle shape is given by L∗ = 0.0, S = 1.00 in the

class. The adjacent shape parameter region (region II, green) is composed of dimers with

substantially extended second lobes (moderate fusion, moderately high symmetry). The

particle bases in shape parameter region III (purple) have moderate lobe fusion and low

to moderate lobe symmetry. Shape parameter region IV (red) includes dimers with high

lobe symmetry and moderately to mildly fused lobes. Morphologies with shape param-

eters in regions I-III favor band gap formation. The shapes in region IV surrounding the

condition where lobes within a dimer just touch (L∗ = 1.0, S = 1.00) did not support

significant band gaps.

The odd mode band gaps presented in Figure 4.3 indicate strong light matter inter-

actions for region I shapes, particularly for the 3 − 4 bands. Reduced dielectric filling

fractions supported the widest gaps (Figure 4.3b,c). The contour maps show 10 % inter-

val decreases in large lobe radius from Figure 4.3e to 4.3a that indicate greater particle

separation and lower filling fractions. The filling fractions are presented explicitly in the

right inset of Figure 4.3. Region III shapes exhibit large 3 − 4 gaps up to 15 % at lower

filling of the dielectric compared to region I shapes at similar particle separations. The

extended range of shape parameters with wide band gaps is highlighted by Figure 4.3d

and Figure 4.3e.

Figure 4.4 summarizes the parameters supporting even mode band gaps. Region I
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Figure 4.6: Contour plots of maximum polarization independent odd 2-odd 3 gap from
(left) overlapped 1 − 2 even and 2 − 3 odd gaps, odd 6-odd 7 gap from (center left) over-
lapped 5 − 6 even and 6 − 7 odd gaps, odd 3-even 3 from (center) overlapped 3 − 4 odd
and 2 − 3 even, odd 6-even 6 gap from (center right) overlapped 5 − 6 even gap and 6 − 7
odd gap, even 3-odd 4 gap from (right) overlapped 3 − 4 even and odd gaps in direct
asymmetric dimer structures (6 ≤ εc ≤ 16) as a function of L∗ and S shape parameters at rl

values of a) 0.30, b) 0.35, c) 0.40.
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shapes gave rise to the largest 1 − 2 gap widths for 10 − 20 % decrease in large lobe radius

from the tangent particle case. Moderate 5 − 6 band gaps for region I shapes were also

determined with most significance at 20 % decrease in rl from tangency. Region III shapes

supported 2 − 3 band gaps up to 13.6 % for particle separations characterized by 0 − 20 %

decrease from closest packing. Lower filling fractions yielded significant 1 − 2 band gaps

and also 2 − 3 band gaps for region III shapes at moderate particle spacing.

Specific particle arrangements in regions I-IV belong to the plane symmetry groups

p6mm (region I), c2mm (regions II, IV; S = 1.00), and c1m1 (regions I-IV). Region I

spheroidal morphologies lead to point group m (Cs) and lack a mirror symmetry element

perpendicular to the lattice vector ~a2 (Figure 4.1) compared to spheres on a hexagonal

lattice with point group 6mm (L∗ = 0.0, S = 1.00, plane group p6mm). The symmetry

reduction to mildly anisotropic shapes still maintains a similarly high degree of Brillouin

zone isotropy. Minor variance from the hexagonal mesh (< 1◦) generated larger gaps with

low gap indices. In addition, the 3 − 4 odd and 1 − 2 even gaps remained sizable at lattice

distortions up to 16.7 % from hexagonal (i.e., interior angle value of 50◦) for structures

belonging to the c1m1 plane group. The basis shapes that generate c2mm plane group

symmetry in region IV correspond to the most anisotropic Brillouin zones and the high-

est filling fractions at any given particle spacing. Therefore, the structures are poor band

gap formers for either polarization.

The polarization independent gaps (i.e., complete gaps for the guided modes) are rep-

resented in the contour plots of Figure 4.6 at the dielectric contrasts from 6 to 16 that

determined the largest gaps. The crystals with basis elements in shape parameter region I

supported overlaps between the frequencies of the 1− 2 even and 2− 3 odd gaps, the 3− 4

even and 3− 4 odd gaps and the 5− 6 even and 6− 7 odd gaps. The last overlap gap is the

largest polarization independent gap, ∆ω/ω = 6.2 % (i.e., parameters rl = 0.35, L∗ = 0.2,
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and overlapped gaps (purple) for rl = 0.40 asymmetric dimer arrangements.
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S = 0.67, and εc = 15). In comparison, an ellipse cross-section basis on a centered rect-

angular lattice yielded a 5.2 % polarization independent gap for the inverted photonic

crystals.[33] Structures with lattice decoration belonging to shape parameter regions II

and III supported overlap between the 2 − 3 even and 3 − 4 odd gaps.

Figure 4.7 tiles the gap maps of frequency versus dielectric contrast for rl = 0.40 dimer

morphologies. The odd, even and polarization independent band gaps are labeled in

blue, red and purple, respectively. Slab reports often restrict the dielectric contrast values

investigated to those that correspond with silicon or gallium arsenide i.e., substrates com-

mon in industrial microelectronic fabrication. However, a wide variety of materials (i.e.,

semiconductors and other ceramics) can be used in the dimer bases as is shown by the

range of dielectric contrasts supporting polarization independent and dependent gaps.

Across each row of gap maps in Figure 4.7, odd and even gaps open at higher dielec-

tric contrasts and at lower frequency as the degree of lobe fusion decreases. The more

anisotropic Brillouin zone causes band intersections with the light cone presenting the

frequency limitation. The shape anisotropy reduces filling fraction (Figure 3) and neces-

sitates higher optical density (i.e., higher dielectric contrast). Similarly, the trend is also

apparent in filling fraction variation through basis separation. Supplemental Figure 4.8

displays the gap maps at rl = 0.35 and 0.45. Numerous studies have established that iso-

lated high dielectric regions favor odd mode gap size and that connectivity of the high

dielectric regions preferentially enlarges even mode gaps.[18, 37, 3] The direct photonic

slab structures here thus support large odd mode gaps and only moderate even mode

gap widths. Moreover, the values of dielectric contrast to maximize the gap for each po-

larization do not coincide. This leads to relatively limited polarization independent gap

sizes. Polarization independent gaps would be particularly useful for [1] cavities to sup-

press resonance at harmonic frequencies in the case of multiple full gaps, [2] multilayer

solar cell designs for energy harvesting, [3] nonlinear optics applications, where light in-
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Figure 4.8: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for asymmetric dimer structures with rl values of a) 0.35 and b) 0.45.
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Figure 4.9: Contour plots of the minimum dielectric contrasts of odd mode 2-3 gap (left),
3-4 gap (center left), 4-5 gap (center right), 6-7 gap (right) in direct asymmetric dimer
structures (6 ≤ εc ≤ 16) as a function of L∗ and S shape parameters at rl values of a) 0.30,
b) 0.35, c) 0.40, d) 0.45 and e) 0.50 (tangent).
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Figure 4.10: Contour plots of minimum dielectric contrasts at which even mode 1-2 gap
(left), 2-3 gap (center left), 3-4 gap (center right), 5-6 gap (right) in direct asymmetric dimer
structures (6 ≤ εc ≤ 16) as a function of L∗ and S shape parameters at rl values of a) 0.30,
b) 0.35, c) 0.40, d) 0.45 and e) 0.50 (tangent).
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Table 4.1: Shape and structural parameters yielding maximum gap sizes. The correspond-
ing dielectric contrasts for maximum gap widths and minimum dielectric contrasts open-
ing the gaps are provided.

Polarization Gap index L∗ S rl f (%) Max
∆ω/ωm (%) εc Min εc

Odd 3-4 0.1 0.83 13.1 0.30 15.9 16 10
Odd 3-4 0.5 0.24 20.9 0.35 19.3 11 7
Odd 3-4 0.6 0.20 29.0 0.40 19.1 9 ¡6
Odd 3-4 0.6 0.30 38.5 0.45 15.6 8 6
Odd 3-4 0.7 0.40 46.8 0.50 11.9 9 7
Odd 6-7 0.2 0.67 20.8 0.35 6.2 15 14
Odd 6-7 0.0 1.00 31.0 0.40 6.7 12 11
Odd 6-7 0.6 0.20 41.3 0.45 5.1 11 10
Even 1-2 0.1 0.83 13.1 0.30 8.9 16 11
Even 1-2 0.1 0.83 20.8 0.35 11.7 16 10
Even 1-2 0.2 0.67 31.1 0.40 14.3 16 9
Even 1-2 0.1 0.93 43.7 0.45 13.3 16 10
Even 2-3 0.7 0.60 24.4 0.40 8.3 16 12
Even 2-3 0.8 0.70 34.4 0.45 13.6 16 12
Even 2-3 0.8 0.60 44.7 0.50 5.2 15 9
Even 3-4 0.2 0.67 13.1 0.30 5.4 16 14
Even 3-4 0.4 0.37 20.9 0.35 5.4 11 9
Even 5-6 0.2 0.67 20.8 0.35 8.3 15 13
Even 5-6 0.0 1.00 31.0 0.40 8.3 14 10
Even 5-6 0.1 0.83 31.0 0.40 8.3 14 10
Even 5-6 0.1 0.83 44.2 0.45 6.3 16 11
Both 1 even-2 even 0.2 0.67 20.8 0.35 6.2 15 10
Both 1 even-2 even 0.1 0.83 31.0 0.40 5.5 14 6
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tensity would be significantly diminished by the limitation to polarized light sources and

[4] light extraction (i.e., out coupling) from slabs with internal sources that emit in both

polarizations.

The minimum dielectric contrast to open the gaps is presented as contour plots for the

shape parameter range in the supplementary material— Figure 4.9 (odd modes), Figure

4.10 (even modes) and Figure 4.11 (polarization independent). Excluding the region IV

shapes, a wide range of the closest-packed dimer to moderate dimer separation structures

open the sizable 2 − 3 odd mode gaps and 3 − 4 even mode gaps at a dielectric contrast

value of 6 (ZnS). Table 4.1 lists shape and structural parameters as well as the dielectric

contrast to open and maximize gaps with sizes greater than 5 %.

The context of this report lies in the field of colloidal self-assembly, particularly, in-

formed by the burgeoning interest in dimer synthetic systems.[36, 19, 22] However, vari-

ations could be explored to further enhance gap width such as anisotropic dielectric con-

stants (i.e., liquid crystals, tellurium), high refractive index cladding layers, veins con-

necting motifs and slab height optimization. As a comparison, a polarization indepen-

dent gap width of 12.8 % was determined for a structure with patterned cladding layers

of ε = 3.24, a wavelength normalized GaAs thickness of 0.112 and basis clusters of circular

holes with 3m point symmetry rotated not to coincide with the hexagonal lattice mirror

plane symmetry.[45] We also found a polarization independent gap width of 9.9 % when

the slab height (h) was varied to half the value for the tangent symmetric dimer and the

parameters were L∗ = 0.1, S = 0.83, rl = 0.35, εc = 14 for dimer cylinders (Figure 4.12).

With regard to fabrication, colloidal monolayers in arrangements fitting those mod-

eled here have been prepared by controlled drying or evaporation-assisted assembly.[35,

15, 13] Building block separations can be achieved using soft core potentials,[52] elec-

tric field,[10] co-assembly with nanoparticles[51] or mechanically through transferring
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Figure 4.12: Band diagram at slab height h = 0.5, rl = 0.35, L∗ = 0.1, S = 0.83, εc = 14 for a
dimer cylinder-based photonic crystal.
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closepacked particles to a polymer film with subsequent swelling.[49] Double inversion

infiltration techniques using sol-gel, atomic layer deposition and chemical- or physical

vapor deposition can provide refractive index contrast for direct structures.[9, 28, 40, 44,

42, 27]

4.5 Conclusions

In summary, dimer shape-based photonic crystal slabs having Brillouin zones with high

isotropy as well as moderate distortions allowed a wide range of lobe-symmetry and de-

gree of lobe fusion combinations that supported odd and even polarization band gaps.

Vertical variation of cross-section is implemented here giving the contoured 3D shape

consistent with dimer self-assembly rather than photolithography realization. The build-

ing blocks have been cited for potential in photonics since bulk diamond analog dimer

structures exhibit large, low indices band gaps.[26] However, the properties of dimers in

slab photonic crystal configuration have not been previously calculated. This work ad-

heres to the notion of developing theory contemporary with experimental realizations in

contrast to disconnection where theory far out paces fabrication, as has been a paradigm

in photonic band gap materials research. This work suggests, as specific insights for ex-

periment, that self-assembly techniques which allow non-closepacked arrangements are

needed to generate gaps. Also, templating on inverse structures or preparing high index

colloidal clusters is a promising route to reduced symmetry photonic slabs.
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CHAPTER 5

SLAB PHOTONIC CRYSTALS WITH DIMER CYLINDER BASES*

5.1 Abstract

The photonic band gap properties of centered rectangular dimer cylinder structures are

reported. The theoretical model is inspired by a crystalline phase found for colloidal

self-assembly of asymmetric dimers. The band structures as a function of degree of lobe

fusion and degree of lobe symmetry are calculated in accordance with the tunable features

resulting from seeded emulsion polymerization synthesis. The parameters are varied

incrementally from single circular cross-section cylinders to lobe-tangent dimer cylinders.

Odd, even and polarization independent gaps in the guided modes are found for direct

and inverted slab structures. A wide range of shape parameter combinations in structures

having low to moderate Brillouin zone distortion from hexagonal supported relative gap

widths up to 19.1 % (3 − 4 odd gap) and 14.6 % (1 − 2 even gap) for direct structures. Slab

thickness was tuned to overlap even and odd mode gap frequency ranges generating a

9.9 % polarization independent gap. The results are compared with those from model

centered rectangular slabs having dimer particle bases that limit the slab height. Inverted

slab structures yielded a large maximum 40.4 % 1 − 2 even mode gap and for up to 25 %

Brillouin zone distortion still supported significant gaps (> 32 %).

*To be published as: Erin K. Riley and Chekesha M. Liddell Watson. “Slab Photonic Crystals with
Dimer Cylinder Bases”, J Opt Soc Am B, submitted (2014).
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5.2 Introduction

Photonic crystals provide control over the propagation of electromagnetic radiation via

dispersion engineering.[19] Band gaps for photons have been used to modify sponta-

neous emission and confine radiation. The materials promise dramatic improvement in

efficiency or low loss for technologies such as solid state light, lasing, waveguides and

optical switches. In addition, the dispersion relations can give rise to negative refraction

for planar lenses with subwavelength resolution.

Many devices, as originally envisioned, were based on three dimensional (3D) di-

electric periodicity to provide 3D light confinement. However, a slab waveguide with

photonic crystal patterning satisfies 3D radiation control, i.e., in-plane using the two di-

mensional arrangement and out-of-plane through index-guiding.[11] The experimental

counterpart has been achieved by modern lithographic fabrication methods. To date it

has been challenging to analytically determine a priori the dielectric patterns possessing

photonic band gaps. Relatively few slab photonic crystal structures have been examined

in experiments or calculations. For example, line-defect waveguiding was demonstrated

in a square lattice slab structure of GaAs rods on periodic Al0.9Ga0.1 background with a

band gap for TM-polarized light at 1448 − 1482 nm.[1] Empirical guidelines have estab-

lished circular cross-section rods (on square lattices) and holes (on hexagonal lattices) as

geometries generating band gaps.

Theoretical studies suggest more complex structures such as Archimedean tilings (i.e.,

32 · 4 · 3 · 4 and 4 · 82, Schläfli symbols for ‘lady bug’ and ‘bathroom tile’), five-fold and

eight-fold symmetric quasicrystals and honeycomb lattices of binary sized circular-pores

promote gap formation.[27, 5, 28, 24, 16, 7] Symmetry reduction strategies have been em-

ployed to lift degeneracy in band structures. The lattice, basis scattering shapes and their
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orientation can be modified.[14, 15, 25] For example, rotating a rounded triangular or trig-

onal cluster of circular cross-section pores in a GaAs (dielectric contrast εc = 12.25) slab

9◦ from a lattice vector led to a 12.8 % polarization independent band gap (∆ω/ω, gap-

to-midgap ratio).[26] Mushroom cap-shaped colloids in buckled crystal arrangements ex-

hibited multiple polarization independent band gaps between band indices 4 − 5, 8 − 9,

and 12 − 13 for the inverted case depending on the specific shape parameters.[22]

The latter study was inspired by particle self-assembly and the expanding range of col-

loidal building block shapes including ellipsoids; cubes; cylinders; hex nuts; hexagonal-

, square-, triangular-, trapezoidal- and pentagonal prisms; spherocylinders; dumb-

bells; asymmetric dimers; and sphere clusters with tetrahedral, octahedral, and square-

bipyramidal, etc. geometry.[8, 21, 29, 4, 3, 33, 17, 32] Oblique and centered rectangular ar-

rangements of asymmetric dimer particles have been prepared by evaporation assisted-

and confinement self-assembly techniques.[9, 13] The realization of photonic slabs con-

sistent with particle geometry leads to vertical variation in the cross-section throughout

the slab. The structural diversity arising from the thermodynamics of self-assembly also

provides arrangements that are unimagined in traditional lithographic studies. However,

band gap size cannot be optimized efficiently through slab height without modifying the

structure.

Here, we explore a cylinder realization that incorporates a wide range of structural

variants inspired by self-assembly and is consistent with lithographic fabrication, where

cross-section profile is fixed. The height of the cylinders in the present study was set

to the height of the particle basis in the previous work so that the properties of the two

types of realizations can be compared. For specific structures, slab height was used as

an optimization parameter for the band gap size. Moderate symmetry reduction through

lattice distortion and basis shape led to simultaneous, multiple gaps. Odd mode gaps up
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to 19.1 % and even mode gaps up to 14.6 % for direct structures, as well as, even mode

gaps up to 40.4 % for inverted structures were determined. Polarization independent

gaps up to 9.9 % were achieved by varying slab height.
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Figure 5.1: Schematics depicting top) unit cells and bottom) corresponding Brillouin
zones for structure parameters a) rl = 0.5 (tangent), L = 0.9, S = 0.90 and c) rl = 0.25, L? =

0.5, S = 0.34. The high symmetry points are labeled and the irreducible Brillouin zone is
highlighted in grey.
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5.3 Computational Method

The asymmetric dimer shape was modeled as two overlapping cylinders as shown in

Figure 5.1. Characteristic dimer shape parameters are quantified by the lobe symmetry

parameter (S = rs/rl) and the normalized bond length (L∗ = L/2rl, where L is the length

between the lobe center, rl is the large lobe radius, and rs is the small lobe radius). The

boundaries of the shape parameter space explored were limited to model shapes that

have physical relevance.[9] The following L∗ and S combinations were excluded— dimers

with the small lobe completely inside the large lobe for S ≤ 1−2L∗, lobes disconnected for

S > 2L∗ − 1, smaller lobe fitting inside interstitial spaces for S ≤ 2
(
1 −
√

3L∗ + L∗2
)1/2
− 1.

The slab height was defined by the cylinder height h.

The centered rectangular crystal was modeled as a dielectric system with dimer par-

ticles oriented along
〈

0 1 0
〉

on a centered rectangular lattice in air as shown in

Figure 5.1a, c. The corresponding Brillouin zones with the high symmetry points in-

dicated are shown in Figure 5.1b, d. The primitive lattice vectors are ~a1 =

[
1 0 0

]
,

[|~a1| =

√
r2

l + (L + x)2] and ~a2 =

[
0 1 0

]
, [|~a2| = 2(L + x)] where x =

√
r2

s − 2rsrl. The dimer

cylinder model correlates the cylinder (radius rl) at
[
0 0 0

]
with the cylinder (radius rs)

at
[
0 L 0

]
(Figure 5.1a).

Photonic band structures were calculated via the fully vectorial plane wave method

using the MIT Photonic Bands software package.[12] Periodic boundaries were imposed

with a vertical spacing of eight times the diameter of the larger dimer cylinder lobe. Dis-

persion curves of light frequency versus wavevector (reciprocal lattice vector) were gen-

erated by numerically solving the eigenfrequencies propagating in the crystal for the first

ten bands with 100 wavevector points interpolated between the high symmetry points

of the irreducible Brillouin zone (resolution 16, mesh size 5, and convergence tolerance
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Figure 5.2: Maximum odd mode gaps in dimer cylinder and dimer particle bases for rl

values of a) 0.30, b) 0.35, c) 0.40, d) 0.45, e) 0.50 (tangent). The left column pair corresponds
to the 3− 4 band gap and the right column pair corresponds to the 4− 5 band gap. Within
column pairs the cylinder motif is modeled on the left and dimer bases on the right.
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0.001 %). Radiation outside the plane of the slab is represented by an opaque grey region

overlaying the band diagram. The lower limit, or light cone, is the wavevector magnitude

divided by the refractive index of the air cladding (ε = 1). The dielectric contrast ratio,

εc, was varied from 6 to 16 for direct and inverted photonic crystal slabs. Complete band

gaps were found in the sense that no guided modes existed for the frequency range. The

dielectric volume filling fraction ( f ) was varied by reducing the large cylinder lobe radius

from tangency (rl = 0.5, Figure 5.1a) to high dimer cylinder separations (rl = 0.25, Figure

5.1c) in increments of 10 % for reduced slab height h∗ = h/2rl = 1.0. The smaller lobe was

adjusted accordingly to maintain the lobe symmetry and degree of fusion. Slab height

variation h∗ = 0.2 to 6.5 was investigated for select structures.

5.4 Results and Discussion

A comparison between contour plots of odd mode band gap widths for dimer cylinder

and dimer particle bases as a function of shape parameters S and L∗ is shown in Figure

5.2. The maximum gap width supported over the dielectric range examined (6 ≤ εc ≤ 16)

is given on the contour plots for each basis shape parameter pair. The cross-sectional

morphologies represented in the shape parameter field are provided in Figure 5.3 for rl =

0.30. Region I dimers (blue) show small distortions from circular cross-section cylinders

featuring either highly fused symmetric lobes or small protrusion of a highly asymmetric

cylinder lobe. The degree of fusion is high to moderate over all degrees of lobe symmetry

in this class and includes the single circular cross-section cylinder shape (i.e., L∗ = 0.0,

S = 1.00). Shape parameter region II (green) encompasses moderately high cylinder lobe

symmetry and moderate lobe fusion. Lower symmetry cylinder dimers are grouped in

region III (purple) spanning moderate to mildly fused lobes. Region IV includes cylinder

pairs with high lobe symmetry and moderate to low lobe fusion. Symmetric cylinders
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Figure 5.3: Schematics of dimer structures at rl value of 0.35. Ordinate values are S and
abscissa values are L∗ shape parameters. The parameter space corresponding to contour
plots and gap maps in Figures 5.2-5.8 and 5.17 is tiled.
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with tangent lobes are included in this class at shape parameter values L∗ = 1.0 and

S = 1.00.

A gap between the 3rd and 4th odd band indices (3− 4 odd gap) in the cylinder dimer

basis was significant for moderate dimer separations rl = 0.30 − 0.40, f = 27.5 − 70.0 %

(Figure 5.2b-e, left column pair, left column). Large gap sizes extended over shape param-

eter regions I-III where the widest gap occurred in region I for rl = 0.30 (∆ω/ω = 19.1 %,

L∗ = 0.1, S = 0.83, εc = 10). In comparison, the dimer particle realization supported sig-

nificant gaps at particle tangency down to high particle separations (i.e., rl = 0.30). Thus,

a wider range of combined feature separation and shape parameter diversity allowed the

3 − 4 band gap in the particle case. A gap of 19.3 % at rl = 0.35 was found for the par-

ticle dimer at a dielectric contrast of 11. For perspective, the maximum odd mode gap

size was 22 % for a single cylinder basis on a square lattice.[11] For both dimer cylinders

and particle dimers, gaps formed at moderate to low filling fractions. Figure 5.4e,f indi-

cates the dielectric filling fraction values are too high ( f = 60.5 − 93.5 %) to support the

3 − 4 odd mode gap in dimer cylinders at or near tangency (Figure 5.2e,f). At the highest

basis separations the filling fraction was generally insufficient to shift the band frequen-

cies below the light line. The basis separations associated with the maximum gap sizes

shifted by 0.2rl (i.e., 20 % decrease) for cylinders compared to particles with variation in

vertical cross-section. The weaker 4 − 5 band gap widths were more pronounced for the

dimer cylinder based structures than for the particle based arrangements. Values up to

∆ω/ω = 8.6 % were determined for crystals with basis shape parameters in region I at

separations 20− 25 % decreased from tangency. Additional gaps were found between the

2nd and 3rd, 6th and 7th and 9th and 10th odd band indices with gap sizes less than 5 %.

Figure 5.5 shows a comparison between contour plots of even mode band gap sizes

for dimer cylinder and dimer particle bases as a function of shape parameters. Significant

119



Figure 5.4: Dielectric filling fraction comparison for cylinder morphology (left) and dimer
morphology (right) for rl values of a) 0.25, b) 0.30, c) 0.35, d) 0.40, e) 0.45, f) 0.50.
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Figure 5.5: Maximum even mode gaps in dimer cylinder and dimer particle bases for rl

values of a) 0.25, b) 0.30, c) 0.35, d) 0.40, e) 0.45, f) 0.50 (tangent). The left column pair
corresponds to the 1 − 2 band gap, the center column pair corresponds to the 2 − 3 band
gap and the right column pair corresponds to the 3 − 4 band gap. Within column pairs
the cylinder motif is modeled on the left and dimer bases on the right.
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1 − 2 gaps occurred in regions I and II for cylinders at all basis separations beyond the

tangent dimer cylinder arrangement. The even mode 1 − 2 band gap tolerated higher

filling fraction ( f = 27.0 − 80.8 %) than the odd mode gaps (Figure 5.4). Similar features

in the contour plots for dimer cylinders (Figure 5.5a-d) were apparent in Figure 5.5b-e

for dimer particles, corresponding to a 10 % decrease in basis separation. The 2 − 3 even

mode gaps exhibited moderate gap sizes up to ∆ω/ω = 7.3 % for region III dimer cylinder

shapes at rl = 0.40, f = 48.0− 55.0 %. Region IV dimer cylinders only yielded a 5.3 % even

mode gap and no odd mode gaps. Similar even gap size and shape parameter ranges

in the contour plots were found shifted by a 10 % decrease in basis separation between

dimer cylinder and dimer particle. However, sizable gaps up to 13.6 % were found in

dimer particles at rl = 0.45 due to the relatively low filling fraction in region III (Figure

5.4e, right). A wide range of shape parameters (regions I-III) corresponding to moderately

sized 3 − 4 even gaps were supported in dimer cylinders at rl = 0.35, f = 36.7 − 57.8 %.

Higher lying 5 − 6 even mode gaps were found for shape parameter region I in dimer

cylinder crystals, as well (Supplemental Figure 5.6). More modest gap sizes for the even

mode gaps (i.e., ∆ω/ωmax = 14.6 %) reflect the lack of dielectric continuity for isolated

dimer cylinders. Even mode gaps tend to be optimized in the case of high connectivity of

the dielectric regions. [10]

The cylinder arrangements mapped in the contour plots belong to the plane symmetry

groups p6mm (L∗ = 0.0, S = 1.00), c2mm (L∗ , 0.0, S = 1.00) and c1m1 (L∗ > 0.0, S < 1.00).

Hexagonal distortions up to 13 % (region I) yielded the largest gaps and up to 37.5 %

(regions I-III) still supported significant gaps. The point group for region I shapes was

reduced to m (Cs) compared to circular cross-section holes on a hexagonal lattice with

point group 6mm. However, the Brillouin zone remained highly isotropic. The 2 − 3 and

3−4 even gaps and 3−4 odd gaps for shape parameter regions II and III maintained sizable

gap widths despite moderate lattice anisotropy. Region IV based crystals associated with
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Figure 5.6: Contour plots of largest even gaps for gap indices 1− 2 (left), 2− 3 (left center),
3 − 4 (right center) and 5 − 6 (right) at a) rl = 0.25, b) rl = 0.30, c) rl = 0.35, d) rl = 0.40, e)
rl = 0.45.
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Figure 5.7: (left to right) Contour plots of maximum polarization independent gap indices
4 odd−5 odd from overlapping 4 − 5 odd and 3 − 4 even gaps, 3 odd−3 even from over-
lapping 3− 4 odd and 2− 3 even gaps, 4 odd−4 even from overlapping 4− 5 odd and 3− 4
even gaps, 3 even−5 odd from overlapping 4 − 5 odd and 3 − 4 even gaps, 2 even−3 even
from overlapping 3 − 4 odd and 2 − 3 even gaps, and 3 even−4 even from overlapping
3 − 4 even and odd gaps for rl values of a) 0.30, b) 0.35, c) 0.40.
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lattice distortions beyond 37.5 % had the most anisotropic Brillouin zones. Thus, the high

lobe symmetry, low lobe fusion structures supported limited gap sizes, most less than

5 %.

The polarization independent gaps are given in the contour plots of Figure 5.7 at the

dielectric contrasts from 6 to 16 that determined the largest gaps. Basis separations with

rl = 0.30 − 0.35 for shape parameter region I supported overlaps having gap widths

(∆ω/ω = 5−6.8 %) between the frequencies of the 4−5 odd and 3−4 even gaps and the 3−4

even and 3−4 odd gaps. Region III cylinder dimers promoted overlaps (∆ω/ω = 4−6.3 %)

between the frequencies of the 3− 4 odd and 2− 3 even gaps. Gap maps of frequency ver-

sus dielectric contrast for odd (blue), even (red) and polarization independent (purple)

band gaps are provided in Figure 5.8 at basis separation rl = 0.35 for the range of shape

parameters. At L∗ = 0.0 and S = 1.00, the 3 − 4 odd and 3 − 4 even mode gaps opened at

low dielectric contrasts; the 4−5 odd, 1−2 and 5−6 even gaps opened at moderate dielec-

tric contrasts; and the 2 − 3 and 5 − 6 odd mode gaps opened at high dielectric contrasts.

The band gaps shifted to higher dielectric contrast and lower frequency as the degree of

lobe fusion decreased. A higher optical density was coupled with lower filling fractions

due to the change in shape parameter and the bands were pulled under the light cone.

As the Brillouin zone became more anisotropic, the light cone frequency bounding the

bands decreased. Limitations on polarization independent gap sizes varied, i.e., the 3 − 4

odd and even gaps developed large gap widths at non-overlapping frequency ranges; the

3− 4 even and 4− 5 odd band gaps displayed significant frequency overlap and achieved

similar but moderate gap sizes; and the small odd mode gap sizes limited the polariza-

tion independent gap widths in the cases of overlapping the 1− 2 even and 2− 3 odd and

the 5 − 6 even and 6 − 7 odd mode gaps. Supplemental Figures 5.9 and 5.10 provide the

gap maps at rl = 0.30 and 0.40. Decreasing the filling fraction through basis separation

opened the gaps at higher dielectric contrasts.
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Figure 5.8: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for asymmetric dimer cylinder structures with rl values of 0.35.
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Figure 5.9: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for dimer cylinder structures with rl value of 0.30.
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Figure 5.10: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for dimer cylinder structures with rl value of 0.40.
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Contour plots of the minimum dielectric contrast necessary for opening band gaps as

a function of the structure parameters are shown in the supplemental materials Figure

5.11 (odd modes) and Figure 5.12 (even modes). Large 3 − 4 odd gaps were supported

at low dielectric contrasts (εc = 6, ZnS) for shape parameter regions I-III in dimer cylin-

der structures. The dimer cylinder and the dimer particle plots showed similar features

for 10 % shift in basis spacing value. For both dimer cylinders and dimer particles the

low minimum dielectric contrast value of 6 was found for the 2−3 even mode band gaps.

However, in dimer cylinders the gaps remained moderate for region III to non-substantial

for regions I and II. The dimer particles had large gap sizes that opened at low dielectric

contrasts corresponding to region III shape parameters. Table 5.1 lists shape and struc-

tural parameters as well as the dielectric contrast to open and maximize gaps with sizes

greater than 5 %.

The effect of slab height variation on gap size for dimer cylinder arrangements is il-

lustrated in Figures 5.13 and 5.14. The structure leading to the maximum odd mode gap

width for all shape parameters (rl = 0.30, L∗ = 0.1, S = 0.83, εc = 10, region I) was ex-

amined. The 3 − 4 odd band gap size was largest at h∗ = 1.0. The corresponding band

diagram is provided in Figure 5.13c. Higher index gaps were supported that reached

moderate sizes at increased slab height, i.e., ∆ω/ωmax = 9.7 % at h∗ = 1.6 for 4 − 5 odd gap

and ∆ω/ωmax = 7.8 % at h∗ = 3.4 for 6−7 odd gap. For the even mode in the case of a mod-

erately fused, moderately asymmetric dimer cylinders (rl = 0.40, L∗ = 0.7, S = 0.7, εc = 16,

region III), the 2−3 even mode gap was present (∆ω/ω = 5.8 %) and the 3−4 even gap was

maximized to ∆ω/ω = 6.1 % at h∗ = 1.0. From slab height h∗ = 1.0 to 0.48, the 2 − 3 even

gap attained a maximum gap size of 7.8 %. The band diagram for the structure at h∗ = 1.0

is presented in Figure 5.13d. Even gaps for higher band indices with maximum gap sizes

less than 5 % opened for thicker or thinner slabs including the 4 − 5 gap at h∗ = 0.2, the

6 − 7 gap at h∗ = 1.4 and the 8 − 9 gap at h∗ = 3.1.

129



Figure 5.11: Minimum dielectric contrasts for odd mode gaps in dimer cylinder and dimer
particle bases at rl values of a) 0.30, b) 0.35, c) 0.40, d) 0.45, e) 0.50 (tangent). The left
column pair corresponds to the 3 − 4 band gap and the right column pair corresponds to
the 4 − 5 band gap. Within column pairs the cylinder motif is modeled on the left and
dimer bases on the right.
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Figure 5.12: Minimum dielectric contrasts for even mode gaps in dimer cylinder and
dimer particle bases at rl values of a) 0.25, b) 0.30, c) 0.35, d) 0.40, e) 0.45, f) 0.50 (tangent).
The left column pair corresponds to the 1−2 band gap, the center column pair corresponds
to the 2− 3 band gap and the right column pair corresponds to the 3− 4 band gap. Within
column pairs the cylinder motif is modeled on the left and dimer bases on the right.
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Table 5.1: Shape and structural parameters yielding maximum gap sizes for direct slabs
with h∗ = 1.0. The corresponding dielectric contrasts for maximum gap widths and mini-
mum dielectric contrasts opening the gaps are provided.

Polarization Gap index L∗ S rl f (%) Max
∆ω/ωm (%) εc Min εc

Odd 3-4 0.4 0.37 0.25 24.5 16.0 15.0 11.0
Odd 3-4 0.1 0.83 0.30 41.8 19.1 10.0 6.0
Odd 4-5 0.0 1.00 0.30 45.7 8.6 16.0 11.0
Odd 3-4 0.6 0.20 0.35 43.0 15.5 9.0 6.0
Odd 4-5 0.0 1.00 0.35 57.8 8.5 15.0 8.0
Odd 3-4 0.6 0.30 0.40 53.6 10.4 9.0 6.0
Odd 4-5 0.0 1.00 0.40 69.6 6.9 11.0 6.0
Odd 3-4 0.6 0.30 0.45 67.8 5.5 8.0 6.0
Even 1-2 0.1 0.83 0.25 30.5 7.6 16.0 12.0
Even 1-2 0.1 0.83 0.30 41.8 10.5 16.0 10.0
Even 3-4 0.2 0.67 0.30 38.7 8.7 12.0 8.0
Even 5-6 0.5 0.24 0.30 34.0 6.1 16.0 14.0
Even 1-2 0.0 1.00 0.35 57.8 13.5 16.0 9.0
Even 2-3 0.6 0.40 0.35 40.3 5.3 9.0 7.0
Even 3-4 0.0 1.00 0.35 57.8 8.7 10.0 6.0
Even 5-6 0.0 1.00 0.35 57.8 8.4 16.0 10.0
Even 1-2 0.0 1.00 0.40 69.6 14.6 16.0 9.0
Even 2-3 0.8 0.60 0.40 48.0 7.3 14.0 11.0
Even 3-4 0.7 0.70 0.40 52.2 6.1 16.0 13.0
Even 5-6 0.0 1.00 0.40 69.6 7.9 15.0 7.0
Even 1-2 0.1 0.83 0.45 78.9 9.3 16.0 10.0
Even 2-3 0.9 0.80 0.45 63.3 5.3 16.0 12.0
Both 4 odd-4 even 0.2 0.77 0.30 38.7 6.2 15.0 12.0
Both 4 odd-5 odd 0.2 0.87 0.30 39.4 5.1 16.0 14.0
Both 2 even-3 even 0.7 0.40 0.35 37.5 5.2 12.0 12.0
Both 4 odd-4 even 0.3 0.51 0.35 48.5 6.3 11.0 8.0
Both 3 even-4 even 0.4 0.37 0.35 47.1 6.8 12.0 12.0
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Figure 5.13: Relative gap width variation with slab height, h∗. a) Odd modes for rl = 0.30,
L∗ = 0.1, S = 0.83, εc = 10, where gap indices are 3 − 4 (open square), 4 − 5 (filled square),
6 − 7 (open circle) and 9 − 10 (filled circle). b) Even modes for rl = 0.40, L∗ = 0.7, S = 0.7,
εc = 16, where gap indices are 2 − 3 (open square), 3 − 4 (filled square), 4 − 5 (open circle),
6 − 7 (filled circle), 8 − 9 (open triangle). The corresponding band diagrams of maximum
c) odd mode band gap and d) even mode band gap structures at slab height h∗ = 1.0.
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Figure 5.15: Displacement field (i.e., dielectric constant × electric field) at the K′ symmetry
point for dimer cylinders at structure parameters rl = 0.35, L∗ = 0.1, S = 0.83, εc = 14. a)
3rd odd band, h∗ = 0.5, b) 4th odd band, h∗ = 0.5, c) 3rd odd band, h∗ = 0.7 and d) 4th odd
band, h∗ = 0.7.
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Figure 5.16: Magnetic field distribution at the K′ symmetry point for dimer cylinders at
structure parameters rl = 0.35, L∗ = 0.1, S = 0.83, εc = 14. a) 3rd even band, h∗ = 0.5, b) 4th
even band, h∗ = 0.5, c) 3rd even band, h∗ = 0.7 and d) 4th even band, h∗ = 0.7.

136



Figure 5.14 provides gap maps as a function of slab height for region I cylinder dimers

with rl = 0.35, L∗ = 0.1 and S = 0.83. Multiple overlapped gaps at h∗ = 1.0 transitioned to

an optimum 9.9 % gap size as slab thickness decreased to h∗ = 0.5. The predominant over-

lapping 3 − 4 even and 4 − 5 odd gap diminished in size and closed at h∗ = 0.7. The 3 − 4

even and odd gaps intersected for moderate to high dielectric contrasts at h∗ = 0.7 and

increased in frequency overlap as the gaps shifted towards higher frequency for thinner

slabs. The frequency overlap of the 3−4 odd and even mode gaps can be rationalized from

the displacement field (i.e., dielectric constant × electric field) and magnetic field distribu-

tions in the dielectric material as shown in Supplemental Figures 5.15 and 5.16. Magnetic

field maps associated with the 3rd and 4th even bands at the K′ symmetry point were un-

changed in distribution at h∗ = 0.7 and the reduced slab thickness, h∗ = 0.5 (Figure 5.16).

Thus, the even gap frequency span remained largely constant as the height changed. The

4th odd mode displacement field at slab thickness h∗ = 0.7 was concentrated in two annu-

lar regions, separated in the vertical direction. As the slab height was reduced to h∗ = 0.5,

a configuration of four discontinuous coplanar nodes was adopted, indicative of the band

shifted to higher frequency. The polarization independent gap size at h∗ = 0.5 compares

favorably with previous reports for champion inverted photonic slabs. For example, tri-

angular cross-section holes in silicon (εc = 12.2) on a hexagonal lattice yielded a 3.5 % gap;

a 5.2 % gap was found for elliptical cross-section holes on a centered rectangular lattice

(effective indices nT E = 2.91 and nT M = 2.52); a honeycomb lattice with two hole sizes

(εc = 11.9) on a silica substrate had a 8.6 % gap; a 10.2 % gap was determined for a hexag-

onal lattice with rotated hexagonal cross-section holes in silicon (εc = 11.9); and an ellipse

cluster with 3m point symmetry produced an 11 % gap. [24, 20, 2, 27] Notably, no polar-

ization independent gap existed (i.e., no gap above threshold of ∆ω/ω = 1 %) for direct

structures of cylindrical rods on a square lattice and binary-sized circular cross-section

holes on a rectangular lattice.[11, 1, 18]
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Figure 5.17: Contour plots of maximum polarization independent gap indices 3 odd−4
odd from (left) overlapping 3− 4 odd and 3− 4 even gaps, 3 odd−4 even from (left center)
overlapping 3 − 4 odd and 3 − 4 even gaps, 6 odd−6 even from (center) overlapping 6 − 7
odd and 5 − 6 even gaps, 3 even−4 odd from (right center) overlapping 3 − 4 odd and
3 − 4 even gaps, 3 even−4 even from (right) overlapping 3 − 4 odd and 3 − 4 even gaps at
h∗ = 0.5 and rl values of a) 0.30, b) 0.35, c) 0.40.
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Figure 5.18: Contour plots of largest even gaps for gap indices 1−2 (left), 2−3 (left center),
3 − 4 (right center) and 5 − 6 (right) at h∗ = 0.5 and rl values of a) 0.30, b) 0.35, c) 0.40.
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Figure 5.19: Contour plots of odd mode gaps for gap indices 2− 3 (left), 3− 4 (center left),
5 − 6 (center right), 6 − 7 (right) at slab height h∗ = 0.5 and rl values of a) 0.30, b) 0.35, c)
0.40.
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Figure 5.20: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for direct dimer cylinder structures at h∗ = 0.5 with rl value of 0.40.
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Figure 5.17 displays the gap width dependence on the basis shape in contour plots of

the maximum polarization independent gaps for structures with slab height h∗ = 0.5. The

2 − 3 even mode gaps in region III shape parameter space increased in width from 7.3 %

at h∗ = 1.0 to 9.9 % at the reduced slab height (Supplemental Figure 5.18). The maximum

1−2 even gap width in region I shapes decreased from 14.7 % to 12.9 % and the maximum

odd mode gap size decreased from 19.1 % to 12.3 % (Supplemental Figure 5.19). However,

region I shapes promoted larger polarization independent gap widths at h∗ = 0.5 ranging

from 6.0− 9.9 % for overlapping 3− 4 even and 3− 4 odd gaps (Supplemental Figure 5.20)

in contrast to slab height h∗ = 1.0 where the frequency ranges of these gaps were in poor

coincidence.

The inverted dimer cylinder structures with rl = 0.45 at slab height h∗ = 0.5 were ex-

plored to exploit the effect of connectivity on even gap size.[11] Large 1 − 2 even gaps up

to 40.4 % , 34.2 % and 33.0 % were found for shape parameter regions I, II and III, respec-

tively (Supplemental Figure 5.21). The 2 − 3 odd mode gaps only achieved a maximum

size of 9.0 %. The hexagonal lattice with single cylinder holes, in comparison, had a 40.8 %

even mode gap at a slab height h∗ = 0.5.

As a perspective on fabrication of the direct photonic crystal slabs based on dimer

particles and dimer cylinders, the colloidal particles can be self-assembled into large area

structures using low cost parallel processing methods versus serial writing of lithographic

features. Small perturbations from circular cross-section cylinders (select region I shapes),

however, may be more readily achieved in the centered rectangular structures through

mask design and formation of dimer cylinders by lithography. Also, filling fractions can

be more easily adjusted via basis separation designed into the mask for non-closepacked

arrangements. For self-assembly, such structures require advanced techniques including

soft core potentials,[31] electrical field[6] and co-assembly with nanoparticles.[30] An-
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Figure 5.21: Gap maps with odd mode gaps (blue), even mode gaps (red) and overlapped
gaps (purple) for inverted dimer cylinder structures at h∗ = 0.5 with rl value of 0.45.
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other constraint is that dimer particle based slabs have height fixed by the particle size

and crystal structure. In contrast, slab thickness can be modified with ease using litho-

graphic realizations. Scale up of patterned films has been demonstrated using reel-to-reel

micromolding processes from lithographic templates.[8, 23]

5.5 Conclusions

In summary, a wide range for degree of lobe fusion and lobe symmetry supported odd,

even and polarization independent band gaps in direct dimer cylinder structures. Signifi-

cant gaps remained at moderate Brillouin zone anisotropy up to 37.5 %. In comparison to

dimer particles, the shape parameter regions for maximum odd and even gap sizes were

found at modified basis separations in dimer cylinder arrangements. The 3− 4 odd mode

gap in the direct slabs and the 1 − 2 even mode gap in the inverted slabs for separated

dimer cylinder bases were sizable at low dielectric contrasts. Thus, the slab photonic crys-

tals can be fabricated with a wide range of common materials, i.e., semiconductors. The

isolated dimer rods preferentially encouraged odd mode gap formation and the dimer

cylinder holes in high connectivity matrix favored even mode gaps. The slab thickness

variation brought the large odd and even mode gaps into frequency coincidence for di-

rect structures. The dimer structures here have been inspired by arrangements driven

through the thermodynamics of self-assembly. A rich range of crystallographic groups

and mesophases (i.e., plastic crystals, degenerate crystals, Archimedean tilings, etc.) can

arise from atypical basis shapes and the wide array of appropriate processing methods.

Our work suggests that ideation for structural design in slabs is enriched by the combi-

nation of thermodynamically-inspired structures with the ease of optimizing slab height

(i.e., through lithographic fabrication).
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[5] R. Gajić, D. Jovanović, K. Hingerl, R. Meisels, and F. Kuchar. 2D photonic crystals
on the archimedean lattices (tribute to johannes kepler (1571-1630)). Opt. Mater.,
30(7):1065–1069, March 2008.

[6] T. Gong and D. W. M. Marr. Electrically switchable colloidal ordering in confined
geometries. Langmuir, 17(8):2301–2304, 2001.

[7] Masashi Hase, Mitsuru Egashira, Norio Shinya, Hiroshi Miyazaki, Kenji M. Kojima,
and Shin-ichi Uchida. Optical transmission spectra of two-dimensional quasiperi-
odic photonic crystals based on penrose-tiling and octagonal-tiling systems. J. Alloys
Compd., 342(1):455–459, 2002.

[8] Kevin P. Herlihy, Janine Nunes, and Joseph M. DeSimone. Electrically driven
alignment and crystallization of unique anisotropic polymer particles. Langmuir,
24(16):8421–8426, August 2008.

[9] I. D. Hosein and C. M. Liddell. Convectively assembled asymmetric dimer-based
colloidal crystals. Langmuir, 23(21):10479–10485, 2007.

[10] J. D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and Robert D. Meade. Pho-
tonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, 2nd
edition, 2008.

145



[11] Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A.
Kolodziejski. Guided modes in photonic crystal slabs. Phys. Rev. B, 60(8):5751–5758,
August 1999.

[12] Steven G. Johnson and John D. Joannopoulos. Block-iterative frequency-domain
methods for maxwell’s equations in a planewave basis. Opt. Express, 8(3):173–190,
2001.

[13] Stephanie H Lee, Esther Y. Fung, E. K. Riley, and C. M. Liddell. Asymmetric colloidal
dimers under quasi-2D confinement. Langmuir, 25(13):7193–7195, 2009.

[14] Zhi-Yuan Li, Jian Wang, and Ben-Yuan Gu. Creation of partial band gaps in
anisotropic photonic-band-gap structures. Phys. Rev. B, 58(7):3721, 1998.

[15] L. F. Marsal, T. Trifonov, A. Rodrı́guez, J. Pallares, and R. Alcubilla. Larger absolute
photonic band gap in two-dimensional air-silicon structures. Physica E, 16(3):580–
585, 2003.

[16] H. Men, N. C. Nguyen, R. M. Freund, K. M. Lim, P. A. Parrilo, and J. Peraire. De-
sign of photonic crystals with multiple and combined band gaps. Phys. Rev. E,
83(4):046703, April 2011.

[17] Ali Mohraz and Michael J. Solomon. Direct visualization of colloidal rod assembly
by confocal microscopy. Langmuir, 21(12):5298–5306, June 2005.

[18] Curtis W. Neff, Tsuyoshi Yamashita, and Christopher J. Summers. Observation of
brillouin zone folding in photonic crystal slab waveguides possessing a superlattice
pattern. Appl. Phys. Lett., 90(2):021102, 2007.

[19] Susumu Noda. Recent progresses and future prospects of two- and three-
dimensional photonic crystals. J. Lightwave Technol., 24(12):4554–4567, December
2006.

[20] Kris Ohlinger, Yuankun Lin, and Jeremy S. Qualls. Maximum and overlapped pho-
tonic band gaps in both transverse electric and transverse magnetic polarizations in
two-dimensional photonic crystals with low symmetry. J. Appl. Phys., 106(6):063520,
2009.

[21] Priyadarshi Panda, Kai P. Yuet, T. Alan Hatton, and Patrick S. Doyle. Tuning cur-
vature in flow lithography: A new class of Concave/Convex particles. Langmuir,
25(10):5986–5992, May 2009.

146



[22] E. K. Riley, E. Y. Fung, and C. M. Watson. Buckled colloidal crystals with nonspheri-
cal bases for two-dimensional slab photonic band gaps. J. Appl. Phys., 111(9):093504–
093504, 2012.

[23] Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ansley E. Exner, Ginger M.
Denison, and Joseph M. DeSimone. Direct fabrication and harvesting of monodis-
perse, shape-specific nanobiomaterials. J. Am. Chem. Soc., 127(28):10096–10100, 2005.

[24] Sei-ichi Takayama, Hitoshi Kitagawa, Yoshinori Tanaka, Takashi Asano, and Susumu
Noda. Experimental demonstration of complete photonic band gap in two-
dimensional photonic crystal slabs. Appl. Phys. Lett., 87(6):061107, 2005.

[25] Rongzhou Wang, Xue-Hua Wang, Ben-Yuan Gu, and Guo-Zhen Yang. Effects of
shapes and orientations of scatterers and lattice symmetries on the photonic band
gap in two-dimensional photonic crystals. J. Appl. Phys., 90(9):4307, 2001.

[26] Matthew D. Weed, Hubert P. Seigneur, and Winston V. Schoenfeld. Optimization
of complete band gaps for photonic crystal slabs through use of symmetry breaking
hole shapes. Proc. SPIE, 7223:72230Q–72230Q–9, February 2009.

[27] Feng Wen, Sylvain David, Xavier Checoury, Moustafa El Kurdi, and Philippe Bou-
caud. Two-dimensional photonic crystals with large complete photonic band gaps
in both TE and TM polarizations. Opt. Express, 16(16):12278–12289, 2008.

[28] Y. Xia, B. Gates, and Z.-Y. Li. Self-assembly approaches to three-dimensional pho-
tonic crystals. Adv. Mater., 13(6):409–413, March 2001.

[29] Seung-Man Yang, Shin-Hyun Kim, Jong-Min Lim, and Gi-Ra Yi. Synthesis and as-
sembly of structured colloidal particles. J. Mater. Chem., 18(19):2177, 2008.

[30] Xiaozhou Ye and Limin Qi. Two-dimensionally patterned nanostructures based on
monolayer colloidal crystals: Controllable fabrication, assembly, and applications.
Nano Today, 6(6):608–631, December 2011.

[31] Anand Yethiraj. Tunable colloids: control of colloidal phase transitions with tunable
interactions. Soft Matter, 3(9):1099, 2007.

[32] G.-R. Yi, V. N. Manoharan, E. Michel, M. T. Elsesser, S.-M. Yang, and D. J. Pine.
Colloidal clusters of silica or polymer microspheres. Adv. Mater., 16(14):1204–1208,
July 2004.

[33] Y. Yin and Y. Xia. Self-assembly of monodispersed spherical colloids into complex

147



aggregates with well-defined sizes, shapes, and structures. Adv. Mater., 13(4):267–
271, February 2001.

148


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Photonic Crystals
	Self-assembly
	References

	Confinement-Controlled Self Assembly of Colloids with Simultaneous Isotropic & Anisotropic Cross-Section
	Abstract
	Introduction 
	Experimental Section
	Particle Synthesis
	Particle Assembly

	Results and Discussion
	Conclusion
	References

	Buckled Colloidal Crystals with Nonspherical Bases for Two-Dimensional Slab Photonic Band Gaps
	Abstract
	Introduction
	Model and Calculation
	Results and Discussion
	Conclusions
	Acknowledgments
	Appendix: Synthesis Procedures
	References

	Slab Photonic Crystals with Dimer Colloid Bases
	Abstract
	Introduction 
	Computational Method 
	Results and Discussion 
	Conclusions
	References

	Slab Photonic Crystals With Dimer Cylinder Bases
	Abstract
	Introduction
	Computational Method
	Results and Discussion
	Conclusions
	References


