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Chapter 1

Introduction and Summary

1.1 Summary The object of this study is the discovery of optimal
ordering policies for multiproduct inventory systems. The following
features characterize the systems that we consider. It is assumed
that, at the start of each of N periods of equal length, an order for
one or more products can be placed. Demands in the periods are
independent vector random variables with known probability density
functions. Demands for individual products within a period are
assumed to be non-negative, but they need not be independent. When-
ever demand exceeds inventory, their difference is backlogged rather
than lost. There are costs for holding inventory and for being out
of stock. The purchasing cost is linear in the amount ordered, and
there may or may not be a setup cost for ordering. Delivery may be
instantaneous or after a lag of a fixed number of periods. There is a
discount factor, which may be unity. An optimal policy is defined

to be one that minimizes the expected discounted costs over the N

periods.

No Setup Cost: Chapters 2 and 3 For the case where there is no

setup cost, this thesis extends some work of A. F. Veinott, Jr.

-l-
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For an N period, m product inventory system with stationary cost
functions and demand distribution, Veinott has shown that if
inventory is below an m dimensional x* at the start, it is optimal
to order up to that same point in the first period and each of the
subsequent periods. If the starting inventory is not below x¥,
Veinott finds the optimal policy when the products rmust be stocked

in fixed proportions [23]. By making some assumptions on the cost
functions, we have found the optimal policy for m=2 products when
the proportional stocking restriction is removed. That policy turns
out to be: Order none of the "overstocked" product(s), and order
less of the other product(s) than would be ordered ifkthere were no
overstocked products. See Figure 1l.1l. The policy is stationary,

as is x*, in the sense that the optimal action at any point in time
does not depend either on the number of periods remaining or on N.
In addition, in Veinott's case and ours, the solution of a single one
period problem is all that is required to obtain the "parameters" of
the policy.

Motivated in part by our results, Veinott subsequently
found the optimal policy for m products without the proportional
stocking restriction, under conditions slightly stronger than ours
[20]. His analysis in turn led to our generalizing of his conditions

for 3 products.



L

ORDER PRODUCT 1 ONLY,
UP TO THE CURVE

Inv. of
Prod. 2

ORDER NOTHING

x*

ORDER BOTH PRODUCTS,
UP TO x*

Inv. of
Prod. 1

ORDER PRODUCT 2 ONLY,
UP TO THE CURVE

N Period Policy, No Setup Cost

Figure 1.1

ORDER PRODUCT 1 ONLY,
UP TO THE CURVE

* ORDER BOTH PRODUCTS
UP TO x*

One Periog Policy, Setup

ORDER PRODUCT 2 ONLY,
UP TO THE CURVE

Cost

Figure l.2




b

In [23], Veinott permits the cost functions and demand
distributions to be non-stationary if they are such that the points
that minimize expected cost for the associated one Period problems
"nest". By nesting, we mean that for t=1,2,...,N-1, +the optimal
point for period t considered by itself is below the optimal point
for period t+1 considered by itself. If these points do nest, and
if starting inventory is below the first of then, Veinott proves that
the optimal policy is to order up to each of them in turn. We are
able to obtain a similar result for the case where the eosts and
demand are such that there is nesting of the single period "order-to"

curves.

Setup Cost: Chapter 4 For the case where there is a setup cost, we

confine ourselves to 2 product systems. We assunme that there is some
setup cost advantage to ordering both products together. In other
words, the setup cost for ordering both products together is not
greater than the sum of the two setup costs for separate ordering.

We obtain optimal one period policies which are roughly of the (s,S)
type. See Figure 1.2 for an example. For N >1 we are able toA
obtain the optimal policy for the case where (1) the cost functions
and demand distribution are‘symmetric in the 2 éroducts and (2) the
setub éost is the same for ordering one, the other, or both préducts.

The symmetry restriction is quite strong; however the result is, to
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our knowledge, the first multiperiod, multiproduct, setup cost

result. See Figure 1.3 for an example.

1.2 Discussion of Some of our Assumptions

A Crucial Assunrtion In this thesis we follow Veinott in making the

assumption that at the end of the N periods (1) any excess inventory
can be returned with full refund and (2) any e#cess demand must be
filled, at the usual purchase price. This assumption, which Veinott
and Wagner [26] credit to Beckmann [6], is crucial to the niceness
of some of the results obtained here and by Veinott. For example,
without it, even for one product, no setup cost, the optimal "order
to" point is non-increasing with time (see page 3 of Iglehart [10]);
that is, not necessarily stationary. A possible intuitive explanation
of the non-stationarity that results without the assumption is the
following: Compare the decision with two periods to go with that in
the last period. The possible holding and shortage cost consequences
next period are the same; but in the last period, demand less than
inventory implies the loss of the purchase cost investnent on their
difference. With two periods to go, this period's demand being less
than inventory is not so tragic, since there is always the last period,
during which their difference might be sold.

The assumption mekes it possible to include the linear part
of purchasing cost in holding cost, thus converting the no setup cost

problem into one with no purchase cost, only holding and shortage cost.
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For the setup cost problem, setup, holding, and shortage costs
remain.

0f course, the assumption is not plausible, but if N is
large, as it would be in nost applications, the cost that is neglected
will be small relative to other costs. We feel that the advantages
of relative ease in obtaining the optimal policy and in finding its

"parameters" justify the assumption.

Why Multiproduct? The bulk of the literature in mathematical inventory

theory deals with single product problems while most firms stock many
products. Is explicit treatment of multiproduct problems necessary,
or are solutions to single product problems sufficient? Our feeling
is that single product solutions are often insufficient, because they
cannot adequately take into account constraints or costs that depend
on total inventory. 1In nmany cases they effectively assume away a
potentially important part of the problem, that of optirum allocation
of a given total inventory among the products. We deal with this

issue in more detail in Sections 11 and 12 of Chapter 2.

Choice of Review Period A drawback to the utility of much of the

development in inventory theory is the assumption that the length of
the period between reviews is given. 1In practical situations, the

choice of period length can be as important as the choice of policy
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given the period length. Shorter review pPeriods normally bring
reduced inventory. The resulting holding cost reduction must be
balanced against the cost of reviewing more often. Although aware
of this problem, we will not explicitly deal with the choice of
review period length.

In many real situations, for order quantity in a given range,
the amount paid to the supplier is a linear function of the amount
ordered. If this order quantity is sizable, the setup cost associated
with placing the order (if there is one) vill be small compared to
the amount paid to the supplier, and can be neglected. This leads
to the cormon assumption of a linear purchasing cost. However, for
linear purchasing cost, the optimal policy is to place an order in
every period. Consequently, if the periods are short enough, the
resulting order quantities will be small and setup costs can no
longer be neglected.

This same line of reasoning calls for the explicit con-
sideration of quantity discounts when the review period is short.

However, with a general concave purchase cost function, even for
one product, the optimal policy is not simple: Although a single point di-
vides the ordering region fron the region where no order is placed, in the

former region the point that is ordered up to is no longer a constant,



-9

but is a function of inventory before ordering. See Karlin,
Pp. 120-4 and pp. 149-5 in [3]. This complexity in the one
product case has deterred us from investigating quantity discounts

in the multi-product case.

1.3 The Literature We will not systematically review the literature

of inventory theory, but instead refer here to publications that
are closely related to our work. Recent and excellent reviews of
the field have been written by Scarf [15] and Veinott [25].

When there is no setup cost, we have already referred to
the multiproduct work of Veinott [23]. Bellman, Glicksberg, and
Gross [7] have treated the multiproduct problem when the products
have independent costs but (possibly) correlated demands. They show
that the optimal policy is the "sum"'of the one product solutions
obtained using the marginal demand distributions. (See Section 12
of Chapter 2.) Evans [9] has investigated multiproduct systems
vwhere there is a maximum order quantity, as could be the case when
the products are made rather than bought.

When there is a setup cost, we known of no published

periodic review results. Zangwill's treatment of a multiproduct

situation [29] permits setup costs, but assumes that demands
are known constants. The one product work on which our results
are based is that of Scarf [14], Veinott and Wagner [26], and

Veinott [22]. Balintfy [5] has proposed a policy for continuous
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review that is similar to our optimal one period policy. (See

Section 5 of Chapter L.)




Chapter 2

Two Product Systems, No Setup Cost

2.1 Summagx This chapter is devoted to finding optimal ordering
Policies for two product systems when there is no setup cost
associated with Placing an order. We first explicitly introduce
notation for the costs and demand distribution and general assumptions
~ about the-management of the system. Then we convert the linear
purchasing cost into holding cost. The introduction of Property A2
follows, and it is assumed that expected one period holding and
shortage cost has that property. A derivation of the one period optimal
policy and the N Period optimal policy for the stationary instant
delivery case comes next. Then the case where each order is delivered
a fixed number of periods after it is Placed is considered, followed
by the case of non-stationary cost functions and demand distributions.
A comparison of Property A2 with convexity and other properties, g
look at whether reasonable holdihg and shortage cost functions imply
any of these properties, and a discussion of the problems encountered
in specifying these cost functiops follow. The chapter is concluded
by an assessment of the need for explicit treatment of the two

product aspect.

-11-
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2.2 Introduction It will be convenient to number the periods

so that from a calendar viewpoint period 1 is the last and

period N is the first. Vectoré, which will be underlined, will

be assumed to be column vectors. The holding and shortage costs

in a period are determined by functions h(+) and p(.) respectively.
To allow holding cost to be based on inventory on hand at the start
of the period, or that on hand at the end, or both, the holding cost
function h(-,:) (which will be written as h(+) for brevity) will
be defined on both starting inventory and demand in the period.

For example, if holding cost is linear in the average of starting

X, + (xl 1
and ending inventories, the h(x,D) = hl<
o~ 2

+(x
+h (\2 > The shortage cost function p( will be

defined on the end of period inventory vector. For example, if the
shortage cost is linear in the amount short, p(x) =
p, (max(0,-x,)) + py(max(0,-x,)). |

Deﬁand in a period is a vector random variable with prob-
ability density function @(+). Demands for individual products
within a period must be non-négative but need not be independent.
The demand vectors, QN’QN—l""’ 1

of one another. Excess demand is backlogged - that is, shipped as

D are assumed to be independent

soon as stock becomes availabie-rather than lost.
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There is a discount factor, @, which glves the present
worth of a dollar that becomes available one period from now. It
will be assumed that 0 s o s 1.

The purchasing cost is linear in the amount ordered, so
that if X 1s the order quantity, the purchase cost is S'%X.

It n(-), (), 9(-), eand § change with time, they will

be subscripted with the time period in which they epnly.

2.3 Converting Purchesing Cost into Holding Cost

Let gn = inventory before ordering in period n
X, = inventory after ordering in period n
Qn £ demand in period n

We assume the following sequence of events in period n.
(a) Review of inventory position
(b) Order placement ang delivery

(c) Demand.

Note that we are assuming instant delivery.

The quantity ordered in period n is §n - + We assume
that if demand exceeds supply in any period, their difference is
backlogged, so that gn_1.= X, - Qn' We assume that any excesgs

inventory after demand in period 1 is returnable and any backlog

must be purchased, and we specify a price vector 20 for these
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transactions. Then we can write the total discounted purchasing

cost over the N periods as TDPC = Z oAN-n c (x -qn) - aNc .

Substituting for < for n=0,l,...,N-l,

N-1
= -n ., -
TPC = £ o g Gom(x,

o1 1 ” 2n+l)?

N
-n+l .
nz aN ~n"~ fvvl "‘N%I
N
© w"n 2
(v - ! .
ALY SEPLE S

Since Yo the initiel inventory, is assumed to be given, and since
ordering policy does not influence demand, the first and second terms
of TDPC are unaffected by the choice of policy and can be (and are)
discarded. The third temm depends only on Xy §N-l""’§l and we

will henceforth consider it as s holding cost.

2.4 Expected Boldine and Shortage Cost; Property A2

Now the expected holding and shortage cost, this period,
if X is the inventory on hand after ordering can be specified. We
will call it L(+), and if the costs and demand distribution are

stationary, we have
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~o

M9 = L g cx +hlet) + p(x-£)19(E) at

Note that in addition to assuming S =85 = o0 = =c, Wwe

c
~n
have assumed that o =& We also assume that the integral exists;
that is, that @(t) gets small faster than p(x - t) gets large as t
increases, for any X. (It is not sufficient for all moments of ®(.)

"t for t 20 inplies

to exist: In the one product case, @(t) = e
that all moments exist, yet p(y) = e -l for y£0 and p(y) =
for y >0 implies that, for x <0, fp(x t)cp(t)dt = [, (e+t-x-l)( "t)dt -
e fo d.-1, and f dt does not exist. Therefore L(+ ) would
not exist for x < 0.)
Ve now define Property A2, and hereafter it will be assumed
that L(*) has this property. The property, as we define it, is
stronger than is necessary to prove the results we obtain. We have
chosen not to generalize it, however, to avoid lengthening the proofs.
A discussior ¢f whal is and is not essential in A2, and the relationship
of A2 to other properties (Canexity, etc.) is deferred to Sections 9 and 10.
Partial derivatives will be written in the form

- aL(xl,xe)
DlL(;g), D,L{x), Dy, L(x) where DlL(g) = --—-&-i-—--, etc.

This notation makes it easy to distinguish a partial derivative from
a total derivative when both are evaluated at a point where one

component is a function of the other.
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Property A2: Consider a two product system. Let L(x) be the
expected holding and shortage cost, this period, if x 1is the
anount on hand after delivery but before demand. We say that

L(*) has Property A2 if

(a) L(-) 4is non-negative everywhere

(v) L(') has continuous second partial derivatives

(c) Tﬁé set of points {(zl(xg),xa) l Dl;(zl(xg),xa) = 0]}
constitute a single-valued, continuously differentiable, non-
increasing function of x,. For (xl,xe) such that
x, < 2z9(x,), DlL(xl,xe)( 0 and for (x;,x,) such that
x, > zl(xe), DlL(xl’x2) > 0.

(d) The set of points ((xl,ze(xl)) | D2L(xl,22(xl)) = 0}
constitute a single-valued, continuously differentiable,
non-increasing function of x,. For (xl,xz) such that
x, < ze(xl), DEL(xl,xe) < 0, and for (xl,xz) such that
Xy > ze(xl), D2L(xl,x2) > 0.

(e) The two fuﬁctions descfibed in (c) and (d) have exactly
one point of intersection, call it X* = (xi, xg). For
x, > xt, DlL(xl,ze(xl)) >0 end for x, < x*le,niL(xl,ze(xl)) <0.
In other words, the cﬁrve DlL = 0 lies below the curve DEL = 0
for x, > x* and above D)L =0 for x, <x¥.

1 2
See Figure 2.1 for an illustration of property AZ.
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Lemma 2.1. If L(+) has Property A2 then L(.) is non-decreasing

-17-
We define cn(g) to be the minimum expected total discounted

cost over n periods if q is the inventory on hand, before ordering,

in period n. We set Co(g) = 0 for every q. We define
G (q) = L(q) + a € .1(g-t) @ (t)at.

Since Cn(-) is the expected cost when an optimal policy is

followed, it must satisfy C (q) = min {L(x)+a [ C_ _(x-t)P(t)dt)
n'~A > ~ n-l'~ ~
x*q 50
= min G_(x) .
n
x3q

2.5 The One Period Problan, Stationary Costs and Demand

We now obtain the one period optimal policy and Cl(').

as we move away from x¥ on either {zl(x2),x2) or {xl’ZZ(Xl))°

Proof: We consider the case of Zl(x2) for X,>x*,. The other
three cases are analogous and will be omitted. Consider any u and v
such that u > v 2 xg. Speaking loosely, we could construct a series
of line segments of non-positive slope, lying between D1L=O and
D,L=0, which connect (zl(u),u) and (zl(v),v). See Figure 2.2.
Since DL £ 0 and D2L 2 O‘ eiefywhere in the area through which
these segﬁénts pass, successive application of the mean value theorem
implies that L(zl(u),u) 2 L(zl(v),v). Speaking rigorously, we can

use a line integral theorem, see Apostol [1], page 280. Since zl(-) is
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Property A2 Illustrated
Flgure 2.1
(Zl(u))u)
IE
'Il

Figure 2.2
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differentiable and its derivative is continuous, it is piecewise

smooth and we can write

L(zl(u),u? - L(zl(v?,v) = f ?L(z) dzl(xe).

Now VL(x) = (DlL(ﬁ)’ DEL(z)) and DlL(i) =0 for x e{(zl(Ye),Yg)}
> A so the

integrand is non-negative. Therefore, since u > v the line

vy - *
and D2L(§? 0 for x e [(Zl(Yz?,Ye)) and x, > x

integral is non-negative and the lemma is proved.
This lemma implies that x* is the point at which L(-)

attains its minimum. That is, we have

Lemma 2.2. If L(:) has Property A2, then L(x) 2 L(x*) for

every X.

Proof:
(1) Suppose X lies on one of the two curves, D1L=O
and D,L=0. Then by Lemma 2.1, L(x) 2 L(§*).

(2) Suppose x does not lie on either of‘the curves.
Then it is clear from the mean value theorem that

L(x) 2 L(zl(xe),xe). Therefore, by Lemma 2.1, L(i) 2 L(x*),

and the proof is complete.

In the one period problem, Gl(g) = L(g) and the optimal

policy, when inventory before ordering is g, 1is to order to the
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point that mininizes IL(-) in the region Rq = {ﬁ!ﬁ 2 g},
Therefore, if q S f*’ it is optimal to order up to ﬁ*. If
* é / . 2 -

q, > x% end q zl\qe), it is desirable to order up to
(z (qg),qg), since DlL(Xl’qe) <0 for all x, < Zl(qe) and

D,L{x ,qz) >0 for 32l X, > Zl(qQ)‘ It is also optimal, since

1
if any emount of product 2, say 4, is ordered, it would be desirable

to go to  (z,(qy4a), 4p*A);  and L(zl(q2+A},q2+A} & 1(2,(q,),a,)
by Lemma 2.1. By symmetry, if q; > x¥ and q, S ze(ql), only
product 2 should be crdered, up to ze(ql).

The only remsining region is that where DlL and DL > 0,

2
and clearly the optimal policy here is to do nothing.

If we define

R, = {g | g8 x%)
R, = {g | A > x%, q; S 2y (qe)}
R, = (g | 9 > 9 f 2, (qp))
o tlala>u 0> 8 (a) or g, >y % > (%))

then we have just proved
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lerma 2.3. If L has Property A2, then the optimal one period

policy, when inventory before ordering is q is to:

(1) order both products, up to x*, if g € Ry,

(ii) order product 1 only, up to zl(qe?, if g eR)
(iii) order product 2 only, up to ze(ql), if g e€R,
(iv) order nothing, if q € Rye
The regions and the optimal policy are pictured in Figure 2.3.
Now we write down Cl(-) and obtain its first partial

derivatives.

s - - -
(a) For q S x¥, we have Cl(%) = L(x*), and DlCl(q) = Dece(g) = 0.

< vy
(b) For 9, > x% and q S zl(qe), we have Cl(g{ L(zl(qe?,qe).

Therefore, chl(g) =0 and

~ A0 N

A

dz, (q,

= D,L(z (a, ), q,) + (-*~;~*) DyL(z) (a5),0))-




. oo

| z (+)
ORDER PRODUCT 1 ONLY, ,5 e
UP TO THE CURVE ORDER NOTHING

J:2
ORDER BOTH PRODUCTS,
UP TO x* ORDER PRODUCT 2
1 N ONLY, UP TO
1 THE CURVE
The Optimal One Period Policy
Figure 2.3
chl = 0
1)20l >0
12
4 chl = chl = 0
chl >0

Figure 2.4
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Since DlL(zl(qE),qe) =0 and DQL(zl(qe},qg) >0,
p,C, () > 0.
(c) For 9 >x¥ and q, ze(ql), ve have, by symmetry,
| DECl(g) =0 and chl(g) > o;
(d) For ei’ﬁher q; > x¥ and q, > ze(ql) or q, > x% and
9 > zl(qe), we have Cl(.%) = L(g), and DlCl(g) >0 and

D¢, (g) > o.

This proves the following two lemmas

Lemma 2.4, If L(*) has Property A2, then if inventory before
ordering is q, the behavior of the first partials of the one

period expected cost function under an optimal policy is given by
(i? if g €Rp,, D,Cy (g? = necl(g) = 0

(ii) if q¢€ R, chl(g) = 0, Decl(g? >0

v

(111)if g € Ry, D;0y(g) >0, D,Cy(q) = 0
(iv? if g € R, chl(g) >0, chl(.?) > 0.

and

Lemma 2.5. If L(:) has Property A2, then if Qs the inventory

before ordering, is less than or equal to x*, Cl(q) = L(;g*).
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The behavior of the partials of Cl is pictured in figure 2..4.
The following result allows us to interchange differentiation
and integration operations in Theorem 2.7. Since the proof gives

no insights into inventory problems, it is deferred to Appendix A.

Lemma 2.6. If L has Property A2, then the first partials of

Cl(')””are continuous.

2.6, The N Period Problem, Stationary Costs and Demand

Now we prove a theorem which shows that the optimal policy
for the N period problem is given by x* (which was shown by
Veinott [23]) and by the functions zl(') and 22(-). That is,
the policy is of the same type as the one period pclicy, and

further, the "parameters" of the policy are exactly those of the

one period policy.

Theorem 2.7. If L(*) has Property A2 and if the first partials

of Cn(-) are continuous and satisfy conditions (i) (ii) (iii) (iv)
of Leima 2.4, then | |
(a) the optimal policy with n+l periods remaining is given by
| (1) (ii) (4i1) (iv) of Lemma 2.3,
(v) thé first partials of Cn+1(‘) satisfy (i) (ii) (iii) (iv)
of Lemma 2.4, and | |

(¢) the first partials of Cn+l(‘) are cantdmuous.
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Note: The proof of (c) is like that of Lemma 2.6 in giving no
insight into inventory problems. Although straightforward,

it is lengthy, and we omit it.

Proof':

fald) 2 MY+ o Colew) @ (9 o

and

cn+l (2) = min [Gn+l(£)] '

=9

First we show that x* is a global minimizer of Gn+l(').
We minimize Gn+l(')’ here and later on, by minimizing the terms
separately. This procedure works only if both minimizations yield
the same point, which, though unusual in general, does occur here.
Consider any point x. L(i) 2 L(x*) by Lemma 2.1. Consider any
£t 2Q. Since C (-) is constant below x* and is non-decreasing in

o - g - o
x, and in x, everywhere, ve have Cn(§ t) Cn(§% t)

Therefore @ fgégcn(ﬁ'i) ¢ (t) at 2z @ IE?‘Q cn(;g*-g) @ (t)at so




T

that Gn+l(%) z Gn+l(§%).l At this point, we can conclude that if

Q € x*¥, it is optimal to order up to x¥.

Now suppose q, > x# and q; = zl(qz). We show that
;mgnq Gn+l(%) = Gn+l(zl(q2),q2), so that only product 1 is ordered,

up to z.(q.). First, by Lemma 2.1, L(z,(q,),q,) = min L(x).
1'% 11927097 = e

. ~ ~
7

1 - This presumes that the integrals exist. That they do can be
seen from the following. Let Tl’Te"" be square regions defined
by T, = {gslxl,x2 e[0,k]), k=1,2,... . Since L(x*) 20, C (y) >0
for every y. Therefore, since ®(.) is non-negative everywhere,

Iy Calip) ¥lag = Iy 0,(-t) o(Rdat.
If we define ﬂk(z) 5 ka Cn(z-ﬁ) ¢ (t)dt, then we have just proved

that ﬁl(§), 92(5),... are a monotone non-decreasing sequence.

A

Since for any X, Cn(ﬁ'ﬁ)

o (x)s [c(x)o (t)at
k'~ £g2n~

Cn(ﬁ) for any t 20,

[

Cn(z) for every k. Consequently the

sequence is bounded, and so it has a limit. But

£o cn(;g-,g)co(t)dt = 11{1,13 Ok(x), so we have shown that the
ho re

~e

integral exists,
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Consider x 2 q and any ¢ > O. Then, because Zl(') has non-

. - ?‘ - . . » . s
positive slope, Cn(5 ;g) Cn((zl(qz),qz) E) (Figure 2.5 is an

aid to seeing why this is true.) Therefore

Iy 2 Cnl(zy(ap),a5)-) @ (glag s min [fy 2 o (x-t)P(t)at].

~ ~

Again the two terms are minimized at the same point, namely
(zl(qz),qg), so that only product 1 should be ordered, up to Zl(qQ)‘
<
By symmetry, if 9 > x"{ and q, = ze(ql?, only product 2
should be ordered, up to ZQ(ql)'

Now suppose q; > x¥ and q, > 22(q1)’ By terma 2.1,

1
L(g) = min L(x). Consider any x 2 g, and any t % O.
x2g " -
- 2 - - -
¢, (x ;5) C,(a-t), so that fia > an(>£ £)o(t)ag > If& > gcn(fé 3}@(3)%,

and therefore G +1(%) = min G, +l(§)' Consequently the optimal
=3
policy here is to order nothing. If g, >x%¥ and q > zl(qz), then
by symmetry, the optimal policy is to order nothing.
This establiz;hes (a). Now we show that the first partials

of Cn+l(°) behave as stated in (b).
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Figure 2.5
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fl

(1) Suppose g & x*. Then C_,(q) = L(x*) + a Jc (x*-g)o(t)at

H

L(x*) +aC_(x*).

Therefore D,C_.,(q) = D.C ,.(q) = 0.

(ii) Suppose q, > x% and q s zl(qe). Then

Cn+l(g) = L(Zl(qE))qZ) + Q fE 2 an(zl(QQ))qe)“E)@(Q)dﬁ‘
Clearly, chn+l(2) = 0. To get D20n+l(3)’ consider the two
4.
dq2
which was shown to be > O in Lemma 2.4. For the second term we

terms separately. For the first term we get L(zl(qe):qe)

get 4 ay Ocn((zl(qe),q2)~t)¢(3)d£. The continuity of the

da, EEQ
partials of Cn(') ensures that it equals
a ’
¢ fE 2 0l [c {(z,(q;),a,)-t)] @(t)at

and that this integral exists.

d &)
Ea“ Cn((zl(qe))qe)'ﬁ) = Decn\&zl(qe)-t)
2
a(z, (qs)-t,)
122771
+ 3 . chn((zl(QE))qZ)“E)'
9

For 2 Q, D;C ((2,(ay),a,)-8) = 0 and DC ((z,(ay),a5)-t) 2 0.

Therefore

Lo

- 2 ;
da, %'tz ¢, ((z4(a5),a,)-£)9(t)at 2 0 and so DLC ,,.(q)-> 0.
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(iii) Suppose q; > x*¥ and q, gz (ql)' Then by symmetry,

€ ,1(a) = Llay,25(qp)) + 0 ft > OCn((ql,z (a,)-t)o(t)at,

and D.C__.(g) >0 and DL . (q) =0.

1 n+l 2 n+l A

(iv) Suppose q; > xt and g, > z2(ql). The case g, > x% and
q; > Zl(qe) is analogous and will be omitted.

n+l(q) = L(q) + af o Cula-p)e(tlat.

DlL(q) >0 since L has Property A2. Again the continuity of the
partials of cn(-) implies that

D, [ f 20 c.(g-t) @ (t)at] = @ ftg 1C,(a-t)e(t)at,

with the second integral existing. This integral is non-negative
because D,C_{-) is non-negative everywhere, and therefore

c () 0. st
DG ,.fe} > 0. By symustry, DQC +l(g) > 0, and the proof of (b)

is compglete.

An interestirz conseqience of the theorem is Corollary 2.8,

If L(-) has Property A2, whou if g s x*, C (q) = ( ) L(x*) for

n=1,2,...
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Proof: Theorem 2.7 implies that

C (a) = L(x*) + aC (x%) for n=1,2,...

Now Cl(f*) = L(f*)’ so that by successive substitution,

L(ff) [L+a+cR + ... + an'l]

1-¢P

L(x*) . (1:57'-

¢ (a)

2.7 A Fixed Delivery lag

In this section, we show that the results for the instant
delivery case apply to the fixed delivery lag problem if Property A2
obtains for a redefined expected holding and shortage cost function.

| Suppose there is a delivery lag of A periods, where A
is a positive integer. In this case, an order is delivered at the
start of the period A periods after it is placed. The lag is
assunec to be fixed; it does not change with time, and there is no
possibility of an order being delivered early or late. The lag is
assumed to be the same for cach of the products.

We assume the following sequence of events in period n.

(1) Re&iew of inventory position

(2) order placement, for delivery A periods hence

(3) Arrival of order placed A periods ago

-

(h} Demand.
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Then, continuing our period numbering convention, we define
9, = inventory on hand at review time in period n

t = amount ordered in period n, for delivery in period n-A

~n

X, = inventory on hand in period n just after the
arrival of the order placed in period n + A.

D, = demand in period n.

Then X, is the stock available to meet demand in period n.
Consequently holding and shortage cost incurred in period n both
depend only on X and Rn'

After the conversion of purchasing cost into holding cost,
vhich follows below, the redefinition of expected holding and
shortage cost is possible, and the applicability of the instant
delivery results is immediate.

We assume that the firm intends to sell the two products
for the next N periods. Consequently, the firm has ordering
decisions to make in each of the next N-A periods, there being no
point in placing any orders after that since delivery would be too

late to be of use. We assume, for convenience only, that the items

are paid for in the period in which they are received.l Then the

1 - All that need be assumed is that the items are paid for r periods
after they are ordered, where r is non-negative and remains fixed
through time.
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total discounted purchasing cost for the N periocds can be written

as TDPC =

N
. -n+\
E ooty O - g o

n=A+1

N where c is the purchase

price for items ordered in period n and where excess inventory at
the end is returnable and backlog must be purchased. We observe
that 9y = %, - £n+x and, because of the backlogging assumption,

Therefore we can substitute x +D

2 = ¥n41 - Dnere A X1 Pns1on

for En and x.-D. for Y Making these substitutions and collecting

~l ~1
N
- D
terms, we get TDPC = £ A PN &iln-ail oSN+l
n=A
+ Z an n(c ) x - Since demand is not affected by
=1 n+x 1

ordering policy, the first term can be neglected. Similarly,

Nl depends only on demand and on orders placed prior to period

N, so the second term can be neglected. This leaves the third term,

which can and will be treated as if it were a holding cost. For

the remainder of this section, we also set =% for n=A,A+l,...,N.
To begin the redefinition of expected holding and shortage

cost, we define

= ] 4\; = s s
Zn + En + En+l + + AN x + t + + £n+k 1’

We call Yn the stock on hand and on order in period n. The back-

logging of demand implies that x .= (D D1+ o*D We
A ¥n ”

K+l)
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define ¢*A(X) = Pr(gl+...+gx £ y) and let @i(-) be its probability
density function. Then the pdf of D +...D, ... 1is @*k(.). We
define L(K)(x) to be the expected holding and shortage cost,

incurred A periods from now, if stock on hand and on order now is y-

-

By-z,8) | 9% (z) 9(t)agag
9 *2(y-z-t)

+(1-0)¢ ' (y-z)

-

which can be rewritten as

I Lly-z) o*(z)dz.
20 ™ A

~e

2
~

)
(M (.) pas Property A2. (This neither implies that

We assume that L
L{-) has A2 nor it is implied by L(*) having A2. See Appendix B
for examples.) Then treating stock on hand and on order as we did
inventory in the instant delivery case, the entire development for
that case applies here. That is, in any period, if the total of
inventory on hand and all orders previously placed .and yet
undelivered is less than x¥, the global minimizer of L(x)(-), it

is optimal to place an order for the difference between x¥ and what

is on hand and on order. If their total is not below x* but is to
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the left of D L(K)(i) = 0, it is optimal to order product 1 only,

1
up to the curve. Similarly, if it is not below x* but is below

D L(K)(i) = 0, it is optimal to order product 2 only, up to the

2
curve. Finally, if their total is both to the right of DlL(K)(x) = 0

and above D2L(x)(x) = Q, it is optimal to not place any order.

2.8 Non Stationary Costs and Demand

Under certain conditions, the cost functions and demand
distribution can change with time without changing the form of the
optimal policy from that obtained for stationary costs and demand.
The conditions are

(1) the order to points, Xy*) X%, -e., X *, Obtained

by censidering each period by itself, form a non-
incraasing sequence, and

(2) the order to curves, Zl,l(')’ ze’l(-),

cesy ZN,l(') and 21,2(-), 22’2(-),...,
ZN,E’ obtained by considering each period
by itself, are each non-increasing sequences
of functions.
Then these points and curves, each determined by reference to a

one period problem, give the optimal policy for the N period

v
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problem. That is, if the conditions obtain, behaving in each period
as if it were the last one is, in fact, optimal behavior for the
entire sequence of periods. Consequently, this result may be
interpreted as a planning horizon theorem, in the sense of Modigliani
and Hohn [12] and Wagner and Whitin [27].

To gain insight into why these conditions permit this
separation into one period problems, consider the following. With
purchase cost incorporated into holding cost, from the standpoint
of expected cost in period 1, there is no disadvantage in having as
little as possible on hand at the start of periocd 1. The conditions
ensure that, for any starting inventory in period 2, the optimal
policy for period 2 considered by itself calls for ordering up
to a point that would allow, whatever the demand in period 2,
ordering up to the same point in period 1 as ordering nothing in
period 2 would. So behaving in period 2 as if it were the only
period cannot increase cost in period 1. This reasoning, applied to
periods n and n-1 instead of 2 and 1 for n=3, b, ..., N
implies our result. Theorem 2.7 can be considered as a special case

of this result.
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In [23], Veinott discusses conditions on the

hn(')’s, pn(-)'s, ¢n(-)'s end ¢ 's that ensure nesting of

the §rc*‘s. He leaves detailed results for "subsequent papers."

There is some question in our mind about the ability (in a logical

sense) to specify period specific holding cost functions. This

issue is considered in Section 11l.

To begin the formal analysis, we define

AR [ SR

~ Qn(t)dt
+h (x,8) +p (x-t)

for n=1,2,...,N
If Ln(') has Property A2, then
ng(n) = {g | q = x ¥}

= *
By () = (g | gy > 3% q) %2 (g)]

* =
Ry () = (g ] ap >x%, 05 2 5 (a))]

R, (n)

We will need

-~ * *
(g | ay > %% 9y >z 5 (ay) or qp >} oya>z7 4(q)))



Hypothesis B:

(1) LN(-), IN_l(.),...,Ll(°) have Property A2

§ é . = *
(2) x*x Sx* 2.0 5

(3) For every t, ZN,l(t) s zﬂ-l;l(t) £... 8 zl,l(t)

S § IR B 2 é .
Note that (3) does not imply (2), as figure 2.6 illustrates.

Lemmas 2.1 through 2.6 apply to Ll(-), so we proceed directly

to the proof of the analog of Theorem 2.7, namely

Theorem 2.9 If L ., (-),Ln(-),... Ll(-) satisfy Hypothesis B
and if the partials of Cn(-) are.continuous and satisfy (i)
through (iv) of Lemma 2.3 (for Rle(n), Rl(n), Re(n), Ro(n)),

then

(a) the optimal policy with n+l periods remaining
is given by (i) through (iv) of lLemma 2.3 for

ng(n+l), Rl(n+l),RO(n+l),Rg(n+1).




The Need for (2) of Hypothesis B

Figure 2.6
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(b) the first partials of Cn+1(') satisfy (i)
through (iv) of Lemma 2.4 for Rlz(n+l),

Rl(n+l), Rz(n+1L Ro(n+l)

and (¢) the first partials of Cn+l(~) are continuous.
Note: Again the proof of (¢) is unimformative, and

again we omit it.

Proof: This proof is straightforward generalization of
Theorem 2.7.
Cpan (@) = T (@ + @ [ Clat) @p(t) at
Cpan(@) 2 min (G, ()]

x2q
~e v

. x . i Y.
First we show that §n+l is a global minimizer of Gn+l( )

i 2 * .1,
Consider any X. Ln+l(§) Ln+l(xn+l) by Lemma 2.1. Now

consider any t 2 0. Since the partials of Cn(') are non-negative

and since they are zero for any y $ x * and since x % = x %,
~ A ,Jl+l ~Mm

we have




IS

- 2 * .t).,
Cn(z t) Cn(£n+l t). Therefore

- 2 *_ .
@ Ty 2 oCalx-t)0 (1) at 2 [ 2 oCalanty - £)9.(8) at  so

2 *_), $ $ .
that Gn+l(§) Gn+l(§n+l) At this point, we can conclude that if

it is optimal to order up to x *

§ .
q X ~n+l

~ ~n+l’
* = .
Now suppose q2 > x 1,2 and q] znll,](qZ)

We show that ;m;nq Gn+l(f) =G . (Zn+l,l(q2)’ qg), so that

~ ~

only product 1 is ordered, up to Zn+l(q2). First, by Lemma 2.1,

L(zn+l(q2), %) = min I(x).

X=4q

~~ ~e

v

Consider any «x

~

q and any t 2 0. Then, because 2z l(-)
e (2] 3

- . s - g - . .
has non-positive slope, Cn(ﬁ t) Cn((zn,l(q2)’q2) ). Since

s
Zn+l,l(t) Zn,l(t) for every t, the latter equals

cn((zn+l,l(q2)’q2)'£)' Therefore

IV Sy

an((Zn+l,l(qe)’q2)-£)¢n(§)d£ = min [ é Cn(z'E)Qn(E)dE]‘

~ ~ N

b

We see that the two terms are minimized at the same point, namely

‘(zn+l,l(q2),q2), so that only product 1 should be ordered, up to




Lo

To complete the proof of (a), areas Re(n+l) and Ro(n+l)
must be considered. However the modifications of the proof of (a)
in Theorem 2.7 that are necessary should be clear from the treatment
of areas Rl2(n+l) and 'Rl(n+l), so we omit the rest of the proof
of (a).

once (a) has been established, the proof of (b) in
Theorem 2.7 carries over directly to establish (b) here, and the

proof is complete.

2.9 Generalizing Property A2

Tn discussing how Property A2 can be generalized, it is
helpful to make use of the properties to which A2 will later be

compared. Consequently, they will be defined nowv.

Convexity: Consider a function £(-), defined on a convex set S.

Then f£(+) is convex if, for every X,y € 8,
(2.9.1) or(x) + (1-6)f£(y) = £(6x + (1-6)y)

for every 0 6 1. If £(+) satisfies the added condition that,

for every X,y € S such that X#Y,
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(2.9.2) Gf(i) + (1—e)f(z) > f(@i + (1‘9)X)

for every 0 <6 <1, then f(-) is said to be strictly convex.

Quasiconvexity: A condition weaker than convexity is quasi-

convexity, vhich is defined below. Quasiconvexity is entirely
analogous to quasiconcavity, which was defined and explored by

Arrow and Enthoven [2].

For a function f(+), defined on a convex set S, two
equivalent definitions of quasiconvexity, which are taken from

Wolfe [28], page 7, are

(1) £(-) 1is quasiconvex, if, for all real c,

(2.9.3) I'(e) = (ﬁlies,f(ﬁ) £ ¢} is a convex seb

(2) £(+) is guasiconvex if, for every X,y € S,

(2.9.k4) max (£(x), £(y)) 2 £(6x + (1-68)y) for every

0=6=1.

By analogy with strict convexity, f(*) is said to be strictly quasi-

convex if, for every x,y € S such that ffx,

(2.9.5) max (£(x), f(X)) > £(6x + (1-6)y) for every

0<8<K1.
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Some examples of convex and quasiconvex functions of one
variable are given in Figure 2.7.

From these definitions, it should be clear that in part (c)
of the definition of Property A2, the statement that DlL(Xl’XE) <0
for x; < zl(x2) and DQL(Xl’xe) >0 for x> %ﬂxe) can be
replaced by a statement that L(xl,xz) is strictly quasiconvex in

X A similar replacement can be made in (d).

l.
We now define a weaker property than Property A2, which

will be called A%, under which an optimal N period policy will

be the same as a one period policy. For brevity, many of the details

are omitted from the discussion which follows the definition.

Property A2*: L(*) has Froperty A2¥ if

(a) (b) L(-) is continuous

(c) For any fixed x,, L(:) 1is a quasiconvex function
of Xq- Further, there exists a nonincreasing
function zl(-), such that zl(xe) is one of the
points at which L(.) attains its minimum.

(a) For any fixed x,, L(+) is a quasiconvex function
of Xne Further, there exists a nonincreasing
function 22(-), such that ze(xl) is one of the

points at which L(-) attains its minimum.



£(x)
i
STRICTLY CONVEX CONVEX STRICTLY QUASICONVEX
- QUASICONVEX

Examples of‘Convex and Quasiconvex Functions

Figure 2.7

zl(‘)

(zl(UE)’uQ)

(2 (uy,) 2’“ ) \._- A —>
(z e,u ) t
1 ;(zl(ua)-%,ve) = (2,(u,),9,)-t

- Ml
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(e) (A) The set H = (xl\zl(zz(xl)) = xl) is a set
of isolated points, and
(B) one point of H, call it x,%, is such that
for x,>%,*, zl(ze(xl)) £ xq and for
x, < %%, zl(za(xl)) z x,.

The existence of the partial derivatives of L(*) only
makes the statements and proofs of the results of Section 5 and 6
more compact, and is otherwise not essential. (Even continuity of
L(+) is not essential, but we £ind it hard to conceive of an L(.)
that is not continuous. )

To see why zl(-) and 22(-) must be non-increasing,
suppose that L(-) satisfied the original definition of Property A2,
except that for some Uy > Vp z x %, zl(ue) > zl(ul), as illustrated
in Figure 5,8, It would still be possible to prove Temmas 2.1 through
2.6, However, the current proof of Theorem 2.7. would fail. Iet
A= zl(ug)-zl(ve). For % = (% s u2-v2), Cl((zl(uz),u2)~3) =

A . _ A
Cl(zl(v2)+ E,ve) which is greater than Cl(zl(v2 ’VE) = Cl((zl(ue)-2,u2)—£).

Therefore, for X

1]

(zl(u2)~ %,ug), it cannot be said that
Gz(i) 3 Gz(zl(uz),uz), so that it may not be optimal, in period 2,

to order from X up to (zl(gz),ue).
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Although A2* permits multiple intersections of DlL =0
and D2L=O, it does not permit any set of these points vhere
zl(zz(xl)) = X, to be connected. The reason is: If the first
partials of L(-) did not exist and a set of such points were
connected, then a situation of the type plctured in BRigure 2.9
could occur; and if such a situation did occur, then the optimal
one period policy would no longer be given by lemma 2.3.

If the first partials of L(-) exist, then by the line
integral theorem used in Lemma 2.1, L(:) would be constant along
any connected set of points where zl(ze(xl)) = x,. If not, then
we have been unable to prove from the remaining parts of A2¥* that,

for example, L(+) 4is not concave in x along such a set.

1
Therefore, we cannot rule out L(u,ze(u)) > L(a,zz(a)),L(b,ze(b))

vhere u = é%E’ as pictured in Figure 2.9.

2.10 Comparing Property A2 to Convexity and Quasiconvexity

In comparing Property A2 to convexity and quasiconvexity,
we continue to assume that purchasing cost has been converted to
holding cost and is therefore inéluded in L(-).

what determines the form of the optimal policy is the

behavior of L(*), the expected one period holding and shortage
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cost function. The optimality of the policy described in Lemma 2.3

and Theorem 2.7, which Veinott [23] calls the base stock policy

(since, eventually, one orders up to ff in every period), depends
on L(+)'s satisfying A2. In the one product analog of our work,
Veinott [21] assumes that L(') is quasiconvex. However, it would
be desirable if conditions could be imposed on h(-), »(+), ¢(*),
and c directly, since they could be checked more easily than can

conditions on L(-). This has been done by Karlin ([3), pp 113-7

and pp 137-42) for the one product case. He indicates that convexity

of h(-) and p(+) implies convexity of L(+) and hence the

optimality of a base stock policy. He also shows that if ¢(.) is &

Polya frequency function, certain sign change patterns on ¢ and
the derivatives of h(+) and p(:) are sufficient to imply that
a base stock policy is optimal.

However, to the extent that L(-) may satisfy the
required conditions on it even where h(-), P(‘), ¢(‘) and ¢
do not, direct checking of 1(-) is desirable. For example, in
the one product case, h(-) and p(+) need not be convex for
L(-) to be convex.

In generalizing to two products, convexity of h(+)

and p(+) is still sufficient but not necessary for the convexity
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of L(+). We know of no analog of the Polya frequency function in
two dimensions. And the extension of the one product quasiconvexity
assumption can be done in at least two ways, namely two dimensional
quasiconvexity and Property A2.

The comparisons that follow will be between gquasiconvexity
and A2. These will be sufficient to indicate the relationships
between convexity and A2, since quasiconvexity is implied by convexity.
Unfortunately, there is no easy relationship between quasiconvexity
and A2.

Quasiconvexity does not imply A2. The major reason 1is

the requirement in A2 that zl(') and 22(') be the non-in-
creasing. This implies that the cross partials of L(-) are non-
negative, at least near the two curves. Non-negative cross partials
are not essential to quasiconvexity. (For example, £(x,y) = (x-y)?
is quasiconvex and Dlef(x,y) = -2 for every (x,y).) 1In Section 9,
the necessity for zl(-) and 22(') being non-increasing was shown.
Therefore, it should not be surprising that quasiconvexity of L(.)
is not sufficient to imply the optimality of an N period policy

of the form given in Lemma 2.3 and Theorem 2.7. However, if ()

is assumed to have non-negative Cross partials and be quasiconvex,

a policy of that form will bé optimal, as the following outline

indicates.
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Define zl(xa) as the smallest x, that minimizes
L(*) on the line where X, is constant, and define 22(')
similarly. It is easy to show that these two curves intersect at
least once and that at least one of these points of intersection is
an sbsolute minimizer of L(+). Let x¥ be any of these last
named points. Then with these definitions, it is possible to prove
modified versions of Lemmas 2.1 through 2.5 and Theorem 2.7 in the
same way as the originals are proved. The modifications would allow
for the non-existence of derivatives and would drop the strictness
from the inequalities.

Quasiconvexity and non-negative cross partials still

do not imply Property A2 (or Property A2*). The difficulty is a

minor one relating to part (e) of the definition of A2. For
example, L(xl,xz) = (xl+x2)2 is quasiconvex with non-negative
cross partials, and zl(zz(xl)) = x, on the entire line x,+x, = 0.
Therefore, L(+) does not satisfy A2 (or A2¥).

Property A2 does not imply quasiconvexity. The difficulty

here is major, and results from the fact that quasiccnvexity in X
for any Xg and in X5 for any X, do not imply quasiconvexity

in the two-dimensional vector X. See Figure 2.10, vhere a set
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P(c) = (x|L(x) & ¢} that is convex in x, for any X, and in X
for any X, but not convex in two space is {11lustrated. Furthermore,
the possibility that L(.) will have A2 and not be gquasiconvex
is not just theoretical -- we feel there are reasonable inventory
situations where it will happen. (See Section 11.) This explains
our choice of A2 over quasiconvexity and non-negative cross partials
in the original development.

Now that the non-negativity of the cross partials of
L(‘), either explicity or implicit, has been brought into the
open, there may be some question as to its reasonableness. This

issue is treated in Section 1l.

2,11 R~iating Folding end Shortage Costs to Property A2

— -

ggggggbual Systems_tn 'Our Model

If this work is to have any practical significance, the
essunptions we have made about L(-) mist be reasonable. And
reasonableness should be judged in terms of the demand distributions
and holding and shortage cost functions that imply or are implied
by our assumptions about L(;). The model that we have assumed must

also be a reasonable fit to real world inventory systems.
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We feel that primarily because of the difficulties
involved in specifying shortage costs, the question of whether
or not L(*) will have A2 cannot in general be resolved. In
many cases it will be clear from h(‘) and p(:) that L(-)
does have A2. In other cases, it will be clear from h(-), p(+),
and ¢(~) that it does not. In still other cases, it will be
necessary to construct L(*) in order to find out whether or not
it has A2.

The framework of this section will be a discussion of
shortage cost followed by a discussion of holding cost. Our
primary aim will be separating the cases where it is clear from
n(*) and p(-) that L(:) has A2 from those where L(:) must
be constructed.

Comments on the fit of the model to actual systems will
be woven into this framework. In the absence of a two-dimensional
analog of the Polya frequency function, demand distributions will
not be discussed.

Of particular relevance to our treatment of multiproduct
systems are the discussions of the plausibility of Dleh(') being
non-negative and the plausibility L(.) having A2 but not being
quasiconvex. The possible problems of specifying a non-stationary
h(+) function bear on the potential usefulness of the results of

Section T of this chapter.
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Shortage Costs:

To begin, we seek assumptions on p() that, along
with reasonable ones on h(.), imply that L(-) has A2.
Suppose that n(x,t) can be written as £(§) or g(§-£). In
the discussion of holding costs we give reasons for supposing
that Dl2h(-) is non-negative and that h(-) is convex and increasing
in' xq for any X, and in , for any X,- Even with these
asgumptions, unless p(-) is convex and decreasing in x, for
any x, and in x, for any Xy, one cannot be sure that L(-)
will be quasiconvex in X, for any X, and in e for any x,.
And even if it is, unless Dlgp(-) is non-negative, one cannot be
sure that zl(-) and 22(') will be non-increasing.

If, in the two product case, the shortage cost p(i)
can be written as pl(xl) + p2(x2) for every X, then Dlap(°)
is always zero and hence non-negative. If in addition, pl(')
and p2(°) are both comwex functioms, then p(:) 1is convex in two
space. This separable and convex shortage cost is at least superficially
plausible and is probably correct in many cases. However, this is
not always the case. Suppose, for example, that emergency
replenishment is made if the firm runs out of either or both products,

and that the added cost is independent of the quantity and is the same
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whether one product or both must be acquired in this way. In this
case, the discontinuity in p(.) makes examination of Dlzp(')

inappropriate, so we look at its analog,
[((x+ Ql+z,§2)-p(3g+gl})—(p(35+é,2)-p(gg))] for & = (4,,0), &, = (0,d,)

and dl,d2 > 0. This quantity must be non-negative everywhere to
ensure that Zl(') and 22(-) are non-increasing. But for
1=d,=2, we have p(-1,-1) = p(1,-1) = p(-1,1) =
the cost of emergency shipment while p(+1,+1) 4is zero, and our
analog of Dlgp(') is negative.

As an introduction to the difficulties of specifying
a shortage cost function, consider the following example. Suppose
a firm reviews its inventory posi£ion once a week. It has 90 units
in stock at the start of the week and will receive (say) 150 units

next Monday. Suppose 5 separate orders, each requesting shipment of

20 units this week, arrive. Then one of the orders cannot be filled

this week. On that order, the firm can ship 10 units now and 10 units

next week, or ship the entire order next week, or perhaps get an
emergency shipment from its supplier and ship all 20 this week.
The cost of being out of stock--of paying for two

shipments instead of one or of losing goodwill by shipping next
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week or of paying a premium for emergency supply -- may be
independent of the size of the stock out. That is, the costs
mentioned above might very well be the same if the firm were 5
units short on the last order rather than 10 units short. If
this were the case, p(+) would not be convex.

For the three specified ways of handling stock outs,
there are costs that are hard to measure. For the first two,
the customer's original request is not satisfied on schedule.
Should this cause him to take his business elsewhere in the future,
the profits that the firm will not make as a result are a cost
chargeable to being out of stock.l Satisfactory procedures for
estimating the probability of this event and the amount of profit
loss if it occurs are not yet available. When emergency supply is
used to avoid delaying customer shipment, the cost in terms of
relationship with the firm's supplier may far exceed the immediate
out-of-pocket cost.

In some situations, when a customer's current demand

cannot be satisfied immediately, that very demand is lost. The

1 - Loss of future business also implies that future demand
distributions depend on current policy and on gquantity demanded,
rendering our model inappropriate.
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backlogging assumption has been made because under the lost
demand assumption, the analysis unavoidably becomes more complicated.
Consider, for instance, the fixed delivery lag case. When excess
demand is backlogged, expected holding and shortage cost N periods
hence is a function of stock on hand and on order novw. When
excess demand is lost, this is not the case, because inventory
just before demmnd, A periods hence, is no longer the difference
between stock on hand and on order now and demand in the intervening
periods, but will be greater than the difference if there are any
stockouts between now and then. Expected holding and shortage
cost A periods hence is then a function of stock on hand and the
individual order quantitiés; that is, it is a function of A+l
variables.

Suppose a policy obtained from a backlogging model
is used, when in the actual system excess demand is lost. If the
optimal policy under backlogging results in a very small percentage
of demand being backlogged, it would seem that this policy would be

quite close to optimal for the lost sales model.

Holding Costs:

First let us consider what costs are included under

the name holding cost in our model. Since interest costs relate
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to cash flows, that part of holding cost that is called '"cost

of money tied up in inventory" (see page 10 of Starr and Miller [18])
is covered by the (1-0éi term. (This term is linear in x. If

the cost of capital incresses with the amount required, then &

will not be a constant, but a function of X, and this term will

no longer be linear in x.) Consequently, h(*) includes costs
related to the physical handling and storage of inventory: Handling
costs, warehouse rental, pilferage, taxes, insurance, etc.

In many warehouses, the space required and the handling
costs depend only on the total amount stored and not on the relative
proportions of the different products that make up the total. To
the extent that the products can be mixed at will without impairing
their availability for shipment, this assumption is true. To the
extent that the products must be stored in separate areas, it may not
be true. It may be necessary for different products to be physically
separated. Or it may only be necessary to avoid stacking one product
on top of (or in fromt of) another.

If holding cost is a function of total inventory, then
h(f) can be written as ﬁ(xl+x2) for every x. If n(-) is
convex and increasing, then Dleh(') is non-negative and h(.) is

convex in Xy for any X5 and convex in Xy for any X, . So
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if p{-) 1is convex and decreasing and separable, L(:) will
have property A2.

This assumption on h(-) is quite plausible. It is
equivalent to saying that the marginal cost of storage is a non-
decreasing function of inventory level. In other words, the
incremental cost of storing onebmore unit if 100 units are on
hand is at least as large as the incremental cost of storing another
unit if 50 are on hand.

In the short run this may not be true. On a given day,
with a given number of men on the job, additional units can be
stored with no increase in out of pocket cost as long as the total
workload does not exceed the 'capacity" of the workforce. As long
as the total inventory does not exceed the capacity of the ware-
house, there will be no increase in out of pocket cost for space
either. However, in the longer run, where our main interest lies,
it is reasonable to suppose that marginal handling, space and other
costs that make up holding cost will increase with inventory level.

Consider a firm which is deciding how much to stock in
its two-story warehouse. Starting with an empty warehouse, each
additional unit that is put into inventory will be stored farther

from the shipping dock, at increased handling time and hence cost.
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After inventory hits a certain level, units will have to be stored
on the second floor at still higher handling cost. When inventory
exceeds the capacity of the warehouse, then public warehouse space
must be rented, at éven higher unit cost.

In the day to day operation of the warehouse, even
vhen it'is relatively full, an additional unit received may in fact
be stored right next to the shipping dock. This results because a
warehouse operating policy should specify storing the units that
turn over the fastest nearest the shipping dock. Units stored on
the second floor should be shipped only when high demand has cleaned
out the first floor or when fhey would be too old to sell if not
shipped now. This just indicates that a warehouse operating policy
is implicit in any holding cost function. Since our emphasis is
on stationary cost functions and demand distributions, this period’'s
holding cost for a given inventory level and demand quantity
should be interpreted as the average cost per period of operating
the waféﬁouse at that level with that demand.

Of course there are situastions where holding cost cannot
be written as a function of total inventory. In these situations,
if for any given inventory of product 1, the marginal cost of

storing product 1 does not decrease as the inventory of product 2
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increases, then Dleh(o) is non-negative. If this should be
the case, then one would expect the marginal cost of storing
product 1 to be non-decreasing with inventory of product 1, for any
given inventory of product 2. This would imply that Dllh(t) is
non-negative, so that h(.) would be convex in x, for any
fixed X5 By the same reasoning, with products 1 and 2 reversed,
h(.) would be convex in X for any fixed X,
This convexity and the non-negativity of Dlzh(')’
along with p(-) being convex and decreasing and separable, imply
that L(+) has A2. However they do mot imply that h(.) is
convex in two-dimensional space. For example, h(ﬁ) = (xl+x2)2 + X %,
has Dllh(}f,) = D22h(§) =2 and Dleh(i) = Dzlh(f) = 3 for every 35.
But observe that h(2,2) = 20 > 19 = h(i,3) = h(3,1), so that h(-)
is not convex. We feel that this is more than just a mathematical
possibility, that actual holding cost functions may behave this way.
One way for h(-) to be non-convex when the four second
partials are non-negativé, is for the warehouse to be cheaper to

operate, for a given total inventory, when the inventory is predomi-~

nantly one product or the other, than vhen the inventory is divided
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evenly between them. If this is true for any total inventory,

and if demand is bounded (from above), then L(.) will not be
quasiconvex.l However, the non-negativity of the four second
partials of h(+), with p(+) convex, decreasing and separable,
suggest that L(-) dis very likely to have Property A2%. (The
only question is whether H; defined in Section 9 of this chapter,
is a set of isolated points or not.) This is our reason for
preferring A2 to quasiconvexity in stating our results.

See Appendix C for an example where L(+) has A2
but is not quasiconvex.

It is possible that there will be a logical problem in
specifying h(:). Suppose a firm with an existing warehouse is
evaluating its inventory policy. The cost, in some future period,
of holding an amount higher than current capacity depends on

whether amounts that large will be held always or only occasionally.

1 - Even when demand is not bounded, if the cost of "even
distribution" is high enough relative to the shortage cost,
L(-) will fail to be either convex or quasiconvex.
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If it will be always, then the cost should probably be based on
expanding the existing warehouse. If it will be ocassionally, then
the cost should probably be based on storing the excess in a

public warehouse, since this is likely to be cheaper than expansion.
The same ideas apply to holding an amount less than current capacity:
If inventory will always be less than capacity, credit: for some
alternative use of the idle space should reduce holding cost. If
inventory will be lower only occasionally, then there is no

saving. In other words, in asking for the cost of holding a given
amount, one must specify whether he wants long run or short run
cost.

For the stationary, instant delivery case, the optimal
policy is such that the inventory just after delivery is the same
in every periodl so that long run costs are appropriate. But if
costs or demand are non-stationary of if there is a delivery lag,

the optimal policy is such that inventory on hand just after delivery

1l - Except for the time, if any is required, to let inventory
fall below zﬁ.
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will change from period to period, and there is a question of
whether to make h(+) a long run or & short run cost. This
question may be more apparent than real since short run and

long run costs may not be significantly aifferent. We would
think that short run and long run marginal interest costs would be
the seme, while long run marginal costs of physical storage and
handling would be considerably less than the corresponding short
run marginal costs. If so, and if h(-) is expanded to include
the (1-O)c'x term, the problem of defining n(-) becomes

more real as the ratio of product volume and/or weight to product
value increases. For example, interest costs should dominate
physical costs for portable transistor radios which retail for
about $2000 per cubic foot, vwhile the physical storing and
handlipg costs might be dominant for soap f£laokes at about $5

per cubic foot.l

1 - On page 39 of gection 11 of the New York Times, March 20, 1966,
. @ SONY radio, 2 1/u" x b ox 1" is advertised for $11.99.
At that time, & two pound carton of Ivory Snow, measuring
g 3/16" x 11" x 3%, retailed for 79 cents.
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2.12 Is Explicit Treatment of Two Product Problems Necessary

The optimality of two single product solutions for a
two product problem will be taken to mean that the optimal
ordering decision for product 1 can be made without reference to
either the inventory position or the ordering decision for product 2,
and vice-versa. For a problem posed in the two product framework,
this implies that zl(') and z2(-) are constants. The optimal
policy would be as illustrated in Figure 2.11.

zl(') and 22(') would certainly be constants if L(i)
could be written as Ll(xl) + L2(x2) for every 35.1 They might
even be constants if L(*) is not separable.2 However, it is
unlikely that, in any real inventory situation, zl(-) and
22(-) will be constant unless L(x) can be written as Ll(xl)+L2(x2).

Whether it is mathematically possible or not, it is
unlikely that L(*) will be separable unless both n(-) and p(-)
are. Situations where h(') will not be separable have been
discussed in Section 11. In these situations %hen, cxplicit treat-
ment of the two product problem is likely to be required if an

optimal policy is to be obtained.

1 - This condition is part of the set given by Veinott [23], which
imply that a two product problem can be "factored" into two one
product problems.

2 - L(xl,xg) = x12x22 cannot be separated, yet zl(x2)=0 for every

x, and 22(x1)=0 for every X.

2
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ORDER NOTHING

ORDER PRODUCT 1 ONLY,
UP TO 'z.:L

ORDER PRODUCT 2 ONLY,
UP TO Z, '
ORDER BOTH PRODUCTS,

UP TO x¥

The Optimal N Period Policy when zl("‘) -and 'ze(') are Constant

Figure 2.11
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From a practical point of view, single product solutions
to two product problems may be fairly close to optimal. Since
Theorem 2.7 implies that, eventually, the firm orders up to g#
in every period, let us concentrate on x* and forget about the
zl(-) and 22(') curves. Suppose, for example, that p(.) is
separable and that h(x,t) = h-(xl+x2)B for some B 2 1. And suppose
that h(+) were approximated by g(f’t) =h . [xls+x25], which is
separable. Let x°= (xl°,x2°) be the point that minimizes L(.)
when ﬁ(~) is substituted for h(.). Then xlO and x2O can be
ottained by considering the problem as two separate one product
problems.

For f=1, xlo = xl*. In an example where p(.) is also
symmetric (see Appendix D), as B increases from 1, the ratio of
x,* to xlo decreases. This suggests that the closer h(:) can
be approximated by a separable function, the closer will be the
"sum" of the single product policies to the true optimal policy.

Since (1~ a)g'i is essentially a holding cost, the

larger (l—obg'§ is compared to h(i)’ the closer will be the sum

of the single product policies to the true optimal policy.




Chapter 3

Three or More Products, No Setup Cost

3.1 Introduction and Sumnary In this chapter we give some

unpublished results of Veinott [20], obtained after our results

of Chapter 2, for the multiproduct case wvhere m, the number of
products, can be any positive integer. The first of these is a
theorem which states that if the optimal policy for the one period
problem satisfies a certain hypothesis (described in the next
paragraph) then that same policy, parameter values included, is
optimal for the N period problem. If L(-) has Property A2,
then his hypothesis is satisfied, so that our two product results
of Section 4 through 6 of Chapter 2 are then a special case of this
theorem.

Consider any two starting inventory vectors such that one
is greater than or equal to the other. (Note that it may not be
possible to "order" two arbitrary vectors in this way.) Veinott's
hypothesis then is that there be an optimal one period policy
which specifies an order quantity for the larger of the starting
inventories that, for each product, is not larger than the order

quantity specified for the smaller starting inventory.

-68-
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Next we give a condition on 1L(.), obtained by Veinott,
which implies that the one period policy satisfies his hypothesisl.
Specifying this condition requires a preliminary definition and we
defer both to Section 3.

Property A2 holding for every pair of products in a
three product case is not sufficient to imply that the optimal one
period policy satisfies Veinott's hypothesis. In Section 4, we
introduce a three dimensional analog of Property A2 that is

suffictent, and compare it to Veinott's condition of Section 3.

3,2 The Optimal N Perjod Policy for m Products

In this section we give a hypothesis that if satisfied
by the one period optimal policy ensures that the policy is optimal
for the N period problem. The proof that it does is given in
Theorem 3.1. These results are Veinott's, and what follows is a

close paraphrasing of his work in [20].

1 - Veinott [20] giveé another set of conditions: If L(x) can

m m i
be written as Z bi(xi) + Zh (z xj) where the b,.(s)'s
i=1 ij=1 * §=1 :

bi(')'s and hi(')'s are convex, then the one period optimal

policy satisfies his hypothesis. He proves this in [19],

vhere X is a vector of inventories of a_single product at
different points in time. In our problem, X is a vector of
inventories of the m products at a single point in time. Except
when the h,(+)'s are all identically zero (in which case the
problem can”be solved by "adding" m single product solutions),
there is no reason to suppose that L(+) can be written in this wey.
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Consider a one period, m product problem. We will

say that y is optimal for x if L(y) = min L(z). (Note
z22x

[

~

that theye may not be a unique y 10r a given i’)

Hypothesis 3 (Veinott): If x' =x and if y is optimal for ¥,

Lad 4

then there is a X' that is optimal for f' which satisfies
ger i

Consider any two starting inventories such that, product
by product, one is larger than the other. Then Hypothesis 3 states
that there is an optimal one period policy which specifies ordering
less (or at least not more) of each product from the larger starting
inventory.

In the following theorem we prove that if, in a given
N period inventory problem, there is an optimal one period policy
that satisfies Hypothesis 3, then that same policy is optimal in
each of the N periods. For the purposes of the theorem, we

reverse our convention and number the time periods in chronological

order.

Theorem 3.1 (Veinott): Consider an N period inventory problem

and suppose Hypothesis 3 is satisfied. Let X denote inventory at

1
the start of period 1. Iet Y¥* be the ordering policy defined as

follows: Let y,* be optimal (in the sense of Hypothesis 3) for

X

Xy Suppose z% has been defined. Then let x*t+l be optimal for




“Tle

x*t+l = x% - Qt’ Then Y* is an optimal policy, in that it

~

minimizes expected discounted costs over the N periodsl.
Proof: First we will show by induetion that
(3.1) nin L(z) = L(ﬁ) for t=1,2,...N

t-1
Z2x, - L

The result is trivially true for t=1. Suppose it holds for some

integer t. Then y*  is optimal (in the sense of Hypothesis 3)

t-1
for X, - z Qi'
i=1
Therefore, by Hypothesis 3, there is a point v that is optimal
t Ll
(in the sense of Hypothesis 3) for %,- LD, vhich satisfies
i=1"
(x, - 51, (x, - 2D,)
v-(x,- ZD)2y*r-(x,~- ZD or vZy¥-D. Nowby
definition L(v) = min (L(z))
’ t
2 -
ZEy - IO
i=1l
which equals min (L(z)) = L(x*t+l)
2 _ }
ZEYE - R

1l - Veinott allows N +to be infinite in [20].
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since v Z z: - Et' This completes the induction.
Consider any ordering policy Y and let Xl’Ze""ZN

be the associated inventory levels after ordering. Clearly

t-1

- LD, for every t. Then by (3.1) we have, for any
i=1

set of previous demands gl"“’gt-l’
L(Xt) z L(zg) for t=1,2,...,N.

Therefore, taking expectation with respect to the distribution of
DyseeesDy s E(L(z&)) z E(L(x*t)) for t=1,2,...,N.

If f(fllY) is defined to be expected discounted cost if
initial inventory is x, and policy is Y, then for any policy Y

2t
f(xl!y) = £ Q

2
o B(L(g,))

£ o EB(L(gx,)) = £(x, |v*),

which proves the theorem.

3.3 A Condition That plies the Hypothesis of Theorem 3.1

In order to describe Veinott's condition on L(.) that

implies his hypothesis, the concept of a nearly principal minor of

a matrix must be introduced. We quote from Veinott, [20]:
"Let H:(hij) be an nxn matrix. Let

1= il S ... F 4

) . P
kit 1= 2 ,,. =
J 3y Jp

HA
=

i LN ¥ 3 i
l, )

: jp) = |(ni
l,...’ p

1A
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be the indicated minor of H. T will call the minor nearly
principal if there is exactly one index ir that is in
{il,...,ip) but not in [jl,...,jp], and exactly one index
jg that is in (jl,...,jp} but not in {il,...,ip}.

i

I will write H( 5

l,ooolp 3 r ) £0
l,.ll,jp ; S

indicate the nearly principal minor in which ir and js are
as designated above."

Suppose that L(+) has continuous second partial
derivatives, and let gy be the mxm matrix of these second
partials, so that

hij = Dij L(X).

Then Veinott's condition is:

(%) H, is positive definite (that is, L(+) is convex)

i

and

(B) every nearly principal minor of Hy satisfies

A

we

i ase i r
(3.2) (1= (YR ) = oo
. X -jl)“‘yap 8

e
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For two products, (B) reduces to D12L(-) being non-negative,
which as illustrated in Section 10 of Chapter 2 is necessary at
least near the curves D,L=0 and D,1=0. For three products, (B)

requires, in addition to non-negative cross partials,

Dij(i) . DikL(g) S D, L(x) - DJKL(Q for ifjfk#i.
The significance of this condition on the second partials will be
discusséd in the next section.

In [20], which is a personal letter in reply to my request
for comments on a draft of Sections 1 through 6 of Chapter 2, Veinott

does not include the proof that (A) and (B) imply his hypothesis.

Therefore we are unable to include it here.

3.4 Three Products: Some Discussion

Suppose that Property A2 holds for every pair of products
in a three product case. Consider the curves DlL=O and D2L=O
as functions of X3 For any given X5, the value of X at
which D1L=O is a non-increasing function of x3, since A2 holds
for progucts 1l and 3. Similarly, for any given X9 the X, at

2
the point at which DlL = D2L = 0 for any given x3. Then, despite

which D.I=0 is a non-increasing function of x3. Let 512(x3) be

t > s M <
these two results, xj 2 x3 does not imply that 512(x3} s 512(x3)‘

The situation has been illustrated in Figure 2.6.
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If for some xé > X3 it is true that Ele(xé) s 512(x3),
then Hypothesis 3 will not be satisfied. If an attempt is made to
prove directly that the one period optimal policy is optimal for
the N period problem, then a situation exactly analogous to the
illustration in Section 9 of Chapter 2 of what can result if D1L=O
has positive slope in the two product case arises. Consequently,
Property A2 holding for each pair of products is not sufficient to
irmply N period optimality for the optimal one period policy.

In the previus section it was noted that, for three
products, Veinott's condition is

(1) D;yL(x) Dy L(x) Dy, L(x) Dy L(x)

for ifjfk#i and for every x |

(ii) non-negative cross partials

(1ii) convexity of L(.).
and that this condition implies Hypothesis 3. As we demonstrate
below in Lemma 3.2, the addition of (i) and (ii) to A2 holding for
every pair of products is sufficient to ensure that 512(xé) s gle(x3)
if xé 2 X5 (and similar results for 523(-) and 513(-)). (Actually,
we change (ii) to require strictly positive cross partials, thus
making the proof more compact.) Therefore, conditions (a) through'(e)
of Lemma 3.2 imply Hypothesis 3: This can be established in a straight-

forward way and we omit it.
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Lemmsg 3.2 If
(a) L(+), considered as a function of x, and x,,
has Property A2 for any fixed x3
(o) 1(:), considered as a function of x, and X35 has
Property A2 for any fixed %y
(¢) L(<), considered as a function of x, and xg,
has Property A2 for any fixed Xg

(a) Di;( jﬂ:()‘f‘)BiEL(g? s DiiL(;g) D;jkL(?f) for every % and

1£ifRfL
and (e) DijL(ﬁ) >0 for i#j and for every X.
< >
then gle(xé) s ;‘le(x3) if x:',) % X3,

t < 1
zo3(x]) & zp3(xy) if x] 2 x)
and 513(xé) s 513(x2) if x} 2 Xy

Proof: We will consider only the curve DlL = DEIFO 3 proof for
the other two cases is analogous and will be omitted.
Consider any two points on the curve DlL = D2L = 0.
Label them R and g so that Py > q3. We will show that
P, £ Q. Symetric arguments (which will be omitted) show that
P, s q,» S0 this will be sufficient to imply that 212(p3) s gla(q3),

the desired result.
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Consider r and § such that DL (1) = 0, r=q,,
=Py and DQL(i) = 0, 5,745, 85=Pg DlQL(') > 0 implies that
s is unique and (a) implies that r is unique. See Figure 3.1.
Now if Y & rys then (a) of the hypothesis implies that p, = Qe
Therefore we show that sl rye

Consider the xlx3 plane for X5 = Qpe Define E by
t1=rl, t2=r2

s 3 it s i . .

We show that t3 ¥ rs which jzplies that s, ¥ r, since D32L( )>o

, D2L(;§)=O; DlaL(-) > 0 implies that t is unique.

See Figure 3.2
let z (x) = z such that D L(x,qz,z) =0 and let
2(x) = z such that D L(x,qe,z) = 0. DBL( ), D23L( ) >0
imply that conditions for an implicit function theorem (p. 147 of
Apostol [1]) are satisfied, so that zl(-) and ze(-) are functions
end have first derivatives.
We show that t3 < Ty by contradiction. Suppose that
t

> rg; that is, that zz(rl) > zl(rl). Then, since zl(ql)=22(ql)’

3
there must be at least one point with x, value e(rl,ql] at

which the ze(') curve crosses the zl(-) curve. Let u be any
such point; then u must satisfy zé(ul) < zi(ul). But
zé(ul)»gr-nleL(g?/D23L(g) which, by (d) and (e), is greater than or
equal to -DllL(g)/Dl3L(2) = zi(ul). Consequently there can be no

such point u end therefore t3 > ry is contradicted.




Y

DlL =0

Figgre 3.1

Figure 3.2 .




Chapter L

Two Product Systems, Setup Cost

L.l Summary This chapter is devoted to finding optimal ordering
policies for two product systems when there is a positive setup
cost associated with placing an order. In the introductory section
we review some of the literature on both one product and multi-
product problems with setup cost and give some assumptions and
notation for the development which follows.

In Sections 3 and 4 we treat the case where there is one
setup cost incurred if any order is placed. That is, the setup cost
is independent of which product or products are ordered. We first
obtain the optimal one period policy when L(+) has Property A2.
Since we are unable to show that the N perioé policy is simple
under A2, we introduce Hypothesis &4, which is stronger than A2.
Under this hypothesis, the optimal N period policy is obtained.

. Section 5 is devoted to the case where the setup cost
incurred if both products are ordered exceeds the setup cost when
only one product is ordered. We obtain the optimal one period
policy: TIts form depends on how much the setup cost is increased

when both products rather than only one are ordered.
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The chapter is concluded with a discussion which includes

the difficulties of usefully extending Keconvexity, so appropriate

in the one product case, to two dimensions,

4,2 Introduction For one product, the classic paper is Scarf's

(14], in which the concept of Keconvexity is used to prove that

the convexity of L(s) implies that a policy of the form "if

x = s» orderup to S ; if x>s, order nothing" is optimal

in period n. Such a policy is called an (s,S) policy. Iglehart [11]
has shown that if @ <1, each of the sequences [Sn] and (sn)
contains at least one convergent subsequence, and that using any pair

of limit points is optimal in the infinite horizon problem. For

a =1, Iglehart [10] has shown that there is a stationary (s,S)

policy (that is, one with §,=6,=..+ and Sl=82=...) such that as

n gets large, the ratio of expected cost in n periods under an

optimal policy to n times expected cost per period under the stationary

policy approaches uvnity.

Scarf treated the case where inventory at the end of period 1
is not returnable. For the (simpler) case where it is returnable,
Veinott and Wagner [26] have developed a computing procedure for

finding the parameters of the optimal policy for the infinite horizon
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case. For o <1, they seek a pair of limit points of the
sequences {Sn} and {sn). For o= 1, they seek a pair (s,S)
that satisfy Iglehart's resuit. In the process, they obtain bounds
on Sn' and 5.0 We obtain similar bounds on analogous parameters
for a restricted version of the two product case.

Also assuming ending inventory is returnable, Veinott [22]
shows that quasiconvexity of L(+) is sufficient for an (s,8) policy
to be optimal. As Veinott points out, Scarf's development perﬁits
holding cost, shortage cost, and the linear part of purchase cost
to vary with time as long as Ln(') is convex for every n. Veinott's
development permits non-stationarity of these costs as long as Ln(~)
is quasiconvex for every n only if the (;n’gn) that are optimal
for period n considered by itself are such that gn = gn-l for
all n. (This nesting is similar to that required in Section 8 of
Chapter 2.)

In the one product case, there is a setup cost K, incurred
each time an order is placed. In the two product case, we define K,
to be the setup cost incurred if only product 1 is ordered, K2 to
be the cost if only product 2 is ordered, and K12 to be the cost
if both are ordered. We assume that Kl,KQ,K12 > Q. We Biso essunme
thatl K1¢K2 2 Kle; that is, that there is no setup cost disadvantage

to ordering both products simultaneously.
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For two or more products, Naddor and Saltzman [13] and Balintfy [5]
explore the possibilities for savings in ordering several products
together, assuming that for each product, the demand in any time
interval is a constant determined by the length ¢f the interval and
the fixed and known demand rate for the product. Naddor and Saltzman
assume that when an order is placed which calls for the delivery of
m different products, the setup cost for that order is given by

+ ¢, m where 2 0. Balintfy makes the same assumption

17 % €1’ %2
in three of the four cases he treats. This assumption satisfies our

c

requirement that K1+K2 2 K12’ since it would specify K1=K2= ey *e,
and K12=cl+202.

Balintfy also considers stochastic demand, under the
assumption that inventory is reviewed continuously. He presents the
concept of the Yrandom joint order policy". Such a policy specifies,
for each product, in addition to a reorder point and an "order-to"
point (s and S), a "can-order" point which lies between the other two.
Whenever the inventory of any product drops to its reorder point, an
order is placed vhich brings the inventory of every product whose
inventory was below its "can-order" point up to its "order-to" point.
This tyﬁé‘of policy, which seems very reasonable, should be compared

with our one period periodic review wesults of Section 5.
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Except for the addition of the setup cost, our assumptions
about the operation of the system and the incurring of costs will be
the same as those of Section 2 of Chapter 2. An optimgl N period
policy will continue to be one which minimizes expected discounted
costs over the N period horizon.

We continue to assume that, at the end of the last period,
any inventory on hand is returnable for full refund and any backlog
must be purchased at the usual price. Again, this assumption is of
little practical significance in an N period problem if N is
large. For the one period problems that we solve, it is important.

However, our results will hold when L(x)

(1-a) ¢'x

+ [ [h{x,) + p(x-t)] @ (¢) dt is replaced by

£%2
G(x) =c'x + [ [hix,t) +p(x-t)] @ (t) dt, if () satisfies
"~ £~y -t,%o ~ v ~ [ d

the conditions specified for L(¢). Since G{+) plays the role
of L(*) in determining the optimal one period policy when ending
inventory is not returnable and ending backlog is not filled, our
one period results gpply in this situation.
It was hoped that K-convexity could profitably be extended
to two dimensions. Unfortunately, we have not been able to do so.
Our difficulties in attempting an extension are the subject of Section 6.
Our approach then will be more like that of Veinott [22] and Veinott

and Wagner [26] than that of Scarf [1B].
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In Section 12 of Chapter 2, the possibility of solving
the two product problem as two one product problems when there is no
setup cost was discussed. When there is a setup cost, K‘12=K1+K2
is an additional requirement for the two single product solutions
to be optimal for the original problem. Consequently, if
K12# K,+K,, the results that follow are of some interest even when
L(+) 4is separable. In other words, for explicit treatment of the
twovproduct problem to be interesting when there is not setup cost,
there must be some "jointness" in either holding cost or shortage
cost. On the other hand, whén there is a setup cost, a jointness
in it alone requires explicit treatment of the two product problem.

See the first example in Appendix E.

k.3 Equal Setup Cost; The One Period Problem

In this section (and the next), we assume that K,=K,=K,, > O,
and we define K = Kl’ We obtain the optimal one period policy when
L(*) has Property A2. The optimal policy is implicit in

C,(x) = min[L(x), min (L(y) + K)I.

If L(x) = Cl(ﬁ) then it is optimal to place no order from X.
If y>x and L(z) + K= Cl(ﬁ)’ then it is optimal to order up

to y from x.
(a'd ~
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The policy is pictured in Figure 4.1l. In order to characterize
it, we (implicitly) define the functions qla(')’ ql(-), and q2(-)

as followss

L(a,5(v),v) = Lix*¥) + K})
and (g ,(v), v) < x*

£
et
n

11

= {(ql?_(v)l V)

Q = (g, (v),) | Lay(v),v) = Lz  (v),v) + K
and g, (v) <z, (v)
Q, = ((u, ay(w) | L(w, ap(u)) = L(w, zp(a)) + Ky

and qz(u) < ze(u?

s '3
Since DlL(ﬁ) <0 for x € (zl(xe), x2), specifying any X,

yields a unique ql(xa). Similarly, specifying sny x; yields a
unique q2(xl). The function q12(°) is defined on the interval
[qe(xl*), x2*], and specifying any ‘x2 in this interval yields a
unique 'qlg(xz) because DlL(X) <0 if y S x*

Consider any x  x*. If x,< q2(xl*), then there is a
point (qla(v),v) such that the line segment coﬁnecting x to it
is of non~negati§e slope. Then using the mean value theorem and
the fact that DlL(') and D2L(-) are negative below x¥, L(x) >

L(qla(v),v). 8inee IL(qle(v),v) - L(x*) + K, it is optimal to
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ORDER PRODUCT 1 ONLY, ORDER |\ NOTHING

UP TO zl(xe)

CHCREN s SRR

ORDER BOTH PRODUCTS,
UP TO 5}

(qu(XQ)’XQ) \

;.."b

ORDER PRODUCT 2 ONLY,
UP TO ze(xl)

The Optimal One period Poliey, Kl =K =K
(=4

Figure 4.1
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order up to 33* from X. If X, 2 qe(xl*) , then there are two

s s
possibilitiest X, s qla(xe) and x; > qle(xa?. If %, qle(xa),
then L(ﬁ? z L(qla(xa),xz) = L(ﬁ*} + K,y soitis optimal to
order up to x* from x. If x, 2 qle(xz), then the inequality is
reversed, so that it is optimal to place no order from Xe

* s .

Consider any x such that X, > X%, X zl(xa? As

shown in Lemma 2.3, L(z (x ),x ) = min L(Y) Therefore, if
. ’y' x .

x, & ql(x ), L(x) L(ql(x %o ) = L(zl(x X ) +K,, so that it
is optimal to order up to (x ) from X. If X, > ql(x ), the
inequality is reversed, so that it is optimal to place no order from Xe

Consider eny x such that x) > X%, %, gz (x « By
symmetry, if x, & qz(x ), it is optimal to order up to (xl,z (x )),
if not, it is optimal to place no order.

If x is such that either x, > X%, X3 > zl(xa? or

X, > %)%, X5 > 2 (x ), then, as shown in Lemma 2.3, L(x) =

min IL(y), so that it is optimal to place no order from X.
2 ~ ~
=X
X This completes the proof of
Lemma 4.1t If L(e ) has Property A2 and if K =K,=K =K >0,
then the optimal one period policy, when inventory before ordering

is x, iss
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(a) if < qz(xl*) and X, § X% order up to x*

%5 1

<
(v) if qz(xl*? s x, - X,

(¢) if x,> x.* and X

=
5 s 1 ql(xe? , order up to (zl(xa),xe)

* and X, s q12(x2)’ order up to x¥

; s
(@) if x, > x,* and x, 2 qe(xl), order up to (xl,za(xl).).

1 1

(e) if x satisfies none of the above, place no order from

Ne

That qle(-) is a non-increasing function is clear because
DlL(-) and DEL(') are both negative below x*. It will be useful
in thé unequal setup cost cases for ql(-) and qa(-) to be non-
increasing also. To ensure this , assuning that DlzL(-) is non-

negative is sufficient.

Lerma 4.2¢ If L(¢) has Property A2, Dle(-) is non-negative, and

K,,K, >0, then ql(‘) and qa(-) are non-increasing functions.

Proof: The proof will be carried out for ql(') only; the treatment
of qz(') is analogous and will be omitted. |

Consider any y <w. It will be shown that ql(y) 2 ql(w).
(See Figure 4.2). Consider a = (a,(w),y) end B = (zl(w);Y)- |
By (c) of A2, zl(Y) z2p,. Itis tn;.é £ha.t o
(A) L(ay(),w)-L(a) % Lz, (),w)-L(p), because

(1) Llay()sw)-3(a) = 1 7 Dyilay (), v

Xe

-~
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n
l .
2 |
“f—_‘“ |
L(x)  L(a)-L(b) ; x, =y
J K
1 > ’51
q, (v) a, ) 2, (0) 2, (y)
‘ Figure 4.2
9 “
ORDER PRODUCT 1 ORDER | NOTHING x* = (2.,2.)
ONLY, UP T0 2, /~ 1%
‘ .
Q%
ORDER BOTH PRODUCTS,
X UP TO x*
~ ORDER PRODUCT 2 ONLY,
UPTO 2z
2
Xy

The Optimal One Period Policy when L(*) is Separable
and K1 =K = K12
(-4

Figure 4.3
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(ii? L(zl(w),W)-L(R) = szeL(zl(w),v)dv end

(iii} D2L(zl(w),v) z DQL(ql(w?,v} for every V.

(Statement (iii) is true because D 2( +) is non-;negative.)
Rearranging (A), L(a)-L(b) z L(ql(w) w)-L(z (w),w)—K. Since

L(z (y),y) s L(b), L(a.) - L(z (y),y) z K. Consequently, D L(u,y) <0
for u<z (y) impl:.es that ql(y) Za = ql(w), which completes

the proof.

1f L(+) 1is separable (that is, if L(x) = Ll(x ) + 2(x2)
for every X), then z ( ), ql( ), z ( <) and q2( ) will be |
constants. But qla( .) w1ll not be a constant, and explicit
recognition of the two product nature of the problem is necessary
if the optimal one period policy is to be obtained. See Figure 4.3

and the first example in Appendix E.

4.4 Equal Setup Costs; Hypothesis 4, The N Period Problem

When K1=K2'=K12, we have not been able to show that
Property A2 by itself is gufficient for a simple policy to be
optimal in every period of an N period problem. We have needed a
fairly restrictive set of assumptions, which we will call Hypothesis k,
in order to ensure the optimality of a simple policy. Before introducing

this hypothesis, there are two statements which we can make about the
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policy in period n. The first states that an order need never be
placed from the region where both DlL(-) and DQL(-) are positive.
The second states that an order need never be placed to a region that

is @ subset of the one where DlL(') and D2L(-) are positive.

Lemms 4.3t If L(*) has Property A2, then if x € Ry, where

= 2 * *
Ry = {(xl,xa) | Xy 2 %%, %, 2 ze(xl) or x, & X%, X 2 zl(xe)],
there is an optimal policy such that, for n=1,2,..s,N, it is

optimal to order nothing from X when there are n periods remaining.

Proof: In this proof we use only two facts:
DlL(-) and DEL(') are non-negative in R, and
Cn(-) is the expected n period cost under an optimal
policy.

For n=1, it is clearly optimal to not order from any

Consider any n Z 2 and consider any X € RO. We will
show, for any ¥ such that y > X that there is no advantage
to ordering up to Y from X. This requires the examination of
three cases?

(1) ¥y > %95 ¥p = %o

(2) vy =% ¥y > x,

(3) ¥y > %), ¥ > X,
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We will omit cases (2) and (3) since they are analogous to case (1)
which is treated below.

To show that there is no -edvantage to ordering from X to ¥
in period n vwhen ¥, > xy5 Vo = Xo» we must show that

Gn(x) K 2 Gn(i)' First of all, L(X) 2 L(ﬁ). So if we can show that

- g - 3
e, (x-1) @ (Blag + X e, (x-t) @ (t)at, then adding qx times
this inequality to the first one yields
Gn(z) $0K 2 Gn(i), so that Gn(x) + K 2 Gn('as).

Consider any 3 . TFor any optimal policy, one of the
following must be true in period n-l:

(a) order nothing from ¥ = t

qct 2t

(b) order product 1 only from

(¢) order product 2 only from

kR

(a) order both products from y - %

1 - ; -
We estsblish that C,_;(y E) + Ky ¢, 1% t) in all four
situations. Therefore, weighting by 9(.) and integrating over

t 20 yields

fo_ (y-t) @ (t)ay + K = fo_ (x-t) ® (£)at, vhich is the desired
n"l~~’ ~~ 1 Nmlte ~ ~’ A
result.

(a) If nothing is ordered from x-z, then since

y2-t2 = x2-t2 and yl-tl > xl-tl, an order can be placed from

5—3 to sz at a cost of Kl' Therefore
T (x-t) 2 - (y-
Cn-l(i E) Gn-l(x 3) * K1 = Cn-l(z 2) * Kl'
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(b) If only product 1 is ordered from y-t, wp to g,
then since q > xl-tl and q2=x2-t2,
Cn-l(ic.':ﬁ? = Gn-l(g? tK = Cn-l(Z'E) s Cn-l(X"f‘é) * K.
(c) If only product 2 is ordered from Y - t, up to q,

then we have

it

Cn-l(f'z? s Gn-l(g) * K

i

(G2 (Q) + Kp) + (Ky5-Kp)

A

- = ; 2 .
Cn_l(g) + (K 5-Ky) Cn-lcg,f + X, since K +K, 2 K,

(a) If both products are ordered from y-t, up to q,

‘ .. = = -t) = - .
then Cn--l(£ 'E) Gn-l(,%} * K cn-l(z 2) Cn-l(z E) * K

- EY -
This establishes that C _,(x 3) ¢ 1y fi) + X, for
every t and completes the proof of the lemma.
To obtain the second result, that part of this region from
which orders are not placed is such that no orders are placed from

anywhere to it, we (implicitly) define wl(') and wz(-) as follows:

W

1= {(wl(v),v) L(wl(v),v) = L(zl(v),v) + Kl}
" | and wi(v) >zl(v) S

=
1

2 () | L(uywy(u)) = Llu,z,(u)) + K,).
| and we(u) > ze(u) '

Then, as proved in Lemma 4.4 below, there is an optimal policy

such that one never orders up to any point that lies above both of
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these curves. (The fact that these curves might intersect more

than once is not relevant.)

2
then, for n=1,2,...,N, for any point x such that xl%wl(xe)

Lemma 4.4e: If L(+) has Property A2 and if K1=K2=K1 =X 20,

and X, Z we(xl), there is an optimal policy such that there is
no point y from which it is optimal, in period n, to order up

to x from s

~ re

Proof: Consider any

W

such x; % wl(xa) and x, 2 wz(xl?,
and consider any Y- ey $ Xy then it'is impossible to order
from y to X, 8O it cannot be optimal to do so. If ¥y = Xy then
consider the line passing through both ¥ and Xe Since Yy 3 Xy
this line has non-negative slope. Proceeding down and/or to the
left from x on the line, one of the following will be reached first:
y, the curve D,1=0, the curve D,1=0. See Figure L. for an
example where D1L=O is reached first.

If y is reached first, then y; % zl(yz) and
¥, Z zz(yl), so that by Lemma 4.3, it is not optimél to order up
to x froﬁx y-

If D1L=O is reached first, at some point, call it v,
then v, 2 ze(vl), so that v, 2 xe*. We show that, for




(v (r,),x,)

Cyrgle))y

u

Figure 4.4
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n=1,2,...,N, Gn(x) g Gn(ﬁ)’ so that there is no advantage to
ordering to x rather thén V. Since v 2 Y, this is sufficient
to show that there is an optimal policy which would not specify
L=0 is reached first.

1
Let u be the point on the line at which wl(ue) =u

an order from y to x when D

l.

zvy * implies that L(y) S L(zl(ua),uz),

2
2= V2%
L(zl(ua),u2) + X = L(g) by the definition of wl(-). L(u) = L(x).

Then by Lerma 2.1, u

Therefore L(v) + K L(x).
For n=1, Gl(g) = L(r) for every r, so Gl(x) = Gl(x).
For n > 1, for every t, Cn-l(X't) s Cn_l(x-t) + K since v-t = x-t.

Therefore

o fcn;l(x-g) ¢ (E)dg s o fcn_l(i-g) P (E)dg +akKsa fcn_1(§-£? ¢>(£?d£ + K.

Adding this inequality to L(v) + K & L(x) yields Gn(x) s Gn(i),
the desired result. | |
If D2L=O is reached first, at some point Vs then
arguments analogous to those used for the case when DlL=O is
reached first imply that Gn(x) s Gn(ﬁ) for n=1,2,...,N. This
then completes the proof of thé lemma.
Before introducing Hypothesis 4, a definition is needed.
A function £(+) of two varisbles that satisfies f(xl,xe) = f(xg,xl)

for every (xl,xz) will be said to be symmetric.
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Hypothesis l: Consider a two product system. We will say that

Hypothesis 4 is satisfied if
(1) 1(+) has Property A2
(iis L(-) is quasiconvex
(1i1) L(-) is symmetric
(iv} K -K12
tv) o( ) satisfies P (u,r~u) zQ (v,r-v)

&

if |u-r

2

V—.Z_!’_ )
2

for every IYe

The most restrictive requirement in Hypothesis 4 is that

L(-) and ¢(- ) be symmetrlc. (That @(-) mst be symmetric can be
seeﬁ by 1ett1ng y=r-u in (v) ) (. ) must be symmetric if
n(.), p(:) and @(*) are, and it is unlikely that it will be if
any.of ﬁheﬁ are not. It is not unreasonable to suppose that inventory
can be measured in units such that h(-) and p(-) will be symmetric
if the products are physically similar, so the resfrictive part is
that @(.) be symmetrice Symmetry of @(-) implies that the
(marginal) distribution of demand for product 1 is the same a8 that
for product 2; same mean, same variance, same shape, etc. There
can be no redefinition of units to achieve this since the symmetry
of h(+) and p(+) would be destroyed.

 Part (v) requires more than symmetry of ¢(-) e ()

is symmetric and demand for product 1 is independent of demand for
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product 2 then @(+) satisfies (v) if and only if the marginal
density is a Polya frequency function of order 2.l We prove this
below as Lemma 4.5. Since the exponential, gamma,uniform, truncated
normali, end many other unimodal densities are Polya of order 2, the
requirement (v) will often be met if ®(+) is symmetric and demands
for the two products are independent.

If demands for the two products are not independent, we
have no corresponding result as to when (v) will be met. However,
when @(+) is both symmetric and a truncated bivariate normal

density®, it is easy to verify that it is met.

Lemma 4.5: If, in a given period, demands for products 1 and 2 are
independent and identically distributed non-negative random variables,
then (I) their (common) density is a Polya frequency function of
order 2 if and only if (II) their joint density ®(+) satisfies,

s ver

2

for every r, ®(u,r-u) 2 @(v,r-v) if 'u-z
2

1l - For a detailed discussion of Polya frequency functions, see
Schoenberg [17]. For their application in inventory theory, see
Karlin, Chapters 8 and 9 of [3].

2 - That is, if
(xy-0)% + (x=k)Z = 20(x, =) (x,-n)
2(1-p2) 02

¢(xl,x2) = k.exp(-

for X)X, >0

= 0 elsewhere,
and k>0, |p[2 1, o0>0,u unrestricted.
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Proof: Let f£(+) be the marginal density of demand for product 1.
By assumption, it is also the marginal density of demand for product 2.

First it will be shown that (I) implies (II). Consider any

r and any u,v such that |u-r | § |v-r| and consider ®(u,r-u)

2 2
and @(v,r=-v). Since demand is non-negative, and since ®(x,y) = ®(y,x),

z
2

Since demands for the two products are independent and identically

attention can be restricted to v 2u 2 5 20 with no loss of generality.

distributed, O(u,r-u) = £(u)f(r-u) and @(v,r-v) = £(v)f(r-v).
Since f(.) is a Polya frequency function of order 2,

- - 2 - - .
for any ¥, < ¥ 2 <z (A) £(y-z,) £(y,-25) £(y,-2,) £(v,-z,
Let zl=0, Y= Y55V 22=u+v-r. These satisfy ¥y < Yo and 24 < Z5e
Substituting ¥,-z, = U, ¥=Z, = T=V, ¥p=2) =V, ¥p=Z, = r-u into (A)
yields f£(u)f(r-u) 2 f(v)f(r-v), which is the desired result.

Now it will be shown that (II) implies (I). Consider any
¥y < Y5 and any zy < Zpe Let u = ¥1°21» V= Y8y T = Y t¥omz =250
= 1/2 lzu-r

Then r-u = y,-z, and r-v =y -z,. Now lu -r

1/2 lyl-y2+ze—zl

end |v-r |= 1/2 lyz'y1+za'zl 1+ Since y, <y, and
2. 172
2, < 2, v-_éx_'. z u-_zé: . Therefore, by (II), f(u)f(r-u) & £(v)f(r-v).
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Substituting for wu, v, and r, f(yl-zl)f(y2-22) 2 f(yeuzl)f(yl-ze),
which shows that f(+) is a Polya frequency function of order 2, and
the proof is complete;

The requirement (ii) that L(:) be quasiconvex is made
in order that it be quasiconve;x on any line of slope equal to -l.
This property, along with symmetry and the requirement on (- ),
implies that Gn(~) and cn(-) will also be quasiconvex on any lige
of slope =l. Theré is nothing.to be gained by assuming convexity
instead of quasiconvexity because convexity will not be reproduced on
lines of slope --l.:L

The following lemma will be needed in showing that

quasiconvexity on any line of slope -1 is preserved.

Lemma 4.6: If g(s) 4s a quasiconvex function of one variable

and symmetric about O and if f(+) is unimodal, non-negative,

and symmetric about 0, with [ . f(x)ax < eand with £(x) =0
for a1l x > M for some M < ®, then J(+), defined by
1 - For example, if IL(x) = xla + x22 and K=1, then C,(x) = L(x)
, -1 s = 2 -
if x,>0, -1 x, 0 and Cl(i‘.) 1+x,2 if x,>0, x) <-L

Therefore, Cl(-l.l,l.l) = 2,21, Cl(-l,l) = 2, cl(-.9,.9) = 1.62
and Cl(-) is not convex on the line xl = -xz. It is quasiconvex

on that line.
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J(a) = f-: g(a~-x) f(x)dx, is a quasiconvex function, symmetric

about O.

Note: It is assumed that f(x) = 0 if x > M in order to ensure

the existence of the integral that defines J(.).

Proof: First it will be shown that J(-) is symmetric agbout O.
J(-a) = f_: g(-a=x)f(x)dx. Letting y = -x and using the symmetry

of g(-) and £(-) about 0, 3(-a) = /.7 gla-y)£(y)ay = (a).

In proving that J(+) is quasiconvex, it will be assumed
that both g(+) and f(¢) have continuous first derivatives.
(If this is not the case, then the proof is somewhat tedious, and

it is deferred to Appendix F.) Since, J(+) has been shown to be

symmetric gbout O, it will éuffice to show that J'(a) £ 0 if
a £ 0.

Since g(+) and f(+) have continuous first derivatives,
J'(¢) exists and is given by J'(a) = f_: g'(a=x) f(x) dx.
Subsfituting y = a=x, J'(a) = f_: g'(y) f(a—y)dy. whiéh equals
I &' () [£(a=y) - f(aty)lay since g'(y) = -g'(-y). If a %o,
then y 20 impiies that‘ a~y | 2 laty|, so that ‘f(a-y) g f(aty).
Since g'(y) 20 for y20, J'(a) 20 if a S0, and ﬁhe proof

is complete.
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The following three lemmas pave the way for the specification

of the optimal n period policy.

Lemma 4.7: If L(+) has Property A2, is quasiconvex, and is

symmetric, and if K1=K2=K12= K 2 0 then, for any

r, |x-r 2

2

y=r

implies that Cl(x,r-x) 2 Cl(y,r-y).
5 .

Proof: Since L(+) is quasiconvex and symmetric, and since K1=K2,
Cl(-) is also symmetric. Therefore, it is sufficient to consider
any x2y2r. One of the following three statements describes

2
the optimal ordering policy.

(1) No order is placed from (x,r-x)

(ii) An order is placed from (x,r-x) to a
| point t, t z (y,r-y). |

(iii) An order is placed ffom (x,r-x) to a

point t, t ¥ (y,r-v).

It will be shown that Cl(x,r-x) 2 Cl(y,r-y) in all three cases.
(1) 1In this case, Cl(x,r-x) z.L(x,r-x) which is greater than or
eqﬁal to L(y,r-y) = Cl(y,r-&).

(11) Stnce § 2 (y,r-y), Cy(y,r-y) § K+L(t).

Cl(k,r—x) = K+L(£), s0 Cl(x,r-x)‘é Cl(y,r;y).

(iii)See Figure 4.5. Since t > (x,r-x), ty+t, > .




(tl+t2- r=y),r-y)

.

(y,r-y)
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Since E ¥ (y,r-y) and ty zx>y, t, <r-Yye Therefore

t, > tl+t - (r-y). Since %+t - (r-y) > % ,

L(t +t - (r-y),r-y) < 1(t). But C (x,r-x) = L(£)+K and since

t,tt, = (r-y) >y, l(y,r-y) 3 L(tl+t2 -(r-y),r=y)+K, so that

1

Cl(y,r—y) s Cl(x,r-x).

Lemma 4.8: If Hypothesis L is satisfied, then Gn(x,r-x) 2 Gn(y,r‘y)
and Cn(x,r-x) z Cn(y,r—y) for n=1,2,ses,N and for every T, if

s

X=X = L]

< ¥z
2

Proof: The proof will be by induction.
First consider n=le Gl(ﬁ) = L(x) for every X% so

that by Hypothesis 4, Gl(~) satisfies the conditione By Lemma 4.7,

cl(-) satisfies it.

Now suppose that Gn(') and cn(-) satisfy the condition.

We will show that Gn+l(-) satisfies it. Then, by the arguments

used to prove Lemma 4,7, (with Gn+l(') playing the role of L(e)

and cn+l('? the role of Cl(-?? Cn+l(°} must satisfy it. These

argunents will be omitted.
By definition,

Gn+l(2) L(u) +a [ Oc (u-t) P (t)dt
. -bz
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and cn+l(g) = min [vyipu Gn+l(x?+ K, Gn+l(g}]. Since L(.)

is symmetric by Hypothesis L and Cn(-) is symmetric by the
induction hypothesis, Gn+l(-) is symmetric. Therefore, it will
be sufficient to corsider y 2 x 2 r . For this case then, we wish

2
- 2 - » - - -
to show that Gn+l(y,r y) Gn+l(x,r x) Gn+l(y,r y) Gn+l(x,r x) =

Ly, r-y) - Lotyrx) + ol [ ¢ ((ryr)-plo(eag - [ Cn((x,r-x)-'g)@(g)dg].

=2 2
Since L{y,r-y) 2 L{x,r-x) eand & 20, it will be sufficient to
show that the difference between the two integrals, call it

d(y,x,r), is non-negative.

Define u, = (t+t,'/¥2 and u, = (-t,+t,)/ N2 , so that the

1
Jacobian, oy o, , is 1.
Do AR
Oul s} 1
e
O’Cz 502

We will integrate with respect to uy and ug:

See Figure 4.6. Then D(u,x,r) =
<] =]

ftléo ft2=0 [Cn(y-t,r-y-te}-Cn(x-tl,r-x-ta)]¢(tl,ta?dt2dtl



S - 1 u, ~u u.,+u, U, =4, Uu,+u —
= I [ oc (- 22 oy 222 )9 L2 1 2)du2 du, .
u1 u2=-ul JE 4@? Jé Jé .
ul ul-u2 ul+u2 ul-u2 u1+u2 )d
-/ c_(x~ 3 T=X=- )9( ’ U,
m— d

We will show that the first inner integral is larger than
the second for any Wu,, thus jmplying that D(y,x,r) % O, the
desired result. To do so, we apply Lemma k4.6, with. Cn(') playing
the role of g(+) and @(+) the role of f(.), and considering
¥y,x,r, and u, as fixed. The value of |
- M

2 ' 4z

. =U u,+tu ‘
12_1.2_. 2u, and by

Ja. 42 2

P ) depends on

Hypothesis L, ®(+) is unimodal, non-negative, and symmetric sbout
u2=0. By the induction hypothesis, the value of

-\12 ul+u2 -

)y TY - =3 ) depends on (y -

l-u2 u., +tu

114
NP ? (ry - J2 )

-

c (v -

2y-r+~f§'ué, and Cn(-) is quasiconvex in this varieble and symmetric

about 2y-r+~fé u2=0. Therefore, the parameter a in Lemma L6 is

equal to 2y-r in this case. Similarly, the parameter a is 2x-r

for the second inner integral. Therefore, since 2y-r 2 2x-r 20,

lemma 4.6 implies that the first inner integral is at least as large

as the second. The integrand of the outer integral is then non-negative,

so D(y,x,r) 2 0 completing the proof of the lemma.
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Lemma 4.9: Consider the sets Tl and T2

vwhere T [ﬁ'xl £ min (zl(xz),xl*}].

l—
and T

o = Gglx, 5 min (z50x) %)),

If Hypothesis 4 is satisfied then, for n=1,2,..s,N, X,y € T; and
X, > ¥,,%,=y, imply that G (x) 26 (x) and C (x) £C (X) and
X0 € T, and Xy > ¥ %5y imply that G (x) = G (y) and

cn(ﬁ? 3 Cn(x). (The sets T, and T, are pictured in’Figure h.7.)

Note: If the first partial derivatives of Gn(-) and Cn(°) existed
everywhere in 'l‘l and in T2, then the lemma would state that
DlGn(-? and DlCn(-? are non-negative on T, end D2Gn(-} and
chn(°) are non-negative on T,. However the partials do not exist

- an *
everywhere == for example, if x, > x,¥, Dlpl(ql(xa?,xa? does not
exist, since the left hand partial is zero and the right hand one is

DlL(ql(x2} ,xz} > 0.

Proof: The proof will be by induction. The details will be carried
out for the assertion sbout G (. ) and C ( ) on T, only,
although the induction does make use of the assertion about them

on Te. The treatment for set T2 is analogous and will be omitted.

For n=l, 61(33) = L(x), and by Property A2, DG 1(x) £ 0

for any x € T,, 5o the assertion is true for Gl(-). Consider
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The Shaded Area is Tl The Shaded Area 18 T

2

Figure 4.7

\\ DL =0

(ql(rg)’rg) .

W »‘{ - o

<q12(r2)’r2>

(15 (x)))
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any x € T;o If x, % x ¥, by Lemma L.1, Cl(ﬁ) =
min (L(x¥)+K, L(x)), so that Xy > ¥ys X7V, implies that
Cl(y s Cl(x). Similarly, if x, > x,%, x; > ¥y, X5V, implies
4

that cl(i? 3 Cl(z).

Now suppose that the assertion holds for Gn(-) and
cn(-?. We will show that it holds for G n+l(-) and cn+l(.).
_First it will be shown that Gn+l(;5} -G, (y) 80 if x >y,

~

and :’<2=y2 and f::YGTl-

Gnﬂ(as?-¢n+1(x)=L(£?-L(§c? va [ O[Cn%-,*a?-Cn(m)3<P<:e?d,§-

~

L(i) s L(z) by Property A2. Since % 2 0 implies that both

35-2 | and X"E are elements of Tl if X and y are,

cn(g-g)-c n(X‘E) S0 for every t 2 Q by the induction hypothesis.
Since 'CP(°) is non-negative, the integrand is always non=positive,

so thet a J (e, (x-£)-C (y-£)1o(t)at £ 0 and G ., (x)-c ., (y) = O.

s s

Now it will be shown that C_ +1(?5) sc +1(>Y.? if

X, ¥ € Tl and Xy > Yy» X5=Vpe If it is optimal to place no
= 2

order from y, then Cm_l(x? = Gn+l(z? 2 Gn+l(35? z Cn+l(?5?’
If it is optimal to order up to q from y, two cases will be

. . s . i i z
considered: X, >x2* and X5 x2* In either case, if 9, £ xq,
it is possible to place an order from x to g, so that

Cn+l(?5? = Gn+l(%) ”K=°n+1(?£? '
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(1) x5 > x5% If a7y, then since Gn+l(') is
decreasing ih product 1 up to zl(ye), q, 2 zl(ya) 2 :‘cl, and
Cn+l(3f.) s cn+l(¥.)’ If q, > ¥y there are two poséibilities:
a4 z xi and qp ¥ %y For the former, Cn+l(35) s Cn+l(x)'

For the latter, we have Qb > Yo = X, and X, 3 %y impiying
that 4q, <9, and q; < B, Define r by I =¥y, ry=qtd =X 5e
Now q, < ry» 9 < ry 9y > ryy A > r, and qy ==rl+r2, so
that, by Lemma 4.8, G +l(r) e} +l(q). If r) <x, then

(x), so that C H_(x) (r) + K= n+l(g)+K =

Gn+l(£) = G\ n+l( ) = G\l
Cn+l(¥,)' If r 2 xl, the r is reachable from X end

Coap () & Gy (D)4 3 Gy (4K = Oy ()

(2) =x, & x ¥ Since Gn+1(-) is decreasing in both

variables below x¥, G +l(x*) = min G +l(u), so that we need only
u = x* n

o

consider q ¥ x*. Applying Lemms 4.8 we have G +J‘(:vc*') =

min (Gn+l(g)]. Since q % X implies cn+l(f) = Cn+l(.¥.)’

= * *
ul + ‘L12 Xl 4‘9(2

ql<zl is the only case left. Define 1 by t’l 1 t2=ql+q2-xl.
Since c:12>q:L and  4,7%y; >ty >t,>q,, SO that by Lemma 4.8,

= = = =
Gn+l(£) Gn+l(9,)' Therefore Cn+l(§) Gn+1(E)+K Gn+1(9.)+K Cn+l(x)_‘

This completes the proof of the lemma.
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It may seem that Lemma 4.9 could be proved if Property A2
is substituted for Hypothesis 4. However, this is not the case,
because, without the quasiconvexity and symmetry, it is posgible
that G2(°) will be minimized at a unique point t and that
& E: x¥, a.s illustrated if Figure 4.8. See Appendix E for a discrete
demand example where this does occur. And if % ¥ ﬁ*, we can find
x and y such that X%V o < xz*, xl* 2 Xy > tl > ¥y and
GE(Z) > GE(},&) > G2(£) + K.

| By assumption, u # t dimplies Ga(g) > GE(E)’ Therefore

¢.(x) = min [ min G,(u)+K, G,(x)]1 > G (t)+k = C,(y), and the
2 u>x 2~ 2\ 2\~ 2\

lemma would not be true. This possibility that a unique E that
minimizes G2(') may not be greater than or equal to x¥ reveals a
major aspect of the difficulty of characterizing the N period
optimal policy under A2 alone.

In order to simplify notation, we will state and prove
Theorem 4.10, which specifies the optimal N period policy under
Hypothesis U for starting inventory X such that x; =3 X,e This
will be sufficient since Gn(') is symmetric. We will need the
following definitions. |

Let )A(‘(n) be defined as the largest point satisfying

G, (&) = min G, () -
12



Let m(n) be defined as the smallest point satisfying
G (m(n)) =G (X(n)) +K and m (n) =m (n) Since it is optimal
to order from m(n), by Lemma 4.3 m(n)  x* so that m(n)
For x,>X (n), let S(n) (x ) be defined by
(S(n)(x )) = min G (y) and S(n)(x Sén) (XE) and if
- Ve EX ‘

Gn(z) = Gn(g(n)(xe)) and ¥, ¥ X, then S§n)(x2) 2y,

2
For m (n, < x, £X (n), let (n)(x ) be defined as
the smallest value satisfying G (s( (x s%5 )=G (X(n))+K. For
Xy > Xe(n), let s(n)(xz) be defined as the smallest value
sa,tiSfyiné Gn(s(n)(xe),xé) = Gn(g(n)(xe))-m.
Let M be defined by L(M) = L(x*)+K, M > x¥*, M;=M,.
Let P be defined by W (P )-Pl, W (P ) = P,. That is,
P is the point at which wl( «) curves 1ntersect. It is easy to

prove that P1=P2 and P is unique.

Theorem 4.10: If Hypothesis I is satisfied, then for n=1,2,e¢0,N,

the optimal policy in period n is3

(1) For X, s me(n): Order both products, up to X(n).

(25 For ma(n) <x, % Xe(n): If x; ( )(x ), order

up to 'ﬁ(‘(n); if not, order nothinge

n
(3) For x,> Xa(n): If x, % s( )(xe), order up to

'S\.,(n} (x2); if not, order nothing.




g

In addition, the "parameters” of the policy satisfy the following

conditions$
(a)
(o)

(c)

x* £ X(n)é M. X(n) minimizes G ( )e

(5 x) ) 8 s‘f”(x) <s<n)<x ).

It x, > Py s§n>(x2) = x, If %, 5Py then either
Sgn) (x2) = x, or Sén) (xe) = S(g) (xe)

For x, > X% ql(xz) - s(n? (xe) g z'l(x,a).

For n (n) x, 5 x5, qla(x 2 s(n) (x, ).

Turther ( )( ) is continuous, and is non-increasing

ES é %,
for m2(n) x, & x%

See Figure 4.9.

Before proving the Theorem, let us try to see what it do es

and does not say. First we compare it to the one period result of

Temma U4.1.

Tn the last pericd, if X % x¥, the minimizer of L(*)s

then at most one of the products is ordered, With n z 2 periods

remaining, no comparable statement can be mades We cannot rule out

ordering both products for some X that is not less that E{v(n) , ‘the

minimizer of Gn('). Only if xq > Pl or X, > P2 can we be swre

that at most one product is ordered.
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In the last period, the qle(o) curve, which separates
the order to x¥* region from the order nothing region, is non-
increasing. With n 2 2 periods remaining, s(n?(-) is the
analogous curve. We can say it is non=-increasing oniy for
X, S x¥; it may be increasing for x% <x, < Xe(n).

In the last period, the order to curve, ‘zl(-) is
continuous. With n 2 2 periocds remaining, and for xé > P2

so that Sén) (xe) = X its analog Sg.n)(°) may not be continuous.

2."
A1l these possibilities are portra&ed in Figure 4.9, and
the second of threm is illustrated in the third example in Appendix E.
Next we ccmpare it to the N period result when there is
no setup cost. Conzider %0 the inventory before ordering with
n periods remaining and suppose n 1is large. The region
{x | x $ P} can be called transient because the optimal policy is
such that:
(a) 1If X, > Py

ordered in that period, so that eventually (since

in period n, then none of product 1 is

E(Dl) > 0) Xq will be <P,. The same is true for
prodﬁct 2;

1 < Pl in period n, then bl’ the quantity
of product 1 ordered in that period, is such that

(v) If x




. ORDER \PRODUC
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ONLY, | (X
\

ORDER BQTH
PRODUCTS, TO A
\

\
ORDER PRODUCT 1
ONLY, TO \s(ri)(xe) ‘

ORDER BOTH
PRODUCTS, TO x(g)

THE POLICY HERE IS
SYMMETRIC TO THAT

-FOR ‘xe >-xl

The Optimal Policy in Period n

TMgure k.
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Xy + bl < Pl’

period and each succeeding period. The Same is true

so that Xq will be < Pl in the next

for product 2.

The region {35 l i s E) can be called the recurrent region.
Since the transient region is never entered if Xy £P and is
eventually left, never to be reentered if §N¥ P, there is
justification for being really concerned only about the optimal
policy in the recurrent region. Where there is no setup cost, in
the recurrent region the policy is the ultimate in simplicitys
Order to f.* in every period. As we have seen, where there is a
setup cost, even under Hypothesis L, the optimal policy in the
recurrent region is considerably more complicated when there is a

setup coste

_Proof of Theorem 4,10: For writing ease, the period index n will

be dropped from the parameters. It will be dropped from Gn(‘)
and Cn(-) also, except where needed for clarity. |

‘We will assume that the bounds are correct and show that
the policy given by (1),(2),(3) is optimal.

2
x < m. Since by Lemma 4.9 DlG(-) and DZG(')

~ "~

s . ' s s
(l? x me(n). If x,Sm, then Xx) 2X, implies
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are non--pos:id::’wel below x*, 6, (x) 2 Gn(g) =

min Gn(y) + K, so it is optimal to order to X.
ally = 7 ~

(2) me(n) <x, % Xz(n): If x, s s(xa) then by Lemma 4.9,

Gn()ﬁc') z Gn(s(xz),xa} = Gn(gg? + X, so it is optimal

<
to order to X. If s(xz) <x zl(xa), then the
inequality it reversed and it is optimal to order
nothing. If x, > zl(xa), then by Lemma 4.3 it is
optimal to order nothing.

(3) x,>X,(n): The arguments given in (2) suffice here
2> %5 .

when X 1is replaced by S(xe).
Now we turn to the bounds.

(a) We show X minimizes G(+) by contradiction.
Suppose x such that x, # x, satisfies G(x) < G(}‘E).
By Lemma 4.8, G(x) 2 G (xl+x2 ’ xl+x2) . By
~. 2 2
xl+x2 xl+x2

definition G( = =3

) 2 G(X) which yields the

contradiction. X 2 x* Dbecause DlG(-) and DaG(o)
e M.

1 - We use this language for expository ease even though the
partials do not exist.
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are non-positive below x¥. To show that X M,
we need only show that G(x*) <G (x) if x> M
But L(x*) + K< L(x) and c (x*-t) 2 C, l(x-t)«l—K

for every %, SO it is true.

S (x ) 2z (S (x )) because D G( ) is non positive

to the left of zl( «). By the a.rgument used in (a),

G(y)>G(zl(32 ’Ve) if yl>wl(y2), so 8,(x, ) W (S (x, ))
Suppose S2(x2)>x and Sl(x £ 8 (x

By definition Sl(xe) < 32("2)‘ If Sl(xz) + Sz(xa z 2%,
S.(x,) + S,(x,) s.(x,) + S,(x,)
then Rz (A2 ——2°2 12 2°2) is such

that 1, 2x, and T > Sl(x2)_' By Lemma L4.8,

G(R) = (~); coupling this with 1, =1y >5;

jmplies S does not satisfy its defihition.

If S (x ) + Se(x ) < 2¢,, then using Q = (Sl(x ) +

Se(xa)-xz,xe} in place of R yields a similar
contradiction. Therefore, Sz(xz) > x, implies
5,(xp) = 8,0%)

If x2 > P2 then u such that ul = 1.12>x2

satisfies > W;L(“g)‘ Therefore, G(u) > G(z (u "Us )

Y
G(g(xz)), so that §(x2l # u. Therefore Sg(xg? = x2



=118~

(c) For x2>x~5, we have L(ql(x2),x2) =

L(zl(xe),xe? + K and by Lemma 4.9
Cn_l((ql(xz)-x) z Cn_l((zl(xe},xz?-z? for every
z 0. 2 2
£t 2 0. Therefore Gn(ql(xe),xe? Gn(zl(xe).,xz) + K
-4 s
Gn('sv(xz).? + K. Since DlG('JE> 0 for x, ql(xe?,
s(xg) z ql(xe?. By Lemma 4.3, Gn(zl(xz},xe? z
=

Gn('S“(xz?) + K, so s(xz? = zl(xa).

For Xy < x"e*, a straight forward modification

P

of the preceding shows that s(xa) z qle(xe?. For
m, Su v S x%, We have Gn(s(u?,u? = Gn(s(v},v?.
Since ’DlG(-) and DeG(') are non-positive below
x*, s(u) 2 s(v).
~ o

The continuity of s(+) is a straight-
forward consequence of the continuity of G(+) and

the non-positivity of DlG(-) on Ty

4.5 Unequal Setup Costs; The One Period Problem

In this section we assume that 1:12 P Kl = 52 > V.

In other words, the setup cost is the same if only one product is

ordered, regardless of whether it is product 1 or product 2, and
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there is an additional setup cost if both products are ordered
similtaneously. The assumption that X, g K + LN will be
retained. We obtain the optimal one period policy when L(.)
has Property A2 and DlzL(') is non-negative.
It is easy to obéain the optimal one period policy for
K # K2, but we feel it is of marginal interest and do not include it.
The description of the one period optimal policy requires
a certain amount of groundworke The main results are pictured in
Figures 4,10 and k.11, which refer to Lemmas 4.12 and 4,13 respectively.
Reference to these figures may halp reveal the rationale behind the
definitions.

Consider the set of points R defined Yy

R = {(r),r,) | L(rl,zz(rl)} = L(zl(ra),re) and r & x*}
From Lemma 2.1, it is clear that if W,v € R and g’# v, then
either u >y or ¥ <u. Therefore R defines a function r(+):
for any X, e xe ’ r(x is the unique point Xy such that |
(%1%, ) € R. It is clear that r(+) has an inverse, so that
r(e ) must be continuous.

Tt is also clear that to the left of the curve defined by
R it is preferable to order product 1 rather than product 2 and to

the right of it, it preferable to order 2 rather than l.
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Now attention will be turned to the behavior of ql(-)
and qe(-). If they are non-increasing functions, the one periéd
optimal pélicy is easier to describe than if they are not. To
ensure that they are, it will be assumed for the remainder of
this section that DlQL(') is non-;negative. One implication of

ql(-) and q2(-) being non-increasing is:

Lerma 4.11s If L(+) has Property A2, Dyl (.) is non-negative
and K, =X, >0, then the two curves, ql(-) and qa(-) have

exactly one point of intersection, cell it M, and A < x¥.

Proof: Suppose u,v € Q,1Q, and u # v. We obtain a contradiction.
By Lemma 4.2 both ql(-) and qg(-) are non-increasing, so that
both u €v and ¥ ¥ u are true. But clearly u,v € R, so that
either u <y or ¥ <u must be true, which is a contradiction,
and the proof is complete.

To see when it might be advantageous to order both

products, define E by

(1)
C@) U =1
Since DlL(‘) and D2L(-) are negative below x¥, B is unique.

geR
L\

1
L(xl,ze()\l)) + K,. Since X and P are both in R, there are

To compare B and X, recall that LQ:) = L(zl(xz),xe) +K =
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two possibilities: A < E and M 2 E. If K1=K =K, » then A< E

since L(k) > L(B). If K= 2K =2K, then Az B: Since

2
X% L()»l,x *) L(x*) + Ky

L(ge) + Kpp = L(B) or L(})

P, s LM
A, B Xy 8 zz(xl), L(k) L(Kl

*) = =4
,xe*? + K, end since ql(x2 ) N

Consequently, L(A) = L(ﬁ*) + K K, =

s L(B).

First consider the case M < (3. By Lemma 2.1, a8 X,

decreases from X *, L(qw(x

remains constant. Since K_2

and ql(x *) & qlg(x *X\. If

implies (B ) <By, 8O that since B, = qmﬁ ), L(ql(ﬁ ) B )

), 2) incrrases, While L(qla(x 2)

Kl, T((’I\.i?*‘,x *) S L(qle(x *))x ))

ql( .) is non-increasing, then A< p

L(qle(ﬁ ) p ) and Q44 8 ) < q12=‘.5 ) Conseque ntly there exists an

i =
x} such tha,t L(ql(xz,, 2)

B, < X5 = x2*. Further, sinc

fo*) + Ky which satisfies

e L(ql(x ,x2) is strictly increasing

* =
as X, decreases from X x2 is unique. For X, xe, qm(x2

2 )
- 1
ql(xa? 3 for X, > Xb 91p

(‘xe} < q (xy); for ¥ < %) qlz(xe) > q,(x,)-

Similarly, there exists a unique x] such that L(x}, qz(xi)) =

L(x*) + K, which satisfies

lies gbove q12<')’ and for

t S 8 .
By <% x,*, and for Xy > Xy, ql( )

xy < %p ql(~) lies below ‘112(')_'

Now that x._‘L and xé have been defined, the one period

optimal policy when A < 2

Figure 4.10.

can be specified. Tt is pictured in
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ORDER PRODUCT 1
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The Optimal One Period Policy when Kl" is relatively large

Figure 4.11
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implies s r(x, ), s0 L(zl(x ) x ) s L(x,,2, (%, )). Consequently,

*
x, ® ql(x2 1mpl:\.es it is optmal to order up to (z (x
from Xe
o~

By symmetry, for xi < %, £ xl*, it is optimal to order
up to (xl,zz(xl)) from x if X, g qe(xl) and to place no order -
from x 1if x5, > qe(xl>.

This leaves the set {x | x & (xi,x')] to be accounted
for. Since the curve qla( .) 1lies above both the ql( «) and

qz(') curves in this area, if X 18 such that x, 2 ql(x *) and

(x ), it is optimal to place no order from Xe It x

x> 93
does not sa’clsfy this condition, then L(x) L(x*) + Kype

s . - o
Since x; ¥ Xi, L(xl,zz(xl?) L(x*)+K12 K, Therefore it is

. é %
better to order to x¥ than to (xl,za(xl?) Similarly, X, = X
jmplies it is better to order to x* than (zl(xe) ,xe). Consequently
it is optimal to order to x* from x. This completes the proof

of the lemmae.

Now consider the case X\ % P. L(ﬁ) =K, * L(f.*) by
gefinition. L(By,a5(Py)) = 1(By,2,(P1)) Ky DY definition. Since
A 2B and since q2( ) 1is non-increasing, q2(6 ) 2B, so that
1(§) 2 L(By,a,(P,)). Consequently, L(Py2p(Py )4k, 8 TG #Kyp

Therefore, from E, there is no advantage in ordermg to x* rather

than (P, 22(51)) .
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To obtain a point of indifference between ordering
only one product and ordering both, define g by

(1) 6 ¢R

(2) K, + L(Gl,ze(el?? = L(x*) + K ..
It has just been shown that 6 = E.

Now that 6 has been defined, the one period optimal

policy when A 2 B can be specified. It is pictured in Figure L,11.

Lemma 4.13: If L(.) has Property A2, DleL(°) is non-negative,

one period optimal policy isg

is relatively large so that A 2 B, then the
~e N

(a) if x 56, order to x*

(bj if x is such that x, S r(xe) and x, € ql(xe)
~ and X, > 6,, order product 1'only, to (zl(xa);xz)
(c) if x is such that x, > r(xa) and x, & qa(xl)
| and x, > 6,, order product 2'onlyj, to (xl,za(::cl))

(a) if x satisfies none of the sbove, order nothing.

Proof: In common with Lemma 4.14, only x S x* need be considered.
e

s o, 5B, > .
Suppose x % 0. Then, since 6 B, L(ﬁ) L(r)s*?+K12

Since x, £ 6, & x ¥, L(xl,za(xl)) 2 L(Gl,z (6 )), so that by the
definition of 6, L(xl,z (x ))-4-1(2 2 L(x*)+l{12 Simila,rly, X, = 6,
implies L(zl(x ) )~3-Kl 2 L(x*)ﬂ(12 Therefore, if x 6, it is

optimal to order up to x*.
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Suppose x is such that x, % r(x;)) end x, = ql(xe?
end x, > 6, Since x,> 6, L(zl(xe),x2)+K1 < L(x*)+K, . Since
x, & q,(x,), L(x) 2 L(zq(x,)x,)+K;e  And since X, € r(xe),
L(z (x ),x )+K s L(xl,zz(xl))+K2. Therefore, it is optimal to
order up to (zl(x BN ) from x.

By symme'bry, if x is such that x; > r(x ) and
X, s qe(xl) and x, >6,, it is optimal to order up to (xl,zz(x ))
'i'he remaining region is x such that x, > ql(xe) and
x5 > qe(x Consequently, L(x) < L(Z (x ),x )+Kl and |
L(x) < L(x ’Z5 (x ))+K Also L(x) < L(x) < L(B) L(x*)+K12.
Therefore, from this region, it is optima.l to order noth:.ng, and

the proof is complete.

In Lemma 4.3 we have an n period result when the
setup costs are unequal. Lemma 4,4 can be modified to a.]_'LQw unequal
setup costs. Both lemmas are concerned with the policy in the
region sbove both the zl(°) and 22(-) curves. By themselves,
these results are not very interesting:’ They would be interesting
if they could be coupled with statements about the optimal policy
in the region where either DlL(') or D2L(') is negative.
Unfortunately, we have been una,blé to make muéh progress in this
region. The difficulty of making strong statements about the optimal
n period policy should be apparent from the relative complexity of

the one period optimsl policy.
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If L(f) can be written as Ll(xl?+L2(x2) for every
X, it is interesting to compare our one period, periodic ' review
result with Balintfy's [5] "rendom joint order policy" for econtimmigus
review. They are pictured in Figures 4.12 and 4.13 respectively.

(It is apparent from Figure L.12 that A =3 g.)

L,6 Discussion: K-Convexity In this section we indicate how a

fixed delivery lag can be handled, compare the bounds on the
paremeters of the N period policy with the one product bounds
of Veinott and Wagner, and discuss K-convexity.

If there is a fixed delivery lag of A periods, then
operating as we did in Section 7 of Chapter 2, it can be seen that
L(*) can be replaced by L(k?(-) in all of this chapter's results.,
If fhe setup cost is incurred at.the time of order placement rather
than delivery, then K should be replaced by K a'x, since
L(K?(-) is incurred at delivery.

| We now compare the bounds in Theorem 4.10 with those

obtained by Veinott and Wagner [26] for the one product problem.

They assume inventories, demands, and order quantities must be integers,

so we adjust their definitions to a continuously divisible product.

Let s and S, be defined by

1l 1

L(sl) = axizilny L(y) and L(sl? = L(Sl? + X, 5, <8



ORDER PRODUCT 1 -
ONLY, UP TO 2, f ~

2
2
I, [ ORDER NOTHING
|
ORDER BOTH PRODUCTS, ) — — %,
UP TO Ef .
A ORDER PRODUCT 2
L ONLY, UP T0 2,

The Optimel One Period Policy when L(:) is Separable

Figure 4.12
sl Sl
ORDER PRODUCT 1
ONLY, UP TO S,
"Can Order" Point ¢ 82
- '
2 ORDER NOTHING
ORDER BOTH * 8,

PRODUCTS,
w10 (5.,8,) ORDER PRODUCT 2 ONLY, UP TO S,
A Il "Can Order" Point

The Form of a "Rendom Joint Order Policy"
for Two Products, Continuous Review

Figure 4.13
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Let

and

1]

be defined by s =s, and L(5) = L(Sl)+(l- a)K,s < 8

l'

Let S and § be defined by §

8, and L(§) = L(sl)+ 0K, 5> Sy
Then Veinott and Wagner show that s Ss S§SSSs8 £5  for
n=1,2,000 o

For x, > P,, s(n?(-) and S:(Ln?(-) are enalogous to s
and S and they satisfy |
ql(xe) =3 (n)(y ) S zl(x ) = S(n) ) 3 Wl(x Also analogous to
s, and §  are m(n) a,nd X(n), which satisfy
as m(n) £ x* S X(n) = M, where 8 = ql2(a‘2)’ ay=aye It should be
apparent that these bounds could be improved ‘5y using & K rather
than K to define wl(-) and W2(°) and by defining an analog of s.
These improvements, while.: straightforward, would be a complicating
factor in an already complicated development, and we have omitted them.

It should be noted that both our bounds and those of Veinott
and Wagner say nothing about the relationship between values of the
Sgme parameter in two different periods.

For one product with setup cost, the concept of K-convexity,
invented and exploited by Scarf [14], is extremely appropriate. If
L(. ) is convex, then it is easy to prove by induetion that G ( )
and C ( ) are K-convexe The crucial steps are using the K-convexity

of G ( ) to show that a simple policy is optimal, and then using

the policy and the K-convexity to show that C ( ) is K-convex.
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K-convexity (Scarf): Consider any X 2 O. If, for every x 2y
and every O = A 51, M(y) + (1-A) [£(x) + K] 2 £(Ay + (1-A)x),
then f£(+) 1is said to be Kuconvex; This definition is "dirécfed":
K is addeé to value of f(+) at the larger argument. One straight-
forward extension to functiéns of two variables would substitute
x and y for x and y, requiring that x 2 Yo
Assume that Ge{e} is Ke-convex under the proposed extension.

We have been unable to rule‘out the possibility that the set of
points at which Gg(-) is minimized will consist of g and b,
and aq > bl’ a, < be; Worse still, there may be points below the
qle( +) curve that are less than neither & nor b. Since

(qlz(x ’%, ) z g (x*) + K, an order is placed from these points,
and we haye the possibility of an optimal policy in period 2 being
as illustrated in Figure L.1l,

Since our proposed extension of K~convexity does not

imply a relatively simple policy, we feel that it is not the right
concept for two product problems. We do not see at this point how
this problem can be overcéme. It does not seem that a definition that
would compare x and y such that neither X 3 y nor y¥x
would solve the problem: There is nothing in the one;dimensional
definition to prevent multiple asbsolute minima, and if this occurs
on a line of negative slope, the possibility of Figure .14 is still

presents Therefore we have pursued K~convexity no farther.
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Appendix A

Proof of Lemma 2.6

It must be shown that if L(+) has Property A2, then
the first partial derivatives of cl(-)' are continuous.

The plane will be partitioneci in the 4 sets, Ryps
Rl, Re, and RO defined in Lemma 2.3. The closure of each set will
be considered: It will be shown that the first partials of Cl(‘)
are continuous on each of these closures. Operating on the closuz‘res
implies continuity at the boundary points, so they need not and will

not be treated separately.

Tet V

1= (lxp) |y <y x, = xg)

v

]

1% {("1”‘2? | %) = 5, x, < x})

W, = {(xl,xe? l DlL(xl,xg) = 0,x, > xg]

N
1

= %
((xl,xe? l DQL(xl,xa? 0, >xl}.

Then, if R = the closure of R,

o]
18
fre]

127 12
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B = RUV,
Ry = RUV,
Ry = RV wUw,

(i) q ¢ Ryt 01(2> = L(ic’*) so that chl(fi) = Decl(g} = 0.

Since both first partials are constant, they are continuous on 3;12.

(i) q € R): By Lemma 2.k, chl(g) = 0, which is continuous on ﬁi.

D296°) is continuous at g € R, if

lim I DG(a) - D +8) | = 0, where |[B = VB2 + B2 . For

|8~ o

any gev,, chl(il.) = D2L(zl(q2),q2) = D2L(zl(x*2“) = DZL(’}E*) = 0.
Using the equality of the first and second terms, and Lemma 2.k,
q and q+Be§i implies

() DyC(a) - D,G(g+B) = D,L(z,(ay),ap) - Dol(zy (ap*By)sa5+05) -

Now by a mean value theorem (Buck [8], page 199), which requires

that the second partials of L(.) be continuous,
(b) D2L(Zl(q2))q2) - DQL(Zl(q2+62)’q2 + 62) =

DRL(E) ¢ (Zl(QQ)'Zl(q2+82)) + DEEL(E) . ('32) where
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R= X(zl(qz),qg) + (l-h)(zl(q2+ﬁe),q2+ﬁe) for some Ae[0,1].
Define 6(B,,q,) = max ( max |D, L(p)|, mex [D,,L(p)|).
2’72 0,11 2~ nel0,1] 2~

) € », Clearly,

() D L(p) + (z9(a,)-21(a,*8,)) 4D L(p) + (-By)| =

Since the second partials are continuous, 6(52,q2

8(Bya,) + (l29(ay) -2y (az#8,) [ +185])-

i

Define H(B,,a,5) = 8(By,a5)(l2q(a5)-2(ay8,) [+1B,]).  Using (a),

(b)) and (C):

(a) H(B,,a,) = [Dg(a) - DC(aB)]-

A

For any given CPY EE Z2B!'20 or Bg

't £ 3
5 62 0 implies that

iv

H(Be,qa) z H(Bé,qe), because 9(B2q2) G(Bé,qg? 2 0 by reference

to the definition and because Property A2 implies that

]
‘Zl(qe)'zl(q2+62)! z Izl(q2?~zl(q2+62) |« Therefore, if
(e} max (H(*ﬁquz):ﬁ(‘aque)) < €, then

(f) |pc(g)-Dc(a+8) | < e ir [B,|<|py.

But G(ﬁa,qe) bounded and non-increasing as B 0 and

8,1 +l2; (a5) -2, (a*B,) [*0 as B, O imply that H(By,q,) = ©

as B, 0, so forany €>0, a ﬁg satisfying (e) can be found.
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Therefore D29§') is continuous at ¢.

(iii) qéﬁz: This case is analogous to (1i) and the proof will

a————

be omitted.

(iv) qeﬁl: By Lemma 2.4, for Qe€Ry; Cl(%) = L(g).

—————)

But for gngU Wy Cl(g) = L(g) also. Therefore, continuity of

the first partials of L(-) implies the continuity of the first

partials of Cl(-).




Appendix B

Delivery lag Examples

The following examples indicate that
(1) L(k)(-) having A2 does not imply that L(-) has A2

and

(2) L(+) having A2 does not imply that L(K)(-) has A2.
We do not prove statements (1) and (2). Instead we

consider two single product, discrete demand examples which give

the essence of the examples that would be required to prove (1) and
(2). 1In both examples, it is assumed that ¢ = 0. In both examples,
L(+) and L(x?(°) are not differentiable everywhere.

| In the first example, an h(-), p(:), and ¢(+) are
specified such that, for a delivery lag A edual to 1 ’period,

L(k}(') is quasiconvexl while L(¢) 41is not quasiconvex. In the

|

second, an h(:), p(.) and @(+) are specified such that L(-) is
quasiconvex while, for A=l, L(K)(-) is not. In both examples, h(.)
is not a non-decreasing functioﬁ of inventory, so there is no intentién
of suggesting that (1) and (2) are likely to be true in real inventory

situations.

1l - See Section 9 of Chapter 2.
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First example:

?(0) = ®(k) = 1/2

p(x) = -bx + 2 ‘ x <0
= 0 x 20
h{x) = 0 x <0
= =X + 2 0£x<2
=% ~ 2 2sx<lb
=2x - 6 Lhsx<6
= -2x + 18 6sx<8
= hx - 30 8 = x

See TFigure B.1l.

With instant delivery, we have:

L(8) = 1/2 « n(8) + 1/2 n(k) =2

L(6) = 1/2 + n(6) + 1/2 n(2) = 3

L(4) = 1/2 « h(k) + 1/2 n(0) = 2.
Since L(6) > max (L{(4),L(8)), L(+) is not quasiconvex.

for a delivery laé’ A eéual to 1, we have
P(D1+D2=o) = 1/4, P(D1+D2=h)= 1/2, and P(Dl+D2=8)= 1/h, so for
example, L(l)(o) = 1/4 h(o) + 1/2 p(-b4) + 1/b p(-a) = 18. 1In the
seme vay, 1LM(2) = 11.5, 1) = 6, 1(e) - 1, 1V(8) = 2,
1 0) = 6, 1M (12) = 6, 1B () = 13.5, 1P (26) = 18.5. Aso,

L(x) = 18 - bx for x <0 and L(x) = -45.5 + bx for x > 16.
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Since h(+) and p(+) are piecewise linear, with
changes in slope occurring only at the even integers, and since
¢(-) 4is positive only on the even integers, L(l)(-) is piecewise
linéar with changes in slope occurring only at the even integers.
(1)(,)

Therefore, the above calculations specify L completely, and

by inspection of Figure B.2, L(l)(-) is quasiconvex.

Second Example:

?(0) = ok) = 2/5, ®(2) = 1/5

plx) = «30x - 97.5 x < -4
= 22.5 b8 x <3
= =7.5% -382x<-2
= 15 282x<-1
= -25x - 10 -1£x<0
=0 0=x

h(x) = 0 x <0
= =10 0sx<1
= 10x - 10 15x<2
=0 2s5x<3
= 10x - 30 3sx<U.k
= 12.5x - 40 hbEx<s
= -15x + 97.5 58x<6

30x - 17205 6 é p.4

]




See Figure B.3.

From this we find that L(+) is quasiconvex by examining

its slope:

A

10

X3 L(x)

9 8 x <10t L(x)

]

8=x< 9: L(x)=
78 x< 8: L(x)=
6sx< Tt L(x) =
5x< 635 L(x)=
Lsx< 5: L(x)=
3sx< b: Lx)=
2Ex< 31 Lx)=
18x< 23 L(x) =
x <

30x + constant, sO Q%é&l =

+ 30.

(30x)(2/5 + 1/5) + (-15x)(2/5) + constant

12x + constant.
23x + constant
13x + constant
1k.5x + constant
constant

5x + constant
-bx + constant
constant

-ix + constant

1: L(x) is a decreasing function of x.

For a delivery lag A equal to 1, we have

P(D,+D, = o} = P(Dl+n2

= l) = =2
and P(D1+D2 L) = 5%

ﬁ”w)=%(ms+m

and

« Then

10 +15) + é%(o) = 3.6,

2) = P(D,+D, = 6) = P(D,+D, = 8? =

N

25
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1M (s) = %—(ee.s +0 + 15 + 22.5) + 5%(-10) = 6,

and
L(}‘)(h) = -If—(lo +0 + 15 + 22.5) + -9—(-10) = L,
» 25 25 ,

Consequently, L()\)(') is not quasiconvex.



Appendix C

An Example vhere L(.) has Property A2

but is not Quasiconvex

In this example, h(+) and p(+) are convex in X,
for any X5 and in X5 for any Xq. Demand is assumed to be
uniformly distributed on the unit square. To be specific, we

assume that

1 if 0< Xy <1 and 0< X5 <1

0 elsevhere

i

(1) Oxyx,)

i}

(i1) p(xl,gz) p (max(o,-xl) + max(O,-xz)) where p > 1.

[max(xl,0)+max(x2,o)]2
(iii)h(xl,xz) = + 2 max(xl,o) . max(xe,o)
» l+max(xl,0)+max(x2,0) -
and h(.) is defined on the vector of ending inventory.
(iv) ¢ =0

o o]
Then L(xl,xe) = fo fO [p(xl-u,xe-v)+h(xl~u,x2-v)] . 9(u,v)dudv.

First we show that L(-) is neither convex nor quasi-
convex. Clearly L(3,1) = L{1,3). We show that L(2,2) > L(3,1),

which implies that L(+) is neither convex nor quasiconvex.
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fé fé (iu-v)® + 2(2-u)(2-v) dudv

L(2,2) - L(3,l) S_u-v-

2
fé '% %}3':.%)" + 2(3-u)(1-v) dudv

fé f% (1-u+v)dudv = 2.

To begin the proof that L(-) has Property A2, observe
that since h(+) + p(+) 4is positive everywhere, L(.) is also.
Further, since all partial derivatives of h(+) and =p(o) exist,
the second partial derivatives of L(+) exist and are coﬁtinuous.

To continue the proof, the piane will be divided in nine

areas, labeled as in Figure C.1l.

Figure C.1

£

I v (1,1) VII
II \'s XIII P x
(0,0) 1

III VI X




-1hb .

First DlL(-) will be obtained in each area.
I: L(x = [r ) 1o (e
( l,xz) fo fo h(O,x2 v? dudv + fo p» (u xl}du
D.L(x,,%,) = J: (-p) du = -p
1P %o o VP
Similsrly, in II and III, DlL(i) = -D.
Ve L(x, ,x,) = fl fxlh(x -u v) dudv
: 12¥2) = o Jo PVETHXTV
1,1,
+ IS xlh(O,XQ—v? dudv
+ fl p + (u-x.,)du
x 1

1
Therefore D, L(x.,x,) = fl fxl 9 h(x,-u,x,-v) dudv
17Vt 070 & V1T
+ fl h(0,x.-v)dv
o PAOs¥pmV)

1
- fo h(O,xz-v)dv

+ 1 pau-p(ix)
xl 1_

= fl fxl S h(x,-u,x,.-v) dud (1-x.)

= Yoo I VaTheT uav =pAL=xy e
Since w§~ h(x.,-u,x.,-v) = - 0 h(x, -u,x,-v)
ox 1772 " Su 17

1
integrating with respect to u yields

DlL(xl,xz? = fé[h(xl,x2-v)-h(0,x2-v)] av -p(l-xl).
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Using arguments similar to those in IV, we obtain:

X
2

4

(l-x2? [h(xl,o?] -p (l-xl).
VI: DlL(xl,xz) = h(xl,O? -p(l—xl).
VII: DlL(xl,xe) = Ié[h(xl,xe-v? -h(xl-l,xa-v?}dv.

o X
2
VIII: DlL(xl,xe) = IO [h(xl,xe—v? -h(xl-l,xe-v>} dv

+

[h(xl,O) —h(xl—l,O)](l—xa).

X: D L(x;,x,) = h(xl,O? -h(xl-l,o).

Now let us examine DlL(°). In regions I,II, and III,
DlL(°) is negative. In regions VIi,VIII, and IX, DlL(-) is
positive. In regions IV,V, and VI, DlL(xl,xe) is an increasing
function of Xq9 since h(xl,xz) is an increésing function of Xy
In these three regions, DlL(xl,iz) is negative at x,=0 and positive
at x,=l. Therefore L(-) is strictly quasiconvex in x, for
any xe.wygy symmetry, L(*) is strictly quasiconvex in X5 for
éﬁy X ' -

Let zl(xe) be such that DlL(zl(xa),xe) = 0; and ze(xl)

be such that DQL(xl,zg(xl)) = 0. It has just been shown that zl(-)
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and 22(-) are single-valued functions, whose ranges are
contained in [0,1].
Next we apply an implicit function theorem (Theorem 26,
page 222 of Buck [8]) to show that zl(-) and 22(') are

continuously differentiable. Define F(xl,xe,z) DlL(xl,x2)+z.

1 31

And suppose that F(E) = 0. Then a continuously differentiable
function @(xz,z), satisfying F(@(ya,y3),y2,y3) = 0, exists for

every y near t, if F(+) is continuously differentiable and

if DlF(t) # 0. The former is clearly true, and DlF(xl,xg,z) =

DllL(xl,xe? which equals fo lh(xl,xe-v)dv +p >0 anywhere in

region IV and therefore at (zl(xe),xe,o). DlF(Zl(XE)’XE’O) is
similarly positive in regions V ana Vi, éo zl(°) is.contiﬁuously
differentiable. By symmetry, so is ze(-). |

Next we prove that (A) zl(-) and 22(-) are non-
increasing, (B) there is only oﬁe point, x*, for-which it is true
that ze(xi) = x¥ and (¢) ze(xl) >x, for x <x¥ and
ze(xl) < xl' for x; > xi.’ Since we have already shown that L(-)
is poéitive with continuous second partials, and that it is stricfly
quasiconvex when considered as a function of either variable, and

that zl(~) and 22(') are continuously differentiable, this will

complete the proof that 1(-) has Property A2.
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dzl(XE)

2
dx,

To obtain consider the implicit function

DlL(zl(xe),xg) = 0. Taking the derivative with respect to X,

dz. (x.)
yields L~

- . DllL(zl(xe?’xg) + DglL(Zl(XQ)’XQ) = 0.
2

In region IV, substituting irto this formula yields

) J2[D (2, (x,) =) -Dpn(0,x,-v) Jav
—————————— -— -l ®
dx : 1
2 p + IO Dlh(zl(xa?,xg-v)dv
R 2
Since Dlah(yl,yz) = 3 * 2>0 for y,,¥5,>0,

the integrand in the numerator is positive everywhere, soO the
numerator is positive. The denominator is clearly positive, so that

dzl(XE)
dx

< 0 in this region.
2

In region V, substitution yields

x .
dzl(xe) - ) - f02 [Deh(zl(xe),xe-v)-Deh(O,xg-v)]dv .
ax,, p+(1-x2)nlh(zl(x2),o)+ ngDlh(zl(xa),xg-v)av
dzl(xe)

By the same arguments used for region IV= < 0. It will

x5
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dzl(xe)
dx,

also be shown that

> -1, vwhich, by symmetry, will show

that zl(°) and 22(-) intersect exactly once, with zl(°) above

22(-) to the left of the intersection and zl(-) below 22(‘) to

the right of it. First, since D.h(q,x,-v) = - 2 h(q, ,x,=v),
2 2 ov 172
dzl(XE)
the numerator of the expression for is equal to
dax
2

[h(zl(xe?,xa?-h(zl(xe),o?} - [h(O,xe)-h(0,0?]. Second, since
Dlh(xl,x2~v) = Dzh(xl,xg-v?-2x1+2(x2-v),

x2D .

fo lh(zl(xe),xe-v?dv = -22;1(x2?x2 + %,

+ [h(zl(xe),xe)-h(zl)xe),o)].

Therefore,

[h(zl(xe),xe)-h(zl(xg),o)]-[h(O,xg)—h(0,0)]

h(zy (x) %p)-h(2, (xp),0)+{p#xE-22, (5D, 1+ (1o, D (2 () ,0)

Since h(o,xe}-h(o,o) >0 and (1-x2)Dlh(zl(x2),o) >0, if

dzl(XE)

dxa will be <l. But

p + xg-Qzl(XQ)x2 >0, then
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2 o e 2 - 2 . s .,
p+x3 - 2zl(x2)x2 =D (zl(x2>) + (x2 zl(xz)) which is positive

since p>1% zl(xz).
In region VI, DlL(Xl’XQ) = h(xl,o) ~p(l—xl), so that
dzl(xz) )

zl(xa) is constant and ———— = 0o

dxy

5’%




Appendix D

One Product Solutions to Two Product Problems

In this example, it is assumed that

(i? @(xl,xe) =1 if 0<x; <1 and 0<x,<1
=0 elsewhere
(i1) p(xl,xz) =D o (max(o,-xl)+max(0,-x2)) where x is

inventory just after demand,

(iii) h(xl,xg) =h o (xl+x2)B where is

b

inventory just before demand and B > 1,

(iv)

C=O.
o~ N

Then L(xl,xe) =
0 a0

fO IO [h(xl,x2?+p(xl~u,x2-v)]@(u,v)dudv.
The point that minimizes L(¢) will be called x¥. From the
symmetry of h(-), p(-), and ©(+), it is clear that x¥ = x%.

It will be assumed that, to solve this problem as two one
product problems, h(-) will be replaced by
g(xl,xe) =h . (x? + xg). ‘We wish to emphasize that h(+) is one
Particular way of approximating h(‘) with a separable function,

and not necessarily the best one.
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Define

f(xl,xe) = f; fg [g(xl,xé)+p(xl-u,x2-v)]@(u,v)dudv.

The point that minimizes L(-) will be called ;0, and it should

0 0]
be clear that x1 = x2 .

From the analysis in Appendix C, for x; <0, DlL(x)
and Dli(§) are negative, and for Xy > 1, they are positive,

while in between, for any x they are increasing functions of

29
x,« For 0<x, <1, DlL{x) = -p(l-xl)
' ‘ B-1
+h ﬁ(xl+x2)
and Dlz(ﬁ) = —p(l—xl) +h B(xl)a'l. Remembering that x¥ = xX%

1 2
and xg = xg, x¥ and §9 are defined by the following (implicit)
functionss

0

i}

)B—l

(p.1) nh B (2x§ +px¥ - p

(0.2) h B - (xg)a’l +px) »p=0

When B =1, h(*) and n(.) are identical, so x¥* = 0.
As B increases from 1, g(') becomes a poorer approximation to
h(+). It will be shown than, if x¥* and z? are considered as

functions of B, the ratio decreases from 1 as P increases

N
= o)-%

from 1.
First, we illustrate this result numerically. Assume

that p = 5h. For B =1, (D.1) yields h +px¥ -p =0 or
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X
% =BB o 8. Also x0=.8, and L_1, For B =2, (D.1)
) 1 o

: * ,
. - - =2 ’
yields (Lh+p) x{ - p= 0 or xf= Hﬁgﬁ 5 - (D.2) yields
x¥*
(2n + p)xg -p=0, or xo = %, so that —% = %. For B =3,
1
(D.1) yields 12h(x§)2 +pxf-p=0, or 1](x§)2 + 5x4 -5 =0,

so that x¥ = L69.  (D.2) yields 3h(xe{)2 +pxt -p= 0, or

+ [2e1€0 x¥
xg _ 525460 | 103, so that —= = .66T.
6 x¥
% 0
1
To prove that -§ does not increase as P increases,
*1
0
ax% () ax3(B)
we show that dp z ap for all B 2 1.
0
*
First we verify that conditions for an implicit function
ax¥(p) axJ(B)
theorem are satisfied, so that and =———— existe
ap ap

Differentiating (D.1) with respect to B yields

0= b - [2xx(m1P} + npl2xy()1° nlant (B)]

dx*(P)

t =3B [h(B) (B-l)Ea'l[xi(ﬁ) 15-2

+ pl, or
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dx*(ﬁ) . oP- lhx*(B)]&’l(l'*ﬁlnEX*(B))
0 P-Lop(e- :mx*(anB “Lip

(D. 3)

Similarly, we get
dxg(ﬁ) h[xg(B)]a'l(l-*-ﬁlnxg(B))
= (-1
a T eB(B-1) K (8) 17

(D.14)

x‘i(ﬁ)

Now it will be shown that xg(ﬁ) z x*{(ﬁ) z for

any B > 1l. The first of these inequalities is clear from
comparing (D.1) end (D.2), since their only difference is a more

positive multiplier for [xi]ﬁ'l in (D.1). To obtain the second,

xO O x0 O xO
consider D L( ) = -p+p—-2— + hB(-—-—- + —)ﬁ—l. Note that (D.2)
implies that -p + pxg + hB(x(J)‘)B"l = 0, so therefore
o ‘
IR R
DlL(—é— ,-é-) =5 > 0. Consequently x*{ £ —-2- .
The first of these inequalities implies that
ax*(B) ax(8)
axt(B)| _ |ax7(e) | |
| is sufficient for 3 5 .
ap ap x¥(P) x, (P)
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Now consider the right hand side of (D.3) when

xi(ﬁ) is replaced by a free variable, x, and call it a(x,B).

1 +P in 2x )

B(B-1)+ ;E:Tﬁ;gji

makes it clear that |G(x,6)‘ increases as x increases from

x9(B) -
zero. Substituting 5 for x yields

Rewriting G(x,B) as (“1)2B_lh(

0 0
x. (B) x (B)
x3 (8) 2P In(— )P-1(14p1n2 - )
G( 2 :B) = (‘l) O(B)
, X
2P~In(e) (B-1) (25— )P +
0
_ ax, (B) .
ap
0] 0
x1(P) x5 (B) dx*(8)
Since xi(ﬁ) z 2 20, |o( = B = L , and we
A 2 2 ap
xi(ﬁ)
have completed the proof that O(B) is a non-increasing function
X
1

of Bo



Appendix E

Setup Cost Examples

L.l An Example of the Two Period Optimal Policy

The optimal policy for a two period problen with an
n(.), p(+) end @(+) that essentially satisfy Hypothesis 4 is
obt;ined.’ (n() has‘Property A2% but not Property A2.) The policy
is illustrated in Figures E.2 and E.lL. The costs and Aemand
distribution have been chosen to make the computations relatively

easy and not for realisnm.

The problem
(&) 2=9
() nixt)
c) p(;s,-,t)

max(xl,o) + max(xe,o)

0 if xl--tl z -1 and %X,

2 elsevhere

-t

2 -1

[}

(4) <P(£)=lif0§tl§land0§t2§l
= 0 elsevhere
(e) =1
(f) K, =K =Kp*=
Then L(* ), pictured in Figure E. 1, can be seen to satisfy

Property A2%. It is also apperent that all but (a) of Hypothesis L
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L(_}S)= X 42
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L(x)= x,-2x,

(-1,0)
%

ORDER PRODUCT 1
ONLY, UP TO z,

¢, (_35_)= x,*1

L(£)=
2(1-(14x ) (14x,))

:ql(‘)

¢, (x)

1
- 5,0

b

(O:‘l) v
{ L(x)= x.+2

1

i

;21(')

= L(x)

(0,0)= x*
ey |

ORDER BOTH PRODUCTS,

UP TO _{*
(1

¢ (x)=1

-J.a:, 1..~/_§_) J
2 2

Figure E.2

ORPER NOTHING -

- Xy
Loy

e

| ORDER PRODUCT 2
ONLY, UP TO 2,

Cl(i )= X +L
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are satisfied. It is clear from Figure E.l that 5& = (0,0)
and z (x ) = ze(xl) =0 for all x, and X,. Therefore

ql(xa q2(x ) =-1/2 for all x, 20 and all x, 2 0. For

1 2

-1/28x,50, qu(x is given by 2[1 - (l+q12(x ))] =1 or
(l+q12(x ) = 1/2, an hyperbola. Also, w (x ) = wa(x ) = 1 for
all x, 2 l and all x

1 2
two periods then is pictured in Figure E.2, where Cl(o) is also

2 1. The optimal policy in the last of the

specified.

In Figure E.3 we specify Ga(-), using the bounds of
Theoren 4.10 to define the areas of intérest. Since Gz(‘) is
symmetric, the area where Xy > Xy is omitted. It is not.necessary

to obtain Gz(-) explicitly between the zl(-) and wl(-) curves,

since
(1) it is easy to show that Dle(-) is non-negative
| in this area |
and (2) from the formulas for GQ(-) between ql(o) and
| zl(-), it can be seen than, above x,=0, DéGQ(-) is
non-negative on the line x2=0.
This implies that X(2) = (0,0) and S(z)(x ) (O,x ) for

every x, > 0. Solving then for S( )( ), we obtain the result

pictured in Figure E.4 as the optimal policy with two periods remaining.
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X
AOREE A )
+2X ‘T
Ql(') \/:
(Ge(ﬁ?' 2-x)+ 1%'1”"2 * % x22 / 2, (+)
A % 2%y ‘xlz)
+ % (xez-l)(lﬁxl?a ‘/f(o,%)
G (x)= lg
T2
* %xaa - %(l*xl)
1
+ K ln(l+xl) (0,0) - E*
2 13{ ! ‘xle) 5
(_ %,O)/ < i
’ z,(*)
-ilml:?(lhce) qa(. )
z (l+xl)2(l+x2)2-
- %.(1n(l+xl) + In(14x,))

a,,(*)
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Xla + 3)5‘! -1 - : ;LL 53(2)(.)
q,(*) L
‘ 2.: ‘;(-.381‘,1}

ORDER PRODUCT 1 ONLY, { () ana 8200

UP T0 S(i)(-) : S]_ '. l'(
o

G:’;l -e5xy” * ILr»:('a‘l""la? :
#0500 1) (L) { A (=415,3) (0,+5)

I .

<5 m Lamy + W51y )°
+:25 In(lex))

2
gy #e))

("5:0.) ‘—\

ORDER BOTH PRODUCTS,
vp 10 X(2)

/5.:(;;:)’(;2) | +.5(1+xl)2(1m

.

+ 425( 1n(14x)) + In(l4x,))

oS (-u75,0)

2
2

ORDER NOTHING

(O)O)"JE*‘“K(E)
—_—

The Optimal Policy with Two Periods Remaining

Figure E.4
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Note: If p(gs-f:) is set equal to U4 for x-t < (1,1) then
(a) L(.) becomes separsble and
(v) qle(xe? =-1/2 - %, a straight line, for

- 1/2 <x, < 0.

E.2 An Example where the Minimizer of G2(-) is not greater than

or equal to §f

Consider the following discrete demand example. Again,
h(-), p(+), and 9(.) are chosen for convenience only. Further, we
speéify ﬁ(-) and é(-) only in the area of interest; their sum,
h(x,t) + p(x—t) is given as a function of x-t 1in Figure E.5. We
also assume that =0, 0=1, k) = K, = Kp=2 and 9(1,1) = 9(0,1) =
(1, o) = 1/3. | |

L(+) is given in Figure E. 6 and C ( ) in Figure E.T.
Then G, (+) 1is given in Figure E.8. We note tha.t Gg(-) is
minimized at (l,-l) and (-1, 1), vith G ( ) being la%ger at any
point other than these, and that neither p01nt is z x* = (0, 0).

Note that L(- ) is quasiconvex in x; for any X, and
vice-versa, and satisfles the obvious discrete version of Property A2.

The difficulty arises because L(+) 1is not quasiconvex along the

lines x4 + X5 = -4 and Xy + %, = 0.
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E.3 An Example where s(Q?Co) has Positive Slope below X(2)

Let L(+) be as 4ictured in Figure E.9 and lat
be uniform on the unit square. Assume that ip >0 and that QG » 1.
let K = tp where t < 1. Hypothesis 4 is then satisfied, and
cl(-) is as pictured in ?igpre E.10. It can be showm ghat

G, (x) = == (-2-p-t%p? - xB(24p)? - x,(2+p)(2tp) + Ux3 - x,(2+p))
2% T o P 1 CO -

in the shaded region on that figure.

If p>2, it can be shown that 5202(5) < 0 everywhere
in the shaded region. Assume that p=8 and t = 1/2. Then

G,(0,0) >3.68>3 =6 (l,l). so that X(2) > (o.o). For x, =X, >0,

H

it can be shown that G (x) 3 3.68 - 6x + bx?, so that G, (x) 2 1.43.

Now Gg( -.1,0) <5< 143 +K=543¢ ce(x(a)), so that s(e)(o) <1<
Since s( )(-) is contimyous, it is in the shaded region for sowme

x, > 0. Sincé X(2) > (o,o); DQGa(-) <0 ix; this region irplies

i
that s(z?(-) has positive slope at some point below 5‘2).
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X

‘ 2
L(E)z “PAy 4+ Xg

L(x) = xp + xp

Llx)= -x,-(2+p)x,

/ (O:O)

o~ Xl
L(x) = -px, + X,
L(x) = -(2+p)(x;+x,)
Xl + x2 = 0
Figure E.9Q
-

Figure E.10




Appendix F

Alternate Proof of Lerma L.6

Since J(+) has been shown to be symmetric, it will

suffice to show that J(a) Z J(®) if a 21 0.

3(a) - 3() = [, ela-x) flx)ax - I5, glo-x) f(x)ax

- ,
= J2 [g(a=x) - g(b-x)]f(x)ax.

If the real line is partitioned into four intervals,

- +b +b .
(- »,0) [0, §§~) , [25—, a+b), and [a+b, ®), and if Qs Qs Qgs
and Qh are defined to be the values obtained by integrating over
each interval, then J(a) - J(b) can be written as Q, *+ Qy + Qg * Q, .
It will be shown that Q2 + Q3 20 and Ql + Qh z 0, thus implying
J(a) - J(v) 2 0.

First consider Q2 + Q3 =

a+b

= ato
| © [g(a-x)-glo-x)1f(x)ax + [ [gla-x)-g(o-x)]1f(x)dx.
0 : . atb : . .

2

Substituting y = a+b-X,

atb
Q3 = é 2 lely-v) - egly-2)] £(a+tb-y) dy

is obtained. Using the symmetry of g(+),
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a+b

Qg = [ 7 (1) Lete)-a(oms)] 2laro) &

Therefore
a+b

Q +Qy = égi. [g(a-y)-g(b-y) 1 £(y)-£(a+tb-y)] dy.

2tb
2

implies that y ¥ atb-y so that £(y) # f£(a+b-y). Consequently,

Now a 2b 2y implies that g(a-y) 2 g(b-y). Further, y &

the integrand is always non-negative, so Q2 + Q3 z 0.
Next consider Ql + Qh =
O 0
[ le(a=x)-g(o-x)1e(x)ax + [ [g(a-x)-g(b-x)] f(x)ax.
at+b :

Substituting y=atb-x,

Q= / " [g(y-b)-g(y-a)] f(a+b-y) dy,
a+b | |

and, by the symmetry of g(),

Q = [ (-1) [gle~y)-g(b-y)] f(a+b-y) dy.
a+b |

Therefore Q + Q, = f: [g(a-y)-g(b-y) I £(y)-£(a+b-y)] ay.
at

Now y 2 a 2b implies that g(a-y) = g(b-y). Further, y 2 a+b
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implies that y 2 |a+b-y|, so that f(y) = f(a+b-y). Therefore

the integrand, being the product of non-positive terms, is always

non-negative, so Ql + Qh 2 0.
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