On The Movement of Robot Arms im
2-Dimensional Boumded Regioms

*
J.E. Hopcroft
*
D.A. Joseph
] ] *k
S.H, Whitesides

March 1982

TR 82-486

Department of Computer Science
Cornell University
Ithaca, New York 14853

* Cornell University
** On leave from Dartmouth College, Hanover, N.H.

This research was supported in part by ONR contract NO0O14-76-
C-0018, NSF grant MCS81-01220, an NSF Postdoctoral Fellowship and
a Dartmouth College Junior Faculty Fellowship.



On the Movement of Robot Arms im

2-Dimensional Bounded Regions

John Hopcroft
Deborah Joseph

] +
Sue Whitesides
Computer Science Department

Cornell University

ABSTRACT

The classical mover's problem is the following: can a rigid
object in 3-dimensional space be moved from one given position to
another while avoiding obstacles? It is known that a more gen-
eral version of this problem involving objects with movable
joints is PSPACE complete, even for a simple tree-like structure
moving in a 3-dimensional region. In this paper, we investigate
a 2-dimensional mover's problem in which the object is a robot
arm with an arbitrary number of joints. In particular, we give a
polynomial time algorithm for moving an arm confined within a
circle from one given configuration to another. Ve also give a
polynomial time algorithm for moving the arm from its initial
position to a position in which the end of the arm reaches a
given point within the circle.

Keywords: robotics, manipulators, mechanical arms, algorithms, polynomial
time.

This work was supported in part by ONR contract N00014-76-C-0018,
NSF grant MCS81-01220, an NSF Postdoctoral Fellowship and a Dart-
mouth College Junior Faculty Fellowship.

+
On leave from the Mathematics Department, Dartmouth College.






1. Introduction

With current interests in industrial automation and robotics, the problem
of designing efficient algorithms for moving 2- and 3-dimensional objects sub-
ject to certain geometric constraints is becoming increasingly important. The
mover's problem (see Schwartz and Sharir [4,5], Reif [3]), is to determine,
given an object X, an initial position P.y a final position P, and a con-
straining region R, whether X can be moved from position Pi to pcsition Pf

while keeping X within the region R.

In the classical problem, X is a rigid 2- or 3-dimensional polyhedral
object, and R is a region described by linear constrzints. Recently, several
authors (Schwartz and Sharir [4,5], Reif [3], Lozano-Perez [2]) have presented

polynomial time algorithms for solving this type of ::oblem.

A more difficult problem, which is related to problems in robotics,
assumes that the object X has joints and is hence nonrigid. Again, one

desires a fast (polynomial time) algorithm for moving X from position P, to Pg¢

within a region R. Unfortunately, such an algorithm is unlikely, as Reif [3]
has shown that the problem of deciding whether an &rbtitrary hinged object can
be moved from one position to another in a 3-dimensicral region is PSPACE com-

plete-

Our paper investigates variants of the mover's problem which we believe
are of practical interest. We begin in Secticns 2 and 3 by considering the
problem of folding a carpenter's ruler -- that is, a sequence of line segments
hinged together consecutively. This problem arises because a natural strategy
for moving an arm in a confining region is to fold it up as compactly as pos-

sible at the beginning of the motion. Unfortunately, deciding whether an



_2_

arbitrary carpenter's ruler (whose link lengths are not necessarily equal) can
be folded into a given length is NP-complete. Because of this, it turmns out
to be at least NP-hard to decide whether or not the end of an arbitrary amm
(i.e.» a carpenter's ruler with one end fixed) can be moved from one position

to another while staying within a given 2-dimensional region.

In Sections 4 and 5 we consider the problem of moving an arm inside a
circular region, and we are able to give polynomial time algorithms for chang-

ing configurations and reaching points.

2., Folding a Ruler

In this section, we ask how hard it is to fold a carpenter's ruler con-
sisting of a sequence of n links Ll’ cees Ln that are hinged together at their
endpoints. These 1links, which are line segments of integral lengths, may
rotate freely about their joints and are allowed to cross over one another.
We assume that the endpoints of the 1links are consecutively labeled
AO-
define the RULER FOLDING problem to be the following:

cees An and for 1 £ i £ n, we let li denote the 1length of 1link Li' We

Given: Positive integers n, 11. cees ln' and k.

Question: Can a carpenter's ruler with lengths 11. cees 1n be folded
(each pair of consecutive links forming either a 0° or 180° angle at the

joint between them) so that its folded length is at most k?



Fig. 2.1: A typical ruler with five links.

By a reduction from the NP-complete PARTITION problem (see Garey and
Johnson [1]) we can easily show that the RULER FOLDING problem is also NP-
complete. The PARTITION problem asks whether, given a set S of n positive

integers 11. cess ln' there is a subset S' € S such that

Theorem 2.1: The RULER FOLDING problem is NP-complete.

Proof: Given an instance of the PARTITION problem with §= {ll. oo ln},
n

let d = 3 li' Then the desired subset S' of S exists if and only if a
i=1

ruler with links of length 2d, d, 1 cees ln’ dy 2d (in consecutive order)

1’
can be folded into an interval of length azt most 2d. To sce that this is the
case, imagine that the ruler is being folded irto the real line interval
[0,2d], and notice that both the initial endpoint Ay of link L (the third
link in our ruler) and the terminal endpoint A of link L (the third from
last link) must be placed at integer d. The set S' in the PARTITION problem
then corresponds to the set of links Li whose initial endpoints Ai-l appear to

the left of their terminal endpoints Ai in a successful folding of the ruler.

]



- 4 -

The RULER FOLDING problem and the PARTITION problem share not only the
property of being NP-complete, but also the property of being solvable in
pseudo-polynomial time. The time complexity of the RULFR FOLDING problem is
bounded by a polynomial in the number of links, n, and the maximum link
length, m. In fact, it is possible to find the mini~um folding length in time
proportional to n*m by a dynamic programming scheme. Fowever, in order to
carry out this scheme we need to know that a ruler with maxitium link length m

can always be folded to have length at most 2m.

Lemma 2.1t A ruler with lengths 11. cees 1n can always be folded into length

at most 2m, where m = max {lil 1<i<n}.

Proof: Place link L., into the interval [0,2m] with A, at 0. Having

1 0

placed 1links Ll' L2. cees Li-l into the interval, position Iﬁ_ as follows:

Place Li with Ai to the left of Ai— if possible. Otherwise, place L.1 with

1.

Ai to the right of Ai- To see that this is possible, suppose that p is the

l.

position of Ai- and note that if Ai cannot be placed to the left of A, y»

1
then p < 1i < m. Hence Ai can surely be placed to the right of Ai-l' 0

Using this result, we can now give a dynamic O(m*n) programming algorithm
for determining the minimum folding length of a ruler, where m is the number

of links in the ruler and m is the maximum length of any given link.
Algorithm 2.1: Ruler Folding in Minimum Length

Given a ruler with links Ll’ eee» L » compute the maximum link length m.
Then, for each k, 1<k<2m, construct a table with rows numbered 0 to n and
columns numbered 0 to k. Row i corresponds to endpoint Ai’ and column j
corresponds to the position j in the interval [0,k]. Fill in row O by writing
fits in [0,k] with A

a T in each column j for which L at integer j, and F's

0 1



-5 -

in the other columns. Once row i-1 has been filled in, fill in row i by writ-

ing a T in each column j for which the linkage Lis eees L, fits in [0,k] with
endpoint Ai at integer j. To do this, examine row i-1 to obtain the possible
locations for Ai-l' The last row of the completed table contains a T if and
only if the ruler can be folded into [0,k]. Find the smallest k for which the

table contains a T in the last row, and read the table from bottom to top to

reconstruct the desired folds. [

The next example shows that 2m is, in fact, the best upper bound for the

minimum folding length.

Example 2.1: A ruler with minimum folding length 2m-e€.

Consider a ruler which has n = 2k-1 links Ll' cees Ln' Suppose that links

with odd subscripts have length m and that links with even subscripts have

length m-€, where e€=m/k. It is easy to check that this ruler cannot be

folded into length less than 2m-e. [

AO',
i
b
) A
2 t
I |
| 1 1
; I ! A
\ X
l' l' 4' 1 ”'j, >
i I
| ! : : * : !
| ! | 1 | !
| | ! : ! l
o L
| | | : b Lok
' -
: ﬁ ! An—lf=:f”: T . -9 A
, J [ ' ! | : v
1 | | { | ! { ' |
] ] T l 1 T T 7 L
0 € 2e o o o m-€ m mt+e€ m+2€ e o o 2m-€ 2m

Fig. 2.2: The ruler of Example 2.1.



-6 -

Having established some basic results about folding rulers, we now return

to the original problem of moving such objects.

3. Moving an Arm in Two Dimensions

The remainder of this paper is concerned with moving a ruler that has one

endpoint, Ag» pinned down. We will refer to such a ruler as an amm.
Unrestricted Movement

It is easy to find out what points can be reached by the free end of an
arm placed in the plane. The answer is given in the next lemma, whose simple

proof we omit., (The lemma extends readily to three dimensions.)

Lemma 3.1: Let Ll. cees Ln be an arm positioned in 2-dimensional space, and

n

let r= 2 li' the sum of the lengths of the links. Then the set of points
i=1

that An can reach is a disc of radius r centered at A0 -- unless some li is

greater than the sum of the other lengths. In that case, the set of points An
can reach is an annulus with center AO' outer radius r, and inner radius

li" 2 1-0
i

Restricted Movement

If an arm is constrained to avoid certain specified objects during its
motions, then determining whether An can reach some given point p is diffi-
cult, In the following example, we use a reduction of RULER FOLDING to show
that even for "walls"™ consisting of a few straight line segments, this problem

can be NP-hard.



-7 -

Example 3.1: A hard decision problem.

P gap of width k

[ ]
e T e ﬂAO \
A ¢eo---=o—0o— e g T T

" k——— ruler ___)l 7\ Ie

chain of short links

long, very narrow tunnel ~_————ﬁ

Fig. 3.1: A point that is hard to reach.

We want to know whether the arm shown in Fig. 3.1 can be moved so that A.n
reaches the given point p. The arm consists of a ruler with links of integral
lengths attached to a chain of very short links. The chain links are short
enough to turn freely inside the tunnel, which is sufficiently narrow that
links of the ruler camn rotate very little once they are inside. Since the
ruler cannot change its shape very much while moving tirough the tunnel, it
must be foldable into length at most k in order to move through the gap of
width k. Thus, point p can be reached if and only if thke ruler can be folded

into length at most k. [

We would like to find natural classes of regions for which questions con-
cerning the movement of arms are decidable in polyncmial time. Certainly the
simplest such region is the inside of a circle, since there are no corners in
which an Melbow" might be caught. We believe that studying motions inside a
circle sheds light on the underlying movements of the arm without the complex-
ities that arise in situations where a link can jam in a corner. For the
remainder of this paper, we will discuss polynomial algorithms for moving an
arm within a circle. In a subsequent paper, we hope to treat more general

situations.,



-8 -
4., Changing Configurations Inside a Circle

In this section, we solve the problem of mcving an arm from one given
configuration to another inside a circular region. Simply determining whether
this can be done turns out to be a matter of checking that links whose "orien-
tations" differ in the two configurations can be reoriented. This checking
can be done in time proportional to the number of links. Assuming that it is
feasible to change configurations, we show how to move the arm to its desired
final position by first moving it to a certain "normal form" and then putting
each link into place, correcting its orientation if necessary. Correcting
orientation involves destroying and then restoring the positions of previous
links. Our algorithm consists of a sequence of "simple motions" (which we are
about to define), and the length of this sequence is on the order of the cube

of the number of links.
Simple Motioms

A definition of a "simple motion"™ is needed in order to make clear the
sense in which our algorithms for moving an arm are polynomial. This defini-
tion should not limit the positions the arm can reach nor should it complicate
the algorithms and proofs. With these considerations in mind, we define a

"simple motion™ of an arm as follows. (There are many other definitions which

would give similar results.)

Definition 4.1: A gimple motion of an amm is a continuous motion during which
at most four joint angles change. (The angle between the first link and some
reference line through the fixed point AO may be one of these.) Moreover, a
changing angle is not allowed both to increase and to decrease during one sim-

ple motion.



-9

Fig. 4.1 illustrates some simple motions of the type we use. Note that

in the motions

together by straight sections of the amm.

shown, the joints where angles are changing are connected

motions we will use,

Normal Form

Fig. 4.1:

This is true of all the simple

A5 is moving to the circle by a

simple motion. The locations.of

AO’ Al’ A6’ A7, and A8 remain
fixed. The angles at Al’ A3,

AS’ and A, are changing.

6

A3 is moving to the circle by a

simple motion. The locations of

AO’ Al’ and A2 remain fixed. AA’

AS’ and A6 move first counter-
clockwise, then clockwise around

the circle. Only the angles at

A2, A3, and A, are changing.

4

Examples of simple motions,

It is convenient to begin by showing that any arm positioned within a

circle can be moved by a short sequence of simple motions into a normal form



-10_

that has as many joints as possible positioned on the circle. We immediately
dispense with the case in which the distance from A0 to the circle is greater
than the length of the entire arm, since in this case the circle is

irrelevant.

Definition 4.2: Suppose A0 is fixed at some point distance d0 from the cir-

]
cle, and suppose that j is the smallest integer such that 2 li.ZdO' Then
i=1

the arm is in pormal form if and only if Ll’ caes Lj contains at most one bent
joint, and for each k, j<k<mn, Ak is on the circle. Moreover, if Ll’ coes Lj
is bent, the bend is at joint Aj-l' (See Fig. 4.2.) 1In any event,

L

cees Lj-l lie on a radius.

1’

A Al’ and A, lie on a

0’ 2

radius. A3 is the first

joint that can reach the

circle. The successors

of A3 lie on the circle.

Fig. 4.2: An arm in normal form.
Lemma 4.1 (Normal Form): For any given configuration of an arm within a cir-
cle there is a sequence of 0(n) simple motioms that moves the armm to normal

form. Moreover, this sequence can be computed in O0(n) time.

Proof: The process consists of two stages. First, the tail will be

straightened until An reaches the circle. Then, starting with An-l' the other



_11-
joints will be moved one by one onto the circle.

Suppose Lj’ L.

LI Ln form a straight line segment. Move An toward

the circle by rotating this segment about Aj_ until An reaches the circle or

1

L. is added to the straight segment. In this latter case, rotate the

j-1
extended straight segment about Aj-2° Eventually, A reaches the circle or
the entire arm becomes a straight segment that can be rotated about AO to
place An on the circle. (Recall that we are assuming that the arm is long

enough to reach the circle.) This process requires at most O0(n) simple

motions and can be computed in O(n) time.

s esss A. are on the «circle, and let
1 3

L.s L, .5 eoes Lj be the maximal straight segment leading back from Aj' Keep-

Now assume that A , A
n n-

i i+l

ing Li’Li+1’ coes Lj-l straight and the positions of Aj

Lj about Aj moving Aj-l away from A, ,. (See Fig. 4.3.) Lj is rotated until

and A; , fixed, rotate

Aj—l hits the circle (in which case we have a new joint on the circle), or

Li-l is added to the straight segment Lis cees Lj-l’ or A, ; hits the circle.

If Li— is added to the straight segment, then the process of rotating L. is

1 J
continued with the straight segment replaced by a new one containing at least

L.y eoes L. and L. .. If A. hits the circle, then A. is held fixed
i 3- i-1 i-1

1 i-1

while the angles at joints Ai—l' Aj-l and Aj are adjusted so as to push Aj-l
to the circle while keeping Aj and its successors on the circle. In this way,
one can force onto the circle as many joints as possible (i.e., Aj can be
placed on the circle, where j is minimum such that the sum of the lengths of
the first j links exceeds the distance from Ay to the circle). Once these
joints are on the circle, it is easy to position the links at the beginning of
the arm as desired. This process requires 0(n) simple motions and once again,

these motions can be computed in O(n) time. Thus, a total of 0(n) simple



-12 -

motions is needed to put an arm into normal form, and 0(n) time is needed to

compute the motions. [0

Aj-l moves toward the circle

away from Ai— . The locations

2
of Ai— and its predecessors

2
and the locations of Aj and its
successors renmain fixed. Only
the angles at Ai-2’ Ai—l’ Aj—l’

and Aj are changing.

Fig. 4.3: Moving an arm to normal form.

R . ion of Li

For any given position of an arm inside a circle, we define each limk to
have either "left"™ or "right" orientation. This is done by first observing
that the straight line extension of a link Li cuts the circle into two arcs.
Li is said to have left orientation if the arc on the left of the extension,
viewed from Ai-l to Ai' is no longer than the arc on the right. Right orien-
tation is defined in a similar manner. (See Fig.4.4.) Note that a link that

is on a diagonal of the circle can be regarded as having either orientation

and that a link must move to a diagonal in order to change orientation.



left orientation right orientation

Fig. 4.4: Link orientations.

An obvious necessary condition for being able to move the arm from one
configuration to another is that it be possible to reorient each link whose
orientation differs in the two configuratioms. (It turns out that this condi-
tion is also sufficient.) We are about to show that determining whether a
link can be reoriented is simply a matter of determining how far its endpoints

can be moved from the circle.

For an arm with A0 fixed within a circle C, let c; and d; denote the
minimum and maximum distance that Ai can be moved from C by arbitrary motions
of the arm within C. Of course, distance is measured along a radius of C, so

osciSdiSd/z’ where d is the diameter of C.

Since A0 is fixed, o and d0 are determined by the position of Aj. The
Normal Form Lemma (4.1) shows that each successive Ai can get closer to the

circle by the amount li until the circle is reached. Thus,

c. = max {c.
i -

i l-li' 0}.



- 14 -

Computing the di's is slightly more complicated. We begin by computing
for each i, 0<£i<n, the maximum distance t, that A, could move from the cir-
cle if it were constrained only by the tail of the arm (i.e., if Li+1' coes Ln

were freed from Ll. cses Li and Ll’ coes Li were discarded). Then we compute

d. from t. and d. ..
b i i-1
Lemma 4.2: For any amm Ll’ cees Li’ cees Ln inside a circle of diameter d,

da/2 if no link beyond A, is longer than d/2;

min{d/2, d - 1, + 3 1., where 1k is the length of the
i<j<k
first link beyond Ai longer than d/2} otherwise.
Proof: Think of the links beyond Ai as an arm with Ai fixed. Move this
arm to normal form. Let Aj be the first joint on the circle. If j2i+2, the
straight section of arm between Ai and Aj-l lies on a radius of the circle.
(If j=1i or i+l, this section is just the point Ai') While changing only the
angles at joints Aj-l and Aj’ one can push this straight section along the
radius toward the circle's center while Aj and its successors move around the
circle. (See Fig. 4.5.) New links are added to the moving straight section
until Ai reaches the center or the first long link Lk prevents further travel
because it has folded against the straight section (or reached the diagonal in

the case Lk=L ). O

i+l



_15_

AO, cees Ai—l have been removed.

A,

i o Aj—l move along the radius

while Aj’ ey An move around the
circle. Only the angles at A,

j-1
and Aj are changing.

Joint Ak-l is about to fold
completely, preventing further

travel of Ai along the radius.

Fig. 4.5: Moving A distance ts from the circle.

Now that we have calculated the ti's. it is easy to calculate the di's.

For i > 0:

mln{ti. di—l+li} if li<d/2"di_1;
di - mm{ti. d/2} if d/z-di_lslisdlz-ci_lz

mln{ti. d-li-ci_ll if 1, >d/2-¢; 4.

For any given distance x between c; and di’ there is obviously some way



- 16 -

to move Ai to a position that is distance x from the circle. The point of the
next remarks and lemma, which we need before we can give an algorithm for
reorienting the links of an arm, is that this can be done using a short

sequence of simple motions.

Remark 4.1: Suppose that the tail Lj+1' coey Ln has been detached from the
arm Ll' cees Ln. Then note that this tail can be moved from its initial posi-
tion so that the distance between Aj and the circle monotonicly increases or
decreases. To see this, put the tail (regarded as an arm with initial point
A. fixed) into normal form. Then move the straight segment of links contain-

ing Aj along the radius on which it lies, adding or deleting links from the

segment as Ai gets closer to or farther from the center of the circle. [

Remark 4.2: Consider the arm as a whole, and suppose the tail beginning at Aj
is in normal form. Then Lj can be rotated about Aj—l to push Aj closer to or
farther from the circle while the angles at Aj and two other joints in the
tail are adjusted to keep the tail constantly in normal form. In fact, Remark
4,1 shows that any rotation of Lj for which the distance between Aj and the

circle is either an increasing or a decreasing function can be carried out in

at most n-j simple motions. [

Lemma 4.3: Let Aj be a joint of an n-link arm positioned within a circle.
. 2 . .

For any x between cj and dj’ there is a sequence of O(n~) simple motiomns that

moves the arm from its original position to a position in which Aj is distance

x from the circle.

Proof: Compute the < and di for each predecessor Ai of Aj' Then, given

x, compute the sequence of numbers defined by the following recursive formula:



_17-

X, x for i = j;
1 .

x = max{c. .» x.-1.} for 2<isj.
i- i i

i-1 1
(Note that ciSXiSdi.) To position Aj distance X, from the circle, first put
the entire arm into normal form (0(n) steps). Then, beginning with A;, move
each Ai in turn to a position distance X5 from the circle. This is done by
rotating Li about Ai-l while keeping the tail in normal form. All together,
at most (n-1) +(n-2)+ + + ¢ +(n-j) additional simple motions are needed, so

. cie . 2 . .
the entire repositioning sequence contains O(n”) motions. Note that this

sequence can be computed in O(nz) time. [

We are now ready to give the conditions under which links can be

reoriented.

Lemma 4.4: A link Li can be reoriented if &snd only if at least one of the

following inequalities holds:

i) d-1;%d; ,+d;

ii) dy2zl.+c. s

iii) di-l p3 li'

. . . . 2 .
Furthermore, if L. can be reoriented, then this cen te dcne with 0(n”) simple

moticns that can be quickly computed.

Proof: As we noted at the beginning of this subsection, Li must lie on a
diagonal in order to be reoriented. Hence, the above conditions are obviously
necessary because i) holds when L is on a diagonal and the center of the cir-
cle is between Ai—l and Ai' ii) holds when L, lies on a radius with A closer
to the center than A,/ _,.,

closer to the center than Ai'

and iii) holds when L, lies on a radius with A;



- 18 -

To prove that the conditions are also sufficient, first suppose that ine-
quality i) holds. Using the method in the proof of Lemma 4.3, move A; ; to a
position distance d;_; from the circle in O(nz) simple motions. If inequality
iii) holds, move Ai—l to a position distance di-l from the circle, again using
O(nz) simple motions. After this has been done, hold Ai-l fixed, and rotate
L, about A; ; to bring L, to the radius through Ai-l' By Remark 4.2 this

takes at most n-i simple motions, and these can be quickly computed.

If inequality ii) holds, them c, ;<d/2-1,<d; ;. Move A; , distance

d/2 - 1i from the circle, and then rotate Li to the diagonal. [

We need to make one more observation before we can show how to change

configurations.

Remark 4.3: Suppose Li is a link that can be reoriented. Then starting from
any initial configuration of the arm, we can reorient L, and with 0(n2) addi-
tional motions, return Al' cees Ai—l to their starting positions without
changing the new orientation of Li' To see this, bring L, to a diagonal with
0(n2) simple motions, and then "undo™ these motions but with the orientation
of Li reversed. That 1is, keep the angle at Ai-l adjusted so that at
corresponding moments before and after Li reaches the diagonal through Ai’ Li
forms the same angle with this diagonal but lies on the opposite side of it.
This keeps Ai the same distance from the circle at corresponding times. (See
Fig. 4.6.) To check that the tail can be moved in a compatible fashion, note
that reversing the changes in the size of the angles in the tail indeed keeps
Ai the same distance from the circle at corresponding times. Although the

tail does not return to its original position, it does return to its original

shape. 0O



- 19 -

At time to-t, Li forms an angle

6 with the diagonal through Ai—l’

and Ai is distance x from the circle.

At time to, Li reaches a diagonal.

At time t.+t, A, has returned
0 i-1

to the position it occupied at

time tO-t. Li again forms angle

8 with the diagonal through Ai—l’
but has changed orientation. The
distance between Ai and the circle

is again x.

Fig. 4.6: Reorientation of a link Li with restoration
of Al. ceecy Ai"l.



-20-

Suppose we are given an initial configuration and a desired final confi-
guration of an arm within a circle. Using the formulas of the preceding sub-
section, we can quickly compute the ci's. di's. and ti's. Using Lemma 4.4, we
can then quickly check whether each link with differing initial and final con-
figuration can be brought to the diagonal. If this necessary and sufficient
condition holds, then the following motion algorithm shows that the arm can be

moved to the desired final configuration with 0(n3) simple motions,
Algorithm 4.1: Algorithm for Changing Configuration
Step i) Move the arm to normal form (0(n) simple motions);

Step ii) Once the predecessors of A; are in their final positions,
reorient Li if necessary, restoring the predecessors of Ai to their final
positions ( O(nz) motions, by Remark 4.3). Then rotate L, about A, ; to put
Ai in final position (m-i simple motioms, by Remark 4.2). Increment i, and

repeat Step ii) until i>n. [

Notice that since the ci's and di's depend only on the li's. the very
existence of the desired final configuration assures us that the distance from
A, to the circle will stay between c; and a, while L. is being rotated about
Ai-1

icly during this rotationm.

. This is because the distance between Ai and the circle changes monoton-

Notice also that the question of whether the desired final configuration
can be attained can be answered in linear time on a machine that does real
arithmetic (+, -, *, /2, min(,)) since it is necessary only to compute the

ci's. di's. and ti's. determine the links which must be reoriented, and check



..21_
that the conditions of Lemma 4.4 hold for these links.

In the next section, we show how to reduce the problem of reaching a

given point with A toa problem of changing configurations.

5. Reaching a Point with am Arm Inside a Circle

In this section, we will solve the problem of deciding whether an arm
inside a circle can be moved from a given initial position to one which places
An ‘at some given point p. We will do this by showing that this problem can be
reduced to the problem of changing configurations, which we solved in the last

section.
Points on the Circle Reached by the A's

We want to compute a feasible configuration (i.e., one to which the amm
can be moved from its initial configuration) that places An at a given point p
(inside or on the circle). In order to find such a configuration, we first

construct the set Rj of points on the circle that can be reached by Aj from

the given initial position of the arm.

Lemma 5.1: Each Rj consists of at most two arcs of the circle.

Proof: (Induction on j) Clearly, Ry = {AO} if A, is on the circle. Oth-
erwise, the Normal Form Lemma 4.1 shows that the first non-empty Rj is the one

for which

(co’:dosll'lbao--l-lj'

and that all subsequent Rj's are non-empty. It is easy to see that the first

non-empty Rj consists of at most two arcse.



- 22 -

Now consider a j for which R. is nonempty but consists of at most two

-1
arcs. If Aj is at some point in Rj' we can move Aj-l to the circle while mov-
ing Aj around the circle. (This can be done in the same way that an arm is
put into normal form.) Of course, Aj stays in Rj during this process. Thus,
each point in Rj belongs to an arc of Rj that contains a point reached by Aj

1 A. i R. [ ]
with 3-1 in 5-1

counting how many of its arcs contain a point that A. can reach with Aj-l in

Hence, counting the number of arcs in Rj is equivaient to

Ry )

Suppose that Aj-l and Aj are on the circle and that dj-l le. Then we
can reorient Lj while moving Aj around the circle, keeping Aj in Rj' Our

observation about counting arcs shows that each arc of Rj-l gives rise to only

one arc in Rj' Thus in this case, Rj consists of at most two arcs.

Now suppose that Aj-l

we can move Aj—l from any point in Rj-l to any other point in Rj-l without

and Aj are on the circle and that dj_ls lj‘ Then

ever taking Aj off the circle or changing the orientation of Lj' Hence, all
the points of Rj that are reached from Rj-l by Lj with left orientation are in
the same arc of Rj' The same is true for Lj with right orientation, so again

Rj consists of at most two arcs. [J

In our algorithm for reaching a point p, we will need to find for any
given point in R. a feasible configuration of the arm that positions Aj at
that point. In the next section, we show how to compute this information

quickly.
Determining the R's

First we will show that each set Rj is a union of certain contributions

from its predecessors, and then we will describe an algorithm for calculating



-23_
the Rj's and determining how to reach them.

The following lemma, whose proof we omit, can easily be established using

the ideas in the proof of the Normal Form Lemma 4.1.

Lemma 5.2: Suppose an arm is positioned inside a circle so that Aj is located
at a point p; on the circle. Then Aj can be kept fixed at Pj while the arm is

moved to a position where ome of the following conditions holds:

1

"elbow" whose only bend is as Aj_l;

i) links L. s «ces Lj form either a straight line (with no folds) or an

ii) for some i< j, Ai is on the circle, and links Li+1’ coss Lj form

either a straight line or an elbow whose only bend is at Aj-l'

Given a value for j, we need to find out for each Ri' i <j, which points

of Rj can be reached from Ri by the straight lines and elbows of Lemma 5.2.

Suppose that P; is a point in Ri and that li+1+ e o o + ljS(i. If all
the links between Ai and Aj can be given the same orientation, then P; contri-
butes a point to R. by means of a straight line. (If both orientations are
possible, then Py contributes two points to Rj') Contributions of this type
from points in Ri form at most four arcs, two for each arc of Ri' These arcs

amount to shifts of Ri around the circle.

Now consider the possibilities for joining a point Py in R. to a point pj
in R. by an elbow whose last joint is the one which is bent. Certainly

li+1*’ o o e +'lj_1 must be at most d. Since Lj and the straight line from

Ai to Aj-l might have either orientation, there are four types of elbows to
consider. Consider a particular feasible elbow, and note that it must place

A. somewhere on an arc of a circle of radius 1. + o o o +1. centered
j-1 i+l j-1



- 24 -

at P;- Since the orientations of the links in the elbow are specified, this
arc is bounded by the circle at one end and by the diagonal through Ai at the
other; The set of points that can then be reached by Lj in its specified
orientation, with Aj-l on the arc, forms an arc on the circle. Hence, each

feasible elbow type allows Ri to contribute a widened shift of itself to Rj.

The contributions of Ao to Rj can be determined in a similar fashion.

It is now easy to give an 0(n2) algorithm to do the following: compute
the endpoints of the Rj's. and build a table that allows one, given a pj in
Rj' to find in O(n) time (where n is the number of links in the arm) a feasi-

ble configuration having Aj at pj.
Algorithm 5.1: Finding R's

First, determine how the links can be oriented (0(n) time). Next, com-
pute the contributions from A, of straight lines and elbows whose last joint
is the one that is bent. Record these contributions by listing the endpoints
of the arcs together with the description of the lines or elbows that gen-
erated them (0(n) time). At this stage, the first non-empty R; has been com-
pletely determined, and so its endpoints (of which there are at most four) can
be computed (0(n) time). Finally, for each Ri in turn, compute the contribu-
tion of R, to its successors, and then compute the endpoints of Ri+1 (o(n)

time per iteration). [

In the next subsection, we use the information about the Rj's to solve

the problem of moving A to an arbitrary point inside the circle.

How to Reach a Point

If we want to place An at a point p on the circle, we merely compute Rn



..25..

and test p for membership. If p is in R » we use the table generated by Algo-
rithm 5.1 to determine a feasible arm configuration that has An at p. Then we

can use Algorithm 4.1 to move the arm to this configuration.

Now suppose p is inside the circle. If the arm can be moved to a confi-
guration in which A is at p and some other joint is on the circle, then p can
be reached by a feasible configuration in which some A, is on the circle and
links L.+1. cees Ln form either a straight line or an elbow with the bend at

i

Ai+1' To see whether this happens, we compute the Rj's and then look for an
appropriate straight line or elbow reaching from p back to a non-empty Rj‘ If
no such line or elbow can be found, we check to see whether p can be reached

by a configuration that does not touch the circle.

Lemma 5.3: Suppose that an arm Ll’ cees Ln can be moved to a configuration in
which Al is at a given point p inside the circle, but that no such feasible
configuration can have any joint om the circle. Then the amm can be moved to

a configuration in which An is at p and at most two joints are bent.

Proof: Consider a feasible configuration with An at p. If it has more
than two bends, proceed as follows. Let Ai. Aj' and Ak’ where 0<i<j<k<n,
denote the first three bent joints. Let Am denote the fourth bent joint if
one exists; otherwise, set Am==An. Keeping Ak and its successors pinned down,
rotate the line of links between A0 and Ai about AO so that Ai moves away from

A . (See Fig. 5.1.) Eventually, one of three events must occur:

i) some joint straightens (in which case we can start over with a

smaller number of bends);

ii) Ai moves close enough to Ak to fold the joint Aj completely;



..26_
iii) A; reaches the line through A, and A .
Note that by hypothesis, no joint can hit the circle.

If ii) occurs, keep joint Aj folded, unpin Aps and continue the rotation.
Since Ai is moving away from Am. the rotation can continue until joint Ak

straightens or Ai reaches the line through Ay and A .

Assume that Ai’ AO. and A.Ill are collinear. Pin down AO' cees Ai and
Ah’ ooy An. and rotate the line of links between Ai and Aj about Ai so that
Aj moves gway from Ah' One of the joints Ai and A, must straighten during

this rotation. [



_27-

The locations of Ak and its successors
are held fixed while Ai is rotated
about AO away from Am. Joint Ai or
Aj may straighten, Ai may reach the

line through A, and Am’ or . . .

0

joint Aj may fold, preventing

continued rotation of Ai about A_.

0

Then Ak is unpinned, joint Aj is
kept folded, and the rotation is
continued until Ai reaches the line

through A, and Am.

0

Fig. 5.1: Reaching p with at most two bent joints.

There are O(nz) configurations of the type described in Lemma 5.3, and



- 28 -

each one can be tested for feasibility in constant time. All together, then,
we need O(nz) time to compute the Rj's, 0(n) additional time to check for a
feasible configuration with some joint on the circle, and if no such confi-
guration exists, 0(n2) time to check for feasible configurations with no joint
on the circle. If a feasible configuration is found, we can then use Algo-
rithm 4.1 to move An to p with 0(n3) simple motions. Note that our method can
be used to solve the problem of moving any arbitrary joint Aj to a specified

point.



- 29 -

References

(1]

[2]

(31

[4]

[5]

Garey, Michael R., and David S. Johnson. Computers and Interactability,
A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San
Francisco, California, 1979.

Lozano-Perez, Thomas. Automatic Planning of Manipulation Transfer Move-
ments. M.I.T. Artificial Intelligence Laboratory, A.I. Memo 606,
December 1980.

Reif, J. Complexity of the Mover's Problem and Generalizatiom. Proceed-
ings 20th IEEE Symposium on the Foundations of Computer Science, 1979,
ppo 421-427 ')

Schwartz, Jacob T., and Micha Sharir. On the 'Piano Movers' Problem I.
The Case of a Two-dimensional Rigid Polygonal Body Moving Amidst Polygo-
nal Barriers. Department of Computer Science, New York University, TR
39, October 1981,

Schwartz, Jacob T., and Micha Sharir. On the 'Piano Movers' Problem II.
General Techniques for Computing Topological Properties of Real Algebraic
Manifolds. Department of Computer Science, New York University, TR 4l,
February 1982,



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif

