AXIOMATIC VERIFICATION TO

ENHANCE SOFTWARE RELIABILITY

Richard Dale Schlichting
Ph.D. Thesis

TR 82-480
January 1982

Department of Computer Science
Cornell University
Ithaca, New York 14853

AXIOMATIC VERIFICATION TO ENHANCE SOFTWARE RELIABILITY

A Thesis
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment for the Degree of

Doctor of Philosophy

by
Richard Dale Schlichting

January 1982

AXTIOMATIC VERIFICATION TO ENHANCE SOFTWARE RELIABILITY

Richard Dale Schlichting, Ph.D.

Cornell University 1982

Techniques that facilitate the design of reliable software are
described. Two distinct phenomena that can cause execution of a program to
deviate from its specifications are considered. The first is the failure
of the computing system on which the program is running. When this occurs,
the system might not be capable of following the instructions specified by
the program. The second phenomenon is that the program is written so that
it will not execute consistently with its specifications, even on a

failure-free computing system.

A methodology is presented for designing programs that can cope with
failures in the underlying system. It is based on the notion of a fail-
stop processor -- a processor with well-defined failure mode operating
characteristics. Axiomatic program verification techniques are extended
for use in developing provably correct programs for such processors. The
problem of meeting response time goals in light of failures is discussed.
Lastly, the problem of implementing processors that, with high probability,

behave like fail-stop processors is addressed.

Programming logics have already been developed to reason about sequen-
tial programs, and parallel programs that use shared memory or synchronous
message-passing. That work is extended to facilitate reasoning about pro-
grams that use asynchronous message-passing. Two benefits accrue from

this. The obvious one is that partial correctness proofs can be written

for concurrent programs that use such primitives. This allows such pro-
grams to be understood as predicate transformers, instead of by contemplat-
ing all possible execution interleavings -- often an intractable task. The
other benefit is that these proof rules and their derivation shed light
onto how interference arises when message-passing operations are used, and
how this interference can be controlled. In particular, disciplines that
make asynchronous message-passing primitives simple and safe to use are

explored.

A partial correctness proof of the two-phase commit protocol illus-
trates the application of the new techniques. This protocol, widely used
in database applications, ensures that a specified action is performed
either at all sites in a distributed system, or at no site, despite

failures.

Biographical Sketch

Richard Dale Schlichting was born on April 17, 1955 in Chicago, Illinois.
He graduated from Rutherford B. Hayes High School in Delaware, Ohio in
1973. That fall he enrolled at the College of William and Mary in
Williamsburg, Virginia, from which he received in 1977 a BA with Honors in
Mathematics (Computer Science option), and History. He married Cynthia S.
Meyer of Delaware, Ohio on May 28, 1978. 1In 1979, he received an MS in
Computer Science from Cornell University. He is a member of Phi Alpha

Theta, Phi Beta Kappa, IEEE, and the ACM.

ii

To Cindy

iii

Acknowledgments

I would like to thank my advisor, Fred B. Schneider, for his immeasur-
able contributions to this dissertation and to my development both as a
scientist and as an individual. Under his tutelage, I have learned valu-
able techniques for conducting research in this field. Moreover, I have
learned that the best ideas are worthless if they cannot be explained in a
clear and concise manner. The discussions we have had on this and other
Eubjects have always been enlightening, and invariably left me with a
clearer understanding of the issues involved. I am indebted to him for the
enormous amount of time and effort he has spent attempting to mold me into
a competent researcher and writer; there is no doubt I am better person for
it.

I would also like to thank the other member of my special committee,

R. Conway and L. Schruben, for their careful reading of this dissertation.

G. Andrews, H. Boehm, E. Dijkstra, L. Lamport, R. Reitman, D. Wall,
and S. Worona all made positive contributions to the methodology presented
in chapter 2. D. Gries graciously read an earlier version of that chapter,
and made many valuable comments. The process-control application was first
suggested by J. Kemp, W. Comfort and M. Kushner of IBM (FSD/Owego). The
presentation in chapter 4 was substantially improved by the careful reading

given to an earlier draft by D. Wright.

Special thanks go to G. Levin and D. Zlatin, for providing technical

advice, moral support, and friendship during my years at Cornell.

iv

I would also like to thank the University of Arizona for graciously
allowing me to remain at Cornell an extra semester to finish this disserta-

tion.

This section would not be complete without acknowledging the role of

my mother. From her I learned the necessity of hard work, and the desire
to always perform to the utmost of my ability. Without her support, I

would never have progressed this far.

Finally, I would like to thank my wife, Cindy. Her infinite patience
and constant encouragement have sustained me throughout the past four and a

half years. To her goes my eternal gratitude, as well as my eternal love.

Table of Contents

1 Introduction .eecececcccccccccccccsscccsccscccoscsssscooossssscansnss
1.1 OVErView .cecceccccescccccscssccsscssscescoscoscsccsccscnscnncs
1.2 Correctness Of DeSigN ceeccecccscccsccscccccscssccsssssccnnns

1.2.1 Avoiding Design EXrors cccceecccccceccccccccccoscccccccss
1.2.2 Tolerating Design EXrors ceeeccescccccccsccccsccccsssce
1.3 Correctness of Operation sececeoccccccscsscscccsascscccsssscce

1.4 Dissertation outline 90 0000000000000 000000000Ccc0000000000000

2 Designing Fault-Tolerant Computing SyStemS «cececceccccccssccssccces
2.1 INtroduction eeeeccccscsccccccccccscsssssssssssssssascccsasns
2.2 Fail-Stop ProcesSOrs cceccescccsccscsccccscccscccscscssssscscssnns
2.3 Programming a Fail-Stop Processor «ccececcccecccccccccnncnssas

2.3.1 Recovery Protocols .ccsceccessssccccssscsscscccccssccccns
2.3.2 Axioms for Fault-Tolerant ACtiOn8 cccccecccecccsccsccce
2.3.3 Fault-Tolerant Programs -- A Simple Example cccececcces
2.4 Termination and Response Time ceeccccccccsssssscsssssscsscsne
2.4.1 Total Correctness of Fault-Tolerant Actions .eeseccccece
2.4,2 Failures and Real-Time Response Constraints eccceceececee
2.5 Approximating Fail-Stop ProceSSOrS eeecccscccccssscsccssscsccs
2.5.1 Establishing Feasibility ceecececcsscscscssssssassssss
2.5.2 Other Approximation Techniques .ceccecccccccccccccccss
2.6 Fault-Tolerant Process-Control Software .ccccececccsccccsccce
2.6.1 Developing a Correct Program ecececccccccccccccscscccse
2.6.2 Developing the Recovery Protocol .ccccccccccccscccccns

2.6.2.1 Locks in a Single Shared MemOory ececcecccccoss

vi

10

12

12

12

13

13

15

19

21

21

23

25

26

31

32

32

37

2.6.2.2 Locks in a Distributed Storage System «ccccee
2‘7 Discussion © 00 0 0000000000000 0000000000000000000600000000000000

2.7.1 Coping With Design Errors: Related WOork .cccccccecccce
2.7.2 Coping With Operational Errors: Related Work .cececceee
2.703 Whence Fail‘stop Processors eeecceccecccccccsccccscsce

2.7 .4 Application of the Methodology eeccecccccoccccccccccnes

3 Message-Passing: Proof Rules and Disciplines .ceccecccecccscccoccsscs
3.1 INtroduction cceccecccccccssccsccccsccccccosssscssacsssscaccssns
3.2 Asynchronous Message-Passing ecccccccecccccsccaccscccosassane
3.3 Proof Rules for Asynchronous Message-PasSing eececcececcecsscccse

3.3.]1 OVEIVIieWw ceeececcscccccccccsssssscscscssscscscsssssassss
3.3.2 Communications AXiOmS ecccecccsscsccccaccsccsccscscsscs
3.3.3 Establishing Satisfaction eceececccccccsccccccccccscccns
3.3.3.1 Satisfaction Invariants ceeccceccscsscccccccss

3.3.3.2 Showing Universal Invariance ececcccecsceccscces

3.3.4 Establishing Non-Interference ccccccececccccccccscccces

3.4 Safe Uses of Asynchronous semd .ccccccccccccccccccscccccccns
3.4.]1 Restricted PostconditiONS eececcceccccccccsscscscccccns
3.4.2 Monotonic PreconditiOnsS sceccccecocscccccocssscccsoces
3.4.3 Acknowledgment MeSSaZE8 cecccccccsscccsscsscscssccsnnas

3.5 DiSCUSSION esccecvescscccsccsscsssscosssssscascsssccccssssccans
3.5.1 The Syntax of semd and receive ...ccccecceccsscssccs

30502 Using Message*PaSSing © 000 0000000000000 0000c0000000000

4 The TWO‘Phase Cammit PrOtOCOl @0 0000000000000 000000000000CCOOOSODOIODS
4.1 IntrOduCtiOD © 000000000 000000000000 0000000000060006000000000000

4.2 The PrOtOCOl ©0 0000000000000 0e00000000000000000000000000000000

vii

43

46
47
47
48

49
49
49
50
50
51
53
53
55
57
58
59
60
63
68
68

69

71
71

72

4.3 CommuNication cececcccceccccccossccsoccccssccncsoscccnasssccnsnse
4.3.1 A Receive with Timeout Operation ee.ecccesccescocccccces
4.3.2 RetransmiSSiONS eececcccscccscccscocsccscccscccscnanscs

4.4 Implementation and Sequential Annotation «eececescscccccccsccse

4.5 Showing SatisfactiOn ccececesccccscccccvsccssccoscsscsccsccscsccons

4.6 Proving Non-Interference .ecceeecccsscccscccssscssscossscossscons

4.7 Remaining Proof Obligation8 eeececcccccsccssssssssccssssssans

4.8 GeneralizatiOn8 ceececccescccecscsccscscssscoscscsssscsoosscsssscse

4.9 Implementation ConsideratiOns cccceccccccccccsccsscccsccccccnne

4.10 Related work © 000000000 00000000000000000000000000000000000000

5 CODCIUSiOnS 9 0 0000000000000 0000000000000000000000000000000000000s00
5.1 In Retrospect © 00 0 00 0000000000000 000000 0C0CCSEOCOIEOSIPOIOIEPOEEPOCPOEOIOSNTPOIOIOICOTIOEIETS

5.2 Topics for Further Research .cccecccccccscscccsccccccccccccccssns

Appendix l: Sequential Annotation of Communicate Operation

and Derivation of Satisfaction Rule © 0 006000000 C0OOCOSOEOSINOGEOIEONEOCSEOEOEOSOOSNEOCSEOETOCE
Appendix 2: Sequential Annotation of Workerj ceecccccssssssccssssecs
Appendix 3: Sequential Annotation of the Coordinator .ceeccesscecssee

References © 000000000000 C00000000000000000000000000c000000000000000s00

viii

74
75
78
81
91
97
102
104
104

105

106
106
109

111

116

123

127

Chapter 1

Introduction

l.1. Overview

There is a great need for computing systems that provide reliable ser-
vice -- systems that can correctly execute despite failures. This is
because increasing reliance is being placed on computers to perform crucial
tasks. For example, should a failure occur in a computer that controls the
critical functions of an aircraft or a nuclear reactor, lives might be
lost. In other situations, computer failures might lead to economic loss

or to inconvenience.

The construction of a system that minimizes the effects of failures
requires highly reliable hardware, and software that is both correct and
robust to failures of the hardware and supporting software. A failure
occurs in a component when its behavior deviates from its specifications.
Program failures are due to two distinct phenomena. The first is design
errors in the program. A program with a design error (sic) does not
satisfy its specifications, hence it will not behave correctly even if run
on a failure-free computing system. The other phenomenon is the failure of
the computing system on which the program is running. A system that has
failed might not be capable of following the instructions specified by the

program.

Both of these phenomena are equally important for the comstruction of
reliable computing systems. Hence, it is appropriate to consider various

techniques to ensure that both types of failures can be tolerated.

1l.2. Correctness of Design

Since writing correct programs is a long-standing concern of computer
scientists, it is not surprising that numerous techmniques have been pro-
posed for dealing with design errors. They can be divided into two basic
approaches: avoiding the errors a priori, and writing the program in such a

way that design errors do not adversely affect execution.

1.2.1. Avoiding Design Errors

The foremost method for avoiding design errors is the use of axiomatic
program verification. By using a programming logic that relates programs
to the state transformations they implement, a program can be developed
whose execution on a failure-free system will be comsistent with its formal
specifications. Of course, to do this requires formulating within a logic
the effects of executing each statement type within the language, as well

as defining rules to allow the synthesis of such statements into programs.

Since first proposed by Hoare [Hoare 1969], programming logics have
been developed to allow formal reasoning about a large number of program-
ming languages, including PASCAL [Hoare & Wirth 1973], and EUCLID [Lampson
et al. 1977]. Programs written using (only) sequential programming con-
structs -- assignment, if, do, and certain types of procedures -- can now
be formally verified [Gries 1981]. Recent research has addressed inference
rules to facilitate proofs of systems of concurrently executing processes.
One approach, due to Owicki and Gries, allows verification of parallel pro-
grams that use shared memory for synchronization and communication [Owicki
& Gries 1976]. This work has been extended in [Levin & Gries 19811, [Apt

et al. 1980], and [Misra & Chandy 1981] to deal with programs that syn-

chronize and communicate using a restricted form of message-passing first

proposed by Hoare in his Communicating Sequential Processes notation [Hoare

1978].

Another method that potentially facilitates the construction of
correct programs is program testing. The goal of testing is to identify
design errors so they can be corrected. This is dome by observing the
behavior of a program when it is executed on each element in some selected
subset of its input domain. Such a collection of data is called a test
ﬁg;; each element in this set is called a test case. A test is successful

if the program executes correctly when each test case in the given test set

is used as input; otherwise, it is unsuccessful.

If a test is unsuccessful, then the program must contain at least one
design error. On the other hand, if it is successful, the immediate con-
clusion can only be that the test cases in the test set do not reveal
design errors in the program -- not that the program is devoid of such
errors. The most important and difficult part in the testing process,
then, is performing the required induction step -- concluding that the pro-
gram will execute correctly for any data in its input domain, given that a
test set has been successfully executed. Clearly, the validity of such a

conclusion depends on the composition of the test set.

In [Goodenough & Gerhart 1975], the question of selecting test cases
to form a test set is addressed. There, three properties that a successful
test must have in order to conclude that a program is correct are defined.
The test set must be complete with respect to the selectiopn criterion.

That is, the test set must satisfy all of the properties specified by the

criterion. For example, suppose the selection criterion is that each

statement in the program be executed at least once [Huang 1975]. Then, a
complete test set would be any set of input data TS satisfying the follow-
ing:

(VS: S a statement in the program:

(Jtc: tceTS Atc in input domain: tc causes S to be executed)).

In addition, the selection criterion itself must be both reliable and
valid. A criterion is reliable if and only if the program will either exe-
cute each complete test set successfully or execute each complete test set

unsuccessfully. A criterion is yalid if and only if every error in the

program can be revealed by executing some complete test set.

In light of these requirements, Goodenough and Gerhart examine one
approach to developing a valid and reliable selection criterion. It
involves examining the program and its specifications to determine a set of
test predicates. Given these predicates, a selection criterion can be
determined and test sets computed. While showing the validity of this or
any criterion is usually easy, the same cannot be said for the reliability
of a criterion. It should not be surprising that proving reliability is
difficult, since this proof corresponds to making the induction step men-
tioned above. In fact, showing the reliability of a selection criterion
based on test predicates turns out to be comparable to proving the correct-

ness of the program using axiomatic verification techniques.

Because of the difficulty of constructing a reliable and valid selec-
tion criterion, approximation techniques have been devised for program
testing. One notable effort is mutation analysis developed by Budd et al.
[Budd et al. 1980]. A mutant of a program P is a program obtained by

changing P in some small, specified way. A test case differentiates P from

a mutant if P and the mutant behave differently when executed on that test
case. Clearly, a good test set for detecting design errors in P contains
enough test cases to differentiate P from each of its mutants. The premise
of this argument -- supported by experimental evidence -- is that either P
or one of its mutants is correct. Thus, there is a high probability that P

is correct if it successfully executes such a test set.

1.2.2. Tolerating Design Errors

Another approach to handling design errors is to structure a program
so that some design errors can be tolerated. This is done primarily by

redundant execution of independently developed code.

A general scheme for doing this is outlined in [Fischler and Firschein
1973]. It consists of executing several different implementations of an
algorithm to produce a set of resulting states. Then, a majority consensus
scheme is used to determine which of the states is to be considered the
outcome of that execution. This scheme is based on the assumption that
design faults are so rare that programs containing mistakes will con-
sistently be outvoted by correct colleagues. Moreover, it is also assumed

that there are no design errors present in the voting mechanism.

A variation of this scheme has been developed at the University of
Newcastle-upon-Tyne [Randell 1978]. A program is comstructed using
recovery blocks. A recovery block consists of a primary block, an accep-
tance test, and one or more alternate blocks. Upon entry to a recovery
block, the primary block is executed. After its completion, the acceptance
test is executed to determine if the primary block has performed accept-

ably. If the test is passed, the recovery block is exited. Otherwise, an

alternate block -- generally a different implementation of the same algo-
rithm -- is attempted and the acceptance test repeated. Execution of each
alternate block is attempted in sequence until one produces a state in
which the acceptance test succeeds. Execution of an alternate block is

always begun in the recovery block's initial state.

An implicit assumption in this technique is that any block whose
resulting state passes the acceptance test is devoid of design errors. For
this to be true, the acceptance test must, in some sense, be an encoding of
fhe output specification of the program. Unfortunately, devising a test
that meets this criterion may be non-trivial. Also, the necessity of res-
toring the system state to its initial value before attempting execution of

an alternate complicates the implementation [Anderson & Kerr 1976].

1.3. Correctness of Operation

When a system fails, any program executing on it may also fail unless
it can make allowances for the effects of the underlying failure. Unfor-
tunately, programming a computer system that is subject to failures is an
extremely difficult task. A malfunctioning processor might perform arbi-
trary and spontaneous state transformations instead of the transformations
specified by the programs it executes. Thus, even a correct program camnnot
be counted on to implement a desired input-output relation when it is rum
on a malfunctioning system. Furthermore, by using only a finite amount of

hardware, it is impossible to build a computer system that always operates

correctly in spite of failures in its componentsl. Thus, the goal of

implementing a failure-free computing systems is unattainable.

lﬂﬁi quis custodiet ipsos Custodes? (But who is to guard the guards
themselves?) [Juvenal 130]

Fortunately, such perfection is unnecessary. Rather, it is sufficient
that a system work correctly provided no more than k failures occur within
some time interval, or provided that certain types of catastrophic failures
do not occur. This more modest goal is attainable. By using hardware and
software redundancy, it is possible to approximate a system that exhibits
predictable failure-mode operating characteristics. It then becomes feasi-
ble to write programs that will execute correctly, provided that too many

failures do not occur.

In [Lampson 1981], this approach is used to design a crash resistant
data storage system. First, the physical components of the system --
disks, processors, and the communications system -- are modeled. All
events in these models are characterized as either desired or undesired.
Only desired events would occur if all components were failure-free.
Undesired events are further divided into errors, which are expected and
can be tolerated, and disasters, which cannot be tolerated. Then, approxi-
mations of virtual devices that possess more predictable operating charac-
teristics are implemented based on these models. Such devices operate
correctly to the extent that the model approximates reality. Thus, if only
desired events and errors occur, correct operation will be observed. How-
ever, if a disaster occurs, arbitrary behavior might be observed. It is

hoped that most common failures will be viewed as errors.

Disk storage is modeled as a set of pages, each of which contains a
block of data and has associated with it a status. The status of a page is
either good or bad. To access a page, read and write procedures are
defined. The desired result of reading a page is for its status and

correct data to be returned. If the page is good but execution of the

operation returns bad, then either an error or a disaster has occurred. It
is considered a disaster if some specified number of unsuccessful attempts
at reading the page have already been made; otherwise, it is an error. The
desired result of a write operation is to update a page and set its status
to good. If no action occurs on a write, or if the update incorrectly sets
the status of the page to bad, then it is considered an error. The remain-
ing disk related events are decays -- undesired spontaneous transformations
of the ﬁage contents. If decay is infrequent (a concept made more precise
in [Lampson 1981]), or if the transformation changes the status of a page
with correct data from bad to good, it is considered an error. A disaster

occurs if decay is frequent or if the page suffers an undetectable change.

A processor is modeled as a collection of processes, each with some
local state and a shared state. The only error defined is a crash. This
occurs when all local states and the shared state spontaneously become
reset to some predefined value. All other undesired events are disasters.
Note that since disasters are supposed to occur with low probability, the
implicit assumption is made that most processor malfunctions can be

transformed into crashes by internal consistency checks.

The final physical component modeled is the communications system.
This is represented by a set of messages, each containing a status, desti-
pation, and block of data. As with the disk model, the status of a message
is either good or bad. To modify the set of messages, semd and receive
operations are defined. The effect of executing the former is to create a
message, while a process executing the latter blocks for an arbitrary
amount of time, and then receives a message. After execution of a receive

terminates, the message that was received is removed from the set.

Undesired events in the communications system are all spontaneous. Errors
include loss or duplication of a message, and the change of a message
status from good to bad. A disaster happens when an undetected transforma-

tion occurs in the contents of a message.

Virtual devices that mask the effects of most errors (but not disas-
ters) from higher levels are then constructed. Disk storage is replaced by
stable storage -- an abstraction where read and write operations result in
the occurrence of only desired events. Stable storage is used in imple-
ﬁenting stable processors. While a stable processor can crash, it provides
a more convenient interface for programming robust programs. In particu-
lar, it allows processes to save information in stable storage, and imple-
ments stable mopitors -- monitors [Hoare 1974] in which all shared vari-
ables are in stable storage and whose procedures are executed atomically
with respect to failures. The communications system is replaced by a more
structured interface in which remote procedure calls are used instead of
explicit message-passing operations. Such calls are identical to local
procedure calls, except that the action taken by the procedure may be per-
formed more than once for a given invocation. Such multiple execution

could occur if processors crash or messages are lost or duplicated.

Finally, a protocol to preserve the consistency of the data in the
storage system is devised. Because these devices are almost error-free,
the protocol itself need only be robust to processor crashes. As a result,
both the development of the protocol and its correctness arguments are

relatively straightforward.

The key to this design methodology is the use of devices that have

predictable failure-mode operating characteristics. With such devices, the

10

problem of writing programs that operate correctly despite failures is sim-
plified considerably. In fact, when the action a processor takes upon
failure can be predicted, it becomes possible to apply axiomatic verifica-
tion techniques to the development of correct programs that run on that
processor. As we show in this dissertation, this can be used to formulate

a methodology for the design of reliable systems.

l.4. Dissertation Outline

In chapter 2, a methodology for designing fault-tolerant computing
systems is presented. It is based on the notion of a fail-stop processor
-- a processor whose only failure is a crash. First, we describe axiomatic
program verification techniques for use in developing provably correct pro-
grams for fail-stop processors. Then, the problem of implementing proces-
sors that, with high probability, behave like fail-stop processors is
addressed. Finally, the use of our methodology is illustrated in the

design of a prototype fault-tolerant process-control system.

Chapter 3 describes extensions to axiomatic verification to faciliate
reasoning about programs that use asynchronous message-passing for communi-
cation. In addition to providing the means to verify the partial correct-
ness of such programs, the development of these rules provides insight into
why the use of asynchronous message-passing primitives makes programs dif-
ficult to understand. We also explore disciplines that make asynchronous

message-passing primitives simple and safe to use.

The use of the verification techniques derived in chapters 2 and 3 is
then illustrated by presenting a partial correctness proof of the two-phase

commit protocol [Gray 1978]. This protocol, widely used in database appli-

11

cations, ensures that a specified action is performed either at all sites

in a distributed system, or at no site, despite failures.

Lastly, some conclusions are presented and topics for further research

are described.

Chapter 2

Designing Fault-Tolerant Computing Systems

2.1. Introduction

The use of computing systems to control complex devices or physical
processes is becoming increasingly important. Such systems must satisfy
real-time response constraints and be fault-tolerant in addition to imple-

menting a specified relation between input and output.

In this chapter, we present an approach to designing fault-tolerant
computing systems based on the notion of a fail-stop processor -- a proces-
sor with well-defined failure-mode operating characteristics. We extend
axiomatic verification techniques to facilitate development of provably
correct programs for such processors, and describe how response time con-
straints can be met in light of failures. Then, the problem of implement-
ing -- actually, approximating -- fail-stop processors is addressed. Next,
we apply this approach to a non-trivial problem: the design of a fault-
tolerant process-control system. Lastly, our approach is contrasted with

other related work.

2.2. Fail-Stop Processors

A processor is characterized by the instruction set it supports. Each
instruction causes a well-defined transformation on the internal state of
the processor and/or the connected storage and peripheral devices. Thus,
the effects of executing each instruction can be described by a precise

semantic definition -- be it a temporal axiomatization of the instruction

[Pnueli 1979] or a "Principles of Operation™ manual [IBM]. A failure

12

13

occurs when the behavior of the processor is not consistent with this

semantic definition.

The internal state of a fail-stop processor and some predefined por-
tion of the connected storage is assumed to be volatile. The contents of
volatile storage are irretrievably lost whenever a failure occurs. The
remaining storage is defined to be stable; it is unaffected by any kind of

failure. Stable storage is likely to be relatively slow.

A fail-stop processor is also distinguished by its failure-mode
operating characteristics, which are extremely simple. In contrast to a
real processor, a fail-stop processor never performs an erroneous state
transformation due to a failure. Instead, the processor simply halts.

Thus, the only visible effects of a failure in a fail-stop processor are:

FSl: It stops executing.

FS2: The internal state and contents of the volatile storage
connected to it are lost.

2.3. Programming a Fail-Stop Processor

2.3.1. Recovery Protocols

A program executing on a fail-stop processor is halted when a failure
occurs. Execution may then be restarted on a correctly functioning fail-
stop processor. (This may be the original processor if the cause of the
failure has been repaired, or it may be another fail-stop processor.) When
a program is restarted, the internal processor state and the contents of
volatile storage are unavailable (due to FS2). Thus, some routine is

needed that can complete the state transformation that was in progress at

14

the time of the failure and restore storage to a well-defined state. Such

a routine is called a recovery protocol.

Clearly, a recovery protocol (i) must execute correctly when started
in any intermediate state that could be visible after a failure and (ii)
can use only information that is in stable storage. In addition, because
the code for a recovery protocol must be available after a failure, it must
be kept in stable storage. We might postulate a convention that the
recovery protocol in effect is stored at a fixed position in stable
storage. Then, the relevant recovery protocol can be found when it is

needed.

We associate a recovery protocol with a sequence of statements imple-
menting a state transformation to form a fault-tolerant action as follows:
<action-name>: action
<action-statement>
recovery

<recovery protocol>
end

Execution of <action-name> consists of establishing <recovery protocol> as
the recovery protocol to be in effect when <action-statement> is executed
and then executing <action-statement>. When <action-name> terminates, the
recovery protocol in effect when it was started is reestablished. If exe-
cution of <action-name> is interrupted by a failure, upon restart execution
continues with the recovery protocol. Subsequent failures cause execution
of <action-name> to be halted and execution of the recovery protocol to
begin anew when the program is restarted. Execution of <action-name> ter-
minates when execution of either <action-statement> or <recovery protocol>

is performed in its entirety without interruption.

15

The following syntactic abbreviation will be used to denote that an
action-statement serves as its own recovery protocol:
<action-name>: actiom, recovery

<action-statement>
end

Such a fault-tolerant action is called a restartable ag;ignl.

A program running on a fail-stop processor must at all times have a
recovery protocol in effect. This will be the case if the program itself
is a single fault-tolerant action. Alternatively, assuming that establish-
ment of a recovery protocol can be done atomically, a program can be struc-
tured as a sequence of fault-tolerant actions. Then, between execution of
one fault-tolerant action and the next, either the old recovery protocol or

the new one will be in effect.

2.3.2. Axioms for Fault-Tolerant Actions

Following the Floyd-Hoare axiomatic approach [Hoare 1969], the state
of a program is characterized by a function from program variables to
values. An assertion P is a Boolean-valued expression involving program
and logical variables. The syntactic object:

{r} s {Q}
where P and Q are assertions and S is a statement in a programming
language, is called a triple. The triple {P} S {Q} is a theorem if there
exists a proof of it in a specified formal deductive system, usually called
a programming logic. A programming logic consists of a set of axioms and

rules of inference that relate assertions, programming language statements,

1Others have used the term idempotent to describe this notion.

16

and triples. Of particular interest are those logics that are sound with
respect to execution of programming language statements on the program
state -- i.e., deductive systems that are consistent with the operation of

a "real™ machine. Then, the notation {P} S {Q} is usually taken to mean:

If execution of S begins in a state in which P is true, and ter-
minates, then Q will be true in the resulting state.

The language and programming logic described in [Owicki & Gries 19761,

extended to include guarded commands, is used in this paper.

It is often more convenient to write a proof outline than a formal
proof. A proof outlipne is a sequence of programming language statements
interleaved with assertions. Each statement S in a proof outline is pre-
ceded directly by one assertion, called its precondition and denoted
pre(8), and is directly followed by an assertion, called its postcondition

and denoted post(S). A proof outline is an abbreviation for a proof if:

POl: for every statement S, the triple {pre(S)} S {post(S)} is a
theorem in the programming logic -and-

PO2: whenever {P} and {Q} are adjacent in the proof outline, then
Q is provable from P.

Let FTA be a fault-tolerant action formed from an action-statement A
and a recovery protocol R. We wish to develop an inference rule that will

allow the derivation of
{P} FTA {Q}

as a theorem, while preserving the soundness of our programming logic with

respect to execution on a fail-stop processor. First assume

Fl: {P'} A {Q'} and {P"} R {Q"}

have been proved. Then, for execution of A to establish Q, we must have

17
F2: P=P' and Q' =Q.

Similarly, for the recovery protocol R to establish Q, the following (at

least) must hold:
F3: Q"=Q.

Recall that R is invoked only following a failure. By definition, the con-
tents of volatile storage are undefined at that time. Therefore, any pro-
gram variables needed for execution of R -- those variables occurring in P"

-- must be in stable storage. Thus, we require
F4: All program variables named in P™ must be in stable storage.

We must also ensure that whenever the recovery protocol receives control,
stable storage is in a state that satisfies P™. This will be facilitated

by constructing a replete proof outline. A replete proof outlipe is a
proof outline in which certain intermediate assertions have been deleted so

that:

RPOl: No intermediate assertion appears between adjacent
fault-tolerant actions.

RP02: Every triple {P} S {Q} in the proof outline satisfies either
(a) S is a sequence of fault-tolerant actions, or

(b) {P v Q} is invariant over execution of S.
Thus. if
{p} FTA; {P;} FTA, {P,} ... FIA, {P}
is a proof outline, then

{P} FTA,; FTA

1 93 cee FTAn {Pn}

is a replete proof outline. For example, if assignment of an integer value

18

to a variable is performed by executing a single, indivisible, (store)

instruction -- as it is on most machines -- then
{x=3} x:=6 {x=6}

is also a replete proof outline. This is because either the precondition
or the postcondition of "x:= 6" is true of every state that occurs during
execution of the assignment. Even if assigmment is not implemented by exe-

cution of a single instruction
{val=3} x:= val {x=3}

is a replete proof outline, because the assertion val=3 is not destroyed
by assignment to x; it is true before, during and after execution of

fx:= val®,
Correct operation of a recovery protocol therefore requires:

F5: Given a fault-tolerant action with action-statement A and recovery
protocol R satisfying Fl, let 815 399 eeen 3y be the assertions
that appear in a replete proof outline of {P'} A {Q'}, and
Tys Tgs eees T be the assertions that appear in a replete proof
outline of {P"} R {Q"}. Then:

(i) (Vi: 1<i<n: a; = p")
(ii) (Vi: 1<ism: r; =P")

Lastly, it must be guaranteed that failures at processors other than
the one executing FTA do not interfere with (i.e., invalidate) assertioms

in the proof outline of FTA. Suppose an assertion in FTA names variables

stored in the volatile storage of another processor P 2 Then, should PF

Fo

2This is often necessary when the actions of concurrently executing

processes are synchronized. For example, if it is necessary to assert that
a collection of processes are all executing in the same "phase" at the same
time, then each would include assertions about the state of the others.

19

fail, such an assertion would no longer be true since the contents of vola-

tile storage would have been lost. Hence, we require that:

F6: Variables stored in volatile storage may not be named in

assertions appearing in programs executing on other processors.

Establishing F1 - F6 is required in order to prove that a given
fault-tolerant action will perform a desired state transformation. How-
ever, from F3 and F5 it follows that given a fault-tolerant actionm, a res-
tartable action that implements the same state transformation can be con-
structed from the recovery protocol alone. Thus, in theory, the action-
statement is unnecessary. In practice, the additional flexibility that
results from having an action-statement different from the recovery proto-
col is quite helpful. Presumably, failures are infrequent enough so that a
recovery protocol can do a considerable amount of work in order to minimize
the amount of (expensive) stable storage used. Use of such algorithms for

normal processing would be objectionable.

2.3.3. Fault-Tolerant Programs -- A Simple Example

To illustrate the use of rules F1 - F6 as an aid in developing a

recovery protocol, consider the following (artificial) problem.

Periodically, variables x and y are to be updated based on their
previous values. Thus, given an update function G, desired is a
routine that runs on a fail-stop processor and satisfies the fol-
lowing specification:

{P: x=X A y=Y} update {Q: x=G(X) A y=G(Y)}.

Logical variables X and Y represent the initial values of x and y, respec-

tively.

20

If the possibility of failure is ignored, the following program will
suffice:
Sl: {P: x=X A y=Y}
Sla: x:= G(x); {Pla: x=G(X) A y=Y}

Slb: y:= G(y); {Plb: x=G(X) A y=G(Y)}
{Q: x=6G6(X) A y=6(V)}.

Note that this is a replete proof outline, provided assigmment is imple-
mented as an atomic operation. That way {P Vv Pla} is invariant over exe-

cution of Sla and {Pla Vv Plb} is invariant over execution of Slb.

Things become more complicated when the possibility of failure is con-
sidered. In particular, S1 would not constitute the action-statement of a
restartable action because F5 is violated (assuming G is not the identity
function). The difficulty is that execution of Sla destroys the conjunct
x=X in P, and similarly execution of Slb destroys the conjunct y=Y. In
order to construct a restartable action, we must find a way to make pro-
gress -- compute G(X) and G(Y) -- but without destroying the initial values
of x and y unless both values are updated. One way to do this is to com-
pute the new values and store them in some temporary variables, giving the
following restartable action:

Ul: action,recovery
{P: x=X A y=Y}
Ula: xnew:= G(x); {x=X A xnew=G(X) A y=Y}
Ulb: ynew:= G(y); {x=X A xnew=G(X) A y=Y A ynew=G(Y)}
end
{Q': x=X A xnew=G(X) A y=Y A ynew=G(Y)}.
Note that x and y must be stored in stable storage, in order to satisfy F4.

Having established Q', it is a simple matter to establish Q:

21

S2: {Q': =xnew=G(X) A ynew=G(Y)}
S2a: x:= xnew; {x=xnew=G(X) A ynew=G(Y)}
S2b: y:= ynew; {x=xnew=G(X) A y=ynew=G(Y)}
{Q: x=xnew=G(X) A y=ynew=G(Y)}

This is a replete proof outline, and so as long as xnew and ynew are stored

in stable storage, F1 - F6 are satisfied. So

U2: actiom,recovery
{Q': =xnew=G(X) A ynew=G(Y)}

U2a: x:= xnew; {x = xnew=G(X) A ynew=G(Y)}
U2b: y:= ynew; {x=xnew=G(X) A y=ynew=0G(Y)}
end

{Q: x=xnew=G(X) A y=ynew=G(Y)}
is a restartable action. Thus, the desired program is:
{P} vul; u2 {Q}

which is also a replete proof outline.

2.4. Termination and Response Iime

2.4.1. Total Correctness of Fault-Tolerant Actions

Recall that a proof of the theorem
{r} s {Q}
does not ensure that mechanism S will terminate; only that if it does ter-
minate Q will be true of the resultant state. This is called partial
correctness. Clearly, total correctnmess -- that S will indeed terminate
and that Q will be true of the resultant state -- is both a stronger and

more desirable property.

Most statements in our programming notation are guaranteed to ter-
minate, once started. However, loops and fault-tolerant actions are not.

Techniques based on the use of variant functions or well-founded sets can

22

be used for proving that a loop will terminate [Dijkstra 1976]. Unfor-
tunately, without knowledge about the frequency of failures, termination of
a program written in terms of fault-tolerant actions cannot be proved; if
failures occur with sufficiently high frequency, there is no guarantee that
the component fault-tolerant actions will terminate. Neither the action-
statement nor the recovery protocol of a fault-tolerant action will run

uninterrupted, and so the recovery protocol will continually restart.

For a given execution of a program S, define t(si) to be the maximum

length of time that elapses until execution of the next fault-tolerant

action in S is started, once execution of statement 5, is begun3. Define

T = max t(s).
max
s €S

For an execution of S to terminate, it is sufficient that there be enough
intervals of length Tax during which there are no failures. Then, no
fault-tolerant action will be forever restarted due to the (high) frequency

of failures.

Of course, this gives no bound on how much time will elapse before S
completes. Rather, we have argued that S is guaranteed to terminate if the
elapsed time between successive failures is long enough, often enough.

This should not be surprising. However, it does provide some insight into
how to structure a program in terms of fault-tolerant actions if frequent
failures are expected: one should endeavor to minimize Thax® This can be

achieved by making entry into a fault-tolerant action a frequent event --

either by nesting fault-tolerant actions, or composing them in sequence.

3It is possible to characterize t(s.) formally. However, for our
present purposes, the informal definition will suffice.

23

2.4.2. Failures and Real-Time Response Comstraints

In many applications a computing system must respond to events in a
timely manner. In [Wirth 1977] a discipline for writing programs that must
meet real-time constraints was proposed. More recently, [Harter & Bern-
stein 1981] describe extensions to temporal logic [Lamport & Owicki 19801
that allow construction of a proof that a program will meet some specific

response-time goals.

Given a collection of fail-stop processors, it is possible to config-
ure a system that not only implements a given relation between input and
output, but performs this state transformation in a timely manner despite
the occurrence of failures. After the failure of a processor fsp, a recon-
figuration rule is used to assign programs that were running on fsp to
working fail-stop processors. The recovery protocol in effect at the time
of the failure facilitates restart of the program. Thus, processor
failures are transparent, but for possibly increased execution times. Exe-
cution delays from the following sources are incurred as a result of a

failure:

(1) Some time tietect will elapse after the fail-stop processor halts

until that fact is detected and reconfiguration is begun.

(2) Reconfiguration causes execution delays, as well. First, trecon is

required to determine an appropriate assigmment of programs to the
remaining fail-stop processors. Then, t ove might be required to move
the program code and contents of its stable storage, if that data is

not directly accessible by the processor to which the program is being

moved.

(3)

(4)

24

In the worst case, the effects of the last Tmax seconds worth of exe-

cution before the failure will be lost.

An additional execution delay T might be incurred because a

degrade
recovery protocol is likely to take longer to execute than an action-
statement. Let tdegrade(ftai) be the difference in elapsed time

required for the action-statement and the recovery protocol in fault-

tolerant action ftai to execute to completion, assuming no failures

occur. Define:

T = max t (fta).
degrade fta €S degrade
Thus, Tdegrade represents the worst possible delay incurred due to

execution of a recovery protocol instead of an action-statement.

This suggests the following strategy for constructing fault-tolerant

systems that will continue to behave correctly in spite of up to k

failures, for k>0. First, a program is developed (i) that implements the

desired state transformations when run on fail-stop processors, (ii) that

satisfies its real-time response constraints provided no failures occur,

and (iii) in which no process must respond to two events that are separated

in time by less than T

F seconds, where:

= + + +
TF k (tdetect trecon tmove Tmax) * Tdegrade

Suppose R fail-stop processors are required for this. Then, a computing

system with R+k fail-stop processors will be able to tolerate up to k

fail-stop processor failures and meet its response-time goals. And, the

obvious reconfiguration rule must be used.

Note that if stable storage that can be shared by k fail-stop proces-

sors is available, then t can be made 0. Also, by precomputing various

move

25

configurations, t can be made negligible. This, however, requires a

recon
sufficient amount of stable storage to store all possible configuratioms.

Lastly, can be made 0 by using only restartable actions; however,

Tdegrade

this uniformly degrades execution speed, even if no failures occur.

2.3. Approximating Fail-Stop Processors

While the notion of a fail-stop processor is a useful abstraction, it
is impossible to implement using only a finite amount of hardware; with
dnly a finite amount of hardware, a finite number of failures could disable
all the error detection mechanisms and thus allow arbitrary and malicious
behavior. However, it is possible to comstruct computing systems that,
with high probability, approximate the behavior of a fail-stop processor
and its attendant stable storage. Such an approximation would behave as
specified in section 2, unless too many failures occurred within some
specified time interval, after which no assumptions about its behavior

would be possible.

In this section we consider techniques for approximating fail-stop
processors and thereby establish the feasibility of constructing a comput-
ing system with the necessary properties. We have no illusions that our
architecture is optimal in any regard. For one thing, the ideal fail-stop
processor approximation for a given application will depend on various fac-
tors: cost, the type of components used in the implementation and their
failure modes, the amount of interaction between concurrently executing

processes, and how close an approximation is desired.

26

2.3.1. Establishing Feasibility

A k-fail-stop processor is a computing system that behaves like a
fail-stop processor unless k+l or more failures occur in its components.
Thus, if k or fewer failures occur while it is executing, it is halted and
the state of stable storage prior to the failure remains available. Such a
processor can be implemented by replicating real processors and volatile
memory, and interconnecting these components using a communications net-
work. In such a system, peripheral devices are viewed as memory-mapped

iocations in the stable store.

Stable storage is approximated by storing informatiom in s 2 2k+l
independent (volatile) memory units. If k failures occur -- one failure in
each of k different memory units -- then we must still be able to determine
the contents of the stable storage. For s 2 2k+l, a majority of the memory
units will have the correct value, even if k of them do not. The behavior
of a peripheral device is governed by a majority consensus of the values

written to the corresponding memory-mapped locations.

Each memory unit is assumed to be capable of responding to requests
for the value stored at a particular address as well as to requests to
change the value stored at a location. Moreover, we assume the existence
of Tresp’ an upper bound on the length of time it takes a memory unit to

respond to such a request.

Requests are made by processors and are conveyed to the addressed
memory unit through the communications network. It will be convenient to
assume that the network never corrupts the contents of messages and that

messages are either delivered or discarded within T, seconds of being sent.

Also we will assume that messages cannot be forged -- one processor cannot

27

generate a message that will appear to have been sent by another. Networks
that exhibit these properties with high probability as long as k or fewer
failures occur can be implemented quite easily. Transmission errors and
forgeries are detected by including redundant information in each message.
Messages in which errors are detected are then discarded. Similarly, mes-
sages that are not delivered within TD seconds after being submitted are

also discarded.

Processor failures are detected by using multiple processors, each
iunning the same program and periodically comparing its results with those
of the other processors. Assume a system of N processors, Pl’ PZ’ eees Ppo
Each processor P, is permitted to read from all memory units, but is res-
tricted to write to only one, M. In addition, each of the s memory units
is assumed to be written into by at least one processor. Thus, N=s.
Failures will eventually cause the appearance of erroneous values in one or
more memory units. Therefore, failures can be detected if processors
periodically synchronize and compare the contents of the memory units, an
operation we shall call storage validation. Synchronization is necessary
because processors are assumed to run asynchronously; when the contents of
two memory units are compared we must be certain that they reflect the same

partial execution by both processors.

Once the value stored at a particular address has been updated in
every memory unit, it is impossible to recover its previous state. Hence,
storage validation must be performed before updating a stable storage value
so that if a failure is detected, the prior contents of stable storage can
be restored. Storage validation is accomplished as follows: First, the

processors synchronize. Then, the copies of stable storage maintained by

28

each is compared with all the other copies. Finally, the processors syn-
chronize again, and (asynchronously) perform the update to their respective
copies of stable storage. To perform the necessary synchronization, each
processor keeps a variable synchid, which records the number of synchroni-
zation operations attempted. The synchronization operation shown in Figure
2.1, executed by processor P.s terminates if some processor malfunctions by
not sending the required synchronization messages, or if all processors
have begun executing synchronization operations with the same value of syn-
chid. Correct operation of the synchronization operation is dependent on

the value of the timeout-interval in the waitfor statement. In order to

synch:
synchid:= synchid+l;
cobegin
send <synchid, Pi> to Pys
waitfor ("receipt of message with text: <synchid, P1>" Vv
timeout);

if timeout + sgignal failure;
halt;
0 «timeout -+ skip
fi
//
//

semd <synchid, Pi> to Py
waitfor ("receipt of message with text: <synchid, PN>" V
timeout);

if timeout + signal failure;
halt
0 <timeout -+ skip
fi
coend

Figure 2.1 -- Synchronization Operation

29

determine this value, we must know an upper bound on the ratio of the dif-
ferent processor execution speeds and the relative speeds at which the
clocks on each processor run. That information, in conjunction with the
length of time that has elapsed since the last synchronization operation
was performed and TD (the upper bound for message delivery), allows the

timeout interval to be computed [Lamport 1981].
The protocol for storage validation is

synch;

for each address A in stable storage do begim;
read value of A at each memory unit
if "all values not identical"™ -+ sigmal failure;

halt
0 "all values are identical™ - skip
£i
end
synch;

If a failure is detected, it is necessary to determine the correct
values of variables stored in stable storage. Failures are signalled from
three places in the storage validation protocol: the two synch operations

and the value consistency check.

If a failure is signalled during the comparison of values, then some
processor Pp detected an inconsistency among the values it read for a given
stable storage location. This inconsistency can be due to (1) failures in
memory units, (2) failures in other processors that caused them to write
erroneous values to their memory units, (3) a failure in the communications
network to convey requests or responses to the memory unit and (4) a
failure in Py resulting in announcement of an error when in fact all the
values read are identical. Moreover, by hypothesis we know that at most k

errors have occurred. As a result of failures of type (1), (2) and (3) at

30

most k erroneous values will be read. Since there are at least 2k+l
values, then a majority of them must be correct. Thus, a simple majority
consensus algorithm can be used to determine the values of variables stored
in stable storage. Failures of type (4) do not effect values in memory

units, and so a majority consensus can be used in that case, as well.

If the failure is signalled during the synchronization protocol by
some processor Pp, then all non-faulty processors must either be executing
the synchronization protocol or have completed the synchromnization proto-
col. The latter could occur if a faulty processor had sent some, but not
all, synchronization messages. Then, it might have sent the correct mes-
sage to some non-faulty processors, but not to Ppe Given a system of N
processors, by hypothesis at least N-k must be non-faulty. We can parti-
tion these N-k processors into two classes: n, processors that are execut-
ing in their synchronization protocols at the time the failure is sig-
nalled, and n, processors that have completed the synchronization protocol.
Processors that have completed synchronization might have gone on to update
their memory units. Thus, in order to use a majority consensus algorithm

to determine the values of variables in stable storage we must have:

na>k v nb>k

Clearly, N-k = 2k+l is true of the smallest value of N that will suffice.

Thus, at least 3k+l processors are required.

It is interesting to note that if all the non-faulty processors are
synchronized, then only 2k+l processors are necessary. This is because the
invocations of synch in the storage validation protocol would be unneces-

sary, and so the second type of failure would never be signalled.

31

2.5.2. Other Approximation Techniques

While the feasibility of implementing fail-stop processors is esta-
blished in the previous section, the practicality is not. The amount of
hardware required and the frequent pauses for storage validation make our
implementation impractical. Moreover, the system described above need not
halt after a failure is detected: it can continue operating as a (k-1)-
fail-stop processor, then a (k-2)-fail-stop processors, and so on, as if
the failures had never occurred. However, eventually a point might be
reached where so many failures have occurred that subsequent failures could
cause undefined state transformations that will go undetected. Then,
reconfiguration and execution of a restart protocol on another fail-stop

processor would be appropriate.

The problem with our fail-stop processor implementation stems from the
choice of doing replication at the processor and memory level, instead of
at some lower level. Using redundancy at lower levels can be done effec-
tively only with detailed knowledge of the operation of the lower level
components. While such details vary from one processor to the next, some

general observations are possible.

An approximation of a fail-stop processor is nothing more than a com-
puting system that will, with high probability, exhibit certain behavior.
Following the pioneering work of Lampson and Sturgis [Lampson 1981] the
behavior of a system can be characterized in terms of certain gvents.
Events are either desired, errors or disasters. Desired events correspond
to the normal, failure-free operation of the system; errors are undesired
events that are expected and can be tolerated; disasters are undesired

events that are not expected or cannot be tolerated. For example, the

32

halting of a fail-stop processor in response to a failure is an error,
while allowing it to continue computing is a disaster. The idea, then, is

to minimize the probability of the occurrence of a disaster.

It is our belief that practical approximation of fail-stop processors
is well within the state of the art. Consider the implementation of the
stable storage abstraction. Certain storage media are inherently volatile
-- some types of semiconductor memory, for example -- while others are
inherently non-volatile -- magnetic tapes, and to a lesser degree, disks.
‘Thus, even if no replication is employed in implementing stable storage, a
judicious choice of storage media can reduce the possibility of a disaster.
Implementation of a fail-stop processor requires that all failures be
detected. For a reasonable approximation of a fail-stop processor, all
that is required is that undetected failures (disasters) be rare. By
including error detecting circuitry within a processor, this seems possi-

ble.
2.6. Fault-Tolerant Process-Control Software

2.6.1. Developing a Correct Program

Software intended to monitor and control physical processes such as
nuclear fission and air traffic is called process-control software. Sen-
sors determine the state of the environment by reporting values of key
parameters and/or by detecting events. Actuators are used to exert control

over the enviromment.

A process-control system can be structured as a collection of cyclic
processes executing concurrently. Each process P; is responsible for con-

trolling some set of actuators act, and for maintaining state; -- a vector

33

of state variables that reflect the sensor values P; has read and the
actions it has taken. Interprocess communication is accomplished by the
disciplined use of shared variables; a process can read and write its state

variables, but can only read state variables maintained by other processes.

Each process consists of a single loop. During execution of its loop
body, process p;: (1) reads from some sensors, (2) computes new values for
the actuators it controls and state variables it maintains, (3) writes the

relevant values to act; and (4) updates state..

Since processes execute asynchronously, access to state variables must
be carefully controlled. Otherwise, a process might read state variables
while they are in the midst of being updated. This could cause the process
to perform the wrong actions. To avoid this problem, the state variables
maintained by each process p; are assumed to be characterized by an invari-
ant relation CC;, called the consistency constraint for state;. CC; is
kept true of state, except while P; is updating those variables -- i.e.
performing (4) above. This can be accomplished by using read/write locks
[Gray 1978] to implement reader-writer exclusion on the state variables
maintained by each process. Then, a process trying to read variables in
state; must first acquire a read lock for state.. Such a lock will not be
granted if a write lock is already held for those state variables, hence
that process will be delayed if state; is being updated. Similarly, a pro-
cess about to update state; will be delayed if other processes are reading
those values. Note that as long as each process executes correctly given
that the values it reads satisfy the consistency constraints, no assump-
tions about the relative execution speeds of processes are required for

correct operation.

34

The natural laws that govern our physical world ensure that at any

time t the values of the sensors are consistent. Let CC be the con-
sensors

sistency constraint associated with the sensors. Clearly, if a process
reads all the sensors simultaneously, values that satisfy CCsensors would
be obtained. Since such a simultaneous read operation is not implement-
able, we will assume that sensors change values slowly enough and that
processes execute quickly enough so that a consistent set of values is

obtained by reading each of the sensors in sequence at normal execution

speed.
Correct operation of a process-control system requires that:

PC: The values written to the actuators are related to the values
read from the sensors according to a given application-specific
function.

However, by using PC as our correctness criterion we are making no stipula-
tions about process speeds. This means that the sequence of values written
to the actuators is not uniquely determined by the sequence of states that
characterize the enviromment while the process control system runs. This
is because only a subsequence of the actual values assumed by each sensor
is read by a process, and the values written to the actuators depend (among
other things) on the sequence of values read from each sensor. One hopes
that correct behavior of the system is not dependent on exactly which
subsequence of values is read -- that being dependent on the process execu-
tion speed. Clearly, processes should be executed sufficiently often to
detect and react to significant changes in the enviromment being con-

trolled.

Secondly, PC makes no stipulation about how frequently actuators are

updated. Thus, the effect of an actuator on the enviromment being

35

controlled should be independent of the length of time the actuator remains

at a given value. That is,

Al: It is a change in the value stored in the memory-mapped actuator
location that initiates its action.

A2: The length of time an actuator remains at a given value has no
effect on the physical process it controls.

To simplify the development of the code for each process, assume that
each state variable and sensor is read at most once in any execution of the
loop body. Code that satisfies this restriction can be written by using
local variables to store state variables and sensor values: each state
variable and sensor value is stored in a local variable when it is first
read; subsequent references are then made to the local variable. Let
var[i,t] denote the value of var read by p; during the t™® execution of its
loop body, sensor[i,t] denote the values read by P; from sensors during the
tth execution of its loop body, and acti[t] denote the values written to
acti by P during the tth execution of the loop body. Then, acceptable
behavior of the system -- operation that satisfies PC -- is characterized
by the following. The values written to the actuators are computed accord-
ing to an application-specific function A from the sensor values read and

the past actions of processes. Therefore, after P; updates act; for the

tth time,

Iact(i,t): t=0 cox
acti[t] =A(sensors[i.t].statel[i.t] cees staten[i.t]).
Furthermore, the values read from state variables will satisfy the con-
sistency constraints if read/write locks are used when accessing shared
data; by assumption, sensor values satisfy the consistency constraints.

Hence,

36

n
Icons(i, t): (Wt': O<t'st: /\CC-(statej[i,t'])A

j=1
1 \]
Csensors(sensors[l,t 1))
is universally invariant. Lastly, the values in state; must correctly
encode past actions performed by P;- Therefore, at the beginning of the

st

t+l” "~ execution of the loop body at p;:

Istate(i,t): t=0 cor

statei==A(sensors[i.t]. statel[i.t] cees staten[i.t]).

Let Ti be an auxiliary variable that records the number of times the loop
body of process P; has been executed -- that is, at any time, Ti-l execu-
tions of the loop body have been completed. Thus, Ti is initialized to 1
and (implicitly and automatically) incremented immediately after the loop

body is executed. Then, the correctness criterion PC is satisfied if:
I(i): Istate(i.Ti-l) A Iact(i.Ti—l) A Icons(i.Ti-l)
is true at the beginning of each execution of the loop body.

newstate contains the values used to update statei and the actuators,

and is specified by:
Vnewstate(i,t): newstate==A(sensor[i.t].statel[i.t] cee staten[i.t]).
Using these, it is a simple matter to program the loop. This code is shown

in Figure 2.2. Note that prior to updating state;, a write lock must be

acquired for it. Hence, the code for up_st is:

up_st: acquire_write,(i);
update state, based on newstate;
release_write,(i);

The subscript names the process invoking the operation -- in this case P;s

the argument names the lock being acquired. Similarly, in calc all the

P;: Process

do true -+ {I1(i)}

calc: newstate:= A(sensors,statei....staten);

{Vnevstate(i.Ti) A Istate(i.Ti-l) A Iact(i.Ti-l) A Icons(i.Ti)}

up_act: update act, based on newstate;
{Vnewstate(i.Ti) A Istate(i.Ti-l) A Iact(i.Ti) A Icons(i.Ti)}
up_st: update statei based on newstate;

{Vnewstate(i.Ti) A Istate(i.Ti) A Iact(i.Ti) A Icons(i.Ti)}

{1(i)}
od

end

Figure 2.2 -- Process P;

37

state variables maintained by a given process pj must be read

after a read lock for statej has been acquired.

calc:

2.6.2.

read from sensors;
acqnire_readi(j);
stuff := state.;
release_rea i(j);
acqnire_xeadi(k);
statek;
release_readi(k);

morestuff :=

newstate := G(stuff,

Developing The Recovery Protocol

For example,

eees morestuff);

together

After the failure of a processor fsp, each process that was executing

on fsp is halted, and data in its volatile storage is lost.

To satisfy PC

38

despite the occurrence of failures, we must endeavor to preserve:

PC': At no time do state variables or actuators have values they
could not have had if the failure had not occurred.

Recall that I(i) characterizes values of the state variables and
actuators that satisfy PC. Consequently, if it is possible to modify the
loop body so that I(i) is true of every intermediate state that can be
visible after a failure, then PC' will be satisfied as well. Our task,
therefore, is to modify the loop body so that it constitutes a restartable

action.

I(i) is true except between the time execution of statement up_act
begins, and when statement up_st completes. Thus, we must either mask
intermediate states during execution of up_st and up_act, or devise a way
to execute up_st and up_act together as an atomic action. This latter
option is precluded by most hardware. Thus, to implement the former, we
construct a single fault-tolerant action that updates the actuators and

state variables based on the value of newstate:

{Vnewstate(i.Ti) A Icons(i.Ti)}
upall
{Vnewstate(i.Ti) A Istate(i.Ti) A Iact(i.Ti) A Icons(i.Ti)}.

As long as newstate is saved in stable storage, the following replete proof

outline satisfies F1 - F6 and accomplishes the desired transformationm.

39

upall: actiom,recovery
{Vnewstate(i,T;) A Icoms(i,T;)}
up_act: update act; based on newstate
{Vnewstate(i.Ti) A Iact(i,Ti) A Icons(i.Ti)}
up_st: acquire_write.(i);
update state, based on newstate;
release_write,(i)
{Vnewstate(i.Ti) A Istate(i,Ti) A Iact(i.Ti) A Icons(i.Ti)}

end

A replete proof outline for the code executed at P; is shown in Figure 2.3.

Notice that since the loop now forms a restartable action, a process might

p;: process
action,recovery
{1(i)}
do true - {Istate(i.Ti-l) A Iact(i.Ti-l) A Icons(i.Ti—l)}
calc: newstate:= A(sensors.statel. ...staten);
{Vnewstate(i.Ti) A Istate(i.Ti-l) A Iact(i.Ti-l) A Icons(i.Ti)}
upall: actiom,recovery
{Vnewstate(i.Ti) A Icons(i.Ti)}
up_act: update act, based on newstate;
{Vnewstate(i.Ti) A lact(i, Ti) A Icons(i, Ti)}
up_st: acquire_write,(i);
update statei based on newstate;
release_'titei(i)
{Vnewstate(i.Ti) A Istate(i.Ti) A Iact(i.Ti) A Icons(i.Ti)}
end
{1(i)}
od

end

Figure 2.3 -- Replete Proof Outline of P;

40

attempt to acquire a given read/write lock that had already been granted to
it. For example, if a failure occurred while up_st were being executed,
execution of the recovery protocol would attempt to acquire the write lock
on state,, which might already be owned by Pj- Clearly, repeated requests
by a given process for the same lock without intervening release operations
should not delay the invoker. Implementation of various locks with this
property (binary semaphores do not suffice) for two representative stable
storage implementations are described below. The first implementation
assumes a single, highly reliable, random access memory. In contrast, the
second does not require any special type of storage device, but instead

employs replication on data independent storage devices.

2.6.2.1. Locks in a Single Shared Memory

Hardware implementations of stable storage approximations exist. Such
a storage device is usually constructed by using a non-volatile memory
technology and storing enough redundant information with each memory word
so0 that error correcting codes can be used to reconstruct information lost

due to hardware failures.

To construct read/write locks, exclusive locks are used. An exclusive
lock x is a data object on which two operations are defined: lock(x) and
umlock(x). A process p; invoking lock(x) is delayed until x has the
value "free" or "pi". The effect of executing this operation is to set x
to "pi". When the value of x is "pi". we say that p. has been granted x.
Execution of umlock(x) sets x to Mfree™. Note that this allows a process

that has been granted x to reacquire it at will.

41

Implementation of exclusive locks is simplified considerably given an
instruction that allows interlocked access to memory. On the IBM System 370
architecture [IBM] the Compare-and-Swap (CS) instruction is provided for
this purpose; it is used below. In other architectures, similar instruc-
tions have been defined. For example, on the DEC VAX1l machines INSQHI,
INSQTI, REMQHI can be used [Digital 1979]. Note, however, that not all
memory-interlock instructions are powerful enough to implement exclusive
locks when restarts are possible. For instance, we have been unable to
devise an implementation that uses the Test-and-Set instruction, even
though this instruction can be used to construct other synchromization

mechanisms.

The effect of executing a Compare-and-Swap instruction is as follows:

CS(t,x,n): atomically

if t=x =+ x:= n
O tzx =+ t:= x
£i

end

Then, for each exclusive lock x, one word of storage is allocated in the
shared memory. That word has value 0 if the lock is free; otherwise its
value is n,, a unique integer name associated with the process p; to which

the lock has been granted. Also associated with P; is a variable, t;, that

is accessed only by that process. Then, for process p; to perform lock(x)

and wmnlock(x) the following are used:

42

lock(x): t = 0; CS(ti.x.ni);
do ti¢0 A tizni -+
t; :=0; CS(ti,x.ni;)
od

smlock(x): x :=0.

These exclusive locks are used to construct read/write locks as
required above. Let Pys Pgs eees Py be the processes that read state;.
Then, the read/write lock for state; is implemented with m exclusive locks:
éxil. exise .o exi_, each initialized to "free™. Then,

acqnire_readj and release_readj for process j are:

acquire_readj(i): lock(exij)

release_readj(i): unlock(exij) .

Readers do not exclude each other because different exclusive locks are
referenced. On the other hand, when p; is updating state;, no other pro-
cess should be able to read it. Thus, acquire_vritei and

release_vtitei are:

acquire_vritei(i):

for k :=1 to m do; lock(exik) end;

telease_vritei(i):

for k :=1 to m do; unlock(exik) end;

Thus, a writer will exclude all readers. There is no need for a writer to
exclude other writers -- by definition there are none, because only p; can

change variables in statei.

43

2.6.2.2. Locks in a Distributed Storage System

Replication of data in independent volatile memories is another tech-
nique for realizing our stable storage approximation. One way of accom-
plishing this is to save a copy of each item to be stored in stable storage
in the local memory at every processor in a distributed system. Then, to
obtain the value of a variable, a process reads the copy of that‘variable
that is in its local storage. To write to a variable, a process sends the
new value to each processor so that all copies can be updated. However,
doing this in the obvious way is not always sufficient -- should a failure
occur, the copies might have different values. Various protocols have been
developed to ensure that this does not happen; for example, most solutions
to the multiple-copy consistency problem for fully and partially replicated
distributed database systems suffice [Bernstein & Goodman 1981]. Below, a

protocol designed specifically for our application is described.

As before, a read/write lock for state, is implemented by exclusive
locks exil. exiz. cees exim -- one for each process that reads variables
in state,. exij is implemented in the local memory of the processor exe-
cuting pj. acqnire_rendj(i) and telease_teadj(i). the operations for

process pj to obtain and release a read lock, are implemented as follows:

acqnire_readj(i): lock(exij)

telease_readj(i): unlock(exij).

Associated with each process P; is a stable storage manager process
ssm(i,P) at each processor P from which copies of state; can be accessed.
Each stable storage manager implements acqnire_vritei and

releale_'ritei operations as well as updates to its local copy of

44

statei.

Invocation of acquire_vritei(i) and release_vritei(i) by process
P; running on processor P are implemented as message exchanges with

ssm(i,P):

acquite_'ritei(i) :
sead "acquire_write" to ssm(i,P);

waitfor (receipt of: Macquired" message from ssm(i,P));

release__vtitei(i) :
send "release_write" to ssm(i,P);

waitfor (receipt of: "released" message from ssm(i,P)).

Upon receipt of an Macquire_write" message, ssm(i,P) must arrange for exil.
exiz. cess exim to be acquired. ssm(i,P) itself can acquire the locks
associated with processes executing on P by invoking lock. To acquire the
remaining locks, M sends "prepare to change statei" messages to all stable
storage managers that manage other copies of state,. Each then executes
lock operations on the appropriate exclusive locks, and replies "ssm
prepared". When ssm(i,P) has received either "ssm prepared" or notifica-
tion of failure from each, it returns a message with text Macquired" to P
Note that this scheme requires some facility for detecting processor
failures. The use of fail-stop processors makes possible the use of

timeouts for this purpose [Lamport 19811].

After completing execution of acquire_vritei. P; updates state,.
To do so, each update to a variable y in state;, "y := z", is translated

into the following:
sead "change y to z" to ssm(i,P).

Upon receipt of such a message, ssm(i,P) updates the local copy of stat:ei

45

and saves a copy of the new value in a buffer sendstatei.

When a "release_write" request is received, ssm(i,P) transmits Mchange
state; to: 'sendstatei" to all other stable storage managers, unlocks any
exclusive locks it had acquired, and returns a "released" message to P;-
The message "change state; to: 'sendstatei'" causes a stable storage

manager to update its local copy of state; based on the contents of

ssm(i,P): process
do true + receive m;
if m = Macquire_write" -+
forall jeLocExc(i,P) do; lock(j) emd;
forall P' a processor do;
send "prepare to change state," to ssm(i,P');
waitfor (receipt of: "ssm prepared" from ssm(i,P') V
failed(P');
end;
sead "acquired" to P;
0 m = "update y to z" =
save z in sendstate; ;
yi= z
0O m = "release_write™ =
forall P' a processor do;
semnd "change state, to 'sendstatei'" to ssm(i,P')
end
forall jeLocExc(i,P) do; umlock(k) emd;
send "released" to P;
0 m = "prepare to change statei" -+
forall j €eLocExc(i,P) do; 1lock(k) emd;
send "ssm prepared"
0 m = "change state; to 'sendstate,'" -
statei:= sendstatei;
forall jeLlocExc(i,P) do; umlock(k) emd

od
end

Figure 2.4 -- Stable Storage Manager for state; at processor P

46

sendstate; and then to unlock any exclusive locks it had acquired.

The code for the stable storage manager for the copy of state; at pro-
cessor P is shown in Figure 2.4. There, LocExc(i,P) is a set containing
the names of the exclusive locks associated with processes that run on P
and read state;. Note that for correct operation, the order in which mes-
sages are sent to ssm's after receipt of a "release_write'" message must be
the same as the sequence of processors to which P; would be moved in the
event of a failure; otherwise, the restart protocol could allow another

process to observe state; regress in time.
2.1. Discussion

2.1.1. Coping With Design Errors: Related Work

Recall that a recovery block consists of a primary block, an accep-
tance test, and one or more alternate blocks [Randell et al. 1978]. The
primary block and the alternate blocks are executed in sequence until one

produces a state in which the acceptance test succeeds.

Despite the apparent similarity between recovery blocks and fault-
tolerant actions, the two constructs are intended for very different pur-
poses. Recovery blocks are used to mask design errors, fault-tolerant
actions are used in comnstructing programs that must cope with operational
failures (in the underlying hardware and software). As such, use of
recovery blocks to help cope with operational failures can only lead to
difficulties. For example, a recovery block has only a finite number of
alternate blocks associated with it, and therefore a large number of
failures in the underlying system can cause the available alternatives to

be exhausted. Secondly, the initial states of variables modified by a

gaanyIeJ JO 83093333 a9yl °*A1juenbasuoy *o1307 SurwmeiBoad 3yl YITA JUDISTS
-uo0o pue “juomWIBIS 3yl Aq parFroads eyl 2q Isnu pawro3jidd uorjemrojysuell
9y3 ¢S93PUTWIA] JUSWSIBIS B JT *Sny] °pa30333p 31® SAIN[TEI [[B ¢IDA0IOR
*SUOTIPWIOJSUBI] 9IBIS 3D31I0OUT ISNBD JOU Op SI3INTTeJ *I10s8s3d0id ' yons uy
¢1opou Teuorieindwod BuTA[Iapun uB I03F 9OTOYD [eInjeu 3yl sI0ssadoxd dois

-11e3 9pew 51307 Surtmmei301d ssauloa110o [erlaed e Isn 03 I1TSAPp INQ
TIOTTIO0I A0TIZ-TTEI SOUWoUN °*T°7°T

*jIom 3By} UO paseq ST s10ss3dd01d dois-ITIeyF

-j 3o uorjejuwewaldwr inQg °[0861 °*T¥ T9 3iodwe] Pa3IBIATO3 3q UBD SIINTIERF
3 03 dn jey3 os pairnbaa si108s83%01d jJo 19quUnu SY3] SUTWIIIAP 0] -- WITQOIg
sTeI9Ud9 duTjuBzAg 9Y3l STIEO 3Y YOTyM -- mwa[qoid 3Yyj JO UOTSIdA 3IdOBIISqE
ue pazAleue sey @ °[8/6T 3r1odweT] sI10ss3%201d JUaI33IITP uOo 3uTuUUN: puU®
andur swes ayj BUTATSD9I YOBD *SIUTYORW 23BIS JO 3SN 3Y3 UO pIseq sWAIsLs

ssad01d-13Tnu 31qerax Surpiinq 10 w3tpeied e padolaadp sey jroduwe]

*[9.6T Sutuusq] swo3isds Zurjexado ut

S9T3T[TOBJ 3IBIsa1/3uTodyd9yd jJo 9sn 3yl pue [g/6] ST3inlg R uosdue]] swa)
-sfs 2113 3a1qer1ax A1y31y Jo uorjejuawa[dwr ¢[g/6T AvI19] SwaIsks 3seq eIep
ut K12A0931 se yons :padolaAsp usaq aAey swd[qoid paziferdads 103 s1020301g
*31em3Jos jxoddns 10 aiempaey ul sainytel Yitm 3adoo 3Isnu jeyl swei3oiad

jJo u8tsap 9yl ur pre 03 padoyaAap ulaaq dAey sanbruyosl (eidUaB Mag
YIOR PSTETSY :ISINTTE] TPUOTIPISAQ UITK 3WTAS) *T°7°T
*aanjtey
® 193] PaI2A0D31 3q JOoUUBD SINTBA 3s0YJ 9dUIS ¢sayqeraeA weia3oad 103

93v103s 9yTIRTOA 3ulsn Jo L3TTTqIssod ayj 3JTwWpe jou s’0p [Ipom 3yl °undaq

ST }20]q 23BUI3I[B UEB JO UOTINOIXD US3YM 3TqBITBAB 9q 3ISNW YJ0Tq LI13A0031

Ly

*UOTIO® JUBIITOI-J[NBI 3091100, Aue Jo Jooid MOIT® 03 SATIDITII

-891 003 jou aie 94 - [Jd 3s933ns paATIdp sem IT YOTYM ur Kem 3Y3l pue UWOTIEBD
-11dde s3T Y3TM peY 9ABY 9M SS3DONS 3Y3J ¢3[NI M3U InO JO sS3ua3a[dwod 3ATI
-B191 243l paaoid jou 3Aey am I[TYM °31qissod aq pinom Jooad ou yorym 103
Inq *A13921300 9ABYSq PINOA JBYJ SUOTIOF JUBIS[03I-I[NBJ ISTXd pPINOM 313yl
¢38Ed 3BY3 UT °SATIOTIISAI 003 IOBJ UL 9I® *SUOTIOP JUBRIITOI-I[NeI 103

ain1 jooid ino jo sjuduodwod 3yl *94 - [J I9Y3Iaym }se 03 [eInjeu ST 3]

*[186T SuTIYOTIYOS ® IIpTa2uyd§] UT PIsSNOSTP 3IB YIOA JBY3l JO STTIEI3P

ayr °*aueidaite ue ur uorledrARU 10 WAISAs Surindwod paInqTIISTP B UITISIAP
03 A3o1opoylraum styj A1dde o3 393floxd ® jJo 3jied se padolaaap sem 13ideyd
STYl JO 9 UOTIOIS UT paqriosap 27dwexa [0I3u0d $83001d 3YL °*paTITIaA

ST [8L61 £Ae19] ur paqridsap se 1090301d jTwmoo 3seyd-omj ay3l °*4 1a3deys uy
*S9U0 M3U 3STA3P 03 pue sT090301xd JuBIa[03-3[nEI 3uTISTXd LIJTI2A 03 Yjoq

1aded styl ut paqraosap K3ojopoyrsm a9yl pakojdwe ATInIssaoons dAey SN
XBOTOPOUTSH YT IO WOTIESTIAAY H7°T
*513071 Sutumeiloid syj jo 2InjBu SS3UIDIII0d [eriied 3yl £q paunsqns aie

8%

Chapter 3

Message-Passing: Proof Rules and Disciplines

3.1. Introduction

In distributed systems -- systems with no shared memory -- the use of
message-passing provides a particularly clean way for concurrently execut-
ing processes to communicate and synchronize. This is because semd and
receive statements closely parallel operations directly supported by the

underlying hardware; implementing them is therefore simple and cheap.

In this chapter, we develop proof rules for asynchronous message-
passing primitives. Two benefits accrue from this. The obvious one is
that these proof rules allow partial correctness proofs to be written for
concurrent programs that use such primitives. This allows such programs to
be understood as predicate transformers, instead of by comtemplating all

possible execution interleavings -- often an intractable task.

The second benefit is that the proof rules and their derivation shed
light onto how interference arises when message-passing operations are
used, and how this interference can be controlled. In addition, they pro-
vide insight into programming techniques to eliminate interference in dis-
tributed systems.

3.2. Asynchronmous Message-Passing

Execution of a semd statement

semd <expr> to <dest>

has the following effect. First, the value of the expression <expr> is com-

49

50

1 . .
puted.” Then, a message with that value is sent to the process named

<dest>.

It is useful to distinguish between gent, delivered, and received when
describing the status of a message. Execution of a semd statement causes
a message to be gsent. A message that has been sent might subsequently be
delivered to its destination. We do not assume that all messages sent are
delivered -- real communications hardware does not guarantee the reliable
delivery of messages. Once delivered, a message can be received by execut-

ing a receive statement.
A receive statement has the form:
receive m when §,

where m is program variable and B is a Boolean expression. Execution of
this statement delays the invoker until a message with text mtext (say) has

been delivered to the invoking process and

pm = true.
mtext
Execution completes by assigning mtext to m. Thus, P is a guard -- of the

messages that have been delivered, it controls those that can be received.

3.3. Proof Rules for Asynchronmous Message-Passing

3.3.1. QOverview

Proofs in our programming logic involve three steps. First, using a
sequential programming logic [Hoare 1969] and the communications axioms

described below, each process is annotated with assertions, giving a

1goth simple and structured values (as in CSP [Hoare 1978]) can be com-
municated in messages.

51

sequential annotation. Secondly, assumptions made in the sequential anno-

tation about the effects of receiving messages are validated by showing

aa;iﬁfagzignz. This involves generating a collection of satisfactiom

invariants and then verifying that they are true in all possible program
states. Finally, non-interference [Owicki & Gries 1976] is established,
which ensures that execution of no process can invalidate assertions that

appear in the sequential annotation of another. Each step will now be

treated in detail.

3.3.2. Communications Axioms

In order to model buffered asynchronous communications, two multisets3
are associated with each process D. The send multiset for process D --
denoted op -- contains a copy of every message that has been sent to D.
Similarly, the receive multiset for process D -- denoted pj -- contains a
copy of every message that has been received by D. A message can be

received only if it has been sent and delivered. Therefore:

Network Axiom: (VD: D a process: pDSO’D).

The effect of executing:
send <expr> to D

is the same as the assignment:
(o

D¢~ O'DO <expr>,

where "o'DO <expr>" denotes the multiset consisting of the elements of)

21his is called cooperation in [Apt et al. 19801].

3A multiset -- sometimes called a "bag" -- is like a set, but it can
contain more than one instance of the same element.

52
plus an element with value <expr>. Using the weakest precondition predi-
cate transformer (wp) [Dijkstra 1976] with respect to the postcondition

T A o= 9 @ <expr>,

we get an axiom for the semd statement:

Send Axiom:
°p
A = =
{T0D0<expr> O'D 0’0} semd <expr> to D {T A ch o'oe<expr>},

When execution of the statement
receive m when §

in process D terminates, B evaluates to true, and a copy of the message
received will be in Ppe In addition, depending on the particular message
that was received, it may be possible to make some assertion about the
state of the sender. An axiom that captures this is:

Receive Axiom:
{P A pD=po} receive n whem 3 {f A Q A pD=p00m}.

At first it may be disturbing that following a receiwve statement anything

.. . 4 .
can be asserted, as indicated by the miraculous appearance of Q in the
postcondition. In the course of establishing satisfaction, restrictions

are imposed on Q.

4

cle.

See [Dijkstra 1976] for a discussion of the Law of the Excluded Mira-

54

Should execution of r result in receipt of a message with text mtext,
then this is equivalent to execution of the following multiple assignment

statement:
m, Py t= mtext, pDO mtext.

For this assignment to establish the postcondition of the receive axiom,

execution must be performed in a state that satisfies:

wp("m.pD 1= mtext,p;® mtext", B A Q A Pp=Po @m)s

which is:
m.pD
A A = ®
(3 Q pD p0 m)mtext.pDOmtext
mep
m D
- A = o
pmtext thext.pDOmtext pD pO)

Thus, the receive axiom will be sound with respect to our operational model

provided

m msPy,

(8

A =|
mtext thext.pD ®mtext pD pO)
or equivalently,

m'pD

S H A B* =
at(mtext): (pre(r) A B %text.pDOmtext

A (<]
text mtext € (o'D pD))

is true of all program states.

The soundness of the proof system depends on the universal invariance

(Vmtext: mtext a message that can be sent to D: Sat(mtext)). (3.1)

In other words, receipt of any message that might be sent to D will estab-

lish the postcondition of the receive. Let s be a semd statement that

53
3.3.3. Establishing Satisfaction

3.3.3.1. Satisfaction Invariants

Given a distributed program made up of processes Dys Dys cees D s
assume each process has been annotated using a sequential programming logic
and the communications axioms above. Let id represent the list of identif-
iers that appear free in assertions in the sequential annotation. These
identifiers name auxiliary variables and program variables [Clint 19731,
where distinct variables are assumed to have distinct names. The values of
program variables are stored in memory; auxiliary variables need not be
since their values exert no influence over the execution of processes.
Accordingly, program variables can be named in assertions in the sequential
annotation of any process, but can appear only in statements in processes
that have access to the memory in which these variables are stored. Allow-
ing assertions in one process to refer to variables that are only accessi-
ble to another turns out to be quite important -- it allows the states of

different processes to be correlated.
Consider a receive statement:
r: receive m when §.

in process D. In order for the execution of r to result in the receipt of
a message with text mtext, then (1) pre(r) must be true, (2) B must evalu-
ate to true with m=mtext, and (3) a message with text mtext must have been
sent to D but not yet received. Thus, immediately before mtext is assigned
to m, the system state can be characterized by:

m

pre(r) A Botexe

mtext € (o'D e pD) ’

where © 1is the multiset difference operator.

55

names D as its destination:
st semnd <expr> to D.

The text of the message sent by executing s is determined by evaluating
<expr> in the state that exists at the time it is executed. Thus, for mes-

sages sent to D due to execution of s, (3.1) becomes

(VV, mtext: pre(s)éd A mtext=<expr>v1-d: Sat(mtext))

or equivalently,

. . id _ 1d
SatlsfactlonAsynch(s.r). (pre(s)V A mtext=<expr>- A mtexte(o'DepD)
n) m-PD

A L]
pre(r) A ﬂmtext = %text,pDemteXt

There, v is a vector of values that models the program state at the time s

is executed. Satisfaction (s,r) is called the satisfaction invariant

Asynch

for s and r.

We shall say that a semd statement that names process D as its desti-
nation matches every receive statement in D. Then, to establish satis-

faction:

Satisfaction Rule
For every semd statement s and receive statement r that match,
SatlsfactlonAsynch(s.r) is universally invariant.

3.3.3.2. Showing Universal Invariance

To establish satisfaction, each satisfaction invariant -- a formula of

the form Satisfaction (ssr) -- must be shown to be true of every pos-

Asynch

sible program state. There are several ways in which this can be done.

One way is to show that Satisfaction (syr) is a tautology. This is

Asynch

easily done if, for example, the Boolean guard in the receive statement r

56

never evaluates to true for messages that can be sent by executing s. That
is,

(pre(s)fﬁ A mtext=<expr>fé o)
v v

= .
pmtext false

A second way of showing a formula UI to be a universal invariant
involves first showing that UI is true initially (i.e. true before any pro-

cess has begun execution), and then proving that UI is invariant across

. . . . 5
execution of every statement s in the distributed program”. Formally, one

proves:
For all statements s: {pre(s) A UL} s {UI}.

An equivalent, but somewhat simpler approach is based on proving non-

interference with the satisfaction invariant. Let 81 Sgs eces be the

5m
(atomic) statements of the process Ds that contains the semd statement s.

To show the universal invariance of the satisfaction invariant

Satlsfact1onAsynch(s.r). first show that for all 8%

(s,1)}.

{pre(si) A Satisfaction

Asynch(s‘r)} 8; {Satisfactio

nAsynch
This is usually easy because the sequential annotation of D, should contain
enough information to prove that either the message that could be received

by r from s has not yet been sent (i.e. mtext e (o—DGpD) is false), or that

m.p

i i . e non-
the message can be received and thext.pDOmtext 1s true Then, the no

interference of other processes with SatisfactionAsynch(s.r) is shown.

Clearly, it follows that Sat1sfact1onAsynch(s.r) is true in all states of

Statements are assumed to be atomic actions with respect to execution
of other processes. In the absence of shared memory, assignment, semd,
receive and skip are all atomic. This would not necessarily be the case
if there is shared memory. [Owicki & Gries 1976] give a syntactic charac-
terization of when statements will appear atomic.

57

the computation.

3.3.4. Establishing Non-Interference

Lastly, since assertions in one process can can refer to variables
changed by another, it is necessary to show that the execution of no pro-
cess invalidates the proof of another. This is called non-interference

[Owicki & Gries 1976].

An assertion P is parallel to a statement s if s is contained in ome
process and P is contained in a different concurrently executing process.
To establish non-interference, it must be shown that execution of every

statement parallel to P leaves P unchanged. That is, for all assertions P

6
that are parallel to a statement s , prove:

{P A pre(s)} s {P}.

Note, however, that for the case where s is a receive statement,
s: receive m when §
in process D (say), this involves a proof that:
{P A pre(s)} s {P}

is a theorem. While that follows directly from the receive axiom, to
preserve the soundness of the logic, satisfaction must be established for P
as a postcondition of the receive in the theorem above. This is done by

showing the universal invariance of:

Again we assume that statements are atomic actions with respect to exe-
cution by other processes.

58

-

(pre(snd)éd A mt;ext;=<expr>$d A (P A pre(s)) A B
PmnpD)
mtext.pD S mtext

m
mtext

mtexte(o'D e DD))

for every matching semd statement snd of the form:
snd: semd <expr> to D

The need for this stems from the fact that a receive can be viewed as
implementing a decentralized assignment statement. Proof that its execu-
tion does not interfere with assertions that are parallel to it, is there-

fore necessary.

Although a non-interference proof could be a formidable task, there
are situations where the amount of work can be reduced. If s does not
modify variables named in P, or if P contains no references to shared or

non-local variables, then non-interference follows immediately. Also, if
(P A pre(s)) < false,

then non-interference is trivially established, because s cannot be exe-

cuted when the system is in a state satisfying P.

3.4. Safe Uses of Asynchronous semd

The universal invariance of the satisfaction invariants ensures that
the postcondition of a receive will indeed be true when a message is
received. Unfortunately, establishing satisfaction is not always a simple
task. The task is simplified if semd and receive are used in a discip-
lined manner. Therefore, in this section we explore uses of asynchronous
message passing primitives for which satisfaction is easily established.
We do this with an extended example. Consider the following distributed

programming problem.

59

A master process desires to broadcast the value of its variable
mvar to a collection of slave processes, named slavel. slavez. ces

slaveN. Available is a reliable communications network that allows
the master to communicate with each of the slave processes7.

3.4.1. Restricted Postconditions

A first solution to the broadcast problem has the master process send-
ing V the value of mvar to each slave.
master: process;
mvar := V3
for i :=1 to N begin;
{mvar = V}
send mvar to slavei

end
end

And, each slave process executes:

slavei: pProcess
receive m; when true

{mi =V}
end
We would like to prove that after termination of all processes, V has

been received by all of the slaves. As described earlier, such a proof
involves three steps. First, a sequential annotation of each process is
constructed. This is easily obtained from the proof outlines given above.
Secondly, satisfaction must be established. To do this, a satisfaction
invariant is constructed for the semd in the master and the receive in

each slave. For slavei, it is:

7That is, we assume that every message sent is eventually delivered.

While this is not a reasonable assumption, we make it here to simplify the
problem.

60

m.

) = (m.=V) 1

= A e .
(mtext =V mteXt'e(o'slavei pslavei 1 mtext

This is a tautology, and so true of all program states. Finally, non-
interference follows trivially from the fact that no assertion in the

sequential annotation contains variables modified by other processes.

This protocol illustrates that satisfaction follows when the postcon-
dition of a receive does not reference variables modified by another pro-
cess. Above, the postcondition of the receive statement was in terms of
V -- the value of the message received -- not mvar, the variable in the
master process whose value was sent. Consequently, execution by the sender
cannot invalidate the postcondition of the receiwve. In general, the fol-

lowing can be said:

Given matching statements r and s, where s is of the form:
s: semd <expr> to D
if:
(1) post(r) = Q 2 Q

(2) pre(r) 1=> Q T
(3) (pre(s)V' A mtext=<expr>v) = (QZ):text

then Satlsfact1onAsynch(s.r) will be a tautology.

3.4.2. Monotonic Preconditions

For a variety of reasons it may be necessary to use the stronger

assertion,
mi==V A mvar=V

in the postcondition of the receive in a slave process. Then, execution

in the slave is, in some sense, synchronized with that of the master. In

61

particular, correct execution following the receive can be dependent on

the agreement of the value of the slave's variable m, and the value of

mvar. Now, the code for a slave process is:

slavei: process
receive m; wvhen true
{m; =V A mvar=V}
computation requiring mvar =V

end

As before, the sequential annotation of each process is straightfor-
ward. The satisfaction invariant for the semd in the master and the
receive, in light of the new (stronger) postcondition, is:

m.
1

= A *
(mtext =V mtext e(o; ntext

lavei epslavei)) = (mi =V A mvar=V)

This is equivalent to:

Ve (o

e = mvar=V.
slavei pslavei)

To see that this is true in all program states, notice that the following

is invariant at the master process:

(Jj: 1<sjsSN: Veo

—2 =
slavej) mvar = V.

I :
master

That is, mvar =V is true at the master starting from the time the message

is sent to the first slave process. Since,

= (Ve(o's) = mvar=V),

(=]
Imaster lavei pslavei

is a tautology, the satisfaction invariant is true in all program states.

62

To complete the proof, non-interference must be shown. Only the

assertion:
{mi =V A mvar=V}

in slavei names a variable modified by another process. The statements in
the master parallel to this assertion are the semd statement and the
assigmment: ™mvar := V", Thus, it suffices to note that these statements

do not invalidate the assertion in question.

In this second example a new use of message passing is illustrated --
the appearance of an assertion about the state of a sender in the postcon-
dition of a receive statement. In addition to sending values as in the
first protocol above, the transmission of a message can also facilitate
transfer of a predicate from sender to receiver; in this case, mvar=V is
transferred. Transfer of a predicate must be done with care so that subse-
quent execution by the sender does not interfere with the postcondition of

the receive, before the message is received.

In our proof system, the universal invariance of the satisfaction
invariants ensures that the sender will not invalidate the postcondition of
a receive, while the non-interference proof ensures that the sender never
invalidates other assertions in the receiver. One might expect that satis-
faction invariants would be unnecessary, arguing that interference with the
postcondition of a receive statement by a sender should be detected when
performing a non-interference proof. Unfortunately, this is not the case.
Because messages are buffered, a statement s in one process can interfere
with the postcondition of a receive even if s cannot be executed while
the receiver is waiting for a message. To see this, consider a process

that sends a message to itself, and then invalidates the transferred

63

predicate before executing a receive.

An assertion is momotonic if once it becomes true it remains so. The
use of monotonic preconditions for semd statements guarantees that satis-
faction can be established. For example, above mvar=V is implied by the
precondition of the master's semd statement. The assertion is monotonic
-- it is implied by every subsequent state of the master process. There-
fore, mvar =V will be true when the message is received, regardless of
delivery delays. Hence, mvar =V can be asserted in the postcondition of
the receive in a slave process. The general technique is:

Let T be a predicate such that:

(1) it is implied by the postcondition of a receive
statement r

(2) it is monotomnic and

(3) it is implied by the precondition of a semd statement s
that can originate a message that might be received by r.

Then, SatisfactionAsynch(s,r) will be universally invariant.

3.4.3. Acknowledgment Messages

It is possible using message passing to transfer non-monotonic predi-
cates between processes. Then, structure of the program must ensure that
such a predicate will be true when the message is received. For example,
in the protocol above consider the implications of changing the value of
mvar after all of the messages have been transmitted. The precondition of
the semd statement is no longer monotomnic. Also, Imaster is no longer an
invariant of the master process, and consequently the satisfaction invari-

ant is no longer universally invariant. Not surprisingly, it is now possi-

ble that mvar #V when a message is received by a slave -- an undesirable

64

state of affairs. The master must be prevented from changing the value of
mvar until all of the slaves have completed any processing requiring
mvar = V. To facilitate this, each slave will transmit an acknowledgment
message ack:.L when it no longer requires that mvar=V.

slavei ! process

{aCki ¢ o'master}

r : receive m vhen true;

s
.= A = A A .
{m1 \' mvar =V Vepslavei ackléo—master}
computation requiring mvar =V
. = A = A .
{ml \' mvar =V Ve pslavei ack, ¢ Umaster}

s_ ¢ send acki to master

L]
no longer can assume mvar =V

end

The master process changes the value of mvar only after an acknowledgment

is received from every slave:

master: process;
mvar := V3
for i :=1 to N begin
{mvar =V A SlavSent(V,i-1)}
s_¢ send mvar to slave,; {slavSent(V,i)}
end;
for i :=1 to N begin
{mvar =V A SlavDone(V,i-1) A SlavSent(V,N)}
r receive ackmsg whem ackmsg = 'acki'
{mvar =V A SlavDone(V,i)}
end; {SlavDone(V,N)}
mvar := newvalue; {mvar zV}
end

65

where:

Slavsent(v,$) = (V iz 15is8: veo,)

SlavDone(v,S)=(Vi: 1i<8S: v;é(cys) A ackiep)

)
lavei pslave- master

1

These proof outlines are easily expanded to give a sequential annotation.

To establish satisfaction, SatisfactionAsynch(sm. r,) and
SatisfactionAsynch(ss. rm) must be shown universally invariant for each

slave. Below, we work out the details for slavei only.

SatlsfactlonAsynch(sm. rs) follows from the invariance of

Ve(o's) = nmvar=V,

(<)
lave. pslave.
i i

at the master process. The second satisfaction invariant is

(ackie(o ep) A mvar=V A SlavDone(V,i-1) A

master master
SlavSent(V,N)) = mvar=V A SlavDone(V,i),

which simplifies to

(ackie(or ep) A mvar=V A SlavDone(V,i-1) A

master master

SlavSent(V,N)) = Vepslave
i

This is true of all program states, because

ackieo' = Vep

master slavei

is an invariant at slavei. and not interfered with by execution of the mas-

ter.

Showing non-interference for this protocol involves showing that

parallel execution does not invalidate assertions involving mvar, Pslave.’
i

66

and o .
master

First, consider those assertions in slavei that name mvar. By design,

such assertions appear only between Ty and 8ge The assertion

: =V A]
I: mvar=V “kléomaster

appears at both the start and end of the code section, and cannot be
affected by execution of slave;. Therefore, it can be included as a con-

junct in each intermediate assertion. Clearly, the only statement parallel

to these assertions that could invalidate them is:
mvar := newvalue;
in the master process. However,

:= " = . .
pre(™mvar newvalue") ack; € Pnaster

Hence, it follows from the Network Axiom that:

re(™mavar := newvalue" = ck. € o R
pre(e') ack; € Chaster

Since I A pre(™mvar:= newvalue") = false, interference cannot occur.
Thus, for all statements s between the receive and semd in the slave, we

have that:

{IApre(s)} s {1}
despite concurrent execution.

Next, consider assertions in the master process that contain refer-

ences to the p multisets. These assertions, derived from the predi-

slave.
i

cate SlavDone, are always of the form:

P: V(o).

(]
lave. Pslave.
i i

67

Execution of the receive statement L in a slave is the only way to

change the value of p . However, that can only add a message to the

slavei
multiset -- an action that cannot change the truth of P. Thus, no asser-

tion naming p can be invalidated by concurrent execution.

slave.
i

Lastly, the variable o

s i . .
aster 8PPears in assertions of slaves and is

modified by execution of semd statements that appear in slaves. However,
the only modification made to O aster by the execution of slavei is addi-

. " " . . .
. . name 0’ onl
tion of the element ack1 « Since assertions in slave1 master y

as part of the predicate " ackieiohaster" no parallel execution by other

slave processes will interfere with such assertions.

The key idea in this example is that the master maintained the truth
of the predicate mvar =V until after the slaves finished any processing
during which the truth of that predicate was required. Because the master
has no way of knowing exactly when that time is, each slave sends an ack-
nowledgment to communicate that fact. Thus, sending acknowledgments can be
viewed as a way to ensure satisfaction: between the time the message is
sent and its acknowledgment is received, the sender keeps the transferred
predicate true, so that the transferred predicate can be asserted in the
receiving process between the time the message is received and the ack-
nowledgment sent. The general rule is:

Non-monotonic Assertions

A message can be used to transfer any predicate from one process S

to another R as long as the S ensures that the predicate is true

at the time the message is received. R can inform S that the
predicate is no longer required by returning an acknowledgment.

68

3.5. Discussion

3.5.1. Ihe Syntax of semd and receive

Our choice of syntax for semd and receive is based on our desire to
develop a general proof technique for programs that use message-passing.
The statements had to be flexible enough to be useful for implementing more

sophisticated message-passing operations.

It is easy to construct other message-passing operations in terms of
our semd and receive. This is due to the presence of the Boolean guard
in the receive statement -- it allows a process to select which delivered
message is received. For example, asynchronous message-passing statements
in which messages have types and receive statements are type-specific can
be implemented: a type field is included in each message and the guard is
used to ensure that only one type of message can be received. A similar
technique allows implementation of receiwve statements that accept mes-
sages only from a single process. Furthermore, our statements can be used
to construct message-passing operations with more complicated synchroniza-
tion. In [Schlichting & Schneider 1981], synchronous message-passing
statements and remote procedure calls are implemented, while elsewhere in
this dissertation we construct a receive with timeout and an operation that

periodically retransmits a message until an acknowledgment is received.

The syntax for semd and receive was also designed to simplify the
proof rules. For example, requiring explicit naming of the destination
Process in a semd statement allows matching semd-receive pairs -- that
is, those pairs for which satisfaction must be shown -- to be determined

syntactically. The number of matching communication pairs could have been

69

even further reduced if messages were sent to and received from ports
[Solomon & Finkel 1979] [Baskett et al. 1977] rather than processes. Thus,

there is theoretical justification for this comstruction.

3.5.2. Using Message-Passing

In this chapter, we have developed proof rules to allow the verifica-
tion of programs using semd and receive. Doing this yields insight into
the difficulties of writing and verifying such programs. One major diffi-
culty when an asynchronous send is used is coping with the interference
that can arise. The sequential axiom for receiwve allows any conclusion
to be made following receipt of a message. However, such a conclusion is
valid only if the sending process does not interfere with the satisfaction
invariants associated with the receive. Using message-passing in a dis-
ciplined manner controls such interference by restricting the actions a
sending process can take following transmission of a message. The discip-
lines we explained simplify the satisfaction invariants, and therefore

facilitate proof of universal invariance.

The need to perform satisfaction illustrates another difficulty with
developing programs that communicate using message-passing: a process can-
not be developed in isolation. While the sequential axioms allow anything
to be concluded following a receive in process P, only postconditions for
which satisfaction can be shown are valid in a proof. In general, develop-
ing such postconditions requires knowledge about the actions of all
processes that send messages to P, especially if these postconditions are

to contain assertions about the states of other processes.

70

In contrast, developing concurrent programs that use shared memory for
communication and synchronization does not require such knowledge. While
conclusions about other processes can also be made as a result of synchron-
ization, these ™miracles" can usually be determined by examining only the
process executing the synchronization operation. For example, if statement
S produces a state satisfying Q when started in a state satisfying (P AB),
then the proof rule for an await statement [Owicki & Gries 1976] allows

conclusion of
{P} await B them S {Q},

where logical expression B might involve variables changed by other
processes. The ™miracle" in this proof rule is that B can be asserted in
pre(S). However, unlike the ™miracle" following execution of a receive,
this one can be determined solely by examining the text of the synchroniza-
tion mechanism. No knowledge of the internal structure of other processes
is required, so that programs using shared memory for communication should

be easier to develop than programs that use message-passing.

Chapter 4

The Two-Phase Commit Protocol

4.1. Introduction

Suitably designed distributed systems can exhibit a high degree of
fault-tolerance. Unfortunately, the protocols required to realize this are
often complex. One way to cope with this complexity is to structure dis-
tributed computations in terms of atomic actions. A single-site atomic
action is a computation that appears to execute instantaneously on a single
processor. Should a failure occur during its execution, either the initial
state or the final state of the computation is visible, not some intermedi-
ate state. This can be extended for use in systems involving more than one
processor, as follows. A multiple-site atomic action (MSAA) is a collec-
tion of operations, each on a different processor Pis Pyseee PN' where
either all are performed or none are, despite failures at one or more

sites.

One use for multiple-site atomic actions arises when a transaction
running in a distributed system involves data stored at more than one site.
In order to preserve the consistency of the database, transactions must
always be executed in their entirety. Hence, if a portion of a tramsaction
completes at one site, then it must be completed at all sites. Thus, a

transaction can be viewed as a multiple-site atomic action.

A number of protocols have been developed to implement multiple-site
atomic actions [Reed 1978], the most popular of which is the two-phase com-

mit protocol. As described in [Gray 1978], this protocol ensures that the

71

72

constituent operations are not executed at any site, or are executed at
least once at every site. Here, we apply the theory developed in previous
chapters to the two-phase commit protocol. This serves not only to estab-
lish the partial correctness of a well-known fault-tolerant distributed
algorithm, but also to demonstrate the feasibility of applying our tech-

niques to a non-trivial example.

4.2. The Protocol
The two-phase commit protocol is implemented by a single gcoordinator

process, and one worker process at each sitel. Execution is in two phases,
as the name suggests. In the first phase, the coordinator sends a message
of type prepare to each worker. Upon receipt of such a message, the worker
determines if it can perform the operation requested in the prepare mes-
sage, and replies accordingly. If the worker replies with an agree mes-
sage, then this is construed by the coordinator as a commitment -- if sub-
sequently asked, the worker will be able to perform the operation. It
replies with a refuse message if it is unable to make such a commitment.

If the coordinator receives at least one negative response, it broadcasts
an gbort message. Upon receiving an gbort message, a worker rescinds any
commitment made to perform the operation on demand, and acknowledges
receipt with a message of type abortack. The operation remains undone.
However, if all workers have replied with agree messages, the second phase
is entered. There, the coordinator broadcasts a commit message. Upon
receipt, each worker performs the operation, and sends a message of type

commitack to the coordinator. Figure 4.1 summarizes the protocol.

1Including the site executing the coordinator.

Coordipator
receive user request;
broadcast prepare
message;
receive replies from
all workers;

if all agree -
broadcast commit message;
receive commitack from

all workers;

[0 at least one refuse =+
broadcast abort;
receive abortack from

all workers;

73

¥Worker
receive prepare from coordinator;
if can commit to perform operation -
prepare for operation;
send agree to coord;
0 cannot commit to perform
operation -+
send refuse to coordinator;
fi;
receive verdict from coordinator;
if verdict = commit -+
perform operation;
send commitack to coordinator;
0 verdict = abort -+

send abortack to coordinator;
£

[1)

Figure 4.1 -- Two-Phase Commit Protocol

The consequences of a failure at the coordinator depend on how far it

has progressed at the time of the failure.

If the failure occurs after the

coordinator has begun sending commit messages, then a recovery protocol

must complete that broadcast, thereby ensuring that every worker is noti-

fied that it should perform its operationmn.

should be broadcast.

commitments, and leave the operation undone.

Otherwise, an gbort message

As before, this causes the workers to rescind their

Unfortunately, the workers

must remain committed to perform the operation for the entire period of the

coordinator's failure.

Clearly, this is a drawback of this protocol.

A failure at a worker's site has no effect on whether the coordinator

commits or aborts the MSAA.
response is received.

the next message.

The coordinator retransmits a message if no
Thus, after a failure, a worker need only wait for

If the message is a prepare message, then the entire

protocol is reexecuted, but if it is either commit or abort, then an ack-

nowledgment is sent after performing the requested action.

The recovery

74

Coordinator Worker
if have sent at least receive message;
1 commit message - continue as in Figure 4.1
broadcast commit; based on type of message;

receive commitack from
all workers;
O otherwise =
broadcast abort;
receive abortack from
all workers;

Figure 4.2 -- Recovery Protocols

protocol for the coordinator and worker are shown in Figure 4.2.

4.3. Communication

The two-phase commit protocol is an event driven protocol. When a
message is received, its contents describe an event that took place at the
sender's site. Based on that information, the receiving process performs
some local action, replies to the message, and waits for another message.
Unfortunately, if messages can be lost or processors can fail, there is no

guarantee that the awaited reply will be forthcoming.

This problem can be avoided using receive statements with fimeouts
[Lamport 1981]. A process executes a receive statement to wait for a
reply, and if no such reply is received within a certain amount of time,
execution of the receive terminates. This allows the sending process to
take some application-dependent remedial action. In the two-phase commit
protocol, this action involves retransmitting the message and again waiting

for a reply.

75

4.3.1. A Receive with Timeout Operation

Execution of the receiwve statement described in chapter 3 never
times out. However, using primitives already defined, it is straightfor-
ward to construct rectimeout -- a receive operation whose execution will

time out t seconds after being invoked.

Assume that messages sent by a process to itself are never lost, and
that messages have three fields -- content, type, and source. Then, a rec-
timeout operation that allows process myid to wait for a message from pro-
;ess pid is shown in Figure 4.3. Note that we do not advocate using this
implementation -- it is obviously simplier to define a new receive primi-
tive whose execution is terminated by the system after t seconds. However,
it is more convenient to use this rectimeout implementation when verifying

a program, since no new proof rules are required,

The timeout message can be received only during execution of the
cobegin in which it is sent. This is because each timeout message has a

unique text: the type timeout distinquishes it from non-timeout messages

rectimeout(m,p,myid,pid,tocount):
tocount:= tocount+l;
cobegin;
receive n[content,type,source] when
((B A m.type # timeout A m.source =pid) V
(m.content = tocount A m.type = timeout));
// delay(t);
sead [tocount,timeout,myid] to myid;
coend;
end;

Figure 4.3 -- Receive with Timeout Operation

76

sent by that process, and the integer value tocount associates it with that

execution of the cobegim.

A sequential annotation of this operation appears in Figure 4.4. The
postcondition of receive statement r can be informally explained as fol-
lows: either a non-timeout message from pid has been received and Q can be
asserted, or the timeout message was received and T remains true. This is
because receipt of the timeout message conveys no information at all -- it

simply terminates the receive statement.

.. = .. = = A
{chld op A Poyid = Po A tocount = t, T}
rectimeout(m,p,myid,pid,tocount):
tocount:= tocount+l;
cobegin;
{pmyidzpo A tocount = tp+1 A T}
r: receive m[content,type,source] whem
((B A m.type # timeout A m.source =pid) V

(m.content = tocount A m.type = timeout));

{pmyid =pp®m A tocount = t0+1 A
((B A m.type # timeout A m.source=pid A Q) V
(m.content = tocount A m.type = timeout A T))}
// {"myid: 0p A tocount =t +1}
delay(t);

s: semd [tocount,timeout,myid] to myid;
{omyid =0,® [t0+1.timeout.myid] A tocount = t0+1}
coend;
end;
{pmyid =pp®m A Onyid = ©0 ® [t0+1 stimeout,myid] A tocount = ty+l A
((B A m.type # timeout A m.source=pid A Q) V
(m.content = totl A m.type = timeout A T))}

Figure 4.4 -- Sequential Annotation of Rectimeout Operation

77

When proving the correctness of a program in which rectimeout opera-
tions occur, certain proof obligations must be satisfied. It must be shown

that:

(1) SatisfactionA

send statement s' in process pid.

(s'sr) is universally invariant for every
synch y

(2) Concurrent execution by other processes does not interfere with
the sequential annotation of rectimeout.

(3) SatisfactionA

(4) There is no interference within the cobegin.

synch(s.r) is universally invariant.

Since (1) and (2) depend on the context in which the operation is used,
nothing further can be said about them here. (3) and (4) can be simplified

as follows.

By definition, Satisfaction

Asynch(s’r) 18:

(pre(s)éﬂ A mtext = [tocount.timeout.myid]éd A pre(r) A

((B A m.type # timeout A m.source = pid) V

. m
R = A m. =
(m.content = tocount A m.type tlmeout))mtext
.,© .
mtext E(ohyld meld))
(tocount = t0+l A ((B A m.type # timeout A m.source =pid A Q) V
m'pmyid
. = A m. = ti A R
(m.content = tocount A m.type = timeout T)))mtext’ pmyidemteXt

This simplifies to

(pre(r) A [tocount,timeout,myid] € (Umyide pmyid))

m’pmyid
[tocount.timeout.myid].pmyidﬁ[iocount.timeout.myid]'

Hence, to establish Satisfaction (ssr), it is sufficient to show:

Asynch

PO : pre(r) ** Puyid
*P [tocount, timeout,myid], Poyid ® [tocount,timeout,myid]”’

1

78

Note that for all receive statements I rizr.

Satisfaction (s,ri) is trivially true in every state. This is because

Asynch

having timeout messages with unique texts ensures that messages sent by s

cannot satisfy the Boolean guard on any receive statement but r.

To satisfy the fourth requirement, it is necessary to show that execu-
tion of neither statement list within the cobegim interferes with asser-

tions in the other. Since execution of r does not modify either Omyid °F

tocount, it follows trivially that such execution cannot invalidate pre(s)

or post(s). Therefore, it remains to show:

{pre(s) A pre(r)} s {pre(r)}
{pre(s) A post(r)} s {post(r)}.

And so, it is sufficient to prove:

o;nyid
o

PO, : (pre(s) AT) = T
myid

® [tocount, timeout,myid]

o;nyid
°;nyid

(pre(s) A Q) = Q

® [tocount, timeout,myid]”’

4.3.2. Retransmissions

Given a rectimeout operation, it is possible to implement a structured
message-passing operation -- the communicate -- that is well suited for
event driven protocols. The code for a communicate operation is shown in
Figure 4.5. When executed, a message with content "cont™, type "sendt",
and source S is transmitted to D, the destination process. Then, a reply
with content "ncont™ and of any type found in the set "ntype" is awaited.
The value of the message is assigned to "msg". If no such message is

received after t seconds, the message is resent to D.

79

{o'D=a'O Apg=py A T}
communicate(cont , sendt, S, msg, ncont, ntype, D, toc):
{O'D =0y Apg=py AT A sendt # timeout}
s: semnd [cont,sendt,S] to D;
{(o'0 ® [cont,sendt,S]) ¢ op A PpSPg AT A sendt timeout}
rectimeout (msg, (msg.type € ntype A msg.content = ncont),S,D,toc);
{I: (o, ® [cont,sendt,S]) c op, A (p0 ®msg) € pg A sendt # timeout A
((msg.type € ntype A msg.type Z timeout A msg.content =ncont A Q) V
(msg.type = timeout A T))}
do msg.type = timeout + {I A msg.type = timeout}
send [cont,sendt,S] to D;
rectimeout (msg,(msg.type € ntype A msg.content = ncont),S,D,toc);
od;
end
{(cro ® [cont,sendt,S]) c op A (po ®msg) Pg A msg.type € ntype A
msg.content = ncont A Q}

Figure 4.5 -- Annotated Communicate Operation

When proving a program that contains communicate operations, certain
proof obligations are incurred. First, we assumed in the sequential anno-
tation in Figure 4.5 that T was invariant across execution of both sends in
the communicate. This will later be established by use of a replete proof

outline for the coordinator and worker processes.

Secondly, note that "sendt Z timeout™ was asserted in pre(s) and
throughout the remainder of the operation. Therefore, for every communi-

cate operation c, we require:
PO, : pre(c) = (sendt # timeout).
Lastly, for the postcondition of a communicate to hold upon termina-

tion, assumptions made in the postconditions of the receive statements in

each of the rectimeout operations must be validated by proving satisfac-

80

tion. Let r; and r, be receive statements in a communicate operation c

in process S interacting with process D. Then, Satisfaction

”"
Asynch(s ’ rl)

. . " . . .

and Sat1sfact10nAsynch(s .rz) must be proved universally invariant for all

send statements s" in D. To do this, we define a meta-satisfaction rule

for constructing satisfaction invariants. Establishing the universal

invariance of these invariants is sufficient to prove the universal invari-
. . " . . "

ance of SatlsfactlonAsynch(s .rl) and Sat1sfact10nAsynch(s .rz). The

meta-satisfaction rule is:

Communicate Meta-Satisfaction Rule:

A communicate operation cl matches another communicate c2 if the desti-
nation in the argument list of cl names the process in which c2
appears. For all matching communicate operations cl in § and c2 in D
for which the following triples have been proved to be theorems:

{o'D=o'l0 A pg =pl0 A T1}
cl: communicate(contl,stl,S,msgl,ncntl,ntl,D,tocl)

{(0'100[cont1.st1.S])EO'D A (ploemsgl)gps A

msgl.type € ntl A msgl.content =ncntl A Ql}

{as=020 A pD=p20 A T2}
c2: communicate(cont2,st2,D,msg2,ncnt2,nt2,S,toc2)

{(0206[cont2.st2.D])<_=o's A (p200mng)EpD A

msg2.type € nt2 A msg2.content = ncnt2 A Q2},

it is sufficient to show the following universally invariant to con-
clude post(c2) after execution of c2 completes:

Com_Sat(cl,c2): ((T1 A stlz timeout)-;d A
mtext = [contl,stl .s]é A T2 A st2 # timeout A
(B: mtext.type e nt2 A mtext.content =ncnt2 A

mtext.source =S A mtext.type # timeout) A
msg2 .pD

e = °
mtext € (O‘D PD)) szteXt'pD ® mtext

The complete sequential annotation of a communicate operation and the

derivation of this rule appear in Appendix 1.

81

At times it will be convenient for receive statements in isolation
to receive messages from communicates. Then, the meta-satisfaction rule

for a communicate-receive pair should be used:

One-Way Communicate Meta-Satisfaction Rule:

A communicate operation matches a receive statement if the destina-
tion in its argument list names the process containing the receive.
For every matching communicate-receive pair c,r for which the
theorems
= A = A
{o'D % .ps Po T}
c: communicate(cont, sendt, S, msg, ncont, ntype, D, toc);
{(O'o ® [cont,sendt,S]) o A (pO emsg) € pg A msg.type € ntype A
msg.content = ncont A Q}

and

{pD =ply A P}
r: receive m[content,type,source] when §
{DD-:D].O@m A B A Q}o

have been proved, the following must be universally invariant for
post(r) to hold after execution of r completes:

OWCom_Sat(c,r): ((T A sendt -'i_timeout)%d A

1d m
mtext = [cont,sendt,S]-" A pre(r) A B . .
m.pD

o, © = .
mtext € (D pD)) thext.pDOmtext
The derivation of this rule is similar to that of the Communicate Satisfac-

tion Rule.

4.4. Implementation and Sequential Annotation

The outline of the two-phase commit protocol given in section 2 must
be modified slightly to be implemented. The problem is that a worker pro-
cess cannot be sure its agbortack or commitack message has been received,
since no reply is awaited after these messages are transmitted. The solu-
tion is to structure each process as an infinite loop. The loop body

implements the protocol described in section 4.2. Then, a prepare message

82

sent by the coordinator for an MSAA can be viewed as the reply to the com-
mitack or abortack message associated with the previous MSAA. So that mes-
sages with the same type but from different MSAAs can be distinquished,
each MSAA is given a unique name. In our implementation, names are posi-

tive integers stored in the content field of every message.

To simplify exposition, we assume that the operation to be performed

by MSAA i at site j is
donej(i) := true.
Preparation for this operation is assumed to be
preparedj(i):= true.

Then, an implementation of the two-phase commit protocol should attempt to

maintain the invariance of

(Vi:i an MSAA: (V jo.k: j,k a site: donej(i) = doney (1))).

The text of all messages sent to the coordinator are saved in the send
multiset o,. However, in the sequential annotation of the workers and the
coordinator, we will often want to refer to only that portion of o, con-
taining messages sent by a particular worker process. Let oh[j] be the
multiset consisting of all the message texts sent by workerj to the coordi-
nator. Likewise, let o&[c] be the multiset consisting of all message texts

sent by the coordinator to workerj.

The implementation of a worker process consists of an infinite loop
and some initialization. The body of this loop is a fault-tolerant action
implementing the protocols of Figures 4.1 and 4.2. To reduce the size of

the worker's sequential annotation, we first define some abbreviations.

83

Let NDWj(i) be the assertion that workerj has not executed its operation in
any MSAA named i or greater, and NSAAj(i) the assertion that workerj has
not sent an abortack message to the coordinator for any MSAA named i or
greater. That is:

NDWj(i) =(Vh: h21i: -cdonej(h))

NSAAj(i)=(Vh: h2i: [h,abortack,jl £ o'c[j]) .

A universal invariant for each worker process can also be defined. For

each MSAA k, the following are always true:

(1) If the agree message has been sent and the abort message has
not been received, then prepm‘edj (k) = true.

(2) 1f donej(k) = true, then the commit message has been received.
(3) If the commitack message has been sent, then donej(k) = true.

(4) If the abortack message has been sent, then donej(k) = false.

This invariant can be expressed formally as:

UIj=(Vk: k21:
([k,agree, jl to'c[j] v [k,abort,cjl €p; v preparedj(k)) A
([kycommit,cj] €P; vV «done:(k)) A
([k,commitack,j] £o [j] v donej(k)) A
([k,abortack,jl £o [j] v ﬂdonej(k))).
Note that the source field of a message sent from the coordinator to
workerj is ¢j -- a value that will differ for each worker. As is explained

below, this is needed to implement broadcasts using communicate operations.

Lastly, we define a loop invariant for workerj as follows:
1j= (NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A toc.>0 A

UIj A (msg.type = prepare V msg.type = abort)).

name identifies the name of the MSAA with which the next message to be

received by workerj is associated, msg_name identifies the name of the MSAA

84

workerj: action,recovery;

var name, msg_name, tocj: integer;

{pj =¢ Ao [jl=9 A NDWj(1) A NSAAj(1) A UIj}
toc., name := 1, 1;

loop: action,recovery
{NDWj(name) A NSAAj(name) A toc.>0 A UIj}
rl: receive msglcontent,type,source] when
(msg.content = name A msg.source=cj A

(msg.type = prepare V msg.type = abort));
msg_name := name;

{1j}
do true + {Ij}
wexecute: action;
"from Figure 4.7" {Ij}
recovery
"from Figure 4.8" {Ij}
end wexecute; {Ij}
od;
end loop;
end worker.

Figure 4.6 -- Initialization of Worker.

with which the last message received by worker. is associated, and toc. is

used in the implementation of communicate operations in worker.. The vari-

able msg is assumed to be declared as follows:

var msg: record
content: integer;
type: character;

source: imnteger;
end.

The initialization portion of worker. is shown in Figure 4.6.

After receiving a message of type prepare, a worker must decide

whether it can commit to executing the operation. To do this, the follow-

85

ing function is used:

true if worker. can commit to being able to
perform the operation requested
possiblej(i)s in MSAA i

false otherwise
Figure 4.7 gives the partially annotated code for this section of workerj.

Notice that

is part of each fault-tolerant action labelled aa or ca, and that the value
of msg_name is assigned to name after each action terminates. The use of
these two statements to effect the incrementation of name is necessary to
avoid the possibility of worker. waiting forever for a message that is

J

never sent. To see this, consider what would happen if

was inserted as the last statement in the body of the action, and the two
statements described above were removed. Should a failure now occur
between the time the incrementation of name terminates and the action is
exited, the statement list would be reexecuted with name having a value one
greater than it had the previous time. But this means that workerj would
wait for a message from the coordinator that is not associated with the
current MSAA being executed. Hence, the communicate operation would never
terminate and deadlock would result. Using two statements avoids this
problem, since name retains its value until agfter the fault-tolerant action

terminates.

86

wexecute: actiom; {Ij}
if msg.type = abort -+
aa: actionm,recovery;
{NDWj(name) A (msg_name = name V msg_name = name+l) A toc, >0 A
NSAAj(name+l) A UIj}
cl: communicate(name,abortack, j,msg,name+l,{prepare,abort},
CJ.toc -)3
{NDW j(name) A (msg_name = name V msg_name = name+l) A toc. >0 A
NSAAj(name+l) A UIj A msg.content = name+l A :
(msg.type = prepare V msg.type = abort)}
msg_name := name+l; emd;
name := msg_name; {Ij}
0 msg.type = prepare A p0851b1e (name) -+
prepared.(name) := true;
ag: action,recovery;
{NDW j(msg_name) A msg_name = name A prepared (name) A tocJ >0 A
NSAAj(msg_name) A UILj}
c2: communicate(name,agree, j,msg,name, {commit,abort},
cj,tocj): end;
if msg.type = commit -+
ca: action,recovery;
{NDWj(name+1) A prepared (name) A NSAAj(name) A UIj A toc. >0 A
(msg_name = name V msg_name name+l) A [name,commit,cj] €p; }
done.(name) := true;
c3: communicate(name,commitack, jsmsg,name+l,{prepare,abort},
cjstoc.);
msg_name = name+l; emd;
name := msg_name; {Ij}
0 msg.type = abort —+
{NDW j(msg_name) A NSAAj(msg_name) A msg_name = name A ULj A
toc: >0 A prepared.(name) A [name,abort,cj] €p; }
prepared .(name):= fafse,
aa: action,recovery; "same as aa FTA above'"; emd
name := msg_name; {Ij}
£i; {1j}
[0 msg.type = prepare A ﬂpossiblej(name) >
c5: communicate(name,refuse.j.msg.name.{abort}.cj.tocj);
aa: actiom,recovery; "same as aa FTA above"; emd
name := msg_name; {Ij}
i; {13}

Figure 4.7 -- Action Portion of wexecute

87

recovery
{NDW j(msg_name) A NSAAj(msg_name) A UIj A toc; >0}
r2: receive msglcontent,type,source] when
(msg.content = msg_name A msg.source=cj A
msg.type € {prepare,commit,abort});
{NSAAj(msg_name) A NDWj(msg_name) A UILj A toc.>0 A
(((msg.type = prepare V msg.type = abort) A
[msg_name,msg.type,cjl epj) v
(msg.type = conmit A [msg_name,commit,cjlep. A
[msg_name,abort,cj]l ¢ o5 A [msg_name,agree,j] € pc[j]))}
name := msg_name;
if msg.type = prepare V msg.type = abort +
skip; {Ij}
0 msg.type = commit -+

{NDWj(name) A NSAAj(name) A UIj A t:ocj >0 A msg_name = name A
preparedj(name) A [name,commit,cj] epj}

ca: actiom,recovery
donej(name) := true;
c7: communicate(name,commitack, jsmsg,name+l,

{prepare.abort},cj.tocj);
msg_name := name+l; emd;

{NDW j(msg_name) A NSAAj(msg_name) A UIj A msg_name = name+l A
preparedj(name) A donej(name) A [name,commit,cjlep. A
(msg.type = prepare V msg.type = abort) A toc; > 0}

name := msg_name; {Ij}

£i; {1j}

Figure 4.8 -- Recovery Protocol of wexecute

The recovery protocol for wexecute, which reestablishes the loop

invariant Ij, is given in Figure 4.8.
Appendix 2 contains the sequential annotation of the entire worker.

To communicate with workers, the coordinator broadcasts messages to
the workers and then waits for their replies. The annotated broadcast
operation in Figure 4.9 implements this. Notice that a separate timeout

count -- ctoc(j) -- is maintained for each communicate within the

88

cobegim, and that the source included in messages sent to workerj is cj.
This ensures that a message of type timeout can be received only during

execution of the rectimeout in which it is sent.

Proof obligations are incurred when proving a program containing this
operation. The satisfaction invariants associated with the communicates
within a broadcast must be proved universally invariant. Further, non-
interference of other processes with the proof of this operation must be
established. Finally, non-interference of the operation with itself must

be shown.

If the form of the broadcast is as given in Figure 4.9, then estab-

lishing

{(Vj: j asite:R(j) A o5 =oOj A pc[j]=p0j)}
B: broadcast(sendtype,msg(l..N),rectype,req#):
cobegin
//{R(j) A orj=00j A pc[j]=p0j}
for all B.: communicate(req#,sendtype,cj,msg(j).req¥,rectype,jsctoc(j));
sites j {Q(3) A (oOj0[req#.sendtype.cj])go'j A
(pOj ®msg(j)) ¢ pc[j] A msg(j).content = req# A
msg(j) .type € rectype}
//
coend;
end;
{(Vj:]j a site: Q(j) A (oOjQEreq#.sendtype.cj])goj A
(pOj emsg(j)) c pc[j] A msg(j).content = req# A msg(j).type € rectype)}

Figure 4.9 -- Broadcast Operation

89

P, : {R(j) A pre(B;)} B, {R(j)} for
{Q(j) A pre(By)} B; {Q(j)} each j#1i
where Bi is a communicate operation within the cobegim, is sufficient to

prove non-interference within the broadcast.

To annotate the coordinator, define DONE(i) to be true when the opera-
tion associated with each MSAA named less than i has been requested by the
coordinator and either executed at all sites or executed at no site. That
is, DONE(i) is the assertion:

DONE(i) =(Vh: 1<h<i:
((Vj: j a site: -vdonej(h) A [h,abortack, j] epc[j]) v
(Vj: j a site: donej(h) A [h,commitack,jlep [j1))).
In addition, let NSA(i) be the assertion that no abort message concerning
an MSAA named i or greater has been sent, NSC(i) an analogous assertion for
commit messages, and TOC the assertion that each timeout count variable has
a value greater than 0:
NSA(i) = (Vjsk: j a site A k2i: [k,abort,cjl éo'j)
NSC(i) = (Vj.k: j a site A k21i: [k.commit.cj]éo'j)
Toc=(V j: j a site: ctoc(j) >0).
Finally, let UIC be a universal invariant associated with the coordinator

and Ic a loop invariant that is the desired postcondition of cexecute:

UIC=(Vj.k: j a site A i21: ([i.commit:.cj]torj v
([i,agree,jl ep [j] A [i,abort,cjlé o'j)))

Ic= (status = abort A DONE(req#) A value =req# A NSC(reg#) A
NSA(req#) A TOC A UIC).

Then, Figure 4.10 shows the initialization of the coordinator and the

action portion of the fault-tolerant action constituting the loop body.

90

coord: actiom,recovery
var status: character, value, req#, ctoc(l..N): integer;

{(Vj: j a site: o'j[c]=¢) Ap. =P}
ctoc, req#, value := 1, 1, 1; status := abort
loop: actiom,recovery;
do true + {Ic}
cexecute: action;
receive msg[content,type,source] whenm
(msg.type = MSAA_request A msg.source = user_process);
bl: broadcast(prepare, reply, {agree,refuse}, req#);
{status = abort A DONE(reg#) A value =req# A NSA(reg#) A
NSC(req#) A UIC A TOC A
(Vj: j a site: [req#,reply(j).type,jlep [j] A
((reply(j).type = agree A preparedj(req#)) v
reply(j).type = refuse)}
if V j: j a site: reply(j).type = agree +
status := commit;
b2: broadcast(commit, reply, {commitack}, req#)
{status = coomit A DONE(req#) A value =reqg# A
NSC(req#+1) A NSA(req#) A UIC A TOC A
(Vj: j a site: [req#,agree, j] epc[j] A preparedj(req#) A
done:(req#) A [req#,commitack,jlep [j1)}
0 3j:j a site:reply(j).type=refuse +
b3: broadcast(abort, reply, {abortack}, req#)
£i;
reset: action,recovery
{DONE(req#+1) A (status = commit V status = abort) A UIC A
(value=req# V value=reg#+l) A NSC(regq#+l) A
NSA(req#+l) A TOC}
status := abort;
value := req#+l; emd;
reg# := value; {Ic}
recovery; "from Figure 4.11"; emd; {Ic}
od;
emad loop ;
emd coord

Figure 4.10 -- Initialization and Action Portion of cexecute

91

The variable req# identifies the MSAA being executed by the coordinator,
and the variable value identifies the MSAA with which the next message to
be sent is associated. Also, the array reply(l..N) is assumed to be

declared as follows:

war reply(l..N): record
content: imteger;
type: character;
source: imteger;
end.
If a failure occurs, one of the restartable FTAs -- coord, loop or

reset -- could be restarted, or the recovery protocol for cexecute might be

invoked. Figure 4.11 gives this recovery protocol.

The complete coordinator annotated with assertions can be found in

Appendix 3.

The sequential annotations of workerj in Appendix 2 and the coordina-
tor in Appendix 3 are replete proof outlines, if assignment to a variable
is atomic. Using these annotations, it is easy to verify the correctness
of each fault-tolerant action constituting the coordinator and worker
processes using the inference rule presented in chapter 2. Here, we simply
note that the coordinator variables status, value, reg#, and ctoc must be
in stable storage, as well as donej. preparedj. tocj. name, and msg_name
from workerj. Each of these appears either in the precondition of a

recovery protocol or in a non-local assertion.

4.5. Showing Satisfaction

For these sequential annotations to be valid proof outlines, satisfac-
tion must be demonstrated. This means showing that Com_sat(cl,c2) and

Com_Sat(c2,cl) hold for each pair of matching communicate operations cl and

92

recovery
{DONE(value) A UIC A TOC A
((status = commit A NSA(value) A NSC(value+l) A
(Vj: j a site: [value,agree,j] epc[j] A prepared.(value))) v
(status = abort A NSA(value+l) A NSC(value)))}
req# := value;
if status = abort -+

b4: broadcast(abort, reply, {abortack}, req#)

{status = abort A DONE(req#) A value=req# A UIC A NSA(reg#+l) A
TOC A NSC(req#) A (V j: j a site: -'donej(req#) A
[req#,abortack,jl Epc[j])}

0 status = conmit -+

b5: broadcast(commit, reply, {commitack}, req#)

{status = conmit A DONE(req#) A value=req# A UIC A NSA(regf) A TOC A
NSC(req#+l) A (V j: j a site: [req#,agree,jlep [j] A
preparedj(req#) A donej(req#) A [req#,commitack, j] epc[j])}

£i;
reset: action,recovery
"same as reset FTA from Figure 4.11"

end;

{Ic}

Figure 4.11 -- Recovery Protocol of Cexecute

c2, and that OWCom_Sat(c,r) hold for each matching communicate-receive
pair. While this may appear to be a formidable task given the relatively

large number of message-passing operations, it actually is not.

First, all workers are identical and each communicates only with the
coordinator. Hence, it suffices to investigate only the satisfaction
invariants obtained by considering the communication between the coordina-

tor and one worker, say workerj.

93

Secondly, nearly all of the satisfaction invariants reduce to true.
For example, consider an arbitrary satisfaction invariant Com_Sat(cl,c2).
If the Boolean in the receives in c2 cannot evaluate to true for any mes-
sage text sent by cl, then the formula is trivially true because one of the
conjuncts in the antecedent will be false. Moreover, if post(c2) follows
directly from pre(c2) or the Boolean guard, then the consequent of
Com_sat(cl,c2) is implied by the antecedent regardless of the state in
which the formula is evaluated. Hence, the formula is a tautology. This
means that the universal invariance of Com_Sat(cl,c2) is easily established
except for the case when receipt by c2 of a message sent by cl allows
assertions to be made about the state of the process in which cl appears.
Thus, in this implementation, only four satisfaction invariants require
further examination -- Com_Sat(cZ.blj). Com_Sat(c3.b2j). OWCom_Sat(ij.rZ)o
and Com_Sat(cl.b3j).2 In what follows, we will require some abbreviatioms.

Given an assertion of the form
A: (Vj: j a site: P(j)),
then define A[j] to be: P(j).

Com_Sat(cz.blj) is defined to be:

2Although other satisfaction invariants cannot be reduced to true, each
is identical to one of these four formulas.

9

-—

(p::e(c:Z)%d A mtext = [name.agree.j]\i,d A status = abort A DONE(req#)[j] A
value = req# A NSC(req#)[j] A NSA(req#)[j] A TOCL3j] A UIC[j] A
mtext.type € {agree,refuse} A mtext.content = req¥ A mtext.source=j A
mtext.type # timeout A mtext € (o [jlop [j1)) =

(sﬁatus = abort A DONE(req#)[j] A value =req¥ A NSA(req#)[j] A

NSC(req#)[j] A TOCLj] A UICLj]l A ((reply(j).type = agree A
reply(j)s p [i]

preparedj(req#)) v reply(j).type = refuse))mtext.pc[j] ®mtext"

After simplification, this becomes

(mtext = [req#,agree, j] A status = abort A (4.12)
DONE(req#)[j] A value=req# A NSC(req#)[j] A NSA(reg#)[jl A
TOCLj] A UIC[j] A mtext e (crc[j]) pc[j])) = preparedj(req#).

But notice that from the definition of the universal invariant UIj and the

Network Axiom, we have that

Ul = ([req#.agree.j]éo'c[j] v [req#,abort, j] €0; v preparedj(req#)).
But this implies

([req#,agree,jl £ (o [jl1op [j1) v +NSA(req#)[j] v preparedj(req#)).

Since (4.12) follows from this, we can conclude that the universal invari-

ance of UIj implies the universal invariance of Com_Sat(c2,bl.).

The second satisfaction invariant, Com_Sat(c3.b2j). is equivalent to

(px:e(c3)‘i,d A mtext = [name.commitack.j]%d A status = commit A
DONE(req#)[j] A value = req# A NSA(req#)[j] A NSC(reg#+1)[j] A
TOCL j1 A UICLj] A [req#,agree,jl epc[j] A preparedj(req#) A
mtext.type € {conmitack} A mtext.content =req# A mtext.source=j A
mtext.type # timeout A mtext € (o'c[j] e pc[j])) =

(status = commit A DONE(req#)[j] A value=req# A NSA(reg#)[j] A

NSC(req#+1)[j] A TOCL3j] A UICL[j] A [req#,agree,]l epc[j] A
reply(j).pc[j]

preparedj(req#) A donej(reqf))mtext, pc[j] @ mtext

This becomes

(mtext = [req#,commitack, j] A status = commit A (4.13)
DONE(req#)[j] A value=req# A NSA(req#)[j] A
NSC(req#+1)[j] A TOC[j] A UIC[j] A [req#,agree,jl epc[j] A
preparedj(req#) A mtext € (o [j]e pc[j])) = donej(req#)

But in a manner analogous to above, we have that

Ulj = ([req#,commitack,jl£o [j] v donej(req#))
= ([req#,commitack,j] £ (oc[j]) pc[j]) v donej(req#))
= (4.13).

Hence, Com_Sat(cS.ij) is universally invariant.

OWchn_Sat(ij »T2) is defined to be:
(pre(ij)-:%d A mtext = [req#.connnit.cj];-d A NDWj(msg_name) A
NSAAj(msg_name) A toc:>0 A UIj A (msg.content =msg_name A
. J . msg
msg.source = cj A msg.type € {prepare.counnlt.abort})mtext
mtext € (crj Gpj)) =

(NDWj(msg_name) A NSAAj(msg_name) A t;oc:j >0 A UIj A
(msg.type = prepare V msg.type = abort V
(msg.type = commit A [msg_name,abort,cj] £ o; A

msg tpj

[msg_name,agree,j] € pc[J])))mtext.pj Omtext} .

This simplifies to
(mtext = [msg_name,commit,cj] A NDWj(msg_name) A (4.14)

NSAAj(msg_name) A tocj >0 A UIj A mtext € (ojepj)) =
([msg_name,abort,cjl ¢ o5 A [msg_name,agree,jl ep [jl1).

But

95

96

Uic = ([msg_name.camnit.cj]éo'j v

([msg_name,agree, j] € pc[j] A [msg_name,abort,cjl £ o'j))

= ([msg_name,commit,cj] £ (o'j e pj) v
([msg_name,agree, j] € pc[j] A [msg_name,abort,cjl £ oj))

= (4.14)

Hence, OWCom_Sat(ij.rZ) is universally invariant.

Finally, Com_Sat(cl.b3j) is defined to be:

(pre(cl)-‘];d A mtext = [name,abortack.j]%—d A status = abort A
DONE(req#)[j] A value=req# A NSA(req#+1)[j] A NSC(req#)[j] A
TOCLj] A UICLj] A mtext.type € {abortack} A mtext.content = req# A
mtext.source = j A mtext.type # timeout A mtext e (o [j]® pc[j])) =

(status = abort A DONE(req#)[j] A value=reqg# A NSA(regf+1)[j] A
reply(j)ep [l

NSC(reg#)[j] A TOCLj] A UICL3] A -vdonej(req#))mtext’ o [il@mtext’

This simplifies to

(mtext = [req#,abortack, j] A status = abort A DONE(req#)[j]l A
value=req# A NSA(reg#+1)[j] A NSC(req#)[jl A (4.15)
TOC[j1 A UIC[j] A mtexte (o [jlep [i])) = -'donej(req#)

But

U1l = ([req#.abortack.j]to'c[j] v -cdonej(req#))
= ([req#.abortack.j]é(o—c[j]epc[j]) v -vdonej(req#))

= (4.15)

Hence, Com_Sat:(cl.ij) is universally invariant.

97

4.6. Proving Non-Interference

To prove non-interference, it must be shown that the sequential anno-
tation is not invalidated by the concurrent execution of any process. It
is easy to show that execution of no worker invalidates the sequential
annotation of another worker. The only variable shared between workers is
o.» which is named in assertions of workerj only as part of the multiset
partition o [jl. Since workerj is the only worker process that modifies

ob[j]. no interference is possible.

To show that execution of a worker does not interfere with the proof
of the coordinator and vice versa is somewhat more difficult. We do this
proof in two steps. First, we show that execution of no semd statement
transmitting a timeout message can invalidate any assertion in the other
process. Then, we isolate those variables named in the annotation of ome
process that are modified by execution of (non-timeout transmitting) state-
ments in the other, and show that no interference can result from this con-

current execution.

A semd statement s in workerj that transmits a timeout message modi-
fies the multiset 03. This multiset appears in the sequential annotation

of the coordinator omnly as oa[c] or in assertions of the form
[msg_name,msg_type,cjl £ o;

where msg_type is never timeout. Execution of s can change neither the
value of oa[c] nor the truth of such an assertion, so no interference is
possible. Similarly, a semd statement in the coordinator that transmits a
timeout message modifies the multiset o.. But since o_ appears in the

sequential annotation of workerj only as OE[j]' again no interference is

98

possible. Thus, the transmission of timeouts in either process cannot

invalidate assertions of the other.

donej and preparedj appear in assertions of the coordinator and are
modified by workerj. while the auxiliary variables 05 and pc[j] are named
in assertions of the workerj and changed by the coordinator. We now show

that changes made to each of these variables cannot invalidate assertions

in other processes.

First, consider donej. The only statements in worker. that modify

elements in this array are the two instances of
donej(name):= true.

Since the precondition for this statement always is

{P: NDWj(name+l) A prepared.(name) A tocj >0 A (msg_name = name V

msg_name = name+l) A [name,commit,cj] €P; A NSAAj(name) A UIj},
we need only treat one occurrence.

donej appears in the sequential annotation of the coordinator omly in

assertions of the form

donej(i) A [i,commitack, j] epc[j]
and

ﬂdonej(i) A [i,abortack,j] epc[j].

for various MSAA names i. The former can never be invalidated by setting
donej(name) to true, while the latter could be invalidated only if i = name.

Hence, to conclude non-interference in this case it is sufficient to show

99

{P A 4done.(name) A [name,abortack,j] epc[j]}
done :(name):= true; (4.16)
{ﬂdonej(name) A [name,abortack, jl epc[j]}.

However,

(P A «donej(name) A [name,abortack,jl ep [jl) =
(NSAAj(name) A ﬂdonej(name) A [name,abortack, jl] epc[j]) =

([name,abortack, j] éo'c[j] A =adone.(name) A
[name,abortack,j] epc[j]) =

false

due to the Network Axiom. Therefore, (4.16) follows trivially, and changes
made in workerj to elements of donej do not invalidate the sequential anno-

tation of the coordinator.

Now, consider whether either of the two statements in workerj that
modify elements of preparedj can invalidate assertions in the sequential

annotation of the coordimator. For
preparedj(name):= true

the answer is obvious -- since no assertion contains the predicate
ﬂpreparedj(name). no interference is possible. On the other hand, the

statement
I'H preparedj(name):= false
is not so easily handled.

In the sequential annotation of the coordinator, the only predicates
that can be affected by execution of s are preparedj(req#) and
preparedj(value). Moreover, this interference can occur only when

req# = name or value = name. But notice that whenever preparedj(req#) is

100

asserted in the coordinator, so is NSA(reg#). Similarly, when
preparedj(value) is asserted in the precondition of cexecute's recovery
protocol, so is NSA(value). This means that for interference to occur,

execution of s must invalidate
{A: NSA(name) A preparedj(name)}
Notice that
A = (P: I:name.abort.cj]torj A preparedj(name)).
But,

(pre(s) A P) =

([name,abort,cjl €p; A [name,abort,cjl écﬁ A preparedj(name)) =

false
due to the Network Axiom. That is, s cannot be executed when the coordina-
tor is in a state satisfying P. Hence, it is impossible for execution of s

to invalidate the sequential annotation of the coordimator.

The final step in proving non-interference is to show that modifica-
tions to the auxiliary variables o; and p_[j] in the coordinator do mnot
invalidate the sequential annotation of workerj. The only assertion for

which this could possibly happen is post(r2):

{NDWj(msg_name) A NSAAj(msg_name) A UIj A toc, >0 A
(((msg.type = prepare V msg.type = abort) A
[msg_name,msg.typescjl epj) v
(msg.type = coomit A [msg_name,commit,cjlep. A

[msg_name,abort,cj] £ o5 A [msg_name,agree,jl €p_[j1))}.
However,
[msg_name,agree, jJ epc[j]

cannot be invalidated since it is monotonic. Unfortunately,

101

[msg_name,abort,cjl ¢ o;

is not -- execution of either broadcast operation b3 or b4 could make it

false. Hence, both of the following must be shown:

{pre(b3) A post(r2)} b3 {post(r2)}

{pre(b4) A post(r2)} b4 {post(r2)}.

For notational convenience, define two predicates P and P':

P= ((msg.type = prepare V msg.type = abort) A
[msg_name,msg.type,cjl € Pj)

P'= (msg.type = commit A [msg_name,commit,c]l ep. A

[msg_name,abort,cj] £ o5 A [msg_name,agree,j] € pc[j])-

Then, we have that
(pre(b3) A post(r2)) =

(NSC(req#) A NDWj(msg_name) A NSAAj(msg_name) A toc. >0 A UIj A
(P veY)) = J

(NDWj(msg_name) A NSAAj(msg name) A UIj A toc. >0 A
((P A NSC(req#)) v (P' A NSC(reg#)))). 7
Since
NSC(req#) = (Vk: k 2req#: [k.commit.cj]to'j).
it follows from the Network Axiom that
(P' A NSC(req#)) => msg_name < req#.
Thus,

(pre(b3) A post(r2)) =

(Q: NSAAj(msg_name) A NDWj(msg_name) A UIj A toc; >0 A
((P A NSC(req#)) v (P' A NSC(req#) A msg_name <req#))).

But since b3 sends a message associated with MSAA req# to workerj. its exe-

102

cution cannot invalidate Q. From this and the observation that
Q = post(rZ) .

it follows that

{pre(b3) A post(r2)} b3 {post(r2)}.

In a similar fashion, it can be shown that
{pre(b4) A post(r2)} b4 {post(r2)}.

Thus, the changes made to 03 and pc[j] by the coordinator do not interfere

with the sequential annotation of worker..

4.7. Remaining Proof Obligations

To conclude that the sequential annotation of each process in this
implementation of the two-phase commit protocol constitutes a valid proof,
the five proof obligations incurred in sections 4.3 and 4.4 must also be

shown.

To prove POl. it is sufficient to show that the precondition of each
communicate operation remains true across execution of receive statements
in its rectimeout operations. In the coordinator, such an execution modi-
fies the variable reply(j) for some j, and Pee Im workerj. execution of a
receive statement modifies msg and pj. However, reply(j) never appears

in the precondition of any communicate statement in the coordinator, and p_

appears only in assertions of the form
mtext € pc[j]

for some message text mtext. Hence, the precondition of any communicate in

the coordinator remains true upon termination of its constituent rectimeout

103

operations. Similarly, msg never appears in the precondition of any com-

municate in workerj and pj appears only in assertions of the form

mtext € pj

for some message text mtext. Thus, the precondition of each communicate in
vorkerj is invariant across execution of the rectimeout operations within
it.

To establish P0,, it is sufficient to show that the execution of a
yend statement transmitting a timeout message does not invalidate either
the precondition or the postcondition of the communicate operation contain-
ing it. This follows trivially in both the coordinator and the worker. 1In
the coordinator, execution of such a semd statement modifies only the mul-
tiset o.. Since this never appears in the precondition or postcondition of
any communicate operation, no interference is possible. Likewise, execu-
tion of a timeout-transmitting semd statement in workerj modifies only 05.
which does not appear in the precondition or postcondition of any communi-

cate operations.

To show P03. we must prove that no message sent by a communicate
operation to a process other than itself has type timeout. This follows

immediately from examination of the code.

Proof obligation PO, requires showing that execution of no communicate
operation within a broadcast invalidates the precondition or postcondition
of any other communicate in the same broadcast. The execution of communi-
cate Bj in any broadcast operation modifies tocj. o5s pc[j]. and o . But

none of these appear in the precondition or postcondition of any communi-

cate within the operation except Bj' Hence, no interference is possible.

104

4.8. Generalizations

In this protocol, execution of an MSAA at a worker may be interrupted
by failures several times before being completed. Thus, both the prepara-
tion and operation might be executed multiple times. Consequently, both
the operation and its preparation must be restartable. A sequence of
instructions is restartable if each intermediate assertion implies the
precondition of the sequence. For example, both the preparation and opera-

tion used above are restartable -- assigning a constant to a variable.

In the example presented above, no information specific to the partic-
ular MSAA being executed is included in the messages. Clearly, for more
complex operations, additional information might be required. The sequence

of messages, however, would not change, and so the proof remains valid.

4.9. Implementation Considerations

Since no assumption has been made about the relative execution speeds
of processes, a receive statement within a communicate operation can
timeout any number of times. This would result in a large number of mes-
sages being injected into the network. Since there is no guarantee that
all of these messages will be received by the destination process, extrane-
ous messages might accumulate at the site executing the destination pro-

cess. Clearly, there must be a way to dispose of such extra messages.

Fortunately, this is easily done. Notice that in both the coordinator
and worker processes, messages are received (as opposed to delivered) in
non-decreasing order based on the name of the MSAA with which they are
associated. This name is in the content field of the record. Thus, once a

message m is received, all messages m' such that

105

m'.content < m.content

can be discarded, since no attempt will subsequently be made to receive
them. Notice also that the number of extra messages can be minimized by a

judicious choice of the timeout interval.

4.10. Related Work

In [Skeen 1981], a variety of recovery protocols are considered in the
context of distributed transaction management. There, protocols are
modeled as finite state automata, and their characteristics described in
terms of those automatons. Independent recovery protocols -- recovery pro-
tocols that do not communicate with other processes -- are developed to
allow distributed database systems to withstand a single site failure. In
addition, it is shown that no independent recovery protocols exist if two

sites fail, or if a network partition results in lost messages.

A proof of the two-phase commit protocol appears in [Baer et al 1981].
The protocol is modeled as a colored Petri net, and linear invariants are
used to show the the net reaches a desired final state. However, the paper
is concerned mainly with presenting the model, and the protocol is proved

only for the case when no failures occur.

Chapter 5

Conclusions

5.1. In Retrospect

In this dissertation, we have developed proof rules for fault-tolerant
actions and asynchronous communications operations. Two benefits accrue
from doing this. One is that programs using these statements can now be
formally verified. A second, and perhaps more important, bemefit is the
understanding of the statements' semantics gained in the course of deriving
these rules. Such an understanding facilitates the development of correct
programs, even if formal verification is not performed. Moreover, the
insight also provides a basis for examining some of the guidelines for the

safe use of these statements that have evolved over the years.

In developing the proof requirements for fault-tolerant actions, some
of the fundamental problems involved in writing correct recovery protocols

were 1solated:

(1) A recovery protocol must be correct when started in any inter-
mediate state of the computation.

(2) It must operate using only partial state information.

The inference rule states precisely what conditions must hold if a recovery
protocol is to correctly complete the state transformation in progress when

a failure occurs.

It is interesting to note the relationship between these proof
requirements and the informal guidelines that appear in the folklore. For
example, the fact that information must be stored in some type of a stable
storage is not new [Lampson & Sturgis 1978] [Gray 1978]. Such information

is called a checkpoint [Denning 1976]. With no rule specifying exactly

106

107

what values must be saved, it is a common practice to save the entire state
of a process at frequent intervals when failures are expected. This allows
a process to be rolled back and restarted at some earlier, well-defined
point after a failure. However, use of our inference rule makes such
extensive checkpointing unnecessary, since determination of exactly those

variables whose values must be saved is now possible.

A methodology for designing fault-tolerant computing systems that uses
our verification techniques has been developed. This methodology involves
first developing correct programs for fail-stop processors, and then
approximating these processors using hardware and software redundancy.
Program correctness follows from the use of fault-tolerant actions and
their proof rules, while real-time response constraints are satisfied by

using multiple processors and reconfiguration.

The use of fail-stop processors as our underlying computational model,
hence the foundation of our methodology, followed from our desire to use a
partial correctness programming logic. In a fail-stop processor all
failures are detected, and no incorrect state transformations result from
failures. Thus, if execution of a statement terminates, by definition the
transformation specified by that statement has occurred -- the effect of
execution is consistent with the programming logic. Failure, by defini-
tion, prevents statements from terminating. Thus, the partial correctness
(as opposed to total correctness) nature of the programming logic subsumes

the consequences of failures.

Deriving proof rules for asynchronous message-passing statements has
also yielded some interesting insights. As was the case with recovery pro-

tocols, a key impediment to writing correct programs that use asynchronous

108

sends has long been known: any information obtained from a message reflects
a past state of the sending process, not its current state. We recognized
this problem as a manifestation of interference [Owicki & Gries 1976]. It
is permissible to make any conclusion about the system state after receipt
of a message provided the satisfaction invariants associated with that
receive statement have been proved universally invariant. If this is not
the case, then some process has interfered with a satisfaction invariant,

rendering the conclusion invalid.

The notion of interference has allowed us to explain formally ad hoc
guidelines about the use of message-passing. For example, a large number
of programming languages have been proposed with mechanisms that enforce
disciplined use of message-passing: Communicating Sequential Processes
[Hoare 1978], Ada [Ichbiah 1979], MESA [Lampson 1981], Synchronizing
Resources [Andrews 1981], and E-CLU [Liskov 1979]. Implicit in these pro-
posals is the notion that structured message-passing operations make pro-
grams easier to understand. In this dissertation, we have formally justi-
fied this belief by showing how disciplined use of message-passing can con-
trol interference. Protocols such as the "send message, receive ack-
nowledgment™ protocol do this by limiting the actions a sending process

takes prior to receipt of the message.

The use of the techniques developed in this dissertation has been
illustrated by two examples: proving the partial correctness of a two-phase
commit protocol and designing a prototype fault-tolerant process control
system. Previous attempts at demonstrating the correctness of the two-
phase commit protocol have been based on translating the protocol to some

other computational model, such as Petri nets [Baer et al. 1981], or finite

109

state automata [Skeen 1981]. Our proof is developed directly from the code
itself; there is no possibility of introducing errors in the translation

process.

Developing a prototype fault-tolerant process control system illus-
trated a useful technique for making program loops fault-tolerant. Associ-
ated with every program loop is a loop invariant -- an assertion that is
true at the beginning and end of each execution of the loop body. This
loop invariant can be made into a universal invariant by requiring that all
changes to variables in the loop invariant be performed in a single atomic
action. Then, by storing the variables named in the loop invariant in

stable storage, the loop body serves as its own restart protocol.

5.2. Topics for Further Research

In this dissertation, we have mainly been concerned with the partial
correctness of programs. Clearly, the issue of termination for the types

of programs examined herein is one area deserving of further study.

For a program consisting of a collection of interacting processes
using asynchronous message-passing to terminate, no receive statement can
block forever waiting for a message. This means that a message satisfying
the Boolean guard on each receive statement executed must eventually be
delivered to the appropriate site. Proving that this will be true appears

to be non-trivial, especially if messages can be lost.

Note that even using receive statements that time out might not
ensure termination of the program. For example, if a receive statement
that can time out is embedded in a loop that iterates until a particular

type of message (say an acknowledgment) is received, the problem becomes

110

one of showing that the loop will terminate. Unfortunately, standard tech-
niques for proving termination -- the use of variant functions or well-

founded sets [Dijkstra 1976] -- are not applicable. Hence, to prove termi-
nation the same argument is required as when no timeouts were used -- that

the appropriate message will be delivered eventually.

Another problem associated with proving termination of programs that
use asynchronous message-passing concerns the semd statement. We have
assumed that execution of a semd always terminates. This is equivalent to
‘assuming that the communications system has an infinite buffering capacity.
In reality, this assumption is unjustified. Hence, to show that a program
executing on a system with a finite buffering capacity terminates, one also
has to prove that execution of no semd statement will block forever --
that is, that the buffer space or slack bound [Martin 1980] in the communi-

cations system is sufficient.

In chapter 2, we briefly touched on the problem of proving termination
for programs constructed from fault-tolerant actions. There we argued that
a program would terminate if occasionally there was enough time between
failures. Clearly, more formal techniques are required in this area if
more precise results are to be obtained. Since this problem seems
inherently probabilistic, one solution might be to extend real-time tem-

poral logic [Harter & Bernstein 1981] to encompass probabilistic behavior.

Lastly, the problem of approximating systems that have predictable
failure-mode operating characteristics should be more fully addressed. We
outlined how to implement an approximation to fail-stop processors and

stable storage in order to demonstrate the feasibility of using such a

model. A less costly approach would undoubtedly prove beneficial.

Appendix 1

Sequential Annotation of Communicate Operation
and

Derivation of Satisfaction Rule

l. Sequential Anmotation

= A = =o' =
{o'D Op A Pg=Py A Og=0') Atoc=t, A T}
communicate(cont, sendt, S, msg, ncont, ntype, D, toc):
= = = o! = 1
{o=o0y Apg=py A 0g=0") A toc=ty A sendt # timeout A T}
k:= 13
= = =o' =] =
{o'D op A Pg =Py A og=0'y A toc=ty A sendt # timeout A T A k=1}
sl: semd [cont,sendt,S] to D;
= = =o! =
{o'D—o'09[cont.sendt.S] Apg=py A og=0'y Atoc=t, A
sendt # timeout A T A k=1}
] i\l =
{(o'0 [cont.sendt.S])go'D A pySpg Ao'ySog Atoc=ty A
sendt # timeout A T A k=1}
toc:= toc+l;
\ =
{(0'00[cont.sendt.S])90'D A pySPg A o' SO A toc t0+k A
sendt # timeout A T}
cobegin;

{(aoﬁ[cont.sendt.sl)go'n ApySPg Atoc=t +k A sendt # timeout A T}

rl: receive msg[content,type,sourcel 'heno
((msg.type € ntype A msg.content = ncont A
msg.type Z timeout A msg.source =D) V (msg.content = toc A
msg.type = timeout));
{(cr0 ® [cont,sendt,S]) ¢ o A (po ®msg) pg A toc =t tk A
sendt # timeout A ((msg.type € ntype A msg.content = ncont A
msg.type Z timeout A Q) Vv (msg.type = timeout A T))}
// {o"o cog A toc= t0+k}
delay(t);
semd [toc,timeout,S] to S;

{(0"00[t0+k.timeout.S]) co. A toc=t +k}

S 0
coend;
{I:(o'o0[cont.sendt.S])c_:oD A (py@msg)cpg A
(o"oe[toﬂc,timeout.S]) S oy A toc=totk A sendt Z timeout A

((msg.type € ntype A msg.content = ncont A msg.type Z timeout A Q) Vv
(msg.type = timeout A T))}

111

112

do msg.type = timeout + {I A msg.type = timeout}
{(o'0 ® [cont,sendt,S]1)co, A (po ®msg) ¢ pg A

D
(0'00[t0+k,timeout.s:|)go' A toc=t.+k A

sendt # timeout A msg.type =Stimeout AOT}

k:= ktl;

{(00 ® [cont,sendt,S]) ¢ op A Py S Pg A cr'o € og A toc=totk-l A
sendt # timeout A T}

s2: semd [cont,sendt,S] to D;

{(00 ® [cont,sendt,S]) ¢ op A PySPg A o'
toc = t0+k-1 A sendt # timeout A T}

toc:= toc+l;

A
0%

{(oy @ [cont,sendt,51) c oy A pySpg A o' CSog A
toc =t,+k A sendt # timeout A T}
cobegin;
{(cy0 ® [cont,sendt,S]) c op A pySPg A toc= t0+k A
sendt Z timeout A T}
r2: receive msg[content,type,source] when
((msg.type € ntype A msg.content = ncont A
msg.type # timeout A msg.source =D) v (msg.content = toc A
msg.type = timeout));
{(oro ® [cont,sendt,S]) c op A (py@msg) g pg A toc=ty+k A
sendt # timeout A ((msg.type € ntype A msg.content =ncont A
msg.type # timeout A Q) Vv (msg.type = timeout A T))}
// {o"0 Sog A toc= t0+k}
delay(t);
semd [toc,timeout,S] to S;
{(o' @ [t +k, timeout,5]) c oy A toc= to+k]
coend;
{1}
od
end

. .
{(ooﬁ[cont.sendt.S])go'D A (pOOmsg);ps A (o 09[t0+k. tlmeout.S])ch A

toc = t0+k A msg.type € ntype A msg.content = ncont A Q}

113

2. Derivation of Satisfaction Rule

Let cl in process S and c2 in D be two matching communicate opera-

tions. Furthermore, suppose that theorems of the following form have been

proved:

{ovD=o'10 Apg=ply Aog=ol'y A tocl =tly A T1}
cl: communicate(contl,stl,S,msgl,ncntl,ntl,D,tocl)

{(oloc[contl.stl.S])go'D A (ploemsgl)gps A
(0'1'00[t10+k1.timeout.S])§o'

S A tocl = t10+k1 A msgl.type e ntl A
msgl.content = ncntl A Ql}

and

log=02;, A py=p2; A op=02'g A toc2=t2; A T2}
c2: communicate(contz.stZ.D,mng.ncntZ.nt2.S.tocZ)
{(020 ® [cont2,st2,D]) ¢ og A (p20 ®msg2) € Py A

(02',. ® [t2,.+4k2,timeout,D]) co;, A toc2=1t2 +k2 A msg2.type € nt2 A
0 0 D 0

msg2.content = ncnt2 A Q2}.

Let sl be the first send statement in cl transmitting to process D and s2
the second; similarly, let rl be the first receive in c2 and r2 the second.
Then, for post(c2) to be correct if a message sent by cl is received,
SatisfactionAsynch(sl orl), SatisfactionAsynch(sl »T2),

(s2,rl), and Satisfaction (s2,r2) must be univer-

SatlsfactlonAsynch Asynch

sally invariant.

Since the value of a message sent by cl to D does not depend on the

values of auxiliary variables ops Pgs Ogs and k, or tocl, we have that

SatlsfactlonAsynCh(sl ,rl) is:

114

((stl # timeout A 'I‘l):Ld A mtext = [contl,stl, S]lcl

(02 0[cont2.st2.D])co' A pZOCp A toc2= t20+k2 A

st2= timeout A T2 A ((msg2 type € nt2 A msg2.content = ncnt2 A

msg2.type # timeout A msg2.source=S) Vv (msg2.content = toc2 A
msg2.type = timeout A msg2.source = D”:::ge:z;t
mtext € (o ©p)) =

((020 ® [cont2,st2,D]) c 0 A toc2=t2;+k2 A st2 # timeout A
((msg2.type € nt2 A msg2.content = ncnt2 A msg2.type # timeout A Q2) Vv
msg2, Pp
(msg2.type = timeout A TZ)))mtext. oy ®mtext"

After simplification, this becomes

— —

S(sl,rl): ((stl # timeout A Tl)i‘:l A mtext = [contl,stl .S]%—d
(oa ® [cont2,st2,D]) c oy A p20 = A toc2 = t20+k2 A

st2 # timeout A T2 A mtext.type € nt2 A mtext.content = ncnt2 A

mtext.type # timeout A mtext.source=S A
msg2, p

mtext € (o'De pD)) = sztext. Pp ®mtext”’

SatisfactionAsynch(sl.r2) is the same as S(sl,rl), since pre(rl) is identi-

cal to pre(r2), and post(rl) is identical to post(r2).

Moreover, SatlsfactlonAsynch(SZ.rl) and SatlsfactlonAsynch(82.r2) are
also identical to S(sl,rl). This is because the only difference in satis-
faction invariants involving receive statement r and two send statements
s and s' that evaluate the same expression when computing a message is that

one has pre(s)éd in the antecedent of the implication, while the other has
pre(s'):;-_d—. However, any part of pre(s) (or pre(s')) that cannot influence
the value of the message text can be deleted from these formulas. In the
case of these communicate operations, the multisets and toc2 cannot appear

in the expression used to compute the text of a message sent to D. Thus,

the portion of the precondition used in determining the value of a message

115

will be identical in both pre(sl) and pre(s2). Therefore, for post(c2) to
be correct when a message sent by either sl or s2 is received, it is suffi-

cient to prove
. id id
Com_Sat(cl,c2): ((stl # timeout A TI)V A mtext = [contl,stl 'SJV A
st2 # timeout A T2 A mtext.type € nt2 A mtext.content =ncnt2 A

mtext.type # timeout A mtext.source=S§ A
msg2, Pp

=
mtext € (o'DG pD)) sztext. pD @ nmtext

universally invariant.

Appendix 2

Sequential Annotation of Wm:ker:j

NDWj(i)=(Vh: h2i: -'donej(h))
NSAAj(i) =(Vh: h2i: [h,abortack,jl o [j1)

Ulj=(Vk: k21:
([k.agree.j]toc[j] v [k,abort,cjl €p; v preparedj(k)) A
([k,commit,cj] epj v -'donej(k)) A
([kscommitack, j] £ o [j] v done.(k)) A
([k,abortack,j] £o [j] v ﬂdonej(k)))

1j=(NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A toc, > 0 AUIj A
(msg.type = prepare V msg.type = abort))

workerj: action, recovery;
var msg: recorxd
content: imnteger;
type: character;
source: imteger;
end;

name, msg_name, tocj : integer;

{pj =# Ao [j1=9 A NDWj(1) A NSAAj(1) A UIj}
toc., name:= 1, 13
{pj =¢ A oc[j] =$ A NDWj(l) A name=1 A toc; >0 A UIj}
loop: action, recovery;
{NDWj(name) A NSAAj(name) A toc, >0 A UILj}
rl: receive msg[content.type.source] wvhen
(msg.content = name A msg.source=cj A
(msg.type = prepare V msg.type = abort));
{NDWj(name) A NSAAj(name) A t:ocj >0 AUIj A
(msg.type = prepare V msg.type = abort)}
msg_name:= name;
{1j}
do true + {Ij}

116

117

wexecute: actiom; {Ij}
if msg.type = abort -+
{msg.type = abort A NDWj(msg_name) A msg_name = name A
NSAAj(msg_name) A toc; >0 A UIj}
aa: actiom,recovery;

{NDWj(name) A (msg_name = name V msg_name = name+l) A
NSAA j(name+l) A toc, >0 A ULj}

cl: communicate(name,abortack, j,msg,name+l,{prepare,abort},

cj.tocj);

{NDWj(name) A (msg_name = name V msg_name = name+l) A
NSAAj(name+l) A toc; >0 A UIj A msg.content = name+l A
(msg.type = prepare V msg.type = abort)}

msg_name := name+l;

{NDWj(name) A msg_name = name+l A NSAAj(name+l) A
toc; >0 A ULj A (msg.type = prepare V
msg.type = abort)}

end;

{NDWj(name) A msg_name = name+l A NSAAj(msg_name) A toc, >0 A

UIj A (msg.type = prepare V msg.type = abort)}

name := msg_name;
{1j}
0 msg.type = prepare A possible.(name) +
{msg.type = prepare A NDWj(msg_name) A msg_name = name A
possiblej(name) A NSAAj(msg_name) A t:oc:.I >0 A UIj}
prepared .(name) := true;
{NDW j(msg_name) A msg_name = name A

preparedj(name) A NSAAj(msg_name) A tocj >0 A UIj}

ag: actiom,recovery;

{NDW j(msg_name) A msg_name = name A preparedj (name) A
NSAAj(msg_name) A toc; >0 A UIj}

c2: communicate(name,agree, j,msg,name, {commit,abort},

cj.tocj);

{NDWj(msg_name) A msg_name = name A preparedj(name) A
msg € pj A msg.content = name A msg.source=cj A
(msg.type = commit V msg.type = abort) A
NSAAj(msg_name) A tocj >0 A UIj}

end;

118

{NDWj(msg_name) A msg_name = name A preparedj(name) A
msg € pj A msg.content = name A msg.source=cj A
(msg.type = commit V msg.type = abort) A
NSAAj(msg_name) A toc; >0 A UIj}

if msg.type = commit -+
{NDW j(msg_name) A msg_name = name A prepared.(name) A

[name,commit,cj] €p; A NSAAj(msg_name) A toc; >0 A

UIj}

ca: action,recovery;

{NDW j(name+1) A prepared:.(name) A (msg_name = name V
msg_name = name+l) A [name,commit,cj] e P A
NSAAj(name) A toc; >0 A UIj}

done.(name) := true;

{NDW j(name+1) A preparedj(name) A (msg_name = name V
msg_name = name+1) A [name,commit,cjlep. A
donej(name) A NSAAj(name) A tocj >0 A UIj}

c¢3: communicate(name,commitack, jsmsgs

name+1.{prepare.abort}.cj.tocj);

{NDWj(name+1) A preparedj(name) A (msg_name = name V
msg_name = name+l) A [name,commit,cj] € pj A
donej(name) A (msg.type = prepare V
msg.type = abort) A NSAAj(name) A toc, >0 A UIj}

msg_name := mname+l;

{NDW j(name+1) A prepared.(name) A msg_name = name+l A
[name,commit,cj] € Pj A donej(name) A
(msg.type = prepare V msg.type = abort) A
NSAAj(name) A toc; >0 A UIj}

end;

{NDW j(msg_name) A preparedj(name) A msg_name = name+l A

[name,commit,cj] epj A donej(name) A

(msg.type = prepare V msg.type = abort) A

NSAAj(msg_name) A toc; >0 A UIj}

name := msg_name;
{1j}

119

0 msg.type = abort +
{NDW j(msg_name) A msg_name = name A prepared.(name) A
[name,abort,cj] €p; A NSAAj(msg_name) A toc; >0 A UILj}
preparedj(name):= false;
{NDW j(msg_name) A msg_name = name A -“prepared:(name) A
[name,abort,cj] € pj A NSAAj(msg_name) A toc, >0 A UIj}
aa: actiom,recovery;
{NDWj(name) A (msg_name = name V msg name = name+l) A
[name,abort,cjl €p; A NSAAj(name+l) A t:ocj >0 A
UIj}
c4: communicate(name,abortack, j,msg,
name+l, {prepare,abort},cj,toc.);
{NDWj(name) A (msg_name = name V msg_name = name+l) A
[name,abort,cjl €p; A NSAAj(name+l) A toc; >0 A
UIj A (msg.type = prepare V msg.type = abort)}
msg_name $= name+l;
{NDW j(name) A msg_name = name+l A [name,abort,cj] €py A
NSAAj(name+l) A toc; >0 AUIj A
(msg.type = prepare V msg.type = abort)}
end;
{NDWj(name) A msg_name = name+l A [name,abort,cj] €py A
NSAAj(msg_name) A tocj >0 AUIj A
(msg.type = prepare V msg.type = abort)}
name := msg_name;
{1j}
£i;
{1j}
0 msg.type = prepare A -'possiblej(name) >
{NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A
t:ocj >0 A UIj}
c5: ccmmunicate(name.refuse.j.msg.name.{abort}.cj.tocj);
{msg.type = abort A NDWj(msg_name) A msg_name = name A
NSAAj(msg_name) A tocj >0 A UIj}

120

aa: action,recovery;
{NDW j(name) A (msg_name = name V msg_name = name+l) A
NSAAj(name+l) A toc; >0 A UIj}
c6: communicate(name,abortack,jsmsg,
name+1.{prepare.abort}.cj.tocj);
{NDWj(name) A (msg_name = name V msg_name = name+l) A
NSAAj(name+l) A tocj >0 A UIj A (msg.type = prepare V
msg.type = abort)}
msg_name $= name+l;
{NDWj(name) A msg_name = name+l A NSAAj(name+l) A
toc; >0 A ULj A (msg.type = prepare V
msg.type = abort)}
end;
{NDWj(name) A msg_name = name+l A NSAAj(msg_name) A
toc; >0 A ULj A (msg.type = prepare V
msg.type = abort)}
name := msg_name;
{13}
£fi;
{13}
recovery
{NDW j(msg_name) A NSAAj(msg_name) A toc; >0 A UIj}
r2: receive msg[content,type,source] when
(msg.content = msg_name A msg.source=cj A
msg.type € {prepare,commit,abort})
{NDW j(msg_name) A NSAAj(msg_name) A t:ocj >0 AUIj A
(((msg.type = prepare V msg.type = abort) A
[msg_name,msg.types,cjl € pj) v
(msg.type = commit A [msg_name,commit,cjlep. A
[msg_name,abort,cjl ¢ o; A [msg_name,agree,jl € pc[j]))}
{NDWj(msg_name) A NSAAj(msg_name) A toc; >0 A UIj A
(((msg.type = prepare V msg.type = abort) A
[msg_name,msg.typescjl epj) v
(msg.type = coomit A [msg name,commit,cj] e P A
preparedj(msg_name))}
name := msg_name;

121

{NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A tocj >0 A
UIj A (((msg.type = prepare V msg.type = abort) A
[msg_name,msg.type,cj] € pj) v
(msg.type = commit A [msg_name,commit,cj] € P; A
preparedj(name)))}
if msg.type = prepare V msg.type = abort =+
{NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A
toc; >0 A UIj A (msg.type = prepare V
msg.type = abort) A [msg_name,msg.type,cjl € pj}
skip
{1j}
0 msg.type = commit -+
{NDWj(msg_name) A msg_name = name A NSAAj(msg_name) A

toc; >0 A ULj A [name,commit,cj] €py A preparedj(name)}

ca: action,recovery;

{NDWj(name+1l) A (msg_name = name V msg_name = name+l) A
[name,commit,cj] €pj; A NSAAj(name) A
toc >0 AUIj A preparedj(name)}

done.(name) := true;

{NDWj(name+1) A (msg_name = name V msg_name = name+l) A
[name,commit,cj]l €p. A done.(name) A NSAAj(name) A
toc; >0 A ULj A preparedj(name)}

c¢7: communicate(name,commitack, jsmsgs

name+l.{prepare.abort}.cj.tocj);

{NDWj(name+1) A (msg_name = name V msg_name = name+1) A
[name,commit,cj] epj A donej(name) A
(msg.type = prepare V msg.type = abort) A NSAAj(name) A
toc; >0 A UIj A preparedj(name)}

msg_name (= name+l;

{NDWj(name+l) A msg_name = name+l A [name,commit,cj] e Py A
done.(name) A (msg.type = prepare V msg.type = abort) A
NSAAj(name) A l:ocj >0 AUIj A preparedj(name)}

end;

122

{NDWj(msg_name) A prepared.(name) A msg_name = name+l A
[name,commit,cj] €p; A donej(name) A
(msg.type = prepare V msg.type = abort) A
NSAAj(msg_name) A tocj >0 A UIj}
name := msg_name;
{1j}
fi
{13}
end wexecute;
{1j}
od;
end loop;
end workerj;

Appendix 3

Sequential Annotation of the Coordinator

DONE(i)=(Vh: 1<h<is
((V j: j a site: -'donej(h) A [h,abortack,jlep [j1) v
(Vj: j a site: donej(h) A [h,commitack,jl ep_[3j1)))

NSA(i) = (Vjo.k: j a site A k21i: [k.abort.cj]to'j)
NSC(i) =(Vj.k: j a site A k21i: {k.commit.cj]éo'j)
ToC=(V j: j a site: ctoc(j) >0)

UIC= (Vjs,k: j a site A i21: ([i,commit,cjléo. V
([i,agree,jlep [j] A [i,abort,cjl to'j))

Ic = (status = abort A DONE(req#) A value=req# A NSC(reqf) A NSA(reg#) A
TOC A UIC)

coord: actiomn,recovery
var reply(l..N): record
content: imteger;
type: character;
source: imteger;
end,
status: character;
value, req#, ctoc(l..N): integer;

{(Vj: j a site: o'j[c] =P) A p =P AUIC}

ctoc(l..N), req#, value := 1, 1, 1;

{req#=1 A (V j: j a site: o'j[c]=¢) A p. =P A value=req# A
TOC A UIC}

status := abort;

{status = abort A reqgf=1 A (V j: j a site: o'j[c] =p) A
pc=¢ A value = req# A TOC A UIC}

loop: action,recovery;
{Ic}

123

124

do true -+ {Ic}
cexecute: action;
{Ic}
receive msg[content,type,source] when
(msg.type = MSAA_request A msg.source = user_process) ;
{Ic}
bl: broadcast(prepare, reply(l..N), {agree,refuse}, req#)
{status = abort A DONE(req#) A value=req# A NSA(reg#) A
NSC(req#) A TOC A UIC A
(Vj: j a site: [req#,reply(j).typesjlep [j] A
((reply(j).type = agree A preparedj(req#)) v
reply(j).type = refuse))}
if V j: j a site: reply(j).type = agree +
{status = abort A DONE(req#) A value =req# A NSA(req#) A
NSC(req#) A TOC A UIC A
(V j: j a site: [req#,agree,j] epc[j] A preparedj(req#))}
status := commit;
{status = commit A DONE(req#) A value = req# A NSA(req#) A
NSC(req#+l) A TOC A UIC A
(Vj: j a site: [req#,agree,jlep [j] A preparedj(req#))}
b2: broadcast(commit, reply(l..N), {commitack}, req#)
{status = commit A DONE(req#) A value = req# A NSA(req#) A
NSC(reg#+l) A TOC A UIC A
(Vj: j a site: [req#,agree,jlep [j] A preparedj(req#) A
donej(req#) A [req#,commitack,j] € pc[j])}
O 3j:j a site: reply(j).type = refuse -+
{status = abort A DONE(req#) A value =req# A NSA(req#+l) A
NSC(req#) A TOC A UIC}
b3: broadcast(abort, reply(l..N), {abortack}, req#)
{status = abort A DONE(req#) A value=req# A NSA(regf+l) A
NSC(req#) A TOC A UIC A
(Vj: j a site: -vdonej(req#) A [req#,abortack,jlep [j1)}
£i;
{DONE(req#+1) A value=reqf A TOC A UIC A
((status = commit A (V j: j a site: [req#,agree,j] epc[j] A
preparedj(req#)) A NSC(req#+l) A NSA(reg#)) Vv
(status = abort A NSC(req#) A NSA(req#+1))}

125

reset: actiom,recovery

{(status = commit V status = abort) A DONE(reg#+l) A TOC A
UIC A (value=reqf V value =regf+l) A
NSC(req#+1l) A NSA(req#+1)}

status := abort;

{status = abort A DONE(req#+l) A TOC A UIC A
(value = req# V value=req#+l) A NSC(reg#+l) A
NSA(req#+l1)}

value := regf+l;

{status = abort A DONE(req#+l) A TOC A UIC A
value = reg#+l A NSC(reg#+l) A NSA(req#+l)}

end;

{status = abort A DONE(req#+l) A TOC A UIC A
value = req#+l A NSC(req#+l) A NSA(req#+l)}
req# := value;
{Ic}
recovery;
{DONE(value) A TOC A UIC A
((status = commit A NSA(value) A NSC(value+l) A
(V j: j a site: [value,agree,jlep [j] A
preparedj(value))) v
(status = abort A NSA(value+l) A NSC(value)))}
req# := value;
{DONE(req#) A value = req# A TOC A UIC A
((status = conmit A NSA(req#) A NSC(reg#+l) A
(Vj: j a site: [reg#,agree,jlep [l A
preparedj(req#))) v
(status = abort A NSA(req#+l) A NSC(req#)))}
if status = abort -+

{status = abort A DONE(req#) A value = req# A TOC A
UIC A NSA(req#+l) A NSC(reg#)}

b4: broadcast(abort, reply(l..N), {abortack}, req#)

{status = abort A DONE(reg#) A value=reg# A TOC A
UIC A NSA(req#+l) A NSC(req#) A
(Vj: j a site: -'donej(req#) A
[reg#,abortack,j] € pc[j])}

126

0 status = conmit +

{status = commit A DONE(req#) A value = reg# A TOC A
UIC A NSA(req#) A NSC(reg#+l) A
(Vj: j a site: [req#,agree,jlep [j] A

preparedj(req#))}

bS: broadcast(commit, reply(l..N), {commitack}, req#)

{status = coomit A DONE(req#) A value=reqg# A TOC A
UIC A NSA(req#) A NSC(reg#+l) A
(Vj: j a site: [req#,agree,jlep [j] A

preparedj(req#) A donej(req#) A
[req#,commitack,j] ep [j1)}
£i;
{DONE(req#+1) A value =req# A TOC A UIC A
((status = commit A (V j: j a site: [req#,agree,jlep [jl A
preparedj(req#)) A NSC(req#+l) A NSA(reg#)) Vv
(status = abort A NSC(req#) A NSA(req#+1)))}
reset: actiom,recovery

{(status = commit V status = abort) A DONE(reg#+l) A TOC A
UIC A (value=req# V value =reg#+l) A
NSC(req#+1) A NSA(req#+1)}

status := abort;

{status = abort A DONE(req#+l) A TOC A UIC A
(value = req# V value =req#+l) A NSC(reg#+l) A
NSA(req#+l)}

value := reqg#+l;

{status = abort A DONE(req#+1) A TOC A UIC A
value = reg#+l A NSC(reg#+l) A NSA(reg#+l)}

end;

{status = abort A DONE(req#+1) A TOC A UIC A
value = req#+l A NSC(req#+l) A NSA(reg#+l)}
reqg# := value;
{Ic}
emd cexecute;
{Ic}
od;
emad loop;
emd coord;

References

[Anderson & Kerr 1976]
Anderson, T., and R. Kerr. Recovery Blocks in Action: a System Sup-

porting High Reliability. In Proceedings of the Second International
Conf. on Software Eng. (1976), pp. 447-457.

[Andrews 1981]

Andrews, G. Synchronizing Resources. TQPLAS 3,4 (October 1981), 405-
430.

‘ Apt, K., N, Francez, and W. DeRoever. A Proof System for Communicating
Sequential Processes. IQPLAS 2, 3 (July 1980), 359-385.

[Baer et al. 1981]
Baer, J., G. Gardarin, C. Girault, and G. Roucairol. The Two-Step Com-
mitment Protocol: Modeling, Specification, and Proof Methodology.

Technical Report, Institut de Programmation, Universite Paris IV,
1981.

[Baskett et al. 1977]
Baskett, F., J. Howard, and J. Montague. Task Communication in DEMOS.
In Proceedings of the Sixth Symposium on Operating Systems Primciples
(November 1977), pp. 23-31.

[Bernstein & Goodman 1981]
Bernstein, P., and N. Goodman. Concurrency Control in Distributed
Database Systems. Computing Surveys 13,2 (June 1981), 185-221.

[Budd et al. 19801
Budd, T., R. Lipton, R. DeMillo, and F. Sayward. Theoretical and
Empirical Studies on using Program Mutation to Test the Functional
Correctness of Programs. In Proceedings of the Seventh Conference on
the Principles of Programming Languages (January 1980), pp. 220-233.

[Clint 1973]
Clint, M. Program Proving: Coroutines. Acta Informatica 2, 1 (1973),
50-63 .

[Denning 1976]
Denning, P. Fault Tolerant Operating Systems. Computing Surveys 8, 4
(December 1976), 359-389.

127

128

[Digital 1979]
Digital Equipment Corp. YAXll Architecture Handbook. Digital Equipment
Corp, Maynard, Mass., 1979.

[Dijkstra 1976]
Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

[Fischler & Firschein 1973]
Fischler, M., and O. Firschein. A Fault Tolerant Multiprocessor Archi-
tecture for Real-Time Control Applications. In Proceedings of the
First Annual Symposium on Computer Architecture (1973), pp. 151-157.

[Goodenough & Gerhart 1975]
Goodenough, J. and S. Gerhart. Towards a Theory of Test Data Selec-
tion. Trans. on Software Eng. SE-1, 2 (June 1975), 156-173.

[Gray 1978]
Gray, J. Notes on Data Base Operating Systems. In QOperating Systems:
An Advanced Course, Lecture Notes in Computer Science, Volume 60,
Springer-Verlag, 1978.

[Gries 1981]
Gries, D. The Science of Programming. Springer-Verlag, 198l.

[Harter & Bernstein 1981]
Harter, P., and A. Bernstein. Proving Real Time Properties of Programs
with Temporal Logic. In Proceedings of the Eighth Symposium on Operat-
ing Systems Principles (December 1981).

[Hoare 1969]
Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM 12, 10
(October 1969), 576-580.

[Hoare 1974]
Hoare, C.A.R. Monitors: An Operating System Structuring Concept. CACM
17, 10 (October 1974), 549-557.

[Hoare & Wirth 1973]
Hoare, C.A.R., and N. Wirth. An Axiomatic Definition of the Program-
ming Language PASCAL. Acta Informatica 2 (1973), 335-355.

[Hoare 1978]
Hoare, C. Communicating Sequential Processes. CACM 21,8 (August 1978),
666-677.

129

[Huang 1975]

Huang, J. An Approach to Program Testing. Computing Surveys 7,3 (Sep-
tember 1975), 113-128.

[1BM]
IBM Corp. IBM System 370 Principles of Operation. GA22-7000-3, Inter-

national Business Machines Corp.

[Ichbiah 1979]
Ichbiah, J.» et al. Preliminary ADA Reference Manual. SIGPLAN Notices
14,6 (June 1979), part A.

[Juvenal 130]
Juvenal (Decimus Junius Juvenalis, c.50 -c.130). Satires VI. Line 347.

.[Lamport 1978]
Lamport, L. The Implementation of Reliable Distributed Multiprocess
Systems. Computer Networks 2 (1978), 95-114.

[Lamport et al. 19801] \
Lamport, L., R. Shostak and M. Pease. The Byzantine Generals Problem.
Technical Report 54, SRI International, March 1980.

[Lamport 1981]
Lamport, L. Using Time Instead of Timeout for Fault-Tolerant Distri-
buted Systems. Technical Report 59, SRI International, June 198l.

[Lamport & Owicki 19801]
Lamport, L., and S. Owicki. Proving the Liveness Properties of Con-

current Programs. Technical Report 57, SRI International, October
1980.

[Lampson et al. 19771
Lampson, B., J. Horning, R. London, J. Mitchell, and G. Popek. Report
on the Programming Language EUCLID. SIGPLAN Notices 12,2 (February
1977).

[Lampson & Sturgis 1978]
Lampson, B., and H. Sturgis. Crash Recovery in a Distributed Data
Storage System. submitted to CACM.

[Lampson 1981]
Lampson, B. Atomic Transactions. In Distributed Systems -- Architec-
ture and Implementation, Lecture Notes in Computer Science Volume 105,
Springer-Verlag, 1981.

130

[Levin & Gries 1981]
Levin, G., and D. Gries. Proof Techniques for Communiating Sequential
Processes. Acta Informatica 15 (1981), 281-302.

[Liskov 1979]
Liskov, B. Primitives for Distributed Computing. MIT Laboratory for
Computer Science Group Memo 175, May 1979.

[Martin 1980]
Martin, A. A Distributed Path Algorithm and its Correctness Proof.

Technical Report AJM2la, Philips Research Laboratories, Eindhoven, The
Netherlands, 1980.

[Misra & Chandy 1981]
Misra, J., and K. Chandy. Proofs of Networks of Processes. IEEE Irans.
on Software Eng. SE-7, 4 (July 1981), 417-426.

[Owicki & Gries 1976]
Owicki, S., and D. Gries. An Axiomatic Proof Technique for Parallel
Programs I. Acta Informatica 6 (1976), 319-340.

[Pnueli 1979]
Pnueli, A. The Temporal Semantics of Concurrent Programs. In Semantics

of Concurrent Computatiop (G. Kahn, ed.), Lecture Notes in Computer
Science Volume 70, Springer Verlag, 1979.

[Randell et al. 1978]
Randell, B., P.A. Lee, and P.C. Treleaven. Reliability Issues in Com-

puting System Design. Computing Surveys 10,2 (June 1978), 123-165.

[Reed 1978]
Reed, D. Naming and Synchronization in a Decentralized Computer Sys-
tem. MIT Lab. for Comp. Sci. Technical Report TR 205, September 1978.

[Schlichting & Schneider 1981]
Schlichting, R., and F. Schneider. Using Message-Passing for Distri-
buted Programming: Proof Rules and Disciplines. In preparation.

[Schneider & Schlichting 1981]
Schneider, F., and R. Schlichting. Towards Fault-Tolerant Process Con-
trol Software. In Proc. Eleventh Annual International Symposium on
Fault-Tolerant Computing, IEEE Computer Society (June 1981), pp. 48-
55.

131

[Skeen 1981])
Skeen, D. and M. Stonebraker. A Formal Model of Crash Recovery in a
Distributed System. In Proceedings of the 5th Berkeley Workshop om

Distributed Data Management and Computer Networks (February 1981), pp.
129-142.

[Solomon & Finkel 1979]
Solomon, M., and R. Finkel. The Roscoe Distributed Operating Systenm.

In Proceedings of the Seventh Symposium on Operating
(December 1979), pp. 108-114.

[Wirth 1977]
Wirth, N. Toward a Discipline of Real-Time Programming. CACM 20,8
(August 1977), 577-583.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif

